NASA Astrophysics Data System (ADS)
Kalli, Kyriacos; Lacraz, Amedee; Theodosiou, Andreas; Kofinas, Marios
2016-05-01
There is great interest in the development of flexible wavelength filters and optical fibre sensors, such as Bragg and superstructure gratings, grating arrays and chirped gratings in glass and polymer optical fibres. A major hurdle is the development of an inscription method that should offer flexibility and reliability and be generally applicable to all optical fibre types. With this in mind we have developed a novel femtosecond laser inscription method; plane-by-plane inscription, whereby a 3D-index change of controlled length across the fibre core, width along the fibre axis and depth is written into the optical fibre. We apply this method for the inscription of various grating types in coated silica and low- loss CYTOP polymer optical fibres. The plane-by-plane method allows for multiple and overlapping gratings in the fibre core. Moreover, we demonstrate that this novel fibre Bragg grating inscription technique can be used to modify and add versatility to an existing, encapsulated optical fibre pressure sensor. The femtosecond laser is operated in the green or the near infra-red, based on the material properties under laser modification.
Femtosecond laser processing of optical fibres for novel sensor development
NASA Astrophysics Data System (ADS)
Kalli, Kyriacos; Theodosiou, Antreas; Ioannou, Andreas; Lacraz, Amedee
2017-04-01
We present results of recent research where we have utilized a femtosecond laser to micro-structure silica and polymer optical fibres in order to realize versatile optical components such as diffractive optical elements on the fibre end face, the inscription of integrated waveguide circuits in the fibre cladding and novel optical fibre sensors designs based on Bragg gratings in the core. A major hurdle in tailoring or modifying the properties of optical fibres is the development of an inscription method that can prove to be a flexible and reliable process that is generally applicable to all optical fibre types; this requires careful matching of the laser parameters and optics in order to examine the spatial limits of direct laser writing, whether the application is structuring at the surface of the optical fibre or inscription in the core and cladding of the fibre. We demonstrate a variety of optical components such as two-dimensional grating structures, Bessel, Airy and vortex beam generators; moreover, optical bridging waveguides inscribed in the cladding of single-mode fibre as a means to selectively couple light from single-core to multi-core optical fibres, and demonstrate a grating based sensor; finally, we have developed a novel femtosecond laser inscription method for the precise inscription of tailored Bragg grating sensors in silica and polymer optical fibres. We also show that this novel fibre Bragg grating inscription technique can be used to modify and add versatility to an existing, encapsulated optical fibre pressure sensor.
Serum protein measurement using a tapered fluorescent fibre-optic evanescent wave-based biosensor
NASA Astrophysics Data System (ADS)
Preejith, P. V.; Lim, C. S.; Chia, T. F.
2006-12-01
A novel method to measure the total serum protein concentration is described in this paper. The method is based on the principles of fibre-optic evanescent wave spectroscopy. The biosensor applies a fluorescent dye-immobilized porous glass coating on a multi-mode optical fibre. The evanescent wave's intensity at the fibre-optic core-cladding interface is used to monitor the protein-induced changes in the sensor element. The sensor offers a rapid, single-step method for quantifying protein concentrations without destroying the sample. This unique sensing method presents a sensitive and accurate platform for the quantification of protein.
Monitoring the fabrication of tapered optical fibres
NASA Astrophysics Data System (ADS)
Mullaney, K.; Correia, R.; Staines, S. E.; James, S. W.; Tatam, R. P.
2017-04-01
A variety of optical methods to enhance the process of making optical fibre tapers are explored. A thermal camera was used to both refine the alignment of the optical components and optimize the laser power profile during the tapering process. The fibre transmission was measured to verify that the tapers had the requisite optical characteristics while the strain experienced by the fibre while tapering was assessed using an optical fibre Bragg grating. Using these techniques, adiabatic tapers were fabricated with a 2% insertion loss.
Encryption method based on pseudo random spatial light modulation for single-fibre data transmission
NASA Astrophysics Data System (ADS)
Kowalski, Marcin; Zyczkowski, Marek
2017-11-01
Optical cryptosystems can provide encryption and sometimes compression simultaneously. They are increasingly attractive for information securing especially for image encryption. Our studies shown that the optical cryptosystems can be used to encrypt optical data transmission. We propose and study a new method for securing fibre data communication. The paper presents a method for optical encryption of data transmitted with a single optical fibre. The encryption process relies on pseudo-random spatial light modulation, combination of two encryption keys and the Compressed Sensing framework. A linear combination of light pulses with pseudo-random patterns provides a required encryption performance. We propose an architecture to transmit the encrypted data through the optical fibre. The paper describes the method, presents the theoretical analysis, design of physical model and results of experiment.
NASA Astrophysics Data System (ADS)
Alsevska, A.; Dilendorfs, V.; Spolitis, S.; Bobrovs, Vj.
2017-12-01
In the paper, the authors compare efficiency of two physical dispersion compensation methods for single channel and 8-channel WDM fibre-optical transmission systems using return-to-zero (RZ) and non-return-to-zero (NRZ) line codes for operation within optical C-band frequencies by means of computer simulations. As one of the most important destructive effects in fibre optical transmission systems (FOTS) is chromatic dispersion (CD), it is very important to reduce its negative effect on a transmitted signal. Dispersion compensation methods that were implemented in the research were dispersion compensating fibre (DCF) and fibre Bragg grating (FBG). The main goal of the paper was to find out which dispersion compensation method (DCF or FBG) provided the highest performance increase for fibre-optical transmission system and provided the longest transmission distance after dispersion compensation was implemented at different locations in the fibre-optical line while RZ or NRZ line codes were used. In the paper the reference point of signal quality for all measurements, which were obtained at the receiver, was BER<10-12.
A novel optical fibre doped with the nano-material as InP
NASA Astrophysics Data System (ADS)
Chen, Xi; Lee, Ly Guat; Zhang, Ru
2007-11-01
As the key of these optical devices which are widely used in the communication system, high nonlinear optical fibre will play an important role in the future optical fibre communication. With recent growth of nano-technology, researchers are hoping to obtain some kinds of optical fibre by combining the optical fibre with the nanotechnology. According to this current situation, the optical fibre doped with nano-material as InP (indium phosphide) is manufactured by using the MCVD (modified chemical vapor deposition) technology after our comprehensive consideration of many relative factors. Proved by experiments, this novel optical fibre has an excellent waveguide characteristic. After a consideration of the model of this novel optical fibre, its propagation constant β has been simulated by using the FEM (finite element method), and the graphs of presentation of magnetic field of the core are also obtained. In accordance with the results, the effective refractive index n eff = 1.401 has be calculated. Both the calculated result and the simulated graphs are matching well with the test, and this result is a step-stone bridge for future research of nonlinear parameter on this novel optical fiber.
Metal-coated Bragg grating reflecting fibre
NASA Astrophysics Data System (ADS)
Chamorovskiy, Yu. K.; Butov, O. V.; Kolosovskiy, A. O.; Popov, S. M.; Voloshin, V. V.; Vorob'ev, I. L.; Vyatkin, M. Yu.
2017-03-01
High-temperature optical fibres (OF) with fibre Bragg gratings (FBG) arrays written over a long length and in-line metal coating have been made for the first time. The optical parameters of the FBG arrays were tested by the optical frequency domain reflectometer (OFDR) method in a wide temperature range, demonstrating no degradation in reflection at heating up to 600 °C for a fibre with Al coating. The mechanical strength of the developed fibre was practically the same as "ordinary" OF with similar coating, showing the absence of the influence of FBG writing process on fibre strength. Further experiments are necessary to evaluate the possibility of further increases in the operational temperature range.
CARMENES in SPIE 2014. Building a fibre link for CARMENES
NASA Astrophysics Data System (ADS)
Stürmer, J.; Stahl, O.; Schwab, C.; Seifert, W.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Caballero, J. A.
2014-07-01
Optical fibres have successfully been used to couple high-resolution spectrographs to telescopes for many years. As they allow the instrument to be placed in a stable and isolated location, they decouple the spectrograph from environmental influences. Fibres also provide a substantial increase in stability of the input illumination of the spectrograph, which makes them a key optical element of the two high-resolution spectrographs of CARMENES. The optical properties of appropriate fibres are investigated, especially their scrambling and focal ratio degradation (FRD) behaviour. In the laboratory the output illumination of various fibres is characterized and different methods to increase the scrambling of the fibre link are tested and compared. In particular, a combination of fibres with different core shapes shows a very good scrambling performance. The near-field (NF) shows an extremely low sensitivity to the exact coupling conditions of the fibre. However, small changes in the far-field (FF) can still be seen. Related optical simulations of the stability performance of the two spectrographs are presented. The simulations focus on the influence of the non-perfect illumination stabilization in the far-field of the fibre on the radial velocity stability of the spectrographs. We use ZEMAX models of the spectrographs to simulate how the barycentres of the spots move depending on the FF illumination pattern and therefore how the radial velocity is affected by a variation of the spectrograph illumination. This method allows to establish a quantitative link between the results of the measurements of the optical properties of fibres on the one hand and the radial velocity precision on the other. The results provide a strong indication that 1ms?1 precision can be reached using a circular-octagonal fibre link even without the use of an optical double scrambler, which has successfully been used in other high-resolution spectrographs. Given the typical throughput of an optical double scrambler of about 75% to 85 %, our solution allows for a substantially higher throughput of the system.
Novel shape memory alloy optical fibre connection method
NASA Astrophysics Data System (ADS)
Trouillard, G.; Zivojinovic, P.; Cerutti, R.; Godmaire, X. Pruneau; Weynant, E.
2010-02-01
In this paper, the capacity and quality of a shape memory alloy device is demonstrated for installation and connection of 125-μm to 1000-μm optical fibres. The new mechanical splice has the particularity of using a very simple tool for aligning and holding the cladding of fibres itself without the need of glue. Optimend main characteristics are its small dimensions (few millimetres), reusability, glueless, ruggedness, low temperature variation, heat dissipation and ease of use. These properties are very suitable for many optical fibre applications where both quick and reliable connections are desirable.
NASA Astrophysics Data System (ADS)
1994-01-01
Summer School, 27 June to 8 July 1994, Viana do Castelo, Hotel do Parque, Portugal Optical fibres, with their extremely low transmission loss, untapped bandwidth and controllable dispersion, dominate a broad range of technologies in which applications must respond to the increasing constraints of today's specifications as well as envisage future requirements. Optical fibres dominate communications systems. In the area of sensors, fibre optics will be fully exploited for their immunity to EMI, their high sensitivity and their large dynamic range. The maturity of single mode optical technology has led to intensive R&D of a range of components based on the advantages of transmission characteristics and signal processing. Specifications and intercompatibility requests for the new generation of both analogue and digital fibre optical components and systems has created a demand for sophisticated measuring techniques based on unique and complex instruments. In recent years there has been a signification evolution in response to the explosion of applications and the tightening of specifications. These developments justify a concerted effort to focus on trends in optical fibre metrology and standards. Objective The objective of this school is to provide a progressive and comprehensive presentation of current issues concerning passive and active optical fibre characterization and measurement techniques. Passive fibre components support a variety of developments in optical fibre systems and will be discussed in terms of relevance and standards. Particular attention will be paid to devices for metrological purposes such as reference fibres and calibration artefacts. The characterization and testing of optical fibre amplifiers, which have great potential in telecommunications, data distribution networks and as a system part in instrumentation, will be covered. Methods of measurement and means of calibration with traceability will be discussed, together with the characterization requirements of the new generation of analogue and digital fibre optical systems, which require sophisticated measurement techniques employing complex instruments unique to optical measurements. The school will foster and enhance the interaction between material, devices, systems, and standards-oriented R&D communities, as well as between engineers concerned with design and manufacturers of systems and instrumentation. Topics Review of optical fibre communication technology and systems Measurement techniques for fibre characterization: Reliability and traceability Reference fibres and calibration artefacts Ribbon fibres Mechanical and environmental testing Fibre reliability Polarimetric measurements Passive components characterization: Splices and connectors Couplers, splitters, taps and WDMs Optical fibres and isolators WDM technologies and applications: WDM technologies Tunable optical filters Fibre amplifiers and sources: Performances and characterization Design and standards Nonlinear effects Subsystem design and standards: Design and fabrication techniques Performance degradation and reliability Evaluation of costs/performance/technology Sensors IR - optical fibres Plastic fibres Instrumentation Registration Participation free of charge for postgraduate students, with some grants available for travel and lodging expenses. All correspondence should be addressed to: Secretariat, Trends in Optical Fibre Metrology and Standards, a/c Prof. Olivério D D Soares, Centro de Ciências e Tecnologias Opticas, Lab. Fisica - Faculdade de Ciências, Praça Gomes Teixeira, P-4000 Porto, Portugal. Tel: 351-2-310290, 351-2-2001648; Fax: 351-2-319267.
An optimal method for producing low-stress fibre optic cables for astronomy
NASA Astrophysics Data System (ADS)
Murray, Graham; Tamura, Naoyuki; Takato, Naruhisa; Ekpenyong, Paul; Jenkins, Daniel; Leeson, Kim; Trezise, Shaun; Butterley, Timothy; Gunn, James; Ferreira, Decio; Oliveira, Ligia; Sodre, Laerte
2017-09-01
An increasing number of astronomical spectrographs employ optical fibres to collect and deliver light. For integral-field and high multiplex multi-object survey instruments, fibres offer unique flexibility in instrument design by enabling spectrographs to be located remotely from the telescope focal plane where the fibre inputs are deployed. Photon-starved astronomical observations demand optimum efficiency from the fibre system. In addition to intrinsic absorption loss in optical fibres, another loss mechanism, so-called focal ratio degradation (FRD) must be considered. A fundamental cause of FRD is stress, therefore low stress fibre cables that impart minimum FRD are essential. The FMOS fibre instrument for Subaru Telescope employed a highly effective cable solution developed at Durham University. The method has been applied again for the PFS project, this time in collaboration with a company, PPC Broadband Ltd. The process, planetary stranding, is adapted from the manufacture of large fibre-count, large diameter marine telecommunications cables. Fibre bundles describe helical paths through the cable, incorporating additional fibre per unit length. As a consequence fibre stress from tension and bend-induced `race-tracking' is minimised. In this paper stranding principles are explained, covering the fundamentals of stranded cable design. The authors describe the evolution of the stranding production line and the numerous steps in the manufacture of the PFS prototype cable. The results of optical verification tests are presented for each stage of cable production, confirming that the PFS prototype performs exceptionally well. The paper concludes with an outline of future on-telescope test plans.
Thermal effects on an embedded grating sensor in an FRP structure
NASA Astrophysics Data System (ADS)
Lau, Kin-tak; Yuan, Libo; Zhou, Li-min
2001-08-01
Much research has been carried out in the field of using optical fibre sensors as internal strain and temperature measuring devices for advanced composite structures in recent years. The specific application is the use of embedded optical fibre sensors for smart composite reinforcement for strain monitoring in an innovative civil engineering structure, particularly for the structure after rehabilitation. Researchers have also paid attention to using the optical fibre sensor for monitoring the condition of composite materials during manufacturing and curing processes. However, heat induced in the curing process may influence the accuracy of measurement and eventuate in causing damage at the bond interface between the optical fibre and the surrounding matrix material because of the different thermal properties of silica fibre and composite materials. In this paper, a simple theoretical model is introduced to determine the interfacial properties of the embedded optical fibre system in composite laminates with different values of the coefficient of thermal expansion under different temperature environments. A finite-element method is used to compare the result from the theoretical prediction. The results show that the maximum shear stress in the coating layer decreases with increasing surrounding temperature when the optical fibre is embedded into carbon and Kevlar fibre composites. In contrast, increasing the temperature when the optical fibre is embedded into glass fibre composite results in the increase of maximum shear stress of the material. The compaction pressure distribution along the circumference of the coating layer also varies with temperature.
Wasyluk, Jaromir T.; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona
2012-01-01
Summary Background We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Material/Methods Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18–70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. Results The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in μm) differ significantly between GDx and all OCT devices. Conclusions Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients. PMID:22367131
The dependence of the properties of optical fibres on length
NASA Astrophysics Data System (ADS)
Poppett, C. L.; Allington-Smith, J. R.
2010-05-01
We investigate the dependence on length of optical fibres used in astronomy, especially the focal ratio degradation (FRD) which places constraints on the performance of fibre-fed spectrographs used for multiplexed spectroscopy. To this end, we present a modified version of the FRD model proposed by Carrasco & Parry to quantify the number of scattering defects within an optical fibre using a single parameter. The model predicts many trends which are seen experimentally, for example, a decrease in FRD as core diameter increases, and also as wavelength increases. However, the model also predicts a strong dependence on FRD with length that is not seen experimentally. By adapting the single fibre model to include a second fibre, we can quantify the amount of FRD due to stress caused by the method of termination. By fitting the model to experimental data, we find that polishing the fibre causes more stress to be induced in the end of the fibre compared to a simple cleave technique. We estimate that the number of scattering defects caused by polishing is approximately double that produced by cleaving. By placing limits on the end effect, the model can be used to estimate the residual-length dependence in very long fibres, such as those required for Extremely Large Telescopes, without having to carry out costly experiments. We also use our data to compare different methods of fibre termination.
NASA Astrophysics Data System (ADS)
Balac, Stéphane; Fernandez, Arnaud
2016-02-01
The computer program SPIP is aimed at solving the Generalized Non-Linear Schrödinger equation (GNLSE), involved in optics e.g. in the modelling of light-wave propagation in an optical fibre, by the Interaction Picture method, a new efficient alternative method to the Symmetric Split-Step method. In the SPIP program a dedicated costless adaptive step-size control based on the use of a 4th order embedded Runge-Kutta method is implemented in order to speed up the resolution.
Axonal loss from acute optic neuropathy documented by scanning laser polarimetry
Meier, F M; Bernasconi, P; Stürmer, J; Caubergh, M-J; Landau, K
2002-01-01
Background/aims: Retinal nerve fibre layer analysis by scanning laser polarimetry has been shown to facilitate diagnosis of glaucoma while its role in glaucoma follow up is still unclear. A major difficulty is the slow reduction of retinal nerve fibre layer thickness in glaucomatous optic neuropathy. Eyes of patients were studied after acute retrobulbar optic nerve lesion in order to evaluate the usefulness of scanning laser polarimetry in documenting retinal nerve fibre layer loss over time. Methods: Five patients who suffered severe retrobulbar optic neuropathy have had repeated measurements of the retinal nerve fibre layer using scanning laser polarimetry at various intervals, the first examination being within 1 week of injury. Results: All eyes showed a marked decrease in peripapillary retinal nerve fibre layer thickness, which followed an exponential curve and occurred predominantly within 8 weeks of injury. Compared to a previous study using red-free photographs, scanning laser polarimetry showed retinal nerve fibre layer loss earlier in the course of descending atrophy. Conclusion: Scanning laser polarimetry is useful for early detection and documentation of retinal nerve fibre layer loss following acute injury to the retrobulbar optic nerve. It seems to be a promising tool for follow up of individual glaucoma patients. PMID:11864884
NASA Astrophysics Data System (ADS)
Inanç, Arda; Kösoğlu, Gülşen; Yüksel, Heba; Naci Inci, Mehmet
2018-06-01
A new fibre optic Lloyd's mirror method is developed for extracting 3-D height distribution of various objects at the micron scale with a resolution of 4 μm. The fibre optic assembly is elegantly integrated to an optical microscope and a CCD camera. It is demonstrated that the proposed technique is quite suitable and practical to produce an interference pattern with an adjustable frequency. By increasing the distance between the fibre and the mirror with a micrometre stage in the Lloyd's mirror assembly, the separation between the two bright fringes is lowered down to the micron scale without using any additional elements as part of the optical projection unit. A fibre optic cable, whose polymer jacket is partially stripped, and a microfluidic channel are used as test objects to extract their surface topographies. Point by point sensitivity of the method is found to be around 8 μm, changing a couple of microns depending on the fringe frequency and the measured height. A straightforward calibration procedure for the phase to height conversion is also introduced by making use of the vertical moving stage of the optical microscope. The phase analysis of the acquired image is carried out by One Dimensional Continuous Wavelet Transform for which the chosen wavelet is the Morlet wavelet and the carrier removal of the projected fringe patterns is achieved by reference subtraction. Furthermore, flexible multi-frequency property of the proposed method allows measuring discontinuous heights where there are phase ambiguities like 2π by lowering the fringe frequency and eliminating the phase ambiguity.
1,4-Bis(2-methylstyryl)benzene doped PMMA fibre for blue range fluorescent applications
NASA Astrophysics Data System (ADS)
Miluski, Piotr; Kochanowicz, Marcin; Zmojda, Jacek; Dorosz, Dominik
2018-03-01
The fluorescent dyes allow new optical applications in polymer-based optical fibre technology. The article presents highly fluorescent 1,4-Bis(2-methylstyryl)benzene doped poly(methyl methacrylate) (PMMA) fibre. The multi-peak (422, 450, 488 nm) fluorescence spectrum of the bulk specimen under 355 nm excitation is presented. The polymerization and fibre drawing process is also shown. The fluorescent properties vs. fibre length at excitation 405 nm are investigated. Significant spectrum shape changes and red shift phenomena of individual peaks are presented using one end excitation and fibre cutting method measurements for fibre length 2-90 cm. Obtained attenuation level 0.69 dB/m limits useful fibre length but obtained results can be useful in new polymeric fibers applications (e.g. sensors, light sources).
Effect of the preform fabrication process on the properties of all-silica optical fibres
NASA Astrophysics Data System (ADS)
Grishchenko, A. B.
2017-12-01
In this paper, we present a detailed comparison of technical capabilities of processes for the fabrication of all-silica optical fibre preforms with the use of an atmospheric pressure radio frequency plasma (POVD process) and low-pressure microwave plasma (PCVD process) and analyse the origin of the difference in optical properties between fibres produced by these methods. It is shown that the higher temperature of the core material and the higher oxygen partial pressure in preform fabrication by the POVD process lead to an increase in optical losses in the visible and UV spectral regions in the silica fibres with low hydroxyl (OH) content and a decrease in the solarisation resistance of the fibres with high OH content, i.e. to a more rapid increase in background losses in response to UV irradiation. No such drawbacks are detected in the case of the growth of reflective layers by the PCVD process.
Ruan, Yinlan; Ding, Liyun; Duan, Jingjing; Ebendorff-Heidepriem, Heike; Monro, Tanya M
2016-02-22
Integration of conductive materials into optical fibres can largely expand functions of fibre devices including surface plasmon resonator/metamaterial, modulators/detectors, or biosensors. Some early attempts have been made to incorporate metals such as tin into fibres during the fibre drawing process. Due to the restricted range of materials that have compatible melting temperatures with that of silica glass, the methods to incorporate metals along the length of the fibres are very challenging. Moreover, metals are nontransparent with strong light absorption, which causes high fibre loss. This article demonstrates a novel but simple method for creating transparent conductive reduced graphene oxide film onto microstructured silica fibres for potential optoelectronic applications. The strongly confined evanescent field of the suspended core fibres with only 2 μW average power was creatively used to transform graphene oxide into reduced graphene oxide with negligible additional loss. Existence of reduced graphene oxide was confirmed by their characteristic Raman signals, shifting of their fluorescence peaks as well as largely decreased resistance of the bulk GO film after laser beam exposure.
A fiber optic sensor for on-line non-touch monitoring of roll shape
NASA Astrophysics Data System (ADS)
Guo, Yuan; Qu, Weijian; Yuan, Qi
2009-07-01
Basing on the principle of reflective displacement fibre-optic sensor, a high accuracy non-touch on-line optical fibre sensor for detecting roll shape is presented. The principle and composition of the detection system and the operation process are expatiated also. By using a novel probe of three optical fibres in equal transverse space, the effects of fluctuations in the light source, reflective changing of target surface and the intensity losses in the fibre lines are automatically compensated. Meantime, an optical fibre sensor model of correcting static error based on BP artificial neural network (ANN) is set up. Also by using interpolation method and value filtering to process the signals, effectively reduce the influence of random noise and the vibration of the roll bearing. So the accuracy and resolution were enhanced remarkably. Experiment proves that the resolution is 1μm and the precision can reach to 0.1%. So the system reaches to the demand of practical production process.
Deformation Measurement of a Driven Pile Using Distributed Fibre-optic Sensing
NASA Astrophysics Data System (ADS)
Monsberger, Christoph; Woschitz, Helmut; Hayden, Martin
2016-03-01
New developments in distributed fibre-optic sensing allow the measurement of strain with a very high precision of about 1 µm / m and a spatial resolution of 10 millimetres or even better. Thus, novel applications in several scientific fields may be realised, e. g. in structural monitoring or soil and rock mechanics. Especially due to the embedding capability of fibre-optic sensors, fibre-optic systems provide a valuable extension to classical geodetic measurement methods, which are limited to the surface in most cases. In this paper, we report about the application of an optical backscatter reflectometer for deformation measurements along a driven pile. In general, pile systems are used in civil engineering as an efficient and economic foundation of buildings and other structures. Especially the length of the piles is crucial for the final loading capacity. For optimization purposes, the interaction between the driven pile and the subsurface material is investigated using pile testing methods. In a field trial, we used a distributed fibre-optic sensing system for measuring the strain below the surface of an excavation pit in order to derive completely new information. Prior to the field trial, the fibre-optic sensor was investigated in the laboratory. In addition to the results of these lab studies, we briefly describe the critical process of field installation and show the most significant results from the field trial, where the pile was artificially loaded up to 800 kN. As far as we know, this is the first time that the strain is monitored along a driven pile with such a high spatial resolution.
Simultaneous transfer of optical frequency and time over 306 km long-haul optical fibre link
NASA Astrophysics Data System (ADS)
Hucl, Vaclav; Cizek, Martin; Pravdova, Lenka; Rerucha, Simon; Hrabina, Jan; Mikel, Bretislav; Smotlacha, Vladimir; Vojtech, Josef; Lazar, Josef; Cip, Ondrej
2016-12-01
Optical fibre links for distributing optical frequencies and time stamps were researched and experimentally tested in the past fifteen years. They have been used mainly for stability comparison of experimental optical clocks. But recent development puts demands on a technology transfer from laboratory experiments to the real industry. The remote calibration of interrogators of Fibre Bragg Grating strain sensory networks is one of important examples. The first step of the adoption the time and frequency broadcasting should be the drop-out free long-term operation of this technology between research laboratories connected via long-haul fibre links. We present a 306 km long-haul optical fibre link between the cities of Prague and Brno in the Czech Republic where a coherent transfer of stable optical frequency and a stable time signal has been firstly demonstrated. The link between ISI CAS Brno and CESNET Prague uses an internet communication fibre where a window of 1540-1546 nm is dedicated for the coherent transfer and 1PPS signal. The link is equipped with 6 bidirectional EDFA amplifiers. The optical frequency standard based on the highly-coherent laser Koheras Adjustik working at 1540.5 nm and stabilized with a saturation absorption spectroscopy technique was used for the coherent wave transfer. The suppression of the Doppler shift induced by the optical fibre was based on an accoustooptical modulator with a servo-loop including a fast PID controller processing the beat-note frequency given by mixing of the Adjustik laser (Brno) and the reflected frequency of this laser from the far end of 306 km long-haul fibre link (Prague). We verified the Doppler shift suppression for the coherent wave with a measuring method analysing the transport delay of the 1PPS signal.
FIBER OPTICS: Fibre optics: Forty years later
NASA Astrophysics Data System (ADS)
Dianov, Evgenii M.
2010-01-01
This paper presents a brief overview of the state of the art in fibre optics and its main applications: optical fibre communications, fibre lasers and fibre sensors for various physical property measurements. The future of fibre optics and the status of this important area of the modern technology in Russia are discussed.
Fibre optic connectors with high-return-loss performance
NASA Astrophysics Data System (ADS)
Knott, Michael P.; Johnson, R.; Cooke, K.; Longhurst, P. C.
1990-09-01
This paper describes the development of a single mode fibre optic connector with high return loss performance without the use of index matching. Partial reflection of incident light at a fibre optic connector interface is a recognised problem where the result can be increased noise and waveform distortion. This is particularly important for video transmission in subscriber networks which requires a high signal to noise ratio. A number of methods can be used to improve the return loss. The method described here uses a process which angles the connector endfaces. Measurements show typical return losses of -55dB can be achieved for an end angle of 6 degrees. Insertion loss results are also presented.
Development of optical fiber technology in Poland 2015
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.; Wójcik, Waldemar
2015-12-01
The paper is a digest of works presented during the XVIth National Symposium on Optical Fibres and Their Applications. The Symposium is organized since 1976. OFTA 2015 was organized by Optical Fibre Laboratory of the Faculty of Chemistry at University of Maria Curie Skłodowska, and Institute of Electronics and Information Technology of Lublin University of Technology, in Nałęczów on 22-25 September 2015. The meeting has gathered around 120 participants who presented 85 research and technical papers. The Symposium organized every 18 months is a good portrait of optical fibre technology development in Poland at university laboratories, governmental institutes, company R&D laboratories, etc. Topical tracks of the Symposium were: optical and photonic materials, technology of classical, tailored and structural photonic optical fibres, light propagation physics in optical fibres, passive and active optical fibre components, optical fibre sensors, passive and active optical fibre networks, optical fibre amplifiers and lasers, optical fibre network issues: modulation, architectures, economy, etc.
Optical properties study of nano-composite filled D shape photonic crystal fibre
NASA Astrophysics Data System (ADS)
Udaiyakumar, R.; Mohamed Junaid, K. A.; Janani, T.; Maheswar, R.; Yupapin, P.; Amiri, I. S.
2018-06-01
With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF) is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor.
Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres
Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald
2016-01-01
Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices. PMID:27339700
Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres.
Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald
2016-06-24
Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices.
Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres
NASA Astrophysics Data System (ADS)
Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald
2016-06-01
Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices.
Effect of heat treatment on absorption and fluorescence properties of PbS-doped silica optical fibre
NASA Astrophysics Data System (ADS)
Qin, Fu; Dong, Yanhua; Wen, Jianxiang; Pang, Fufei; Luo, Yanhua; Peng, Gang-Ding; Chen, Zhenyi; Wang, Tingyun
2017-02-01
The effect of heat treatment on the optical properties of a PbS-doped silica optical fibre was investigated. The experimental results showed that the absorption peak of the fibre red shifted from 1032 to 1133 nm when the heat treatment temperatures were carried out at 900, 950, 1000, and 1100 °C for 1 h, respectively. At the same time, when the heat treatment at 900 °C was carried out for 2, 5, 10, 20, and 40 h, the absorption spectra of the fibre showed a red shift from 1074 to 1143 nm. In addition, the intensity of the absorption peak increased from 0.258 to 1.384 dB/m and the full width at half maximum (FWHM) became narrower (from 130 to 50 nm) as the heat treatment proceeded. Moreover, the photoluminescence (PL) intensity in the wavelength range of 1100-1500 nm decreased with an increase in the heat treatment temperature. The theoretical analysis, using an effective mass method, showed that the effective band gap energy and average size of the lead sulphide (PbS) quantum dots (QDs) in the silica fibre core varied from 1.199 to 1.083 eV and from 4.28 to 4.81 nm, respectively. The results indicate that the size of the PbS QDs present in the silica fibre core could be controlled by a proper heat treatment, which is of great interest in optical fibre amplifiers and other fibre optic devices.
Wasyluk, Jaromir T; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona
2012-03-01
We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18-70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in µm) differ significantly between GDx and all OCT devices. Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients.
OPTICAL FIBRES AND FIBREOPTIC SENSORS: Polarisation reflectometry of anisotropic optical fibres
NASA Astrophysics Data System (ADS)
Konstantinov, Yurii A.; Kryukov, Igor'I.; Pervadchuk, Vladimir P.; Toroshin, Andrei Yu
2009-11-01
Anisotropic, polarisation-maintaining fibres have been studied using a reflectometer and integrated optic polariser. Linearly polarised pulses were launched into the fibre under test at different angles between their plane of polarisation and the main optical axis of the fibre. A special procedure for the correlation analysis of these reflectograms is developed to enhance the reliability of the information about the longitudinal optical uniformity ofanisotropic fibres.
Bismuth-doped optical fibres: A new breakthrough in near-IR lasing media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dianov, Evgenii M
Recent results demonstrate that bismuth-doped optical fibres have considerable potential as near-IR active lasing media. This paper examines bismuth-doped fibres intended for the fabrication of fibre lasers and optical amplifiers and reviews recent results on the luminescence properties of various types of bismuth-doped fibres and the performance of bismuth-doped fibre lasers and optical amplifiers for the spectral range 1150 - 1550 nm. Problems are discussed that have yet to be solved in order to improve the efficiency of the bismuth lasers and optical amplifiers. (optical fibres, lasers and amplifiers. properties and applications)
NASA Astrophysics Data System (ADS)
Karakoleva, E. I.; Andreev, A. Tz; Zafirova, B. S.
2006-12-01
The Galerkin method was applied to solve the vector wave equation in order to determine the propagation constants and the transverse electric fields of the modes propagating along side polished single-mode and two-mode optical fibres. The effective refractive indices of the modes were calculated depending on the values of the residual cladding (minimum distance between a fibre core and a polished surface) and the superstrate refractive index. The influence of the fibre parameters and working wavelength on the refractometric sensitivity was estimated in the case when a side polished fibre with inscribed in-fibre Bragg grating is used as a sensor element.
Maimaiti, Aili; Holzmann, Daniela; Truong, Viet Giang; Ritsch, Helmut; Nic Chormaic, Síle
2016-01-01
Particles trapped in the evanescent field of an ultrathin optical fibre interact over very long distances via multiple scattering of the fibre-guided fields. In ultrathin fibres that support higher order modes, these interactions are stronger and exhibit qualitatively new behaviour due to the coupling of different fibre modes, which have different propagation wave-vectors, by the particles. Here, we study one dimensional longitudinal optical binding interactions of chains of 3 μm polystyrene spheres under the influence of the evanescent fields of a two-mode microfibre. The observation of long-range interactions, self-ordering and speed variation of particle chains reveals strong optical binding effects between the particles that can be modelled well by a tritter scattering-matrix approach. The optical forces, optical binding interactions and the velocity of bounded particle chains are calculated using this method. Results show good agreement with finite element numerical simulations. Experimental data and theoretical analysis show that higher order modes in a microfibre offer a promising method to not only obtain stable, multiple particle trapping or faster particle propulsion speeds, but that they also allow for better control over each individual trapped object in particle ensembles near the microfibre surface. PMID:27451935
NASA Astrophysics Data System (ADS)
Kashin, V. V.; Nikolaev, D. A.; Rusanov, S. Ya; Tsvetkov, V. B.
2015-01-01
We demonstrate the employment of single-crystal optical fibres based on lithium niobate for doubling the laser radiation frequency. The measured characteristics of the fibre confirm its high quality and spatial homogeneity. Parameters of the frequency doublers for neodymium laser radiation (λ = 1 mm) based on fibre and bulk single crystals are compared. Single crystals are grown by the method of laser-heated pedestal growing with heating by radiation of a CO2 laser (LHPG-method).
Fibre Optic Sensors for Selected Wastewater Characteristics
Chong, Su Sin; Abdul Aziz, A. R.; Harun, Sulaiman W.
2013-01-01
Demand for online and real-time measurements techniques to meet environmental regulation and treatment compliance are increasing. However the conventional techniques, which involve scheduled sampling and chemical analysis can be expensive and time consuming. Therefore cheaper and faster alternatives to monitor wastewater characteristics are required as alternatives to conventional methods. This paper reviews existing conventional techniques and optical and fibre optic sensors to determine selected wastewater characteristics which are colour, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). The review confirms that with appropriate configuration, calibration and fibre features the parameters can be determined with accuracy comparable to conventional method. With more research in this area, the potential for using FOS for online and real-time measurement of more wastewater parameters for various types of industrial effluent are promising. PMID:23881131
NASA Astrophysics Data System (ADS)
Chen, Lingxia; O'Keeffe, Sinead; Woulfe, Peter; Lewis, Elfed
2017-04-01
Four sensors based on silica optical fibre and plastic optical fibre for clinical in-vivo dosimetry have been fabricated and tested on site at Galway Clinic. The initial comparison results have been attained for the four sensors when they have been irradiated with beam energies of 6 MV and 15 MV at different dose rates using a modern clinical linear accelerator (Linac) as the radiation source. According to the experimental test results, the sensors based on silica optical fibre exhibit greater sensitivity to the incident radiation beam than the sensors based on plastic optical fibre when they are exposed to identical irradiation conditions. The output intensity from the sensor based on silica fibre is 5 times higher than the sensor based on plastic optical fibre.
Hickey, M; Samuels, N; Randive, N; Langford, R; Kyriacou, P A
2012-12-01
A new, continuous method of monitoring splanchnic organ oxygen saturation (SpO(2)) would make the early detection of inadequate tissue oxygenation feasible, reducing the risk of hypoperfusion, severe ischaemia, and, ultimately, death. In an attempt to provide such a device, a new fibre optic based reflectance pulse oximeter probe and processing system were developed followed by an in vivo evaluation of the technology on seventeen patients undergoing elective laparotomy. Photoplethysmographic (PPG) signals of good quality and high signal-to-noise ratio were obtained from the small bowel, large bowel, liver and stomach. Simultaneous peripheral PPG signals from the finger were also obtained for comparison purposes. Analysis of the amplitudes of all acquired PPG signals indicated much larger amplitudes for those signals obtained from splanchnic organs than those obtained from the finger. Estimated SpO(2) values for splanchnic organs showed good agreement with those obtained from the finger fibre optic probe and those obtained from a commercial device. These preliminary results suggest that a miniaturized 'indwelling' fibre optic sensor may be a suitable method for pre-operative and post-operative evaluation of splanchnic organ SpO(2) and their health. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave
Jung, Kwangyun; Kim, Jungwon
2015-01-01
High-impact frequency comb applications that are critically dependent on precise pulse timing (i.e., repetition rate) have recently emerged and include the synchronization of X-ray free-electron lasers, photonic analogue-to-digital conversion and photonic radar systems. These applications have used attosecond-level timing jitter of free-running mode-locked lasers on a fast time scale within ~100 μs. Maintaining attosecond-level absolute jitter over a significantly longer time scale can dramatically improve many high-precision comb applications. To date, ultrahigh quality-factor (Q) optical resonators have been used to achieve the highest-level repetition-rate stabilization of mode-locked lasers. However, ultrahigh-Q optical-resonator-based methods are often fragile, alignment sensitive and complex, which limits their widespread use. Here we demonstrate a fibre-delay line-based repetition-rate stabilization method that enables the all-fibre photonic generation of optical pulse trains with 980-as (20-fs) absolute r.m.s. timing jitter accumulated over 0.01 s (1 s). This simple approach is based on standard off-the-shelf fibre components and can therefore be readily used in various comb applications that require ultra-stable microwave frequency and attosecond optical timing. PMID:26531777
Investigation of focal ratio degradation in optical fibres for astronomical instrumentation
NASA Astrophysics Data System (ADS)
Crause, Lisa; Bershady, Matthew; Buckley, David
2008-07-01
A differential method was used to investigate the focal ratio degradation (FRD) exhibited by, and throughput of, a selection of current-generation optical fibres. These fibres were tested to establish which would be best suited to feed the High Resolution Spectrograph being built for the Southern African Large Telescope (SALT), as well as for future instruments on WIYN and SALT. The double re-imaging system of Bershady et al. (2004) was substantially modified to improve image quality and measurement efficiency, and to permit a direct FRD-measurement in the far-field. The re-imaging method compares the beam profile produced by light which passes through a fibre to that which does not. Broad and intermediate band-pass filters were used between 400-800 nm to test for wavelength dependence in the observed FRD over a wide range in beam-speeds. Our results continue to be at odds with a mico-bend model for FRD. We conclude that the new Polymicro FBP fibre is the most suitable product for broadband applications.
ERIC Educational Resources Information Center
Alti, Kamlesh
2017-01-01
Optical fibres play a very crucial role in today's technologies. Academic courses in optical fibres start at the undergraduate level. Nevertheless, student's curiosity towards optical fibres starts from the school level. In this paper, some fun experiments have been designed for both school and college students, which have some concrete…
Fibre-optic nonlinear optical microscopy and endoscopy.
Fu, L; Gu, M
2007-06-01
Nonlinear optical microscopy has been an indispensable laboratory tool of high-resolution imaging in thick tissue and live animals. Rapid developments of fibre-optic components in terms of growing functionality and decreasing size provide enormous opportunities for innovations in nonlinear optical microscopy. Fibre-based nonlinear optical endoscopy is the sole instrumentation to permit the cellular imaging within hollow tissue tracts or solid organs that are inaccessible to a conventional optical microscope. This article reviews the current development of fibre-optic nonlinear optical microscopy and endoscopy, which includes crucial technologies for miniaturized nonlinear optical microscopy and their embodiments of endoscopic systems. A particular attention is given to several classes of photonic crystal fibres that have been applied to nonlinear optical microscopy due to their unique properties for ultrashort pulse delivery and signal collection. Furthermore, fibre-optic nonlinear optical imaging systems can be classified into portable microscopes suitable for imaging behaving animals, rigid endoscopes that allow for deep tissue imaging with minimally invasive manners, and flexible endoscopes enabling imaging of internal organs. Fibre-optic nonlinear optical endoscopy is coming of age and a paradigm shift leading to optical microscope tools for early cancer detection and minimally invasive surgery.
NASA Astrophysics Data System (ADS)
Chamorovsky, Yury K.; Starostin, Nikolay I.; Morshnev, Sergey K.; Gubin, Vladimir P.; Ryabko, Maksim V.; Sazonov, Aleksandr I.; Vorob'ev, Igor'L.
2009-11-01
We report a simple design of spun holey fibres and the first experimental study of the magneto-optical response of spun microstructured fibres with high built-in birefringence. Such fibres enable the Faraday-effect-induced phase shift to effectively accumulate in a magnetic field even at very small coiling diameters. For example, the magneto-optical sensitivity of a 5-mm-diameter fibre coil consisting of 100 turns is ~70% that of an ideal fibre, in good agreement with theoretical predictions.
NASA Astrophysics Data System (ADS)
Razo-Medina, D. A.; Trejo-Durán, M.; Alvarado-Méndez, E.
2018-02-01
In this paper, we report the design and characterization of an optical fibre cholesterol biosensor by using sol-gel immobilization technique. The cholesterol enzyme is encapsulated inside of the sol-gel film onto an end of a plastic optical fibre. Two film deposition methods (Dip-Coating and Immersion) were studied. The morphology analysis and sensing properties permit us to determine the best film deposition to sense cholesterol concentration. The range of measured is 4.4-5.2 mM in real time and our results were validated by comparing them with other previously published results. The biosensor is portable, simple cheap, and easy to use.
Distributed acoustic fibre optic sensors for condition monitoring of pipelines
NASA Astrophysics Data System (ADS)
Hussels, Maria-Teresa; Chruscicki, Sebastian; Habib, Abdelkarim; Krebber, Katerina
2016-05-01
Industrial piping systems are particularly relevant to public safety and the continuous availability of infrastructure. However, condition monitoring systems based on many discrete sensors are generally not well-suited for widespread piping systems due to considerable installation effort, while use of distributed fibre-optic sensors would reduce this effort to a minimum. Specifically distributed acoustic sensing (DAS) is employed for detection of third-party threats and leaks in oil and gas pipelines in recent years and can in principle also be applied to industrial plants. Further possible detection routes amenable by DAS that could identify damage prior to emission of medium are subject of a current project at BAM, which aims at qualifying distributed fibre optic methods such as DAS as a means for spatially continuous monitoring of industrial piping systems. Here, first tests on a short pipe are presented, where optical fibres were applied directly to the surface. An artificial signal was used to define suitable parameters of the measurement system and compare different ways of applying the sensor.
Collagen fibre arrangement in the skin of the pig.
Meyer, W; Neurand, K; Radke, B
1982-01-01
The arrangement and proportion of collagen fibres and fibre bundles in the dermis of the pig have been investigated with light microscopical (Nomarski's interference contrast, polarization optics) and scanning electron microscopical methods. Skin samples were obtained from different body regions of wild boars, domestic pigs and miniature pigs. All the methods used have demonstrated that the bulk of the dermis is dominated by a massive three dimensional network of collagen fibres and fibre bundles, which cross each other in two main directions. Several smaller fibre bundles pass through the network in various other directions, constructing a densely interwoven fibre pattern. Differences were obvious between the body regions and the animals investigated. Images Fig. 1 Figs. 2-5 Fig. 6 Figs. 7, 8 Figs. 9-11 PMID:7076540
NASA Astrophysics Data System (ADS)
Lye, Peter G.; Bradbury, Ronald; Lamb, David W.
Silica optical fibres were used to measure colour (mg anthocyanin/g fresh berry weight) in samples of red wine grape homogenates via optical Fibre Evanescent Field Absorbance (FEFA). Colour measurements from 126 samples of grape homogenate were compared against the standard industry spectrophotometric reference method that involves chemical extraction and subsequent optical absorption measurements of clarified samples at 520 nm. FEFA absorbance on homogenates at 520 nm (FEFA520h) was correlated with the industry reference method measurements of colour (R2 = 0.46, n = 126). Using a simple regression equation colour could be predicted with a standard error of cross-validation (SECV) of 0.21 mg/g, with a range of 0.6 to 2.2 mg anthocyanin/g and a standard deviation of 0.33 mg/g. With a Ratio of Performance Deviation (RPD) of 1.6, the technique when utilizing only a single detection wavelength, is not robust enough to apply in a diagnostic sense, however the results do demonstrate the potential of the FEFA method as a fast and low-cost assay of colour in homogenized samples.
Design of dual-mode optical fibres for the FTTH applications
NASA Astrophysics Data System (ADS)
Chen, Ming-Yang; Li, Yu-Rong; Zhang, Yin; Zhu, Yuan-Feng; Zhang, Yong-Kang; Zhou, Jun
2011-01-01
We present in this article a proposal and design for dual-mode optical fibres for fibre-to-the-home applications. High-order modes in the fibre can be effectively suppressed by the connection of the fibre with standard single-mode optical fibres at the two ends of the fibre. The alignment tolerance at the splicing process is presented. In particular, a low bending loss operation with low splice loss is demonstrated using the proposed technique.
NASA Astrophysics Data System (ADS)
Alti, Kamlesh
2017-07-01
Optical fibres play a very crucial role in today’s technologies. Academic courses in optical fibres start at the undergraduate level. Nevertheless, student’s curiosity towards optical fibres starts from the school level. In this paper, some fun experiments have been designed for both school and college students, which have some concrete implications at the research level also.
Transparent photocatalytic coatings on the surface of the tips of medical fibre-optic bundles
NASA Astrophysics Data System (ADS)
Evstropiev, S. K.; Volynkin, V. M.; Kiselev, V. M.; Dukelskii, K. V.; Evstropyev, K. S.; Demidov, V. V.; Gatchin, Yu. A.
2017-12-01
We report the results of the development of the sol - gel method for obtaining thin, transparent (in the visible part of the spectrum) TiO2/MgO coatings on the surfaces of the tips of medical fibre-optic bundles. Such coatings are capable of generating singlet oxygen under the action of UV radiation and are characterised by high antibacterial activity.
NASA Astrophysics Data System (ADS)
Pilipovich, V. A.; Esman, A. K.; Goncharenko, I. A.; Posed'ko, V. S.; Solonovich, I. F.
1995-10-01
A method for increasing the information capacity and enhancing the reliability of information storage in a dynamic fibre-optic memory is proposed. An additional built-in channel with counterpropagating circulation of signals is provided for this purpose. This additional channel can be used to transmit both information and service signals, such as address words, clock signals, correcting sequences, etc. The possibility of compensating the attenuation of an information signal by stimulated Raman scattering is considered.
NASA Astrophysics Data System (ADS)
Huether, Jonas; Rupp, Peter; Kohlschreiber, Ina; André Weidenmann, Kay
2018-04-01
To obtain mechanical tensile properties of materials it is customary to equip the specimen directly with a device to measure strain and Young’s modulus correctly and only within the measuring length defined by the standards. Whereas a variety of tools such as extensometers, strain gauges and optical systems are available for specimens on coupon level, no market-ready tools to measure strains of single fibres during single fibre tensile tests are available. Although there is a standard for single fibre testing, the procedures described there are only capable of measuring strains of the whole testing setup rather than the strain of the fibre. Without a direct strain measurement on the specimen, the compliance of the test rig itself influences the determination of the Young’s modulus. This work aims to fill this gap by establishing an enhanced method to measure strains directly on the tested fibre and thus provide accurate values for Young’s modulus. It is demonstrated that by applying and then optically tracking fluorescing polymeric beads on single glass fibres, Young’s modulus is determined directly and with high repeatability, without a need to measure at different measuring lengths or compensating for the system compliance. Employing this method to glass fibres, a Young’s modulus of approximately 82.5 GPa was determined, which is in the range of values obtained by applying a conventional procedure. This enhanced measuring technology achieves high accuracy and repeatability while reducing scatter of the data. It was demonstrated that the fluorescing beads do not affect the fibre properties.
Lin, Wei; Zhang, Hao; Liu, Bo; Song, Binbin; Li, Yuetao; Yang, Chengkun; Liu, Yange
2015-01-01
A laser-assisted tuning method of whispering gallery modes (WGMs) in a cylindrical microresonator based on magnetic-fluids-infiltrated microstructured optical fibres (MFIMOFs, where MF and MOF respectively refer to magnetic fluid and microstructured optical fibre) is proposed, experimentally demonstrated and theoretically analysed in detail. The MFIMOF is prepared by infiltrating the air-hole array of the MOF using capillary action effect. A fibre-coupling system is set up for the proposed MFIMOF-based microresonator to acquire an extinction ratio up to 25 dB and a Q-factor as large as 4.0 × 104. For the MF-infiltrated MOF, the light propagating in the fibre core region would rapidly spread out and would be absorbed by the MF-rod array cladding to induce significant thermal effect. This has been exploited to achieve a WGM resonance wavelength sensitivity of 0.034 nm/mW, which is ~20 times higher than it counterpart without MF infiltration. The wavelength response of the resonance dips exhibit linear power dependence, and owing to such desirable merits as ease of fabrication, high sensitivity and laser-assisted tunability, the proposed optical tuning approach of WGMs in the MFIMOF would find promising applications in the areas of optical filtering, sensing, and signal processing, as well as future all-optical networking systems. PMID:26632445
NASA Astrophysics Data System (ADS)
Taylor, J. R.
2005-08-01
1. Optical solitons in fibres: theoretical review A. Hasegawa; 2. Solitons in optical fibres: an experimental account L. F. Mollenauer; 3. All-optical long-distance soliton-based transmission systems K. Smith and L. F. Mollenauer; 4. Nonlinear propagation effects in optical fibres: numerical studies K. J. Blow and N. J. Doran; 5. Soliton-soliton interactions C. Desem and P. L. Chu; 6. Soliton amplification in erbium-doped fibre amplifiers and its application to soliton communication M. Nakazawa; 7. Nonlinear transformation of laser radiation and generation of Raman solitons in optical fibres E. M. Dianov, A. B. Grudinin, A. M. Prokhorov and V. N. Serkin; 8. Generation and compression of femtosecond solitons in optical fibers P. V. Mamyshev; 9. Optical fibre solitons in the presence of higher order dispersion and birefringence C. R. Menyuk and Ping-Kong A. Wai; 10. Dark optical solitons A. M. Weiner; 11. Soliton Raman effects J. R. Taylor; Bibliography; Index.
NASA Astrophysics Data System (ADS)
Taylor, J. R.
1992-04-01
1. Optical solitons in fibres: theoretical review A. Hasegawa; 2. Solitons in optical fibres: an experimental account L. F. Mollenauer; 3. All-optical long-distance soliton-based transmission systems K. Smith and L. F. Mollenauer; 4. Nonlinear propagation effects in optical fibres: numerical studies K. J. Blow and N. J. Doran; 5. Soliton-soliton interactions C. Desem and P. L. Chu; 6. Soliton amplification in erbium-doped fibre amplifiers and its application to soliton communication M. Nakazawa; 7. Nonlinear transformation of laser radiation and generation of Raman solitons in optical fibres E. M. Dianov, A. B. Grudinin, A. M. Prokhorov and V. N. Serkin; 8. Generation and compression of femtosecond solitons in optical fibers P. V. Mamyshev; 9. Optical fibre solitons in the presence of higher order dispersion and birefringence C. R. Menyuk and Ping-Kong A. Wai; 10. Dark optical solitons A. M. Weiner; 11. Soliton Raman effects J. R. Taylor; Bibliography; Index.
NASA Astrophysics Data System (ADS)
Huang, Xiaodi; Wang, Yuan; Sun, Yangyang; Zhang, Qinghua; Zhang, Zhenglin; You, Zewei; Ma, Yuan
2018-01-01
The traditional measurement method for the horizontal displacement of deep soil usually uses an inclinometer for piecewise measurement and then generates an artificial reading, which takes a long time and often contains errors; in addition, the anti-jamming and long-term stability of the inclinometer is poor. In this paper, a technique for monitoring horizontal displacement based on distributed optical fibres is introduced. The relationship between the strain and the deflection was described by a theoretical model, and the strain distribution of the inclinometer tube was measured by the cables laid on its surface so that the deflection of the inclinometer tube could be calculated by the difference algorithm and regarded as the horizontal displacement of deep soil. The horizontal displacement monitoring technology of deep soil based on distributed optical fibre sensors developed in this paper not only overcame the shortcomings of traditional inclinometer technology to realize automatic real-time monitoring but also allowed for distributed measurement. The experiment was similar to the expected engineering situations, and the deflection calculated from the strain was compared with an inclinometer. The results demonstrated that the relative error between the distributed optical fibre sensors and the inclinometer was less than 8.0%, and the results also verified both the feasibility of using distributed optical fibre to monitor the horizontal displacement of soil as well as the rationality of the theoretical model and difference algorithm. The application of distributed optical fibre in monitoring the horizontal displacement of deep soil in the engineering of foundation pits and slopes can more accurately evaluate the safety of engineering during construction.
Optical fibres in the radiation environment of CERN
NASA Astrophysics Data System (ADS)
Guillermain, E.
2017-11-01
CERN, the European Organization for Nuclear Research (in Geneva, Switzerland), is home to a complex scientific instrument: the 27-kilometre Large Hadron Collider (LHC) collides beams of high-energy particles at close to the speed of light. Optical fibres are widely used at CERN, both in surface areas (e.g. for inter-building IT networks) and in the accelerator complex underground (e.g. for cryogenics, vacuum, safety systems). Optical fibres in the accelerator are exposed to mixed radiation fields (mainly composed of protons, pions, neutrons and other hadrons, gamma rays and electrons), with dose rates depending on the particular installation zone, and with radiation levels often significantly higher than those encountered in space. In the LHC and its injector chain radiation levels range from relatively low annual doses of a few Gy up to hundreds of kGy. Optical fibres suffer from Radiation Induced Attenuation (RIA, expressed in dB per unit length) that affect light transmission and which depends on the irradiation conditions (e.g. dose rate, total dose, temperature). In the CERN accelerator complex, the failure of an optical link can affect the proper functionality of control or monitoring systems and induce the interruption of the accelerator operation. The qualification of optical fibres for installation in critical radiation areas is therefore crucial. Thus, all optical fibre types installed in radiation areas at CERN are subject to laboratory irradiation tests, in order to evaluate their RIA at different total dose and dose rates. This allows the selection of the appropriate optical fibre type (conventional or radiation resistant) compliant with the requirements of each installation. Irradiation tests are performed in collaboration with Fraunhofer INT (irradiation facilities and expert team in Euskirchen, Germany). Conventional off-the-shelf optical fibres can be installed for optical links exposed to low radiation levels (i.e. annual dose typically below few kGy). Nevertheless, the conventional optical fibres must be carefully qualified as a spread in RIA of factor 10 is observed among optical fibres of different types and dopants. In higher radiation areas, special radiation resistant optical fibres are installed. For total dose above 1 kGy, the RIA of these special optical fibres is at least 10 times lower than the conventional optical fibres RIA at same irradiation conditions. 2400 km of these special radiation resistant optical fibres were recently procured at CERN. As part of this procurement process, a quality assurance plan including the irradiation testing of all 65 produced batches was set up. This presentation will review the selection process of the appropriate optical fibre types to be installed in the radiation environment of CERN. The methodology for choosing the irradiation parameters for the laboratory tests will be discussed together with an overview of the RIA of different optical fibre types under several irradiation conditions.
Long-period fibre grating writing with a slit-apertured femtosecond laser beam (λ = 1026 nm)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dostovalov, A V; Wolf, A A; Babin, S A
We report on long-period grating (LPG) writing in a standard telecom fibre, SMF-28e+, via refractive index modification by femtosecond pulses. A method is proposed for grating writing with a slit-apertured beam, which enables one to produce LPGs with reduced background losses and a resonance peak markedly stronger than that in the case of grating writing with a Gaussian beam. The method can be used to fabricate LPGs for use as spectral filters of fibre lasers and sensing elements of sensor systems. (fibre and integrated-optical structures)
OPTICAL FIBRES AND FIBREOPTIC SENSORS: Bismuth-ring-doped fibres
NASA Astrophysics Data System (ADS)
Zlenko, Aleksandr S.; Akhmetshin, Ural G.; Dvoirin, Vladislav V.; Bogatyrev, Vladimir A.; Firstov, Sergei V.
2009-11-01
A new process for bismuth doping of optical fibres is proposed in which the dopant is introduced into a thin layer surrounding the fibre core. This enables bismuth stabilisation in the silica glass, with no limitations on the core composition. In particular, the GeO2 content of the fibre core in this study is 16 mol %. Spectroscopic characterisation of such fibres and optical gain measurements suggest that the proposed approach has considerable potential for laser applications.
Influence of fibre design and curvature on crosstalk in multi-core fibre
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egorova, O N; Astapovich, M S; Semjonov, S L
2016-03-31
We have studied the influence of cross-sectional structure and bends on optical cross-talk in a multicore fibre. A reduced refractive index layer produced between the cores of such fibre with a small centre-to-centre spacing between neighbouring cores (27 μm) reduces optical cross-talk by 20 dB. The cross-talk level achieved, 30 dB per kilometre of the length of the multicore fibre, is acceptable for a number of applications where relatively small lengths of fibre are needed. Moreover, a significant decrease in optical cross-talk has been ensured by reducing the winding diameter of multicore fibres with identical cores. (fiber optics)
Sensitive Fibre-Based Thermoluminescence Detectors for High Resolution In-Vivo Dosimetry
NASA Astrophysics Data System (ADS)
Ghomeishi, Mostafa; Mahdiraji, G. Amouzad; Adikan, F. R. Mahamd; Ung, N. M.; Bradley, D. A.
2015-08-01
With interest in the potential of optical fibres as the basis of next-generation thermoluminescence dosimeters (TLDs), the development of suitable forms of material and their fabrication has become a fast-growing endeavour. Present study focuses on three types of Ge-doped optical fibres with different structural arrangements and/or shapes, namely conventional cylindrical fibre, capillary fibre, and flat fibre, all fabricated using the same optical fibre preform. For doses from 0.5 to 8 Gy, obtained at electron and photon energies, standard thermoluminescence (TL) characteristics of the optical fibres have been the subject of detailed investigation. The results show that in collapsing the capillary fibre into a flat shape, the TL yield is increased by a factor of 5.5, the yield being also some 3.2 times greater than that of the conventional cylindrical fibre fabricated from the same perform. This suggests a means of production of suitably sensitive TLD for in-vivo dosimeter applications. Addressing the associated defects generating luminescence from each of the optical fibres, the study encompasses analysis of the TL glow curves, with computerized glow curve deconvolution (CGCD) and 2nd order kinetics.
Sensitive Fibre-Based Thermoluminescence Detectors for High Resolution In-Vivo Dosimetry.
Ghomeishi, Mostafa; Mahdiraji, G Amouzad; Adikan, F R Mahamd; Ung, N M; Bradley, D A
2015-08-28
With interest in the potential of optical fibres as the basis of next-generation thermoluminescence dosimeters (TLDs), the development of suitable forms of material and their fabrication has become a fast-growing endeavour. Present study focuses on three types of Ge-doped optical fibres with different structural arrangements and/or shapes, namely conventional cylindrical fibre, capillary fibre, and flat fibre, all fabricated using the same optical fibre preform. For doses from 0.5 to 8 Gy, obtained at electron and photon energies, standard thermoluminescence (TL) characteristics of the optical fibres have been the subject of detailed investigation. The results show that in collapsing the capillary fibre into a flat shape, the TL yield is increased by a factor of 5.5, the yield being also some 3.2 times greater than that of the conventional cylindrical fibre fabricated from the same perform. This suggests a means of production of suitably sensitive TLD for in-vivo dosimeter applications. Addressing the associated defects generating luminescence from each of the optical fibres, the study encompasses analysis of the TL glow curves, with computerized glow curve deconvolution (CGCD) and 2(nd) order kinetics.
Sensitive Fibre-Based Thermoluminescence Detectors for High Resolution In-Vivo Dosimetry
Ghomeishi, Mostafa; Mahdiraji, G. Amouzad; Adikan, F. R. Mahamd; Ung, N. M.; Bradley, D. A.
2015-01-01
With interest in the potential of optical fibres as the basis of next-generation thermoluminescence dosimeters (TLDs), the development of suitable forms of material and their fabrication has become a fast-growing endeavour. Present study focuses on three types of Ge-doped optical fibres with different structural arrangements and/or shapes, namely conventional cylindrical fibre, capillary fibre, and flat fibre, all fabricated using the same optical fibre preform. For doses from 0.5 to 8 Gy, obtained at electron and photon energies, standard thermoluminescence (TL) characteristics of the optical fibres have been the subject of detailed investigation. The results show that in collapsing the capillary fibre into a flat shape, the TL yield is increased by a factor of 5.5, the yield being also some 3.2 times greater than that of the conventional cylindrical fibre fabricated from the same perform. This suggests a means of production of suitably sensitive TLD for in-vivo dosimeter applications. Addressing the associated defects generating luminescence from each of the optical fibres, the study encompasses analysis of the TL glow curves, with computerized glow curve deconvolution (CGCD) and 2nd order kinetics. PMID:26314683
NASA Astrophysics Data System (ADS)
Haynes, D. M.; Withford, M. J.; Dawes, J. M.; Lawrence, J. S.; Haynes, R.
2011-06-01
Focal ratio degradation (FRD) is a major contributor to light loss in astronomical instruments employing multimode optical fibres. We present a powerful diagnostic model that uniquely quantifies the various sources of FRD in multimode fibres. There are three main phenomena that can contribute to FRD: scattering, diffraction and modal diffusion. We propose a Voigt FRD model where the diffraction and modal diffusion are modelled by the Gaussian component and the end-face scattering is modelled by the Lorentzian component. The Voigt FRD model can be deconvolved into its Gaussian and Lorentzian components and used to analyse the contribution of each of the three major components. We used the Voigt FRD model to analyse the FRD of modern astronomical grade fibre for variations in (i) end-face surface roughness, (ii) wavelength, (iii) fibre length and (iv) external fibre stress. The elevated FRD we observed was mostly due to external factors, i.e. fibre end effects such as surface roughness, subsurface damage and environmentally induced microbending caused by the epoxy, ferrules and fibre cable design. The Voigt FRD model has numerous applications such as a diagnostic tool for current fibre instrumentation that show elevated FRD, as a quality control method for fibre manufacture and fibre cable assembly and as a research and development tool for the characterization of new fibre technologies.
Photonic bandgap single-mode optical fibre with ytterbium-doped silica glass core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egorova, O N; Semenov, S L; Vel'miskin, V V
2011-01-24
A photonic bandgap fibre with an ytterbium-doped silica glass core is fabricated and investigated. The possibility of implementing single-mode operation of such fibres in a wide spectral range at a large (above 20 {mu}m) mode field diameter makes them promising for fibre lasers and amplifiers. To ensure a high quality of the beam emerging from the fibre, particular attention is paid to increasing the optical homogeneity of the ytterbium-doped core glass. (optical fibres)
2006-03-01
high numerical aperture fibre optics. Applying fibre optics to STP allows the solar concentrator mirror to be mechanically decoupled from the solar...Applying fibre optics to STP allows the solar concentrator mirror to be mechanically decoupled from the solar heat exchanger as well as granting...concentration is achieved via an optical concentrating system, such as a series of lenses or mirrors . This concentrated sunlight impinges on a blackbody
NASA Astrophysics Data System (ADS)
Wassin, Shukree; Isoe, George M.; Gamatham, Romeo R. G.; Leitch, Andrew W. R.; Gibbon, Tim B.
2017-01-01
Precise and accurate timing signals distributed between a centralized location and several end-users are widely used in both metro-access and speciality networks for Coordinated Universal Time (UTC), GPS satellite systems, banking, very long baseline interferometry and science projects such as SKA radio telescope. Such systems utilize time and frequency technology to ensure phase coherence among data signals distributed across an optical fibre network. For accurate timing requirements, precise time intervals should be measured between successive pulses. In this paper we describe a novel, all optical method for quantifying one-way propagation times and phase perturbations in the fibre length, using pulse-persecond (PPS) signals. The approach utilizes side mode injection of a 1550nm 10Gbps vertical cavity surface emitting laser (VCSEL) at the remote end. A 125 μs one-way time of flight was accurately measured for 25 km G655 fibre. Since the approach is all-optical, it avoids measurement inaccuracies introduced by electro-optical conversion phase delays. Furthermore, the implementation uses cost effective VCSEL technology and suited to a flexible range of network architectures, supporting a number of end-users conducting measurements at the remote end.
Nonlinear Optics and Solitons in Photonic Crystal Fibres
NASA Astrophysics Data System (ADS)
Skryabin, Dmitry V.; Wadsworth, William J.
The fibre optics revolution in communication technologies followed the 1950's demonstration of the glass fibres with dielectric cladding [1]. Transmission applications of fibre optics have become a dominant modern day technology not least because nonlinearities present in - or introduced into - glass and enhanced by the tight focusing of the fibre modes allow for numerous light processing techniques, such as amplification, frequency conversion, pulse shaping, and many others. For these reasons, and because of the rich fundamental physics behind it, nonlinear fibre optics has become a blossoming discipline in its own right [1]. The 1990's witnessed another important development in fibre optics. Once again it came from a new approach to the fibre cladding, comprising a periodic pattern of air holes separated by glass membranes forming a photonic crystal structure [2, 3]. This prompted the name Photonic Crystal Fibres (PCFs). The fascinating story behind the invention of PCF and research into various fibre designs can be found, e.g., in [4]. Our aim here is to review the role played by PCFs in nonlinear and quantum optics, which is becoming the mainstream of the PCF related research and applications. Our focus will be on the areas where PCFs have brought to life effects and applications which were previously difficult, impossible to observe or simply not thought about.
Smooth light extraction in lighting optical fibre
NASA Astrophysics Data System (ADS)
Fernandez-Balbuena, A. A.; Vazquez-Molini, D.; Garcia-Botella, A.; Martinez-Anton, J. C.; Bernabeu, E.
2011-10-01
Recent advances in LED technology have relegated the use of optical fibre for general lighting, but there are several applications where it can be used as scanners lighting systems, daylight, cultural heritage lighting, sensors, explosion risky spaces, etc. Nowadays the use of high intensity LED to inject light in optical fibre increases the possibility of conjugate fibre + LED for lighting applications. New optical fibres of plastic materials, high core diameter up to 12.6 mm transmit light with little attenuation in the visible spectrum but there is no an efficient and controlled way to extract the light during the fibre path. Side extracting fibres extracts all the light on 2π angle so is not well suited for controlled lighting. In this paper we present an extraction system for mono-filament optical fibre which provides efficient and controlled light distribution. These lighting parameters can be controlled with an algorithm that set the position, depth and shape of the optical extraction system. The extraction system works by total internal reflection in the core of the fibre with high efficiency and low cost. A 10 m length prototype is made with 45° sectional cuts in the fibre core as extraction system. The system is tested with a 1W white LED illuminator in one side.
NASA Astrophysics Data System (ADS)
Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.
2011-02-01
We describe a fibre-based variable-incidence angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3D optical axis of birefringent biological tissues. Single-plane VIA-PS-OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by the VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fibre on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fibre. A proposed algorithm based on the angle between Stokes vectors on the Poincaré sphere is confirmed to work for all settings of the sample arm fibre. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.
Evolution of optical fibre cabling components at CERN: Performance and technology trends analysis
NASA Astrophysics Data System (ADS)
Shoaie, Mohammad Amin; Meroli, Stefano; Machado, Simao; Ricci, Daniel
2018-05-01
CERN optical fibre infrastructure has been growing constantly over the past decade due to ever increasing connectivity demands. The provisioning plan and fibre installation of this vast laboratory is performed by Fibre Optics and Cabling Section at Engineering Department. In this paper we analyze the procurement data for essential fibre cabling components during a five-year interval to extract the existing trends and anticipate future directions. The analysis predicts high contribution of LC connector and an increasing usage of multi-fibre connectors. It is foreseen that single-mode fibres become the main fibre type for mid and long-range installations while air blowing would be the major installation technique. Performance assessment of various connectors shows that the expanded beam ferrule is favored for emerging on-board optical interconnections thanks to its scalable density and stable return-loss.
NASA Astrophysics Data System (ADS)
Ko, A. C.-T.; Choo-Smith, L.-P.; Werner, J.; Hewko, M.; Sowa, M. G.; Dong, C.; Cleghorn, B.
2006-09-01
Incipient dental caries lesions appear as white spots on the tooth surface; however, accurate detection of early approximal lesions is difficult due to limited sensitivity of dental radiography and other traditional diagnostic tools. A new fibre-optic coupled spectroscopic method based on polarized Raman spectroscopy (P-RS) with near-IR laser excitation is introduced which provides contrast for detecting and characterizing incipient caries. Changes in polarized Raman spectra are observed in PO 4 3- vibrations arising from hydroxyapatite of mineralized tooth tissue. Demineralization-induced morphological/orientational alteration of enamel crystallites is believed to be responsible for the reduction of Raman polarization anisotropy observed in the polarized Raman spectra of caries lesions. Supporting evidence obtained by polarized Raman spectral imaging is presented. A specially designed fibre-optic coupled setup for simultaneous measurement of parallel- and cross-polarized tooth Raman spectra is demonstrated in this study.
2010-10-01
33 Abbreviations CFRP Carbon Fibre Reinforced Polymer FBG Fibre Bragg Grating FGI Fiberglass International FO... Fibre Optic FOS Fibre Optic Sensor GFRP Glass Fibre Reinforced Polymer HDPE High Density Polyethylene LED Light Emitting Diode MHC Mine Hunter...subsequent paragraphs. An operational loads monitoring system for wind turbine blades was demonstrated [7] using FBGs surface-mounted onto glass fibre
Measurement of Sediment Deposition Rates using an Optical Backscatter Sensor
NASA Astrophysics Data System (ADS)
Ridd, P.; Day, G.; Thomas, S.; Harradence, J.; Fox, D.; Bunt, J.; Renagi, O.; Jago, C.
2001-02-01
An optical method for measuring siltation of sediment has been developed using an optical fibre backscatter (OBS) nephelometer. Sediment settling upon the optical fibre sensor causes an increase in the backscatter reading which can be related to the settled sediment surface density (SSSD) as measured in units of mg cm -2. Calibration and laboratory tests indicate that the resolution of measurements of SSSD is 0·01 mg cm -2and an accuracy of 5% in still water. In moving water it is more difficult to determine the accuracy of the method because other methods with suitable resolution are unavailable. However, indirect methods using measurements of changing suspended sediment concentration in a ring flume, indicate that the OBS method under-predicts deposition. The series of siltation from three field sites are presented. This sensor offers considerable advances over other methods of measuring settling because time series of settling may be taken and thus settling events may be related to other hydrodynamic parameters such as wave climate and currents.
Stimulated Brillouin Scattering: its Generation and Applications in Optical Fibre
NASA Astrophysics Data System (ADS)
Culverhouse, David
1992-01-01
Available from UMI in association with The British Library. In the work presented in this thesis, the generation of stimulated Brillouin scattering and its applications in optical fibres is theoretically and experimentally investigated. The study pursues three special cases: (i) Backward stimulated Brillouin scattering in long fibre lengths; (ii) Backward stimulated Brillouin scattering in high finesse all fibre ring resonators; (iii) Forward stimulated Brillouin scattering in dual moded single core fibres. Stimulated Brillouin scattering (SBS) occurs for relatively low input powers in monomode optical fibres, as the power density is very high because of the relatively small core size. For applications such as optical communications, SBS is seen as a potentially deleterious effect because it can limit the maximum optical power transmitted by the fibre and hence decrease the distance between repeaters. SBS, however, can also be used to advantage in optical fibres, for example to produce amplification. In this thesis the comprehensive study of SBS in relation to other non-linear scattering mechanisms in optical fibres leads to the derivation of explicit definitions for the Brillouin gain and the Brillouin threshold. The study of SBS in high finesse all fibre ring resonators also demonstrates how threshold powers can be reduced, typically, from milliwatts observed in long fibre lengths to microwatts. Because Brillouin scattering is primarily a result of the interaction of the incident optical beam with spontaneously generated (thermal) fluctuations in the density of the medium, the spectral features show a considerable variation with temperature thus providing a mechanism with sufficient sensitivity to realise tunable microwave generation and frequency shifting devices. Finally, the observation of stimulated Brillouin scattering in a forward direction (FSBS) in dual moded single-core fibre is also reported. Frequency shifts in the order of 17MHz are observed in optical fibre supporting LP_ {01} and LP_{11} modes at 514.5nm. The phenomenon is examined here in detail and the governing differential equations of the three wave parametric process (involving pump/laser, Brillouin signal and acoustic flexural wave phonon) is derived and solved. FSBS is possible because, although the overlap integral between a fibre flexural mode and the light is small, the phonon lifetime is much longer than in conventional SBS. FSBS may also be the first example of a non-linear effect which is enhanced by increasing the optical mode area at constant pump power.
Optical fibres in pre-detector signal processing
NASA Astrophysics Data System (ADS)
Flinn, A. R.
The basic form of conventional electro-optic sensors is described. The main drawback of these sensors is their inability to deal with the background radiation which usually accompanies the signal. This 'clutter' limits the sensors performance long before other noise such as 'shot' noise. Pre-detector signal processing using the complex amplitude of the light is introduced as a means to discriminate between the signal and 'clutter'. Further improvements to predetector signal processors can be made by the inclusion of optical fibres allowing radiation to be used with greater efficiency and enabling certain signal processing tasks to be carried out with an ease unequalled by any other method. The theory of optical waveguides and their application in sensors, interferometers, and signal processors is reviewed. Geometrical aspects of the formation of linear and circular interference fringes are described along with temporal and spatial coherence theory and their relationship to Michelson's visibility function. The requirements for efficient coupling of a source into singlemode and multimode fibres are given. We describe interference experiments between beams of light emitted from a few metres of two or more, singlemode or multimode, optical fibres. Fresnel's equation is used to obtain expressions for Fresnel and Fraunhofer diffraction patterns which enable electro-optic (E-0) sensors to be analysed by Fourier optics. Image formation is considered when the aperture plane of an E-0 sensor is illuminated with partially coherent light. This allows sensors to be designed using optical transfer functions which are sensitive to the spatial coherence of the illuminating light. Spatial coherence sensors which use gratings as aperture plane reticles are discussed. By using fibre arrays, spatial coherence processing enables E-0 sensors to discriminate between a spatially coherent source and an incoherent background. The sensors enable the position and wavelength of the source to be determined. Experiments are described which use optical fibre arrays as masks for correlation with spatial distributions of light in image planes of E-0 sensors. Correlations between laser light from different points in a scene is investigated by interfering the light emitted from an array of fibres, placed in the image plane of a sensor, with each other. Temporal signal processing experiments show that the visibility of interference fringes gives information about path differences in a scene or through an optical system. Most E-0 sensors employ wavelength filtering of the detected radiation to improve their discrimination and this is shown to be less selective than temporal coherence filtering which is sensitive to spectral bandwidth. Experiments using fibre interferometers to discriminate between red and blue laser light by their bandwidths are described. In most cases the path difference need only be a few tens of centimetres. We consider spatial and temporal coherence in fibres. We show that high visibility interference fringes can be produced by red and blue laser light transmitted through over 100 metres of singlemode or multimode fibre. The effect of detector size, relative to speckle size, is considered for fringes produced by multimode fibres. The effect of dispersion on the coherence of the light emitted from fibres is considered in terms of correlation and interference between modes. We describe experiments using a spatial light modulator called SIGHT-MOD. The device is used in various systems as a fibre optic switch and as a programmable aperture plane reticle. The contrast of the device is measured using red and green, HeNe, sources. Fourier transform images of patterns on the SIGHT-MOD are obtained and used to demonstrate the geometrical manipulation of images using 2D fibre arrays. Correlation of Fourier transform images of the SIGHT-MOD with 2D fibre arrays is demonstrated.
A technique for detecting and locating polarisation nonuniformities in an anisotropic optical fibre
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdin, V V; Konstantinov, Yurii A; Pervadchuk, Vladimir P
2013-06-30
One of the most important requirements for optical fibres as waveguiding media is uniformity. Polarisation-maintaining anisotropic fibres contain a special type of nonuniformity, which leads to polarisation cross-talk: optical power is transferred from one polarisation mode to the orthogonal mode. In this paper, we report a technique for detecting and locating such nonuniformities in a PANDA anisotropic single-mode fibre using polarised reflectometry. (fiber optics)
Ballistic and snake photon imaging for locating optical endomicroscopy fibres
Tanner, M. G.; Choudhary, T. R.; Craven, T. H.; Mills, B.; Bradley, M.; Henderson, R. K.; Dhaliwal, K.; Thomson, R. R.
2017-01-01
We demonstrate determination of the location of the distal-end of a fibre-optic device deep in tissue through the imaging of ballistic and snake photons using a time resolved single-photon detector array. The fibre was imaged with centimetre resolution, within clinically relevant settings and models. This technique can overcome the limitations imposed by tissue scattering in optically determining the in vivo location of fibre-optic medical instruments. PMID:28966848
Image transport through a disordered optical fibre mediated by transverse Anderson localization.
Karbasi, Salman; Frazier, Ryan J; Koch, Karl W; Hawkins, Thomas; Ballato, John; Mafi, Arash
2014-02-25
Transverse Anderson localization of light allows localized optical-beam-transport through a transversely disordered and longitudinally invariant medium. Its successful implementation in disordered optical fibres recently resulted in the propagation of localized beams of radii comparable to that of conventional optical fibres. Here we demonstrate optical image transport using transverse Anderson localization of light. The image transport quality obtained in the polymer disordered optical fibre is comparable to or better than some of the best commercially available multicore image fibres with less pixelation and higher contrast. It is argued that considerable improvement in image transport quality can be obtained in a disordered fibre made from a glass matrix with near wavelength-size randomly distributed air-holes with an air-hole fill-fraction of 50%. Our results open the way to device-level implementation of the transverse Anderson localization of light with potential applications in biological and medical imaging.
NASA Astrophysics Data System (ADS)
Matveenko, V. P.; Kosheleva, N. A.; Shardakov, I. N.; Voronkov, A. A.
2018-04-01
The presence of process-induced strains induced by various manufacturing and operational factors is one of the characteristics of polymer composite materials (PCM). Conventional methods of registration and evaluation of process-induced strains can be laborious, time-consuming and demanding in terms of technical applications. The employment of embedded fibre-optic strain sensors (FOSS) offers a real prospect of measuring residual strains. This paper demonstrates the potential for using embedded FOSS for recording technological strains in a PCM plate. The PCM plate is manufactured from prepreg, using the direct compression-moulding method. In this method, the prepared reinforcing package is placed inside a mould, heated, and then exposed to compaction pressure. The examined technology can be used for positioning FOSS between the layers of the composite material. Fibre-optic sensors, interacting with the material of the examined object, make it possible to register the evolution of the strain process during all stages of polymer-composite formation. FOSS data were recorded with interrogator ASTRO X 327. The obtained data were processed using specially developed algorithms.
Poladian, L; Straton, M; Docherty, A; Argyros, A
2011-01-17
We investigate the properties of optical fibres made from chiral materials, in which a contrast in optical activity forms the waveguide, rather than a contrast in the refractive index; we refer to such structures as pure chiral fibres. We present a mathematical formulation for solving the modes of circularly symmetric examples of such fibres and examine the guidance and polarisation properties of pure chiral step-index, Bragg and photonic crystal fibre designs. Their behaviour is shown to differ for left- and right-hand circular polarisation, allowing circular polarisations to be isolated and/or guided by different mechanisms, as well as differing from equivalent non-chiral fibres. The strength of optical activity required in each case is quantified.
NASA Astrophysics Data System (ADS)
Yan, Yunxiang; Wang, Gang; Sun, Weimin; Luo, A.-Li; Ma, Zhenyu; Li, Jian; Wang, Shuqing
2017-04-01
Focal ratio degradation (FRD) is a major contributor to throughput and light loss in a fibre spectroscopic telescope system. We combine the guided mode theory in geometric optics and a well-known model, the power distribution model (PDM), to predict and explain the FRD dependence properties. We present a robust method by modifying the energy distribution method with f-intercept to control the input condition. This method provides a way to determine the proper position of the fibre end on the focal plane to improve energy utilization and FRD performance, which lifts the relative throughput up to 95 per cent with variation of output focal ratio less than 2 per cent. This method can also help to optimize the arrangement of the position of focal-plane plate to enhance the coupling efficiency in a telescope. To investigate length properties, we modified the PDM by introducing a new parameter, the focal distance f, into the original model to make it available for a multiposition measurement system. The results show that the modified model is robust and feasible for measuring the key parameter d0 to simulate the transmission characteristics. The output focal ratio in the experiment does not follow the prediction trend but shows an interesting phenomenon: the output focal ratio increases first to the peak, then decreases and remains stable finally with increasing fibre length longer than 15 m. This provides a reference for choosing the appropriate length of fibre to improve the FRD performance for the design of the fibre system in a telescope.
Influence of fibre design and curvature on crosstalk in multi-core fibre
NASA Astrophysics Data System (ADS)
Egorova, O. N.; Astapovich, M. S.; Melnikov, L. A.; Salganskii, M. Yu; Mishkin, V. P.; Nishchev, K. N.; Semjonov, S. L.; Dianov, E. M.
2016-03-01
We have studied the influence of cross-sectional structure and bends on optical cross-talk in a multicore fibre. A reduced refractive index layer produced between the cores of such fibre with a small centre-to-centre spacing between neighbouring cores (27 μm) reduces optical cross-talk by 20 dB. The cross-talk level achieved, 30 dB per kilometre of the length of the multicore fibre, is acceptable for a number of applications where relatively small lengths of fibre are needed. Moreover, a significant decrease in optical cross-talk has been ensured by reducing the winding diameter of multicore fibres with identical cores.
NASA Astrophysics Data System (ADS)
Shikhaliev, I. I.; Gainov, V. V.; Dorozhkin, A. N.; Nanii, O. E.; Konyshev, V. A.; Treshchikov, V. N.
2017-11-01
This paper describes techniques for measuring the SRS coefficient in a wide spectral range, including the region of small Stokes shifts. A simple, approximate method is proposed for evaluating the SRS coefficient near a gain peak. Spectral dependences of the SRS coefficient are presented for various telecom fibres.
Optical Fibre Pressure Sensors in Medical Applications.
Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed
2015-07-15
This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas.
A review of materials engineering in silicon-based optical fibres
NASA Astrophysics Data System (ADS)
Healy, Noel; Gibson, Ursula; Peacock, Anna C.
2018-02-01
Semiconductor optical fibre technologies have grown rapidly in the last decade and there are now a range of production and post-processing techniques that allow for a vast degree of control over the core material's optoelectronic properties. These methodologies and the unique optical fibre geometry provide an exciting platform for materials engineering and fibres can now be produced with single crystal cores, low optical losses, tunable strain, and inscribable phase composition. This review discusses the state-of-the-art regarding the production of silicon optical fibres in amorphous and crystalline form and then looks at the post-processing techniques and the improved material quality and new functionality that they afford.
Optical Fibre Pressure Sensors in Medical Applications
Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed
2015-01-01
This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas. PMID:26184228
Advanced materials and techniques for fibre-optic sensing
NASA Astrophysics Data System (ADS)
Henderson, Philip J.
2014-06-01
Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.
Electron irradiation response on Ge and Al-doped SiO 2 optical fibres
NASA Astrophysics Data System (ADS)
Yaakob, N. H.; Wagiran, H.; Hossain, I.; Ramli, A. T.; Bradley, D. A.; Hashim, S.; Ali, H.
2011-05-01
This paper describes the thermoluminescence response, sensitivity, stability and reproducibility of SiO 2 optical fibres with various electron energies and doses. The TL materials that comprise Al- and Ge-doped silica fibres were used in this experiment. The TL results are compared with those of the commercially available TLD-100. The doped SiO 2 optical fibres and TLD-100 are placed in a solid phantom and irradiated with 6, 9 and 12 MeV electron beams at doses ranging from 0.2 to 4.0 Gy using the LINAC at Hospital Sultan Ismail, Johor Bahru, Malaysia. It was found that the commercially available Al- and Ge-doped optical fibres have a linear dose-TL signal relationship. The intensity of TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre.
Interferometric fibre-optic curvature sensing for structural, directional vibration measurements
NASA Astrophysics Data System (ADS)
Kissinger, Thomas; Chehura, Edmon; James, Stephen W.; Tatam, Ralph P.
2017-06-01
Dynamic fibre-optic curvature sensing using fibre segment interferometry is demonstrated using a cost-effective rangeresolved interferometry interrogation system. Differential strain measurements from four fibre strings, each containing four fibre segments of gauge length 20 cm, allow the inference of lateral vibrations as well as the direction of the vibration of a cantilever test object. Dynamic tip displacement resolutions in the micrometre range over a 21 kHz interferometric bandwidth demonstrate the suitability of this approach for highly sensitive fibre-optic directional vibration measurements, complementing existing laser vibrometry techniques by removing the need for side access to the structure under test.
Optical fibre luminescence sensor for real-time LDR brachytherapy dosimetry
NASA Astrophysics Data System (ADS)
Woulfe, P.; Sullivan, F. J.; O'Keeffe, S.
2016-05-01
An optical fibre sensor for monitoring low dose radiation is presented. The sensor is based on a scintillation material embedded within the optical fibre core, which emits visible light when exposed to low level ionising radiation. The incident level of ionising radiation can be determined by analysing the optical emission. An optical fibre sensor is presented, based on radioluminescence whereby radiation sensitive scintillation material, terbium doped gadolinium oxysulphide (Gd2O2S:Tb), is embedded in a cavity of 250μm of a 500μm plastic optical fibre. The sensor is designed for in-vivo monitoring of the radiation dose during radio-active seed implantation for brachytherapy, in prostate cancer treatment, providing oncologists with real-time information of the radiation dose to the target area and/or nearby critical structures. The radiation from the brachytherapy seeds causes emission of visible light from the scintillation material through the process of radioluminescence, which penetrates the fibre, propagating along the optical fibre for remote detection using a multi-pixel photon counter. The sensor demonstrates a high sensitivity to Iodine-125, the radioactive source most commonly used in brachytherapy for treating prostate cancer.
Optical fibre luminescence sensor for real-time LDR brachytherapy dosimetry
NASA Astrophysics Data System (ADS)
Woulfe, P.; O'Keeffe, S.; Sullivan, F. J.
2018-02-01
An optical fibre sensor for monitoring low dose radiation is presented. The sensor is based on a scintillation material embedded within the optical fibre core, which emits visible light when exposed to low level ionising radiation. The incident level of ionising radiation can be determined by analysing the optical emission. An optical fibre sensor is developed, based on radioluminescence whereby radiation sensitive scintillation material, terbium doped gadolinium oxysulphide (Gd2O2S:Tb), is embedded in a cavity of 700μm of a 1mm plastic optical fibre. The sensor is designed for in-vivo monitoring of the radiation dose during radio-active seed implantation for low dose rate (LDR) brachytherapy, in prostate cancer treatment, providing radiation oncologists with real-time information of the radiation dose to the target area and/or nearby organs at risk (OARs). The radiation from the brachytherapy seeds causes emission of visible light from the scintillation material through the process of radioluminescence, which penetrates the fibre, propagating along the optical fibre for remote detection using a multi-pixel photon counter. The sensor demonstrates a high sensitivity to 0.397mCi of Iodine125, the radioactive source most commonly used in brachytherapy for treating prostate cancer.
Filter-Based Dispersion-Managed Versatile Ultrafast Fibre Laser
Peng, Junsong; Boscolo, Sonia
2016-01-01
We present the operation of an ultrafast passively mode-locked fibre laser, in which flexible control of the pulse formation mechanism is readily realised by an in-cavity programmable filter the dispersion and bandwidth of which can be software configured. We show that conventional soliton, dispersion-managed (DM) soliton (stretched-pulse) and dissipative soliton mode-locking regimes can be reliably targeted by changing the filter’s dispersion and bandwidth only, while no changes are made to the physical layout of the laser cavity. Numerical simulations are presented which confirm the different nonlinear pulse evolutions inside the laser cavity. The proposed technique holds great potential for achieving a high degree of control over the dynamics and output of ultrafast fibre lasers, in contrast to the traditional method to control the pulse formation mechanism in a DM fibre laser, which involves manual optimisation of the relative length of fibres with opposite-sign dispersion in the cavity. Our versatile ultrafast fibre laser will be attractive for applications requiring different pulse profiles such as in optical signal processing and optical communications. PMID:27183882
NASA Astrophysics Data System (ADS)
Rush, James D.; Holdcroft, Geoffrey E.; Dunn, Peter L.
1989-03-01
The growth and characterisation of fibres containing a crystalline core of the nonlinear organic compound DAN in silica and higher refractive index capillaries is described. In addition to measuring the optical properties in transmission a method is described of measuring the sideways scatter from such fibres in order that a fuller understanding be made of factors which limit the achievement of very high SHG efficiencies.
A Dual Sensor for pH and Hydrogen Peroxide Using Polymer-Coated Optical Fibre Tips.
Purdey, Malcolm S; Thompson, Jeremy G; Monro, Tanya M; Abell, Andrew D; Schartner, Erik P
2015-12-17
This paper demonstrates the first single optical fibre tip probe for concurrent detection of both hydrogen peroxide (H₂O₂) concentration and pH of a solution. The sensor is constructed by embedding two fluorophores: carboxyperoxyfluor-1 (CPF1) and seminaphtharhodafluor-2 (SNARF2) within a polymer matrix located on the tip of the optical fibre. The functionalised fibre probe reproducibly measures pH, and is able to accurately detect H₂O₂ over a biologically relevant concentration range. This sensor offers potential for non-invasive detection of pH and H₂O₂ in biological environments using a single optical fibre.
The calculation of average error probability in a digital fibre optical communication system
NASA Astrophysics Data System (ADS)
Rugemalira, R. A. M.
1980-03-01
This paper deals with the problem of determining the average error probability in a digital fibre optical communication system, in the presence of message dependent inhomogeneous non-stationary shot noise, additive Gaussian noise and intersymbol interference. A zero-forcing equalization receiver filter is considered. Three techniques for error rate evaluation are compared. The Chernoff bound and the Gram-Charlier series expansion methods are compared to the characteristic function technique. The latter predicts a higher receiver sensitivity
Studying focal ratio degradation of optical fibres with a core size of 50 μm for astronomy
NASA Astrophysics Data System (ADS)
Oliveira, A. C.; de Oliveira, L. S.; dos Santos, J. B.
2005-01-01
Along with the spectral attenuation properties, the focal ratio degradation (FRD) properties of optical fibres are the most important for instrumental applications in astronomy. We present a special study about the FRD of optical fibres with a core size of 50 μm to evaluate the effects of stress when mounting the fibre. Optical fibres like this were used to construct the Eucalyptus integral field unit. This fibre is very susceptible to the FRD effects, especially after the removal of the acrylate buffer. This operation is sometimes necessary to allow close packing of the fibres at the input to the spectrograph. Without the acrylate buffer, the protection of the cladding and core of the fibre may be easily damaged. In the near future, fibres of this size will be used to build the Southern Observatory for Astronomical Research (SOAR) integral field unit spectrograph (SIFS) and other instruments. It is important to understand the correct procedure which minimizes any increase in FRD during the construction of the instrument.
All-Optical Fibre Networks For Coal Mines
NASA Astrophysics Data System (ADS)
Zientkiewicz, Jacek K.
1987-09-01
A topic of the paper is fiber-optic integrated network (FOIN) suited to the most hostile environments existing in coal mines. The use of optical fibres for transmission of mine instrumentation data offers the prospects of improved safety and immunity to electromagnetic interference (EMI). The feasibility of optically powered sensors has opened up new opportunities for research into optical signal processing architectures. This article discusses a new fibre-optic sensor network involving a time domain multiplexing(TDM)scheme and optical signal processing techniques. The pros and cons of different FOIN topologies with respect to coal mine applications are considered. The emphasis has been placed on a recently developed all-optical fibre network using spread spectrum code division multiple access (COMA) techniques. The all-optical networks have applications in explosive environments where electrical isolation is required.
Chiesura, Gabriele; Luyckx, Geert; Voet, Eli; Lammens, Nicolas; Van Paepegem, Wim; Degrieck, Joris; Dierick, Manuel; Van Hoorebeke, Luc; Vanderniepen, Pieter; Sulejmani, Sanne; Sonnenfeld, Camille; Geernaert, Thomas; Berghmans, Francis
2015-01-01
Quality of embedment of optical fibre sensors in carbon fibre-reinforced polymers plays an important role in the resultant properties of the composite, as well as for the correct monitoring of the structure. Therefore, availability of a tool able to check the optical fibre sensor-composite interaction becomes essential. High-resolution 3D X-ray Micro-Computed Tomography, or Micro-CT, is a relatively new non-destructive inspection technique which enables investigations of the internal structure of a sample without actually compromising its integrity. In this work the feasibility of inspecting the position, the orientation and, more generally, the quality of the embedment of an optical fibre sensor in a carbon fibre reinforced laminate at unit cell level have been proven. PMID:25961383
Comparison of validation methods for forming simulations
NASA Astrophysics Data System (ADS)
Schug, Alexander; Kapphan, Gabriel; Bardl, Georg; Hinterhölzl, Roland; Drechsler, Klaus
2018-05-01
The forming simulation of fibre reinforced thermoplastics could reduce the development time and improve the forming results. But to take advantage of the full potential of the simulations it has to be ensured that the predictions for material behaviour are correct. For that reason, a thorough validation of the material model has to be conducted after characterising the material. Relevant aspects for the validation of the simulation are for example the outer contour, the occurrence of defects and the fibre paths. To measure these features various methods are available. Most relevant and also most difficult to measure are the emerging fibre orientations. For that reason, the focus of this study was on measuring this feature. The aim was to give an overview of the properties of different measuring systems and select the most promising systems for a comparison survey. Selected were an optical, an eddy current and a computer-assisted tomography system with the focus on measuring the fibre orientations. Different formed 3D parts made of unidirectional glass fibre and carbon fibre reinforced thermoplastics were measured. Advantages and disadvantages of the tested systems were revealed. Optical measurement systems are easy to use, but are limited to the surface plies. With an eddy current system also lower plies can be measured, but it is only suitable for carbon fibres. Using a computer-assisted tomography system all plies can be measured, but the system is limited to small parts and challenging to evaluate.
Maximizing the optical network capacity
Bayvel, Polina; Maher, Robert; Liga, Gabriele; Shevchenko, Nikita A.; Lavery, Domaniç; Killey, Robert I.
2016-01-01
Most of the digital data transmitted are carried by optical fibres, forming the great part of the national and international communication infrastructure. The information-carrying capacity of these networks has increased vastly over the past decades through the introduction of wavelength division multiplexing, advanced modulation formats, digital signal processing and improved optical fibre and amplifier technology. These developments sparked the communication revolution and the growth of the Internet, and have created an illusion of infinite capacity being available. But as the volume of data continues to increase, is there a limit to the capacity of an optical fibre communication channel? The optical fibre channel is nonlinear, and the intensity-dependent Kerr nonlinearity limit has been suggested as a fundamental limit to optical fibre capacity. Current research is focused on whether this is the case, and on linear and nonlinear techniques, both optical and electronic, to understand, unlock and maximize the capacity of optical communications in the nonlinear regime. This paper describes some of them and discusses future prospects for success in the quest for capacity. PMID:26809572
Determination of pulse energy dependence for skin denaturation from 585nm fibre laser
NASA Astrophysics Data System (ADS)
Mujica-Ascencio, S.; Velazquez-Gonzalez, J. S.; Mujica-Ascencio, C.; Alvarez-Chavez, J. A.
2014-05-01
In this paper, simulation and mathematical analysis for the determination of pulse energy from a Q-switched Yb3+-doped fibre laser is required in Port Wine Stain (PWS) treatment. The pulse energy depends on average power, gain, volume, repetition rate and pulse duration. In some treatments such as Selective Photothermolysis (SP), the peak power at the end of the optical fibre and pulse duration can be obtained and modified via a cavity design. For that purpose, a 585nm optical fibre laser full design which considers all of the above besides the average losses through the optical devices proposed for the design and the Ytterbium optical fibre overall gain will be presented.
Modified sensing element of a fibre-optic current sensor based on a low-eigenellipticity spun fibre
DOE Office of Scientific and Technical Information (OSTI.GOV)
Przhiyalkovsky, Ya V; Morshnev, S K; Starostin, N I
2014-10-31
We have proposed and investigated a modified sensing element of a spun fibre current sensor for the case when the beat length of the built-in linear birefringence of the fibre is equal to or less than the spin pitch of its helical structure. The proposed configuration makes it possible to restore the interferometer contrast reduced because of the decrease in the ellipticity of the wavelength-averaged polarisation state of radiation propagating in such spun fibre. The modified sensing element contains two polarisation state converters: one, located at the spun fibre input, produces polarisation with ellipticity equal to the eigenellipticity of themore » fibre, and the other ensures conversion of the elliptical polarisation to an orthogonal one through mirror reflection at the fibre output. We have also demonstrated that the magneto-optical sensitivity decreases slightly for the analysed spectrum-averaged parameters of the polarisation state of radiation in the spun fibre. Experimental data lend support to the theoretical predictions. (fibre-optic sensors)« less
Polarization domain walls in optical fibres as topological bits for data transmission
Gilles, M.; Bony, P-Y.; Garnier, J.; Picozzi, A.; Guasoni, M.; Fatome, J.
2016-01-01
Domain walls are topological defects which occur at symmetry-breaking phase transitions. While domain walls have been intensively studied in ferromagnetic materials, where they nucleate at the boundary of neighbouring regions of oppositely aligned magnetic dipoles, their equivalent in optics have not been fully explored so far. Here, we experimentally demonstrate the existence of a universal class of polarization domain walls in the form of localized polarization knots in conventional optical fibres. We exploit their binding properties for optical data transmission beyond the Kerr limits of normally dispersive fibres. In particular, we demonstrate how trapping energy in well-defined train of polarization domain walls allows undistorted propagation of polarization knots at a rate of 28 GHz along a 10 km length of normally dispersive optical fibre. These results constitute the first experimental observation of kink-antikink solitary wave propagation in nonlinear fibre optics. PMID:28168000
4MOST optical system: presentation and design details
NASA Astrophysics Data System (ADS)
Azaïs, Nicolas; Frey, Steffen; Bellido, Olga; Winkler, Roland
2017-09-01
The 4-meter Multi-Object Spectroscopic Telescope (4MOST) is a wide-field, high-multiplex spectroscopic survey facility under development for the Visible and Infrared Survey Telescope for Astronomy (VISTA) 4 meter telescope of the European Southern Observatory (ESO) at Cerro Paranal. The objective of 4MOST is to enable the simultaneous spectroscopy of a significant number of targets within a 2.5° diameter field of view, to allow high-efficiency all-sky spectroscopic surveys. A wide field corrector (WFC) is needed to couple targets across the 2.5° field diameter with the exit pupil concentric with the spherical focal surface where 2400 fibres are configured by a fibre positioner (AESOP). For optimal fibre optic coupling and active optics wavefront sensing the WFC will correct optical aberrations of the primary (M1) and secondary (M2) VISTA optics across the full field of view and provide a well-defined and stable focal surface to which the acquisition/guiding sensors, wavefront sensors, and fibre positioner are interfaced. It will also compensate for the effects of atmospheric dispersion, allowing good chromatic coupling of stellar images with the fibre apertures over a wide range of telescope zenith angles (ZD). The fibres feed three spectrographs; two thirds of the fibres will feed two low resolution spectrographs and the remaining 812 fibres will feed a high-resolution spectrograph. The three spectrographs are fixed-configuration with three channels each. We present the 4MOST optical system together with optical simulation of subsystems.
Experimental demonstration of the switching dose-rate method on doped optical fibers
NASA Astrophysics Data System (ADS)
Thomas, J.; Myara, M.; Troussellier, L.; Régnier, E.; Burov, E.; Gilard, O.; Sottom, M.; Signoret, P.
2017-11-01
Optical technology developed for ground and submarine telecommunications is becoming of strong interest for next generation satellites. In addition to inter-satellite laser communications and LIDAR's, new applications are being considered such as on-board distribution and processing of microwave signals, fiber sensors or gyroscopes as well. Whereas common optical / optoelectronic components are known to be weakly sensitive to radiations, the essential optical amplifiers are strongly degraded in such an environment because of the RIA (Radio-Induced-Absorption) experienced by the Erbium-Doped Fiber (EDF) itself [1-3]. This degradation is mainly caused by the presence of co-doping ions, such as Aluminium or Germanium, inserted in the fibre to assist the inclusion of the Erbium ions in the silica matrix or to provide to the optical fibre its guiding properties.
Phase noise cancellation in polarisation-maintaining fibre links
NASA Astrophysics Data System (ADS)
Rauf, B.; Vélez López, M. C.; Thoumany, P.; Pizzocaro, M.; Calonico, D.
2018-03-01
The distribution of ultra-narrow linewidth laser radiation is an integral part of many challenging metrological applications. Changes in the optical pathlength induced by environmental disturbances compromise the stability and accuracy of optical fibre networks distributing the laser light and call for active phase noise cancellation. Here we present a laboratory scale optical (at 578 nm) fibre network featuring all polarisation maintaining fibres in a setup with low optical powers available and tracking voltage-controlled oscillators implemented. The stability and accuracy of this system reach performance levels below 1 × 10-19 after 10 000 s of averaging.
NASA Astrophysics Data System (ADS)
Yue, Yanfei; Bai, Yun; Basheer, P. A. Muhammed; Boland, John J.; Wang, Jing Jing
2013-04-01
Formation of ettringite and gypsum from sulfate attack together with carbonation and chloride ingress have been considered as the most serious deterioration mechanisms of concrete structures. Although Electrical Resistance Sensors and Fibre Optic Chemical Sensors could be used to monitoring the latter two mechanisms in situ, currently there is no system for monitoring the deterioration mechanisms of sulfate attack and hence still needs to be developed. In this paper, a preliminary study was carried out to investigate the feasibility of monitoring the sulfate attack with optical fibre Raman spectroscopy through characterizing the ettringite and gypsum formed in deteriorated cementitious materials under an `optical fibre excitation + spectroscopy objective collection' configuration. Bench-mounted Raman spectroscopy analysis was also used to validate the spectrum obtained from the fibre-objective configuration. The results showed that the expected Raman bands of ettringite and gypsum in the sulfate attacked cement paste have been clearly identified by the optical fibre Raman spectroscopy and are in good agreement with those identified from bench-mounted Raman spectroscopy. Therefore, based on these preliminary results, there is a good potential of developing an optical fibre Raman spectroscopy-based system for monitoring the deterioration mechanisms of concrete subjected to the sulfate attack in the future.
Stress strain modelling and analysis of a piezo-coated optical fibre sensor
NASA Astrophysics Data System (ADS)
Al-Raweshidy, H.; Ali, H.; Obayya, S. S. A.; Langley, R.; Batchelor, J.
2005-02-01
A finite element model, using commercially available software, is presented to simulate the piezoelectrically induced stresses and strains in an optical fibre to be used as antenna. These stresses and strains are generated by a layer of piezoelectric polymer deposited on the cladding of a short fibre sample. The theoretical basis for the work is briefly explained and the modelling process is emphasised. Two types of fibre are investigated - circular fibre and D-fibre, and the results compared, analysed and discussed. It is shown that in the D-fibre, the stress and displacement increased by 1.46 and 115 times, respectively, in comparison with the circular fibre.
Maximizing the optical network capacity.
Bayvel, Polina; Maher, Robert; Xu, Tianhua; Liga, Gabriele; Shevchenko, Nikita A; Lavery, Domaniç; Alvarado, Alex; Killey, Robert I
2016-03-06
Most of the digital data transmitted are carried by optical fibres, forming the great part of the national and international communication infrastructure. The information-carrying capacity of these networks has increased vastly over the past decades through the introduction of wavelength division multiplexing, advanced modulation formats, digital signal processing and improved optical fibre and amplifier technology. These developments sparked the communication revolution and the growth of the Internet, and have created an illusion of infinite capacity being available. But as the volume of data continues to increase, is there a limit to the capacity of an optical fibre communication channel? The optical fibre channel is nonlinear, and the intensity-dependent Kerr nonlinearity limit has been suggested as a fundamental limit to optical fibre capacity. Current research is focused on whether this is the case, and on linear and nonlinear techniques, both optical and electronic, to understand, unlock and maximize the capacity of optical communications in the nonlinear regime. This paper describes some of them and discusses future prospects for success in the quest for capacity. © 2016 The Authors.
Simulation of complex phenomena in optical fibres
NASA Astrophysics Data System (ADS)
Allington-Smith, Jeremy; Murray, Graham; Lemke, Ulrike
2012-12-01
Optical fibres are essential for many types of highly multiplexed and precision spectroscopy. The success of the new generation of multifibre instruments under construction to investigate fundamental problems in cosmology, such as the nature of dark energy, requires accurate modellization of the fibre system to achieve their signal-to-noise ratio (SNR) goals. Despite their simple construction, fibres exhibit unexpected behaviour including non-conservation of etendue (focal ratio degradation, FRD) and modal noise. Furthermore, new fibre geometries (non-circular or tapered) have become available to improve the scrambling properties that, together with modal noise, limit the achievable SNR in precision spectroscopy. These issues have often been addressed by extensive tests on candidate fibres and their terminations, but these are difficult and time-consuming. Modelling by ray tracing and wave analysis is possible with commercial software packages, but these do not address the more complex features, in particular FRD. We use a phase-tracking ray-tracing method to provide a practical description of FRD derived from our previous experimental work on circular fibres and apply it to non-standard fibres. This allows the relationship between scrambling and FRD to be quantified for the first time. We find that scrambling primarily affects the shape of the near-field pattern but has negligible effect on the barycentre. FRD helps to homogenize the near-field pattern but does not make it completely uniform. Fibres with polygonal cross-section improve scrambling without amplifying the FRD. Elliptical fibres, in conjunction with tapering, may offer an efficient means of image slicing to improve the product of resolving power and throughput, but the result is sensitive to the details of illumination. We also investigated the performance of fibres close to the limiting numerical aperture since this may affect the uniformity of the SNR for some prime focus fibre instrumentation.
Advanced Fibre Bragg Grating and Microfibre Bragg Grating Fabrication Techniques
NASA Astrophysics Data System (ADS)
Chung, Kit Man
Fibre Bragg gratings (FBGs) have become a very important technology for communication systems and fibre optic sensing. Typically, FBGs are less than 10-mm long and are fabricated using fused silica uniform phase masks which become more expensive for longer length or non-uniform pitch. Generally, interference UV laser beams are employed to make long or complex FBGs, and this technique introduces critical precision and control issues. In this work, we demonstrate an advanced FBG fabrication system that enables the writing of long and complex gratings in optical fibres with virtually any apodisation profile, local phase and Bragg wavelength using a novel optical design in which the incident angles of two UV beams onto an optical fibre can be adjusted simultaneously by moving just one optical component, instead of two optics employed in earlier configurations, to vary the grating pitch. The key advantage of the grating fabrication system is that complex gratings can be fabricated by controlling the linear movements of two translation stages. In addition to the study of advanced grating fabrication technique, we also focus on the inscription of FBGs written in optical fibres with a cladding diameter of several ten's of microns. Fabrication of microfibres was investigated using a sophisticated tapering method. We also proposed a simple but practical technique to filter out the higher order modes reflected from the FBG written in microfibres via a linear taper region while the fundamental mode re-couples to the core. By using this technique, reflection from the microfibre Bragg grating (MFBG) can be effectively single mode, simplifying the demultiplexing and demodulation processes. MFBG exhibits high sensitivity to contact force and an MFBG-based force sensor was also constructed and tested to investigate their suitability for use as an invasive surgery device. Performance of the contact force sensor packaged in a conforming elastomer material compares favourably to one of the best-performing commercial contact force sensors in catheterization applications. The proposed sensor features extremely high sensitivity up to 1.37-mN, miniature size (2.4-mm) that meets standard specification, excellent linearity, low hysteresis, and magnetic resonance imaging compatibility.
The evolution and exploitation of the fiber-optic hydrophone
NASA Astrophysics Data System (ADS)
Hill, David J.
2007-07-01
In the late 1970s one of the first applications identified for fibre-optic sensing was the fibre-optic hydrophone. It was recognised that the technology had the potential to provide a cost effective solution for large-scale arrays of highly sensitive hydrophones which could be interrogated over large distances. Consequently both the United Kingdom and United States navies funded the development of this sonar technology to the point that it is now deployed on submarines and as seabed arrays. The basic design of a fibre-optic hydrophone has changed little; comprising a coil of optical fibre wound on a compliant mandrel, interrogated using interferometric techniques. Although other approaches are being investigated, including the development of fibre-laser hydrophones, the interferometric approach remains the most efficient way to create highly multiplexed arrays of acoustic sensors. So much so, that the underlying technology is now being exploited in civil applications. Recently the exploration and production sector of the oil and gas industry has begun funding the development of fibre-optic seismic sensing using seabed mounted, very large-scale arrays of four component (three accelerometers and a hydrophone) packages based upon the original technology developed for sonar systems. This has given new impetus to the development of the sensors and the associated interrogation systems which has led to the technology being adopted for other commercial uses. These include the development of networked in-road fibre-optic Weigh-in-Motion sensors and of intruder detection systems which are able to acoustically monitor long lengths of border, on both land and at sea. After two decades, the fibre-optic hydrophone and associated technology has matured and evolved into a number of highly capable sensing solutions used by a range of industries.
Delepine-Lesoille, Sylvie; Girard, Sylvain; Landolt, Marcel; Bertrand, Johan; Planes, Isabelle; Boukenter, Aziz; Marin, Emmanuel; Humbert, Georges; Leparmentier, Stéphanie; Auguste, Jean-Louis; Ouerdane, Youcef
2017-06-13
This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo's severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution.
Delepine-Lesoille, Sylvie; Girard, Sylvain; Landolt, Marcel; Bertrand, Johan; Planes, Isabelle; Boukenter, Aziz; Marin, Emmanuel; Humbert, Georges; Leparmentier, Stéphanie; Auguste, Jean-Louis; Ouerdane, Youcef
2017-01-01
This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo’s severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution. PMID:28608831
Measurement of Rotating Blade Tip Clearance with Fibre-Optic Probe
NASA Astrophysics Data System (ADS)
Cao, S. Z.; Duan, F. J.; Zhang, Y. G.
2006-10-01
This paper described a tip clearance measuring system with fibre-optic probe. The system is based on a novel tip clearance sensor of optical fibre-bundle mounted on the casing, rotating speed synchronization sensor mounted on the rotating shaft, the tip clearance preamplification processing circuit followed by high speed data-acquisition unit. A novel tip clearance sensor of trifurcated optical fibre bundle was proposed and demonstrated. It is independent of material of measured surface but capacitive probe demands target conductive. Measurements can be taken under severe conditions such as ionization. Sensor circuitry and data acquisition circuit were successfully designed. With the help of Rotation synchronized sensor, all the blades can be detected in real-time. Because of fibre-optic sensor, the measuring system has commendably frequency response, which can work well in high rotating speed from 0-15000rpm.The measurement range of tip clearance is 0-3mm with 25um precision.
Distributed optical fibre sensing for early detection of shallow landslides triggering.
Schenato, Luca; Palmieri, Luca; Camporese, Matteo; Bersan, Silvia; Cola, Simonetta; Pasuto, Alessandro; Galtarossa, Andrea; Salandin, Paolo; Simonini, Paolo
2017-10-31
A distributed optical fibre sensing system is used to measure landslide-induced strains on an optical fibre buried in a large scale physical model of a slope. The fibre sensing cable is deployed at the predefined failure surface and interrogated by means of optical frequency domain reflectometry. The strain evolution is measured with centimetre spatial resolution until the occurrence of the slope failure. Standard legacy sensors measuring soil moisture and pore water pressure are installed at different depths and positions along the slope for comparison and validation. The evolution of the strain field is related to landslide dynamics with unprecedented resolution and insight. In fact, the results of the experiment clearly identify several phases within the evolution of the landslide and show that optical fibres can detect precursory signs of failure well before the collapse, paving the way for the development of more effective early warning systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chunaev, D S; Karasik, A Ya
2014-06-30
The nonlinear two-photon light absorption coefficients have been measured in an optical fibre with a quartz glass (SiO{sub 2}) core and in a fibre with a germanosilicate glass (SiO{sub 2} + GeO{sub 2}) core. The two-photon absorption coefficient β measured at a wavelength of 349 nm in the (SiO{sub 2} + GeO{sub 2})-based fibre (13.7 cm TW{sup -1}) multiply exceeds that for the pure quartz glass optical fibre (0.54 cm TW{sup -1}). (nonlinear optical phenomena)
A dual modality optical fiber sensor
NASA Astrophysics Data System (ADS)
Herrera-Piad, Luis A.; Haus, Joseph W.; Jauregui-Vazquez, Daniel; Lopez-Dieguez, Yanelis; Estudillo-Ayala, Julian M.; Sierra-Hernandez, Juan M.; Hernandez-Garcia, Juan C.; Rojas-Laguna, Roberto
2018-02-01
We propose and demonstrate a fibre optic system based on bi-tapered silica fibre that can simultaneously measure strain and fibre curvature. Both modalities on the signal can be extracted with no measurable crosstalk between them. The experimental signal has a pure phase modulation when strain is applied to the tapered fibre optic section of the sensor and the signal shows only intensity modulation when an un-tapered fibre section is bent. High sensitivity is achieved from the experimental results for strain and bending losses and the estimation of measurement errors is 0.2 and 0.1%, respectively. This system offers low-cost, compactness and it can be adapted for structural health monitoring.
Space-division multiplexing in optical fibres
NASA Astrophysics Data System (ADS)
Richardson, D. J.; Fini, J. M.; Nelson, L. E.
2013-05-01
Optical communication technology has been advancing rapidly for several decades, supporting our increasingly information-driven society and economy. Much of this progress has been in finding innovative ways to increase the data-carrying capacity of a single optical fibre. To achieve this, researchers have explored and attempted to optimize multiplexing in time, wavelength, polarization and phase. Commercial systems now utilize all four dimensions to send more information through a single fibre than ever before. The spatial dimension has, however, remained untapped in single fibres, despite it being possible to manufacture fibres supporting hundreds of spatial modes or containing multiple cores, which could be exploited as parallel channels for independent signals.
NASA Astrophysics Data System (ADS)
Ciocca, Francesco; Abesser, Corinna; Hannah, David; Blaen, Philip; Chalari, Athena; Mondanos, Michael; Krause, Stefan
2017-04-01
Optical fibre distributed temperature sensing (DTS) is increasingly used in environmental monitoring and for subsurface characterisation, e.g. to obtain precise measurements of soil temperature at high spatio-temporal resolution, over several kilometres of optical fibre cable. When combined with active heating of metal elements embedded in the optical fibre cable (active-DTS), the temperature response of the soil to heating provides valuable information from which other important soil parameters, such as thermal conductivity and soil moisture content, can be inferred. In this presentation, we report the development of an Actively Heated Fibre Optics (AHFO) method for the characterisation of soil thermal conductivity and soil moisture dynamics at high temporal and spatial resolutions at a vegetated hillslope site in central England. The study site is located within a juvenile forest adjacent to the Birmingham Institute of Forest Research (BIFoR) experimental site. It is instrumented with three loops of a 500m hybrid-optical cable installed at 10cm, 25cm and 40cm depths. Active DTS surveys were undertaken in June and October 2016, collecting soil temperature data at 0.25m intervals along the cable, prior to, during and after the 900s heating phase. Soil thermal conductivity and soil moisture were determined according to Ciocca et al. 2012, applied to both the cooling and the heating phase. Independent measurements of soil thermal conductivity and soil moisture content were collected using thermal needle probes, calibrated capacitance-based probes and laboratory methods. Results from both the active DTS survey and independent in-situ and laboratory measurements will be presented, including the observed relationship between thermal conductivity and moisture content at the study site and how it compares against theoretical curves used by the AHFO methods. The spatial variability of soil thermal conductivity and soil moisture content, as observed using the different methods, will be shown and an outlook will be provided of how the AHFO method can benefit soil sciences, ground source heat pump applications and groundwater recharge estimations. This research is part of the Distributed intelligent Heat Pulse System (DiHPS) project which is funded by the UK Natural Environmental Research Council (NERC). The project is supported by BIFoR, the European Space Agency (ESA), CarbonZero Ltd, the UK Forestry Commission and the UK Soil Moisture Observation Network (COSMOS-UK). This work is distributed under the Creative Commons Attribution 3.0 Unported Licence together with an author copyright. This licence does not conflict with the regulations of the Crown Copyright. Ciocca F., Lunati I., van de Giesen N., and Parlange M.B. 2012. Heated optical fiber for distributed soil-moisture measurements: A lysimeter experiment. Vadose Zone J. 11. doi:10.2136/vzj2011.0177
NASA Astrophysics Data System (ADS)
Culshaw, Brian; Ecke, Wolfgang; Jones, Julian; Tatam, Ralph; Willsch, Reinhardt
2010-09-01
Welcome to our special issue on fibre optic sensors. Fibre optic sensors were first suggested in the patent literature in the mid 1960s as an innovative means for making measurements. This proposed a surface finish measurement tool with high precision and resulted in an instrument that remains available today. Much has happened since, with significant innovation in the techniques through which light propagating whilst guided in a fibre can be unambiguously, repeatedly and predictably modulated in response to an external phenomenon. The technique offers not only the precision mentioned earlier but also inherent electromagnetic immunity, the capability to sense at long distances, light weight, small size and a multiplicity of network architectures, all of which can be interrogated from a single point. Even so, fibre sensors is a niche technology, attractive only when its very special features offer substantial user benefit. There are, however, many such niches exemplified in the electrical power supply industry, in gyroscopes for navigational instruments, in hydrophones and geophones. Then there are the distributed sensing architectures that enable useful measurements of pressure, strain and temperature fields affecting the optical properties of the fibre itself to map these parameter fields as a function of position along lengths of fibre to many tens of kilometres. The fibre sensing concept spawned its own research community, and the international conference on Optical Fibre Sensors first appeared in 1983 in London then emerged into a series travelling from Europe to the Americas and into the Asia-Pacific region. The 20th in the series took place in Edinburgh at the end of 2009 and this special issue of Measurement Science and Technology presents extended versions of some of the papers that first appeared at the conference. The science and technology of fibre sensing have evolved significantly over the history of the conference, drawing on developments in optical communications, material science and data management along the way. This is, of course, the year commemorating half a century of the laser. Arguably, laser technology, most notably semiconductor lasers, has made the major contribution to fibre optic sensors, and precision-controlled laser sources are now effectively taken for granted within the fibre sensor community. We have also drawn on innovation in fibre communications: the fibre itself, the Bragg grating and the fibre amplifier—and more recently on material systems like photonic crystal fibres, biophotonics and nanostructures. In this issue you will find some examples of the intriguing research that exemplifies the best of current fibre sensor technology. The issue gives some impression of the many facets—scientific, technological and applications—that fibre sensors have on offer. It also exemplifies a truly international community which is brought together through the conference series. The next OFS meeting takes place in Ottawa, Canada on 15-19 May 2011 (see www.ofs21.org/), followed in the autumn of 2012 by an event in Beijing. We look forward to seeing you there.
NASA Astrophysics Data System (ADS)
Yunguo, Gao
1996-12-01
This scheme structure is for positioning 4000 optical fibres of LAMOST telescope. It adopts the swing rods adjusted parallel and simultaneously by many small tables. The problems, for example, positioning accuracy of the optical fibers, the time to readjust all the 4000 optical fibres and error correction, etc. have been considered in the scheme. The structure has no blind area.
Laser-To-Fibre Couplers In Optical Recording Applications
NASA Astrophysics Data System (ADS)
Ophey, W. G.; Benschop, J. P. H.
1988-02-01
In optical recording, the use of single-mode fibres can considerably increase the coupling efficiency of the laser light into the light path. Important here is the performance of the laser-to-fibre coupler used. A mathematical treatment of different kinds of laser-to-fibre couplers is presented using scalar diffraction theory in order to obtain the field incident on the front end of the fibre. In this case the coupling efficiency of a laser-to-fibre coupler, using an aberrated light source (astigmatism) with an asymmetric far-field pattern, can easily be calculated.
Birefringence in anisotropic optical fibres studied by polarised light Brillouin reflectometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smirnov, A S; Burdin, V V; Konstantinov, Yu A
2015-01-31
Modal birefringence (the difference between the effective refractive indices of orthogonal polarisation modes) is one of the key parameters of anisotropic single-mode fibres, characterising their ability to preserve a linearly polarised state of input light. This parameter is commonly measured using short pieces of fibre, but such procedures are destructive and allow the birefringence to be determined only at the ends of long fibres. In this study, polarised light Brillouin reflectometry is used to assess birefringence uniformity throughout the length of an anisotropic fibre. (optical fibres)
NASA Astrophysics Data System (ADS)
de Oliveira, A. C.; de Oliveira, L. S.; Dos Santos, J. B.; Arruda, M. V.; Dos Santos, L. G. C.; Rodrigues, F.; de Castro, F. L. F.
2011-06-01
While there is no direct evidence for the deterioration in Focal Ratio Degradation (FRD) of optical fibres in severe temperature gradients, the fibre ends inserted into metallic containment devices such as steel ferrules can be a source of stress, and hence increased FRD at low temperatures. In such conditions, instruments using optical fibres may suffer some increase in FRD and consequent loss of system throughput when they are working in environments with significant thermal gradients, a common characteristic of ground-based observatories. In this paper we present results of experiments with optical fibres inserted in different materials as a part of our prototyping study for Gemini's Wide-field Multi-Object Spectrograph (WFMOS) project. Thermal effects and the use of new holding techniques will be discussed in the context of Integral Field Units and multi-fibres systems. In this work, we have used careful methodologies that give absolute measurements of FRD to quantify the advantages of using epoxy-based composites rather than metals as support structures for the fibre ends. This is shown to be especially important in minimizing thermally induced stresses in the fibre terminations. Not only is this important for optimizing fibre spectrograph performance but the benefits of using such materials are demonstrated in the minimization of positional variations and the avoidance of metal-to-glass delamination. Furthermore, by impregnating the composites with small zirconium oxide particles the composite materials supply their own fine polishing grit which aids significantly to the optical quality of the finished product.
NASA Astrophysics Data System (ADS)
Andrianov, A. V.
2018-04-01
We have developed an optical gating system for continuously monitoring a complex-shaped periodic optical signal with picosecond resolution in a nanosecond time window using an all-fibre optical gate in the form of a nonlinear loop mirror and a passively mode-locked femtosecond laser. The distinctive features of the system are the possibility of characterizing signals with a very large spectral bandwidth, the possibility of using a gating pulse source with a wavelength falling in the band of the signal under study and its all-fibre design with the use of standard fibres and telecom components.
Optical Fibre Sensors Using Graphene-Based Materials: A Review
Hernaez, Miguel; Zamarreño, Carlos R.; Melendi-Espina, Sonia; Bird, Liam R.; Mayes, Andrew G.; Arregui, Francisco J.
2017-01-01
Graphene and its derivatives have become the most explored materials since Novoselov and Geim (Nobel Prize winners for Physics in 2010) achieved its isolation in 2004. The exceptional properties of graphene have attracted the attention of the scientific community from different research fields, generating high impact not only in scientific journals, but also in general-interest newspapers. Optical fibre sensing is one of the many fields that can benefit from the use of these new materials, combining the amazing morphological, chemical, optical and electrical features of graphene with the advantages that optical fibre offers over other sensing strategies. In this document, a review of the current state of the art for optical fibre sensors based on graphene materials is presented. PMID:28098825
Optical Fibre Sensors Using Graphene-Based Materials: A Review.
Hernaez, Miguel; Zamarreño, Carlos R; Melendi-Espina, Sonia; Bird, Liam R; Mayes, Andrew G; Arregui, Francisco J
2017-01-14
Graphene and its derivatives have become the most explored materials since Novoselov and Geim (Nobel Prize winners for Physics in 2010) achieved its isolation in 2004. The exceptional properties of graphene have attracted the attention of the scientific community from different research fields, generating high impact not only in scientific journals, but also in general-interest newspapers. Optical fibre sensing is one of the many fields that can benefit from the use of these new materials, combining the amazing morphological, chemical, optical and electrical features of graphene with the advantages that optical fibre offers over other sensing strategies. In this document, a review of the current state of the art for optical fibre sensors based on graphene materials is presented.
Propagation of polarised light in bent hi-bi spun fibres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Przhiyalkovsky, Ya V; Morshnev, S K; Starostin, N I
The evolution of polarisation states (PS's) of broadband light propagating through a bent optical fibre with a helical structure of its refractive index anisotropy (hi-bi spun fibre) has been studied theoretically and experimentally. It has been shown that there exists a coordinate system of PS's in which the differential Jones matrix can be replaced by a diagonal matrix, which allows the polarisation parameters of the output broadband light to be readily calculated with sufficient accuracy. We have derived a formula for evaluating the magneto-optical sensitivity of a bent spun fibre. An approach has been proposed for restoring the degree ofmore » polarisation of light in a bent hi-bi spun fibre and, as a consequence, the visibility (contrast) of the interferometer in a current sensor with a sensing element based on the fibre under consideration. (optical fibres)« less
Flat Ge-doped optical fibres for food irradiation dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noor, N. Mohd; Jusoh, M. A.; Razis, A. F. Abdull
Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dosemore » response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.« less
Flat Ge-doped optical fibres for food irradiation dosimetry
NASA Astrophysics Data System (ADS)
Noor, N. Mohd; Jusoh, M. A.; Razis, A. F. Abdull; Alawiah, A.; Bradley, D. A.
2015-04-01
Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.
Shape memory polymeric composites sensing by optic fibre Bragg gratings: A very first approach
NASA Astrophysics Data System (ADS)
Quadrini, Fabrizio; Santo, Loredana; Ciminello, Monica; Concilio, Antonio; Volponi, Ruggero; Spena, Paola
2016-05-01
Shape memory polymer composites (SMPCs) have the potential for many applications in aerospace, spanning from self-repairing of structures to self-deploying of antennas, solar sails, or functional devices (e.g. for grabbing small space debris). In all these cases, it may be essential to have information about their configuration at different stages of shape recovery. In this study, the strain history of a prepreg carbon fibre system, cured with a shape memory polymer (SMP) interlayer, is monitored through a Fibre Bragg Grating (FBG), a fibre optic sensor device. SMPC has been manufactured by using traditional technologies for aerospace. After manufacturing cylindrical shape samples, an external fibre optic system is added to the composite structure; this system is especially suited for high temperatures which are necessary for SMP recovery and composite softening. Sensor functionality is checked before and after each strain history path. Optic fibre arrangement is optimized to avoid unwanted breakings whereas strains are limited by fibre collapsing, i.e. within nominal 2% of deformation. Dynamic information about shape recovery gives fundamental insights about strain evolution during time as well as its spatial distribution.
NASA Astrophysics Data System (ADS)
Woillez, Julien; Lai, Olivier; Perrin, Guy; Reynaud, François; Baril, Marc; Dong, Yue; Fédou, Pierre
2017-06-01
Context. In comparison to the radio and sub-millimetric domains, imaging with optical interferometry is still in its infancy. Due to the limited number of telescopes in existing arrays, image generation is a demanding process that relies on time-consuming reconfiguration of the interferometer array and super-synthesis. Aims: Using single mode optical fibres for the coherent transport of light from the collecting telescopes to the focal plane, a new generation of interferometers optimized for imaging can be designed. Methods: To support this claim, we report on the successful completion of the `OHANA Iki project: an end-to-end, on-sky demonstration of a two-telescope interferometer, built around near-infrared single mode fibres, carried out as part of the `OHANA project. Results: Having demonstrated that coherent transport by single-mode fibres is feasible, we explore the concepts, performances, and limitations of a new imaging facility with single mode fibres at its heart: Agile Guided Interferometer for Longbaseline Imaging Synthesis (AGILIS). Conclusions: AGILIS has the potential of becoming a next generation facility or a precursor to a much larger project like the Planet Formation Imager (PFI).
Nanostructured optical fibre arrays for high-density biochemical sensing and remote imaging.
Deiss, F; Sojic, N; White, D J; Stoddart, P R
2010-01-01
Optical fibre bundles usually comprise a few thousand to tens of thousands of individually clad glass optical fibres. The ordered arrangement of the fibres enables coherent transmission of an image through the bundle and therefore enables analysis and viewing in remote locations. In fused bundles, this architecture has also been used to fabricate arrays of various micro to nano-scale surface structures (micro/nanowells, nanotips, triangles, etc.) over relatively large areas. These surface structures have been used to obtain new optical and analytical capabilities. Indeed, the imaging bundle can be thought of as a "starting material" that can be sculpted by a combination of fibre drawing and selective wet-chemical etching processes. A large variety of bioanalytical applications have thus been developed, ranging from nano-optics to DNA nanoarrays. For instance, nanostructured optical surfaces with intrinsic light-guiding properties have been exploited as surface-enhanced Raman scattering (SERS) platforms and as near-field probe arrays. They have also been productively associated with electrochemistry to fabricate arrays of transparent nanoelectrodes with electrochemiluminescent imaging properties. The confined geometry of the wells has been loaded with biosensing materials and used as femtolitre-sized vessels to detect single molecules. This review describes the fabrication of high-density nanostructured optical fibre arrays and summarizes the large range of optical and bioanalytical applications that have been developed, reflecting the versatility of this ordered light-guiding platform.
The Fiber Grating Sensors Applied in the Deformation Measurement of Shipborne Antenna Basement
NASA Astrophysics Data System (ADS)
Liu, Yong; Chen, Jiahong; Zhao, Wenhua
2016-02-01
The optical fiber grating sensor is a novel fibre-optical passive device, its reflecting optical spectrum is linearly related with strain. It is broadly applied in the structural monitoring industry. Shipborne antenna basement is the basic supporting structure for the radar tracking movement. The bending deformation of the basement caused by ship attitude changing influences the antenna tracking precision, According to the structure of shipborne antenna basement, a distributed strain testing method based on the fibre grating sensor is approved to measure the bending deformation under the bending force. The strain-angle model is built. The regularity of the strain distribution is obtained. The finite element method is used to analyze the deformation of the antenna basement. The measuring experiment on the contractible basement mould is carried out to verify the availability of the method. The result of the experiment proves that the model is effective to apply in the deformation measurement. It provides an optimized method for the distribution of the fiber grating sensor in the actual measuring process.
Carbon laminates with RE doped optical fibre sensors
NASA Astrophysics Data System (ADS)
Miluski, Piotr; Kochanowicz, Marcin; Żmojda, Jacek; Silva, AbíLio P.; Reis, Paulo N. B.; Dorosz, Dominik
2016-11-01
A new type of luminescent optical fibre sensor for structural health monitoring of composite laminates (CFRP) is proposed. The Nd3+ doped multi-core doubleclad fibre incorporated in composite structure was used as a distributed temperature sensor. The change of luminescence intensity (Nd3+ ions) at the wavelength of 880 nm (4F3/2 → 4I9/2) and 1060 nm (4F3/2 → 4I11/2) was used for internal temperature monitoring. The special construction of optical fibre was used as it assures an efficient pumping mechanism and, at same time, it increases the measuring sensitivity. The linear response with relative sensitivity 0.015 K-1 was obtained for temperature range from 30 up to 75ºC. The manufacturing process of CFRP with embedded optical fibre sensor is also discussed.
Fibre-optic sensors in health care
NASA Astrophysics Data System (ADS)
Grazia Mignani, Anna; Baldini, Francesco
1997-05-01
Biomedical fibre-optic sensors are attractive for the measurement of physical, chemical and biochemical parameters and for spectral measurements directly performed on the patient. An overview of fibre-optic sensors for in vivo monitoring is given, with particular attention paid to the advantages that these sensors are able to offer in different application fields such as cardiovascular and intensive care, angiology, gastroenterology, ophthalmology, oncology, neurology, dermatology and dentistry.
Multiplexing curvature sensors using fibre segment interferometry for lateral vibration measurements
NASA Astrophysics Data System (ADS)
Kissinger, Thomas; Chehura, Edmon; James, Stephen W.; Tatam, Ralph P.
2017-04-01
Dynamic fibre-optic curvature sensing is demonstrated by interrogating chains of fibre segments, separated by broadband Bragg grating reflectors, using range-resolved interferometry (RRI). Four fibre strings, containing four fibre segments each of gauge length 20 cm, are attached to the opposing sides of a support structure and the resulting differential strain measurements allow inference of lateral displacements of a cantilever test object. Dynamic tip displacement resolutions in the micrometre range at an interferometric bandwidth of 21 kHz demonstrate the suitability of this approach for highly sensitive and cost-effective fibre-optic directional vibration measurements of smart structures.
NASA Astrophysics Data System (ADS)
Busurin, V. I.; Brazhnikova, T. Yu; Korobkov, V. V.; Prokhorov, N. I.
1995-10-01
An analysis is made of a general basic configuration and of the transfer function of a fibre-optic transducer based on controlled coupling in a multilayer two-channel coaxial optical fibre. The influence of the structure parameters and of external factors on the errors of a sensitive element in such a transducer is considered. The results are given of an investigation of the characteristics of a number of transducers constructed in accordance with the basic configuration.
High Performance Hermetic Package For LiNbO3 Electro-Optic Waveguide Devices
NASA Astrophysics Data System (ADS)
Preston, K. R.; Macdonald, B. M.; Harmon, R. A.; Ford, C. W.; Shaw, R. N.; Reid, I.; Davidson, J. H.; Beaumont, A. R.; Booth, R. C.
1989-02-01
A high performance fibre-tailed package for LiNbO3 electro-optic waveguide devices is described. The package is based around a hermetic metal submodule which contains no epoxy or other organic materials. The LiNbO3 chip is mounted using a soldering technique, and laser welding is used for fibre fixing to give stable, low loss optical coupling to single mode fibres. Optical reflections are minimised by the use of antireflective coatings on the fibre ends and waveguide facets. High speed electrical connections are made via coplanar glass-sealed leadthroughs to LiNb03 travelling wave devices, and packaged device operation to frequencies in excess of 4GHz is demonstrated.
All-optical switching based on optical fibre long period gratings modified bacteriorhodopsin
NASA Astrophysics Data System (ADS)
Korposh, S.; James, S.; Partridge, M.; Sichka, M.; Tatam, R.
2018-05-01
All-optical switching using an optical fibre long-period gating (LPG) modified with bacteriorhodopsin (bR) is demonstrated. The switching process is based on the photo-induced RI change of bR, which in turn changes the phase matching conditions of the mode coupling by the LPG, leading to modulation of the propagating light. The effect was studied with an LPG immersed into a bR solution and with LPGs coated with the bR films, deposited onto the LPGs using the layer-by-layer electrostatic self-assembly (LbL) method. The dependence of the all-optical switching efficiency upon the concentration of the bR solution and on the grating period of the LPG was also studied. In addition, an in-fibre Mach-Zehnder interferometer (MZI) composed of a cascaded LPG pair separated by 30 mm and modified with bR was used to enhance the wavelength range of all-optical switching. The switching wavelength is determined by the grating period of the LPG. Switching efficiencies of 16% and 35% were observed when an LPG and an MZI were immersed into bR solutions, respectively. The switching time for devices coated with bR-films was within 1 s, 10 times faster than that observed for devices immersed into bR solution.
Align-and-shine photolithography
NASA Astrophysics Data System (ADS)
Petrusis, Audrius; Rector, Jan H.; Smith, Kristen; de Man, Sven; Iannuzzi, Davide
2009-10-01
At the beginning of 2009, our group has introduced a new technique that allows fabrication of photolithographic patterns on the cleaved end of an optical fibre: the align-and-shine photolithography technique (see A. Petrušis et al., "The align-and-shine technique for series production of photolithography patterns on optical fibres", J. Micromech. Microeng. 19, 047001, 2009). Align-and-shine photolithography combines standard optical lithography with imagebased active fibre alignment processes. The technique adapts well to series production, opening the way to batch fabrication of fibre-top devices (D. Iannuzzi et al., "Monolithic fibre-top cantilever for critical environments and standard applications", Appl. Phys. Lett. 88, 053501, 2006) and all other devices that rely on suitable machining of engineered parts on the tip of a fibre. In this paper we review our results and briefly discuss its potential applications.
Coucheron, David A.; Fokine, Michael; Patil, Nilesh; Breiby, Dag Werner; Buset, Ole Tore; Healy, Noel; Peacock, Anna C.; Hawkins, Thomas; Jones, Max; Ballato, John; Gibson, Ursula J.
2016-01-01
Glass fibres with silicon cores have emerged as a versatile platform for all-optical processing, sensing and microscale optoelectronic devices. Using SiGe in the core extends the accessible wavelength range and potential optical functionality because the bandgap and optical properties can be tuned by changing the composition. However, silicon and germanium segregate unevenly during non-equilibrium solidification, presenting new fabrication challenges, and requiring detailed studies of the alloy crystallization dynamics in the fibre geometry. We report the fabrication of SiGe-core optical fibres, and the use of CO2 laser irradiation to heat the glass cladding and recrystallize the core, improving optical transmission. We observe the ramifications of the classic models of solidification at the microscale, and demonstrate suppression of constitutional undercooling at high solidification velocities. Tailoring the recrystallization conditions allows formation of long single crystals with uniform composition, as well as fabrication of compositional microstructures, such as gratings, within the fibre core. PMID:27775066
NASA Astrophysics Data System (ADS)
Coucheron, David A.; Fokine, Michael; Patil, Nilesh; Breiby, Dag Werner; Buset, Ole Tore; Healy, Noel; Peacock, Anna C.; Hawkins, Thomas; Jones, Max; Ballato, John; Gibson, Ursula J.
2016-10-01
Glass fibres with silicon cores have emerged as a versatile platform for all-optical processing, sensing and microscale optoelectronic devices. Using SiGe in the core extends the accessible wavelength range and potential optical functionality because the bandgap and optical properties can be tuned by changing the composition. However, silicon and germanium segregate unevenly during non-equilibrium solidification, presenting new fabrication challenges, and requiring detailed studies of the alloy crystallization dynamics in the fibre geometry. We report the fabrication of SiGe-core optical fibres, and the use of CO2 laser irradiation to heat the glass cladding and recrystallize the core, improving optical transmission. We observe the ramifications of the classic models of solidification at the microscale, and demonstrate suppression of constitutional undercooling at high solidification velocities. Tailoring the recrystallization conditions allows formation of long single crystals with uniform composition, as well as fabrication of compositional microstructures, such as gratings, within the fibre core.
NASA Astrophysics Data System (ADS)
Zhang, Cheng-Cheng; Zhu, Hong-Hu; Shi, Bin
2016-11-01
Recently the distributed fibre optic strain sensing (DFOSS) technique has been applied to monitor deformations of various earth structures. However, the reliability of soil deformation measurements remains unclear. Here we present an integrated DFOSS- and photogrammetry-based test study on the deformation behaviour of a soil foundation model to highlight the role of strain sensing fibre-soil interface in DFOSS-based geotechnical monitoring. Then we investigate how the fibre-soil interfacial behaviour is influenced by environmental changes, and how the strain distribution along the fibre evolves during progressive interface failure. We observe that the fibre-soil interfacial bond is tightened and the measurement range of the fibre is extended under high densities or low water contents of soil. The plastic zone gradually occupies the whole fibre length when the soil deformation accumulates. Consequently, we derive a theoretical model to simulate the fibre-soil interfacial behaviour throughout the progressive failure process, which accords well with the experimental results. On this basis, we further propose that the reliability of measured strain can be determined by estimating the stress state of the fibre-soil interface. These findings may have important implications for interpreting and evaluating fibre optic strain measurements, and implementing reliable DFOSS-based geotechnical instrumentation.
NASA Astrophysics Data System (ADS)
Ciocca, F.; Bodet, L.; Simon, N.; Karaulanov, R.; Clarke, A.; Abesser, C.; Krause, S.; Chalari, A.; Mondanos, M.
2017-12-01
Active seismic methods combined with detectors deployed at the soil surface, such as vertical collinear geophones, have revealed great potential for hydrogeophysical characterization of the soil vadose zone. In particular, recent findings have highlighted a clear dependence of both P-waves arrival times and surface-wave dispersion on the local degree of soil saturation, visible at laboratory as well as at field scale. In this study, we investigate the sensitivity of a fibre optic Distributed Acoustic Sensor (DAS) to different soil saturation. In vertical seismic applications, DAS have proven to offer equal and often better performance compared to the geophones, with the advantage that a fibre optic cable, whose length can reach 40 km, replaces the array of geophones as sensing element. We present the response to active seismic tests of 20 m of fibre optic cable buried in a poorly permeable bare soil. Tests were conducted in different moments of the year, with saturation monitored by means of independent dielectric probes. Body-wave travel times as well as surface-wave dispersion are compared. Finally, we discuss the possibility to determine a site-specific relation between the Poisson ratio and the soil saturation. This research has been performed in the framework of the British National Environmental Research Council (NERC) funded Distributed intelligent Heat Pulse System (DiHPS) project and of the Marie Curie H2020 Research and Innovation Staff Exchange (RISE) consortium Hi-Freq.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotovskii, I O; Lapin, V A; Sementsov, D I
2016-01-31
We have studied the conditions for spectral broadening, frequency modulation and compression (both temporal and spectral) of Gaussian pulses propagating in a fibre with a travelling refractive-index wave. Analytical expressions have been derived for the dependences of pulse duration, chirp and spectral width on the distance travelled through the fibre, parameters of the fibre and radiation launched into it. Based on the numerical analysis we have studied the behaviour of these characteristics by changing the coefficient of the refractive-index modulation and other parameters of the travelling refractive-index wave. (nonlinear optical phenomena)
Growth of Third-Harmonic Signal in Optical Glass Fibre
1990-01-01
harmonic signal In optical glass fibres , illuminated vith 10kV peak pover pulses from A NdYAG lasers has been observed. Broadband fluores.enc from the third...J’T. Al-0002 GROWTH OF THIFRO-HARMVONIC SIGNAL IN OPTICAL GLASS FIORE Irdexim tems 0,rkl f. N motwvij p~ .G For mo i fibres the Sit signal strtd g0r...Amorphous nature of glass ) but with time, as the fibre is illuminated with inltense laser light at 4 w1O6pm, the S1t signal 3rows. What is believed to
The effect of mechanical drawing on optical and structural properties of nylon 6 fibres
NASA Astrophysics Data System (ADS)
El-Bakary, M. A.
2007-09-01
The Pluta polarizing double-refracting interference microscope was attached to a mechanical drawing device to study the effect of cold drawing on the optical and structural properties of nylon 6 fibres. The microscope was used in its two positions for determining the refractive indices and birefringence of fibres. Different applied stresses and strain rates were obtained using the mechanical-drawing device. The effect of the applied stresses on the optical and physical parameters was investigated. The resulting optical parameters were utilized to investigate the polarizability per unit volume, the optical orientation factor, the orientation angle and the average work per chain. The refractive index and birefringence profiles were measured. Relationships between the average work per chain and optical parameters at different strains rates were determined. An empirical formula was deduced for these fibres. Micro-interferograms are given for illustration.
Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss
Zhang, Haojie; Healy, Noel; Shen, Li; Huang, Chung Che; Hewak, Daniel W.; Peacock, Anna C.
2016-01-01
Graphene is a highly versatile two-dimensional material platform that offers exceptional optical and electrical properties. Of these, its dynamic conductivity and low effective carrier mass are of particular interest for optoelectronic applications as they underpin the material’s broadband nonlinear optical absorption and ultra-fast carrier mobility, respectively. In this paper, we utilize these phenomena to demonstrate a high-speed, in-fibre optical modulator developed on a side-polished optical fibre platform. An especially low insertion loss (<1 dB) was achieved by polishing the fibre to a near atomically smooth surface (<1 nm RMS), which minimized scattering and ensured excellent contact between the graphene film and the fibre. In order to enhance the light-matter interaction, the graphene film is coated with a high index polyvinyl butyral layer, which has the added advantage of acting as a barrier to the surrounding environment. Using this innovative approach, we have fabricated a robust and stable all-fibre device with an extinction ratio as high as 9 dB and operation bandwidth of 0.5 THz. These results represent a key step towards the integration of low-dimensional materials within standard telecoms networks. PMID:27001353
The 22nd International Conference on Optical Fibre Sensors, OFS-22
NASA Astrophysics Data System (ADS)
Liao, Yianbiao; Jin, Wei; Jones, Julian; Tatam, Ralph
2013-09-01
In October 2013, the 22nd International Conference on Optical Fibre Sensors was held in Beijing, attracting about 500 participants with 417 presentations. The conference began in 1983 in London, and in the subsequent 30 years has defined the subject. The conference is held approximately every 18 months, and rotates between three world regions: Asia/Pacific, Europe and the Americas. The conference is not 'owned' by any learned society or professional institution, but is organized by a self-sustaining international steering committee. This special feature represents the sixth occasion on which Measurement Science and Technology has published papers based on a development of a cross-section of work presented at the conference. The subject of optical fibre sensors has its beginnings in the enabling technologies of the optical fibre itself and the development of laser technologies suitable for practical use in demanding real-world applications. But the real driver for the subject in its early years was in the development of systems for defence applications, most notably for strategic-grade sea-bed hydrophone arrays for submarine detection, and the optical fibre gyroscope (the community has recently celebrated the 35th anniversary of its earliest publication) for aerospace navigation. Both applications continue to be important, but now with extensive civil applications: hydrophones for oil exploration and reservoir monitoring and management, and fibre gyroscopes for applications ranging from those requiring low cost and mass production (such as industrial robots and in agricultural machinery) to the most exotic and highest performance for space applications. The articles in this special feature exemplify the principal themes of the subject: enabling technologies, application-specific developments and systems considerations. In recent years, perhaps the most important—indeed, dominant—enabling technologies have been based on structuring of fibres: longitudinally, as in Bragg gratings, or transversely, using the science of metamaterials to produce microstructured fibres (e.g. photonic crystal fibres). In-fibre gratings continue to provide new types of sensor based on wavelength encoding, or for wavelength control for specialized sources or detection techniques. Microstructured fibres, meanwhile, provide materials with dispersion characteristics unattainable with conventional materials, as well as otherwise unfeasible physical characteristics that can be tailored to specific sensing applications. Examples of these types of technologies can be found in the following articles. The fields of application of optical fibre sensors, even if restricted to those presented at the conference, would be too lengthy to enumerate here. However, in this issue there are examples from medicine, transport, chemical sensing and electric power distribution, amongst others. An important advantage conferred by optical fibre sensors is the ability with which they can be multiplexed to form large arrays, interrogated via a single fibre, a topic that forms the subject of a number of papers in the issue. Lastly, as fibre sensors become the technology of choice in widespread applications, the issue of formal measurement standards begins to become important, and it is evidence of the maturity of the field that the subject is addressed in one of the papers published here: optical fibre sensors can now surely be said to have progressed from the physics laboratory to become a mainstream engineering reality.
Optical properties of in-vitro biomineralised silica.
Polini, Alessandro; Pagliara, Stefano; Camposeo, Andrea; Cingolani, Roberto; Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G; Pisignano, Dario
2012-01-01
Silicon is the second most common element on the Earth's crust and its oxide (SiO(2)) the most abundant mineral. Silica and silicates are widely used in medicine and industry as well as in micro- and nano-optics and electronics. However, the fabrication of glass fibres and components requires high temperature and non-physiological conditions, in contrast to biosilica structures in animals and plants. Here, we show for the first time the use of recombinant silicatein-α, the most abundant subunit of sponge proteins catalyzing biosilicification reactions, to direct the formation of optical waveguides in-vitro through soft microlithography. The artificial biosilica fibres mimic the natural sponge spicules, exhibiting refractive index values suitable for confinement of light within waveguides, with optical losses in the range of 5-10 cm(-1), suitable for application in lab-on-chips systems. This method extends biosilicification to the controlled fabrication of optical components by physiological processing conditions, hardly addressed by conventional technologies.
McCaffer, C J; Pabla, L; Watson, C
2018-04-01
The use of lasers in cholesteatoma surgery is common and well accepted. The most commonly used laser fibres are straight and non-adjustable; these have several limitations. This paper describes the use of an alternative laser fibre. This 'How I Do It' paper describes and illustrates the use of an alternative curved adjustable fibre-optic diode laser in microscopic cholesteatoma surgery. The curved, adjustable laser fibre allows accurate and atraumatic disease removal when the use of a straight laser fibre may be less effective or accurate. It reduces potential damage to delicate structures without the need for extra drilling or bone removal. It is suggested that the curved adjustable laser fibre is superior to the traditional straight fibre for cholesteatoma surgery.
Advances in laser technology and fibre-optic delivery systems in lithotripsy.
Fried, Nathaniel M; Irby, Pierce B
2018-06-08
The flashlamp-pumped, solid-state holmium:yttrium-aluminium-garnet (YAG) laser has been the laser of choice for use in ureteroscopic lithotripsy for the past 20 years. However, although the holmium laser works well on all stone compositions and is cost-effective, this technology still has several fundamental limitations. Newer laser technologies, including the frequency-doubled, double-pulse YAG (FREDDY), erbium:YAG, femtosecond, and thulium fibre lasers, have all been explored as potential alternatives to the holmium:YAG laser for lithotripsy. Each of these laser technologies is associated with technical advantages and disadvantages, and the search continues for the next generation of laser lithotripsy systems that can provide rapid, safe, and efficient stone ablation. New fibre-optic approaches for safer and more efficient delivery of the laser energy inside the urinary tract include the use of smaller-core fibres and fibres that are tapered, spherical, detachable or hollow steel, or have muzzle brake distal fibre-optic tips. These specialty fibres might provide advantages, including improved flexibility for maximal ureteroscope deflection, reduced cross section for increased saline irrigation rates through the working channel of the ureteroscope, reduced stone retropulsion for improved stone ablation efficiency, and reduced fibre degradation and burnback for longer fibre life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseev, A E; Potapov, V T; Gorshkov, B G
2015-10-31
Sensitivity of a fibre scattered-light interferometer to external phase perturbations is studied for the first time. An expression is derived for an average power of a useful signal at the interferometer output under external harmonic perturbations in a signal fibre of the interferometer. It is shown that the maximum sensitivity of the scattered-light interferometer depends on the dispersion of the interferogram intensity. An average signal-to-noise ratio is determined theoretically and experimentally at the output of the interferometer at different amplitudes of external perturbations. Using the measured dependences of the signal-to-noise ratio, the threshold sensitivity of the fibre scattered-light interferometer tomore » external phase perturbations is found. The results obtained can be used to optimise characteristics of optical time-domain reflectometers and to design individual phase-sensitive fibre-optic sensors. (laser applications and other topics in quantum electronics)« less
Polarisation effects in twin-core fibre: Application for mode locking in a fibre laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobach, I A; Kablukov, S I; Podivilov, Evgenii V
2012-09-30
We report the first measurements of the longitudinal power distribution in a twin-core optical fibre at different input light polarisations. Experimental evidence is presented that, because of the difference in birefringence between the cores, the power in them depends on which core the beam is launched into. Experimental data are interpreted in terms of a modified polarisation model for mode coupling in twin-core fibres which takes into account the birefringence of the cores. In addition, we demonstrate for the first time the use of the polarisation properties of a twincore fibre for mode locking in a fibre laser. (optical fibres,more » lasers and amplifiers. properties and applications)« less
Walt, David R
2010-01-01
This tutorial review describes how fibre optic microarrays can be used to create a variety of sensing and measurement systems. This review covers the basics of optical fibres and arrays, the different microarray architectures, and describes a multitude of applications. Such arrays enable multiplexed sensing for a variety of analytes including nucleic acids, vapours, and biomolecules. Polymer-coated fibre arrays can be used for measuring microscopic chemical phenomena, such as corrosion and localized release of biochemicals from cells. In addition, these microarrays can serve as a substrate for fundamental studies of single molecules and single cells. The review covers topics of interest to chemists, biologists, materials scientists, and engineers.
NASA Astrophysics Data System (ADS)
Rigas, Evangelos; Correia, R.; Stathopoulos, N. A.; Savaidis, S. P.; James, S. W.; Bhattacharyya, D.; Kirby, P. B.; Tatam, R. P.
2014-05-01
A polling topology that employs optical switching based on the properties of erbium-doped fibres (EDFs) is used to interrogate an array of FBGs. The properties of the EDF are investigated in its pumped and un-pumped states and the EDFs' switching properties are evaluated by comparing them with a high performance electronically controlled MEM optical switch. Potential advantages of the proposed technique are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyushkov, B N; Pivtsov, V S; Koliada, N A
2015-05-31
A miniature intracavity KTP-based electro-optic phase modulator has been developed which can be used for effective stabilisation of an optical frequency comb of a femtosecond erbiumdoped fibre laser to an optical frequency standard. The use of such an electro-optic modulator (EOM) has made it possible to extend the working frequency band of a phase-locked loop system for laser stabilisation to several hundred kilohertz. We demonstrate that the KTP-based EOM is sufficiently sensitive even at a small optical length, which allows it to be readily integrated into cavities of femtosecond fibre lasers with high mode frequency spacings (over 100 MHz). (extrememore » light fields and their applications)« less
Macrobend optical sensing for pose measurement in soft robot arms
NASA Astrophysics Data System (ADS)
Sareh, Sina; Noh, Yohan; Li, Min; Ranzani, Tommaso; Liu, Hongbin; Althoefer, Kaspar
2015-12-01
This paper introduces a pose-sensing system for soft robot arms integrating a set of macrobend stretch sensors. The macrobend sensory design in this study consists of optical fibres and is based on the notion that bending an optical fibre modulates the intensity of the light transmitted through the fibre. This sensing method is capable of measuring bending, elongation and compression in soft continuum robots and is also applicable to wearable sensing technologies, e.g. pose sensing in the wrist joint of a human hand. In our arrangement, applied to a cylindrical soft robot arm, the optical fibres for macrobend sensing originate from the base, extend to the tip of the arm, and then loop back to the base. The connectors that link the fibres to the necessary opto-electronics are all placed at the base of the arm, resulting in a simplified overall design. The ability of this custom macrobend stretch sensor to flexibly adapt its configuration allows preserving the inherent softness and compliance of the robot which it is installed on. The macrobend sensing system is immune to electrical noise and magnetic fields, is safe (because no electricity is needed at the sensing site), and is suitable for modular implementation in multi-link soft continuum robotic arms. The measurable light outputs of the proposed stretch sensor vary due to bend-induced light attenuation (macrobend loss), which is a function of the fibre bend radius as well as the number of repeated turns. The experimental study conducted as part of this research revealed that the chosen bend radius has a far greater impact on the measured light intensity values than the number of turns (if greater than five). Taking into account that the bend radius is the only significantly influencing design parameter, the macrobend stretch sensors were developed to create a practical solution to the pose sensing in soft continuum robot arms. Henceforward, the proposed sensing design was benchmarked against an electromagnetic tracking system (NDI Aurora) for validation.
Ghezzi, Diego; Menegon, Andrea; Pedrocchi, Alessandra; Valtorta, Flavia; Ferrigno, Giancarlo
2008-10-30
Optical stimulation is a promising approach to investigate the local dynamic responses of cultured neurons. In particular, flash photolysis of caged compounds offers the advantage of allowing the rapid change of concentration of either extracellular or intracellular molecules, such as neurotransmitters or second messengers, for the stimulation or modulation of neuronal activity. We describe here the use of an ultra-violet (UV) laser diode coupled to an optical fibre for the local activation of caged compounds combined with a Micro-Electrode Array (MEA) device. Local uncaging was achieved by UV irradiation through the optical fibre previously positioned by using a red laser diode. The size of the stimulation was determined using caged fluorescein, whereas its efficacy was tested by studying the effect of uncaging the neurotransmitter glutamate. Uncaged glutamate evoked neuronal responses that were recorded using either fluorescence measurements or electrophysiological recordings with MEAs, thus showing the ability of our system to induce local neuronal excitation. This method allows overcoming the limitations of the MEA system related to unfocused electrical stimulation and induction of electrical artefacts. In addition, the coupling of a UV laser diode to an optical fibre allows a precise local stimulation and a quick change of the stimulation point.
A review of recent advances in optical fibre sensors for in vivo dosimetry during radiotherapy
O'Keeffe, S; McCarthy, D; Woulfe, P; Grattan, M W D; Hounsell, A R; Sporea, D; Mihai, L; Vata, I; Leen, G
2015-01-01
This article presents an overview of the recent developments and requirements in radiotherapy dosimetry, with particular emphasis on the development of optical fibre dosemeters for radiotherapy applications, focusing particularly on in vivo applications. Optical fibres offer considerable advantages over conventional techniques for radiotherapy dosimetry, owing to their small size, immunity to electromagnetic interferences, and suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based dosemeters, together with being lightweight and flexible, mean that they are minimally invasive and thus particularly suited to in vivo dosimetry. This means that the sensor can be placed directly inside a patient, for example, for brachytherapy treatments, the optical fibres could be placed in the tumour itself or into nearby critical tissues requiring monitoring, via the same applicators or needles used for the treatment delivery thereby providing real-time dosimetric information. The article outlines the principal sensor design systems along with some of the main strengths and weaknesses associated with the development of these techniques. The successful demonstration of these sensors in a range of different clinical environments is also presented. PMID:25761212
Space Gator: a giant leap for fiber optic sensing
NASA Astrophysics Data System (ADS)
Evenblij, R. S.; Leijtens, J. A. P.
2017-11-01
Fibre Optic Sensing is a rapidly growing application field for Photonics Integrated Circuits (PIC) technology. PIC technology is regarded enabling for required performances and miniaturization of next generation fibre optic sensing instrumentation. So far a number of Application Specific Photonics Integrated Circuits (ASPIC) based interrogator systems have been realized as operational system-on-chip devices. These circuits have shown that all basic building blocks are working and complete interrogator on chip solutions can be produced. Within the Saristu (FP7) project several high reliability solutions for fibre optic sensing in Aeronautics are being developed, combining the specifically required performance aspects for the different sensing applications: damage detection, impact detection, load monitoring and shape sensing (including redundancy aspects and time division features). Further developments based on devices and taking into account specific space requirements (like radiation aspects) will lead to the Space Gator, which is a radiation tolerant highly integrated Fibre Bragg Grating (FBG) interrogator on chip. Once developed and qualified the Space Gator will be a giant leap for fibre optic sensing in future space applications.
NASA Astrophysics Data System (ADS)
Jousset, Philippe; Reinsch, Thomas; Henninges, Jan; Blanck, Hanna; Ryberg, Trond
2016-04-01
The fibre optic distributed acoustic sensing technology (DAS) is a "new" sensing system for exploring earth crustal elastic properties and monitoring both strain and seismic waves with unprecedented acquisition characteristics. The DAS technology principle lies in sending successive and coherent pulses of light in an optical fibre and measuring the back-scattered light issued from elastic scattering at random defaults within the fibre. The read-out unit includes an interferometer, which measures light interference patterns continuously. The changes are related to the distance between such defaults and therefore the strain within the fibre can be detected. Along an optical fibre, DAS can be used to acquire acoustic signals with a high spatial (every meter over kilometres) and high temporal resolution (thousand of Hz). Fibre optic technologies were, up to now, mainly applied in perimeter surveillance applications and pipeline monitoring and in boreholes. Previous experiments in boreholes have shown that the DAS technology is well suited for probing subsurface elastic properties, showing new ways for cheaper VSP investigations of the Earth crust. Here, we demonstrate that a cable deployed at ground surface can also help in exploring subsurface properties at crustal scale and monitor earthquake activity in a volcanic environment. Within the framework of the EC funded project IMAGE, we observed a >15 km-long fibre optic cable at the surface connected to a DAS read-out unit. Acoustic data was acquired continuously for 9 days. Hammer shots were performed along the surface cable in order to locate individual acoustic traces and calibrate the spatial distribution of the acoustic information. During the monitoring period both signals from on- and offshore explosive sources and natural seismic events could be recorded. We compare the fibre optic data to conventional seismic records from a dense seismic network deployed on Reykjanes. We show that we can probe and monitor earth crust subsurface with dense acquisition of the ground motion, both in space and in time and over a broad band frequency range.
Non-disturbing optical power monitor for links in the visible spectrum using a polymer optical fibre
NASA Astrophysics Data System (ADS)
Ribeiro, Ricardo M.; Freitas, Taiane A. M. G.; Barbero, Andrés P. L.; Silva, Vinicius N. H.
2015-08-01
We describe a simple and inexpensive inline optical power monitor (OPMo) for polymer optical fibre (POF) links that are transmitting visible light carriers. The OPMo is non-invasive in the sense that it does not tap any guided light from the fibre core; rather, it collects and detects the spontaneous side-scattered light. Indeed, the OPMo indicates whether a POF transmission link has dark or live status and measures the average optical power level of the propagating signals without disconnecting the fibre link. This paper demonstrates the proof-of-principle of the device for one wavelength at a time, selected from a set of previously calibrated wavelength channels which have been found in the 45 dB dynamic range, with 50 dBm sensitivity or insensitivity by the use or non-use of a mode scrambler. Our findings are very promising milestones for further OPMo development towards the marketplace.
Inverse four-wave-mixing and self-parametric amplification effect in optical fibre
Turitsyn, Sergei K.; Bednyakova, Anastasia E.; Fedoruk, Mikhail P.; Papernyi, Serguei B.; Clements, Wallace R.L.
2015-01-01
An important group of nonlinear processes in optical fibre involves the mixing of four waves due to the intensity dependence of the refractive index. It is customary to distinguish between nonlinear effects that require external/pumping waves (cross-phase modulation and parametric processes such as four-wave mixing) and self-action of the propagating optical field (self-phase modulation and modulation instability). Here, we present a new nonlinear self-action effect, self-parametric amplification (SPA), which manifests itself as optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation with a distinctive spectral distribution. The narrowing results from an inverse four-wave mixing, resembling an effective parametric amplification of the central part of the spectrum by energy transfer from the spectral tails. SPA and the observed stable nonlinear spectral propagation with random temporal waveform can find applications in optical communications and high power fibre lasers with nonlinear intra-cavity dynamics. PMID:26345290
NASA Astrophysics Data System (ADS)
Plattner, M. P.; Hirth, F.; Müller, M. S.; Hoffmann, L.; Buck, T. C.; Koch, A. W.
2017-11-01
Availability of reliable flight sensor data and knowledge of the structural behaviour are essential for safe operation of the Ariane launcher. The Ariane launcher is currently monitored by hundreds of electric sensors during test and qualification. Fibre optic sensors are regarded as a potential technique to overcome limitations of recent monitoring systems for the Ariane launcher [1]. These limitations include cumbersome application of sensors and harness as well as a very limited degree of distributed sensing capability. But, in order to exploit the various advantages of fibre optic sensors (high degree of multiplexing, distributed sensing capability, lower mass impact, etc.) dedicated measurement systems have to be developed and investigated. State-of-the-art fibre optic measurement systems often use free beam setups making them bulky and sensitive to vibration impact. Therefore a new measurement system is developed as part of the ESAstudy [2].
Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre
Beugnot, Jean-Charles; Lebrun, Sylvie; Pauliat, Gilles; Maillotte, Hervé; Laude, Vincent; Sylvestre, Thibaut
2014-01-01
Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves. These Rayleigh-type surface waves travel the wire surface at a specific velocity of 3,400 m s−1 and backscatter the light with a Doppler shift of about 6 GHz. As these acoustic resonances are sensitive to surface defects or features, surface acoustic wave Brillouin scattering opens new opportunities for various sensing applications, but also in other domains such as microwave photonics and nonlinear plasmonics. PMID:25341638
NASA Astrophysics Data System (ADS)
Zhang, Zhihao; Zhang, Chunxi; Xu, Xiaobin
2017-09-01
Small diameter (cladding and coating diameter of 100 and 135 μm) polarization maintaining photonic crystal fibres (SDPM-PCFs) possess many unique properties and are extremely suitable for applications in fibre optic gyroscopes. In this study, we have investigated and measured the stress characteristics of an SDPM-PCF using the finite-element method and a Mach-Zehnder interferometer, respectively. Our results reveal a radial and axial sensitivity of 0.315 ppm/N/m and 25.2 ppm per 1 × 105 N/m2, respectively, for the SDPM-PCF. These values are 40% smaller than the corresponding parameters of conventional small diameter (cladding and coating diameter of 80 and 135 μm) panda fibres.
Spatiotemporal multiplexing based on hexagonal multicore optical fibres
Chekhovskoy, I. S.; Sorokina, M. A.; Rubenchik, A. M.; ...
2017-12-27
Based on a genetic algorithm, we have solved in this paper the problem of finding the parameters of optical Gaussian pulses which make their efficient nonlinear combining possible in one of the peripheral cores of a 7-core hexagonal fibre. Two approaches based on individual selection of peak powers and field phases of the pulses launched into the fibre are considered. Finally, the found regimes of Gaussian pulse combining open up new possibilities for the development of devices for controlling optical radiation.
NASA Astrophysics Data System (ADS)
Kitsak, M. A.; Kitsak, A. I.
2007-08-01
The model scheme of the nonlinear mechanism of transformation (decreasing) of the spatial coherence of a pulsed laser field in an extended multimode optical fibre upon nonstationary interaction with the fibre core is theoretically analysed. The case is considered when the spatial statistics of input radiation is caused by phase fluctuations. The analytic expression is obtained which relates the number of spatially coherent radiation modes with the spatially energy parameters on the initial radiation and fibre parameters. The efficiency of decorrelation of radiation upon excitation of the thermal and electrostriction nonlinearities in the fibre is estimated. Experimental studies are performed which revealed the basic properties of the transformation of the spatial coherence of a laser beam in a multimode fibre. The experimental results are compared with the predictions of the model of radiation transfer proposed in the paper. It is found that the spatial decorrelation of a light beam in a silica multimode fibre is mainly restricted by stimulated Raman scattering.
EDITORIAL: Optical Fibre Sensors 18 (OFS-18)
NASA Astrophysics Data System (ADS)
Jones, Julian D. C.; Tatam, Ralph P.
2007-10-01
The International Conference on Optical Fibre Sensors (OFS-18) was held in October 2006 in Cancún, Mexico, under the general chairmanship of Dr Alexis Mendez (MCH Engineering LLC, USA) and Dr Fernando Mendoza (Centro de Investigaciones en Optica, Mexico). 'OFS', as it has become known, is firmly established as the leading international conference for the optical fibre sensor community. Since its inception, in London in 1983, and under the leadership of an international steering committee independent of any learned society or professional institution, it has been held approximately every eighteen months. The venue nominally rotates from Europe, to the Americas, and thence to Asia and the Pacific. OFS-18 demonstrated the continuing vigour of the community, with some 250 papers presented, plus two workshops, with attendance as international as ever. In recent years, it has become a tradition to publish a post-conference special issue in the journal Measurement Science and Technology, and these special issues offer a representative sample of the current status of the field. In the nearly 25 years since OFS began, many of the early ideas and laboratory-based proof-of-principle experiments have led to highly developed instrumentation systems, and to successful commercial products. Perhaps the most mature of all of these technologies is the optical fibre gyroscope, with the fibre hydrophone a close second—originally developed for defence applications for which it is now established, but with increasing relevance to the oil and gas industry; electromagnetic sensors based on the Faraday and electro-optic effects are of growing significance in the power generation and distribution industry; whilst in-fibre grating-based sensors occupy an expanding niche in structural monitoring, especially in civil engineering. It is therefore appropriate that the first day of OFS was devoted to workshops on structural health monitoring, and to commemorate the 30th anniversary of the fibre optic gyroscope, conventionally taken to date from the first experimental demonstration by V Vali and R W Shorthill (1976 'Fibre ring interferometer' Appl. Opt. 15 1099-100). It is an indication of the health of the community that the successful maturity of some applications is complemented by the new technologies that will be the basis of the future development of the field, and here the content of this special issue is an interesting indication of likely areas of growth. Essentially all current fibre optic systems are based on solid, doped fused silica fibres, which are the basis of the world's telecommunications industry. However, over the last decade an exciting development has been micro-structured fibres, whose waveguiding properties owe as much to the structure of the fibre as to the materials from which they are made. The significance for sensing applications is considerable, with opportunities to achieve properties for dispersion, environmental sensitivity, wavelength range and power-handling quite different from the capabilities of conventional fibre. Thus it is not surprising that several of the papers in the issue (by Cordeiro, Martynkien, Bock, Wolinski, Michie, Digonnet and Kilic) are devoted to applications of such fibres—photonic crystal fibres (PCF), as they are often called. Digonnet's contribution is especially interesting, being concerned with the use of hollow-core photonic bandgap fibre to form a gyroscope, hence avoiding the many subtle non-linear optical effects that can degrade the performance of a conventional fibre gyroscope. PCF are not the only special fibres to feature in the issue: polymer fibres are of increasing interest for sensing applications (O'Keeffe, Kiesel, Kalli and Ashley), not least for their ability to withstand high levels of strain. In-fibre gratings continue to be a very important area in the field, and are well represented in the issue (Ni, González-Segura, Chen, Falate, Kamikawachi, Wang and Correia). We hope that this special issue helps to further developments in the field of optical fibre sensors and we would like to thank all the contributing authors and reviewers for making this special issue possible. We would also like to thank the staff at IOP Publishing for their support and in ensuring timely publication. OFS-19 will be held in Perth, Australia, on 14-18 April 2008, with the intention of publishing a further special issue next year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullina, S R; Nemov, I N; Babin, Sergei A
2012-09-30
The possibility of apodisation of fibre Bragg gratings (FBGs) recorded in the interference region of two Gaussian beams in the phase-mask scheme is considered. The FBG reflection spectra are numerically simulated for different values of recordingbeam parameters and the distance between the axes of interfering beams diffracted into different orders, which is varied by transverse displacement of the phase mask with respect to the optical fibre. Suppression of side lobes and smoothing out of the FBG spectrum with an increase in the transverse displacement of the phase mask is experimentally demonstrated. It is shown that this effect is caused bymore » the equalisation of the mean induced refractive index in the FBG region. (optical fibres, lasers and amplifiers. properties and applications)« less
Simplifying the design of microstructured optical fibre pressure sensors.
Osório, Jonas H; Chesini, Giancarlo; Serrão, Valdir A; Franco, Marcos A R; Cordeiro, Cristiano M B
2017-06-07
In this paper, we propose a way to simplify the design of microstructured optical fibres with high sensitivity to applied pressure. The use of a capillary fibre with an embedded core allows the exploration of the pressure-induced material birefringence due to the capillary wall displacements and the photoelastic effect. An analytical description of pressure-induced material birefringence is provided, and fibre modal characteristics are explored through numerical simulations. Moreover, a capillary fibre with an embedded core is fabricated and used to probe pressure variations. Even though the embedded-core fibre has a non-optimized structure, measurements showed a pressure sensitivity of (1.04 ± 0.01) nm/bar, which compares well with more complex, specially designed fibre geometries reported in the literature. These results demonstrate that this geometry enables a novel route towards the simplification of microstructured fibre-based pressure sensors.
NASA Astrophysics Data System (ADS)
Poppett, Claire; Allington-Smith, Jeremy
2010-07-01
We investigate the FRD performance of a 150 μm core fibre for its suitability to the SIDE project.1 This work builds on our previous work2 (Paper 1) where we examined the dependence of FRD on length in fibres with a core size of 100 μm and proposed a new multi-component model to explain the results. In order to predict the FRD characteristics of a fibre, the most commonly used model is an adaptation of the Gloge8model by Carrasco and Parry3 which quantifies the the number of scattering defects within an optical bre using a single parameter, d0. The model predicts many trends which are seen experimentally, for example, a decrease in FRD as core diameter increases, and also as wavelength increases. However the model also predicts a strong dependence on FRD with length that is not seen experimentally. By adapting the single fibre model to include a second fibre, we can quantify the amount of FRD due to stress caused by the method of termination. By fitting the model to experimental data we find that polishing the fibre causes a small increase in stress to be induced in the end of the fibre compared to a simple cleave technique.
NASA Astrophysics Data System (ADS)
Sierra-Calderon, A.; Rodriguez-Novelo, J. C.; Gamez-Aviles, E.; May-Alarcon, M.; Toral-Cruz, H.; Alvarez-Chavez, J. A.
2016-09-01
The spectral noise characteristic and relative intensity noise of an all fibre Sagnac interferometer system consisting of a 980nm pump source at 130mW maximum output power, a 980/1550nm wavelength division multiplexer, a 10m-piece of Erbium-doped fibre, a fibre Bragg grating (FBG) centered at 1.548um, an optical circulator at 1550nm and a 50/50 fibre coupler, were measured with an optical spectrum analyzer (OSA) for fine tuning for a range of temperature between 5 and 180 degrees Celsius in step of 1 degree Celsius. At the probing end, a high-bi piece of fibre and a Peltier were employed for temperature variation of the system. Spectral and temperature response of the noise reduction due to temperature variation was performed remotely using and Arduino micro-controller and a DS18B20 digital sensor, into a local area network. Full optical and thermal characterization of the system will be included in the presentation.
An optical channel modeling of a single mode fiber
NASA Astrophysics Data System (ADS)
Nabavi, Neda; Liu, Peng; Hall, Trevor James
2018-05-01
The evaluation of the optical channel model that accurately describes the single mode fibre as a coherent transmission medium is reviewed through analytical, numerical and experimental analysis. We used the numerical modelling of the optical transmission medium and experimental measurements to determine the polarization drift as a function of time for a fixed length of fibre. The probability distribution of the birefringence vector was derived, which is associated to the 'Poole' equation. The theory and experimental evidence that has been disclosed in the literature in the context of polarization mode dispersion - Stokes & Jones formulations and solutions for key statistics by integration of stochastic differential equations has been investigated. Besides in-depth definition of the single-mode fibre-optic channel, the modelling which concerns an ensemble of fibres each with a different instance of environmental perturbation has been analysed.
NASA Astrophysics Data System (ADS)
Allington-Smith, Jeremy; Dunlop, Colin; Lemke, Ulrike; Murray, Graham
2013-12-01
The performance of highly multiplexed spectrographs is limited by focal ratio degradation (FRD) in the optical fibres. It has already been shown that this is caused mainly by processes concentrated around the mounting points at the ends of the fibres. We use the thickness of rings produced in the far-field when a fibre is illuminated by a collimated beam, to estimate the size of the region where the FRD is generated. This requires the development of a new model, using features of existing ray-tracing and wave-based models, which fits existing data very well. The results suggest that the amount of FRD is primarily determined by the length of fibre bonded into the supporting ferrule. We point out the implications for the production of future fibre systems.
NASA Astrophysics Data System (ADS)
Gubin, Vladimir P.; Isaev, Victor A.; Morshnev, Sergey K.; Sazonov, Aleksandr I.; Starostin, Nikolay I.; Chamorovsky, Yury K.; Oussov, Aleksey I.
2006-03-01
The polarisation properties of a Spun optical fibre are studied in connection with their applications in fibreoptic current sensors based on the Faraday effect. A model of this fibre is proposed which represents it as an anisotropic medium with the spiral structure of the fast and slow birefringence axes. A sensor is developed based on an all-fibre low-coherence linear interferometer with a threshold sensitivity of 70 mA Hz-1/2, a maximum measured current of 3000 A, and a scale-factor reproducibility of ±0.6%. It is found that for a given diameter of the fibre contour, the normalised sensitivity is independent of the fibre length. The experimental results confirm the theory.
Fiber-optic hydrophone array for acoustic surveillance in the littoral
NASA Astrophysics Data System (ADS)
Hill, David; Nash, Phillip
2005-05-01
We describe a fibre-optic hydrophone array system architecture that can be tailored to meet the underwater acoustic surveillance requirements of the military, counter terrorist and customs authorities in protecting ports and harbours, offshore production facilities or coastal approaches. Physically the fibre-optic hydrophone array is in the form of a lightweight cable, enabling rapid deployment from a small vessel. Based upon an optical architecture of time and wavelength multiplexed interferometric hydrophones, the array is comprised of a series of hydrophone sub-arrays. Using multiple sub-arrays, extended perimeters many tens of kilometres in length can be monitored. Interrogated via a long (~50km) optical fibre data link, the acoustic date is processed using the latest open architecture sonar processing platform, ensuring that acoustic targets below, on and above the surface are detected, tracked and classified. Results obtained from an at sea trial of a 96-channel hydrophone array are given, showing the passive detection and tracking of a diver, small surface craft and big ocean going ships beyond the horizon. Furthermore, we describe how the OptaMarine fibre-optic hydrophone array fits into an integrated multi-layered approach to port and harbour security consisting of active sonar for diver detection and hull imaging, as well as thermal imaging and CCTV for surface monitoring. Finally, we briefly describe a complimentary land perimeter intruder detection system consisting of an array of fibre optic accelerometers.
Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre
Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi
2014-01-01
Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478
NASA Astrophysics Data System (ADS)
Sokkar, T. Z. N.; El-Farahaty, K. A.; El-Bakary, M. A.; Raslan, M. I.; Omar, E. Z.; Hamza, A. A.
2018-03-01
The optical setup of the transport intensity equation (TIE) technique is developed to be valid for measuring the optical properties of the highly-oriented anisotropic fibres. This development is based on the microstructure models of the highly-oriented anisotropic fibres and the principle of anisotropy. We provide the setup of TIE technique with polarizer which is controlled via stepper motor. This developed technique is used to investigate the refractive indices in the parallel and perpendicular polarization directions of light for the highly-oriented poly (ethylene terephthalate) (PET) fibres and hence its birefringence. The obtained results through the developed TIE technique for PET fibre are compared with that determined experimentally using the Mach-Zehnder interferometer under the same conditions. The comparison shows a good agreement between the obtained results from the developed technique and that obtained from the Mach-Zehnder interferometer technique.
Jones, H. J.; Girard, M. J.; White, N.; Fautsch, M. P.; Morgan, J. E.; Ethier, C. R.; Albon, J.
2015-01-01
The aim of this study was to quantify connective tissue fibre orientation and alignment in young, old and glaucomatous human optic nerve heads (ONH) to understand ONH microstructure and predisposition to glaucomatous optic neuropathy. Transverse (seven healthy, three glaucomatous) and longitudinal (14 healthy) human ONH cryosections were imaged by both second harmonic generation microscopy and small angle light scattering (SALS) in order to quantify preferred fibre orientation (PFO) and degree of fibre alignment (DOFA). DOFA was highest within the peripapillary sclera (ppsclera), with relatively low values in the lamina cribrosa (LC). Elderly ppsclera DOFA was higher than that in young ppsclera (p < 0.00007), and generally higher than in glaucoma ppsclera. In all LCs, a majority of fibres had preferential orientation horizontally across the nasal–temporal axis. In all glaucomatous LCs, PFO was significantly different from controls in a minimum of seven out of 12 LC regions (p < 0.05). Additionally, higher fibre alignment was observed in the glaucomatous inferior–temporal LC (p < 0.017). The differences between young and elderly ONH fibre alignment within regions suggest that age-related microstructural changes occur within the structure. The additional differences in fibre alignment observed within the glaucomatous LC may reflect an inherent susceptibility to glaucomatous optic neuropathy, or may be a consequence of ONH remodelling and/or collapse. PMID:25808336
Jones, H J; Girard, M J; White, N; Fautsch, M P; Morgan, J E; Ethier, C R; Albon, J
2015-05-06
The aim of this study was to quantify connective tissue fibre orientation and alignment in young, old and glaucomatous human optic nerve heads (ONH) to understand ONH microstructure and predisposition to glaucomatous optic neuropathy. Transverse (seven healthy, three glaucomatous) and longitudinal (14 healthy) human ONH cryosections were imaged by both second harmonic generation microscopy and small angle light scattering (SALS) in order to quantify preferred fibre orientation (PFO) and degree of fibre alignment (DOFA). DOFA was highest within the peripapillary sclera (ppsclera), with relatively low values in the lamina cribrosa (LC). Elderly ppsclera DOFA was higher than that in young ppsclera (p < 0.00007), and generally higher than in glaucoma ppsclera. In all LCs, a majority of fibres had preferential orientation horizontally across the nasal-temporal axis. In all glaucomatous LCs, PFO was significantly different from controls in a minimum of seven out of 12 LC regions (p < 0.05). Additionally, higher fibre alignment was observed in the glaucomatous inferior-temporal LC (p < 0.017). The differences between young and elderly ONH fibre alignment within regions suggest that age-related microstructural changes occur within the structure. The additional differences in fibre alignment observed within the glaucomatous LC may reflect an inherent susceptibility to glaucomatous optic neuropathy, or may be a consequence of ONH remodelling and/or collapse.
Optical properties of in-vitro biomineralised silica
Polini, Alessandro; Pagliara, Stefano; Camposeo, Andrea; Cingolani, Roberto; Wang, Xiaohong; Schröder, Heinz C.; Müller, Werner E. G.; Pisignano, Dario
2012-01-01
Silicon is the second most common element on the Earth's crust and its oxide (SiO2) the most abundant mineral. Silica and silicates are widely used in medicine and industry as well as in micro- and nano-optics and electronics. However, the fabrication of glass fibres and components requires high temperature and non-physiological conditions, in contrast to biosilica structures in animals and plants. Here, we show for the first time the use of recombinant silicatein-α, the most abundant subunit of sponge proteins catalyzing biosilicification reactions, to direct the formation of optical waveguides in-vitro through soft microlithography. The artificial biosilica fibres mimic the natural sponge spicules, exhibiting refractive index values suitable for confinement of light within waveguides, with optical losses in the range of 5–10 cm−1, suitable for application in lab-on-chips systems. This method extends biosilicification to the controlled fabrication of optical components by physiological processing conditions, hardly addressed by conventional technologies. PMID:22934130
Towards a new generation of fibre optic chemical sensors based on spider silk threads
NASA Astrophysics Data System (ADS)
Hey Tow, Kenny; Chow, Desmond M.; Vollrath, Fritz; Dicaire, Isabelle; Gheysens, Tom; Thévenaz, Luc
2017-04-01
A spider uses up to seven different types of silk, all having specific functions, to build its web. For scientists, native silk - directly extracted from spiders - is a tough, biodegradable and biocompatible thread used mainly for tissue engineering and textile applications. Blessed with outstanding optical properties, this protein strand can also be used as an optical fibre and is, moreover, intrinsically sensitive to chemical compounds. In this communication, a pioneering proof-of-concept experiment using spider silk, in its pristine condition, as a new type of fibre-optic relative humidity sensor will be demonstrated and its potential for future applications discussed.
Effects of time-temperature profiles on glow curves of germanium-doped optical fibre
NASA Astrophysics Data System (ADS)
Lam, S. E.; Alawiah, A.; Bradley, D. A.; Mohd Noor, N.
2017-08-01
The Germanium (Ge) doped silica optical fibres have demonstrated the great potential to be developed as a thermoluminescent (TL) dosimeter that can be used in various applications in radiotherapy, diagnostic radiology, UV dosimetry system and food irradiation industry. Different time-temperature profile (TTP) parameters of the TL reader have been employed by many researchers in various of TL studies. Nevertheless, none of those studies adequately addressed the effects of the reader's preheat temperature and heating rate on the kinetic parameters of the TL glow curve specifically, the Ge-doped silica optical fibres. This research addresses the issue of TTP parameters with special attention to the determination of the kinetic parameters of the glow curve. The glow curve responses were explored and the kinetic parameters were analyzed by the WinGCF software, to show the effect of the preheat temperature and heating rate of the reader on Ge-doped fibre irradiated with 18 Gy of 6 MV photons radiation. The effect of TTP parameters was discussed and compared against the commercial fibre and tailored made fibre of 6 mol% Ge-doped of flat and cylindrical shape. The deconvolution of glow peaks and the kinetic parameters were obtained by the WinGCF software. This enables to fit accurately (1.5%
AlGaInN laser diode technology for free-space and plastic optical fibre telecom applications
NASA Astrophysics Data System (ADS)
Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Bóckowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.; Watson, S.; Kelly, A. E.; Watson, M. A.; Blanchard, P.; White, H.
2016-03-01
Gallium Nitride laser diodes fabricated from the AlGaInN material system is an emerging technology for laser sources from the UV to visible and is a potential key enabler for new system applications such as free-space (underwater & air bourne links) and plastic optical fibre telecommunications. We measure visible light (free-space and underwater) communications at high frequency (up to 2.5 Gbit/s) and in plastic optical fibre (POF) using a directly modulated GaN laser diode.
NASA Astrophysics Data System (ADS)
Sampson, David D.; Jones, Julian D. C.; Tatam, Ralph P.
2009-03-01
OFS-19 was held in April 2008 in Perth, Australia, with Professor David Sampson (University of Western Australia) as General Chair assisted by Technical Programme Co-Chairs Professor Stephen Collins (Victoria University, Australia), Professor Kyunghwan Oh (Yonsei University, Korea) and Dr Ryozo Yamauchi (Fujikura Ltd, Japan). 'OFS-19' has once again affirmed the OFS series as the leading international conference for the optical fibre sensor community. Since its inception, in London in 1983, and under the leadership of an international steering committee independent of any learned society or professional institution, it has been held approximately every eighteen months. The venue nominally rotates from Europe, to the Americas, and thence to Asia and the Pacific. OFS-19 demonstrated the continuing vigour of the community, with some 240 papers presented, plus 8 tutorials; submissions and attendance were from 29 countries, with a little over half coming from the Asia-Pacific Region. In recent years, it has become a tradition to publish a post-conference special issue in Measurement Science and Technology, and these special issues offer a representative sample of the current status of the field. In the 25 years since OFS began, many of the early ideas and laboratory-based proof-of-principle experiments have successfully evolved into highly developed instrumentation systems and commercial products. One of the greatest success stories has been the optical fibre Bragg grating. Its exquisite intrinsic sensitivity to temperature and strain has led to an expanding niche in structural monitoring, especially in civil engineering. It has formed the 'beach-head' for penetration of optical fibre sensors into the oil and gas industry, initially in the harsh environment of down-hole monitoring. Latterly, it has paved the way for new applications of one of the earliest fibre optic sensors, the fibre hydrophone, which is now making its mark in sub-sea seismic surveying. Additionally, distributed fibre sensors, based on Raman or Brillouin scattering, are beginning to be deployed for remote and sub-sea infrastructure monitoring. Western Australia enjoys a booming oil and gas sector, and so OFS-19's Special Session entitled Oil & Gas: Current Practice-Future Opportunity was timely and locally relevant. An innovation at OFS-19 was turning the traditional first day's Workshop into a Tutorial Workshop delivered under the title Optical Fibre Sensors: Enabling the Next Generation, Stretching the Present Generation. International experts delivered a set of eight tutorials, covering both fundamentals and cutting-edge advances, to a large proportion of the conference delegates (the tutorials are available for download at obel.ee.uwa.edu.au/OFS-19). This special issue amply demonstrates in microcosm the breadth of the field of optical fibre sensors, with papers concerning applications in the oil and gas industry, in water and air quality, in civil engineering, as well as new sensors, sensor systems and methods for sensing. In addition, there are papers concerning sensor fabrication and calibration, as well as components of sensing systems. Several papers and topics are worthy of mention. The engineering of nanostructured materials promises much in many fields, including sensing in general. Thus, it is not surprising to find that nanotechnology is in evidence in the field of fibre sensing (Jarzebinska, Viegas). Microengineered mechanical structures also promise much for sensing and the exquisite 'head-of-a-pin' engineering of a cantilever on a fibre end-face is an elegant and versatile platform demonstrated here for refractometry (Alberts). The field has always provided fertile ground for new ideas, and this issue proves no exception. For example, three papers deal with new ways of solving the well-known issue of decoupling temperature from strain in fibre Bragg gratings (Guo, Nguyen, Yam). The ultimate endpoint for research in such a practical field is a useful deployed sensing system, and the oil and gas industry is the focus for four papers in this issue (Aref, Jackson, Mignani, Possetti). We hope that this special issue helps to further developments in the field of optical fibre sensors and would like to thank all the contributing authors and reviewers for making it possible. We also thank the staff at IOP Publishing for their support and in ensuring timely publication. OFS-20 will be held in Edinburgh, Scotland, 5--9 October 2009 (www.ofs20.org), with a corresponding special issue planned.
Helically twisted photonic crystal fibres
Beravat, R.; Wong, G. K. L.
2017-01-01
Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic ‘space’, cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of ‘numerical experiments’ based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069771
Helically twisted photonic crystal fibres
NASA Astrophysics Data System (ADS)
Russell, P. St. J.; Beravat, R.; Wong, G. K. L.
2017-02-01
Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic `space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of `numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue 'Optical orbital angular momentum'.
Numerical modelling of multimode fibre-optic communication lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidelnikov, O S; Fedoruk, M P; Sygletos, S
The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong couplingmore » regime provides a lower EVM level than the weak coupling one. (fibre-optic communication lines)« less
NASA Astrophysics Data System (ADS)
Leite, Ivo T.; Turtaev, Sergey; Jiang, Xin; Šiler, Martin; Cuschieri, Alfred; Russell, Philip St. J.; Čižmár, Tomáš
2018-01-01
Holographic optical tweezers (HOT) hold great promise for many applications in biophotonics, allowing the creation and measurement of minuscule forces on biomolecules, molecular motors and cells. Geometries used in HOT currently rely on bulk optics, and their exploitation in vivo is compromised by the optically turbid nature of tissues. We present an alternative HOT approach in which multiple three-dimensional (3D) traps are introduced through a high-numerical-aperture multimode optical fibre, thus enabling an equally versatile means of manipulation through channels having cross-section comparable to the size of a single cell. Our work demonstrates real-time manipulation of 3D arrangements of micro-objects, as well as manipulation inside otherwise inaccessible cavities. We show that the traps can be formed over fibre lengths exceeding 100 mm and positioned with nanometric resolution. The results provide the basis for holographic manipulation and other high-numerical-aperture techniques, including advanced microscopy, through single-core-fibre endoscopes deep inside living tissues and other complex environments.
Chen, R; Hahn, C E W; Farmery, A D
2012-08-15
The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood. Copyright © 2012 Elsevier B.V. All rights reserved.
Fatigue Damage Monitoring of a Composite Step Lap Joint Using Distributed Optical Fibre Sensors
Wong, Leslie; Chowdhury, Nabil; Wang, John; Chiu, Wing Kong; Kodikara, Jayantha
2016-01-01
Over the past few decades, there has been a considerable interest in the use of distributed optical fibre sensors (DOFS) for structural health monitoring of composite structures. In aerospace-related work, health monitoring of the adhesive joints of composites has become more significant, as they can suffer from cracking and delamination, which can have a significant impact on the integrity of the joint. In this paper, a swept-wavelength interferometry (SWI) based DOFS technique is used to monitor the fatigue in a flush step lap joint composite structure. The presented results will show the potential application of distributed optical fibre sensor for damage detection, as well as monitoring the fatigue crack growth along the bondline of a step lap joint composite structure. The results confirmed that a distributed optical fibre sensor is able to enhance the detection of localised damage in a structure. PMID:28773496
Programmable logic controller optical fibre sensor interface module
NASA Astrophysics Data System (ADS)
Allwood, Gary; Wild, Graham; Hinckley, Steven
2011-12-01
Most automated industrial processes use Distributed Control Systems (DCSs) or Programmable Logic Controllers (PLCs) for automated control. PLCs tend to be more common as they have much of the functionality of DCSs, although they are generally cheaper to install and maintain. PLCs in conjunction with a human machine interface form the basis of Supervisory Control And Data Acquisition (SCADA) systems, combined with communication infrastructure and Remote Terminal Units (RTUs). RTU's basically convert different sensor measurands in to digital data that is sent back to the PLC or supervisory system. Optical fibre sensors are becoming more common in industrial processes because of their many advantageous properties. Being small, lightweight, highly sensitive, and immune to electromagnetic interference, means they are an ideal solution for a variety of diverse sensing applications. Here, we have developed a PLC Optical Fibre Sensor Interface Module (OFSIM), in which an optical fibre is connected directly to the OFSIM located next to the PLC. The embedded fibre Bragg grating sensors, are highly sensitive and can detect a number of different measurands such as temperature, pressure and strain without the need for a power supply.
Low temperature growth of diamond films on optical fibers using Linear Antenna CVD system
NASA Astrophysics Data System (ADS)
Ficek, M.; Drijkoningen, S.; Karczewski, J.; Bogdanowicz, R.; Haenen, K.
2016-01-01
It is not trivial to achieve a good quality diamond-coated fibre interface due to a large difference in the properties and composition of the diamond films (or use coating even) and the optical fibre material, i.e. fused silica. One of the biggest problems is the high temperature during the deposition which influences the optical fibre or optical fibre sensor structure (e.g. long-period gratings (LPG)). The greatest advantage of a linear antenna microwave plasma enhanced chemical vapor deposition system (LA MW CVD) is the fact that it allows to grow the diamond layers at low temperature (below 300°C) [1]. High quality nanocrystalline diamond (NCD) thin films with thicknesses ranging from 70 nm to 150 nm, were deposited on silicon, glass and optical fibre substrates [2]. Substrates pretreatment by dip-coating and spin coating process with a dispersion consisting of detonation nanodiamond (DND) in dimethyl sulfoxide (DMSO) with polyvinyl alcohol (PVA) has been applied. During the deposition process the continuous mode of operation of the LA MW CVD system was used, which produces a continuous wave at a maximum power of 1.9 kW (in each antenna). Diamond films on optical fibres were obtained at temperatures below 350°C, providing a clear improvement of results compared to our earlier work [3]. The samples were characterized by scanning electron microscopy (SEM) imaging to investigate the morphology of the nanocrystalline diamond films. The film growth rate, film thickness, and optical properties in the VIS-NIR range, i.e. refractive index and extinction coefficient will be discussed based on measurements on reference quartz plates by using spectroscopic ellipsometry (SE).
NASA Astrophysics Data System (ADS)
Chehura, E.; Skordos, A. A.; Ye, C.-C.; James, S. W.; Partridge, I. K.; Tatam, R. P.
2005-04-01
Fibre Bragg gratings (FBGs) fabricated in linearly birefringent fibres were embedded in glass fibre/epoxy composites and in the corresponding unreinforced resin to monitor the effective transverse strain development during the cure process. The optical fibres containing the FBG sensors were aligned either normal or parallel to the reinforcement fibres in unidirectional glass fibre/epoxy prepregs. The chemical cure kinetics of the epoxy resin system used were studied using differential scanning calorimetry, in order to investigate the correlation between the strain monitoring results and the evolution of the curing reaction. A non-parametric cure kinetics model was developed and validated for this purpose. The effective transverse strain measured by the FBGs demonstrated high sensitivity to the degree of cure as a result of the densification of the resin caused by the curing reaction. The effective compressive transverse strain developed during the reaction, and thus the corresponding sensitivity to chemical changes, was higher in the case of the sensing fibre aligned normal to the reinforcement fibres than in the case of the sensor fibre parallel to the reinforcement fibres. Small but measurable sensitivity to cure induced changes was observed in the case of the unreinforced resin.
Comparing modal noise and FRD of circular and non-circular cross-section fibres
NASA Astrophysics Data System (ADS)
Sablowski, D. P.; Plüschke, D.; Weber, M.; Strassmeier, K. G.; Järvinen, A.
2016-03-01
Modal noise is a common source of noise introduced to the measurements by optical fibres and is particularly important for fibre-fed spectroscopic instruments, especially for high-resolution measurements. This noise source can limit the signal-to-noise ratio and jeopardize photon-noise limited data. The subject of the present work is to compare measurements of modal noise and focal-ratio degradation (FRD) for several commonly used fibres. We study the influence of a simple mechanical scrambling method (excenter) on both FRD and modal noise. Measurements are performed with circular and octagonal fibres from Polymicro Technology (FBP-Series) with diameters of 100, 200, and 300 μm and for square and rectangular fibres from CeramOptec, among others. FRD measurements for the same sample of fibres are performed as a function of wavelength. Furthermore, we replaced the circular fibre of the STELLA-échelle-spectrograph (SES) in Tenerife with an octagonal and found a SNR increase by a factor of 1.6 at 678 nm. It is shown in the laboratory that an excenter with a large amplitude and low frequency will not influence the FRD but will reduce modal noise rather effectively by up to 180%.
Optically Tuned Fiber Gratings
1998-03-01
why we use a bulk polarization beam splitter . The fibre grating length was 50 cm with centre wavelength at 1550 nm. Fig.8 shows results of the...characteristics of glasses with enhanced non -linearity. In accordance with the specification, a fiber grating should be tuned within the range of 1...intensity pulse and has successfully demonstrated optically-tuned fiber grating. 19980617 115 14. SUBJECT TERMS Fibre Optics, Non -linear Optical
NASA Astrophysics Data System (ADS)
Tosi, Daniele; Saccomandi, Paola; Schena, Emiliano; Duraibabu, Dinesh B.; Poeggel, Sven; Adilzhan, Abzal; Aliakhmet, Kamilla; Silvestri, Sergio; Leen, Gabriel; Lewis, Elfed
2016-05-01
Optical fibre sensors have been applied to perform biophysical measurement in ex-vivo laser ablation (LA), on pancreas animal phantom. Experiments have been performed using Fibre Bragg Grating (FBG) arrays for spatially resolved temperature detection, and an all-glass Extrinsic Fabry-Perot Interferometer (EFPI) for pressure measurement. Results using a Nd:YAG laser source as ablation device, are presented and discussed.
Lithography Assisted Fiber-Drawing Nanomanufacturing
Gholipour, Behrad; Bastock, Paul; Cui, Long; Craig, Christopher; Khan, Khouler; Hewak, Daniel W.; Soci, Cesare
2016-01-01
We present a high-throughput and scalable technique for the production of metal nanowires embedded in glass fibres by taking advantage of thin film properties and patterning techniques commonly used in planar microfabrication. This hybrid process enables the fabrication of single nanowires and nanowire arrays encased in a preform material within a single fibre draw, providing an alternative to costly and time-consuming iterative fibre drawing. This method allows the combination of materials with different thermal properties to create functional optoelectronic nanostructures. As a proof of principle of the potential of this technique, centimetre long gold nanowires (bulk Tm = 1064 °C) embedded in silicate glass fibres (Tg = 567 °C) were drawn in a single step with high aspect ratios (>104); such nanowires can be released from the glass matrix and show relatively high electrical conductivity. Overall, this fabrication method could enable mass manufacturing of metallic nanowires for plasmonics and nonlinear optics applications, as well as the integration of functional multimaterial structures for completely fiberised optoelectronic devices. PMID:27739543
Lithography Assisted Fiber-Drawing Nanomanufacturing
NASA Astrophysics Data System (ADS)
Gholipour, Behrad; Bastock, Paul; Cui, Long; Craig, Christopher; Khan, Khouler; Hewak, Daniel W.; Soci, Cesare
2016-10-01
We present a high-throughput and scalable technique for the production of metal nanowires embedded in glass fibres by taking advantage of thin film properties and patterning techniques commonly used in planar microfabrication. This hybrid process enables the fabrication of single nanowires and nanowire arrays encased in a preform material within a single fibre draw, providing an alternative to costly and time-consuming iterative fibre drawing. This method allows the combination of materials with different thermal properties to create functional optoelectronic nanostructures. As a proof of principle of the potential of this technique, centimetre long gold nanowires (bulk Tm = 1064 °C) embedded in silicate glass fibres (Tg = 567 °C) were drawn in a single step with high aspect ratios (>104) such nanowires can be released from the glass matrix and show relatively high electrical conductivity. Overall, this fabrication method could enable mass manufacturing of metallic nanowires for plasmonics and nonlinear optics applications, as well as the integration of functional multimaterial structures for completely fiberised optoelectronic devices.
7 CFR 1755.901 - Incorporation by Reference.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., Digital Systems and Networks, Transmission media characteristics—Optical fibre cables, Characteristics of... Systems and Media, Digital Systems and Networks, Transmission media characteristics—Optical fibre cables... National Archives and Records Administration (NARA). For information on the availability of these materials...
Self-Sensing Composites: In-Situ Detection of Fibre Fracture
Malik, Shoaib A.; Wang, Liwei; Curtis, Paul T.; Fernando, Gerard F.
2016-01-01
The primary load-bearing component in a composite material is the reinforcing fibres. This paper reports on a technique to study the fracture of individual reinforcing fibres or filaments in real-time. Custom-made small-diameter optical fibres with a diameter of 12 (±2) micrometres were used to detect the fracture of individual filaments during tensile loading of unreinforced bundles and composites. The unimpregnated bundles were end-tabbed and tensile tested to failure. A simple technique based on resin-infusion was developed to manufacture composites with a negligible void content. In both cases, optical fibre connectors were attached to the ends of the small-diameter optical fibre bundles to enable light to be coupled into the bundle via one end whilst the opposite end was photographed using a high-speed camera. The feasibility of detecting the fracture of each of the filaments in the bundle and composite was demonstrated. The in-situ damage detection technique was also applied to E-glass bundles and composites; this will be reported in a subsequent publication. PMID:27136555
NASA Astrophysics Data System (ADS)
Morioka, T.; Kawanishi, S.; Saruwatari, M.
1994-05-01
Error-free, tunable optical frequency conversion of a transform-limited 4.0 ps optical pulse signalis demonstrated at 6.3 Gbit/s using four-wave mixing in a polarization-maintaining optical fibre. The process generates 4.0-4.6 ps pulses over a 25nm range with time-bandwidth products of 0.31-0.43 and conversion power penalties of less than 1.5 dB.
Hermes: the engineering challenges
NASA Astrophysics Data System (ADS)
Brzeski, Jurek; Gers, Luke; Smith, Greg; Staszak, Nicholas
2012-09-01
The Australian Astronomical Observatory is building a 4-channel VPH-grating High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the 3.9 meter Anglo-Australian Telescope (AAT). HERMES will provide a nominal spectral resolving power of 28,000 for Galactic Archaeology with an optional high-resolution mode of 45,000 with the use of a slit mask. HERMES is fed by a fibre positioning robot called 2dF at the telescope prime focus. There are a total of 784 science fibres, which interface with the spectrograph via two separate slit body assemblies, each comprising of 392 science fibers. The slit defines the spectral lines of 392 fibres on the detector. The width of the detector determines the spectral bandwidth and the detector height determines the fibre to fibre spacing or cross talk. Tolerances that follow from this are all in the 10 micrometer range. The slit relay optics must contribute negligibly to the overall image quality budget and uniformly illuminate the spectrograph exit pupil. The latter requirement effectively requires that the relay optics provide a telecentric input at the collimator entrance slit. As a result it is critical to align the optical components to extreme precision required by the optical design. This paper discusses the engineering challenges of designing, optimising, tolerancing and manufacturing of very precise mechanical components for housing optics and the design of low cost of jigs and fixtures for alignment and assembly of the optics.
Ultraviolet radiation (UVR) dosimetry system and the use of Ge-doped silica optical fibres
NASA Astrophysics Data System (ADS)
Abdul Rahman, Ahmad Taufek; Abu Bakar, Noor Khairunnisa; Chandra Paul, Mukul; Bradley, D. A.
2014-11-01
Previous studies have shown that over exposure to ultraviolet radiation (UVR), either from sunlight or artificial sources, can cause severe biological effects including cataracts, photokeratitis and skin cancer. In this respect, there exists the need to introduce a sensitive UV dosimetric material capable of measuring radiation dose to high accuracy in order to deliver UVR safely and efficiently. Present study has focussed on the investigation of the potential thermoluminescent (TL) sensitivity of commercially available germanium (Ge)-doped silica (SiO2) optical fibres subjected to UVR. The main interest of this study is to find out whether these doped SiO2 optical fibres can be used as a sensible integrator of environmental UV exposures. In the present study, commercially available Ge-doped SiO2 optical fibres have been used with a core diameter of 11 μm (CorActive, Canada), 23 μm (Central Glass and Ceramic Research Institute Kolkata, India) and 50 μm (Central Glass and Ceramic Research Institute Kolkata, India) and a cladding diameter of 125±0.1 μm, irradiated over a wide range of UV dose. Results have shown that these fibres exhibit a linear dose response (with correlation coefficient better than 0.9852). The 50 μm fibre produces greater TL response than that obtained for 11- and 23 μm fibres. The TL results are compared with that of the well-established TL dosimeter material lithium fluoride.
Writing and applications of fiber Bragg grating arrays
NASA Astrophysics Data System (ADS)
LaRochelle, Sophie; Cortes, Pierre-Yves; Fathallah, H.; Rusch, Leslie A.; Jaafar, H. B.
2000-12-01
Multiple Bragg gratings are written in a single fibre strand with accurate positioning to achieve predetermined time delays between optical channels. Applications of fibre Bragg grating arrays include encoders/decoders with series of identical gratings for optical code-division multiple access.
Micro and Nanostructured Materials for the Development of Optical Fibre Sensors
Arregui, Francisco Javier; Ruiz-Zamarreño, Carlos; Corres, Jesus M.; Bariain, Candido; Goicoechea, Javier; Hernaez, Miguel; Rivero, Pedro J.; Urrutia, Aitor; Sanchez, Pedro; Zubiate, Pablo; Lopez-Torres, Diego; Acha, Nerea De; Ascorbe, Joaquin; Ozcariz, Aritz; Matias, Ignacio R.
2017-01-01
The measurement of chemical and biomedical parameters can take advantage of the features exclusively offered by optical fibre: passive nature, electromagnetic immunity and chemical stability are some of the most relevant ones. The small dimensions of the fibre generally require that the sensing material be loaded into a supporting matrix whose morphology is adjusted at a nanometric scale. Thanks to the advances in nanotechnology new deposition methods have been developed: they allow reagents from different chemical nature to be embedded into films with a thickness always below a few microns that also show a relevant aspect ratio to ensure a high transduction interface. This review reveals some of the main techniques that are currently been employed to develop this kind of sensors, describing in detail both the resulting supporting matrices as well as the sensing materials used. The main objective is to offer a general view of the state of the art to expose the main challenges and chances that this technology is facing currently. PMID:29019945
Intrinsic Fabry-Perot Sensors for Magnetic Field Detection
NASA Astrophysics Data System (ADS)
Broadway, Christian; Descamps, Frédéric; Kinet, Damien; Caucheteur, Christophe; Mégret, Patrice
2018-01-01
Within the context of ensuring stable nuclear fusion, it is important to monitor and control a number of parametersincluding the magnetic field associated with plasma circulation. Optical fibre sensing techniques have seen a surge in promulgation and research advances in recent years, due to their immunity to electromagnetic radiation and compact dimensions. Prior work has shown that fibre Bragg gratings are one method of recovering the induced magnetic field, with the main point of interest being their use as distributed point sensors. However, Bragg grating inscription leads to the creation of linear birefringence that increases detector noise and could obscure a given signal. We have hypothesised that by using an intrinsic Fabry-Perot cavity comprised of two identical Bragg gratings, we could obtain a more accurate detector with the removal of photo-induced birefringence in the detection region. We present a proof of concept optical fibre sensor based on an intrinsic Fabry-Perot cavity that shows spectrally visible amplitude modulation. Finally, we demonstrate faster data processing that allows real time monitoring of a given scenario.
NASA Astrophysics Data System (ADS)
Blok, A. S.; Bukhenskii, A. F.; Krupitskii, É. I.; Morozov, S. V.; Pelevin, V. Yu; Sergeenko, T. N.; Yakovlev, V. I.
1995-10-01
An investigation is reported of acousto-optical and fibre-optic Fourier processors of electric signals, based on semiconductor lasers. A description is given of practical acousto-optical processors with an analysis band 120 MHz wide, a resolution of 200 kHz, and 7 cm × 8 cm × 18 cm dimensions. Fibre-optic Fourier processors are considered: they represent a new class of devices which are promising for the processing of gigahertz signals.
Propagation of polarised light in bent hi-bi spun fibres
NASA Astrophysics Data System (ADS)
Przhiyalkovsky, Ya V.; Morshnev, S. K.; Starostin, N. I.; Gubin, V. P.
2015-11-01
The evolution of polarisation states (PS's) of broadband light propagating through a bent optical fibre with a helical structure of its refractive index anisotropy (hi-bi spun fibre) has been studied theoretically and experimentally. It has been shown that there exists a coordinate system of PS's in which the differential Jones matrix can be replaced by a diagonal matrix, which allows the polarisation parameters of the output broadband light to be readily calculated with sufficient accuracy. We have derived a formula for evaluating the magneto-optical sensitivity of a bent spun fibre. An approach has been proposed for restoring the degree of polarisation of light in a bent hi-bi spun fibre and, as a consequence, the visibility (contrast) of the interferometer in a current sensor with a sensing element based on the fibre under consideration.
Photonic crystal fibres in biomedical investigations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skibina, Yu S; Tuchin, Valerii V; Beloglazov, V I
2011-04-30
The state of the art in the field of design and study of photonic crystal fibres for biomedical applications is considered and some original results recently obtained by the authors are presented. Optical properties of the fibres that offer prospects of their wide application as biological sensors, 'labs-on-a-chip', and facilities of electromagnetic radiation control in a wide range of wavelengths aimed at designing novel biomedical instrumentation are considered (optical technologies in biophysics and medicine)
NASA Astrophysics Data System (ADS)
Zakharov, S. M.; Manykin, Eduard A.
1995-02-01
The principles of optical processing based on dynamic spatial—temporal properties of two-pulse photon echo signals are considered. The properties of a resonant medium as an on-line filter of temporal and spatial frequencies are discussed. These properties are due to the sensitivity of such a medium to the Fourier spectrum of the second exiting pulse. Degeneracy of quantum resonant systems, demonstrated by the coherent response dependence on the square of the amplitude of the second pulse, can be used for 'simultaneous' correlation processing of optical 'signals'. Various methods for the processing of the Fourier optical image are discussed.
Optimal spacing between transmitting and receiving optical fibres in reflectance pulse oximetry
NASA Astrophysics Data System (ADS)
Hickey, M.; Kyriacou, P. A.
2007-10-01
Splanchnic ischaemia can ultimately lead to cellular hypoxia and necrosis, and may well contribute to the development of multiple organ failures and increased mortality. Therefore, it is of utmost importance to monitor abdominal organ blood oxygen saturation (SpO2). Pulse oximetry has been widely accepted as a reliable method for monitoring oxygen saturation of arterial blood. Animal studies have also shown it to be effective in the monitoring of blood oxygen saturation in the splanchnic region. However, commercially available pulse oximeter probes are not suitable for the continuous assessment of SpO2 in the splanchnic region. Therefore, there is a need for a new sensor technology that will allow the continuous measurement of SpO2 in the splanchnic area pre-operatively, operatively and post-operatively. For this purpose, a new fibre optic sensor and processing system utilising the principle of reflectance pulse oximetry has been developed. The accuracy in the estimation of SpO2 in pulse oximetry depends on the quality and amplitude of the photoplethysmographic (PPG) signal and for this reason an experimental procedure was carried out to examine the effect of the source-detector separation distance on the acquired PPG signals, and to ultimately select an optimal separation for the final design of the fibre-optic probe. PPG signals were obtained from the finger for different separation distances between the emitting and detecting fibres. Good quality PPG signals with large amplitudes and high signal-to-noise ratio were detected in the range of 3mm to 6mm. At separation distances between 1mm and 2mm, PPG signals were erratic with no resemblance to a conventional PPG signal. At separation distances greater than 6mm, the amplitudes of PPG signals were very small and not appropriate for processing. This investigation indicates the suitability of optical fibres as a new pulse oximetry sensor for estimating blood oxygen saturation (SpO2) in the splanchnic region.
NASA Astrophysics Data System (ADS)
Willsch, Reinhardt; Ecke, Wolfgang; Schwotzer, Gunter
2005-09-01
Different types of advanced optical fibre sensor systems using similar spectral interrogation principles and potential low-cost polychromator optoelectronic signal processing instrumentation will be presented, and examples of their industrial application are demonstrated. These are such sensors as multimode fibre based humidity, temperature, and pressure sensors with extrinsic microoptical Fabry-Perot transducers for process control in gas industry, UV absorption evanescent field sensors for organic pollution monitoring in groundwater, and single mode fibre Bragg grating (FBG) multiplexed strain & vibration and temperature sensor networks for structural health monitoring applications in electric power facilities, aerospace, railways, geotechnical and civil engineering. Recent results of current investigations applying FBGs and microstructured fibres for chemical sensing will be discussed.
Radioluminescence response of germanosilicate optical fibres
NASA Astrophysics Data System (ADS)
Khanlary, M. R.; Townsend, P. D.; Townsend, J. E.
1993-07-01
X-ray irradiation of germanosilicate optical fibres simultaneously produces signals from both the core and substrate and so the radioluminescence spectra record the defect structure of both regions. The data provide evidence for the presence of dopants and trace impurities, as well as intrinsic defects formed by thermal and radiation processing. Examples of the changes in spectra or luminescence sensitivity with radiation dose, the influence of fibre pulling conditions and post irradiation heating are noted. The temperature dependence of the radioluminescence is reported. Whilst most of the intrinsic defects produce broad emission bands, rare earth dopants show line features. However, line features have also been noted for Al doped fibres. Such studies of fibre luminescence offer a sensitive monitor of changes in the structure of the glass network.
Evaluation of Fibre Lifetime in Optical Ground Wire Transmission Lines
NASA Astrophysics Data System (ADS)
Grunvalds, R.; Ciekurs, A.; Porins, J.; Supe, A.
2017-06-01
In the research, measurements of polarisation mode dispersion of two OPGWs (optical ground wire transmission lines), in total four fibres, have been carried out, and the expected lifetime of the infrastructure has been assessed on the basis of these measurements. The cables under consideration were installed in 1995 and 2011, respectively. Measurements have shown that polarisation mode dispersion values for cable installed in 1995 are four times higher than that for cable installed in 2011, which could mainly be explained by technological differences in fibre production and lower fibre polarisation mode dispersion requirements in 1995 due to lack of high-speed (over 10 Gbit/s) optical transmission systems. The calculation methodology of non-refusal work and refusal probabilities, using the measured polarisation mode dispersion parameters, is proposed in the paper. Based on reliability calculations, the expected lifetime is then predicted, showing that all measured fibres most likely will be operational within minimum theoretical service life of 25 years accepted by the industry.
Temporally separating Cherenkov radiation in a scintillator probe exposed to a pulsed X-ray beam.
Archer, James; Madden, Levi; Li, Enbang; Carolan, Martin; Petasecca, Marco; Metcalfe, Peter; Rosenfeld, Anatoly
2017-10-01
Cherenkov radiation is generated in optical systems exposed to ionising radiation. In water or plastic devices, if the incident radiation has components with high enough energy (for example, electrons or positrons with energy greater than 175keV), Cherenkov radiation will be generated. A scintillator dosimeter that collects optical light, guided by optical fibre, will have Cherenkov radiation generated throughout the length of fibre exposed to the radiation field and compromise the signal. We present a novel algorithm to separate Cherenkov radiation signal that requires only a single probe, provided the radiation source is pulsed, such as a linear accelerator in external beam radiation therapy. We use a slow scintillator (BC-444) that, in a constant beam of radiation, reaches peak light output after 1 microsecond, while the Cherenkov signal is detected nearly instantly. This allows our algorithm to separate the scintillator signal from the Cherenkov signal. The relative beam profile and depth dose of a linear accelerator 6MV X-ray field were reconstructed using the algorithm. The optimisation method improved the fit to the ionisation chamber data and improved the reliability of the measurements. The algorithm was able to remove 74% of the Cherenkov light, at the expense of only 1.5% scintillation light. Further characterisation of the Cherenkov radiation signal has the potential to improve the results and allow this method to be used as a simpler optical fibre dosimeter for quality assurance in external beam therapy. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Monitoring Pre-Stressed Composites Using Optical Fibre Sensors.
Krishnamurthy, Sriram; Badcock, Rodney A; Machavaram, Venkata R; Fernando, Gerard F
2016-05-28
Residual stresses in fibre reinforced composites can give rise to a number of undesired effects such as loss of dimensional stability and premature fracture. Hence, there is significant merit in developing processing techniques to mitigate the development of residual stresses. However, tracking and quantifying the development of these fabrication-induced stresses in real-time using conventional non-destructive techniques is not straightforward. This article reports on the design and evaluation of a technique for manufacturing pre-stressed composite panels from unidirectional E-glass/epoxy prepregs. Here, the magnitude of the applied pre-stress was monitored using an integrated load-cell. The pre-stressing rig was based on a flat-bed design which enabled autoclave-based processing. A method was developed to end-tab the laminated prepregs prior to pre-stressing. The development of process-induced residual strain was monitored in-situ using embedded optical fibre sensors. Surface-mounted electrical resistance strain gauges were used to measure the strain when the composite was unloaded from the pre-stressing rig at room temperature. Four pre-stress levels were applied prior to processing the laminated preforms in an autoclave. The results showed that the application of a pre-stress of 108 MPa to a unidirectional [0]16 E-glass/913 epoxy preform, reduced the residual strain in the composite from -600 µε (conventional processing without pre-stress) to approximately zero. A good correlation was observed between the data obtained from the surface-mounted electrical resistance strain gauge and the embedded optical fibre sensors. In addition to "neutralising" the residual stresses, superior axial orientation of the reinforcement can be obtained from pre-stressed composites. A subsequent publication will highlight the consequences of pres-stressing on fibre alignment, the tensile, flexural, compressive and fatigue performance of unidirectional E-glass composites.
Monitoring Pre-Stressed Composites Using Optical Fibre Sensors
Krishnamurthy, Sriram; Badcock, Rodney A.; Machavaram, Venkata R.; Fernando, Gerard F.
2016-01-01
Residual stresses in fibre reinforced composites can give rise to a number of undesired effects such as loss of dimensional stability and premature fracture. Hence, there is significant merit in developing processing techniques to mitigate the development of residual stresses. However, tracking and quantifying the development of these fabrication-induced stresses in real-time using conventional non-destructive techniques is not straightforward. This article reports on the design and evaluation of a technique for manufacturing pre-stressed composite panels from unidirectional E-glass/epoxy prepregs. Here, the magnitude of the applied pre-stress was monitored using an integrated load-cell. The pre-stressing rig was based on a flat-bed design which enabled autoclave-based processing. A method was developed to end-tab the laminated prepregs prior to pre-stressing. The development of process-induced residual strain was monitored in-situ using embedded optical fibre sensors. Surface-mounted electrical resistance strain gauges were used to measure the strain when the composite was unloaded from the pre-stressing rig at room temperature. Four pre-stress levels were applied prior to processing the laminated preforms in an autoclave. The results showed that the application of a pre-stress of 108 MPa to a unidirectional [0]16 E-glass/913 epoxy preform, reduced the residual strain in the composite from −600 µε (conventional processing without pre-stress) to approximately zero. A good correlation was observed between the data obtained from the surface-mounted electrical resistance strain gauge and the embedded optical fibre sensors. In addition to “neutralising” the residual stresses, superior axial orientation of the reinforcement can be obtained from pre-stressed composites. A subsequent publication will highlight the consequences of pres-stressing on fibre alignment, the tensile, flexural, compressive and fatigue performance of unidirectional E-glass composites. PMID:27240378
NASA Astrophysics Data System (ADS)
Kim, E.; Bowsher, J.; Thomas, A. S.; Sakhalkar, H.; Dewhirst, M.; Oldham, M.
2008-10-01
Optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT) are new techniques for imaging the 3D structure and function (including gene expression) of whole unsectioned tissue samples. This work presents a method of improving the quantitative accuracy of optical-ECT by correcting for the 'self'-attenuation of photons emitted within the sample. The correction is analogous to a method commonly applied in single-photon-emission computed tomography reconstruction. The performance of the correction method was investigated by application to a transparent cylindrical gelatin phantom, containing a known distribution of attenuation (a central ink-doped gelatine core) and a known distribution of fluorescing fibres. Attenuation corrected and uncorrected optical-ECT images were reconstructed on the phantom to enable an evaluation of the effectiveness of the correction. Significant attenuation artefacts were observed in the uncorrected images where the central fibre appeared ~24% less intense due to greater attenuation from the surrounding ink-doped gelatin. This artefact was almost completely removed in the attenuation-corrected image, where the central fibre was within ~4% of the others. The successful phantom test enabled application of attenuation correction to optical-ECT images of an unsectioned human breast xenograft tumour grown subcutaneously on the hind leg of a nude mouse. This tumour cell line had been genetically labelled (pre-implantation) with fluorescent reporter genes such that all viable tumour cells expressed constitutive red fluorescent protein and hypoxia-inducible factor 1 transcription-produced green fluorescent protein. In addition to the fluorescent reporter labelling of gene expression, the tumour microvasculature was labelled by a light-absorbing vasculature contrast agent delivered in vivo by tail-vein injection. Optical-CT transmission images yielded high-resolution 3D images of the absorbing contrast agent, and revealed highly inhomogeneous vasculature perfusion within the tumour. Optical-ECT emission images yielded high-resolution 3D images of the fluorescent protein distribution in the tumour. Attenuation-uncorrected optical-ECT images showed clear loss of signal in regions of high attenuation, including regions of high perfusion, where attenuation is increased by increased vascular ink stain. Application of attenuation correction showed significant changes in an apparent expression of fluorescent proteins, confirming the importance of the attenuation correction. In conclusion, this work presents the first development and application of an attenuation correction for optical-ECT imaging. The results suggest that successful attenuation correction for optical-ECT is feasible and is essential for quantitatively accurate optical-ECT imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mthethwa, T.P.; Moloto, M.J., E-mail: mmoloto@uj.ac.za; De Vries, A.
Graphical abstract: SEM images of CdS/PMMA showing coiling as loading of CdS nanoparticles is increased. Thermal stability is increased with increase in %loading of both CdS and CdSe nanoparticles. Research highlights: {yields} TOPO-capped CdS and HDA-capped CdSe nanoparticles were synthesized and fully characterized. {yields} The nanoparticles were mixed with the polymer, PMMA using electrospinning technique using 2, 5 and 10% weight loadings. {yields} The mixture was spun to produce fibres with optical and thermal properties showing significant change and also the increase in loading causing bending or spiraling. {yields} Both TEM images for nanoparticles and SEM for fibres shows themore » morphology and sizes of the particles. -- Abstract: Electrospinning technique was used to fabricate poly(methyl methacrylate) (PMMA) fibres incorporating CdS and CdSe quantum dots (nanoparticles). Different nanoparticle loadings (2, 5 and 10 wt% with respect to PMMA) were used and the effect of the quantum dots on the properties of the fibres was studied. The optical properties of the hybrid composite fibres were investigated by photoluminescence and UV-vis spectrophotometry. Scanning electron microscopy (SEM), X-ray diffraction and FTIR spectrophotometry were also used to investigate the morphology and structure of the fibres. The optical studies showed that the size-tunable optical properties can be achieved in the polymer fibres by addition of quantum dots. SEM images showed that the morphologies of the fibres were dependent on the added amounts of quantum dots. A spiral type of morphology was observed with an increase in the concentration of CdS and CdSe nanoparticles. Less beaded structures and bigger diameter fibres were obtained at higher quantum dot concentrations. X-ray diffractometry detected the amorphous peaks of the polymer and even after the quantum dots were added and the FTIR analysis shows that there was no considerable interaction between the quantum dots and the polymer fibres at low concentration of quantum dots however at higher concentrations some interactions were observed which shows that QDs were present on the surfaces of the fibres.« less
Threshold temperature optical fibre sensors
NASA Astrophysics Data System (ADS)
Stasiewicz, K. A.; Musial, J. E.
2016-12-01
This paper presents a new approach to manufacture a threshold temperature sensor based on a biconical optical fibre taper. The presented sensor employs the influence of variable state of concentration of some isotropic materials like wax or paraffin. Application of the above- mentioned materials is an attempt to prove that there is a possibility to obtain a low-cost, repeatable and smart sensor working as an in-line element. Optical fibre taper was obtained from a standard single mode fibre (SMF28®) by using a low pressure gas burner technique. The diameter of the manufactured tapers was 6.0 ± 0.5 μm with the length of elongation equal to 30.50 ± 0.16 mm. The applied technology allowed to produce tapers with the losses of 0.183 ± 0.015 dB. Application of materials with different temperature transition points made it possible to obtain the threshold work at the temperatures connected directly with their conversion temperature. External materials at the temperatures above their melting points do not influence the propagation losses. For each of them two types of the protection area and position of the optical fibre taper were applied.
Fundamental characteristics of a dual-colour fibre optic SPR sensor
NASA Astrophysics Data System (ADS)
Suzuki, Hitoshi; Sugimoto, Mitsunori; Matsui, Yoshikazu; Kondoh, Jun
2006-06-01
In this paper, we present the fundamental characteristics of a novel dual-colour optical fibre surface plasmon resonance (SPR) sensor for a portable low-cost sensing system. The principle of the proposed SPR sensor is based on the differential reflectance method. Light from two light-emitting diodes (LEDs), which are flashing alternately with different wavelengths, is fed to a sensor via two optical couplers. The reflected light is detected by a photodiode. Changes of reflectance at two wavelengths are proportional to the refractive index change of the medium of interest. Taking the difference in reflectance at two wavelengths improves the sensitivity almost twofold. Measuring ethanol solutions with different refractive indices reveals that the sensor has a linear response to the refractive index change from 1.333 to 1.3616. By measuring the stability in the time response we estimate that the limit of detection (LOD) of the refractive index is 5.2 × 10-4.
PRAXIS: low thermal emission high efficiency OH suppressed fibre spectrograph
NASA Astrophysics Data System (ADS)
Content, Robert; Bland-Hawthorn, Joss; Ellis, Simon; Gers, Luke; Haynes, Roger; Horton, Anthony; Lawrence, Jon; Leon-Saval, Sergio; Lindley, Emma; Min, Seong-Sik; Shortridge, Keith; Staszak, Nick; Trinh, Christopher; Xavier, Pascal; Zhelem, Ross
2014-07-01
PRAXIS is a second generation instrument that follows on from GNOSIS, which was the first instrument using fibre Bragg gratings for OH suppression to be deployed on a telescope. The Bragg gratings reflect the NIR OH lines while being transparent to the light between the lines. This gives in principle a much higher signal-noise ratio at low resolution spectroscopy but also at higher resolutions by removing the scattered wings of the OH lines. The specifications call for high throughput and very low thermal and detector noise so that PRAXIS will remain sky noise limited even with the low sky background levels remaining after OH suppression. The optical and mechanical designs are presented. The optical train starts with fore-optics that image the telescope focal plane on an IFU which has 19 hexagonal microlenses each feeding a multi-mode fibre. Seven of these fibres are attached to a fibre Bragg grating OH suppression system while the others are reference/acquisition fibres. The light from each of the seven OH suppression fibres is then split by a photonic lantern into many single mode fibres where the Bragg gratings are imprinted. Another lantern recombines the light from the single mode fibres into a multi-mode fibre. A trade-off was made in the design of the IFU between field of view and transmission to maximize the signal-noise ratio for observations of faint, compact objects under typical seeing. GNOSIS used the pre-existing IRIS2 spectrograph while PRAXIS will use a new spectrograph specifically designed for the fibre Bragg grating OH suppression and optimised for 1.47 μm to 1.7 μm (it can also be used in the 1.09 μm to 1.26 μm band by changing the grating and refocussing). This results in a significantly higher transmission due to high efficiency coatings, a VPH grating at low incident angle and optimized for our small bandwidth, and low absorption glasses. The detector noise will also be lower thanks to the use of a current generation HAWAII-2RG detector. Throughout the PRAXIS design, from the fore-optics to the detector enclosure, special care was taken at every step along the optical path to reduce thermal emission or stop it leaking into the system. The spectrograph design itself was particularly challenging in this aspect because practical constraints required that the detector and the spectrograph enclosures be physically separate with air at ambient temperature between them. At present, the instrument uses the GNOSIS fibre Bragg grating OH suppression unit. We intend to soon use a new OH suppression unit based on multicore fibre Bragg gratings which will allow an increased field of view per fibre. Theoretical calculations show that the gain in interline sky background signal-noise ratio over GNOSIS may very well be as high as 9 with the GNOSIS OH suppression unit and 17 with the multicore fibre OH suppression unit.
Fibre optic sensor for the detection of adulterant traces in coconut oil
NASA Astrophysics Data System (ADS)
Sheeba, M.; Rajesh, M.; Vallabhan, C. P. G.; Nampoori, V. P. N.; Radhakrishnan, P.
2005-11-01
The design and development of a fibre optic evanescent wave refractometer for the detection of trace amounts of paraffin oil and palm oil in coconut oil is presented. This sensor is based on a side-polished plastic optical fibre. At the sensing region, the cladding and a small portion of the core are removed and the fibre nicely polished. The sensing region is fabricated in such a manner that it sits perfectly within a bent mould. This bending of the sensing region enhances its sensitivity. The oil mixture of different mix ratios is introduced into the sensing region and we observed a sharp decrease in the output intensity. The observed variation in the intensity is found to be linear and the detection limit is 2% (by volume) paraffin oil/palm oil in coconut oil. The resolution of this refractometric sensor is of the order of 10-3. Since coconut oil is consumed in large volumes as edible oil in south India, this fibre optic sensor finds great relevance for the detection of adulterants such as paraffin oil or palm oil which are readily miscible in coconut oil. The advantage of this type of sensor is that it is inexpensive and easy to set up. Another attraction of the side-polished fibre is that only a very small amount of analyte is needed and its response time is only 7 s.
An Optical Fibre Depth (Pressure) Sensor for Remote Operated Vehicles in Underwater Applications
Duraibabu, Dinesh Babu; Poeggel, Sven; Omerdic, Edin; Capocci, Romano; Lewis, Elfed; Newe, Thomas; Leen, Gabriel; Toal, Daniel; Dooly, Gerard
2017-01-01
A miniature sensor for accurate measurement of pressure (depth) with temperature compensation in the ocean environment is described. The sensor is based on an optical fibre Extrinsic Fabry-Perot interferometer (EFPI) combined with a Fibre Bragg Grating (FBG). The EFPI provides pressure measurements while the Fibre Bragg Grating (FBG) provides temperature measurements. The sensor is mechanically robust, corrosion-resistant and suitable for use in underwater applications. The combined pressure and temperature sensor system was mounted on-board a mini remotely operated underwater vehicle (ROV) in order to monitor the pressure changes at various depths. The reflected optical spectrum from the sensor was monitored online and a pressure or temperature change caused a corresponding observable shift in the received optical spectrum. The sensor exhibited excellent stability when measured over a 2 h period underwater and its performance is compared with a commercially available reference sensor also mounted on the ROV. The measurements illustrates that the EFPI/FBG sensor is more accurate for depth measurements (depth of ~0.020 m). PMID:28218727
High-Precision Temperature Control of a Crystal Growth Furnace at 1,500 C
NASA Technical Reports Server (NTRS)
Stenzel, Ch.; Hess, A.; Croell, A.; Breuer, D.; Sauermann, H.
2012-01-01
For crystal growth of semiconductor materials a short-term temperature stability of 0.1 C at 1500 C is one of the essential parameters to be addressed for achieving high-quality crystals. Hence, for temperature monitoring and control with high precision in a floating zone furnace two sets of thermo-sensors, type B thermocouples and optical fibre thermometers, have been implemented and successfully operated in the furnace for more than 2000 h. The optical fibre thermometers consist of an optical system made of sapphire (two fibres plus a prism in between for deflection) and transmit the infra-red radiation of the heater to the outside of the hot core of the furnace for pyrometric temperature measurement. A dedicated control algorithm has been set up which controlled the power settings to the individual heaters. Both sensor types showed no degradation after this period and yielded a short-term stability at 1200 C of 0.05 C (optical fibre thermometers), respectively 0.08 C (thermocouples).
Feedback dew-point sensor utilizing optimally cut plastic optical fibres
NASA Astrophysics Data System (ADS)
Hadjiloucas, S.; Irvine, J.; Keating, D. A.
2000-01-01
A plastic optical fibre reflectance sensor that makes full use of the critical angle of the fibres is implemented to monitor dew formation on a Peltier-cooled reflector surface. The optical configuration permits isolation of optoelectronic components from the sensing head and better light coupling between the reflector and the detecting fibre, giving a better signal of the onset of dew formation on the reflector. Continuous monitoring of the rate of change in reflectance as well as the absolute reflectance signals, the use of a novel polymethyl-methacrylate-coated hydrophobic film reflector on the Peltier element and the application of feedback around the point of dew formation, further reduces the possibility of contamination of the sensor head. Under closed-loop operation, the sensor is capable of cycling around the point of dew formation at a frequency of 2.5 Hz.
Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre
NASA Astrophysics Data System (ADS)
Saglamyurek, Erhan; Jin, Jeongwan; Verma, Varun B.; Shaw, Matthew D.; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang
2015-02-01
The realization of a future quantum Internet requires the processing and storage of quantum information at local nodes and interconnecting distant nodes using free-space and fibre-optic links. Quantum memories for light are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory, has been reported. Here, we demonstrate the storage and faithful recall of the state of a 1,532 nm wavelength photon entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20-m-long silica fibre, using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality.
NASA Astrophysics Data System (ADS)
Ortiz-Ricardo, E.; Bertoni-Ocampo, C.; Ibarra-Borja, Z.; Ramirez-Alarcon, R.; Cruz-Delgado, D.; Cruz-Ramirez, H.; Garay-Palmett, K.; U'Ren, A. B.
2017-09-01
We explore three different mechanisms designed to controllably tune the joint spectrum of photon pairs produced by the spontaneous four-wave mixing (SFWM) process in optical fibres. The first of these is fibre tapering, which exploits the modified optical dispersion resulting from reducing the core radius. We have presented a theory of SFWM for tapered fibres, as well as experimental results for the SFWM coincidence spectra as a function of the reduction in core radius due to tapering. The other two techniques that we have explored are temperature variation and application of longitudinal stress. While the maximum spectral shift observed with these two techniques is smaller than for fibre tapering, they are considerably simpler to implement and have the important advantage that they are based on the use of a single, suitably controlled, fibre specimen.
Towards high-capacity fibre-optic communications at the speed of light in vacuum
NASA Astrophysics Data System (ADS)
Poletti, F.; Wheeler, N. V.; Petrovich, M. N.; Baddela, N.; Numkam Fokoua, E.; Hayes, J. R.; Gray, D. R.; Li, Z.; Slavík, R.; Richardson, D. J.
2013-04-01
Wide-bandwidth signal transmission with low latency is emerging as a key requirement in a number of applications, including the development of future exaflop-scale supercomputers, financial algorithmic trading and cloud computing. Optical fibres provide unsurpassed transmission bandwidth, but light propagates 31% slower in a silica glass fibre than in vacuum, thus compromising latency. Air guidance in hollow-core fibres can reduce fibre latency very significantly. However, state-of-the-art technology cannot achieve the combined values of loss, bandwidth and mode-coupling characteristics required for high-capacity data transmission. Here, we report a fundamentally improved hollow-core photonic-bandgap fibre that provides a record combination of low loss (3.5 dB km-1) and wide bandwidth (160 nm), and use it to transmit 37 × 40 Gbit s-1 channels at a 1.54 µs km-1 faster speed than in a conventional fibre. This represents the first experimental demonstration of fibre-based wavelength division multiplexed data transmission at close to (99.7%) the speed of light in vacuum.
NASA Astrophysics Data System (ADS)
Bullock, J. G.; Ross, D. A.
The fibre optic Doppler anemometer (FODA) has been used to develop an accurate quantitative method of routinely assessing bull fertility. This method is of importance to the artificial insemination industry because the present qualitative estimation, performed by viewing semen using a microscope, can only set broad limits of quality. Laser light from the FODA was directed into diluted semen samples and the back scattered light was measured. A digital correlator was used to calculate the signal correlation of the back scattered light. The resultant data curves were interpreted in terms of the collective motility and swimming speed of the spermatozoa using a microcomputer. These two parameters are accepted as being indicative of fertility. The accuracy of this method is demonstrated by examination of results obtained in an experiment where enzymes, thought to alter fertility, were added to semen. The effect of the enzymes on the swimming speed and motility was clearly demonstrated.
NASA Astrophysics Data System (ADS)
Liao, Yi; Austin, Ed; Nash, Philip J.; Kingsley, Stuart A.; Richardson, David J.
2013-09-01
A distributed amplified dense wavelength division multiplexing (DWDM) array architecture is presented for interferometric fibre-optic sensor array systems. This architecture employs a distributed erbium-doped fibre amplifier (EDFA) scheme to decrease the array insertion loss, and employs time division multiplexing (TDM) at each wavelength to increase the number of sensors that can be supported. The first experimental demonstration of this system is reported including results which show the potential for multiplexing and interrogating up to 4096 sensors using a single telemetry fibre pair with good system performance. The number can be increased to 8192 by using dual pump sources.
NASA Astrophysics Data System (ADS)
Memon, Sanober F.; Lewis, Elfed; Pembroke, J. Tony; Chowdhry, Bhawani S.
2017-04-01
A novel, low cost and highly sensitive optical fibre probe sensor for concentration measurement of ethanol solvent (C2H5OH) corresponding to bio-ethanol production rate by an algae is reported. The principle of operation of the sensor is based on inter-fibre light coupling through an evanescent field interaction to couple the light between two multimode fibres mounted parallel to each other at a minimum possible separation i.e. < 1mm. The sensor was fabricated using a low cost 1000um plastic optical fibre (POF) and was characterized for real time measurement in the broadband spectrum including visible and near infra-red. The wavelength dependency of this sensor design was also investigated by post processing analysis of real time data and hence the optimum wavelength range determined. The proposed sensor has shown significant response in the range of 0.005 - 0.1 %v/v (%volume/volume or volume concentration) which depicts the high sensitivity for monitoring very minute changes in concentration corresponding refractive index changes of the solution. Numerically, sensor has shown the sensitivity of 21945 intensity counts/%v/v or 109.7 counts per every 0.0050 %v/v.
NASA Astrophysics Data System (ADS)
Abdollahi Azghan, Mehdi; Eslami-Farsani, Reza
2018-02-01
The current study aimed at investigating the effects of different stacking sequences and thermal cycling on the flexural properties of fibre metal laminates (FMLs). FMLs were composed of two aluminium alloy 2024-T3 sheets and epoxy polymer-matrix composites that have four layers of basalt and/or glass fibres with five different stacking sequences. For FML samples the thermal cycle time was about 6 min for temperature cycles from 25 °C to 115 °C. Flexural properties of samples evaluated after 55 thermal cycles and compared to non-exposed samples. Surface modification of aluminium performed by electrochemical treatment (anodizing) method and aluminium surfaces have been examined by scanning electron microscopy (SEM). Also, the flexural failure mechanisms investigated by the optical microscope study of fractured surfaces. SEM images indicated that the porosity of the aluminium surface increased after anodizing process. The findings of the present study showed that flexural modulus were maximum for basalt fibres based FML, minimum for glass fibres based FML while basalt/glass fibres based FML lies between them. Due to change in the failure mechanism of basalt/glass fibres based FMLs that have glass fibres at outer layer of the polymer composite, the flexural strength of this FML is lower than glass and basalt fibres based FML. After thermal cycling, due to the good thermal properties of basalt fibres, flexural properties of basalt fibres based FML structures decreased less than other composites.
Intraocular tissue ablation using an optical fibre to deliver the 5th harmonic of a Nd:YAG
NASA Astrophysics Data System (ADS)
Miller, Joseph; Yu, Xiaobo; Yu, Paula K.; Cringle, Stephen J.; Yu, Dao-Yi
2009-02-01
We report the evaluation of a system which delivers the 5th harmonic of an Nd:YAG (213nm) via optical fibre to ocular tissue sites. The 213nm beam is concentrated, using a hollow glass taper, prior to launch into 200 μm or 600 μm core diameter silica/silica optical fibre. The fibre tip was tapered to enhance the fluence delivered. An operating window of fluence values that could be delivered via 330 - 1100mm lengths of optical fibre was determined. The lower value of 0.2J/cm2 determined by the ablation threshold of the tissue and the upper value of 1.3J/cm2 by the launch, transmission and tip characteristics of the optical fibre. The fluence output decreased as a function of both transmitted pulse energy and number of pulses transmitted. Fresh retinal tissue was cleanly ablated with minimal damage to the surrounding tissue. Lesions were generated using 1, 3 and 10 pulses with fluences from 0.2 to 1.0J/cm2. The lesion depth demonstrated clear dose dependence. Lesions generated in ex vivo preparations of human trabecular meshwork in a fluid environment also demonstrated dose dependence, 50 pulses being sufficient to create a hole within the trabecular meshwork extending to Schlemm's canal. The dose dependence of the ablation depth combined with the ability of this technique to create a conduit through to Schlemm's canal demonstrates the potential of this technique for ophthalmological applications requiring precise and controlled intraocular tissue removal and has potential applications in the treatment and management of glaucoma.
NASA Astrophysics Data System (ADS)
De Freitas, J. M.
2011-05-01
This review looks at recent developments in seismic seabed oil reservoir monitoring techniques using fibre-optic sensing networks. After a brief introduction covering the background and scope of the review, the following section focuses on state-of-the-art fibre-optic hydrophones and accelerometers used for seismic applications. Related metrology aspects of the sensor such as measurement of sensitivity, noise and cross-axis performance are addressed. The third section focuses on interrogation systems. Two main phase-based competing systems have emerged over the past two decades for seismic applications, with a third technique showing much promise; these have been compared in terms of general performance.
Optical Fibre Sensor For Measuring pH In Physiological Range
NASA Astrophysics Data System (ADS)
Golunski, Witold; Hypszer, Ryszard; Plucinski, Jerzy
1990-01-01
The principle of fibre optic pH sensor operation is given in this paper. PH measurement in 7.0-7.5 range is based on changing of optical property of a indicator. The indicator is sensitive to the hydrogen ion concentration in the water solution. Microspheres of the polymer XAD-2 (a styrene-divinylbenzene copolymer) containing bound phenol red were used as a indicator. Such prepared indicator was inserted in optrode. The optrode was connected with transmitter and receiver by a bundle of glass fibres (multicomponent glass). Transmitter was done by using green LED while receiver construction was based on pin photodiode.
Addressing the needs of the telecoms industry for optical fibre communication in Africa
NASA Astrophysics Data System (ADS)
Leitch, Andrew W. R.; Conibear, Ann B.
2005-10-01
We report on a successful partnership between the Department of Physics at the Nelson Mandela Metropolitan University (NMMU) and Telkom, South Africa's national telecommunications company, to train physics students in the important fields related to optical fibre technology. The partnership, which began in 2001 and forms part of Telkom's Centre of Excellence program in South Africa, is currently being extended to other countries in Africa. The training being conducted in the Physics Department has as one of its main goals an increased understanding of polarisation mode dispersion (PMD), an effect that will ultimately limit the transmission speeds through optical fibre.
Accuracy of Shack-Hartmann wavefront sensor using a coherent wound fibre image bundle
NASA Astrophysics Data System (ADS)
Zheng, Jessica R.; Goodwin, Michael; Lawrence, Jon
2018-03-01
Shack-Hartmannwavefront sensors using wound fibre image bundles are desired for multi-object adaptive optical systems to provide large multiplex positioned by Starbugs. The use of a large-sized wound fibre image bundle provides the flexibility to use more sub-apertures wavefront sensor for ELTs. These compact wavefront sensors take advantage of large focal surfaces such as the Giant Magellan Telescope. The focus of this paper is to study the wound fibre image bundle structure defects effect on the centroid measurement accuracy of a Shack-Hartmann wavefront sensor. We use the first moment centroid method to estimate the centroid of a focused Gaussian beam sampled by a simulated bundle. Spot estimation accuracy with wound fibre image bundle and its structure impact on wavefront measurement accuracy statistics are addressed. Our results show that when the measurement signal-to-noise ratio is high, the centroid measurement accuracy is dominated by the wound fibre image bundle structure, e.g. tile angle and gap spacing. For the measurement with low signal-to-noise ratio, its accuracy is influenced by the read noise of the detector instead of the wound fibre image bundle structure defects. We demonstrate this both with simulation and experimentally. We provide a statistical model of the centroid and wavefront error of a wound fibre image bundle found through experiment.
NASA Astrophysics Data System (ADS)
Zel'dovich, Boris Ya; Kundikova, N. D.
1995-02-01
Rotation of the plane of polarisation during propagation of sagittal rays in a rectilinear multimode fibre was observed experimentally. The angle of rotation was in good agreement with the results predicted on the basis of the Rytov—Vladimirskii—Berry theory.
Demonstration of Raman-based, dispersion-managed VCSEL technology for fibre-to-the-hut application
NASA Astrophysics Data System (ADS)
Rotich Kipnoo, E. K.; Kiboi Boiyo, D.; Isoe, G. M.; Chabata, T. V.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.
2017-03-01
For the first time, we experimentally investigate the use of vertical cavity surface emitting lasers (VCSELs) in the fibre-to-the-home (FTTH) flavour for Africa, known as fibre-to-the-hut. Fibre-to-the-hut is a VCSEL based passive optical network technology designed and optimized for African continent. VCSELs have attracted attention in optical communication due to its vast advantages; low power consumption, relatively cheap costs among others. A 4.25 Gb/s uncooled VCSEL is used in a dispersion managed, Raman assisted network achieving beyond 100 km of error free transmission suited for FTTHut scenario. Energy-efficient high performance VCSEL is modulated using a 27-1 PRBS pattern and the signal transmitted on a G.655 fibre utilizing the minimum attenuation window.
Hybrid optical-fibre/geopolymer sensors for structural health monitoring of concrete structures
NASA Astrophysics Data System (ADS)
Perry, M.; Saafi, M.; Fusiek, G.; Niewczas, P.
2015-04-01
In this work, we demonstrate hybrid optical-fibre/geopolymer sensors for monitoring temperature, uniaxial strain and biaxial strain in concrete structures. The hybrid sensors detect these measurands via changes in geopolymer electrical impedance, and via optical wavelength measurements of embedded fibre Bragg gratings. Electrical and optical measurements were both facilitated by metal-coated optical fibres, which provided the hybrid sensors with a single, shared physical path for both voltage and wavelength signals. The embedded fibre sensors revealed that geopolymer specimens undergo 2.7 mɛ of shrinkage after one week of curing at 42 °C. After curing, an axial 2 mɛ compression of the uniaxial hybrid sensor led to impedance and wavelength shifts of 7 × 10-2 and -2 × 10-4 respectively. The typical strain resolution in the uniaxial sensor was 100 μ \\varepsilon . The biaxial sensor was applied to the side of a concrete cylinder, which was then placed under 0.6 mɛ of axial, compressive strain. Fractional shifts in impedance and wavelength, used to monitor axial and circumferential strain, were 3 × 10-2 and 4 × 10-5 respectively. The biaxial sensor’s strain resolution was approximately 10 μ \\varepsilon in both directions. Due to several design flaws, the uniaxial hybrid sensor was unable to accurately measure ambient temperature changes. The biaxial sensor, however, successfully monitored local temperature changes with 0.5 °C resolution.
Nonlinear optics of fibre event horizons.
Webb, Karen E; Erkintalo, Miro; Xu, Yiqing; Broderick, Neil G R; Dudley, John M; Genty, Goëry; Murdoch, Stuart G
2014-09-17
The nonlinear interaction of light in an optical fibre can mimic the physics at an event horizon. This analogue arises when a weak probe wave is unable to pass through an intense soliton, despite propagating at a different velocity. To date, these dynamics have been described in the time domain in terms of a soliton-induced refractive index barrier that modifies the velocity of the probe. Here we complete the physical description of fibre-optic event horizons by presenting a full frequency-domain description in terms of cascaded four-wave mixing between discrete single-frequency fields, and experimentally demonstrate signature frequency shifts using continuous wave lasers. Our description is confirmed by the remarkable agreement with experiments performed in the continuum limit, reached using ultrafast lasers. We anticipate that clarifying the description of fibre event horizons will significantly impact on the description of horizon dynamics and soliton interactions in photonics and other systems.
Low cost photonic comb for sub-m/s wavelength calibration
NASA Astrophysics Data System (ADS)
Betters, Christopher H.; Hermouet, Maxime; Blanc, Thomas; Colless, James I.; Bland-Hawthorn, Joss; Kos, Janez; Leon-Saval, Sergio
2016-07-01
A fundamental limitation of precision radial velocity measurements is the accuracy and stability of the calibration source. Here we present a low-cost alternative to more complex laser metrology based systems that utilises a single-mode fibre Fabry-Perot etalon. There are three key elements on this photonic comb: i) an optical fibre etalon with thermo-electric coolers; ii) a Rubidium Saturation Absorption Spectroscopy (SAS) setup; and iii) an optical fibre switch system for simultaneous laser locking of the etalon. We simultaneously measure the Rubidium D2 transitions around 780.2 nm and the closest etalon line. A PID loop controls the etalon temperate to maintain the position of its peak with an RMS error of <10cm/s for 10 minute integration intervals in continous operation. The optical fibre switch system allows for a time multiplexed coupling of the etalon to a spectrograph and SAS system.
Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range
Jin, Wei; Cao, Yingchun; Yang, Fan; Ho, Hoi Lut
2015-01-01
Photothermal interferometry is an ultra-sensitive spectroscopic means for trace chemical detection in gas- and liquid-phase materials. Previous photothermal interferometry systems used free-space optics and have limitations in efficiency of light–matter interaction, size and optical alignment, and integration into photonic circuits. Here we exploit photothermal-induced phase change in a gas-filled hollow-core photonic bandgap fibre, and demonstrate an all-fibre acetylene gas sensor with a noise equivalent concentration of 2 p.p.b. (2.3 × 10−9 cm−1 in absorption coefficient) and an unprecedented dynamic range of nearly six orders of magnitude. The realization of photothermal interferometry with low-cost near infrared semiconductor lasers and fibre-based technology allows a class of optical sensors with compact size, ultra sensitivity and selectivity, applicability to harsh environment, and capability for remote and multiplexed multi-point detection and distributed sensing. PMID:25866015
The optical frequency comb fibre spectrometer
Coluccelli, Nicola; Cassinerio, Marco; Redding, Brandon; Cao, Hui; Laporta, Paolo; Galzerano, Gianluca
2016-01-01
Optical frequency comb sources provide thousands of precise and accurate optical lines in a single device enabling the broadband and high-speed detection required in many applications. A main challenge is to parallelize the detection over the widest possible band while bringing the resolution to the single comb-line level. Here we propose a solution based on the combination of a frequency comb source and a fibre spectrometer, exploiting all-fibre technology. Our system allows for simultaneous measurement of 500 isolated comb lines over a span of 0.12 THz in a single acquisition; arbitrarily larger span are demonstrated (3,500 comb lines over 0.85 THz) by doing sequential acquisitions. The potential for precision measurements is proved by spectroscopy of acetylene at 1.53 μm. Being based on all-fibre technology, our system is inherently low-cost, lightweight and may lead to the development of a new class of broadband high-resolution spectrometers. PMID:27694981
Swatland, H J
1988-09-01
The fluorescence of bovine tissues was measured post mortem by microscopy of frozen sections and by using optical fibres to excite fluorescence and to measure fluorescence emission spectra. Mechanical disruption of the tissue (by comminution or sectioning) did not appreciably change tissue fluorescence spectra. Ligamentum nuchae had the strongest fluorescence and lung tissue had the weakest. In samples measured with a minimum prior exposure to ultraviolet light, the peak fluorescence emission was at 410 or 420 nm (with excitation at 365 nm). Exposure to ultraviolet light for about 1 minute shifted the fluorescence peak to 450 to 470 nm. Further exposure (about 30 minutes) caused a loss of the 450 to 470 nm fluorescence peak, while emissions above 530 nm were maintained or strengthened. Microscopy showed that the fluorescence that was measured by fibre optics from intact connective tissues originated mostly from collagen and elastin fibres.
Precise positioning of an ion in an integrated Paul trap-cavity system using radiofrequency signals
NASA Astrophysics Data System (ADS)
Kassa, Ezra; Takahashi, Hiroki; Christoforou, Costas; Keller, Matthias
2018-03-01
We report a novel miniature Paul ion trap design with an integrated optical fibre cavity which can serve as a building block for a fibre-linked quantum network. In such cavity quantum electrodynamic set-ups, the optimal coupling of the ions to the cavity mode is of vital importance and this is achieved by moving the ion relative to the cavity mode. The trap presented herein features an endcap-style design complemented with extra electrodes on which additional radiofrequency voltages are applied to fully control the pseudopotential minimum in three dimensions. This method lifts the need to use three-dimensional translation stages for moving the fibre cavity with respect to the ion and achieves high integrability, mechanical rigidity and scalability. Not based on modifying the capacitive load of the trap, this method leads to precise control of the pseudopotential minimum allowing the ion to be moved with precisions limited only by the ion's position spread. We demonstrate this by coupling the ion to the fibre cavity and probing the cavity mode profile.
A high-temperature fiber sensor using a low cost interrogation scheme.
Barrera, David; Sales, Salvador
2013-09-04
Regenerated Fibre Bragg Gratings have the potential for high-temperature monitoring. In this paper, the inscription of Fibre Bragg Gratings (FBGs) and the later regeneration process to obtain Regenerated Fiber Bragg Gratings (RFBGs) in high-birefringence optical fiber is reported. The obtained RFBGs show two Bragg resonances corresponding to the slow and fast axis that are characterized in temperature terms. As the temperature increases the separation between the two Bragg resonances is reduced, which can be used for low cost interrogation. The proposed interrogation setup is based in the use of optical filters in order to convert the wavelength shift of each of the Bragg resonances into optical power changes. The design of the optical filters is also studied in this article. In first place, the ideal filter is calculated using a recursive method and defining the boundary conditions. This ideal filter linearizes the output of the interrogation setup but is limited by the large wavelength shift of the RFBG with temperature and the maximum attenuation. The response of modal interferometers as optical filters is also analyzed. They can be easily tuned shifting the optical spectrum. The output of the proposed interrogation scheme is simulated in these conditions improving the sensitivity.
A High-Temperature Fiber Sensor Using a Low Cost Interrogation Scheme
Barrera, David; Sales, Salvador
2013-01-01
Regenerated Fibre Bragg Gratings have the potential for high-temperature monitoring. In this paper, the inscription of Fibre Bragg Gratings (FBGs) and the later regeneration process to obtain Regenerated Fiber Bragg Gratings (RFBGs) in high-birefringence optical fiber is reported. The obtained RFBGs show two Bragg resonances corresponding to the slow and fast axis that are characterized in temperature terms. As the temperature increases the separation between the two Bragg resonances is reduced, which can be used for low cost interrogation. The proposed interrogation setup is based in the use of optical filters in order to convert the wavelength shift of each of the Bragg resonances into optical power changes. The design of the optical filters is also studied in this article. In first place, the ideal filter is calculated using a recursive method and defining the boundary conditions. This ideal filter linearizes the output of the interrogation setup but is limited by the large wavelength shift of the RFBG with temperature and the maximum attenuation. The response of modal interferometers as optical filters is also analyzed. They can be easily tuned shifting the optical spectrum. The output of the proposed interrogation scheme is simulated in these conditions improving the sensitivity. PMID:24008282
A passive optical fibre hydrophone array utilising fibre Bragg grating sensors
NASA Astrophysics Data System (ADS)
Karas, Andrew R.; Papageorgiou, Anthony W.; Cook, Peter R.; Arkwright, John W.
2018-02-01
Many current high performance hydrophones use piezo-electric technology to measure sound pressure in water. These hydrophones are sensitive enough to detect any sound above the lowest ambient ocean acoustic noise, however cost of manufacture, weight and storage volume of the array as well as deployment and maintenance costs can limit their largescale application. Piezo-electric systems also have issues with electro-magnetic interference and the signature of the electrical cabling required in a large array. A fibre optic hydrophone array has advantages over the piezo-electric technology in these areas. This paper presents the operating principle of a passive optical fibre hydrophone array utilising Fibre Bragg Gratings (FBGs). The multiple FBG sensors are interrogated using a single solid state spectrometer which further reduces the cost of the deployed system. A noise equivalent power (NEP) comparison of the developed FBG hydrophone versus an existing piezo-electric hydrophone is presented as well as a comparison to the lowest ambient ocean acoustic noise (sea state zero). This research provides an important first step towards a cost effective multi sensor hydrophone array using FBGs.
NASA Astrophysics Data System (ADS)
Traill, Robert R.
2011-12-01
The most toxic asbestos fibres have widths 250nm-10nm, and this toxicity is "physical", which could mean either mechanical or optical: Tangling with chromosomes is a •mechanical hazard occasionally reported, and fibres <100nm wide would probably be most knife-like. Our other concern here is •optical: Calculations for fibres <=300nm reveal such a transmission possibility, but only when the amphibole fibres (brown and blue asbestos) are >100nm wide — or chrysotile (white asbestos) is >150nm. In both cases, UVA/UVB -transmission would then predominate. (Chrysotile 150nm might be benign — escaping both mechanical and optical!). But what would generate such UV, and why would its transmission be toxic? Thar and Kühl (J.Theor.Biol.:2004) explain that the long mitochondria on microtubules may be able to act as UV-lasers, (and many observers since Gurwitsch 1923 have reported ultraweak UV emissions escaping from all types of living bio-tissue). That all suggests some universal secret role for UV, apparently related to mitosis. Insertion of fibre "short-circuits" could then cause upsets in mitosis-control, and hence DNA irregularities. Such UV-control could parallel similar lower-powered Infra-Red control-systems (as considered elsewhere for coaxial myelin; or as portrayed by G.Albrecht-Buehler's online animations etc.); and the traditional short mitochondria seem better suited for this IR task.
Ultralong fibre-optic distributed Raman temperature sensor
NASA Astrophysics Data System (ADS)
Kuznetsov, A. G.; Kharenko, D. S.; Babin, S. A.; Tsydenzhapov, I. B.; Shelemba, I. S.
2017-11-01
We have demonstrated an ultralong (up to 85 km in length) all-fibre Raman temperature sensor which utilises SMF-28 standard single-mode telecom fibre and a 1.63-μm probe signal source. The probe signal from the laser diode is amplified by a Raman fibre amplifier. The temperature along a 85-km-long fibre line has been measured with an accuracy of 8°C and spatial resolution of 800 m or better.
Filling in the voids of electrospun hydroxypropyl cellulose network: Dielectric investigations
NASA Astrophysics Data System (ADS)
Maximean, Doina Manaila; Danila, Octavian; Ganea, Constantin Paul; Almeida, Pedro L.
2018-04-01
Here we describe an organic electro-optic device, obtained using electrospun hydroxypropyl cellulose (HPC) polymer fibres and nematic liquid crystals (LC). Its working mechanism is similar to that of a classic polymer-dispersed liquid crystal (PDLC) device. The scanning electron microscopy of the HPC deposited fibres shows a mat of fibres with diameters in the nano and micron size range. Dielectric spectroscopy measurements allow the determination of the dependence of the dielectric constant and electric energy loss on frequency and temperature as well as the determination of the activation energy. The electro-optic study shows a very good optical transmission curve, with an "on"-"off" switching voltage of less than 1V/μ m.
Biomedical application of optical fibre sensors
NASA Astrophysics Data System (ADS)
Correia, R.; James, S.; Lee, S.-W.; Morgan, S. P.; Korposh, S.
2018-07-01
Optical fibre sensors (OFS), as a result of their unique properties such as small size, no interference with electromagnetic radiation, high sensitivity and the ability to design multiplexed or distributed sensing systems, have found applications ranging from structural health monitoring to biomedical and point of care instrumentation. While the former represents the main commercial application for OFS, there is body of literature concerning the deployment of this versatile sensing platform in healthcare. This paper reviews the different types of OFS and their most recent applications in healthcare. It aims to help clinicians to better understand OFS technology and also provides an overview of the challenges involved in the deployment of developed technology in healthcare. Examples of the application of OFS in healthcare are discussed with particular emphasis on recently (2015–2017) published works to avoid replicating recent review papers. The majority of the work on the development of biomedical OFS stops at the laboratory stage and, with a few exceptions, is not explored in healthcare settings. OFSs have yet to fulfil their great potential in healthcare and methods of increasing the adoption of medical devices based on optical fibres are discussed. It is important to consider these factors early in the device development process for successful translation of the developed sensors to healthcare practice.
Fibre Optic Connections And Method For Using Same
Chan, Benson; Cohen, Mitchell S.; Fortier, Paul F.; Freitag, Ladd W.; Hall, Richard R.; Johnson, Glen W.; Lin, How Tzu; Sherman, John H.
2004-03-30
A package is described that couples a twelve channel wide fiber optic cable to a twelve channel Vertical Cavity Surface Emitting Laser (VCSEL) transmitter and a multiple channel Perpendicularly Aligned Integrated Die (PAID) receiver. The package allows for reduction in the height of the assembly package by vertically orienting certain dies parallel to the fiber optic cable and horizontally orienting certain other dies. The assembly allows the vertically oriented optoelectronic dies to be perpendicularly attached to the horizontally oriented laminate via a flexible circuit.
NASA Astrophysics Data System (ADS)
Almeida, R. M.; Andreeta, M. R. B.; Hernandes, A. C.; Dias, A.; Moreira, R. L.
2014-03-01
Infrared-reflectivity spectroscopy and micro-Raman scattering were used to determine the optical phonon features of orthorhombic calcium tantalite (CaTa2O6) single crystal fibres. The fibres, obtained by the Laser-Heated Pedestal Growth method, grew into an ordered cubic structure \\left( Pm\\bar{3} \\right). Long-time annealing was used to induce a polymorphic transformation to an aeschynite orthorhombic structure (Pnma space group). The phase transformation led to the appearance of structural domains and micro-cracks, responsible for diffuse scattering and depolarization of the scattered light in the visible range, but not in the infrared region. Thus, polarized infrared spectroscopy could be performed within oriented single domains, with an appropriate microscope, allowing us to determine all relevant polar phonons of the orthorhombic CaTa2O6. The obtained phononic dielectric response, {{\\epsilon }_{r}} = 22.4 and
A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue.
Menzel, M; Michielsen, K; De Raedt, H; Reckfort, J; Amunts, K; Axer, M
2015-10-06
The neuroimaging technique three-dimensional polarized light imaging (3D-PLI) provides a high-resolution reconstruction of nerve fibres in human post-mortem brains. The orientations of the fibres are derived from birefringence measurements of histological brain sections assuming that the nerve fibres—consisting of an axon and a surrounding myelin sheath—are uniaxial birefringent and that the measured optic axis is oriented in the direction of the nerve fibres (macroscopic model). Although experimental studies support this assumption, the molecular structure of the myelin sheath suggests that the birefringence of a nerve fibre can be described more precisely by multiple optic axes oriented radially around the fibre axis (microscopic model). In this paper, we compare the use of the macroscopic and the microscopic model for simulating 3D-PLI by means of the Jones matrix formalism. The simulations show that the macroscopic model ensures a reliable estimation of the fibre orientations as long as the polarimeter does not resolve structures smaller than the diameter of single fibres. In the case of fibre bundles, polarimeters with even higher resolutions can be used without losing reliability. When taking the myelin density into account, the derived fibre orientations are considerably improved. © 2015 The Author(s).
High-intensity fibre laser design for micro-machining applications
NASA Astrophysics Data System (ADS)
Ortiz-Neria, D. I.; Martinez-Piñón, F.; Hernandez-Escamilla, H.; Alvarez-Chavez, J. A.
2010-11-01
This work is focused on the design of a 250W high-intensity continuous-wave fibre optic laser with a 15μm spot size beam and a beam parameter product (BPP) of 1.8 for its use on Laser-assisted Cold Spray process (LCS) in the micro-machining areas. The metal-powder deposition process LCS, is a novel method based on Cold Spray technique (CS) assisted by laser technology. The LCS accelerates metal powders by the use of a high-pressure gas in order to achieve flash welding of particles over substrate. In LCS, the critical velocity of impact is lower with respect with CS while the powder particle is heated before the deposition by a laser beam. Furthermore, LCS does not heat the powder to achieve high temperatures as it happens in plasma processes. This property puts aside cooling problems which normally happen in sintered processes with high oxygen/nitrogen concentration levels. LCS will be used not only in deposition of thin layers. After careful design, proof of concept, experimental data, and prototype development, it should be feasible to perform micro-machining precise work with the use of the highintensity fibre laser presented in this work, and selective deposition of particles, in a similar way to the well-known Direct Metal Laser Sintering process (DMLS). The fibre laser consists on a large-mode area, Yb3+-doped, semi-diffraction limited, 25-m fibre laser cavity, operating in continuous wave regime. The fibre shows an arguably high slope-efficiency with no signs of roll-over. The measured M2 value is 1.8 and doping concentration of 15000ppm. It was made with a slight modification of the traditional MCVD technique. A full optical characterization will be presented.
A suite of optical fibre sensors for structural condition monitoring
NASA Astrophysics Data System (ADS)
Sun, T.; Grattan, K. T. V.; Carlton, J.
2015-05-01
This paper is to review the research activities at City University London in the development of a range of fibre Bragg grating (FBG)-based sensors, including strain, temperature, relative humidity, vibration and acoustic sensors, with an aim to meet the increasing demands from industry for structural condition monitoring. As a result, arrays of optical fibre sensors have been instrumented into various types of structures, including concrete, limestone, marine propellers, pantograph and electrical motors, allowing for both static and dynamic monitoring and thus enhanced structural reliability and integrity.
Assessment of nerve ultrastructure by fibre-optic confocal microscopy.
Cushway, T R; Lanzetta, M; Cox, G; Trickett, R; Owen, E R
1996-01-01
Fibre-optic technology combined with confocality produces a microscope capable of optical thin sectioning. In this original study, tibial nerves have been stained in a rat model with a vital dye, 4-(4-diethylaminostyryl)-N-methylpyridinium iodide, and analysed by fibre-optic confocal microscopy to produce detailed images of nerve ultrastructure. Schwann cells, nodes of Ranvier and longitudinal myelinated sheaths enclosing axons were clearly visible. Single axons appeared as brightly staining longitudinal structures. This allowed easy tracing of multiple signal axons within the nerve tissue. An accurate measurement of internodal lengths was easily accomplished. This technique is comparable to current histological techniques, but does not require biopsy, thin sectioning or tissue fixing. This study offers a standard for further in vivo microscopy, including the possibility of monitoring the progression of nerve regeneration following microsurgical neurorraphy.
Surface treated polypropylene (PP) fibres for reinforced concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Buendía, Angel M., E-mail: buendia@uv.es; Romero-Sánchez, María Dolores; Climent, Verónica
Surface treatments on a polypropylene (PP) fibre have contributed to the improvement of fibre/concrete adhesion in fibre-reinforced concrete. The treatments to the PP fibre were characterized by contact angle measurements, ATR-IR and XPS to analyse chemical alterations. The surface topography and fibre/concrete interaction were analysed by several microscopic techniques, namely optical petrographic, and scanning electron microscopy. Treatment modified the surface chemistry and topography of the fibre by introducing sodium moieties and created additional fibre surface roughness. Modifications in the fibre surface led to an increase in the adhesion properties between the treated fibres and concrete and an improvement in themore » mechanical properties of the fibre-reinforced concrete composite as compared to the concrete containing untreated PP fibres. Compatibility with the concrete and increased roughness and mineral surface was also improved by nucleated portlandite and ettringite mineral association anchored on the alkaline PP fibre surface, which is induced during treatment.« less
NASA Astrophysics Data System (ADS)
Dianov, Evgenii M.; Zubov, Vladimir A.; Putilin, A. N.
1995-02-01
An analysis is made of a variant of a system for spatial—temporal transformation of spatially one-dimensional information for its transfer along a single-mode fibre waveguide. Information is coupled into a fibre by a waveguide hologram. This hologram forms a light-beam structure which matches the fibre-guided mode. A report is given of the use of ion-exchange planar glass waveguides as waveguide holograms. An amorphous chalcogenide semiconductor film or a photoresist was deposited by evaporation on such a planar waveguide. Reconstruction of the waveguide hologram made it possible to achieve a high read rate, up to 1011 pixels per second, when a short radiation pulse was used. Multisectioned injection semiconductor lasers, operating under Q-switching conditions, were used as the radiation sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrianov, A V; Anashkina, E A; Murav'ev, S V
2013-03-31
This paper presents the concept of fibre laser system design for generating optically synchronised femtosecond pulses at two, greatly differing wavelengths and reports experimental and numerical simulation studies of nonlinear conversion of femtosecond pulses at 1.5 {mu}m wavelength in a dispersion-shifted fibre, with the generation of synchronised pulses in the ranges 1.6 - 2 and 1 - 1.1 {mu}m. We describe a three-stage high-power fibre amplifier of femtosecond pulses at 1 {mu}m and a hybrid Er/Yb fibre laser system that has enabled the generation of 12 fs pulses with a centre wavelength of 1.7 {mu}m, synchronised with high-power (microjoule level)more » 250 fs pulses at 1.03 {mu}m. (extreme light fields and their applications)« less
Measuring the Dispersion Curve of a PMMA-Fibre Optic Cable Using a Dye Laser
ERIC Educational Resources Information Center
Zorba, Serkan; Farah, Constantine; Pant, Ravi
2010-01-01
An advanced undergraduate laboratory experiment is outlined which uses a dye laser to map out the chromatic dispersion curve of a polymethyl methacrylate (PMMA) optical fibre. Seven different wavelengths across the visible spectrum are employed using five different dyes. The light pulse is split into two pulses, one to a nearby photodetector and…
Plastic optical fibre sensor for in-vivo radiation monitoring during brachytherapy
NASA Astrophysics Data System (ADS)
Woulfe, P.; Sullivan, F. J.; Lewis, E.; O'Keeffe, S.
2015-09-01
An optical fibre sensor is presented for applications in real-time in-vivo monitoring of the radiation dose a cancer patient receives during seed implantation in Brachytherapy. The sensor is based on radioluminescence whereby radiation sensitive scintillation material is embedded in the core of a 1mm plastic optical fibre. Three scintillation materials are investigated: thallium-doped caesium iodide (CsI:Tl), terbium-doped gadolinium oxysulphide (Gd2O2S:Tb) and europium-doped lanthanum oxysulphide (La2O2S:Eu). Terbium-doped gadolinium oxysulphide was identified as being the most suitable scintillator and further testing demonstrates its measureable response to different activities of Iodine-125, the radio-active source commonly used in Brachytherapy for treating prostate cancer.
LiFi: transforming fibre into wireless
NASA Astrophysics Data System (ADS)
Yin, Liang; Islim, Mohamed Sufyan; Haas, Harald
2017-01-01
Light-fidelity (LiFi) uses energy-efficient light-emitting diodes (LEDs) for high-speed wireless communication, and it has a great potential to be integrated with fibre communication for future gigabit networks. However, by making fibre communication wireless, multiuser interference arises. Traditional methods use orthogonal multiple access (OMA) for interference avoidance. In this paper, multiuser interference is exploited with the use of non-orthogonal multiple access (NOMA) relying on successive interference cancellation (SIC). The residual interference due to imperfect SIC in practical scenarios is characterized with a proportional model. Results show that NOMA offers 5 -10 dB gain on the equivalent signal-to-interference-plus-noise ratio (SINR) over OMA. The bit error rate (BER) performance of direct current optical orthogonal frequency division multiplexing (DCO-OFDM) is shown to be significantly improved when SIC is used.
Experimental study of the mutual influence of fibre Faraday elements in a spun-fibre interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubin, V P; Morshnev, S K; Przhiyalkovsky, Ya V
2015-08-31
An all-spun-fibre linear reflective interferometer with two linked Faraday fibre coils is studied. It is found experimentally that there is mutual influence of Faraday fibre coils in this interferometer. It manifests itself as an additional phase shift of the interferometer response, which depends on the circular birefringence induced by the Faraday effect in both coils. In addition, the interferometer contrast and magneto-optical sensitivity of one of the coils change. A probable physical mechanism of the discovered effect is the distributed coupling of orthogonal polarised waves in the fibre medium, which is caused by fibre bend in the coil. (interferometry)
NASA Astrophysics Data System (ADS)
Kuranov, R. V.; Sapozhnikova, V. V.; Shakhova, N. M.; Gelikonov, V. M.; Zagainova, E. V.; Petrova, S. A.
2002-11-01
A combined application of optical methods [optical coherent tomography (OCT), cross-polarisation optical coherent tomography, and fluorescence spectroscopy] is proposed for obtaining information on morphological and biochemical changes occurring in tissues in norm and pathology. It is shown that neoplastic and scar changes in esophagus can be distinguished using a combination of polarisation and standard OCT due to the difference between the depolarising properties of the tissues caused by the structural properties of collagenic fibres in stroma. It is shown that OCT combined with fluorescence spectroscopy with the use of 5-aminolevulinic acid is promising for determining the boundaries of carcinoma of the uterine cervix and vulva. It is found that the tumour boundary detected by optical methods coincides with the morphological boundary and extends beyond colposcopically determined boundary by about 2 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuranov, R V; Sapozhnikova, V V; Shakhova, N M
2002-11-30
A combined application of optical methods [optical coherent tomography (OCT), cross-polarisation optical coherent tomography, and fluorescence spectroscopy] is proposed for obtaining information on morphological and biochemical changes occurring in tissues in norm and pathology. It is shown that neoplastic and scar changes in esophagus can be distinguished using a combination of polarisation and standard OCT due to the difference between the depolarising properties of the tissues caused by the structural properties of collagenic fibres in stroma. It is shown that OCT combined with fluorescence spectroscopy with the use of 5-aminolevulinic acid is promising for determining the boundaries of carcinoma ofmore » the uterine cervix and vulva. It is found that the tumour boundary detected by optical methods coincides with the morphological boundary and extends beyond colposcopically determined boundary by about 2 mm. (laser biology and medicine)« less
Distributed gas sensing with optical fibre photothermal interferometry.
Lin, Yuechuan; Liu, Fei; He, Xiangge; Jin, Wei; Zhang, Min; Yang, Fan; Ho, Hoi Lut; Tan, Yanzhen; Gu, Lijuan
2017-12-11
We report the first distributed optical fibre trace-gas detection system based on photothermal interferometry (PTI) in a hollow-core photonic bandgap fibre (HC-PBF). Absorption of a modulated pump propagating in the gas-filled HC-PBF generates distributed phase modulation along the fibre, which is detected by a dual-pulse heterodyne phase-sensitive optical time-domain reflectometry (OTDR) system. Quasi-distributed sensing experiment with two 28-meter-long HC-PBF sensing sections connected by single-mode transmission fibres demonstrated a limit of detection (LOD) of ∼10 ppb acetylene with a pump power level of 55 mW and an effective noise bandwidth (ENBW) of 0.01 Hz, corresponding to a normalized detection limit of 5.5ppb⋅W/Hz. Distributed sensing experiment over a 200-meter-long sensing cable made of serially connected HC-PBFs demonstrated a LOD of ∼ 5 ppm with 62.5 mW peak pump power and 11.8 Hz ENBW, or a normalized detection limit of 312ppb⋅W/Hz. The spatial resolution of the current distributed detection system is limited to ∼ 30 m, but it is possible to reduce down to 1 meter or smaller by optimizing the phase detection system.
Fluorescence fibre-optic confocal microscopy of skin in vivo: microscope and fluorophores.
Suihko, Christian; Swindle, Lucinda D; Thomas, Steven G; Serup, Jørgen
2005-11-01
Fibre-optic confocal imaging in vivo is a new approach in the assessment of human skin. The objective is to describe a novel instrument and its operation and use in combination with fluorophores. The Stratum is a fibre-optic fluorescence confocal microscope especially developed for the study of skin and mucous membranes. The system is flexible and any body site can be studied with a hand-held scanner. The light source is a 488 nm argon ion laser. Horizontal (en face) images of the epidermis and outer dermis are produced with cellular resolution. Magnification is approximately 1000 x . Fluorescein sodium is routinely used as fluorophore (intradermal injection or application to the skin surface). This fluorophore is safe for human use in vivo, but other substances (rhodamine B, Acridine Orange, green fluorescent protein, curcumin) have also been studied. The instrument produces sharp images of epidermal cell layers from the epidermal surface to the sub-papillary dermis, with sub-cellular resolution. The scanner is flexible in use. The technique of intradermal fluorophore injection requires some skill. We consider this fibre-optic instrument a potentially important tool in skin research for non-invasive optical biopsy of primarily the epidermis. Present use is focussed on research applications, where the fluorophore distribution in the skin may illustrate morphological changes in the epidermis.
Optical fibre sensors for the monitoring of a microwave plasma UV lamp and ozone generation system
NASA Astrophysics Data System (ADS)
O'Keeffe, S.; Ortoneda, M.; Cullen, J. D.; Shaw, A.; Fitzpatrick, C.; Lewis, E.; Phipps, D. A.; Al-Shamma'a, A. I.
2008-09-01
The food industry is keen to have new techniques that improve the safety and shelf life of food products without the use of preservatives. The use of UV light and ozone (O3) gas are becoming increasingly popular as methods to decontaminate food and thus extending its shelf life. A microwave radiation device that is a novel source of both germicidal UV and O3 suitable for the food industry has been developed, which offers speed, cost and energy benefits over existing sources. With this system comes the need to monitor a number of conditions, primarily UV intensity and ozone gas concentrations. An optical fibre sensor system is being developed to analyse these properties, in order to control and optimise the outputs of the microwave plasma UV lamp.
Närhi, Mikko; Wetzel, Benjamin; Billet, Cyril; Toenger, Shanti; Sylvestre, Thibaut; Merolla, Jean-Marc; Morandotti, Roberto; Dias, Frederic; Genty, Goëry; Dudley, John M.
2016-01-01
Modulation instability is a fundamental process of nonlinear science, leading to the unstable breakup of a constant amplitude solution of a physical system. There has been particular interest in studying modulation instability in the cubic nonlinear Schrödinger equation, a generic model for a host of nonlinear systems including superfluids, fibre optics, plasmas and Bose–Einstein condensates. Modulation instability is also a significant area of study in the context of understanding the emergence of high amplitude events that satisfy rogue wave statistical criteria. Here, exploiting advances in ultrafast optical metrology, we perform real-time measurements in an optical fibre system of the unstable breakup of a continuous wave field, simultaneously characterizing emergent modulation instability breather pulses and their associated statistics. Our results allow quantitative comparison between experiment, modelling and theory, and are expected to open new perspectives on studies of instability dynamics in physics. PMID:27991513
Single-shot observation of optical rogue waves in integrable turbulence using time microscopy
Suret, Pierre; Koussaifi, Rebecca El; Tikan, Alexey; Evain, Clément; Randoux, Stéphane; Szwaj, Christophe; Bielawski, Serge
2016-01-01
Optical fibres are favourable tabletop laboratories to investigate both coherent and incoherent nonlinear waves. In particular, exact solutions of the one-dimensional nonlinear Schrödinger equation such as fundamental solitons or solitons on finite background can be generated by launching periodic, specifically designed coherent waves in optical fibres. It is an open fundamental question to know whether these coherent structures can emerge from the nonlinear propagation of random waves. However the typical sub-picosecond timescale prevented—up to now—time-resolved observations of the awaited dynamics. Here, we report temporal ‘snapshots' of random light using a specially designed ‘time-microscope'. Ultrafast structures having peak powers much larger than the average optical power are generated from the propagation of partially coherent waves in optical fibre and are recorded with 250 femtoseconds resolution. Our experiment demonstrates the central role played by ‘breather-like' structures such as the Peregrine soliton in the emergence of heavy-tailed statistics in integrable turbulence. PMID:27713416
Optical fibre multi-parameter sensing with secure cloud based signal capture and processing
NASA Astrophysics Data System (ADS)
Newe, Thomas; O'Connell, Eoin; Meere, Damien; Yuan, Hongwei; Leen, Gabriel; O'Keeffe, Sinead; Lewis, Elfed
2016-05-01
Recent advancements in cloud computing technologies in the context of optical and optical fibre based systems are reported. The proliferation of real time and multi-channel based sensor systems represents significant growth in data volume. This coupled with a growing need for security presents many challenges and presents a huge opportunity for an evolutionary step in the widespread application of these sensing technologies. A tiered infrastructural system approach is adopted that is designed to facilitate the delivery of Optical Fibre-based "SENsing as a Service- SENaaS". Within this infrastructure, novel optical sensing platforms, deployed within different environments, are interfaced with a Cloud-based backbone infrastructure which facilitates the secure collection, storage and analysis of real-time data. Feedback systems, which harness this data to affect a change within the monitored location/environment/condition, are also discussed. The cloud based system presented here can also be used with chemical and physical sensors that require real-time data analysis, processing and feedback.
Acousto-optic devices for operation with 2μm fibre lasers
NASA Astrophysics Data System (ADS)
Ward, J. D.; Stevens, G.; Shardlow, P. C.
2016-03-01
Fibre lasers operating in the 2μm region are of increasing interest for a range of applications, including laser machining and biomedical systems. The large mode area compared to 1μm fibre lasers combined with operation in an "eye-safe" region of the spectrum makes them particularly attractive. When developing fibre lasers at 1μm and 1·5μm manufacturers were able to call upon enabling technologies used by the telecoms industry, but at longer wavelengths, including 2μm, many such components are either unavailable or immature. We report on recent developments of Acousto-Optic Modulators and Tunable Filters that are specifically optimised for use with fibre systems operating at or around 2μm. AO devices are interesting due to their ability to conserve spatial-coherence, making them appropriate for use with single-mode optical fibres. We describe how the choice of interaction medium is an important consideration, particularly affecting the drive power and the polarisation behaviour of the device - the latter being an important parameter when used in a fibre system. We also describe two designs of AO Tunable Filter intended for laser tuning. Both designs have been demonstrated intracavity in 2μm fibre lasers. The first gives exceptionally narrow resolution (δλ/λ<0·1%). The second design is of a novel type of AOTF where a matched pair of AOTFs is configured to give a substantially net zero frequency-shift with little or no loss of pointing stability, any minor deviations in manufacture being self-compensated. Furthermore, small controlled frequency-shifts (up to about 10kHz) may be introduced with little or no detriment to the alignment of the system.
FRD and scrambling properties of recent non-circular fibres
NASA Astrophysics Data System (ADS)
Avila, Gerardo
2012-09-01
Optical fibres with octagonal, square and rectangular core shapes have been proposed as alternative to the circular fibres to link the telescopes to spectrographs in order to increase the accuracy of radial velocity measurements. Theoretically they offer better scrambling properties than their circular counterparts. First commercial octagonal fibres provided good near field scrambling gains. Unfortunately the far field scrambling did not show important figures. This article shows test results on new fibres from CeramOptec. The measurements show substantial improvements of the far field scrambling gains. In addition, evaluation of their focal ratio degradation (FRD) shows much better performances than previous fibres.
Light focusing in the Anderson regime.
Leonetti, Marco; Karbasi, Salman; Mafi, Arash; Conti, Claudio
2014-07-29
Anderson localization is a regime in which diffusion is inhibited and waves (also electromagnetic waves) get localized. Here we exploit adaptive optics to achieve focusing in disordered optical fibres in the Anderson regime. By wavefront shaping and optimization, we observe the generation of a propagation-invariant beam, where light is trapped transversally by disorder, and show that Anderson localizations can be also excited by extended speckled beams. We demonstrate that disordered fibres allow a more efficient focusing action with respect to standard fibres in a way independent of their length, because of the propagation-invariant features and cooperative action of transverse localizations.
A 24mm diameter fibre positioner for spectroscopic surveys
NASA Astrophysics Data System (ADS)
Hörler, Philipp; Kronig, Luzius; Kneib, Jean-Paul; Bleuler, Hannes; Bouri, Mohamed
2016-07-01
One of the big research topics in modern cosmology is the mystery of dark Energy. To unveil the secret, cosmologists want to measure precisely the evolution of large scale structures in the universe. One way of doing so is to measure the 3D location of a high number of galaxies. By measuring the redshift of a galaxy, it is possible to find its distance. In order to measure a high number of galaxies in a practical amount of time, we need to observe multiple objects in parallel. Instead of a spectrograph, thousands of optical fibres are placed in the focal plane of a telescope. They will transmit the light of many objects to a spectrograph. Each fibre has to be positioned to several μm precision in the focal plane of a telescope for each exposure. Each fibre is positioned by a 2-axis fibre positioner. In this paper such a fibre positioner with 24-mm diameter is presented. It is driven by two brushless DC motors in combination with a backlash free gearbox. The positioner has an optimal central fibre path and improved angular alignment. The fibre runs through the centre of the positioner and is only bent at the top to reach its target position. In this way, the flexion and torsion of the fibre are minimal. In addition to the high positioning accuracy, the design is optimized to allow a minimal tilt error of the fibre. This is demonstrated using a novel optical tilt measurement system.
Review of Hull Structural Monitoring Systems for Navy Ships
2013-05-01
generally based on the same basic form of S-N curve, different correction methods are used by the various classification societies. ii. Methods for...Likewise there are a number of different methods employed for temperature compensation and these vary depending on the type of gauge, although typically...Analysis, Inc.[30] Figure 8. Examples of different methods of temperature compensation of fibre-optic strain sensors. It is noted in NATO
A fibre optic fluorescence sensor to measure redox level in tissues
NASA Astrophysics Data System (ADS)
Zhang, Wen Qi; Morrison, Janna L.; Darby, Jack R. T.; Plush, Sally; Sorvina, Alexandra; Brooks, Doug; Monro, Tanya M.; Afshar Vahid, Shahraam
2018-01-01
We report the design of a fibre optic-based redox detection system for investigating differences in metabolic activities of tissues. Our system shows qualitative agreement with the results collected from a commercial two- photon microscope system. Thus, demonstrating the feasibility of building an ex vivo and in vivo redox detection system that is low cost and portable.
Fabrication of Polymer Optical Fibre (POF) Gratings
Luo, Yanhua; Yan, Binbin; Zhang, Qijin; Peng, Gang-Ding; Wen, Jianxiang; Zhang, Jianzhong
2017-01-01
Gratings inscribed in polymer optical fibre (POF) have attracted remarkable interest for many potential applications due to their distinctive properties. This paper overviews the current state of fabrication of POF gratings since their first demonstration in 1999. In particular we summarize and discuss POF materials, POF photosensitivity, techniques and issues of fabricating POF gratings, as well as various types of POF gratings. PMID:28273844
Atmospheric dispersion corrector for the Large Sky Area Multi-Object Fibre Spectroscopic Telescope
NASA Astrophysics Data System (ADS)
Su, Ding-Qiang; Jia, Peng; Liu, Genrong
2012-02-01
The Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) is the largest, wide field-of-view (FOV) telescope (with an aperture of 4 m), and it is equipped with the highest number (4000) of optical fibres in the world. For the LAMOST North and the LAMOST South, the FOVs are 5° and 3.5°, respectively, and the linear diameters are 1.75 m and 1.22 m, respectively. A new type of atmospheric dispersion corrector (ADC) is put forward and designed for LAMOST. It is a segmented lens, which consists of many lens-prism strips. Although it is very large, its thickness is only 12 mm. Thus, the difficulty of obtaining a large optical glass is avoided, and the aberration caused by the ADC is small. By moving this segmented lens along the optical axis, different dispersions can be obtained. We discuss the effects of ADC's slits on the diffraction energy distribution and on the obstruction of light. We calculate and discuss the aberration caused by the ADC. All these results are acceptable. Such an ADC could also be used for other optical fibre spectroscopic telescopes, especially those which a have very large FOV.
Biosensors for detecting stress in developing embryos
NASA Astrophysics Data System (ADS)
Purdey, Malcolm S.; Saini, Avishkar; McLennan, Hanna J.; Pullen, Benjamin J.; Schartner, Erik P.; Sutton-McDowall, Melanie L.; Thompson, Jeremy G.; Monro, Tanya M.; Nicholls, Stephen J.; Abell, Andrew D.
2016-12-01
Reactive Oxygen Species (ROS) cause DNA damage and defective function in sperm and also affects the developmental competence of embryos. It is therefore critical to monitor ROS in sperm, oocytes and developing embryos. In particular, hydrogen peroxide (H2O2) is a ROS important to normal cell function and signalling as well as its role in oxidative stress. Here we report the development of a fluorescent sensor for H2O2 using carboxyperoxyfluor-1 (CPF1) in solution and attached to a glass slide or multi-mode optical fibre. CPF1 increases in fluorescence upon reaction with H2O2 to non-invasively detect H2O2 near developing embryos. These probes are constructed by immobilising CPF1 to the optical fibre tip a polyacrylamide layer. Also reported is a new dual optical fibre sensor for detecting both H2O2 and pH that is functional at biologically concentrations of H2O2 and can sense pH to 0.1 units. This research shows promise for the use of optical fibre sensors for monitoring the health of developing embryos. Furthermore, these sensors are applicable for use beyond embryos such as detecting stress in endothelial cells involved in cardiovascular dysfunction.
Fibre-optic distributed temperature sensing in combined sewer systems.
Schilperoort, R P S; Clemens, F H L R
2009-01-01
This paper introduces the application of fibre-optic distributed temperature sensing (DTS) in combined sewer systems. The DTS-technique uses a fibre-optic cable that is inserted into a combined sewer system in combination with a laser instrument that performs measurements and logs the data. The DTS-technique allows monitoring in-sewer temperatures with dense spatial and temporal resolutions. The installation of a fibre-optic cable in a combined sewer system has proven feasible. The use of a single instrument in an easy accessible and safe location that can simultaneously monitor up to several hundreds of monitoring locations makes the DTS set-up easy in use and nearly free of maintenance. Temperature data from a one-week monitoring campaign in an 1,850 m combined sewer system shows the level of detail with which in-sewer processes that affect wastewater temperatures can be studied. Individual discharges from house-connections can be tracked in time and space. With a dedicated cable configuration the confluence of wastewater flows can be observed with a potential to derive the relative contributions of contributary flows to a total flow. Also, the inflow and in-sewer propagation of stormwater can be monitored.
Gas Sensor Based on Photonic Crystal Fibres in the 2ν3 and ν2 + 2ν3 Vibrational Bands of Methane
Cubillas, Ana M.; Lazaro, Jose M.; Conde, Olga M.; Petrovich, Marco N.; Lopez-Higuera, Jose M.
2009-01-01
In this work, methane detection is performed on the 2ν3 and ν2 + 2ν3 absorption bands in the Near-Infrared (NIR) wavelength region using an all-fibre optical sensor. Hollow-core photonic bandgap fibres (HC-PBFs) are employed as gas cells due to their compactness, good integrability in optical systems and feasibility of long interaction lengths with gases. Sensing in the 2ν3 band of methane is demonstrated to achieve a detection limit one order of magnitude better than that of the ν2 + 2ν3 band. Finally, the filling time of a HC-PBF is demonstrated to be dependent on the fibre length and geometry. PMID:22454584
Fibre optical spectroscopy and sensing innovation at innoFSPEC Potsdam
NASA Astrophysics Data System (ADS)
Haynes, Roger; Reich, Oliver; Rambold, William; Hass, Roland; Janssen, Katja
2010-07-01
In October 2009, an interdisciplinary centre for fibre spectroscopy and sensing, innoFSPEC Potsdam, has been established as joint initiative of the Astrophysikalisches Institut Potsdam (AIP) and the Physical Chemistry group of Potsdam University (UPPC), Germany. The centre focuses on fundamental research in the two fields of fibre-coupled multi-channel spectroscopy and optical fibre-based sensing. Thanks to its interdisciplinary approach, the complementary methodologies of astrophysics on the one hand, and physical chemistry on the other hand, are expected to spawn synergies that otherwise would not normally become available in more standard research programmes. innoFSPEC Potsdam targets future innovations for next generation astrophysical instrumentation, environmental analysis, manufacturing control and process analysis, medical diagnostics, non-invasive imaging spectroscopy, biopsy, genomics/proteomics, high throughput screening, and related applications.
Applications Of A Fibre Optic TV Holography System To The Study Of Large Automotive Structures.
NASA Astrophysics Data System (ADS)
Davies, Jeremy C.; Buckberry, Clive H.
1990-04-01
Mono-mode fibre optic components, including directional couplers and piezo-electric phase control elements, have been used to construct a TV holography system. The instrument has advantages of simplicity and ruggedness of construction and, with a 40m fibre optic link to a 600m argon ion laser, has proved to be an ideal tool for studying the structural behaviour of automotive assemblies. The TV holography system is described and two examples presented of its use: analysis of the deformation of a petrol engine cylinder bore due to head bolt forces, and the vibration study of a vehicle bodyshell subjected to wheel induced inputs. Limitations in the application of the technique are identified and future work to address these shortcomings outlined.
NASA Astrophysics Data System (ADS)
Staveley, Chris
2014-06-01
With the growth in deep-water oil and gas production, condition monitoring of high-value subsea assets to give early warning of developing problems is vital. Offshore operators can then transport and deploy spare parts before a failure occurs, so minimizing equipment down-time, and the significant costs associated with unscheduled maintenance. Results are presented from a suite of tests in which multiple elements of a subsea twin-screw pump and associated electric motor were monitored using a fibre optic sensing system based on fibre Bragg gratings (FBG) that simultaneously measured dynamic strain on the main rotor bearings, pressure and temperature of the lubricating oil, distributed temperature through the motor stator windings and vibration of the pump and motor housings.
NASA Astrophysics Data System (ADS)
Salasiah, M.; Nordin, A. J.; Fathinul Fikri, A. S.; Hishar, H.; Tamchek, N.; Taiman, K.; Ahmad Bazli, A. K.; Abdul-Rashid, H. A.; Mahdiraji, G. A.; Mizanur, R.; Noor, Noramaliza M.
2013-05-01
Cardiac positron emission tomography (PET) provides a precise method in order to diagnose obstructive coronary artery disease (CAD), compared to single photon emission tomography (SPECT). PET is suitable for obese and patients who underwent pharmacologic stress procedures. It has the ability to evaluate multivessel coronary artery disease by recording changes in left ventricular function from rest to peak stress and quantifying myocardial perfusion (in mL/min/g of tissue). However, the radiation dose to the radiosensitive organs has become crucial issues in the Positron Emission Tomography/Computed Tomography(PET/CT) scanning procedure. The objective of this study was to estimate radiation dose to radiosensitive organs of patients who underwent PET/CT myocardial perfusion examination at Centre for Diagnostic Nuclear Imaging, Universiti Putra Malaysia in one month period using versatile optical fibres (Ge-B-doped Flat Fibre) and LiF (TLD-100 chips). All stress and rest paired myocardial perfusion PET/CT scans will be performed with the use of Rubidium-82 (82Rb). The optic fibres were loaded into plastic capsules and attached to patient's eyes, thyroid and breasts prior to the infusion of 82Rb, to accommodate the ten cases for the rest and stress PET scans. The results were compared with established thermoluminescence material, TLD-100 chips. The result shows that radiation dose given by TLD-100 and Germanium-Boron-doped Flat Fiber (Ge-B-doped Flat Fiber) for these five organs were comparable to each other where the p>0.05. For CT scans,thyroid received the highest dose compared to other organs. Meanwhile, for PET scans, breasts received the highest dose.
Microstructured-core optical fibre for evanescent sensing applications
NASA Astrophysics Data System (ADS)
Cordeiro, Cristiano M. B.; Franco, Marcos A. R.; Chesini, Giancarlo; Barretto, Elaine C. S.; Lwin, Richard; Brito Cruz, C. H.; Large, Maryanne C. J.
2006-12-01
The development of microstructured fibres offers the prospect of improved fibre sensing for low refractive index materials such as liquids and gases. A number of approaches are possible. Here we present a new approach to evanescent field sensing, in which both core and cladding are microstructured. The fibre was fabricated and tested, and simulations and experimental results are shown in the visible region to demonstrate the utility of this approach for sensing.
NASA Astrophysics Data System (ADS)
Kuznetsov, A. G.; Babin, Sergei A.; Shelemba, Ivan S.
2009-11-01
We demonstrate a Raman-based all-fibre temperature sensor utilising a pulsed erbium fibre laser. The sensor is made of a standard single-mode telecom fibre, SMF-28, and includes a number of directional couplers as band-pass filters. The temperature profile along a 7-km fibreoptic line is measured with an accuracy of 2oC and a spatial resolution of 10 m. In data processing, we take into account the difference in attenuation between the spectral components of the backscatter signal.
Soler García, A; Padilla Parrado, F; Figueroa-Ortiz, L C; González Gómez, A; García-Ben, A; García-Ben, E; García-Campos, J M
2016-01-01
Quantitative assessment of macular and nerve fibre layer thickness in multiple sclerosis patients with regard to expanded disability status scale (EDSS) and presence or absence of previous optic neuritis episodes. We recruited 62 patients with multiple sclerosis (53 relapsing-remitting and 9 secondary progressive) and 12 disease-free controls. All patients underwent an ophthalmological examination, including quantitative analysis of the nerve fibre layer and macular thickness using optical coherence tomography. Patients were classified according to EDSS as A (lower than 1.5), B (between 1.5 and 3.5), and C (above 3.5). Mean nerve fibre layer thickness in control, A, B, and C groups was 103.35±12.62, 99.04±14.35, 93.59±15.41, and 87.36±18.75μm respectively, with statistically significant differences (P<.05). In patients with no history of optic neuritis, history of episodes in the last 3 to 6 months, or history longer than 6 months, mean nerve fibre layer thickness was 99.25±13.71, 93.92±13.30 and 80.07±15.91μm respectively; differences were significant (P<.05). Mean macular thickness in control, A, B, and C groups was 220.01±12.07, 217.78±20.02, 217.68±20.77, and 219.04±24.26μm respectively. Differences were not statistically significant. The mean retinal nerve fibre layer thickness in multiple sclerosis patients is related to the EDSS level. Patients with previous optic neuritis episodes have a thinner retinal nerve fibre layer than patients with no history of these episodes. Mean macular thickness is not correlated to EDSS level. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
A near-infrared spectroscopy routine for unambiguous identification of cryptic ant species
USDA-ARS?s Scientific Manuscript database
The identification of species – of importance for most biological disciplines – is not always straightforward as cryptic species present a hurdle for traditional species discrimination. Fibre-optic near-infrared spectroscopy (NIRS) is a rapid and cheap method for a wide range of different applicatio...
Paper surface diffraction to characterize the fiber orientation distribution
NASA Astrophysics Data System (ADS)
Pereira, Mario; Teixeira, Jose; Fiadeiro, Paulo T.; Silvy, Jacques
2001-11-01
Many paper mills use ultrasonic techniques to measure the Tensile Stiffness Index, TSI, of the paper sheet. They then assume that the TSI value is the same as the fibre orientation anisotropy. This is true if the paper is allowed to dry without any internal tension or elongation, but does not apply to paper manufactured in a paper machine. The paper machine introduces tension and elongation as soon as the fibre is placed on the forming fabric. These factors increase through the press section and are accentuated in the drying section. In order to uniquely measure the fibre orientation anisotropy on the surfaces, the proposed method uses replicas of both paper surfaces to produce a laser diffraction pattern. The obtained pattern reveals an elliptical shape, which is related to the fibre orientation anisotropy of the paper surface. By measuring the ellipticity of the diffraction pattern and the deviation with respect to the machine direction, one can quantify the fibre orientation distribution. Different papers from the bench market have been successfully tested with the developed system. This article describes the new developed optical system and its innovative capabilities in the field to produce maps of the fibre orientation of a complete paper sheet surface. A selection of the obtained results to prove its feasibility is also presented.
The development and evaluation of head probes for optical imaging of the infant head
NASA Astrophysics Data System (ADS)
Branco, Gilberto
The objective of this thesis was to develop and evaluate optical imaging probes for mapping oxygenation and haemodynamic changes in the newborn infant brain. Two imaging approaches are being developed at University College London (UCL): optical topography (surface mapping of the cortex) and optical tomography (volume imaging). Both have the potential to provide information about the function of the normal brain and about a variety of neurophysiologies! abnormalities. Both techniques require an array of optical fibres/fibre bundles to be held in contact with the head, for periods of time from tens of seconds to an hour or more. The design of suitable probes must ensure the comfort and safety of the subject, and provide measurements minimally sensitive to external sources of light and patient motion. A series of prototype adaptable helmets were developed for optical tomography of the premature infant brain using the UCL 32-channel time-resolved system. They were required to attach 32 optical fibre bundles over the infant scalp, and were designed to accommodate infants with a variety of head shapes and sizes, aged between 24-weeks gestational age and term. Continual improvements to the helmet design were introduced following the evaluation of each prototype on infants in the hospital. Data were acquired to generate images revealing the concentration and oxygenation of blood in the brain, and the response of the brain to sensory stimulation. This part of the project also involved designing and testing new methods of acquiring calibration data using reference phantoms. The second focus of the project was the development of probes for use with the UCL frequency-multiplexed near-infrared topography system. This is being used to image functional activation in the infant cortex. A series of probes were developed and experiments were conducted to evaluate their sensitivity to patient motion and to compression of the probe. The probes have been used for a variety of functional activation studies.
NASA Astrophysics Data System (ADS)
Mckeeman, I.; Fusiek, G.; Perry, M.; Johnston, M.; Saafi, M.; Niewczas, P.; Walsh, M.; Khan, S.
2016-09-01
In this work we present the first large-scale demonstration of metal packaged fibre Bragg grating sensors developed to monitor prestress levels in prestressed concrete. To validate the technology, strain and temperature sensors were mounted on steel prestressing strands in concrete beams and stressed up to 60% of the ultimate tensile strength of the strand. We discuss the methods and calibration procedures used to fabricate and attach the temperature and strain sensors. The use of induction brazing for packaging the fibre Bragg gratings and welding the sensors to prestressing strands eliminates the use of epoxy, making the technique suitable for high-stress monitoring in an irradiated, harsh industrial environment. Initial results based on the first week of data after stressing the beams show the strain sensors are able to monitor prestress levels in ambient conditions.
Ultrafast laser inscription of 3D components for spatial multiplexing
NASA Astrophysics Data System (ADS)
Thomson, Robert R.
2016-02-01
The thirst for bandwidth in telecommunications networks is becoming ever larger due to bandwidth hungry applications such as video-on-demand. To further increase the bandwidth capacity, engineers are now seeking to imprint information on the last remaining degree of freedom of the lightwave carrier - space. This has given rise to the field of Space Division Multiplexing (SDM). In essence, the concept of SDM simple; we aim to use the different spatial modes of an optical fibre as multiplexed data transmission channels. These modes could either be in the form of separate singlemodes in a multicore optical fibre, individual spatial modes of a multimode fibre, or indeed the individual spatial modes of a multimode multicore optical fibre. Regardless of the particular "flavour" of SDM in question, it is clear that significant interfacing issues exist between the optical fibres used in SDM and the conventional single-mode planar lightwave circuits that are essential to process the light (e.g. arrayed waveguide gratings and splitters), and efficient interconnect technologies will be required. One fabrication technology that has emerged as a possible route to solve these interconnection issues is ultrafast laser inscription (ULI), which relies on the use of focused ultrashort laser pulses to directly inscribe three-dimensional waveguide structures inside a bulk dielectric. In this paper, I describe some of the work that has been conducted around the world to apply the unique waveguide fabrication capabilities of ULI to the development of 3D photonic components for applications in SDM.
ERIC Educational Resources Information Center
Ruddock, Ivan S.
2009-01-01
The derivation and description of the modes in optical waveguides and fibres are reviewed. The version frequently found in undergraduate textbooks is shown to be incorrect and misleading due to the assumption of an axial ray of light corresponding to the lowest order mode. It is pointed out that even the lowest order must still be represented in…
3D printed sensing patches with embedded polymer optical fibre Bragg gratings
NASA Astrophysics Data System (ADS)
Zubel, Michal G.; Sugden, Kate; Saez-Rodriguez, D.; Nielsen, K.; Bang, O.
2016-05-01
The first demonstration of a polymer optical fibre Bragg grating (POFBG) embedded in a 3-D printed structure is reported. Its cyclic strain performance and temperature characteristics are examined and discussed. The sensing patch has a repeatable strain sensitivity of 0.38 pm/μepsilon. Its temperature behaviour is unstable, with temperature sensitivity values varying between 30-40 pm/°C.
Multiplexed single-mode wavelength-to-time mapping of multimode light
Chandrasekharan, Harikumar K; Izdebski, Frauke; Gris-Sánchez, Itandehui; Krstajić, Nikola; Walker, Richard; Bridle, Helen L.; Dalgarno, Paul A.; MacPherson, William N.; Henderson, Robert K.; Birks, Tim A.; Thomson, Robert R.
2017-01-01
When an optical pulse propagates along an optical fibre, different wavelengths travel at different group velocities. As a result, wavelength information is converted into arrival-time information, a process known as wavelength-to-time mapping. This phenomenon is most cleanly observed using a single-mode fibre transmission line, where spatial mode dispersion is not present, but the use of such fibres restricts possible applications. Here we demonstrate that photonic lanterns based on tapered single-mode multicore fibres provide an efficient way to couple multimode light to an array of single-photon avalanche detectors, each of which has its own time-to-digital converter for time-correlated single-photon counting. Exploiting this capability, we demonstrate the multiplexed single-mode wavelength-to-time mapping of multimode light using a multicore fibre photonic lantern with 121 single-mode cores, coupled to 121 detectors on a 32 × 32 detector array. This work paves the way to efficient multimode wavelength-to-time mapping systems with the spectral performance of single-mode systems. PMID:28120822
A double-fibre Fabry-Perot sensor based on modified fringe counting and direct phase demodulation
NASA Astrophysics Data System (ADS)
Li, M.; Tong, B.; Arsad, N.; Guo, J. J.
2013-09-01
A modified double-fibre Fabry-Perot cavity is developed for determination of the fringe moving direction and higher sensitivity in applications of liquid level and displacement sensors. Two fibres are integrated into a silica ferrule where the ends of the two fibres in the ferrule serve as the front surfaces of the Fabry-Perot cavities, and a diaphragm, which is replaced by a moving mirror for measurement of displacement, serves as the rear surface for both cavities in liquid level sensing. Our design has no strict requirements for a specific phase difference between the two optical paths, just a constant difference resulting from the processing error between the two fibre end positions rather than a precise optical path difference of λ/8 to judge the pattern shift direction. Experimental results demonstrate the feasibility of this approach to determining the fringe moving direction, a displacement sensitivity of 3 µm and good linearity for both applications.
Chemiluminescent DNA optical fibre sensor for Brettanomyces bruxellensis detection.
Cecchini, Francesca; Manzano, Marisa; Mandabi, Yohai; Perelman, Eddie; Marks, Robert S
2012-01-01
Food and beverage industries require rapid tests to limit economic losses and one way to do so is via molecular tests. In the present work, DNA capture and secondary probes, were designed to target the ITS (Internal Transcribed) sequences of Brettanomyces bruxellensis, a yeast responsible for the production of off flavours in both wine and beer. ITS1 and ITS2 were found to contain distinct regions with sufficient sequence divergence to make them suitable as specific identification target sites. The dot blot technique was used to determine the sensitivity and specificity of the capture probe. Both probes were, thereafter, adapted to construct an optical fibre genosensor, which produced neither false positives nor false negatives, and was both repeatable and faster with respect to traditional methods, the latter requiring at least one week to detect B. bruxellensis. Copyright © 2011 Elsevier B.V. All rights reserved.
Rahim, Ruzairi Abdul; Fazalul Rahiman, Mohd Hafiz; Leong, Lai Chen; Chan, Kok San; Pang, Jon Fea
2008-01-01
The main objective of this project is to implement the multiple fan beam projection technique using optical fibre sensors with the aim to achieve a high data acquisition rate. Multiple fan beam projection technique here is defined as allowing more than one emitter to transmit light at the same time using the switch-mode fan beam method. For the thirty-two pairs of sensors used, the 2-projection technique and 4-projection technique are being investigated. Sixteen sets of projections will complete one frame of light emission for the 2-projection technique while eight sets of projection will complete one frame of light emission for the 4-projection technique. In order to facilitate data acquisition process, PIC microcontroller and the sample and hold circuit are being used. This paper summarizes the hardware configuration and design for this project. PMID:27879885
NASA Astrophysics Data System (ADS)
Maher, Robert; Alvarado, Alex; Lavery, Domaniç; Bayvel, Polina
2016-02-01
Optical fibre underpins the global communications infrastructure and has experienced an astonishing evolution over the past four decades, with current commercial systems transmitting data rates in excess of 10 Tb/s over a single fibre core. The continuation of this dramatic growth in throughput has become constrained due to a power dependent nonlinear distortion arising from a phenomenon known as the Kerr effect. The mitigation of fibre nonlinearities is an area of intense research. However, even in the absence of nonlinear distortion, the practical limit on the transmission throughput of a single fibre core is dominated by the finite signal-to-noise ratio (SNR) afforded by current state-of-the-art coherent optical transceivers. Therefore, the key to maximising the number of information bits that can be reliably transmitted over a fibre channel hinges on the simultaneous optimisation of the modulation format and code rate, based on the SNR achieved at the receiver. In this work, we use an information theoretic approach based on the mutual information and the generalised mutual information to characterise a state-of-the-art dual polarisation m-ary quadrature amplitude modulation transceiver and subsequently apply this methodology to a 15-carrier super-channel to achieve the highest throughput (1.125 Tb/s) ever recorded using a single coherent receiver.
Opto-mechanical lab-on-fibre seismic sensors detected the Norcia earthquake.
Pisco, Marco; Bruno, Francesco Antonio; Galluzzo, Danilo; Nardone, Lucia; Gruca, Grzegorz; Rijnveld, Niek; Bianco, Francesca; Cutolo, Antonello; Cusano, Andrea
2018-04-27
We have designed and developed lab-on-fibre seismic sensors containing a micro-opto-mechanical cavity on the fibre tip. The mechanical cavity is designed as a double cantilever suspended on the fibre end facet and connected to a proof mass to tune its response. Ground acceleration leads to displacement of the cavity length, which in turn can be remotely detected using an interferometric interrogation technique. After the sensors characterization, an experimental validation was conducted at the Italian National Institute of Geophysics and Volcanology (INGV), which is responsible for seismic surveillance over the Italian country. The fabricated sensors have been continuously used for long periods to demonstrate their effectiveness as seismic accelerometer sensors. During the tests, fibre optic seismic accelerometers clearly detected the seismic sequence that culminated in the severe Mw6.5 Norcia earthquake that struck central Italy on October 30, 2016. The seismic data provided by the optical sensors were analysed by specialists at the INGV. The wave traces were compared with state-of-the-art traditional sensors typically incorporated into the INGV seismic networks. The comparison verifies the high fidelity of the optical sensors in seismic wave detection, indicating their suitability for a novel class of seismic sensors to be employed in practical scenarios.
NASA Astrophysics Data System (ADS)
O'Farrell, M.; Sheridan, C.; Lewis, E.; Zhao, W. Z.; Sun, T.; Grattan, K. T. V.; Kerry, J.; Jackman, N.
2007-07-01
This paper reports on an optical fibre based sensor system to detect the occurrence of premature browning in ground beef. Premature browning (PMB) occurs when, at a temperature below the pasteurisation temperature of 71°C, there are no traces of pink meat left in the patty. PMB is more frequent if poorer quality beef or beef that has been stored under imperfect conditions. The experimental work pertaining to this paper involved cooking fresh meat and meat that has been stored in a freezer for, 1 week, 1 month and 3 months and recording the reflected spectra and temperature at the core of the product, during the cooking process, in order to develop a classifier based on the spectral response and using a Self-Organising Map (SOM) to classify the patties into one of four categories, based on their colour. Further tests were also carried out on developing an all-optical fibre sensor for measuring both the temperature and colour in a single integrated probe. The integrated probe contains two different sensor concepts, one to monitor temperature, based on Fibre Bragg Grating (FBG) technology and a second for meat quality, based on reflection spectroscopy in the visible wavelength range.
In the trail of a new bio-sensor for measuring strain in bone: osteoblastic biocompatibility.
Carvalho, Lídia; Alberto, Nélia J; Gomes, Pedro S; Nogueira, Rogério N; Pinto, João L; Fernandes, Maria H
2011-06-15
Fibre Bragg Grating (FBG) is an optical sensor recorded within the core of a standard optical fibre, which responds faithfully to strain and temperature. FBG sensors are a promising alternative to other sensing methodologies to assess bone mechanics in vivo. However, response of bone cells/bone tissue to FBGs and its sensing capability in this environment have not been recorded yet. The present study addressed these issues in long-term human osteoblastic cell cultures. Results showed that osteoblastic cells were able to adhere and proliferate over the fibre and, also, the protective polymer coating. RT-PCR analysis showed the expression of Col I, ALP, BMP-2, M-CSF, RANKL and OPG. In addition, cultures presented high ALP activity and the formation of a calcium phosphate mineralized extracellular matrix. Cell behavior over the fibre without and with the coating polymer was similar to that found in cultures grown in standard tissue culture plates (control). In addition to the excellent osteoblastic cytocompatibility, FBGs maintained the physical integrity and functionality, as its sensing capability was not affected through the culture period. Results suggest the possibility of in vivo osseointegration of the optical fibre/FBGs anticipating a variety of applications in bone mechanical dynamics. Copyright © 2011 Elsevier B.V. All rights reserved.
Maher, Robert; Alvarado, Alex; Lavery, Domaniç; Bayvel, Polina
2016-01-01
Optical fibre underpins the global communications infrastructure and has experienced an astonishing evolution over the past four decades, with current commercial systems transmitting data rates in excess of 10 Tb/s over a single fibre core. The continuation of this dramatic growth in throughput has become constrained due to a power dependent nonlinear distortion arising from a phenomenon known as the Kerr effect. The mitigation of fibre nonlinearities is an area of intense research. However, even in the absence of nonlinear distortion, the practical limit on the transmission throughput of a single fibre core is dominated by the finite signal-to-noise ratio (SNR) afforded by current state-of-the-art coherent optical transceivers. Therefore, the key to maximising the number of information bits that can be reliably transmitted over a fibre channel hinges on the simultaneous optimisation of the modulation format and code rate, based on the SNR achieved at the receiver. In this work, we use an information theoretic approach based on the mutual information and the generalised mutual information to characterise a state-of-the-art dual polarisation m-ary quadrature amplitude modulation transceiver and subsequently apply this methodology to a 15-carrier super-channel to achieve the highest throughput (1.125 Tb/s) ever recorded using a single coherent receiver. PMID:26864633
NASA Astrophysics Data System (ADS)
Schilder, Constanze; Kohlhoff, Harald; Hofmann, Detlef; Basedau, Frank; Habel, Wolfgang R.; Baeßler, Matthias; Niederleithinger, Ernst; Georgi, Steven; Herten, Markus
2013-05-01
Static and dynamic pile tests are carried out to determine the load bearing capacity and the quality of reinforced concrete piles. As part of a round robin test to evaluate dynamic load tests, structure integrated fibre optic strain sensors were used to receive more detailed information about the strains along the pile length compared to conventional measurements at the pile head. This paper shows the instrumentation of the pile with extrinsic Fabry-Perot interferometers sensors and fibre Bragg gratings sensors together with the results of the conducted static load test as well as the dynamic load tests and pile integrity tests.
Generating a stationary infinite range tractor force via a multimode optical fibre
NASA Astrophysics Data System (ADS)
Ebongue, C. A.; Holzmann, D.; Ostermann, S.; Ritsch, H.
2017-06-01
Optical fibres confine and guide light almost unattenuated and thus convey light forces to polarizable nano-particles over very long distances. Radiation pressure forces arise from scattering of guided photons into free space while gradient forces are based on coherent scattering between different fibre modes or propagation directions. Interestingly, even scattering between co-propagating modes induces longitudinal forces as the transverse confinement of the light modes creates mode dependent longitudinal wave-vectors and photon momenta. We generalize a proven scattering matrix based approach to calculate single as well as inter-particle forces to include several forward and backward propagating modes. We show that an injection of the higher order mode only in a two mode fibre will induce a stationary tractor force against the injection direction, when the mode coupling to the lower order mode dominates against backscattering and free space losses. Generically this arises for non-absorbing particles at the centre of a waveguide. The model also gives improved predictions for inter-particle forces in evanescent nanofibre fields as experimentally observed recently. Surprisingly strong tractor forces can also act on whole optically bound arrays.
NASA Astrophysics Data System (ADS)
Hromadka, J.; Korposh, S.; Partridge, M. C.; James, S.; Davis, F.; Crump, D.; Lee, S.-W.; Tatam, R. P.
2017-04-01
An array of three long period gratings (LPGs) fabricated in a single optical fibre and multiplexed in the wavelength domain was used to measure simultaneously temperature, relative humidity (RH) and volatile organic compounds (VOCs). Each LPG sensor was designed to optimize its response to a desired measurand. The LPGs were fabricated with periods such that they operated at or near the phase matching turning point. The sensors were calibrated in the laboratory and the simultaneous measurement of the key indoor air quality parameters was undertaken in laboratory and office environments. It was demonstrated successfully that the data produced by the LPG sensor array under real conditions was in a good agreement with that produced by commercially available sensors. Further, the potential application of fibre optic sensors for VOCs detection at high levels has been demonstrated.
NASA Astrophysics Data System (ADS)
Gorshkov, B. G.; Taranov, M. A.
2018-02-01
A new type of sensor for simultaneous measurements of strain and temperature changes in an optical fibre is proposed. Its operation builds on the use of Raman optical time-domain reflectometry and wavelength-tunable quasi-monochromatic Rayleigh reflectometry implemented using a microelectromechanical filter (MEMS). The sensor configuration includes independent Raman and Rayleigh scattering channels. Our experiments have demonstrated that, at a sensing fibre length near 8 km, spatial resolution of 1-2 m, and measurement time of 10 min, the noise level (standard deviation) is 1.1 μɛ (μm m-1) for the measured tension change (at small temperature deviations) and 0.04 °C for the measured temperature change, which allows for effective sensing of mechanical and temperature influences with improved accuracy.
NASA Astrophysics Data System (ADS)
Kuang, K. S. C.; Cantwell, W. J.
2003-08-01
This paper reports the use of a plastic fibre sensor for detecting impact damage in carbon fibre epoxy cantilever beams by monitoring their damping response under free vibration loading conditions. The composite beams were impacted at impact energies up to 8 J. The residual strengths and stiffnesses of the damaged laminates were measured in order to relate reductions in their mechanical properties to changes in their damping characteristics. Here, optical fibre sensors were surface bonded to carbon fibre composite beams which were subjected to free vibration tests to monitor their dynamic response. In the second part of this study, Ni-Ti shape memory alloy (SMA) wires were employed to control and modify the damping response of a composite beam. The SMA wires were initially trained to obtain the desired shape when activated. Here, the trained SMA wires were heated locally using a nickel/chromium wire that was wrapped around the trained region of the SMA. By using this method to activate the SMA wire (as opposed to direct electrical heating), it is possible to obtain localized actuation without heating the entire length of the wire. This procedure minimizes any damage to the host material that may result from local heat transfer between the SMA wire and the composite structure. In addition, the reduction in power requirements to achieve SMA activation permits the use of small-size power packs which can in turn lead to a potential weight reduction in weight-critical applications. The findings of this study demonstrate that a trained SMA offers a superior damping capability to that exhibited by an 'as-supplied' flat-annealed wire.
Neural organisation in the first optic ganglion of the nocturnal bee Megalopta genalis.
Greiner, Birgit; Ribi, Willi A; Wcislo, William T; Warrant, Eric J
2004-11-01
Each neural unit (cartridge) in the first optic ganglion (lamina) of the nocturnal bee Megalopta genalis contains nine receptor cell axons (6 short and 3 long visual fibres), and four different types of first-order interneurons, also known as L-fibres (L1 to L4) or lamina monopolar cells. The short visual fibres terminate within the lamina as three different types (svf 1, 2, 3). The three long visual fibres pass through the lamina without forming characteristic branching patterns and terminate in the second optic ganglion, the medulla. The lateral branching pattern of svf 2 into adjacent cartridges is unique for hymenopterans. In addition, all four types of L-fibres show dorso-ventrally arranged, wide, lateral branching in this nocturnal bee. This is in contrast to the diurnal bees Apis mellifera and Lasioglossum leucozonium, where only two out of four L-fibre types (L2 and L4) reach neighbouring cartridges. In M. genalis, L1 forms two sub-types, viz. L1-a and L1-b; L1-b in particular has the potential to contact several neighbouring cartridges. L2 and L4 in the nocturnal bee are similar to L2 and L4 in the diurnal bees but have dorso-ventral arborisations that are twice as wide. A new type of laterally spreading L3 has been discovered in the nocturnal bee. The extensive neural branching pattern of L-fibres in M. genalis indicates a potential role for these neurons in the spatial summation of photons from large groups of ommatidia. This specific adaptation in the nocturnal bee could significantly improve reliability of vision in dim light.
PH Sensor Using A LED Source In A Fibre Optic Device
NASA Astrophysics Data System (ADS)
Grattan, K. T.; Mouaziz, Z.; Selli, R. K.
1987-10-01
Fibre optic pH sensors, for use in acid-base titrations, have been developed which use two wavelengths, in one case from two LEDs and in the other an internally generated reference replaces one of the LEDs, to sense the change in absorption of an indicator dye and provide a reference channel. A description of the construction and calibrated response of these inexpensive sensing devices is given.
Properties of bright solitons in averaged and unaveraged models for SDG fibres
NASA Astrophysics Data System (ADS)
Kumar, Ajit; Kumar, Atul
1996-04-01
Using the slowly varying envelope approximation and averaging over the fibre cross-section the evolution equation for optical pulses in semiconductor-doped glass (SDG) fibres is derived from the nonlinear wave equation. Bright soliton solutions of this equation are obtained numerically and their properties are studied and compared with those of the bright solitons in the unaveraged model.
NASA Astrophysics Data System (ADS)
Theodosiou, Antreas; Kalli, Kyriacos; Komodromos, Michael
2017-04-01
We report on the femtosecond laser inscription of a fibre Bragg grating array in multimode, gradient-index, CYTOP polymer optical fibre and its demonstration as a quasi-distributed sensor for cantilever health monitoring measurements. We exploit the key advantage of polymer optical fibres, having a significantly lower Young's modulus compared with silica fibres, for vibration measurements. We also modify the typical multi-mode Bragg grating spectrum through control of the femtosecond laser inscription process, thereby producing gratings having single peak wavelength spectra. The sensor array is used to recover the time-dependent, wavelength response from each Bragg grating sensor and extract the mode shape of the beam. The mode shapes of the beam were used to observe "damage" introduced to the cantilever by adding masses to its surface; adjusting the level of damage by using different weights and placing them at different point across the beam. We show that health monitoring measurements are feasible with polymer based fibre Bragg gratings. The accurate and rapid detection of damage points on structural beams and the damage level is an important parameter for improved maintenance and servicing of beams under load and for the prevention of long-term damage.
NASA Astrophysics Data System (ADS)
Siwicki, Bartłomiej; Kasztelanic, Rafał; Klimczak, Mariusz; Cimek, Jarosław; Pysz, Dariusz; Stępień, Ryszard; Buczyński, Ryszard
2016-06-01
The bandwidth of coherent supercontinuum generated in optical fibres is strongly determined by the all-normal dispersion characteristic of the fibre. We investigate all-normal dispersion limitations in all-solid oxide-based soft glass photonic crystal fibres with various relative inclusion sizes and lattice constants. The influence of material dispersion on fibre dispersion characteristics for a selected pair of glasses is also examined. A relation between the material dispersion of the glasses and the fibre dispersion has been described. We determined the parameters which limit the maximum range of flattened all-normal dispersion profile achievable for the considered pair of heavy-metal-oxide soft glasses.
Wang, Zhixiang; Jones, Gordon R.; Spencer, Joseph W.; Wang, Xiaohua; Rong, Mingzhe
2017-01-01
Contact erosion is one of the most crucial factors affecting the electrical service lifetime of high-voltage circuit breakers (HVCBs). On-line monitoring the contacts’ erosion degree is increasingly in demand for the sake of condition based maintenance to guarantee the functional operation of HVCBs. A spectroscopic monitoring system has been designed based upon a commercial 245 kV/40 kA SF6 live tank circuit breaker with copper–tungsten (28 wt % and 72 wt %) arcing contacts at atmospheric SF6 pressure. Three optical-fibre based sensors are used to capture the time-resolved spectra of arcs. A novel approach using chromatic methods to process the time-resolved spectral signal has been proposed. The processed chromatic parameters have been interpreted to show that the time variation of spectral emission from the contact material and quenching gas are closely correlated to the mass loss and surface degradation of the plug arcing contact. The feasibility of applying this method to online monitoring of contact erosion is indicated. PMID:28272295
Wang, Zhixiang; Jones, Gordon R; Spencer, Joseph W; Wang, Xiaohua; Rong, Mingzhe
2017-03-06
Contact erosion is one of the most crucial factors affecting the electrical service lifetime of high-voltage circuit breakers (HVCBs). On-line monitoring the contacts' erosion degree is increasingly in demand for the sake of condition based maintenance to guarantee the functional operation of HVCBs. A spectroscopic monitoring system has been designed based upon a commercial 245 kV/40 kA S F 6 live tank circuit breaker with copper-tungsten (28 wt % and 72 wt %) arcing contacts at atmospheric S F 6 pressure. Three optical-fibre based sensors are used to capture the time-resolved spectra of arcs. A novel approach using chromatic methods to process the time-resolved spectral signal has been proposed. The processed chromatic parameters have been interpreted to show that the time variation of spectral emission from the contact material and quenching gas are closely correlated to the mass loss and surface degradation of the plug arcing contact. The feasibility of applying this method to online monitoring of contact erosion is indicated.
Gál, Lukáš; Čeppan, Michal; Reháková, Milena; Dvonka, Vladimír; Tarajčáková, Jarmila; Hanus, Jozef
2013-11-01
A method has been developed for identification of corrosive iron-gall inks in historical drawings and documents. The method is based on target-factor analysis of visible-near infrared fibre optic reflection spectra (VIS-NIR FORS). A set of reference spectra was obtained from model samples of laboratory-prepared inks covering a wide range of mixing ratios of basic ink components deposited on substrates and artificially aged. As criteria for correspondence of a studied spectrum with a reference spectrum, the apparent error in target (AET) and the empirical function SPOIL according to Malinowski were used. The capability of the proposed tool to distinguish corrosive iron-gall inks from bistre and sepia inks was evaluated by use of a set of control samples of bistre, sepia, and iron-gall inks. Examples are presented of analysis of historical drawings from the 15th and 16th centuries and written documents from the 19th century. The results of analysis based on the tool were confirmed by XRF analysis and colorimetric spot analysis.
Solar system for exploitation of the whole collected energy
NASA Astrophysics Data System (ADS)
Ciamberlini, C.; Francini, F.; Longobardi, G.; Piattelli, M.; Sansoni, P.
2003-09-01
An innovative architecture for the exploitation of the whole collected solar energy is described. A sun pointing optical concentrator focuses the received energy, containing the part of the required solar spectrum, in a low loss optical fibre transmission line. The optical panel is small in size and able to follow the sun in order to collect the maximum of its energy. The support is flat, 5 mm thick and includes four optical concentrators. The efficiency of the optical system depends on the optical configuration and on the material utilised for the optical components. Single commercial connector to the fixed fibres connects the fibre optics' four free ends. The energy is therefore properly transported to any user's end with an easy installation. The system was experimented for lightening, during the day, dissipated in a dark load in order to produce heat in some equipment and for photovoltaic applications. The total efficiency of the system was between 68% and 72%. Once the solar energy reaches the end of the transmission line, it can be addressed to the required utilisation by means of an optical switch, which redirects the sunlight towards the desired applicator. This procedure allows utilising the 100% of the sun-collected energy. Since the size of the panel was small, it can be placed, on the roof, on the garden, on the window-sill, on the field and on all sides exposed to sunlight.
Hashim, S; Al-Ahbabi, S; Bradley, D A; Webb, M; Jeynes, C; Ramli, A T; Wagiran, H
2009-03-01
Modern linear accelerators, the predominant teletherapy machine in major radiotherapy centres worldwide, provide multiple electron and photon beam energies. To obtain reasonable treatment times, intense electron beam currents are achievable. In association with this capability, there is considerable demand to validate patient dose using systems of dosimetry offering characteristics that include good spatial resolution, high precision and accuracy. Present interest is in the thermoluminescence response and dosimetric utility of commercially available doped optical fibres. The important parameter for obtaining the highest TL yield during this study is to know the dopant concentration of the SiO2 fibre because during the production of the optical fibres, the dopants tend to diffuse. To achieve this aim, proton-induced X-ray emission (PIXE), which has no depth resolution but can unambiguously identify elements and analyse for trace elements with detection limits approaching microg/g, was used. For Al-doped fibres, the dopant concentration in the range 0.98-2.93 mol% have been estimated, with equivalent range for Ge-doped fibres being 0.53-0.71 mol%. In making central-axis irradiation measurements a solid water phantom was used. For 6-MV photons and electron energies in the range 6, 9 and 12 MeV, a source to surface distance of 100 cm was used, with a dose rate of 400 cGy/min for photons and electrons. The TL measurements show a linear dose-response over the delivered range of absorbed dose from 1 to 4 Gy. Fading was found to be minimal, less than 10% over five days subsequent to irradiation. The minimum detectable dose for 6-MV photons was found to be 4, 30 and 900 microGy for TLD-100 chips, Ge- and Al-doped fibres, respectively. For 6-, 9- and 12-MeV electron energies, the minimum detectable dose were in the range 3-5, 30-50 and 800-1400 microGy for TLD-100 chip, Ge-doped and Al-doped fibres, respectively.
NASA Technical Reports Server (NTRS)
Rakow, Glenn
2007-01-01
This viewgraph presentation discusses the future use of SpaceFibre, a high speed optical extension to the SpaceWire, for NASA and DOD missions. NASA, and US industries would like to work with the European developers currently working on this standard.
A VLBI experiment using a remote atomic clock via a coherent fibre link
Clivati, Cecilia; Ambrosini, Roberto; Artz, Thomas; Bertarini, Alessandra; Bortolotti, Claudio; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Maccaferri, Giuseppe; Nanni, Mauro; Negusini, Monia; Perini, Federico; Roma, Mauro; Stagni, Matteo; Zucco, Massimo; Calonico, Davide
2017-01-01
We describe a VLBI experiment in which, for the first time, the clock reference is delivered from a National Metrology Institute to a radio telescope using a coherent fibre link 550 km long. The experiment consisted of a 24-hours long geodetic campaign, performed by a network of European telescopes; in one of those (Medicina, Italy) the local clock was alternated with a signal generated from an optical comb slaved to a fibre-disseminated optical signal. The quality of the results obtained with this facility and with the local clock is similar: interferometric fringes were detected throughout the whole 24-hours period and it was possible to obtain a solution whose residuals are comparable to those obtained with the local clock. These results encourage further investigation of the ultimate VLBI performances achievable using fibre dissemination at the highest precision of state-of-the-art atomic clocks. PMID:28145451
A VLBI experiment using a remote atomic clock via a coherent fibre link.
Clivati, Cecilia; Ambrosini, Roberto; Artz, Thomas; Bertarini, Alessandra; Bortolotti, Claudio; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Maccaferri, Giuseppe; Nanni, Mauro; Negusini, Monia; Perini, Federico; Roma, Mauro; Stagni, Matteo; Zucco, Massimo; Calonico, Davide
2017-02-01
We describe a VLBI experiment in which, for the first time, the clock reference is delivered from a National Metrology Institute to a radio telescope using a coherent fibre link 550 km long. The experiment consisted of a 24-hours long geodetic campaign, performed by a network of European telescopes; in one of those (Medicina, Italy) the local clock was alternated with a signal generated from an optical comb slaved to a fibre-disseminated optical signal. The quality of the results obtained with this facility and with the local clock is similar: interferometric fringes were detected throughout the whole 24-hours period and it was possible to obtain a solution whose residuals are comparable to those obtained with the local clock. These results encourage further investigation of the ultimate VLBI performances achievable using fibre dissemination at the highest precision of state-of-the-art atomic clocks.
Multi-phase-fluid discrimination with local fibre-optical probes: III. Three-phase flows
NASA Astrophysics Data System (ADS)
Fordham, E. J.; Ramos, R. T.; Holmes, A.; Simonian, S.; Huang, S.-M.; Lenn, C. P.
1999-12-01
Local fibre-optical sensors (or `local probes') for immiscible-fluid discrimination are demonstrated in three-phase (oil/water/gas) flows. The probes are made from standard silica fibres with plane oblique facets polished at the fibre tip, with surface treatment for wettability control. They use total internal reflection to distinguish among drops, bubbles and other regions of fluid in multi-phase flows, on the basis of refractive-index contrast. Dual probes, using two sensors each with a quasi-binary output, are used to determine profiles of three-phase volume fraction in a flow of kerosene, water and air in a pipe. The individual sensors used discriminate oil from `not-oil' and gas from liquid; their logical combination discriminates among the three phases. Companion papers deal with the sensor designs used and quantitative results achieved in the simpler two-phase cases of liquid/liquid flows and gas/liquid flows.
A VLBI experiment using a remote atomic clock via a coherent fibre link
NASA Astrophysics Data System (ADS)
Clivati, Cecilia; Ambrosini, Roberto; Artz, Thomas; Bertarini, Alessandra; Bortolotti, Claudio; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Maccaferri, Giuseppe; Nanni, Mauro; Negusini, Monia; Perini, Federico; Roma, Mauro; Stagni, Matteo; Zucco, Massimo; Calonico, Davide
2017-02-01
We describe a VLBI experiment in which, for the first time, the clock reference is delivered from a National Metrology Institute to a radio telescope using a coherent fibre link 550 km long. The experiment consisted of a 24-hours long geodetic campaign, performed by a network of European telescopes; in one of those (Medicina, Italy) the local clock was alternated with a signal generated from an optical comb slaved to a fibre-disseminated optical signal. The quality of the results obtained with this facility and with the local clock is similar: interferometric fringes were detected throughout the whole 24-hours period and it was possible to obtain a solution whose residuals are comparable to those obtained with the local clock. These results encourage further investigation of the ultimate VLBI performances achievable using fibre dissemination at the highest precision of state-of-the-art atomic clocks.
NASA Astrophysics Data System (ADS)
Papa, A.; Kettle, P.-R.; Ripiccini, E.; Rutar, G.
2016-07-01
Several scintillating fibre prototypes (single- and double-layers) made of 250 μm multi-clad square fibres coupled to silicon photomultiplier have been studied using electrons, positrons and muons at different energies. Current measurements show promising results: already for a single fibre layer and minimum ionizing particles we obtain a detection efficiency ≥ 95 % (mean collected light/fibre ≈ 8 phe), a timing resolution of 550 ps/fibre and a foreseen spatial resolution < 100 μm, based on the achieved negligible optical cross-talk between fibres (< 1 %). We will also discuss the performances of a double-layer staggered prototype configuration, for which a full detection efficiency (≥ 99 %) has been measured together with a timing resolution of ≈ 400 ps for double hit events.
Fabrication et caracterisation d'hybrides optiques tout-fibre
NASA Astrophysics Data System (ADS)
Madore, Wendy Julie
In this thesis, we present the fabrication and characterization of optical hybrids made of all fibre 3 × 3 and 4 × 4 couplers. The three-fibre components are made with a triangular cross section, while the four-fibre components are made with a square cross section. All of these couplers have to exhibit equipartition of output amplitudes and specific relative phases of the output signals to be referred to as optical hybrids. These two types of couplers are first modelled to determine the appropriate set of experimental parameters to make hybrids out of them. The prototypes are made in standard telecommunication fibres and then characterized to quantify the performances in transmission and in phase. The objectives of this work is first to model the behaviour and physical properties of 3×3 and 4 × 4 couplers to make sure they can meet the requirements of optical hybrids with an appropriate set of fabrication parameters. The next step is to make prototypes of these 3×3 and 4 × 4 couplers and test their behaviour to check how they fulfill the requirements of optical hybrids. The experimental set-up selected is based on the fusion-tapering technique to make optical fibre components. The heat source is a micro-torch fuelled with a gas mix including propane and oxygen. This type of set-up gives the required freedom to adjust experimental parameters to suit both 3×3 and 4×4 couplers. The versatility of the set-up is also an advantage towards a repeatable and stable process to fuse and taper the different structures. The fabricated triangular-shape couplers have a total transmission of 85 % (-0,7 dB), the crossing is typically located around 1 550 nm with a transmission of around 33 % (-4 dB) per branch. In addition, the relative phases between the output signals are 120±9°. The fabricated square-shape couplers have a total transmission of 89 % (-0,5 dB) with a crossing around 1 550 nm and a transmission around 25 % (-6 dB) per branch. The relative phases between the output signals are 90±3°. As standard telecommunications fibres are used to make the couplers, the prototypes are compatible with all standard fibered set-ups and benches. The properties of optical hybrids are very interesting in coherent detection, where an unambiguous phase measurement is desired. For instance, some standard telecommunication systems use phase-shift keying (PSK), which means information is encoded in the phase of the electromagnetic wave. An all-optical decoding of signal is possible using optical hybrids. Another application is in biomedical imaging with techniques such as optical coherence tomography (OCT), or to a more general extend, profilometry systems. In state-of-the-art techniques, a conventional interferometer combined with Fourier analysis only gives absolute value of the phase. Therefore, the achievable imaging depth in the sample is decreased by a factor 2. Using optical hybrids would simply allow that unambiguous phase measurement, giving the sign and value of the phase at the same time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulchin, Yurii N; Vitrik, O B; Gurbatov, S O
The phase of light propagating through a bent optical fibre is shown to depend on the refractive index of the medium surrounding the fibre cladding when there is resonance coupling between the guided core mode and cladding modes. This shifts the spectral maxima in the bent fibre-optic Fabry - Perot interferometer. The highest phase and spectral sensitivities achieved with this interferometer configuration are 0.71 and 0.077, respectively, and enable changes in the refractive index of the ambient medium down to 5 Multiplication-Sign 10{sup -6} to be detected. This makes the proposed approach potentially attractive for producing highly stable, precision refractivemore » index sensors capable of solving a wide range of liquid refractometry problems.« less
Fibre cables in the lacunae of Typha leaves contribute to a tensegrity structure
Witztum, Allan; Wayne, Randy
2014-01-01
Background and Aims Cables composed of long, non-lignified fibre cells enclosed in a cover of much shorter thin-walled, crystal-containing cells traverse the air chambers (lacunae) in leaves of the taller species of Typha. The non-lignified fibre cables are anchored in diaphragms composed of stellate cells of aerenchyma tissue that segment the long air chambers into smaller compartments. Although the fibre cables are easily observed and can be pulled free from the porous-to-air diaphragms, their structure and function have been ignored or misinterpreted. Methods Leaves of various species of Typha were dissected and fibre cables were pulled free and observed with a microscope using bright-field and polarizing optics. Maximal tensile strength of freshly removed cables was measured by hanging weights from fibre cables, and Instron analysis was used to produce curves of load versus extension until cables broke. Key Results and Conclusions Polarized light microscopy revealed that the cellulose microfibrils that make up the walls of the cable fibres are oriented parallel to the long axis of the fibres. This orientation ensures that the fibre cables are mechanically stiff and strong under tension. Accordingly, the measured stiffness and tensile strength of the fibre cables were in the gigapascal range. In combination with the dorsal and ventral leaf surfaces and partitions that contain lignified fibre bundles and vascular strands that are strong in compression, the very fine fibre cables that are strong under tension form a tensegrity structure. The tensegrity structure creates multiple load paths through which stresses are redistributed throughout the 1–3 m tall upright leaves of Typha angustifolia, T. latifolia, T. × glauca, T. domingensis and T. shuttleworthii. The length of the fibre cables relative to the length of the leaf blades is reduced in the last-formed leaves of flowering individuals. Fibre cables are absent in the shorter leaves of Typha minima and, if present, only extend for a few centimetres from the sheath into the leaf blade of Typha laxmannii. The advantage of the structure of the Typha leaf blade, which enables stiffness to give way to flexibility under windy conditions, is discussed for both vegetative and flowering plants. PMID:24532647
High Efficiency Coupling of Optical Fibres with SU8 Micro-droplet Using Laser Welding Process
NASA Astrophysics Data System (ADS)
Yardi, Seema; Gupta, Ankur; Sundriyal, Poonam; Bhatt, Geeta; Kant, Rishi; Boolchandani, D.; Bhattacharya, Shantanu
2016-09-01
Apart from micro- structure fabrication, ablation, lithography etc., lasers find a lot of utility in various areas like precision joining, device fabrication, local heat delivery for surface texturing and local change of microstructure fabrication of standalone optical micro-devices (like microspheres, micro-prisms, micro-scale ring resonators, optical switches etc). There is a wide utility of such systems in chemical/ biochemical diagnostics and also communications where the standalone optical devices exist at a commercial scale but chip based devices with printed optics are necessary due to coupling issues between printed structures and external optics. This paper demonstrates a novel fabrication strategy used to join standalone optical fibres to microchip based printed optics using a simple SU8 drop. The fabrication process is deployed for fiber to fiber optical coupling and coupling between fiber and printed SU-8 waveguides. A CO2 laser is used to locally heat the coupling made up of SU8 material. Optimization of various dimensional parameters using design of experiments (DOE) on the bonded assembly has been performed as a function of laser power, speed, cycle control, spot size so on so forth. Exclusive optical [RF] modelling has been performed to estimate the transmissibility of the optical fibers bonded to each other on a surface with SU8. Our studies indicate the formation of a Whispering gallery mode (WGM) across the micro-droplet leading to high transmissibility of the signal. Through this work we have thus been able to develop a method of fabrication for optical coupling of standalone fibers or coupling of on-chip optics with off-chip illumination/detection.
A Novel Approach to the Sensing of Liquid Density Using a Plastic Optical Fibre Cantilever Beam
ERIC Educational Resources Information Center
Kulkarni, Atul; Kim, Youngjin; Kim, Taesung
2009-01-01
This article reports for the first time the use of a plastic optical fibre (POF) cantilever beam to measure the density of a liquid. The sensor is based on the Archimedes buoyancy principle. The sensor consists of a POF bonded on the surface of a metal beam in the form of a cantilever configuration, and at the free end of the beam a displacer is…
NASA Astrophysics Data System (ADS)
Romo-Medrano, Katya E.; Khotiaintsev, Sergei N.; García-Garduño, Victor
2004-08-01
An optical-fibre sensor system is presented for monitoring void fraction distribution in a spacecraft's gas and propellant centrifuge separator. The system could be used at the separator development stage or for monitoring, during ground tests, the elements of the spacecraft propulsion system. Our sensor system employs an array of point optical-fibre refractometric transducers installed in the form of several linear radial arrays on the separator rotating blades. We employed a small-size hemispherical optical detection element as the transducer and we optimized its parameters through numerical ray-tracing. The aim is to minimize the effect of the thin film of liquid that forms on the transducer's surface in this application. The features of this sensor system are: (1) an efficient matrix-type multiplexing scheme, (2) the installation of the main optoelectronic unit of the sensor in a hermetically sealed container inside the separator tank located on the rotating shaft and (3) the spark-proof and explosion-proof design of the sensor circuits and elements. The sensor is simple, reliable, low-cost and is capable of withstanding the factors involved during operation of the propulsion system such as cryogenic temperatures and chemically aggressive liquids. The novel elements and design concepts implemented in this sensor system can also find applications in other sensors for spacecraft propulsion systems and also in a variety of optical-fibre sensors used in scientific research and industry.
Morzyński, Piotr; Bober, Marcin; Bartoszek-Bober, Dobrosława; Nawrocki, Jerzy; Krehlik, Przemysław; Śliwczyński, Łukasz; Lipiński, Marcin; Masłowski, Piotr; Cygan, Agata; Dunst, Piotr; Garus, Michał; Lisak, Daniel; Zachorowski, Jerzy; Gawlik, Wojciech; Radzewicz, Czesław; Ciuryło, Roman; Zawada, Michał
2015-01-01
We report a stability below 7 × 10−17 of two independent optical lattice clocks operating with bosonic 88Sr isotope. The value (429 228 066 418 008.3(1.9)syst (0.9)stat Hz) of the absolute frequency of the 1S0 – 3P0 transition was measured with an optical frequency comb referenced to the local representation of the UTC by the 330 km-long stabilized fibre optical link. The result was verified by series of measurements on two independent optical lattice clocks and agrees with recommendation of Bureau International des Poids et Mesures. PMID:26639347
Trethowan, W N; Burge, P S; Rossiter, C E; Harrington, J M; Calvert, I A
1995-01-01
OBJECTIVES--To study the relation between occupational exposure to ceramic fibres during manufacture and respiratory health. METHODS--The respiratory health of 628 current employees in the manufacture of ceramic fibres in seven European plants in three countries was studied with a respiratory questionnaire, lung function tests, and chest radiography. Simultaneous plant hygiene surveys measured subjects' current exposure to airborne ceramic fibres from personal samples with optical microscopy fibre counts. The measured exposures were combined with occupational histories to derive estimates of each subject's cumulative exposure to respirable fibres. Symptoms were related to current and cumulative exposure to ceramic fibres and lung function and findings from chest radiographs were related to cumulative exposure. RESULTS--The mean duration of employment was 10.2 years and mean (range) cumulative exposure was 3.84 (0-22.94) (f.ml-1.y). Eye and skin symptoms were frequent in all plants and increased significantly, as did breathlessness and wheeze, with increasing current exposure. Dry cough and stuffy nose were less common in the least exposed group but did not increase with increasing exposure. After adjustment for the effects of age, sex, height, smoking, and past occupational exposures to respiratory hazards, there was a significant decrease in both forced expiratory volume in one second (FEV1) and forced midexpiratory flow related to cumulative exposure in current smokers (P < 0.05) and in FEV1 in ex-smokers (P < 0.05). Small opacities were found in 13% of the chest radiographs; their prevalence was not related to cumulative exposure to ceramic fibres. CONCLUSIONS--It is concluded that exposure to ceramic fibres is associated with irritant symptoms similar to those seen in other exposures to man made mineral fibres (MMMFs) and that cumulative exposure to respirable ceramic fibres may cause airways obstruction by promoting the effects of cigarette smoke. PMID:7757174
A simple wavelength division multiplexing system for active learning teaching
NASA Astrophysics Data System (ADS)
Zghal, Mourad; Ghalila, Hassen; Ben Lakhdar, Zohra
2009-06-01
The active learning project consists in a series of workshops for educators, researchers and students and promotes an innovative method of teaching physics using simple, inexpensive materials that can be fabricated locally. The objective of the project is to train trainers and inspire students to learn physics. The workshops are based on the use of laboratory work and hands-on activities in the classroom. The interpretation of these experiments is challenging for some students, and the experiments can lead to a significant amount of discussion. The workshops are organized within the framework of the project ``Active Learning in Optics and Photonics" (ALOP) mainly funded by UNESCO, with the support of ICTP (Abdus Salam International Centre for Theoretical Physics) and SPIE. ALOP workshops offer high school, college or university physics teachers the opportunity to improve their conceptual understanding of optics. These workshops usually run for five days and cover several of the topics usually found in any introductory university physics program. Optics and photonics are used as subject matter because it is relevant as well as adaptable to research and educational conditions in many developing countries [1]. In this paper, we will mainly focus on a specific topic of the ALOP workshops, namely optical communications and Wavelength Division Multiplexing technology (WDM). This activity was originally developed by Mazzolini et al [2]. WDM is a technology used in fibre-optic communications for transmitting two or more separate signals over a single fibre optic cable by using a separate wavelength for each signal. Multiple signals are carried together as separate wavelengths of light in a multiplexed signal. Simple and inexpensive WDM system was implemented in our laboratory using light emitting diodes or diode lasers, plastic optical fibres, a set of optical filters and lenses, prism or grating, and photodiodes. Transmission of audio signals using home-made, simple, inexpensive electronic circuits was also demonstrated. The experimental set-up was used during national ALOP workshops. Results are presented and discussed in this paper. Current explorations to further develop these and other closely-related experiments will also be described.
Graphene-clad microfibre saturable absorber for ultrafast fibre lasers.
Liu, X M; Yang, H R; Cui, Y D; Chen, G W; Yang, Y; Wu, X Q; Yao, X K; Han, D D; Han, X X; Zeng, C; Guo, J; Li, W L; Cheng, G; Tong, L M
2016-05-16
Graphene, whose absorbance is approximately independent of wavelength, allows broadband light-matter interactions with ultrafast responses. The interband optical absorption of graphene can be saturated readily under strong excitation, thereby enabling scientists to exploit the photonic properties of graphene to realize ultrafast lasers. The evanescent field interaction scheme of the propagating light with graphene covered on a D-shaped fibre or microfibre has been employed extensively because of the nonblocking configuration. Obviously, most of the fibre surface is unused in these techniques. Here, we exploit a graphene-clad microfibre (GCM) saturable absorber in a mode-locked fibre laser for the generation of ultrafast pulses. The proposed all-surface technique can guarantee a higher efficiency of light-graphene interactions than the aforementioned techniques. Our GCM-based saturable absorber can generate ultrafast optical pulses within 1.5 μm. This saturable absorber is compatible with current fibre lasers and has many merits such as low saturation intensities, ultrafast recovery times, and wide wavelength ranges. The proposed saturable absorber will pave the way for graphene-based wideband photonics.
Ultra-high bandwidth quantum secured data transmission
Dynes, James F.; Tam, Winci W-S.; Plews, Alan; Fröhlich, Bernd; Sharpe, Andrew W.; Lucamarini, Marco; Yuan, Zhiliang; Radig, Christian; Straw, Andrew; Edwards, Tim; Shields, Andrew J.
2016-01-01
Quantum key distribution (QKD) provides an attractive means for securing communications in optical fibre networks. However, deployment of the technology has been hampered by the frequent need for dedicated dark fibres to segregate the very weak quantum signals from conventional traffic. Up until now the coexistence of QKD with data has been limited to bandwidths that are orders of magnitude below those commonly employed in fibre optic communication networks. Using an optimised wavelength divisional multiplexing scheme, we transport QKD and the prevalent 100 Gb/s data format in the forward direction over the same fibre for the first time. We show a full quantum encryption system operating with a bandwidth of 200 Gb/s over a 100 km fibre. Exploring the ultimate limits of the technology by experimental measurements of the Raman noise, we demonstrate it is feasible to combine QKD with 10 Tb/s of data over a 50 km link. These results suggest it will be possible to integrate QKD and other quantum photonic technologies into high bandwidth data communication infrastructures, thereby allowing their widespread deployment. PMID:27734921
Ultra-high bandwidth quantum secured data transmission
NASA Astrophysics Data System (ADS)
Dynes, James F.; Tam, Winci W.-S.; Plews, Alan; Fröhlich, Bernd; Sharpe, Andrew W.; Lucamarini, Marco; Yuan, Zhiliang; Radig, Christian; Straw, Andrew; Edwards, Tim; Shields, Andrew J.
2016-10-01
Quantum key distribution (QKD) provides an attractive means for securing communications in optical fibre networks. However, deployment of the technology has been hampered by the frequent need for dedicated dark fibres to segregate the very weak quantum signals from conventional traffic. Up until now the coexistence of QKD with data has been limited to bandwidths that are orders of magnitude below those commonly employed in fibre optic communication networks. Using an optimised wavelength divisional multiplexing scheme, we transport QKD and the prevalent 100 Gb/s data format in the forward direction over the same fibre for the first time. We show a full quantum encryption system operating with a bandwidth of 200 Gb/s over a 100 km fibre. Exploring the ultimate limits of the technology by experimental measurements of the Raman noise, we demonstrate it is feasible to combine QKD with 10 Tb/s of data over a 50 km link. These results suggest it will be possible to integrate QKD and other quantum photonic technologies into high bandwidth data communication infrastructures, thereby allowing their widespread deployment.
Multi-phase-fluid discrimination with local fibre-optical probes: I. Liquid/liquid flows
NASA Astrophysics Data System (ADS)
Fordham, E. J.; Holmes, A.; Ramos, R. T.; Simonian, S.; Huang, S.-M.; Lenn, C. P.
1999-12-01
We demonstrate the use of a novel design of fibre-optical sensor (or `local probe') for immiscible-fluid discrimination in multi-phase flows. These probes are made from standard silica fibres with plane oblique facets polished at the fibre tip, with various surface treatments, including a crucial one for wettability control. Total internal reflection is used to distinguish drops, bubbles or other regions of fluid in multi-phase flows, on the basis of refractive-index contrast. Such probes have quasi-binary outputs; we demonstrate in this paper their use in distinguishing water from oil (kerosene) in oil/water two-phase flows and compare the results with those obtained from a simple cleaved fibre relying on the (small) difference in Fresnel reflectivity for discrimination. Quantitative accuracy is demonstrated by comparison of profiles, across a pipe diameter, of local, time-averaged volume fractions (`hold-ups'), with pipe-averaged hold-ups determined from a carefully calibrated gradio-manometer in a fully developed region of the flow. Companion papers deal with the sensors used and results achieved in gas/liquid flows and three-phase flows.
Graphene-clad microfibre saturable absorber for ultrafast fibre lasers
Liu, X. M.; Yang, H. R.; Cui, Y. D.; Chen, G. W.; Yang, Y.; Wu, X. Q.; Yao, X. K.; Han, D. D.; Han, X. X.; Zeng, C.; Guo, J.; Li, W. L.; Cheng, G.; Tong, L. M.
2016-01-01
Graphene, whose absorbance is approximately independent of wavelength, allows broadband light–matter interactions with ultrafast responses. The interband optical absorption of graphene can be saturated readily under strong excitation, thereby enabling scientists to exploit the photonic properties of graphene to realize ultrafast lasers. The evanescent field interaction scheme of the propagating light with graphene covered on a D-shaped fibre or microfibre has been employed extensively because of the nonblocking configuration. Obviously, most of the fibre surface is unused in these techniques. Here, we exploit a graphene-clad microfibre (GCM) saturable absorber in a mode-locked fibre laser for the generation of ultrafast pulses. The proposed all-surface technique can guarantee a higher efficiency of light–graphene interactions than the aforementioned techniques. Our GCM-based saturable absorber can generate ultrafast optical pulses within 1.5 μm. This saturable absorber is compatible with current fibre lasers and has many merits such as low saturation intensities, ultrafast recovery times, and wide wavelength ranges. The proposed saturable absorber will pave the way for graphene-based wideband photonics. PMID:27181419
Fibre optic system for biochemical and microbiological sensing
NASA Astrophysics Data System (ADS)
Penwill, L. A.; Slater, J. H.; Hayes, N. W.; Tremlett, C. J.
2007-07-01
This poster will discuss state-of-the-art fibre optic sensors based on evanescent wave technology emphasising chemophotonic sensors for biochemical reactions and microbe detection. Devices based on antibody specificity and unique DNA sequences will be described. The development of simple sensor devices with disposable single use sensor probes will be illustrated with a view to providing cost effective field based or point of care analysis of major themes such as hospital acquired infections or bioterrorism events. This presentation will discuss the nature and detection thresholds required, the optical detection techniques investigated, results of sensor trials and the potential for wider commercial application.
Development of a Brillouin scattering based distributed fibre optic strain sensor
NASA Astrophysics Data System (ADS)
Brown, Anthony Wayne
2001-07-01
The parameters of the Brillouin spectrum of an optical fibre depend upon the strain and temperature conditions of the fibre. As a result, fibre optic distributed sensors based on Brillouin scattering can measure strain and temperature in arbitrary regions of a sensing fibre. In the past, such sensors have often been demonstrated under laboratory conditions, demonstrating the principle of operation. Although some field tests of temperature sensing have been reported, the actual deployment of such sensors in the field for strain measurements has been limited by poor spatial resolution (typically 1 m or more) and poor strain accuracy (+/-100 muepsilon). Also, cross-sensitivity of the Brillouin spectrum to temperature further reduces the accuracy of strain measurement while long acquisition times hinders field use. The high level of user knowledge and lack of automation required to operate the equipment is another limiting factor of the only commercially available unit. The potential benefits of distributed measurements are great for instrumentation of civil structures provided that the above limitations are overcome. However, before this system is used with confidence by practitioners, it is essential that it can be effectively operated in field conditions. In light of this, the fibre optics group at the University of New Brunswick has been developing an automated system for field measurement of strain in civil structures, particularly in reinforced concrete. The development of the sensing system hardware and software was the main focus of this thesis. This has been made possible, in part, by observation of the Brillouin spectrum for the case of using very short light pulses (<10 ns). The end product of the development is a sensor with a spatial resolution that has been improved to 100 mm. Measurement techniques that improve system performance to measure strain to an accuracy of 10 muepsilon; and allow the simultaneous measurement of strain and temperature to an accuracy of 204 muepsilon and 3°C are presented. Finally, the results of field measurement of strain on a concrete structure are presented.
The complete optical oscilloscope
NASA Astrophysics Data System (ADS)
Lei, Cheng; Goda, Keisuke
2018-04-01
Observing ultrafast transient dynamics in optics is a challenging task. Two teams in Europe have now independently developed `optical oscilloscopes' that can capture both amplitude and phase information of ultrafast optical signals. Their schemes yield new insights into the nonlinear physics that takes place inside optical fibres.
NASA Astrophysics Data System (ADS)
Kehayas, E.; Stampoulidis, L.; Henderson, P.; Robertson, Andrew; Van Dijk, F.; Achouche, M.; Le Kernec, A.; Sotom, M.; Schuberts, F.; Brabant, T.
2017-11-01
Photonics is progressively transforming from a highly- focused technology applicable to digital communication networks into a pervasive "enabling" technology with diverse non-telecom applications. However, the centre of mass on the R&D level is still mostly driven by, and invested in, by stakeholders active in the telecoms domain. This is due to the high level of investments necessary that in turn require a large and established market for reaching break-even and generation of revenues. Photonics technology and more specifically, fibre-optic technology is moving into non-telecom business areas with great success in terms of markets captured and penetration rates. One example that cannot be overlooked is the application of fibre-optics to industrial applications, where double-digit growth rates are recorded with fibre lasers and amplifiers constantly gaining momentum. In this example, several years of R&D efforts in creating high-power amplification solutions and fibre-laser sources by the telecom sector, were piggy-backed into industrial applications and laser cutting/welding equipment that is now a strong R&D sector on its own and commercially now displacing some conventional free space laser cutting/welding.
Effects of coating thickness on high power metal coated fibre lasers
NASA Astrophysics Data System (ADS)
Daniel, Jae M. O.; Simakov, Nikita; Hemming, Alexander; Clarkson, W. Andrew; Haub, John
2017-03-01
We investigate the effects of coating thickness on the scattering losses of metal coated active fibre. A range of low numerical aperture metal coated optical fibres are placed in etchant solutions whilst measuring propagation loss as a function of time. By utilising concurrent coating diameter measurements, we are able to correlate propagation losses with coating thickness. Experimentally we find a monotonic dependence on coating thickness and scattering loss. We present the results of this work, providing useful parameters for high power metal coated fibre laser designs.
Rizzolo, S; Périsse, J; Boukenter, A; Ouerdane, Y; Marin, E; Macé, J-R; Cannas, M; Girard, S
2017-08-18
We present an innovative architecture of a Rayleigh-based optical fibre sensor for the monitoring of water level and temperature inside storage nuclear fuel pools. This sensor, able to withstand the harsh constraints encountered under accidental conditions such as those pointed-out during the Fukushima-Daiichi event (temperature up to 100 °C and radiation dose level up to ~20 kGy), exploits the Optical Frequency Domain Reflectometry technique to remotely monitor a radiation resistant silica-based optical fibre i.e. its sensing probe. We validate the efficiency and the robustness of water level measurements, which are extrapolated from the temperature profile along the fibre length, in a dedicated test bench allowing the simulation of the environmental operating and accidental conditions. The conceived prototype ensures an easy, practical and no invasive integration into existing nuclear facilities. The obtained results represent a significant breakthrough and comfort the ability of the developed system to overcome both operating and accidental constraints providing the distributed profiles of the water level (0-to-5 m) and temperature (20-to-100 °C) with a resolution that in accidental condition is better than 3 cm and of ~0.5 °C respectively. These new sensors will be able, as safeguards, to contribute and reinforce the safety in existing and future nuclear power plants.
Microcontroller based fibre-optic visual presentation system for multisensory neuroimaging.
Kurniawan, Veldri; Klemen, Jane; Chambers, Christopher D
2011-10-30
Presenting visual stimuli in physical 3D space during fMRI experiments carries significant technical challenges. Certain types of multisensory visuotactile experiments and visuomotor tasks require presentation of visual stimuli in peripersonal space, which cannot be accommodated by ordinary projection screens or binocular goggles. However, light points produced by a group of LEDs can be transmitted through fibre-optic cables and positioned anywhere inside the MRI scanner. Here we describe the design and implementation of a microcontroller-based programmable digital device for controlling fibre-optically transmitted LED lights from a PC. The main feature of this device is the ability to independently control the colour, brightness, and timing of each LED. Moreover, the device was designed in a modular and extensible way, which enables easy adaptation for various experimental paradigms. The device was tested and validated in three fMRI experiments involving basic visual perception, a simple colour discrimination task, and a blocked multisensory visuo-tactile task. The results revealed significant lateralized activation in occipital cortex of all participants, a reliable response in ventral occipital areas to colour stimuli elicited by the device, and strong activations in multisensory brain regions in the multisensory task. Overall, these findings confirm the suitability of this device for presenting complex fibre-optic visual and cross-modal stimuli inside the scanner. Copyright © 2011 Elsevier B.V. All rights reserved.
Solar internal lighting using optical collectors and fibers
NASA Astrophysics Data System (ADS)
Francini, F.; Fontani, D.; Jafrancesco, D.; Mercatelli, L.; Sansoni, P.
2006-08-01
A system exploiting solar energy, by means of optical collectors and fibres, has been applied for indoor illumination. The project has been called "The Sunflowers" for the property of solar collectors to track solar position during the day. Every "sunflower" contains several solar collectors, each of which is coupled to an optical fibre. The "Sunflower" is provided of mechanical systems and electric accessories for solar tracking. The light focused by the solar collector can be used in two possible ways: for internal illumination with direct solar light; otherwise it can be accumulated for lighting when the sun is not present. The first function is obtained coupling the optical collector to an optical fibre, which transports the solar light in selected points within the showcases. The second one consists in focusing solar light on a photovoltaic cell of the last generation type with high efficiency. In this configuration the photovoltaic cell converts the focused light into electric energy to be used for illumination in case of sun absence. A demonstrative installation has been realised applying this solar illumination system to museum lighting: a prototype has been tested in a prestigious museum in Florence.
Fahimian, Mahi; Kortschot, Mark; Sain, Mohini
2016-01-01
Natural fibers can be attractive reinforcing materials in thermosetting polymers due to their low density and high specific mechanical properties. Although the research effort in this area has grown substantially over the last 20 years, manufacturing technologies to make use of short natural fibers in high volume fraction composites; are still limited. Natural fibers, after retting and preprocessing, are discontinuous and easily form entangled bundles. Dispersion and mixing these short fibers with resin to manufacture high quality, high volume fraction composites presents a significant challenge. In this paper, a novel pneumatic design for dispersion of natural fibers in their original discontinuous form is described. In this design, compressed air is used to create vacuum to feed and convey fibres while breaking down fibre clumps and dispersing them in an aerosolized resin stream. Model composite materials, made using proof-of-concept prototype equipment, were imaged with both optical and X-ray tomography to evaluate fibre and resin dispersion. The images indicated that the system was capable of providing an intimate mixture of resin and detangled fibres for two different resin viscosities. The new pneumatic process could serve as the basis of a system to produce well-dispersed high-volume fraction composites containing discontinuous natural fibres drawn directly from a loosely packed source. PMID:28773670
Optical fibre sensing in metals by embedment in 3D printed metallic structures
NASA Astrophysics Data System (ADS)
Maier, R. R. J.; Havermann, D.; Schneller, O.; Mathew, J.; Polyzos, D.; MacPherson, W. N.; Hand, D. P.
2014-05-01
Additive manufacturing or 3D printing of structural components in metals has potential to revolutionise the manufacturing industry. Embedded sensing in such structures opens a route towards SMART metals, providing added functionality, intelligence and enhanced performance in many components. Such embedded sensors would be capable of operating at extremely high temperatures by utilizing regenerated fibre Bragg gratings and in-fibre Fabry-Perot cavities.
Developments In Electronic Speckle Pattern Interferometry For Automotive Vibration Analysis.
NASA Astrophysics Data System (ADS)
Davies, Jeremy C.; Buckberry, Clive H.; Jones, Julian D. C.; Pannell, Chris N.
1989-01-01
The incorporation of monomode fibre optics into an argon ion powered Electronic Speckle Pattern Interferometer (ESPI) is reported. The system, consisting of an optics assembly linked to the laser and a CCD camera transceiver, flexibly connected by 40m of monomode fibre optic cable to the optics, has been used to analyse the modal behaviour of structures up to 5m X 3m X 2m in size. Phase modulation of the reference beam in order to operate in a heterodyne mode has been implemented using a piezo-electric crystal operating on the monomode fibre. A new mode of operation - sequential time-average subtraction - and the results of a new processing algorithm are also reported. Their implementation enables speckle free, time-average vibration maps to be generated in real-time on large, unstable structures. Example results for a four cylinder power unit, a vehicle body shell component and an engine oil pan are included. In all cases the analysis was conducted in a general workshop environment without the need for vibration isolation facilities.
Role of oxygen hole centres in the photodarkening of ytterbium-doped phosphosilicate fibre
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rybaltovsky, A A; Bobkov, K K; Likhachev, M E
2013-11-30
We have studied the photodarkening in active fibres with an ytterbium-doped phosphosilicate glass core under IR irradiation with a pump source (920 nm) and UV irradiation (193 nm). Analysis of absorption and luminescence spectra suggests that such irradiations produce phosphorus – oxygen – hole centres (P-OHCs) in the core glass network and lead to the reduction of the ytterbium ions to a divalent state (Yb{sup 2+}). The photoinduced optical loss in the fibres in the visible range (400 – 700 nm) is mainly due to absorption by the P-OHCs. A quantum-mechanical model is proposed for P-OHC and Yb{sup 2+} formation.more » (nonlinear optical phenomena)« less
Design, simulation and characterisation of integrated optics for a microfabricated flow cytometer
NASA Astrophysics Data System (ADS)
Barat, David; Benazzi, Giuseppe; Mowlem, Matthew Charles; Ruano, Jesus Miguel; Morgan, Hywel
2010-05-01
Flow cytometry is widely used for analyzing micro-particles such as cells and bacteria. Microfabricated flow cytometers promise reduced instrument size and cost with increased robustness and have application in medicine, life sciences and environmental metrology. Further miniaturisation and robustness can be achieved if integrated optics are used instead of traditional free space optics. We present designs simulation and experimental characterisation of integrated optics for a microfabricated cytometer made from SU-8 resin on a glass substrate. The optics constructed from combinations of optical fibres (positioned with microgrooves), waveguides, and microlenses enable analysis of scattered light and fluorescence from particles positioned near the centre of a microchannel using one dimensional sheath flow. Four different methods for directing the incident light onto the particles are examined and the optimum design discussed.
Advances for the Topographic Characterisation of SMC Materials
Calvimontes, Alfredo; Grundke, Karina; Müller, Anett; Stamm, Manfred
2009-01-01
For a comprehensive study of Sheet Moulding Compound (SMC) surfaces, topographical data obtained by a contact-free optical method (chromatic aberration confocal imaging) were systematically acquired to characterise these surfaces with regard to their statistical, functional and volumetrical properties. Optimal sampling conditions (cut-off length and resolution) were obtained by a topographical-statistical procedure proposed in the present work. By using different length scales specific morphologies due to the influence of moulding conditions, metallic mould topography, glass fibre content and glass fibre orientation can be characterized. The aim of this study is to suggest a systematic topographical characterization procedure for composite materials in order to study and recognize the influence of production conditions on their surface quality.
A Review of Optical NDT Technologies
Zhu, Yong-Kai; Tian, Gui-Yun; Lu, Rong-Sheng; Zhang, Hong
2011-01-01
Optical non-destructive testing (NDT) has gained more and more attention in recent years, mainly because of its non-destructive imaging characteristics with high precision and sensitivity. This paper provides a review of the main optical NDT technologies, including fibre optics, electronic speckle, infrared thermography, endoscopic and terahertz technology. Among them, fibre optics features easy integration and embedding, electronic speckle focuses on whole-field high precision detection, infrared thermography has unique advantages for tests of combined materials, endoscopic technology provides images of the internal surface of the object directly, and terahertz technology opens a new direction of internal NDT because of its excellent penetration capability to most of non-metallic materials. Typical engineering applications of these technologies are illustrated, with a brief introduction of the history and discussion of recent progress. PMID:22164045
Nerve injury affects the capillary supply in rat slow and fast muscles differently.
Cebasek, Vita; Radochová, Barbora; Ribaric, Samo; Kubínová, Lucie; Erzen, Ida
2006-02-01
The goal of this study was to determine the acute effects of permanent denervation on the length density of the capillary network in rat slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles and the effect of short-lasting reinnervation in slow muscle only. Denervation was performed by cutting the sciatic nerve. Both muscles were excised 2 weeks later. Reinnervation was studied 4 weeks after nerve crush in SOL muscle only. Capillaries and muscle fibres were visualised by triple immunofluorescent staining with antibodies against CD31 and laminin and with fluorescein-labelled Griffonia (Bandeira) simplicifolia lectin. A recently developed stereological approach allowing the estimation of the length of capillaries adjacent to each individual fibre (Lcap/Lfib) was employed. Three-dimensional virtual test grids were applied to stacks of optical images captured with a confocal microscope and their intersections with capillaries and muscle fibres were counted. Interrelationships among capillaries and muscle fibres were demonstrated with maximum intensity projection of the acquired stacks of optical images. The course of capillaries in EDL seemed to be parallel to the fibre axes, whereas in SOL, their preferential direction deviated from the fibre axes and formed more cross-connections among neighbouring capillaries. Lcap/Lfib was clearly reduced in denervated SOL but remained unchanged in EDL, although the muscle fibres significantly atrophied in both muscle types. When soleus muscle was reinnervated, capillary length per unit fibre length was completely restored. The physiological background for the different responses of the capillary network in slow and fast muscle is discussed.
NASA Astrophysics Data System (ADS)
Shukla, P. P.; Lawrence, J.
2011-02-01
The fracture toughness property ( K1C) of Si 3N 4 and ZrO 2 engineering ceramics was investigated by means of CO 2 and a fibre laser surface treatment. Near surface modifications in the hardness were investigated by employing the Vickers indentation method. Crack lengths and the crack geometry were then measured by using the optical microscopy. A co-ordinate measuring machine was used to investigate the diamond indentations and to measure the lengths of the cracks. Thereafter, computational and analytical methods were employed to determine the K1C. An increase in the K1C of both ceramics was found by the CO 2 and the fibre laser surface treatment in comparison to the as-received surfaces. The K1C of the CO 2 laser radiated surface of the Si 3N 4 was over 3% higher in comparison to that of the fibre laser treated surface. This was by softening of the near surface layer of the Si 3N 4 which comprised of lowering of hardness, which in turn increased the crack resistance. The effects were not similar in ZrO 2 ceramic to that of the Si 3N 4 as the fibre laser radiation in this case had produced an increase of 34% compared to that of the CO 2 laser radiation. This occurred due to propagation of lower crack resulting from the Vickers indentation test during the fibre laser surface treatment which inherently affected the end K1C through an induced compressive stress layer. The K1C modification of the two ceramics treated by the CO 2 and the fibre laser was also believed to be influenced by the different laser wavelength and its absorption co-efficient, the beam delivery system as well as the differences in the brightness of the two lasers used.
Queirós, Raquel B; Silva, S O; Noronha, J P; Frazão, O; Jorge, P; Aguilar, G; Marques, P V S; Sales, M G F
2011-05-15
Cyanobacteria deteriorate the water quality and are responsible for emerging outbreaks and epidemics causing harmful diseases in Humans and animals because of their toxins. Microcystin-LR (MCT) is one of the most relevant cyanotoxin, being the most widely studied hepatotoxin. For safety purposes, the World Health Organization recommends a maximum value of 1 μg L(-1) of MCT in drinking water. Therefore, there is a great demand for remote and real-time sensing techniques to detect and quantify MCT. In this work a Fabry-Pérot sensing probe based on an optical fibre tip coated with a MCT selective thin film is presented. The membranes were developed by imprinting MCT in a sol-gel matrix that was applied over the tip of the fibre by dip coating. The imprinting effect was obtained by curing the sol-gel membrane, prepared with (3-aminopropyl) trimethoxysilane (APTMS), diphenyl-dimethoxysilane (DPDMS), tetraethoxysilane (TEOS), in the presence of MCT. The imprinting effect was tested by preparing a similar membrane without template. In general, the fibre Fabry-Pérot with a Molecular Imprinted Polymer (MIP) sensor showed low thermal effect, thus avoiding the need of temperature control in field applications. It presented a linear response to MCT concentration within 0.3-1.4 μg L(-1) with a sensitivity of -12.4±0.7 nm L μg(-1). The corresponding Non-Imprinted Polymer (NIP) displayed linear behaviour for the same MCT concentration range, but with much less sensitivity, of -5.9±0.2 nm L μg(-1). The method shows excellent selectivity for MCT against other species co-existing with the analyte in environmental waters. It was successfully applied to the determination of MCT in contaminated samples. The main advantages of the proposed optical sensor include high sensitivity and specificity, low-cost, robustness, easy preparation and preservation. Copyright © 2011 Elsevier B.V. All rights reserved.
Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zajnulina, M.; Giannone, D.; Haynes, R.
We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromaticmore » input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.« less
Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers.
Zajnulina, M; Böhm, M; Blow, K; Rieznik, A A; Giannone, D; Haynes, R; Roth, M M
2015-10-01
We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.
Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers
NASA Astrophysics Data System (ADS)
Zajnulina, M.; Böhm, M.; Blow, K.; Rieznik, A. A.; Giannone, D.; Haynes, R.; Roth, M. M.
2015-10-01
We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.
Capteur de CO{2} à fibres optiques par absorption moléculaire à 4,3 μm
NASA Astrophysics Data System (ADS)
Bendamardji, S.; Alayli, Y.; Huard, S.
1996-04-01
This paper describes a remote optical fibre sensor for the carbon dioxide detection by molecular absorption in the near infrared (4.3 μm) corresponding to fundamental mode ν3. To overcome the problem of the strong attenuation signal of optical fibre in the near infrared, we have used the opto-suppling technique which changes the working wavelength from 4.3 μm to 860 nm and permits the use of standard optical fibre 50/125. The simulation of absorption has been obtained by original modelisation of the absorption spectrum and the establishment of the calibration curves takes to the sensor to detect a partial pressures greater than 100 μbar with a minimal error margin of 100 μbar, which is acceptable considering the future use of the device. The sensor has been designed to monitor the CO{2} rate in enriched greenhouses. Cet article décrit un capteur à fibres optiques de gaz carbonique par absorption moléculaire dans l'infrarouge moyen (4,3 μm) correspondant au mode fondamental ν3. La liaison entre le site de mesure et le site de contrôle est assurée par un fibre optique standard 50/125 après une transposition de longueur d'onde de 4,3 μm à 860 nm par opto-alimentation. La simulation de l'absorption a été obtenue par modélisation originale du spectre d'absorption et l'établissement des courbes d'étalonnage prévoit une marge d'erreur minimale de 100 μbar, ce qui est suffisant pour l'application du dispositif à la régulation de taux CO{2} dans les serres agricoles enrichies par de gaz.
Multicore fibre technology: the road to multimode photonics
NASA Astrophysics Data System (ADS)
Bland-Hawthorn, J.; Min, Seong-Sik; Lindley, Emma; Leon-Saval, Sergio; Ellis, Simon; Lawrence, Jon; Beyrand, Nicolas; Roth, Martin; Löhmannsröben, Hans-Gerd; Veilleux, Sylvain
2016-07-01
For the past forty years, optical fibres have found widespread use in ground-based and space-based instruments. In most applications, these fibres are used in conjunction with conventional optics to transport light. But photonics offers a huge range of optical manipulations beyond light transport that were rarely exploited before 2001. The fundamental obstacle to the broader use of photonics is the difficulty of achieving photonic action in a multimode fibre. The first step towards a general solution was the invention of the photonic lantern1 in 2004 and the delivery of high-efficiency devices (< 1 dB loss) five years on2. Multicore fibres (MCF), used in conjunction with lanterns, are now enabling an even bigger leap towards multimode photonics. Until recently, the single-moded cores in MCFs were not sufficiently uniform to achieve telecom (SMF-28) performance. Now that high-quality MCFs have been realized, we turn our attention to printing complex functions (e.g. Bragg gratings for OH suppression) into their N cores. Our first work in this direction used a Mach-Zehnder interferometer (near-field phase mask) but this approach was only adequate for N=7 MCFs as measured by the grating uniformity3. We have now built a Sagnac interferometer that gives a three-fold increase in the depth of field sufficient to print across N >= 127 cores. We achieved first light this year with our 500mW Sabre FRED laser. These are sophisticated and complex interferometers. We report on our progress to date and summarize our first-year goals which include multimode OH suppression fibres for the Anglo-Australian Telescope/PRAXIS instrument and the Discovery Channel Telescope/MOHSIS instrument under development at the University of Maryland.
NASA Astrophysics Data System (ADS)
Faustov, A.; Gussarov, A.; Wuilpart, M.; Fotiadi, A. A.; Liokumovich, L. B.; Kotov, O. I.; Zolotovskiy, I. O.; Tomashuk, A. L.; Deschoutheete, T.; Mégret, P.
2012-04-01
On-line monitoring of environmental conditions in nuclear facilities is becoming a more and more important problem. Standard electronic sensors are not the ideal solution due to radiation sensitivity and difficulties in installation of multiple sensors. In contrast, radiation-hard optical fibres can sustain very high radiation doses and also naturally offer multi-point or distributed monitoring of external perturbations. Multiple local electro-mechanical sensors can be replaced by just one measuring fibre. At present, there are over four hundred operational nuclear power plants (NPPs) in the world 1. Operating experience has shown that ineffective control of the ageing degradation of major NPP components can threaten plant safety and also plant life. Among those elements, cables are vital components of I&C systems in NPPs. To ensure their safe operation and predict remaining life, environmental monitoring is necessary. In particular, temperature and radiation dose are considered to be the two most important parameters. The aim of this paper is to assess experimentally the feasibility of optical fibre temperature measurements in a low doserate radiation environment, using a commercially available reflectometer based on Rayleigh backscattering. Four different fibres were installed in the Sub-Pile Room of the BR2 Material testing nuclear reactor in Mol, Belgium. This place is man-accessible during the reactor shut-down, allowing easy fibre installation. When the reactor operates, the dose-rates in the room are in a range 0.005-5 Gy/h with temperatures of 40-60 °C, depending on the location. Such a surrounding is not much different to some "hot" environments in NPPs, where I&C cables are located.
NASA Astrophysics Data System (ADS)
Ciocca, F.; Krause, S.; Blaen, P.; Hannah, D. M.; Chalari, A.; Mondanos, M.; Abesser, C.
2016-12-01
Water and thermal conditions in the shallow vadose zone can be very complex and dynamic across a range of spatiotemporal scales. The efficient analysis of such dynamics requires technologies capable of precise and high-resolution monitoring of soil temperature and moisture across multiple scales. Optical fibre distributed temperature sensors (DTS) allows for precise temperature measurements at high spatio-temporal resolution, over several kilometres of optical fibre cable. In addition to passive temperature monitoring, hybrid optical cables with embedded metal conductors can be electrically heated and allow for distributed heat pulses. Such Active-DTS technique involves the analysis of temperatures during both heating and cooling phases of an optical fibre cable buried in the soil in order to provide distributed soil moisture estimates. In summer 2015, three loops of a 500m hybrid-optical cable have been deployed at 10cm, 25cm and 40cm depths along a hillslope with juvenile forest. Active-DTS surveys have been conducted with the aim to: (i) monitor the post-installation soil settling around the cable; (ii) analyse different heating strategies (intensity, duration) of the cable; (iii) establish a method for inferring soil moisture from Active-DTS results and validate with independent soil moisture readings from point probes; (iv) monitor the soil moisture response to short forcing events such as storms and artificial irrigation. Results from the surveys will be presented, and first assumptions on how the obtained soil water dynamics can be associated to specific triggers such as precipitation, evapotranspiration, soil inclination, will be discussed. This research is part of the British National Environmental Research Council (NERC) funded Distributed intelligent Heat Pulse System (DiHPS) project and is realised in the context of the Free Air Carbon Enrichment (FACE) experiment, in collaboration with the Birmingham Institute of Forest Research (BIFoR).
2012-07-01
SCI-228) Executive Summary This AGARDograph presents an introduction to fiber optic systems and is intended to provide a basic understanding of...22 / SCI-228) Synthèse Cette AGARDograph présente une introduction aux systèmes à fibres optiques et a pour objet d’expliquer l’utilisation de ces...l’instrumentation des essais en vol dans l’ensemble des pays membres de l’OTAN, entraînant la disparition progressive des jauges extensométriques et des
NASA Astrophysics Data System (ADS)
Hossain, Md Arafat; Canning, John; Cook, Kevin; Ast, Sandra; Jamalipour, Abbas
2017-04-01
Degradation of olive oil under light and heat are analysed using an optical fibre based low-cost portable smartphone spectrofluorimeter. Visible fluorescence bands associated with phenolic acids, vitamins and chlorophyll centred at λ 452, 525 and 670 nm respectively are generated using near-UV excitation (LED λex 370 nm), of extra virgin olive oil are degraded more likely than refined olive oil under light and heat exposure. Packaging is shown to be critical when assessing the origin of degradation.
Novel technique for solar power illumination using plastic optical fibres
NASA Astrophysics Data System (ADS)
Munisami, J.; Kalymnios, D.
2008-09-01
Plastic Optical Fibres (POF) were developed almost 3 decades ago. They are mainly used for short haul data communications (up to 1 km with data rates up to 1 Gbps). Over the years, POF has found applications in many other areas including solar energy transport for illumination. In such an application, light is collected from the sun and is directed into a space which needs to be illuminated. The use of fibres and more specifically POF, in daylighting systems, started only a few years ago. Several approaches have been investigated and we have seen the development of a few commercial products. The market however, has not really taken off for these technologies simply because of their enormous price tags. It is important to note that the use of POF in these designs has been limited to the function of POF as the transmission medium only. We propose a novel solar illumination technique using POF as both the light collecting/concentrating mechanism and the transmission medium. By modifying the structure of the fibre, solar light can be directed into the fibre by using an analogous process to fibre side emission but, in the reverse. We shall report on the solar light capturing efficiency of POF as modified by several types of external imperfections introduced onto the fibre. One major advantage of our proposed approach lies in the fact that we aim to eliminate at least one of the two axes of sun tracking that is currently used in existing solar illumination systems.
NASA Astrophysics Data System (ADS)
Ebraert, Evert; Van Erps, Jürgen; Beri, Stefano; Watté, Jan; Thienpont, Hugo
2014-05-01
Fibre-to-the-home (FTTH) networks provide an ideal means to reach the goal the European Union has set to provide 50 % of the households with a broadband connection faster than 100 Mb/s. Deployment of FTTH networks, which is still costly today, could be significantly boosted by novel ferrule-less connectors which don't require highly skilled personnel and allow installation in the field. We propose a ferrule-less connector in which two single-mode fibres (SMFs) are aligned and maintain physical contact by ensuring that at least one fibre is in a buckled state. To this end, we design a cavity in which a fibre can buckle in a controlled way. Using finite element analysis simulations to investigate the shape of the formed buckle for various buckling cavity lengths, we show that it can be accurately approximated by a cosine function. In addition, the optical performance of a buckled SMF is investigated by bending loss calculations and simulations. We show a good agreement between the analytical and the simulated bending loss results for a G.652 fibre at a wavelength of 1550 nm. Buckling cavity lengths smaller than 20 mm should be avoided to keep the optical bending loss due to buckling below 0.1 dB. In this case the cavity height should at least be 2 mm to avoid mechanical confinement of the fibre.
Intrication temporelle et communication quantique
NASA Astrophysics Data System (ADS)
Bussieres, Felix
Quantum communication is the art of transferring a quantum state from one place to another and the study of tasks that can be accomplished with it. This thesis is devoted to the development of tools and tasks for quantum communication in a real-world setting. These were implemented using an underground optical fibre link deployed in an urban environment. The technological and theoretical innovations presented here broaden the range of applications of time-bin entanglement through new methods of manipulating time-bin qubits, a novel model for characterizing sources of photon pairs, new ways of testing non-locality and the design and the first implementation of a new loss-tolerant quantum coin-flipping protocol. Manipulating time-bin qubits. A single photon is an excellent vehicle in which a qubit, the fundamental unit of quantum information, can be encoded. In particular, the time-bin encoding of photonic qubits is well suited for optical fibre transmission. Before this thesis, the applications of quantum communication based on the time-bin encoding were limited due to the lack of methods to implement arbitrary operations and measurements. We have removed this restriction by proposing the first methods to realize arbitrary deterministic operations on time-bin qubits as well as single qubit measurements in an arbitrary basis. We applied these propositions to the specific case of optical measurement-based quantum computing and showed how to implement the feedforward operations, which are essential to this model. This therefore opens new possibilities for creating an optical quantum computer, but also for other quantum communication tasks. Characterizing sources of photon pairs. Experimental quantum communication requires the creation of single photons and entangled photons. These two ingredients can be obtained from a source of photon pairs based on non-linear spontaneous processes. Several tasks in quantum communication require a precise knowledge of the properties of the source being used. We developed and implemented a fast and simple method to characterize a source of photon pairs. This method is well suited for a realistic setting where experimental conditions, such as channel transmittance, may fluctuate, and for which the characterization of the source has to be done in real time. Testing the non-locality of time-bin entanglement. Entanglement is a resource needed for the realization of many important tasks in quantum communication. It also allows two physical systems to be correlated in a way that cannot be explained by classical physics; this manifestation of entanglement is called non-locality. We built a source of time-bin entangled photonic qubits and characterized it with the new methods implementing arbitrary single qubit measurements that we developed. This allowed us to reveal the non-local nature of our source of entanglement in ways that were never implemented before. It also opens the door to study previously untested features of non-locality using this source. Theses experiments were performed in a realistic setting where quantum (non-local) correlations were observed even after transmission of one of the entangled qubits over 12.4 km of an underground optical fibre. Flipping quantum coins. Quantum coin-flipping is a quantum cryptographic primitive proposed in 1984, that is when the very first steps of quantum communication were being taken, where two players alternate in sending classical and quantum information in order to generate a shared random bit. The use of quantum information is such that a potential cheater cannot force the outcome to his choice with certainty. Classically, however, one of the players can always deterministically choose the outcome. Unfortunately, the security of all previous quantum coin-flipping protocols is seriously compromised in the presence of losses on the transmission channel, thereby making this task impractical. We found a solution to this problem and obtained the first loss-tolerant quantum coin-flipping protocol whose security is independent of the amount of the losses. We have also experimentally demonstrated our loss-tolerant protocol using our source of time-bin entanglement combined with our arbitrary single qubit measurement methods. This experiment took place in a realistic setting where qubits travelled over an underground optical fibre link. This new task thus joins quantum key distribution as a practical application of quantum communication. Keywords. quantum communication, photonics, time-bin encoding, source of photon pairs, heralded single photon source, entanglement, non-locality, time-bin entanglement, hybrid entanglement, quantum network, quantum cryptography, quantum coin-flipping, measurement-based quantum computation, telecommunication, optical fibre, nonlinear optics.
Fiber-optic voltage measuring system
NASA Astrophysics Data System (ADS)
Ye, Miaoyuan; Nie, De-Xin; Li, Yan; Peng, Yu; Lin, Qi-Qing; Wang, Jing-Gang
1993-09-01
A new fibre optic voltage measuring system has been developed based on the electrooptic effect of bismuth germanium oxide (Bi4Ge3O12)crystal. It uses the LED as the light source. The light beam emitted from the light source is transmitted to the sensor through the optic fibre and the intensity of the output beam is changed by the applied voltage. This optic signal is transmitted to the PIN detector and converted to an electric signal which is processed by the electronic circuit and 8098 single chip microcomputer the output voltage signal obtained is directly proportional to the applied voltage. This paper describes the principle the configuration and the performance parameters of the system. Test results are evaluated and discussed.
Plastic optical fibre sensor for quality control in food industry
NASA Astrophysics Data System (ADS)
Novo, C.; Bilro, L.; Ferreira, R.; Alberto, N.; Antunes, P.; Leitão, C.; Nogueira, R.; Pinto, J. L.
2013-05-01
The present work addresses the need for new devices felt in the context of quality control, especially in the food industry. Due to the spectral dependence of the attenuation coefficient, a novel dual-parameter sensor for colour and refractive index was developed and tested. The sensor employs plastic optical fibres to measure the transmitted optical power in three measurement cells each with a different incident wavelength. The performance of the sensor was tested using several dyes at different concentrations and aqueous solutions of glycerine and ethanol. Results show that this technique allows the monitoring of refractive index and colour without cross-sensitivity.
Fibre multi-wave mixing combs reveal the broken symmetry of Fermi-Pasta-Ulam recurrence
NASA Astrophysics Data System (ADS)
Mussot, Arnaud; Naveau, Corentin; Conforti, Matteo; Kudlinski, Alexandre; Copie, Francois; Szriftgiser, Pascal; Trillo, Stefano
2018-05-01
In optical fibres, weak modulations can grow at the expense of a strong pump to form a triangular comb of sideband pairs, until the process is reversed. Repeated cycles of such conversion and back-conversion constitute a manifestation of the universal nonlinear phenomenon known as Fermi-Pasta-Ulam recurrence. However, it remains a major challenge to observe the coexistence of different types of recurrences owing to the spontaneous symmetry-breaking nature of such a phenomenon. Here, we implement a novel non-destructive technique that allows the evolution in amplitude and phase of frequency modes to be reconstructed via post-processing of the fibre backscattered light. We clearly observe how control of the input modulation seed results in different recursive behaviours emerging from the phase-space structure dictated by the spontaneously broken symmetry. The proposed technique is an important tool to characterize other mixing processes and new regimes of rogue-wave formation and wave turbulence in fibre optics.
Hydrodynamic effects in laser cutting of biological tissue phantoms
NASA Astrophysics Data System (ADS)
Zhigarkov, V. S.; Yusupov, V. I.; Tsypina, S. I.; Bagratashvili, V. N.
2017-11-01
We study the thermal and transport processes that occur in the course of incision formation at the surface of a biological tissue phantom under the action of near-IR, moderate-power, continuous-wave laser radiation (λ = 1.94 μm) delivered by means of an optical fibre with an absorbing coating on its exit face. It is shown that in addition to the thermal effect, the laser-induced hydrodynamic effects caused by the explosive boiling of the interstitial water make a large contribution to the phantom destruction mechanism. These effects lead to the tissue rupture accompanied by the ejection of part of the fragmented substance from the site of laser impact and the formation of highly porous structure near the incision surface. We have found that the depth, the width and the relief of the laser incision wall in the case of using the optical fibre moving with a constant velocity, depend on the fibre tilt angle with respect to the phantom surface, as well as the direction of the fibre motion.
NASA Astrophysics Data System (ADS)
Chehura, Edmon; Dell'Anno, Giuseppe; Huet, Tristan; Staines, Stephen; James, Stephen W.; Partridge, Ivana K.; Tatam, Ralph P.
2014-07-01
Dynamic loadings induced on a tufting needle during the tufting of dry carbon fibre preform via a commercial robot-controlled tufting head were investigated in situ and in real-time using optical fibre Bragg grating (FBG) sensors bonded to the needle shaft. The sensors were configured such that the axial strain and bending moments experienced by the needle could be measured. A study of the influence of thread and thread type on the strain imparted to the needle revealed axial strain profiles which had equivalent trends but different magnitudes. The mean of the maximum axial compression strains measured during the tufting of a 4-ply quasi-isotropic carbon fibre dry preform were - 499 ± 79 μɛ, - 463 ± 51 μɛ and - 431 ± 59 μɛ for a needle without thread, with metal wire and with Kevlar® thread, respectively. The needle similarly exhibited bending moments of different magnitude when the different needle feeding configurations were used.
Step-index all-silica fibres with enhanced transmission in a broad spectral range
NASA Astrophysics Data System (ADS)
Boucher, Didier
There are three primary fibre optics properties of concern for astronomical spectroscopic applications: FRD (Focal Ratio Degradation), the extent to which the transmitting fibre preserves the input focal ratio especially under stress, torsion at measuring temperatures (-15C to +30C); image scrambling where fibres eliminate part of instabilities induced by seeing and tracking errors by removing the spatial variability of the stellar image pushing velocity measurements; the best transparency possible from the atmospheric cut-off at 300 nm to the sensitivity drop-off of CCD detectors at about 1000 nm.
Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro
NASA Astrophysics Data System (ADS)
Jin, Jing; Tian, Hai-Ting; Pan, Xiong; Song, Ning-Fang
2010-03-01
The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed-loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted.
NASA Astrophysics Data System (ADS)
Drahotský, Jakub; Hanzelka, Pavel; Musilová, Věra; Macek, Michal; du Puits, Ronald; Urban, Pavel
2018-06-01
Modelling of large-scale natural (thermally-generated) turbulent flows (such as the turbulent convection in Earth's atmosphere, oceans, or Sun) is approached in laboratory experiments in the simplified model system called the Rayleigh-Bénard convection (RBC). We present preliminary measurements of vertical temperature profiles in the cell with the height of 4:7 m, 7:15m in diameter, obtained at the Barrel of Ilmenau (BOI), the worldwide largest experimental setup to study highly turbulent RBC, newly equipped with the Luna ODiSI-B optical fibre system. In our configuration, the system permits to measure the temperature with a high spatial resolution of 5mm along a very thin glass optical fibre with the length of 5m and seems to be perfectly suited for measurement of time series of instantaneous vertical temperature profiles. The system was supplemented with the two Pt100 vertically movable probes specially designed by us for reference temperature profiles measurements.
Ultrasensitive plasmonic sensing in air using optical fibre spectral combs
Caucheteur, Christophe; Guo, Tuan; Liu, Fu; Guan, Bai-Ou; Albert, Jacques
2016-01-01
Surface plasmon polaritons (SPP) can be excited on metal-coated optical fibres, enabling the accurate monitoring of refractive index changes. Configurations reported so far mainly operate in liquids but not in air because of a mismatch between permittivities of guided light modes and the surrounding medium. Here we demonstrate a plasmonic optical fibre platform that overcomes this limitation. The underpinning of our work is a grating architecture—a gold-coated highly tilted Bragg grating—that excites a spectral comb of narrowband-cladding modes with effective indices near 1.0 and below. Using conventional spectral interrogation, we measure shifts of the SPP-matched resonances in response to static atmospheric pressure changes. A dynamic experiment conducted using a laser lined-up with an SPP-matched resonance demonstrates the ability to detect an acoustic wave with a resolution of 10−8 refractive index unit (RIU). We believe that this configuration opens research directions for highly sensitive plasmonic sensing in gas. PMID:27834366
High-speed ADC and DAC modules with fibre optic interconnections for telecom satellites
NASA Astrophysics Data System (ADS)
Heikkinen, Veli; Juntunen, Eveliina; Karppinen, Mikko; Kautio, Kari; Ollila, Jyrki; Sitomaniemi, Aila; Tanskanen, Antti; Casey, Rory; Scott, Shane; Gachon, Hélène; Sotom, Michel; Venet, Norbert; Toivonen, Jaakko; Tuominen, Taisto; Karafolas, Nikos
2017-11-01
The flexibility required for future telecom payloads calls for the introduction of more and more digital processing capabilities. Aggregate data throughputs of several Tbps will have to be handled onboard, thus creating the need for effective, ADCDSP and DACDSP highspeed links. ADC and DAC modules with optical interconnections is an attractive option as it can solve easily the transmission and routing of the expected huge amount of data. This technique will enable to increase the bandwidth and/or the number of beams/channels to be treated, or to support advanced digital processing architectures including beam forming. We realised electrooptic ADC and DAC modules containing an 8 bit, 2 GSa/s A/D converter and a 12 bit, 2 GSa/s D/A converter. The 4channel parallel fibre optic link employs 850nm VCSELs and GaAs PIN photodiodes coupled to 50/125μm fibre ribbon cable. ADCDSP and DSPDAC links both have an aggregate data rate of 25 Gbps. The paper presents the current status of this development.
Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F.
2015-01-01
Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies. PMID:26460719
Review on State-of-the-art in Polymer Based pH Sensors
Korostynska, Olga; Arshak, Khalil; Gill, Edric; Arshak, Arousian
2007-01-01
This paper reviews current state-of-the-art methods of measuring pH levels that are based on polymer materials. These include polymer-coated fibre optic sensors, devices with electrodes modified with pH-sensitive polymers, fluorescent pH indicators, potentiometric pH sensors as well as sensors that use combinatory approach for ion concentration monitoring. PMID:28903277
Monitoring tissue formation and organization of engineered tendon by optical coherence tomography
NASA Astrophysics Data System (ADS)
Bagnaninchi, P. O.; Yang, Y.; Maffulli, N.; Wang, R. K.; El Haj, A.
2006-02-01
The uniaxial orientation and bundle formation of collagen fibres determine the mechanical properties of tendons. Thus the particular challenge of tendon tissue engineering is to build the tissue with a highly organized structure of collagen fibres. Ultimately the engineered construct will be used as autologous grafts in tendon surgery, withstanding physiological loading. We grew pig tenocytes in porous chitosan scaffolds with multiple microchannels of 250-500 μm. The cell proliferation and production of extra-cellular matrix (ECM) within the scaffolds have been successfully monitored by Optical Coherence Tomography (OCT), a bench-top OCT system equipped with a broadband light source centred at 1300 nm. Under sterile condition, the measurements were performed on-line and in a non-destructive manner. In addition, a novel method based on OCT imaging, which calculates the occupation ratio of the microchannel derived from the scattered intensity has been developed. It is confirmed that the occupation ratio is correlated to cell proliferation and ECM production in the scaffolds. Thus this method has been utilised to assess the effect of different culture conditions on the tissue formation. The use of a perfusion bioreactor has resulted in a significantly (p<1e -3) higher cell proliferation and matrix production.
Multi-gigabit optical interconnects for next-generation on-board digital equipment
NASA Astrophysics Data System (ADS)
Venet, Norbert; Favaro, Henri; Sotom, Michel; Maignan, Michel; Berthon, Jacques
2017-11-01
Parallel optical interconnects are experimentally assessed as a technology that may offer the high-throughput data communication capabilities required to the next-generation on-board digital processing units. An optical backplane interconnect was breadboarded, on the basis of a digital transparent processor that provides flexible connectivity and variable bandwidth in telecom missions with multi-beam antenna coverage. The unit selected for the demonstration required that more than tens of Gbit/s be supported by the backplane. The demonstration made use of commercial parallel optical link modules at 850 nm wavelength, with 12 channels running at up to 2.5 Gbit/s. A flexible optical fibre circuit was developed so as to route board-to-board connections. It was plugged to the optical transmitter and receiver modules through 12-fibre MPO connectors. BER below 10-14 and optical link budgets in excess of 12 dB were measured, which would enable to integrate broadcasting. Integration of the optical backplane interconnect was successfully demonstrated by validating the overall digital processor functionality.
Multi-gigabit optical interconnects for next-generation on-board digital equipment
NASA Astrophysics Data System (ADS)
Venet, Norbert; Favaro, Henri; Sotom, Michel; Maignan, Michel; Berthon, Jacques
2004-06-01
Parallel optical interconnects are experimentally assessed as a technology that may offer the high-throughput data communication capabilities required to the next-generation on-board digital processing units. An optical backplane interconnect was breadboarded, on the basis of a digital transparent processor that provides flexible connectivity and variable bandwidth in telecom missions with multi-beam antenna coverage. The unit selected for the demonstration required that more than tens of Gbit/s be supported by the backplane. The demonstration made use of commercial parallel optical link modules at 850 nm wavelength, with 12 channels running at up to 2.5 Gbit/s. A flexible optical fibre circuit was developed so as to route board-to-board connections. It was plugged to the optical transmitter and receiver modules through 12-fibre MPO connectors. BER below 10-14 and optical link budgets in excess of 12 dB were measured, which would enable to integrate broadcasting. Integration of the optical backplane interconnect was successfully demonstrated by validating the overall digital processor functionality.
Optical fibre sensing: a solution for industry
NASA Astrophysics Data System (ADS)
Sun, T.; Fabian, M.; Chen, Y.; Vidakovic, M.; Javdani, S.; Grattan, K. T. V.; Carlton, J.; Gerada, C.; Brun, L.
2017-04-01
Optical fibres have been explored widely for their sensing capability to meet increasing industrial needs, building on their success in telecommunications. This paper provides a review of research activities at City University of London in response to industrial challenges through the development of a range of fibre Bragg grating (FBG)-based sensors for transportation structural monitoring. For marine propellers, arrays of FBGs mapped onto the surface of propeller blades allow for capturing vibrational modes, with reference to simulation data. The research funded by EU Cleansky programme enables the development of self-sensing electric motor drives to support `More Electric Aircraft' concept. The partnership with Faiveley Brecknell Willis in the UK enables the integration of FBG sensors into the railway current-collecting pantographs for real-time condition monitoring when they are operating under 25kV conditions.
Roriz, Paulo; Carvalho, Lídia; Frazão, Orlando; Santos, José Luís; Simões, José António
2014-04-11
In vivo measurement, not only in animals but also in humans, is a demanding task and is the ultimate goal in experimental biomechanics. For that purpose, measurements in vivo must be performed, under physiological conditions, to obtain a database and contribute for the development of analytical models, used to describe human biomechanics. The knowledge and control of the mechanisms involved in biomechanics will allow the optimization of the performance in different topics like in clinical procedures and rehabilitation, medical devices and sports, among others. Strain gages were first applied to bone in a live animal in 40's and in 80's for the first time were applied fibre optic sensors to perform in vivo measurements of Achilles tendon forces in man. Fibre optic sensors proven to have advantages compare to conventional sensors and a great potential for biomechanical and biomedical applications. Compared to them, they are smaller, easier to implement, minimally invasive, with lower risk of infection, highly accurate, well correlated, inexpensive and multiplexable. The aim of this review article is to give an overview about the evolution of the experimental techniques applied in biomechanics, from conventional to fibre optic sensors. In the next sections the most relevant contributions of these sensors, for strain and force in biomechanical applications, will be presented. Emphasis was given to report of in vivo experiments and clinical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ackermann, Philipp; Brachert, Maike; Albrecht, Philipp; Ringelstein, Marius; Finis, David; Geerling, Gerd; Aktas, Orhan; Guthoff, Rainer
2017-07-01
A characteristic disease pattern may be reflected by retinal layer thickness changes in non-arteritic anterior ischaemic optic neuropathy measured using spectraldomain optical coherence tomography. Retinal layer segmentation is enabled by advanced software. In this study, retinal layer thicknesses in acute and chronic non-arteritic anterior ischaemic optic neuropathy were compared. A single-centre cross-sectional analysis was used. A total of 27 patients (20 age-matched healthy eyes) were included: 14 with acute (<7 days) and 13 patients with chronic non-arteritic anterior ischaemic optic neuropathy. Macular volume and 12° peripapillary ring optical coherence tomography scans were used. The peripapillary thicknesses of the following layers were determined by manual segmentation: retinal nerve fibres, ganglion cells + inner plexiform layer, inner nuclear layer + outer plexiform layer, outer nuclear layer + inner segments of the photoreceptors and outer segments of the photoreceptors to Bruch's membrane. Macular retinal layer thicknesses were automatically determined in volume cubes centred on the fovea. Peripapillary retinal swelling in acute nonarteritic anterior ischaemic optic neuropathy was attributable to retinal nerve fibre layer, ganglion cell layer/inner plexiform layer and outer nuclear layer/segments of the photoreceptors thickening. In chronic cases, peripapillary retinal nerve fibre layer, macular ganglion cell layer and inner plexiform layer thinning were observed. In acute non-arteritic anterior ischaemic optic neuropathy, the inner and outer peripapillary retinal layers are affected by thickness changes. In chronic cases, atrophy of the ganglion cells and their axons and dendrites is evident by inner retinal layer thinning. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
Low temperature and UV curable sol-gel coatings for long lasting optical fiber biosensors
NASA Astrophysics Data System (ADS)
Otaduy, D.; Villar, A.; Gomez-Herrero, E.; Goitandia, A. M.; Gorritxategi, E.; Quintana, I.
2010-04-01
The use of optical fibers as sensing element is increasing in clinical, pharmaceutical and industrial applications. Excellent light delivery, long interaction length, low cost and ability not only to excite the target molecules but also to capture the emitted light from the targets are the hallmarks of optical fiber as biosensors. In biosensors based on fiber optics the interaction with the analyte can occur within an element of the optical fiber. One of the techniques for this kind of biosensors is to remove the fiber optic cladding and substitute it for biological coatings that will interact with the parameter to sensorize. The deposition of these layers can be made by sol-gel technology. The sol-gel technology is being increasingly used mainly due to the high versatility to tailor their optical features. Incorporation of suitable chemical and biochemical sensing agents have allowed determining pH, gases, and biochemical species, among others. Nonetheless, the relatively high processing temperatures and short lifetime values mean severe drawbacks for a successful exploitation of sol-gel based coated optical fibres. With regard to the latter, herein we present the design, preparation and characterization of novel sol-gel coated optical fibres. Low temperature and UV curable coating formulations were optimized to achieve a good adhesion and optical performance. The UV photopolymerizable formulation was comprised by glycidoxypropyltrimethoxysilane (GLYMO), Tetraethylorthosilicate (TEOS) and an initiator. While the thermoset coating was prepared by using 3-aminopropyltrimethoxysilane, GLYMO, and TEOS as main reagents. Both curable sol-gel coated fibres were analysed by FTIR, SEM and optical characterization. Furthermore, in the present work a new technique for silica cladding removal has been developed by ultra-short pulses laser processing, getting good dimensional accuracy and surface integrity.
NASA Astrophysics Data System (ADS)
Stutsel, B.; Callow, J. N.
2017-12-01
Radiant frost events, particularly those during the reproductive stage of winter cereal growth, cost growers millions of dollars in lost yield. Whilst synoptic drivers of frost and factors influencing temperature variation at the landscape scale are relatively well understood, there is a lack of knowledge surrounding small-scale temperature dynamics within paddocks and plot trials. Other work has also suggested a potential significant temperature gradient (several degrees) vertically from ground to canopy, but this is poorly constrained experimentally. Subtle changes in temperature are important as frost damage generally occurs in a very narrow temperature range (-2 to -5°C). Once a variety's damage threshold is reached, a 1°C difference in minimum temperature can increase damage from 10 to 90%. This study applies Distributed Temperature Sensing (DTS) using fibre optics to understand how minimum temperature evolves during a radiant frost. DTS assesses the difference in attenuation of Raman scattering of a light pulse travelling along a fibre optic cable to measure temperature. A bend insensitive multimode fibre was deployed in a double ended duplex configuration as a "fence" run through four times of sowing at a trial site in the Western Australian Wheatbelt. The fibre optic fence was 160m long and 800mm tall with the fibre optic cable spaced 100mm apart vertically, and calibrated in ambient water ( 10 to 15oC) and a chilled glycol ( -8 to-10 oC) baths. The temperature measurements had a spatial resolution of 0.65m and temporal resolution of 60s, providing 2,215 measurements every minute. The results of this study inform our understanding of the subtle temperature changes from the soil to canopy, providing new insight into how to place traditional temperature loggers to monitor frost damage. It also addresses questions of within-trial temperature variability, and provides an example of how novel techniques such as DTS can be used to improve the way temperature (frost) is incorporated in crop damage models. This data set provided by DTS allows a level of detail that is not possible to record with traditional temperature loggers and shows how this emerging technology can be applied to agricultural applications. This research was supported by the Grains Research and Development Corporation National Frost Initiative.
NASA Astrophysics Data System (ADS)
Ansari, Rehman; Beard, Paul C.; Zhang, Edward Z.; Desjardins, Adrien E.
2016-03-01
There is considerable interest in the development of photoacoustic endoscopy (PAE) probes for the clinical assessment of pathologies in the gastrointestinal (GI) tract, guiding minimally invasive laparoscopic surgeries and applications in foetal medicine. However, most previous PAE probes integrate mechanical scanners and piezoelectric transducers at the distal end which can be technically complex, expensive and pose challenges in achieving the necessary level of miniaturisation. We present two novel all-optical forward-viewing endoscopic probes operating in widefield tomography mode that have the potential to overcome these limitations. In one configuration, the probe comprises a transparent 40 MHz Fabry-Pérot ultrasound sensor deposited at the tip of a rigid, 3 mm diameter coherent fibre-optic bundle. In this way, the distal end of coherent fibre bundle acts as a 2D array of wideband ultrasound detectors. In another configuration, an optical relay is used between the distal end face of flexible fibre bundle and the Fabry-Pérot sensor to enlarge the lateral field of view to 6 mm x 6 mm. In both configurations, the pulsed excitation laser beam is full-field coupled into the fibre bundle at the proximal end for uniform backward-mode illumination of the tissue at the probe tip. In order to record the photoacoustic waves arriving at the probe tip, the proximal end of the fibre bundle is optically scanned in 2D with a CW wavelength-tunable interrogation laser beam thereby interrogating different spatial points on the sensor. A time-reversal image reconstruction algorithm was used to reconstruct a 3D image from the detected signals. The 3D field of view of the flexible PAE probe is 6 mm x 6 mm x 6 mm and the axial and lateral spatial resolution is 30 µm and 90 µm, respectively. 3D imaging capability is demonstrated using tissue phantoms, ex vivo tissues and in vivo. To the best of our knowledge, this is the first forward-viewing implementation of a photoacoustic endoscopy probe, and it offers several advantages over previous distal-end scanning probes. These include a high degree of miniaturisation, no moving parts at the distal end and simple and inexpensive fabrication with the potential to realise disposable probes for clinical imaging of the GI tract and other minimally invasive applications.
Fibre Optic Temperature Sensors Using Fluorescent Phenomena.
NASA Astrophysics Data System (ADS)
Selli, Raman Kumar
Available from UMI in association with The British Library. A number of fibre optic sensors based on fluorescent phenomena using low cost electronic and optical filtering techniques, for temperature sensing applications are described and discussed. The initial device developed uses the absorption edge change of an optical glass to monitor changes in temperature with a second wavelength reference channel being generated from a fluorescent material, neodymium doped in glass. This device demonstrates the working of the self-referencing principle in a practical device tested over the temperature range of -60^circ C to 200^circC. This initial device was improved by incorporating a microprocessor and by modifying the processing electronic circuitry. An alternative probe was constructed which used a second fibre placed along-side the addressing fibre in contrast to the original device where the fibre is placed at the opposite end of the addressing fibre. A device based on the same principle but with different absorption glasses and a different fluorescent medium, crystalline ruby, was also examined. This device operated at a lower wavelength region compared to the infra -red working region of the first device. This work illustrated the need to make an appropriate choice of sensor absorption glass so that the cheaper indicator type LEDs, which operated at lower wavelengths, may be used. Ruby is a fluorescent material which is characterized by each emission wavelength having its own temperature characteristics. The integrated energy output over the complete emission spectrum is independent of temperature. This provided a means of generating a reference from the complete spectrum while a small frequency band gave a temperature dependent output. This characteristic of ruby was used to develop a temperature measuring device. A final system which utilises the temperature dependent decay-time emission properties of crystalline ruby was developed. In this case the ruby was excited by sinusoidally modulated light. This system employs a single indicator type green LED to excite the ruby sample and a single very sensitive silicon photodiode detector with an integral amplifier for low optical signal detection. Both of these components were inexpensive. The system yielded very high performance levels in terms of precision and resolution which has the potential for commercial exploitation. The different devices developed are compared and contrasted in the light of the commercial instruments on the market and other published data.
High-Precision Distribution of Highly Stable Optical Pulse Trains with 8.8 × 10−19 instability
Ning, B.; Zhang, S. Y.; Hou, D.; Wu, J. T.; Li, Z. B.; Zhao, J. Y.
2014-01-01
The high-precision distribution of optical pulse trains via fibre links has had a considerable impact in many fields. In most published work, the accuracy is still fundamentally limited by unavoidable noise sources, such as thermal and shot noise from conventional photodiodes and thermal noise from mixers. Here, we demonstrate a new high-precision timing distribution system that uses a highly precise phase detector to obviously reduce the effect of these limitations. Instead of using photodiodes and microwave mixers, we use several fibre Sagnac-loop-based optical-microwave phase detectors (OM-PDs) to achieve optical-electrical conversion and phase measurements, thereby suppressing the sources of noise and achieving ultra-high accuracy. The results of a distribution experiment using a 10-km fibre link indicate that our system exhibits a residual instability of 2.0 × 10−15 at1 s and8.8 × 10−19 at 40,000 s and an integrated timing jitter as low as 3.8 fs in a bandwidth of 1 Hz to 100 kHz. This low instability and timing jitter make it possible for our system to be used in the distribution of optical-clock signals or in applications that require extremely accurate frequency/time synchronisation. PMID:24870442
Higher order microfibre modes for dielectric particle trapping and propulsion
Maimaiti, Aili; Truong, Viet Giang; Sergides, Marios; Gusachenko, Ivan; Nic Chormaic, Síle
2015-01-01
Optical manipulation in the vicinity of optical micro- and nanofibres has shown potential across several fields in recent years, including microparticle control, and cold atom probing and trapping. To date, most work has focussed on the propagation of the fundamental mode through the fibre. However, along the maximum mode intensity axis, higher order modes have a longer evanescent field extension and larger field amplitude at the fibre waist compared to the fundamental mode, opening up new possibilities for optical manipulation and particle trapping. We demonstrate a microfibre/optical tweezers compact system for trapping and propelling dielectric particles based on the excitation of the first group of higher order modes at the fibre waist. Speed enhancement of polystyrene particle propulsion was observed for the higher order modes compared to the fundamental mode for particles ranging from 1 μm to 5 μm in diameter. The optical propelling velocity of a single, 3 μm polystyrene particle was found to be 8 times faster under the higher order mode than the fundamental mode field for a waist power of 25 mW. Experimental data are supported by theoretical calculations. This work can be extended to trapping and manipulation of laser-cooled atoms with potential for quantum networks. PMID:25766925
Optical gateway for intelligent buildings: a new open-up window to the optical fibre sensors market?
NASA Astrophysics Data System (ADS)
Fernandez-Valdivielso, Carlos; Matias, Ignacio R.; Arregui, Francisco J.; Bariain, Candido; Lopez-Amo, Manuel
2004-06-01
This paper presents the first optical fiber sensor gateway for integrating these special measurement devices in Home Automation Systems, concretely in those buildings that use the KNX European Intelligent Buildings Standard.
Optical measurement of interface movements of liquid metal excited by a pneumatic shaker
NASA Astrophysics Data System (ADS)
Men, Shouqiang; Zhou, Jun; Xu, Jingwen
2015-02-01
A model experiment was designed, and Faraday instabilities were generated in a plexiglass cylinder excited by a pneumatic shaker. A contacting distance meter and a single-point fiber-optic vibrometer were applied to measure the displacement/velocity of the shaker, both of the results are in good agreement with each other. Besides, the fibre-optic laser vibrometer was exploited to measure the velocity of the interface between potassium hydroxide aqueous solution and Galinstan. It shows that the fibre-optic vibrometer can be applied to measure the interface movements without Faraday instabilities, whereas there are strong scatter and the interface displacement can only be obtained qualitatively. In this case, a scanning vibrometer or a high-speed CCD camera should be used to record the interface movements.
All-optical endoscopic probe for high resolution 3D photoacoustic tomography
NASA Astrophysics Data System (ADS)
Ansari, R.; Zhang, E.; Desjardins, A. E.; Beard, P. C.
2017-03-01
A novel all-optical forward-viewing photoacoustic probe using a flexible coherent fibre-optic bundle and a Fabry- Perot (FP) ultrasound sensor has been developed. The fibre bundle, along with the FP sensor at its distal end, synthesizes a high density 2D array of wideband ultrasound detectors. Photoacoustic waves arriving at the sensor are spatially mapped by optically scanning the proximal end face of the bundle in 2D with a CW wavelength-tunable interrogation laser. 3D images are formed from the detected signals using a time-reversal image reconstruction algorithm. The system has been characterized in terms of its PSF, noise-equivalent pressure and field of view. Finally, the high resolution 3D imaging capability has been demonstrated using arbitrary shaped phantoms and duck embryo.
Savini, G; Zanini, M; Carelli, V; Sadun, A A; Ross-Cisneros, F N; Barboni, P
2005-04-01
To investigate the correlation between retinal nerve fibre layer (RNFL) thickness and optic nerve head (ONH) size in normal white subjects by means of optical coherence tomography (OCT). 54 eyes of 54 healthy subjects aged between 15 and 54 underwent peripapillary RNFL thickness measurement by a series of three circular scans with a 3.4 mm diameter (Stratus OCT, RNFL Thickness 3.4 acquisition protocol). ONH analysis was performed by means of six radial scans centred on the optic disc (Stratus OCT, Fast Optic Disc acquisition protocol). The mean RNFL values were correlated with the data obtained by ONH analysis. The superior, nasal, and inferior quadrant RNFL thickness showed a significant correlation with the optic disc area (R = 0.3822, p = 0.0043), (R = 0.3024, p = 0.026), (R = 0.4048, p = 0.0024) and the horizontal disc diameter (R = 0.2971, p = 0.0291), (R = 0.2752, p = 0.044), (R = 0.3970, p = 0.003). The superior and inferior quadrant RNFL thickness was also positively correlated with the vertical disc diameter (R = 0.3774, p = 0.0049), (R = 0.2793, p = 0.0408). A significant correlation was observed between the 360 degrees average RNFL thickness and the optic disc area and the vertical and horizontal disc diameters of the ONH (R = 0.4985, p = 0.0001), (R = 0.4454, p = 0.0007), (R = 0.4301, p = 0.0012). RNFL thickness measurements obtained by Stratus OCT increased significantly with an increase in optic disc size. It is not clear if eyes with large ONHs show a thicker RNFL as a result of an increased amount of nerve fibres or to the shorter distance between the circular scan and the optic disc edge.
Impact of initial pulse shape on the nonlinear spectral compression in optical fibre
NASA Astrophysics Data System (ADS)
Boscolo, Sonia; Chaussard, Frederic; Andresen, Esben; Rigneault, Hervé; Finot, Christophe
2018-02-01
We theoretically study the effects of the temporal intensity profile of the initial pulse on the nonlinear propagation spectral compression process arising from nonlinear propagation in an optical fibre. Various linearly chirped input pulse profiles are considered, and their dynamics is explained with the aid of time-frequency representations. While initially parabolic-shaped pulses show enhanced spectral compression compared to Gaussian pulses, no significant spectral narrowing occurs when initially super-Gaussian pulses are used. Triangular pulses lead to a spectral interference phenomenon similar to the Fresnel bi-prism experiment.
Narrow-band double-pass superluminescent diodes emitting at 1060 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobintsov, A A; Perevozchikov, M V; Shramenko, M V
2009-09-30
Experimental data are presented which show that double-pass superluminescent diodes (SLDs) with fibre Bragg grating (FBG) based spectrally selective external reflectors offer emission linewidths in the range 0.1-1.0 nm, i.e., one to two orders of magnitude narrower in comparison with conventional SLDs and considerably broader in comparison with single-frequency semiconductor lasers. Their optical power at the single-mode fibre output reaches 5.0-8.0 mW, and can be raised to 50 mW using a semiconductor optical amplifier. (lasers)
Application of the fibre-optic interferometer as a rotational seismograph type AFORS
NASA Astrophysics Data System (ADS)
Kurzych, Anna; Jaroszewicz, Leszek R.; Krajewski, Zbigniew; Teisseyre, Krzysztof P.; Kowalski, Jerzy K.
2014-12-01
In this article we show a fibre-optic device based on the Sagnac effect designed for measuring rotational motions which appear during seismic events. The experimental investigations of presented Autonomous Fiber-Optical Rotational Seismographs indicate that such devices keep the accuracy no less than 5.1·10-9 to 5.5·10-8 rad/s in the frequency band from 0.83 Hz to 106.15 Hz. Furthermore, their operations are controlled fully remotely via Internet. We present the comparison of results obtained by such system in the field test with a mechanical rotational seismometer which is mounted simultaneously in the seismological observatory in Książ, Poland.
PRAXIS: a near infrared spectrograph optimised for OH suppression
NASA Astrophysics Data System (ADS)
Ellis, S. C.; Bauer, S.; Bland-Hawthorn, J.; Case, S.; Content, R.; Fechner, T.; Giannone, D.; Haynes, R.; Hernandez, E.; Horton, A. J.; Klauser, U.; Lawrence, J. S.; Leon-Saval, S. G.; Lindley, E.; Löhmannsröben, H.-G.; Min, S.-S.; Pai, N.; Roth, M.; Shortridge, K.; Staszak, Nicholas F.; Tims, Julia; Xavier, Pascal; Zhelem, Ross
2016-08-01
Atmospheric emission from OH molecules is a long standing problem for near-infrared astronomy. PRAXIS is a unique spectrograph, currently in the build-phase, which is fed by a fibre array that removes the OH background. The OH suppression is achieved with fibre Bragg gratings, which were tested successfully on the GNOSIS instrument. PRAXIS will use the same fibre Bragg gratings as GNOSIS in the first implementation, and new, less expensive and more efficient, multicore fibre Bragg gratings in the second implementation. The OH lines are suppressed by a factor of 1000, and the expected increase in the signal-to-noise in the interline regions compared to GNOSIS is a factor of 9 with the GNOSIS gratings and a factor of 17 with the new gratings. PRAXIS will enable the full exploitation of OH suppression for the first time, which was not achieved by GNOSIS due to high thermal emission, low spectrograph transmission, and detector noise. PRAXIS will have extremely low thermal emission, through the cooling of all significantly emitting parts, including the fore-optics, the fibre Bragg gratings, a long length of fibre, and a fibre slit, and an optical design that minimises leaks of thermal emission from outside the spectrograph. PRAXIS will achieve low detector noise through the use of a Hawaii-2RG detector, and a high throughput through an efficient VPH based spectrograph. The scientific aims of the instrument are to determine the absolute level of the interline continuum and to enable observations of individual objects via an IFU. PRAXIS will first be installed on the AAT, then later on an 8m class telescope.
NASA Astrophysics Data System (ADS)
Kulchin, Yurii N.; Vitrik, O. B.; Kamenev, O. T.; Kirichenko, O. V.; Petrov, Yu S.
1995-10-01
Reconstruction of vector physical fields by optical tomography, with the aid of a system of fibre-optic measuring lines, is considered. The reported experimental results are used to reconstruct the distribution of the square of the gradient of transverse displacements of a flat membrane.
Development of deployable fibre integral-field-units for the E-ELT
NASA Astrophysics Data System (ADS)
Kelz, Andreas; Jahn, Thomas; Neumann, Justus; Roth, Martin M.; Rutowska, Monika; Sandin, Christer; Nicklas, Harald; Anwand, Heiko; Schmidt, C.
2014-07-01
The use of deployable fibre-bundles plays an increasing role in the design of future Multi-Object-Spectrographs (MOS). Within a research and development project for "Enabling Technologies for the E-ELT", various miniaturized, fibrebundles were designed, built and tested for their suitability for a proposed ELT-MOS instrument. The paper describes the opto-mechanical designs of the bundles and the different manufacture approaches, using glued, stacked and fused optical fibre bundles. The fibre bundles are characterized for performance, using dedicated testbenches in the laboratory and at a telescope simulator. Their performance is measured with respect to geometric accuracy, throughput, FRD behavior and cross-talk between channels.
TAIPAN instrument fibre positioner and Starbug robots: engineering overview
NASA Astrophysics Data System (ADS)
Staszak, Nicholas F.; Lawrence, Jon; Brown, David M.; Brown, Rebecca; Zhelem, Ross; Goodwin, Michael; Kuehn, Kyler; Lorente, Nuria P. F.; Nichani, Vijay; Waller, Lew; Case, Scott; Content, Robert; Hopkins, Andrew M.; Klauser, Urs; Pai, Naveen; Mueller, Rolf; Mali, Slavko; Vuong, Minh V.
2016-07-01
TAIPAN will conduct a stellar and galaxy survey of the Southern sky. The TAIPAN positioner is being developed as a prototype for the MANIFEST instrument on the GMT. The design for TAIPAN incorporates 150 optical fibres (with an upgrade path to 300) situated within independently controlled robotic positioners known as Starbugs. Starbugs allow precise parallel positioning of individual fibres, thus significantly reducing instrument configuration time and increasing the amount of observing time. Presented is an engineering overview of the UKST upgrade of the completely new Instrument Spider Assembly utilized to support the Starbug Fibre Positioning Robot and current status of the Starbug itself.
TAIPAN fibre feed and spectrograph: engineering overview
NASA Astrophysics Data System (ADS)
Staszak, Nicholas F.; Lawrence, Jon; Zhelem, Ross; Content, Robert; Churilov, Vladimir; Case, Scott; Brown, Rebecca; Hopkins, Andrew M.; Kuehn, Kyler; Pai, Naveen; Klauser, Urs; Nichani, Vijay; Waller, Lew
2016-07-01
TAIPAN will conduct a stellar and galaxy survey of the Southern sky. The TAIPAN positioner is being developed as a prototype for the MANIFEST instrument on the GMT. The TAIPAN Spectrograph is an AAO designed all-refractive 2-arm design that delivers a spectral resolution of R>2000 over the wavelength range 370-870 nm. It is fed by a custom fibre cable from the TAIPAN Starbugs positioner. The design for TAIPAN incorporates 150 optical fibres (with an upgrade path to 300). Presented is an engineering overview of the UKST Fibre Cable design used to support Starbugs, the custom slit design, and the overall design and build plan for the TAIPAN Spectrograph.
Conversion of ultrashort laser pulses to wavelengths above 3 mm in tapered germanate fibres
NASA Astrophysics Data System (ADS)
Anashkina, E. A.; Andrianov, A. V.; Kim, A. V.
2015-05-01
Tapered germanate fibres are proposed for effective adiabatic conversion of Raman soliton pulses to the mid-IR region. A theoretical analysis demonstrates that, in fibres with anomalous group velocity dispersion decreasing along their length, wavelengths of up to 3.5 μm can be reached, which are unattainable in fibres with a constant core diameter at the same parameters of a 2-μm input signal. The analysis relies on a one-way wave equation that takes into account the combined effect of dispersion, Kerr and Raman nonlinearities, nonlinear dispersion and optical losses and the frequency dependence of the effective fundamental transverse mode size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseev, A E; Potapov, V T; Gorshkov, B G
We report the results of studying statistical properties of the intensity of partially polarised coherent light backscattered by a single mode optical fibre. An expression is derived for the deviation of the backscattered light intensity depending on the scattering region length, the degree of the light source coherence and the degree of scattered light polarisation. It is shown that the backscattered light in a fibre scattered-light interferometer is partially polarised with the polarisation degree P = 1/3 in the case of external perturbations of the interferometer fibre. (scattering of light)
Modelling complex phenomena in optical fibres
NASA Astrophysics Data System (ADS)
Allington-Smith, Jeremy; Murray, Graham; Lemke, Ulrike
2012-09-01
We present a new model for predicting the performance of fibre systems in the multimode limit. This is based on ray--tracing but includes a semi--empirical description of Focal Ratio Degradation (FRD). We show how FRD is simulated by the model. With this ability, it can be used to investigate a wide variety of phenomena including scrambling and the loss of light close to the limiting numerical aperture. It can also be used to predict the performance of non--round and asymmetric fibres.
NASA Astrophysics Data System (ADS)
Luyckx, G.; Degrieck, J.; De Waele, W.; Van Paepegem, W.; Van Roosbroeck, J.; Chah, K.; Vlekken, J.; McKenzie, I.; Obst, A.
2017-11-01
A fibre optic sensor design is proposed for simultaneously measuring the 3D stress (or strain) components and temperature inside thermo hardened composite materials. The sensor is based on two fibre Bragg gratings written in polarisation maintaining fibre. Based on calculations of the condition number, it will be shown that reasonable accuracies are to be expected. First tests on the bare sensors and on the sensors embedded in composite material, which confirm the expected behaviour, will be presented.
Design, development, and performance of the fibres of MOONS
NASA Astrophysics Data System (ADS)
Guinouard, Isabelle; Avila, Gerardo; Lee, David; Amans, Jean-Philippe; Rees, Phil; Taylor, William; Oliva, Ernesto
2016-07-01
The Multi-Object Optical and Near-infrared Spectrograph (MOONS) will exploit the full 500 square arcmin field of view offered by the Nasmyth focus of the Very Large Telescope and will be equipped with two identical triple arm cryogenic spectrographs covering the wavelength range 0.64μm-1.8μm, with a multiplex capability of over 1000 fibres. Each spectrograph will produce spectra for 500 targets simultaneously, each with its own dedicated sky fibre for optimal sky subtraction. The system will have both a medium resolution (R 4000-6000) mode and a high resolution (R 20000) mode. The fibres are used to pick off each sub field of 1" and are used to transport the light from the instrument focal plane to the two spectrographs. Each fibre has a microlens to focus the beam into the fibre at a relative fast focal ratio of F/3.65 to reduce the Focal Ratio Degradation (FRD).
Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres
NASA Astrophysics Data System (ADS)
Tzang, Omer; Caravaca-Aguirre, Antonio M.; Wagner, Kelvin; Piestun, Rafael
2018-06-01
Recent progress in wavefront shaping has enabled control of light propagation inside linear media to focus and image through scattering objects. In particular, light propagation in multimode fibres comprises complex intermodal interactions and rich spatiotemporal dynamics. Control of physical phenomena in multimode fibres and its applications are in their infancy, opening opportunities to take advantage of complex nonlinear modal dynamics. Here, we demonstrate a wavefront shaping approach for controlling nonlinear phenomena in multimode fibres. Using a spatial light modulator at the fibre input, real-time spectral feedback and a genetic algorithm optimization, we control a highly nonlinear multimode stimulated Raman scattering cascade and its interplay with four-wave mixing via a flexible implicit control on the superposition of modes coupled into the fibre. We show versatile spectrum manipulations including shifts, suppression, and enhancement of Stokes and anti-Stokes peaks. These demonstrations illustrate the power of wavefront shaping to control and optimize nonlinear wave propagation.
Hughes, V K; Ellis, P S; Burt, T; Langlois, N E I
2004-01-01
Aims: To develop a non-invasive method to demonstrate the presence of haemoglobin and its degradation products in bruises in live human subjects for the purposes of objectively assisting in the determination of the age of a bruise. Methods: The cuvette holder unit of a Cary 100 Bio UV-Visible Spectrophotometer was replaced with the manufacture’s fibre optic cable and optical reflectance probe. The probe was placed on the skin surface. The absorption spectrum from 780 to 380 nm was collected and transformed into the first derivative. Calculation of the first derivative permits absorption attributed to haemoglobin degradation (primarily to bilirubin, but also haemosiderin) to be separated from absorption by haemoglobin. First derivative and colorimetry values, expressed as CIEL*a*b data, were derived from scans of 50 bruises. Results: The fibre optic cable and probe allowed the spectrophotometer to collect reproducible absorption spectra of bruises in the skin of living subjects. A bruise at three days has greater negative first derivative values at 480 and 490 nm than does a fresh bruise, indicating the local degradation of haemoglobin. Correlation between the first derivative and the CIEL*a*b “b” values in a series of bruises indicates that the yellow colour in a bruise is proportional to the amount of local haemoglobin breakdown. Conclusion: The ability to demonstrate the presence of haemoglobin and measure its degradation in bruises in living human subjects by a non-invasive method has not been described previously, and may be of use in the objective ageing of bruises for forensic purposes. PMID:15047735
All-optical pulse-echo ultrasound probe for intravascular imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Colchester, Richard J.; Noimark, Sacha; Mosse, Charles A.; Zhang, Edward Z.; Beard, Paul C.; Parkin, Ivan P.; Papakonstantinou, Ioannis; Desjardins, Adrien E.
2016-02-01
High frequency ultrasound probes such as intravascular ultrasound (IVUS) and intracardiac echocardiography (ICE) catheters can be invaluable for guiding minimally invasive medical procedures in cardiology such as coronary stent placement and ablation. With current-generation ultrasound probes, ultrasound is generated and received electrically. The complexities involved with fabricating these electrical probes can result in high costs that limit their clinical applicability. Additionally, it can be challenging to achieve wide transmission bandwidths and adequate wideband reception sensitivity with small piezoelectric elements. Optical methods for transmitting and receiving ultrasound are emerging as alternatives to their electrical counterparts. They offer several distinguishing advantages, including the potential to generate and detect the broadband ultrasound fields (tens of MHz) required for high resolution imaging. In this study, we developed a miniature, side-looking, pulse-echo ultrasound probe for intravascular imaging, with fibre-optic transmission and reception. The axial resolution was better than 70 microns, and the imaging depth in tissue was greater than 1 cm. Ultrasound transmission was performed by photoacoustic excitation of a carbon nanotube/polydimethylsiloxane composite material; ultrasound reception, with a fibre-optic Fabry-Perot cavity. Ex vivo tissue studies, which included healthy swine tissue and diseased human tissue, demonstrated the strong potential of this technique. To our knowledge, this is the first study to achieve an all-optical pulse-echo ultrasound probe for intravascular imaging. The potential for performing all-optical B-mode imaging (2D and 3D) with virtual arrays of transmit/receive elements, and hybrid imaging with pulse-echo ultrasound and photoacoustic sensing are discussed.
NASA Astrophysics Data System (ADS)
Thomas, Christoph K.; Kennedy, Adam M.; Selker, John S.; Moretti, Ayla; Schroth, Martin H.; Smoot, Alexander R.; Tufillaro, Nicholas B.; Zeeman, Matthias J.
2012-02-01
We present a novel approach based on fibre-optic distributed temperature sensing (DTS) to measure the two-dimensional thermal structure of the surface layer at high resolution (0.25 m, ≈0.5 Hz). Air temperature observations obtained from a vertically-oriented fibre-optics array of approximate dimensions 8 m × 8 m and sonic anemometer data from two levels were collected over a short grass field located in the flat bottom of a wide valley with moderate surface heterogeneity. The objectives of the study were to evaluate the potential of the DTS technique to study small-scale processes in the surface layer over a wide range of atmospheric stability, and to analyze the space-time dynamics of transient cold-air pools in the calm boundary layer. The time response and precision of the fibre-based temperatures were adequate to resolve individual sub-metre sized turbulent and non-turbulent structures, of time scales of seconds, in the convective, neutral, and stable surface layer. Meaningful sensible heat fluxes were computed using the eddy-covariance technique when combined with vertical wind observations. We present a framework that determines the optimal environmental conditions for applying the fibre-optics technique in the surface layer and identifies areas for potentially significant improvements of the DTS performance. The top of the transient cold-air pool was highly non-stationary indicating a superposition of perturbations of different time and length scales. Vertical eddy scales in the strongly stratified transient cold-air pool derived from the DTS data agreed well with the buoyancy length scale computed using the vertical velocity variance and the Brunt-Vaisala frequency, while scales for weak stratification disagreed. The high-resolution DTS technique opens a new window into spatially sampling geophysical fluid flows including turbulent energy exchange.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zulkifli, M Z; Ahmad, H; Hassan, N A
2011-07-31
A multi-wavelength Brillouin fibre laser (MBFL) with an ultra-wideband tuning range from 1420 nm to 1620 nm is demonstrated. The MBFL uses an ultra-wideband semiconductor optical amplifier (SOA) and a dispersion compensating fibre (DCF) as the linear gain medium and nonlinear gain medium, respectively. The proposed MBFL has a wide tuning range covering the short (S-), conventional (C-) and long (L-) bands with a wavelength spacing of 0.08 nm, making it highly suitable for DWDM system applications. The output power of the observed Brillouin Stokes ranges approximately from -5.94 dBm to -0.41 dBm for the S-band, from -4.34 dBm tomore » 0.02 dBm for the C-band and from -2.19 dBm to 0.39 dBm for the L-band. The spacing between each adjacent wavelengths of all the three bands is about 0.08 nm, which is approximately 10.7 GHz for the frequency domain. (lasers)« less
Abushagur, Abdulfatah A.G.; Arsad, Norhana; Ibne Reaz, Mamun; Ashrif, A.; Bakar, A.
2014-01-01
The large interest in utilising fibre Bragg grating (FBG) strain sensors for minimally invasive surgery (MIS) applications to replace conventional electrical tactile sensors has grown in the past few years. FBG strain sensors offer the advantages of optical fibre sensors, such as high sensitivity, immunity to electromagnetic noise, electrical passivity and chemical inertness, but are not limited by phase discontinuity or intensity fluctuations. FBG sensors feature a wavelength-encoding sensing signal that enables distributed sensing that utilises fewer connections. In addition, their flexibility and lightness allow easy insertion into needles and catheters, thus enabling localised measurements inside tissues and blood. Two types of FBG tactile sensors have been emphasised in the literature: single-point and array FBG tactile sensors. This paper describes the current design, development and research of the optical fibre tactile techniques that are based on FBGs to enhance the performance of MIS procedures in general. Providing MIS or microsurgery surgeons with accurate and precise measurements and control of the contact forces during tissues manipulation will benefit both surgeons and patients. PMID:24721774
Fibre optic portable rail vehicle detector
NASA Astrophysics Data System (ADS)
Kepak, Stanislav; Cubik, Jakub; Zavodny, Petr; Hejduk, Stanislav; Nedoma, Jan; Davidson, Alan; Vasinek, Vladimir
2016-12-01
During track maintenance operations, the early detection of oncoming rail vehicles is critical for the safety of maintenance personnel. In addition, the detection system should be simple to install at the trackside by minimally qualified personnel. Fibre optic based sensor systems have the inherent advantages of being passive, unaffected by radio frequency interference (RFI) and suffering very low signal attenuation. Such a system therefore represents a good alternative to conventional approaches such as ultrasonic based sensor systems. The proposed system consists of one or more passive fibre trackside sensors and an x86 processing unit located at the work site. The solid fibre connection between sensors and processing unit eliminates the risk of RFI. In addition, the detection system sensors are easy to install with no requirement for electrical power at the sensor site. The system was tested on a tram line in Ostrava with the results obtained indicating the successful detection of all the trams in the monitoring windows using a single sensor. However, the platform allows flexibility in configuring multiple sensors where required by system users.
Pulsed optical fibre lasers: Self-pulsation, Q-switching and tissue interactions
NASA Astrophysics Data System (ADS)
El-Sherif, Ashraf Fathy
The experimental and theoretical aspects of self-pulsing and dynamics effects of a CW Tm3+-doped silica fibre laser operating near 2 mum are investigated and examined for the first time. Various self-pulsing regimes are observed for a range of pumping rates when the fibre is end-pumped with a high power Nd:YAG laser operating at 1.319 mum in a linear bidirectional cavity. A theoretical model based on pair induced quenching (PIQ) is considered. The quenching effect acts as a saturable absorber or an additional dynamical loss mechanism, this additional absorber then may make the laser system unstable depending on whether the obtained steady-state solution is stable or not. A comparison between measured self-pulsation frequency and calculated relaxation oscillation frequency as a function of pumping rate is presented and discussed. High performance operation of a mechanical shutter Q-switched Tm3+-doped silica fibre laser operating near 2 mum is observed and presented. A single Q-switched pulse with peak power of 18.5 W and pulse duration at full width half maximum (FWHM) of 300 ns at higher mechanical chopper frequencies of nearly 20 kHz is achieved. The pulse-to-pulse stability was measured and improved to be more less than 5 %. The development, optimisation of the performance and analysis of an acousto-optic modulator (AOM) Q-switched Tm3+-doped silica fibre laser operating near 2 mum are presented. The shortest pulse duration obtained was 150 ns, giving a highest peak power of 4.1 kW, and is the highest yet reported from any type of active Q-switched fibre laser operating in low order mode. The maximum peak power was obtained for an optimum cavity length of 1.15 meters made up of fibre length, Q-switch crystal and passive space. The pulse train with high pulse-to-pulse stability of 1 % occurred at a range of high repetition rates from 10 to 30 kHz. High energy, high brightness of an electro-optic modulator (EOM) Q-switched Tm3+-doped silica fibre laser operating near 2 mum is presented. Appropriate design precautions have been undertaken to ensure that prelasing does not occur. In this system, the main Q-switched pulse may be followed by one pulse of lower amplitude "postlasing" when an optimised quarter wave voltage of 750 V is applied. It was found that the laser produced 320 ns pulses with 2.5 mJ pulse energy and 3.3 kW peak power at low repetition rates of 50-70 Hz. This is the first time that such studies of electro-optic modulator (EOM) Q-switched Tm3+ fibre lasers have been reported. The maximum peak power was obtained for an optimum cavity length of 2.15 meters, made up of fibre length, broadband beamsplitter polarizer, Q-switch crystal and passive space. Computer simulation of Tm3+doped silica and Er2-doped fluorozirconate fibre lasers using general laser analysis and design (GLAD) software has been successfully investigated for the first time. Input files, which are very similar to language are created to model three designs of fibre lasers, two for Tm3+-doped silica fibre lasers, core pumped at 1.57 mum and cladding pumped at 790 nm, and one for a 2.7 mum Er3+-doped fluorozirconate fibre laser cladding pumped at 975 nm. Results are presented from a relatively comprehensive computer model, which simulates CW operation of the fibre lasers. The simulation suggests that to enhance the conversion energy we have to optimise between the absorption coefficient of the fibre and the diffraction algorithms. Comparison of soft and hard tissue ablation with high peak power Q-switched and CW Tm3+-silica fibre lasers are presented. The ablation of chicken breast and lamb liver tissues as a soft tissue and cartilage as a hard tissue have been investigated using a free running CW-Tm3+-doped fibre laser (wavelength 1.99 mum, with self-pulsation duration ranging over 1 to few tens of microseconds) and for Q-switched operation of the same laser (pulse duration ranging from 150 ns to 900 ns and pulse repetition rates from 100 Hz to 17 kHz). Residual damage and affected zones using the CW laser were nearly 6 times greater than using the Q-switched fibre laser for about 50 s of exposure time, and increased with pulse repetition rate. The energy required to ablate tissues with the CW-fibre laser ranged from 153 to 334 kJ/cm3 and was significantly smaller from 0.2 to 0.6 kJ/cm3 for the Q-switched fibre laser. This study is the first direct comparison of tissue interaction of CW and Q- switched Tm3+-doped silica fibre lasers on crater depth, heat of ablation and collateral damage. The Q-switched Tm3+-doped silica fibre laser effectively ablates tissue with little secondary damage.
SpaceFibre: The Standard, Simulation, IP Cores and Test Equipment
NASA Astrophysics Data System (ADS)
Parkes, Steve; McClements, Chris; McLaren, David; Ferrer Florit, Albert; Gonzalez Villafranca, Alberto
2015-09-01
SpaceFibre is an emerging new standard for spacecraft on-board data-handling networks. Initially targeted to deliver multi-Gbit/s data rates for synthetic aperture radar and high-resolution, multi-spectral imaging instruments, SpaceFibre has developed into a unified network technology that integrates high bandwidth, with low latency, quality of service (QoS) and fault detection, isolation and recovery (FDIR). Furthermore SpaceFibre is backwards compatible with the widely used SpaceWire standard at the network level allowing simple interconnection of existing SpaceWire equipment to a SpaceFibre link or network. Developed by the University of Dundee for the European Space Agency (ESA) SpaceFibre is able to operate over fibre-optic and electrical cable and supports data rates of 2 Gbit/s in the near future and up to 5 Gbit/s long-term. Multi-laning improves the data-rate further to well over 20 Gbits/s. This paper details the current state of SpaceFibre which is now in the process of formal standardisation by the European Cooperation for Space Standardization (ECSS). It describes the SpaceFibre IP core being developed for ESA. The design of a SpaceFibre demonstration board is introduced and available SpaceFibre test and development equipment is described. The way in which several SpaceWire links can be concentrated over a single SpaceFibre link will be explained.
Fuentes, Mariela; González-Martín, Inmaculada; Hernández-Hierro, Jose Miguel; Hidalgo, Claudia; Govaerts, Bram; Etchevers, Jorge; Sayre, Ken D; Dendooven, Luc
2009-06-30
In the present study the natural abundance of (13)C is quantified in agricultural soils in Mexico which have been submitted to different agronomic practices, zero and conventional tillage, retention of crop residues (with and without) and rotation of crops (wheat and maize) for 17 years, which have influenced the physical, chemical and biological characteristics of the soil. The natural abundance of C13 is quantified by near infrared spectra (NIRS) with a remote reflectance fibre optic probe, applying the probe directly to the soil samples. Discriminate partial least squares analysis of the near infrared spectra allowed to classify soils with and without residues, regardless of the type of tillage or rotation systems used with a prediction rate of 90% in the internal validation and 94% in the external validation. The NIRS calibration model using a modified partial least squares regression allowed to determine the delta(13)C in soils with or without residues, with multiple correlation coefficients 0.81 and standard error prediction 0.5 per thousand in soils with residues and 0.92 and 0.2 per thousand in soils without residues. The ratio performance deviation for the quantification of delta(13)C in soil was 2.5 in soil with residues and 3.8 without residues. This indicated that the model was adequate to determine the delta(13)C of unknown soils in the -16.2 per thousand to -20.4 per thousand range. The development of the NIR calibration permits analytic determinations of the values of delta(13)C in unknown agricultural soils in less time, employing a non-destructive method, by the application of the fibre optic probe of remote reflectance to the soil sample.
Monitoring technique for a hybrid PS/WDM-PON by using a tunable OTDR and FBGs
NASA Astrophysics Data System (ADS)
Hann, Swook; Yoo, Jun-sang; Park, Chang-Soo
2006-05-01
A monitoring technique for hybrid passive optical networks (PON) is presented. The technique is based on the remote sensing of fibre Bragg gratings (FBGs) using a tunable optical time domain reflectometer (OTDR). The FBG would help discern an individual event during the monitoring of the hybrid PON in collaboration with the information provided by the Rayleigh backscattered power. The hybrid architecture of passive splitter-PON and WDM-PON can be analysed by the monitoring method by using the tunable OTDR and FBGs at the central office under the in-service state of PON.
Solitons with Gaussian tails in dispersion-managed communication systems using gratings
NASA Astrophysics Data System (ADS)
Mezentsev, Vladimir K.; Turitsyn, Sergei K.
1997-02-01
We examine the transmission of optical pulses in fibre communication systems with dispersion management. It is shown that solitons with Gaussian tails may be formed by the adoption of gratings to periodically compensate a pulse chirp. Fast decaying Gaussian tails allow us to provide denser information packing in comparison with sech-type soliton transmission. The discovered pulse is an attractive candidate for use as information carrier in optical transmission systems with an ultra-large capacity of around 100 Gbit/s. It is shown that a variational method can be effectively used to describe the dynamics of the breathing soliton.
Development of the fibres of MOONS
NASA Astrophysics Data System (ADS)
Guinouard, Isabelle; Lee, David; Schnetler, Hermine; Taylor, William; Amans, Jean-Philippe; Montgomery, David; Oliva, Ernesto
2014-07-01
MOONS will exploit the full 500 square arcmin field of view offered by the Nasmyth focus of the Very Large Telescope and will be equipped with two identical triple arm cryogenic spectrographs covering the wavelength range 0.8 - 1.8 μm, with a multiplex capability of approximately 1000 fibres. Each triple arm spectrograph will produce spectra for half of the targets simultaneously. The system will have both a medium resolution (R~4000-6000) mode and a high resolution (R~20000) mode. The fibres are used to pick off each sub field of 1.05 arcseconds and are used to transport the light from the instrument focal plane to the two spectrographs. Each fibre has a microlens to focus the beam into the fibre at a relative fast focal ratio of F/3.65 to reduce the Focal Ratio Degradation (FRD). This paper presents the overall design of the fibre system and describes the specific developments required to optimise its performance. The design of the fibre input optics, the choice of the fibre connector, and the layout of the slit end are described. The results of preliminary tests to measure the effect of twisting on the FRD performance of prototype fibres are also discussed.
Harris, W A; Holt, C E; Bonhoeffer, F
1987-09-01
Time-lapse video recordings were made of individual retinal ganglion cell fibres growing to and terminating in the optic tectum of Xenopus embryos. The fibres were stained by inserting a crystal of the lipophilic fluorescent dye, DiI, into the developing retina. Growth cones were observed in the optic tract and tectum using 20 ms flashes of light to induce fluorescence approximately once every minute. Fluorescent images were captured with a SIT camera, processed and saved on a time-lapse video recorder. The main conclusions from observing normal growing fibres are as follows. (1) Axons in the optic tract grow at a steady rate directly toward their targets without retracting or branching. (2) As axons approach the tectum they slow down and their growth cones become more complex. (3) Most terminal branches in the tectum are formed by back branching rather than by bifurcation of leading growth cones. In a second experiment, labelled growing axons were separated from their cell bodies by removing the retina. Such isolated axons continued to grow for up to 3 h in vivo and were capable of recognizing the tectum and arborizing there. This result shows that growth cones must contain the machinery needed to sense and respond to their specific pathways and targets.
Improving the fiber coupling efficiency for DARWIN by loss-less shaping of the receive beams
NASA Astrophysics Data System (ADS)
Voland, Ch.; Weigel, Th.; Dreischer, Th.; Wallner, O.; Ergenzinger, K.; Ries, H.; Jetter, R.; Vosteen, A.
2017-11-01
For the DARWIN mission the extremely low planet signal levels require an optical instrument design with utmost efficiency to guarantee the required science performance. By shaping the transverse amplitude and phase distributions of the receive beams, the singlemode fibre coupling efficiency can be increased to almost 100%, thus allowing for a gain of more than 20% compared to conventional designs. We show that the use of "tailored freeform surfaces" for purpose of beam shaping dramatically reduces the coupling degradations, which otherwise result from mode mismatch between the Airy pattern of the image and the fibre mode, and therefore allows for achieving a performance close to the physical limitations. We present an application of tailored surfaces for building a beam shaping optics that shall enhance fibre coupling performance as core part of a space based interferometer in the future DARWIN mission and present performance predictions by wave-optical simulations. We assess the feasibility of manufacturing the corresponding tailored surfaces and describe the proof of concept demonstrator we use for experimental performance verification.
Dynamic Analysis with Fibre Optic Sensors for Structural Health Monitoring
2006-10-01
cracked thick aluminum plate repaired with a bonded composite patch using transmission-type extrinsic Fabry – Perot interferometric optical fiber...and optical filtering have been used to demodulate returned Bragg signals. Due to the passive nature of the interrogation unit, system bandwidth is
CW-OSL measurement protocols using optical fibre Al2O3:C dosemeters.
Edmund, J M; Andersen, C E; Marckmann, C J; Aznar, M C; Akselrod, M S; Bøtter-Jensen, L
2006-01-01
A new system for in vivo dosimetry during radiotherapy has been introduced. Luminescence signals from a small crystal of carbon-doped aluminium oxide (Al2O3:C) are transmitted through an optical fibre cable to an instrument that contains optical filters, a photomultiplier tube and a green (532 nm) laser. The prime output is continuous wave optically stimulated luminescence (CW-OSL) used for the measurement of the integrated dose. We demonstrate a measurement protocol with high reproducibility and improved linearity, which is suitable for clinical dosimetry. A crystal-specific minimum pre-dose is necessary for signal stabilisation. Simple background subtraction only partially removes the residual signal present at long integration times. Instead, the measurement protocol separates the decay curve into three individual components and only the fast and medium components were used.
An Integrated DEMATEL-VIKOR Method-Based Approach for Cotton Fibre Selection and Evaluation
NASA Astrophysics Data System (ADS)
Chakraborty, Shankar; Chatterjee, Prasenjit; Prasad, Kanika
2018-01-01
Selection of the most appropriate cotton fibre type for yarn manufacturing is often treated as a multi-criteria decision-making (MCDM) problem as the optimal selection decision needs to be taken in presence of several conflicting fibre properties. In this paper, two popular MCDM methods in the form of decision making trial and evaluation laboratory (DEMATEL) and VIse Kriterijumska Optimizacija kompromisno Resenje (VIKOR) are integrated to aid the cotton fibre selection decision. DEMATEL method addresses the interrelationships between various physical properties of cotton fibres while segregating them into cause and effect groups, whereas, VIKOR method helps in ranking all the considered 17 cotton fibres from the best to the worst. The derived ranking of cotton fibre alternatives closely matches with that obtained by the past researchers. This model can assist the spinning industry personnel in the blending process while making accurate fibre selection decision when cotton fibre properties are numerous and interrelated.
An Integrated DEMATEL-VIKOR Method-Based Approach for Cotton Fibre Selection and Evaluation
NASA Astrophysics Data System (ADS)
Chakraborty, Shankar; Chatterjee, Prasenjit; Prasad, Kanika
2018-06-01
Selection of the most appropriate cotton fibre type for yarn manufacturing is often treated as a multi-criteria decision-making (MCDM) problem as the optimal selection decision needs to be taken in presence of several conflicting fibre properties. In this paper, two popular MCDM methods in the form of decision making trial and evaluation laboratory (DEMATEL) and VIse Kriterijumska Optimizacija kompromisno Resenje (VIKOR) are integrated to aid the cotton fibre selection decision. DEMATEL method addresses the interrelationships between various physical properties of cotton fibres while segregating them into cause and effect groups, whereas, VIKOR method helps in ranking all the considered 17 cotton fibres from the best to the worst. The derived ranking of cotton fibre alternatives closely matches with that obtained by the past researchers. This model can assist the spinning industry personnel in the blending process while making accurate fibre selection decision when cotton fibre properties are numerous and interrelated.
Use of fibre-optic endoscopes in studies of gastric digestion in carnivorous vertebrates.
Jackson, S; Cooper, J
1988-01-01
1. Two methods of assessing gastric digestion rates of three prey types fed to Sooty albatrosses Phoebetria fusca were compared: removal of stomach contents, using a water-flushing stomach pump (a technique used commonly in diet studies), and inspection using a fibre-optic gastroscope (a previously unused technique). 2. The stomach pump yielded quantitative information, but proved stressful and resulted in incomplete recovery of meals ingested 3-6 hr before pumping. Gastric morphology of the animals studied and digestion state of their stomach contents may influence the effectiveness of this technique. 3. Inspection using the gastroscope yielded qualitative information only but permitted serial inspection of the same animal, and was less stressful than the stomach pump. Times for total evacuation of the stomach were 6-12 hr less when estimated using the gastroscope than when using the stomach pump. 4. The specifications of endoscopes relevant to their use by biologists are given. 5. Previous non-medical biological uses of endoscopes are given. Potential uses include underwater observations, sampling of digestive juices and stomach linings for enzyme analyses, observations of ingested prey, and assessment of parasite infestation.
Towards optical fibre based Raman spectroscopy for the detection of surgical site infection
NASA Astrophysics Data System (ADS)
Thompson, Alex J.; Koziej, Lukasz; Williams, Huw D.; Elson, Daniel S.; Yang, Guang-Zhong
2016-03-01
Surgical site infections (SSIs) are common post-surgical complications that remain significant clinical problems, as they are associated with substantial mortality and morbidity. As such, there is significant interest in the development of minimally invasive techniques that permit early detection of SSIs. To this end, we are applying a compact, clinically deployable Raman spectrometer coupled to an optical fibre probe to the study of bacteria, with the long term goal of using Raman spectroscopy to detect infection in vivo. Our system comprises a 785 nm laser diode for excitation and a commercial (Ocean Optics, Inc.) Raman spectrometer for detection. Here we discuss the design, optimisation and validation of this system, and describe our first experiences interrogating bacterial cells (Escherichia coli) in vitro.
Chernysheva, Maria; Mou, Chengbo; Arif, Raz; AlAraimi, Mohammed; Rümmeli, Mark; Turitsyn, Sergei; Rozhin, Aleksey
2016-01-01
We have proposed and demonstrated a Q-switched Thulium doped fibre laser (TDFL) with a ‘Yin-Yang’ all-fibre cavity scheme based on a combination of nonlinear optical loop mirror (NOLM) and nonlinear amplified loop mirror (NALM). Unidirectional lasing operation has been achieved without any intracavity isolator. By using a carbon nanotube polymer composite based saturable absorber (SA), we demonstrated the laser output power of ~197 mW and pulse energy of 1.7 μJ. To the best of our knowledge, this is the highest output power from a nanotube polymer composite SA based Q-switched Thulium doped fibre laser. PMID:27063511
NASA Astrophysics Data System (ADS)
Sheridan, C.; O'Farrell, M.; Lyons, W. B.; Lewis, E.; Flanagan, C.; Jackman, N.
2005-01-01
An optical fibre based sensor has been developed to aid the quality assurance of food cooked in industrial ovens by monitoring the product in situ as it cooks. The sensor measures the product colour as it cooks by examining the reflected visible light from the surface as well as the core of the product. This paper examines the use of the sensor for the detection of blood in the spinal area of cooked whole chickens. The results presented here show that the sensor can be successfully used for this purpose.
Diffracted field distributions from the HE11 mode in a hollow optical fibre for an atomic funnel
NASA Astrophysics Data System (ADS)
Ni, Yun; Liu, Nanchun; Yin, Jianping
2003-06-01
The diffracted near field distribution from an LP01 mode in a hollow optical fibre was recently calculated using a scalar model based on the weakly waveguiding approximation (Yoo et al 1999 J. Opt. B: Quantum Semiclass. Opt. 1 364). It showed a dominant Gaussian-like distribution with an increased axial intensity in the central region (not a doughnut-like distribution), so the diffracted output beam from the hollow fibre cannot be used to form an atomic funnel. Using exact solutions of the Maxwell equations based on a vector model, however, we calculate the electric field and intensity distributions of the HE11 mode in the same hollow fibre and study the diffracted near- and far-field distributions of the HE11-mode output beam under the Fresnel approximation. We analyse and compare the differences between the output beams from the HE11 and LP01 modes. Our study shows that both the near- and far-field intensity distributions of the HE11-mode output beam are doughnut-like and can be used to form a simple atomic funnel. However, it is not suitable to use the weakly waveguiding approximation to calculate the diffracted near-field distribution of the hollow fibre due to the greater refractive-index difference between the hollow region (n0 = 1) and the core (n1 = 1.45 or 1.5). Finally, the 3D intensity distribution of the HE11-mode output beam is modelled and the corresponding optical potentials for cold atoms are calculated. Some potential applications of the HE11-mode output beam in an atomic guide and funnel are briefly discussed.
NASA Astrophysics Data System (ADS)
Hufenbach, W.; Gude, M.; Czulak, A.; Kretschmann, Martin
2014-04-01
Increasing economic, political and ecological pressure leads to steadily rising percentage of modern processing and manufacturing processes for fibre reinforced polymers in industrial batch production. Component weights beneath a level achievable by classic construction materials, which lead to a reduced energy and cost balance during product lifetime, justify the higher fabrication costs. However, complex quality control and failure prediction slow down the substitution by composite materials. High-resolution fibre-optic sensors (FOS), due their low diameter, high measuring point density and simple handling, show a high applicability potential for an automated sensor-integration in manufacturing processes, and therefore the online monitoring of composite products manufactured in industrial scale. Integrated sensors can be used to monitor manufacturing processes, part tests as well as the component structure during product life cycle, which simplifies allows quality control during production and the optimization of single manufacturing processes.[1;2] Furthermore, detailed failure analyses lead to a enhanced understanding of failure processes appearing in composite materials. This leads to a lower wastrel number and products of a higher value and longer product life cycle, whereby costs, material and energy are saved. This work shows an automation approach for FOS-integration in the braiding process. For that purpose a braiding wheel has been supplemented with an appliance for automatic sensor application, which has been used to manufacture preforms of high-pressure composite vessels with FOS-networks integrated between the fibre layers. All following manufacturing processes (vacuum infiltration, curing) and component tests (quasi-static pressure test, programmed delamination) were monitored with the help of the integrated sensor networks. Keywords: SHM, high-pressure composite vessel, braiding, automated sensor integration, pressure test, quality control, optic-fibre sensors, Rayleigh, Luna Technologies
Kwon, Dohyeon; Jeon, Chan-Gi; Shin, Junho; Heo, Myoung-Sun; Park, Sang Eon; Song, Youjian; Kim, Jungwon
2017-01-01
Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10−9 fs2/Hz (equivalent to −174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources. PMID:28102352
A Fibre-Optic Communications Network for Teaching Clinical Medicine.
ERIC Educational Resources Information Center
Williams, Robin
1985-01-01
Describes an interactive television system based on fiber-optic communications technology which is used to facilitate participation by University of London medical students in lecture/tutorials by teachers in different hospital locations. Highlights include advantages of fiber-optics, cable manufacture and installation, opto-electronic interface,…
Measurement of the thermal expansion of melt-textured YBCO using optical fibre grating sensors
NASA Astrophysics Data System (ADS)
Zeisberger, M.; Latka, I.; Ecke, W.; Habisreuther, T.; Litzkendorf, D.; Gawalek, W.
2005-02-01
In this paper we present measurements of the thermal expansion of melt-textured YBaCuO in the temperature range 30-300 K by means of optical fibre sensors. The sample, which had a size of 38 × 38 × 18 mm3, was prepared by our standard melt-texturing process using SmBaCuO seeds. One fibre containing three Bragg gratings which act as strain sensors was glued to the sample surface with two sensors parallel to the ab-plane and one sensor parallel to the c-axis. The sample was cooled down to a minimum temperature of 30 K in a vacuum chamber using a closed cycle refrigerator. In the temperature range we used, the thermal expansion coefficients are in the range of (3-9) × 10-6 K-1 (ab-direction) and (5-13) × 10-6 K-1 (c-direction).
Korposh, Sergiy; Chianella, Iva; Guerreiro, Antonio; Caygill, Sarah; Piletsky, Sergey; James, Stephen W; Tatam, Ralph P
2014-05-07
An optical fibre long period grating (LPG) sensor modified with molecularly imprinted polymer nanoparticles (nanoMIPs) for the specific detection of antibiotics is presented. The operation of the sensor is based on the measurement of changes in refractive index induced by the interaction of nanoMIPs deposited onto the cladding of the LPG with free vancomycin (VA). The binding of nanoMIPs to vancomycin was characterised by a binding constant of 4.3 ± 0.1 × 10(-8) M. The lowest concentration of analyte measured by the fibre sensor was 10 nM. In addition, the sensor exhibited selectivity, as much smaller responses were obtained for high concentrations (∼700 μM) of other commonly prescribed antibiotics such as amoxicillin, bleomycin and gentamicin. In addition, the response of the sensor was characterised in a complex matrix, porcine plasma, spiked with 10 μM of VA.
Korposh, Sergiy; Chianella, Iva; Guerreiro, Antonio; Caygill, Sarah; Piletsky, Sergey; James, Stephen W.; Tatam, Ralph P.
2015-01-01
An optical fibre long period grating (LPG) sensor modified with molecularly imprinted polymer nanoparticles (nanoMIPs) for the specific detection of antibiotics is presented. The operation of the sensor is based on the measurement of changes in refractive index induced by the interaction of nanoMIPs deposited onto the cladding of the LPG with free vancomycin (VA). The binding of nanoMIPs to vancomycin was characterised by a binding constant of 4.3±0.1×10−8 M. The lowest concentration of analyte measured by the fibre sensor was 10 nM. In addition, the sensor exhibited selectivity, as much smaller responses were obtained for high concentrations (~ 700 μM) of other commonly prescribed antibiotics such as amoxicillin, bleomycin and gentamicin. In addition, the response of the sensor was characterised in a complex matrix, porcine plasma, spiked with 10 μM of VA. PMID:24634909
Cancellation of birefringence in DBR laser through principal axis offset by a rotation of 90°
NASA Astrophysics Data System (ADS)
Zaini, M. K. A.; Lai, M. H.; Islam, M. R.; Lim, K. S.; Ahmad, H.
2018-04-01
The cancellation of birefringence in the distributed Bragg reflector based on 90° rotation offset method is demonstrated. It is found that the birefringence, which causes the peak bifurcation has been eliminated and a single peak is produced at each resonance in the output spectrum. This modification is an economic solution for eliminating the birefringence of the optical fibre devices.
Glass-on-Glass Fabrication of Bottle-Shaped Tunable Microlasers and their Applications
Ward, Jonathan M.; Yang, Yong; Nic Chormaic, Síle
2016-01-01
We describe a novel method for making microbottle-shaped lasers by using a CO2 laser to melt Er:Yb glass onto silica microcapillaries or fibres. This is realised by the fact that the two glasses have different melting points. The CO2 laser power is controlled to flow the doped glass around the silica cylinder. In the case of a capillary, the resulting geometry is a hollow, microbottle-shaped resonator. This is a simple method for fabricating a number of glass whispering gallery mode (WGM) lasers with a wide range of sizes on a single, micron-scale structure. The Er:Yb doped glass outer layer is pumped at 980 nm via a tapered optical fibre and WGM lasing is recorded around 1535 nm. This structure facilitates a new way to thermo-optically tune the microlaser modes by passing gas through the capillary. The cooling effect of the gas flow shifts the WGMs towards shorter wavelengths and thermal tuning of the lasing modes over 70 GHz is achieved. Results are fitted using the theory of hot wire anemometry, allowing the flow rate to be calibrated with a flow sensitivity as high as 72 GHz/sccm. Strain tuning of the microlaser modes by up to 60 GHz is also demonstrated. PMID:27121151
The use of hollow-core photonic crystal fibres as biological sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinin, A V; Skibina, Yu S; Tuchin, Valerii V
2011-04-30
The results of development and study of a new type of a hollow-core photonic crystal fibre with radially increasing diameter of capillaries in the structured cladding are presented. The waveguide possesses a specific transmission spectrum and can be used as an efficient analyser of biological media. (optical technologies in biophysics and medicine)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, M V; Garanin, S G; Dolgopolov, Yu V
2014-11-30
A seven-channel fibre laser system operated by the master oscillator – multichannel power amplifier scheme is the phase locked using a stochastic parallel gradient algorithm. The phase modulators on lithium niobate crystals are controlled by a multichannel electronic unit with the microcontroller processing signals in real time. The dynamic phase locking of the laser system with the bandwidth of 14 kHz is demonstrated, the time of phasing is 3 – 4 ms. (fibre and integrated-optical structures)
NASA Astrophysics Data System (ADS)
Zhou, Kaiming; Webb, David; Mou, Chengbo; Farries, Mark; Hayes, Neil; Bennion, Ian
2009-10-01
μA microchannel was inscribed in the fibre of a ring cavity which was constructed from two 0.1%:99.9% couplers and a 10m fibre loop. Cavity ring down spectroscopy (CRDS) was used to measure the refractive index (RI) of gels infused into the microchannel with high resolution. The ring down time discloses a nonlinear increase with respect to the RI of the gel and sensitivity up to 300μs/RI unit (RIU) and resolution of 5×10-4 were obtained.
X-ray microbeam measurements with a high resolution scintillator fibre-optic dosimeter.
Archer, James; Li, Enbang; Petasecca, Marco; Dipuglia, Andrew; Cameron, Matthew; Stevenson, Andrew; Hall, Chris; Hausermann, Daniel; Rosenfeld, Anatoly; Lerch, Michael
2017-09-29
Synchrotron microbeam radiation therapy is a novel external beam therapy under investigation, that uses highly brilliant synchrotron x-rays in microbeams 50 μm width, with separation of 400 μm, as implemented here. Due to the fine spatial fractionation dosimetry of these beams is a challenging and complicated problem. In this proof-of-concept work, we present a fibre optic dosimeter that uses plastic scintillator as the radiation conversion material. We claim an ideal one-dimensional resolution of 50 μm. Using plastic scintillator and fibre optic makes this dosimeter water-equivalent, a very desirable dosimetric property. The dosimeter was tested at the Australian Synchrotron, on the Imaging and Medical Beam-Line. The individual microbeams were able to be resolved and the peak-to-valley dose ratio and the full width at half maximum of the microbeams was measured. These results are compared to a semiconductor strip detector of the same spatial resolution. A percent depth dose was measured and compared to data acquired by an ionisation chamber. The results presented demonstrate significant steps towards the development of an optical dosimeter with the potential to be applied in quality assurance of microbeam radiation therapy, which is vital if clinical trials are to be performed on human patients.
NASA Astrophysics Data System (ADS)
Sternkopf, Christian; Manske, Eberhard
2018-06-01
We report on the enhancement of a previously-presented heterodyne laser source on the basis of two phase-locked loop (PLL) frequency coupled internal-mirror He–Ne lasers. Our new system consists of two digitally controlled He–Ne lasers with slightly different wavelengths, and offers high-frequency stability and very narrow optical linewidth. The digitally controlled system has been realized by using a FPGA controller and transconductance amplifiers. The light of both lasers was coupled into separate fibres for heterodyne interferometer applications. To enhance the laser performance we observed the sensitivity of both laser tubes to electromagnetic noise from various laser power supplies and frequency control systems. Furthermore, we describe how the linewidth of a frequency-controlled He–Ne laser can be reduced during precise frequency stabilisation. The digitally controlled laser source reaches a standard beat frequency deviation of less than 20 Hz (with 1 s gate time) and a spectral full width at half maximum (FWHM) of the beat signal less than 3 kHz. The laser source has enough optical output power to serve a fibre-coupled multi axis heterodyne interferometer. The system can be adjusted to output beat frequencies in the range of 0.1 MHz–20 MHz.
FOSREM - Fibre-Optic System for Rotational Events&Phenomena Monitoring
NASA Astrophysics Data System (ADS)
Jaroszewicz, Leszek; Krajewski, Zbigniew; Kurzych, Anna; Kowalski, Jerzy; Teisseyre, Krzysztof
2016-04-01
We present the construction and tests of fiber-optic rotational seismometer named FOSREM (Fibre-Optic System for Rotational Events&Phenomena Monitoring). This presented device is designed for detection and monitoring the one-axis rotational motions, brought about to ground or human-made structures both by seismic events and the creep processes. The presented system works by measuring Sagnac effect and generally consists of two basic elements: optical sensor and electronic part. The optical sensor is based on so-called the minimum configuration of FOG (Fibre-Optic Gyroscope) where the Sagnac effect produces a phase shift between two counter-propagating light beams proportional to the measured rotation speed. The main advantage of the sensor of this type is its complete insensitivity to linear motions and a direct measurement of rotational speed. It may work even when tilted, moreover, used in continuous mode it may record the tilt. The electronic system, involving specific electronic solutions, calculates and records rotational events data by realizing synchronous in a digital form by using 32 bit DSP (Digital Signal Processing). Storage data and system control are realised over the internet by using connection between FOSREM and GSM/GPS. The most significant attribute of our system is possibility to measure rotation in wide range both amplitude up to 10 rad/s and frequency up to 328.12 Hz. Application of the wideband, low coherence and high power superluminescent diode with long fibre loop and suitable low losses optical elements assures the theoretical sensitivity of the system equal to 2·10-8 rad/s/Sqrt(Hz). Moreover, the FOSREM is fully remote controlled as well as is suited for continuous, autonomous work in very long period of time (weeks, months, even years), so it is useful for systematic seismological investigation at any place. Possible applications of this system include seismic monitoring in observatories, buildings, mines and even on glaciers and in their vicinity. In geodetic, geomorphological and glaciological survey, joint measurement of tilt and seismic phenomena using a set of three FOSREM devices oriented in perpendicular planes would enable to collect very important information.
Stokes solitons in optical microcavities
NASA Astrophysics Data System (ADS)
Yang, Qi-Fan; Yi, Xu; Yang, Ki Youl; Vahala, Kerry
2017-01-01
Solitons are wave packets that resist dispersion through a self-induced potential well. They are studied in many fields, but are especially well known in optics on account of the relative ease of their formation and control in optical fibre waveguides. Besides their many interesting properties, solitons are important to optical continuum generation, in mode-locked lasers, and have been considered as a natural way to convey data over great distances. Recently, solitons have been realized in microcavities, thereby bringing the power of microfabrication methods to future applications. This work reports a soliton not previously observed in optical systems, the Stokes soliton. The Stokes soliton forms and regenerates by optimizing its Raman interaction in space and time within an optical potential well shared with another soliton. The Stokes and the initial soliton belong to distinct transverse mode families and benefit from a form of soliton trapping that is new to microcavities and soliton lasers in general. The discovery of a new optical soliton can impact work in other areas of photonics, including nonlinear optics and spectroscopy.
An Innovative Context-Based Module to Introduce Students to the Optical Properties of Materials
ERIC Educational Resources Information Center
Testa, I.; Lombardi, S.; Monroy, G.; Sassi, E.
2011-01-01
A context-based module to introduce secondary school students to the study of the optical properties of materials and geometric optics is presented. The module implements an innovative teaching approach in which the behaviour of the chosen application, in this article, the optical fibre, is iteratively explored and modelled by means of a…
NASA Astrophysics Data System (ADS)
Parkes, Steve; McClements, Chris; McLaren, David; Florit, Albert Ferrer; Gonzalez Villafranca, Alberto
2016-08-01
SpaceFibre is a new generation of SpaceWire technology which is able to support the very high data- rates required by sensors like SAR and multi-spectral imagers. Data rates of between 1 and 16 Gbits/s are required to support several sensors currently being planned. In addition a mass-memory unit requires high performance networking to interconnect many memory modules. SpaceFibre runs over both electrical and fibre-optic media and provides and adds quality of service and fault detection, isolation and recovery technology to the network. SpaceFibre is compatible with the widely used SpaceWire protocol at the network level allowing existing SpaceWire devices to be readily incorporated into a SpaceFibre network. SpaceFibre provides 2 to 5 Gbits/s links (2.5 to 6.25 Gbits/s data signalling rate) which can be operated in parallel (multi-laning) to give higher data rates. STAR- Dundee with University of Dundee has designed and tested several SpaceFibre interface devices.The SUNRISE project is a UK Space Agency, Centre for Earth Observation and Space Technology (CEOI- ST) project in which STAR-Dundee and University of Dundee will design and prototype critical SpaceFibre router technology necessary for future on-board data- handling systems. This will lay a vital foundation for future very high data-rate sensor and telecommunications systems.This paper give a brief introduction to SpaceFibre, explains the operation of a SpaceFibre network, and then describes the SUNRISE SpaceFibre Router. The initial results of the SUNRISE project are described.
Environmental friendly method for the extraction of coir fibre and isolation of nanofibre.
Abraham, Eldho; Deepa, B; Pothen, L A; Cintil, J; Thomas, S; John, M J; Anandjiwala, R; Narine, S S
2013-02-15
The objective of this work was to develop an environmental friendly method for the effective utilization of coir fibre by adopting steam pre-treatment. The retting of the coconut bunch makes strong environmental problems which can be avoided by this method. Chemical characterization of the fibre during each processing stages confirmed the increase of cellulose content from raw (40%) to final steam treated fibres (93%). Morphological and dynamic light scattering analyses of the fibres at different processing stages revealed that the isolation of cellulose nano fibres occur in the final step of the process as an aqueous suspension. FT-IR and XRD analysis demonstrated that the treatments lead to the gradual removal of lignin and hemicelluloses from the fibres. The existence of strong lignin-cellulose complex in the raw coir fibre is proved by its enhanced thermal stability. Steam explosion has been proved to be a green method to expand the application areas of coir fibre. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fibre systems for future astronomy: anomalous wavelength-temperature effects
NASA Astrophysics Data System (ADS)
Poppett, C. L.; Allington-Smith, J. R.
2007-07-01
Focal ratio degradation is an important property of optical fibres that determines the design and cost of instruments using fibres. Motivated by the importance of fibres in feeding instruments on Extremely Large Telescopes, the need for cryogenic-cooling to reduce thermal background and the desire for broad-band performance, we have studied the dependency of focal ratio degradation (FRD) on both temperature and wavelength. This shows a small but significant reduction in performance when cooled as expected from previous work. We also find an increase in FRD with wavelength broadly consistent with theory at room temperature but this dependency reverses in sign when the fibres are cooled to 77K, contrary to existing theory. We parameterize the wavelength dependency by an ad hoc extension to an existing model but it is clear that existing theory does not provide a good description of the operation of fibres in astronomical systems. This unexpected behaviour, which may relate to frozen-in stress from the manufacturing process, will need to be taken into account when designing future fibre systems.
Micro/Nanofibre Optical Sensors: Challenges and Prospects
Tong, Limin
2018-01-01
Micro/nanofibres (MNFs) are optical fibres with diameters close to or below the vacuum wavelength of visible or near-infrared light. Due to its wavelength- or sub-wavelength scale diameter and relatively large index contrast between the core and cladding, an MNF can offer engineerable waveguiding properties including optical confinement, fractional evanescent fields and surface intensity, which is very attractive to optical sensing on the micro and nanometer scale. In particular, the waveguided low-loss tightly confined large fractional evanescent fields, enabled by atomic level surface roughness and extraordinary geometric and material uniformity in a glass MNF, is one of its most prominent merits in realizing optical sensing with high sensitivity and great versatility. Meanwhile, the mesoporous matrix and small diameter of a polymer MNF, make it an excellent host fibre for functional materials for fast-response optical sensing. In this tutorial, we first introduce the basics of MNF optics and MNF optical sensors, and review the progress and current status of this field. Then, we discuss challenges and prospects of MNF sensors to some extent, with several clues for future studies. Finally, we conclude with a brief outlook for MNF optical sensors.
On the origin and removal of interference patterns in coated multimode fibres
NASA Astrophysics Data System (ADS)
Padilla Michel, Yazmin; Pulwer, Silvio; Saffari, Pouneh; Ksianzou, Viachaslau; Schrader, Sigurd
2016-07-01
In this study, we present the experimental investigations on interference patterns, such as those already reported in VIMOS-IFU, and up to now no appropriate explanation has been presented. These interference patterns are produced in multimode fibres coated with acrylate or polyimide, which is the preferred coating material for the fibres used in IFUs. Our experiments show that, under specific conditions, cladding modes interact with the coating and produce interference. Our results show that the conditions at which the fibre is held during data acquisition has an impact in the output spectrum. Altering the positioning conditions of the fibre leads to the changes into the interference pattern, therefore, fibres should be carefully manipulated in order to minimise this potential problem and improve the performance of these instruments. Finally we present a simple way of predicting and modelling this interference produced from the visible to the near infrared spectra. This model can be included in the data reduction pipeline in order to remove the interference patterns. These results should be of interest for the optimisation of the data reduction pipelines of instruments using optical fibres. Considering these results will benefit innovations and developments of high performance fibre systems.
Towards an ultra-thin medical endoscope: multimode fibre as a wide-field image transferring medium
NASA Astrophysics Data System (ADS)
Duriš, Miroslav; Bradu, Adrian; Podoleanu, Adrian; Hughes, Michael
2018-03-01
Multimode optical fibres are attractive for biomedical and industrial applications such as endoscopes because of the small cross section and imaging resolution they can provide in comparison to widely-used fibre bundles. However, the image is randomly scrambled by propagation through a multimode fibre. Even though the scrambling is unpredictable, it is deterministic, and therefore the scrambling can be reversed. To unscramble the image, we treat the multimode fibre as a linear, disordered scattering medium. To calibrate, we scan a focused beam of coherent light over thousands of different beam positions at the distal end and record complex fields at the proximal end of the fibre. This way, the inputoutput response of the system is determined, which then allows computational reconstruction of reflection-mode images. However, there remains the problem of illuminating the tissue via the fibre while avoiding back reflections from the proximal face. To avoid this drawback, we provide here the first preliminary confirmation that an image can be transferred through a 2x2 fibre coupler, with the sample at its distal port interrogated in reflection. Light is injected into one port for illumination and then collected from a second port for imaging.
Fibre tip pH sensor for tumor detection during surgery
NASA Astrophysics Data System (ADS)
Henderson, Matthew R.; Schartner, Erik P.; Callen, David F.; Gill, P. Grantley; Monro, Tanya M.
2015-05-01
Surgery on tumours commonly involves a lumpectomy method, where a section of tissue containing the tumour is removed, to improve cosmetic outcomes and quality of life. Following surgery, the margins of the removed section are checked by pathology tests to ensure that the entire tumour has been removed. Unfortunately, approximately 15-20% of margins show incomplete removal and require a subsequent operation to remove the remaining tumour. Tumour detection during surgery could allow the removed section to be enlarged appropriately, reducing the likelihood of requiring subsequent surgery. A change in the extracellular pH in the vicinity of a tumour, when compared to normal tissue, has been shown previously in literature. We have fabricated an optical fibre tip pH sensor by embedding a fluorophore within a photopolymerised acrylamide polymer on the tip of a 200 micron diameter silica fibre. Preliminary measurements of human melanoma samples have shown a significant difference in the measured pH values between tumour and normal tissue. This demonstration paves to way to highly accurate margin detection during surgery.
Good vibrations: Controlling light with sound (Conference Presentation)
NASA Astrophysics Data System (ADS)
Eggleton, Benjamin J.; Choudhary, Amol
2016-10-01
One of the surprises of nonlinear optics, is that light may interact strongly with sound. Intense laser light literally "shakes" the glass in optical fibres, exciting acoustic waves (sound) in the fibre. Under the right conditions, it leads to a positive feedback loop between light and sound termed "Stimulated Brillouin Scattering," or simply SBS. This nonlinear interaction can amplify or filter light waves with extreme precision in frequency which makes it uniquely suited to solve key problems in the fields of defence, biomedicine, wireless communications, spectroscopy and imaging. We have achieved the first demonstration of SBS in compact chip-scale structures, carefully designed so that the optical fields and the acoustic fields are simultaneously confined and guided. This new platform has opened a range of new functionalities that are being applied in communications and defence with breathtaking performance and compactness. My talk will introduce this new field and review our progress and achievements, including silicon based optical phononic processor.
Modal noise investigation in multimode polymer waveguides
NASA Astrophysics Data System (ADS)
Beals, Joseph, IV; Bamiedakis, Nikos; Penty, Richard V.; White, Ian H.; DeGroot, Jon V., Jr.; Clapp, Terry V.
2007-11-01
In this work the recent interest in waveguides for use in short optical links has motivated a study of the modal noise dependence on launch conditions in short-reach step-index multimode polymer waveguides. Short optical links, especially those with several connection interfaces and utilising a restricted launch are likely to be subject to a modal noise power penalty. We therefore experimentally study the modal noise impact of restricted launches for a short-reach optical link employing a 50 x 50 μm polymer multimode waveguide. Lens launches resulting in small diameter input spots are investigated as are restricted launches from an 8 μm core optical fibre. For a launch spot of 10 μm diameter no impairment is observed for up to 9 dBo of mode selective loss, and for a fibre launch with a dynamic input movement of 6 μm no impairment is seen for up to 8 dBo of mode selective loss.
Norton, C G; Suedmeyer, J; Oderkerk, B; Fieback, T M
2014-05-01
A new optical flow cell with a new optical arrangement adapted for high pressures and temperatures using glass fibres to connect light source, cell, and spectrometer has been developed, as part of a larger project comprising new methods for in situ analysis of bio and hydrogen gas mixtures in high pressure and temperature applications. The analysis is based on measurements of optical, thermo-physical, and electromagnetic properties in gas mixtures with newly developed high pressure property sensors, which are mounted in a new apparatus which can generate gas mixtures with up to six components with an uncertainty of composition of as little as 0.1 mol. %. Measurements of several pure components of natural gases and biogases to a pressure of 20 MPa were performed on two isotherms, and with binary mixtures of the same pure gases at pressures to 17.5 MPa. Thereby a new method of analyzing the obtained spectra based on the partial density of methane was investigated.
Sreedharan, Ruma M; Aiyappan, Subramonium; Roy, N
2017-01-01
Purpose: Periventricular white matter is most commonly injured in preterm babies with hypoxia. To assess white matter damage, we decided to perform diffusion tensor imaging (DTI) in preterm children with history of hypoxia and magnetic resonance imaging (MRI) features of periventricular leukomalacia (PVL) (PTH). We hypothesized that the PTH have reduced number of white matter fibres compared to age matched pre term children without hypoxia (PTHO), and also depending on the severity of PVL, there could be reduction in the number of fibres as well. Materials and Methods: The present study was carried out at the Government Medical College, Thiruvananthapuram. DTI was performed on 15 PTH and 15 PTHO. We measured number of fibres and fractional anisotropy of corpus callosum (CC) and optic radiations (OR). Results: There was significant difference between two groups with regard OR (P < 0.001). The mean number of OR fibres in cases and control was 104 ± 28.44 (mean ± SD) and 578 ± 286 (mean ± SD), respectively. The mean number of CC in cases was 953 ± 429 and in controls was 1625 ± 116 with a P value <0.56. No significant difference in FA was seen between cases and controls (P = 0.94). Conclusions: Preterm children with history of hypoxia and MRI features of PVL show reduced number of CC and OR compared to preterm children without hypoxia. There was significant correlation between PVL severity and number of OR fibres which could be due to the preferential involvement of periventricular white matter, in which OR has a major contribution. PMID:28744069
NASA Astrophysics Data System (ADS)
Esepkina, N. A.; Lavrov, A. P.; Anan'ev, M. N.; Blagodarnyi, V. S.; Ivanov, S. I.; Mansyrev, M. I.; Molodyakov, S. A.
1995-10-01
Two new types of optoelectronic radio-signal processors were investigated. Charge-coupled device (CCD) photodetectors are used in these processors under continuous scanning conditions, i.e. in a time delay and storage mode. One of these processors is based on a CCD photodetector array with a reference-signal amplitude transparency and the other is an adaptive acousto-optical signal processor with linear frequency modulation. The processor with the transparency performs multichannel discrete—analogue convolution of an input signal with a corresponding kernel of the transformation determined by the transparency. If a light source is an array of light-emitting diodes of special (stripe) geometry, the optical stages of the processor can be made from optical fibre components and the whole processor then becomes a rigid 'sandwich' (a compact hybrid optoelectronic microcircuit). A report is given also of a study of a prototype processor with optical fibre components for the reception of signals from a system with antenna aperture synthesis, which forms a radio image of the Earth.
Statistical parity-time-symmetric lasing in an optical fibre network.
Jahromi, Ali K; Hassan, Absar U; Christodoulides, Demetrios N; Abouraddy, Ayman F
2017-11-07
Parity-time (PT)-symmetry in optics is a condition whereby the real and imaginary parts of the refractive index across a photonic structure are deliberately balanced. This balance can lead to interesting optical phenomena, such as unidirectional invisibility, loss-induced lasing, single-mode lasing from multimode resonators, and non-reciprocal effects in conjunction with nonlinearities. Because PT-symmetry has been thought of as fragile, experimental realisations to date have been usually restricted to on-chip micro-devices. Here, we demonstrate that certain features of PT-symmetry are sufficiently robust to survive the statistical fluctuations associated with a macroscopic optical cavity. We examine the lasing dynamics in optical fibre-based coupled cavities more than a kilometre in length with balanced gain and loss. Although fluctuations can detune the cavity by more than the free spectral range, the behaviour of the lasing threshold and the laser power is that expected from a PT-stable system. Furthermore, we observe a statistical symmetry breaking upon varying the cavity loss.
Jaroszewicz, Leszek R.; Kurzych, Anna; Krajewski, Zbigniew; Marć, Paweł; Kowalski, Jerzy K.; Bobra, Piotr; Zembaty, Zbigniew; Sakowicz, Bartosz; Jankowski, Robert
2016-01-01
Starting with descriptions of rotational seismology, areas of interest and historical field measurements, the fundamental requirements for rotational seismometers for seismological and engineering application are formulated. On the above basis, a review of all existing rotational seismometers is presented with a description of the principles of their operation as well as possibilities to fulfill formulated requirements. This review includes mechanical, acoustical, electrochemical and optical devices and shows that the last of these types are the most promising. It is shown that optical rotational seismometer based on the ring-laser gyroscope concept is the best for seismological applications, whereas systems based on fiber-optic gyroscopes demonstrate parameters which are also required for engineering applications. Laboratory results of the Fibre-Optic System for Rotational Events & Phenomena Monitoring using a small 1-D shaking table modified to generate rotational excitations are presented. The harmonic and time-history tests demonstrate its usefulness for recording rotational motions with rates up to 0.25 rad/s. PMID:27999299
Nearly penalty-free, less than 4 ps supercontinuum Gbit/s pulse generation over 1535-1560 nm
NASA Astrophysics Data System (ADS)
Morioka, T.; Kawanishi, S.; Mori, K.; Saruwatari, M.
1994-05-01
Nearly penalty-free less than 4ps supercontinuum WDM pulses are generated at 6.3 Gbit/s over 1535-1560 nm for the first time using a 200 nm superbroadened supercontinuum in an optical fibre pumped by 1.7 W, 3.3 ps, 1542 nm short pulses from an Er(3+)-doped fibre ring laser.
Methodology of splicing large air filling factor suspended core photonic crystal fibres
NASA Astrophysics Data System (ADS)
Jaroszewicz, L. R.; Murawski, M.; Nasilowski, T.; Stasiewicz, K.; Marć, P.; Szymański, M.; Mergo, P.
2011-06-01
We report the methodology of effective low-loss fusion splicing a photonic crystal fibre (PCF) to itself as well as to a standard single mode fibre (SMF). Distinctly from other papers in this area, we report on the results for splicing suspended core (SC) PCF having tiny core and non-Gaussian shape of guided beam. We show that studied splices exhibit transmission losses strongly dispersive and non-reciprocal in view of light propagation direction. Achieved splicing losses, defined as larger decrease in transmitted optical power comparing both propagation directions, are equal to 2.71 ±0.25 dB, 1.55 ±0.25 dB at 1550 nm for fibre SC PCF spliced to itself and to SMF, respectively.
QBeRT: an innovative instrument for qualification of particle beam in real-time
NASA Astrophysics Data System (ADS)
Gallo, G.; Lo Presti, D.; Bonanno, D. L.; Longhitano, F.; Bongiovanni, D. G.; Reito, S.; Randazzo, N.; Leonora, E.; Sipala, V.; Tommasino, F.
2016-11-01
This paper describes an innovative beam diagnostic and monitoring system composed of a position sensitive detector and a residual range detector, based on scintillating optical fiber and on an innovative read-out strategy and reconstruction algorithm. The position sensitive detector consists of four layers of pre-aligned and juxtaposed scintillating fibres arranged to form two identical overlying and orthogonal planes. The 500 μm square section fibres are optically coupled to two Silicon Photomultiplier arrays using a channel reduction system patented by the Istituto Nazionale di Fisica Nucleare. The residual range detector is a stack of sixty parallel layers of the same fibres used in the position detector, each of which is optically coupled to a channel of Silicon Photomultiplier array by wavelength shifting fibres. The sensitive area of the two detectors is 9 × 9 cm2. After being fully characterized at CATANA proton therapy facility, the performance of the prototypes was tested during last year also at TIFPA proton irradiation facility. The unique feature of these detectors is the possibility to work in imaging conditions (e.g. a particle at a time up to 106 particles per second) and in therapy conditions up to 109 particles per second. The combined use of the two detectors, in imaging conditions, as an example of application, allows the particle radiography of an object. In therapy conditions, in particular, the system measures the position, the profiles, the energy and the fluence of the beam.
Computational high-resolution optical imaging of the living human retina
NASA Astrophysics Data System (ADS)
Shemonski, Nathan D.; South, Fredrick A.; Liu, Yuan-Zhi; Adie, Steven G.; Scott Carney, P.; Boppart, Stephen A.
2015-07-01
High-resolution in vivo imaging is of great importance for the fields of biology and medicine. The introduction of hardware-based adaptive optics (HAO) has pushed the limits of optical imaging, enabling high-resolution near diffraction-limited imaging of previously unresolvable structures. In ophthalmology, when combined with optical coherence tomography, HAO has enabled a detailed three-dimensional visualization of photoreceptor distributions and individual nerve fibre bundles in the living human retina. However, the introduction of HAO hardware and supporting software adds considerable complexity and cost to an imaging system, limiting the number of researchers and medical professionals who could benefit from the technology. Here we demonstrate a fully automated computational approach that enables high-resolution in vivo ophthalmic imaging without the need for HAO. The results demonstrate that computational methods in coherent microscopy are applicable in highly dynamic living systems.
NASA Astrophysics Data System (ADS)
Mohsin Al-Hayali, Sarah Kadhim; Hadi Al-Janabi, Abdul
2018-07-01
We report on the generation of a triple-wavelength passively Q-switched ytterbium-doped fibre laser using a saturable absorber (SA) based on zinc oxide nanoparticles (ZnO NPs) film. The SA was fabricated by embedding ZnO NPs powder into a polyvinyl alcohol as a host polymer. By properly adjusting the pump power and the polarization state, single-, dual- and triple-wavelength Q-switching are stably generated without additional components (such as optical filter, or fibre grating). For the triple wavelength operation, the fibre laser generates a maximum pulse repetition of 87.9 kHz with the shortest pulse duration of 2.7 μs. To the best of authors' knowledge, it's the first demonstration of triple-wavelength passively Q-switching fibre laser using ZnO NPs as a SA. Our results suggest that ZnO is a promising SA for multi-wavelength laser operation.
NASA Astrophysics Data System (ADS)
Dimopoulos, Konstantinos; Marti, Dominik; Andersen, Peter E.
2018-02-01
We want to implement two-photon excitation fluorescence microscopy (TPEFM) into endoscopes, since TPEFM can provide relevant biomarkers for cancer staging and grading in hollow organs, endoscopically accessible through natural orifices. However, many obstacles must be overcome, among others the delivery of short laser pulses to the distal end of the endoscope. To this avail, we present imaging results using an all-fibre dispersion management scheme in a TPEFM setup. The scheme has been conceived by Jespersen et al. in 20101 and relies on the combination of a single mode fibre with normal and a higher order mode fibre with anomalous dispersion properties, fused in series using a long period grating. We show that using this fibre assembly, a simple and robust pulsed laser delivery system without any free-space optics, which is thus suitable for clinical use, can be realised.
Comparison of direct and indirect methods of measuring airborne chrysotile fibre concentration.
Eypert-Blaison, Celine; Veissiere, Sylvie; Rastoix, Olivier; Kauffer, Edmond
2010-01-01
Transmission electron microscopy observations most frequently form a basis for estimating asbestos fibre concentration in the environment and in buildings with asbestos-containing materials. Sampled fibres can be transferred to microscope grids by applying either a direct [ISO (1995) Draft International ISO/DIS 10312. Ambient air. Determination of asbestos fibres. Direct transfer transmission electron microscopy procedure. Geneva, Switzerland: International Standardization Organization] or an indirect [AFNOR (1996) Détermination de la concentration en fibres d'amiante par microscopie électronique à transmission-Méthode indirecte. Cedex, France: AFNOR, p. 42; ISO (1997) Draft International ISO/DIS 13794. Ambient air. Determination of asbestos fibres. Indirect-transfer transmission electron microscopy procedure. Geneva, Switzerland: International Standardization Organization] method. In the latter case, ISO Standard 13794 recommends filtering calcination residues either on a polycarbonate (PC) filter (PC indirect method) or on a cellulose ester (CE) membrane (CE indirect method). The PC indirect method requires that fibres deposited on a PC filter be covered by a carbon layer, whereas in the CE indirect method, the CE membrane has to be directly processed using a method described in ISO Standard 10312. The purpose of this study was to compare results obtained using, on the one hand, direct preparation methods and, on the other hand, PC indirect or CE indirect methods, for counting asbestos fibres deposited on filters as a result of liquid filtration or air sampling. In direct method-based preparation, we observed that an etching time of 6-14 min does not affect the measured densities, except for fibres <1 microm deposited by liquid filtration. Moreover, in all cases, the direct method gives higher densities than the PC indirect method because of possible fibre disappearance when using the carbon evaporator implemented in the PC indirect method. The CE membrane used for sample preparation in the CE indirect method is collapsed prior to passing it through the carbon evaporator, so the fibres are less likely to disappear at this stage. We then note that the resulting fibre densities for chrysotile-loaded filters prepared using the direct method are close to those obtained with filters prepared using the CE indirect method. Our study therefore shows that, under the implemented experimental conditions, the PC and CE indirect preparation methods described in ISO Standard 13794 are not equivalent.
SpaceFibre: The Standard and the Multi-Lane Layer
NASA Astrophysics Data System (ADS)
Parkes, Steve; McClements, Chris; McLaren, David; Florit, Albert Ferrer; Gonzalez Villafranca, Alberto
2016-08-01
SpaceFibre is a new standard for spacecraft on-board data-handling networks, initially designed to deliver multi-Gbit/s data rates for synthetic aperture radar and high-resolution, multi-spectral imaging instruments, The addition of quality of service (QoS) and fault detection, isolation and recovery (FDIR) capabilities to SpaceFibre has resulted in a unified network technology. SpaceFibre provides high bandwidth, low latency, fault isolation and recovery suitable for space applications, and novel QoS that combines priority, bandwidth reservation and scheduling and which provides babbling node protection. SpaceFibre is backwards compatible with the widely used SpaceWire standard at the network level allowing simple interconnection of existing SpaceWire equipment to a SpaceFibre link or network.Developed by STAR-Dundee and the University of Dundee for the European Space Agency (ESA) SpaceFibre is able to operate over fibre-optic and electrical cable. A single lane of SpaceFibre comprises four signals (TX+/- and RX+/-) and supports data rates of 2 Gbits/s (2.5 Gbits/s data signalling rate) with data rates up to 5 Gbits/s already planned.Several lanes can operate together to provide a multi- lane link. Multi-laning increases the data-rate to well over 20 Gbits/s.This paper details the current state of SpaceFibre which is now in the process of formal standardisation by the European Cooperation for Space Standardization (ECSS). The multi-lane layer of SpaceFibre is then described.
Localised hydrogen peroxide sensing for reproductive health
NASA Astrophysics Data System (ADS)
Purdey, Malcolm S.; Schartner, Erik P.; Sutton-McDowall, Melanie L.; Ritter, Lesley J.; Thompson, Jeremy G.; Monro, Tanya M.; Abell, Andrew D.
2015-05-01
The production of reactive oxygen species (ROS) is known to affect the developmental competence of embryos. Hydrogen peroxide (H2O2) an important reactive oxygen species, is also known to causes DNA damage and defective sperm function. Current techniques require incubating a developing embryo with an organic fluorophore which is potentially hazardous for the embryo. What we need is a localised ROS sensor which does not require fluorophores in solution and hence will allow continuous monitoring of H2O2 production without adversely affect the development of the embryo. Here we report studies on such a fibre-based sensor for the detection of H2O2 that uses a surface-bound aryl boronate fluorophore carboxyperoxyfluor-1(CPF1). Optical fibres present a unique platform due to desirable characteristics as dip sensors in biological solutions. Attempts to functionalise the fibre tips using polyelectrolyte layers and (3-aminopropyl)triethoxysilane (APTES) coatings resulted in a limited signal and poor fluorescent response to H2O2 due to a low tip surface density of the fluorophore. To increase the surface density, CPF1 was integrated into a polymer matrix formed on the fibre tip by a UV-catalysed polymerisation process of acrylamide onto a methacrylate silane layer. The polyacrylamide containing CPF1 gave a much higher surface density than previous surface attachment methods and the sensor was found to effectively detect H2O2. Using this method, biologically relevant concentrations of H2O2 were detected, enabling remote sensing studies into ROS releases from embryos throughout early development.
NASA Astrophysics Data System (ADS)
Wren, Stephen P.; Piletsky, Sergey A.; Karim, Kal; Gascoine, Paul; Lacey, Richard; Sun, Tong; Grattan, Kenneth T. V.
2014-05-01
Previously, we have developed chemical sensors using fibre optic-based techniques for the detection of Cocaine, utilising molecularly imprinted polymers (MIPs) containing fluorescein moieties as the signalling groups. Here, we report the computational design of a fluorophore which was incorporated into a MIP for the generation of a novel sensor that offers improved sensitivity for Cocaine with a detection range of 1-100μM. High selectivity for Cocaine over a suite of known Cocaine interferants (25μM) was also demonstrated by measuring changes in the intensity of fluorescence signals received from the sensor.
NASA Astrophysics Data System (ADS)
Hromadka, J.; Tokay, B.; James, S.; Korposh, S.
2017-04-01
An optical fibre long period grating (LPG) modified with a thin film of HKUST-1, a material from metal organic framework (MOF) family, was employed for the detection of carbon dioxide. The sensing mechanism is based on the measurement of the change of the refractive index (RI) of the coating that is induced by the penetration of CO2 molecules into the HKUST-1 pores. The responses of the resonance bands in the transmission spectrum of an LPG modified with 40 layers of HKUST-1 upon exposure to carbon dioxide in mixture with nitrogen were investigated.
Cahuantzi, Roberto; Buckley, Alastair
2017-09-01
Making accurate and reliable measurements of solar irradiance is important for understanding performance in the photovoltaic energy sector. In this paper, we present design details and performance of a number of fibre optic couplers for use in irradiance measurement systems employing remote light sensors applicable for either spectrally resolved or broadband measurement. The angular and spectral characteristics of different coupler designs are characterised and compared with existing state-of-the-art commercial technology. The new coupler designs are fabricated from polytetrafluorethylene (PTFE) rods and operate through forward scattering of incident sunlight on the front surfaces of the structure into an optic fibre located in a cavity to the rear of the structure. The PTFE couplers exhibit up to 4.8% variation in scattered transmission intensity between 425 nm and 700 nm and show minimal specular reflection, making the designs accurate and reliable over the visible region. Through careful geometric optimization near perfect cosine dependence on the angular response of the coupler can be achieved. The PTFE designs represent a significant improvement over the state of the art with less than 0.01% error compared with ideal cosine response for angles of incidence up to 50°.
NASA Astrophysics Data System (ADS)
Pfister, T.; Büttner, L.; Czarske, J.; Krain, H.; Schodl, R.
2006-07-01
This paper presents a novel fibre optic laser Doppler position sensor for single blade tip clearance and vibration measurements at turbo machines, which offers high temporal resolution and high position resolution simultaneously. The sensor principle is based on the generation of a measurement volume consisting of two superposed fan-like interference fringe systems with contrary fringe spacing gradients using wavelength division multiplexing. A flexible and robust measurement system with an all-passive fibre coupled measurement head has been realized employing diffractive and refractive optics. Measurements of tip clearance and rotor vibrations at a transonic centrifugal compressor performed during operation at up to 50 000 rpm (833 Hz) corresponding to 21.7 kHz blade frequency and 586 m s-1 blade tip velocity are presented. The results are in excellent agreement with those of capacitive probes. The mean uncertainty of the position measurement was around 20 µm and, thus, considerably better than for conventional tip clearance probes. Consequently, this sensor is capable of fulfilling the requirements for future active clearance control systems and has great potential for in situ and online tip clearance and vibration measurements at metallic and non-metallic turbine blades with high precision.
Fibre optics in the SMOS mission
NASA Astrophysics Data System (ADS)
Kudielka, K.; Benito-Hernández, F. J.; Rits, W.; Martin-Neira, M.
2017-11-01
Launched on November 2nd, 2009, SMOS (Soil Moisture, Ocean Salinity) is the second Earth Explorer Opportunity mission developed as part of ESA's Living Planet Programme. It demonstrates a completely new type of instrument - a large, deployable synthetic-aperture microwave radiometer [1]. RUAG Space, Switzerland, as a subcontractor of EADS Astrium, Spain, has provided the instrument's fibreoptic harness, which interconnects the central data processor with all 69 microwave receivers, as well as 12 auxiliary units on board. For reasons explained in Section 3, SMOS is the first European mission extensively using both fibre-optic clock distribution and data transmission in space. In Section 2, we present an overview of the scientific goals of SMOS, and describe the payload's basic function. There from we derive the rationale and the design of the fibre-optic harness (Section 3). In Section 4 all development, manufacturing, and test activities are summarised, which culminated in the successful delivery of all flight units to EADS Astrium by October 2006. We present the major test results obtained with the flight harness (Section 5), and conclude with a short summary of the higher-level activities, which lead to successful launch and commissioning of the SMOS satellite (Section 6).
Ultrastable optical frequency dissemination on a multi-access fibre network
NASA Astrophysics Data System (ADS)
Bercy, Anthony; Lopez, Olivier; Pottie, Paul-Eric; Amy-Klein, Anne
2016-07-01
We report a laboratory demonstration of the dissemination of an ultrastable optical frequency signal to two distant users simultaneously using a branching network. The ultrastable signal is extracted along a main fibre link; it is optically tracked by a narrow linewidth laser diode, which light is injected in a secondary link. The propagation noise of both links is actively compensated. We implement this scheme with two links of 50-km fibre spools, the extraction being set up at the mid-point of the main link. We show that the extracted signal at the end of the secondary link exhibits a fractional frequency instability of 1.4 × 10-15 at 1-s measurement time, almost equal to the 1.3 × 10-15 instability of the main link output end. The long-term instabilities are also very similar, at a level of 3-5 × 10-20 at 3 × 104-s integration time. We also show that the setting up of this extraction device, or of a simpler one, at the main link input, can test the proper functioning of the noise rejection on this main link. This work is a significant step towards a robust and flexible ultrastable network for multi-users dissemination.
NASA Astrophysics Data System (ADS)
Fitri, Muhamad; Mahzan, Shahruddin
2016-11-01
In this research, the effect of fibre content, fibre size and alkali treatment to the impact resistance of the composite material have been investigated, The composite material employs oil palm fibre as the reinforcement material whereas the matrix used for the composite materials are polypropylene. The Oil Palm fibres are prepared for two conditions: alkali treated fibres and untreated fibres. The fibre sizes are varied in three sizes: 5mm, 7mm and 10mm. During the composite material preparation, the fibre contents also have been varied into 3 different percentages: 5%, 7% and 10%. The statistical approach is used to optimise the variation of specimen determined by using Taguchi method. The results were analyzed also by the Taguchi method and shows that the Oil Palm fibre content is significantly affect the impact resistance of the polymer matrix composite. However, the fibre size is moderately affecting the impact resistance, whereas the fibre treatment is insignificant to the impact resistance of the oil palm fibre reinforced polymer matrix composite.
Gombár, Melinda; Józsa, Éva; Braun, Mihály; Ősz, Katalin
2012-10-01
An inexpensive photoreactor using LED light sources and a fibre-optic CCD spectrophotometer as a detector was built by designing a special cell holder for standard 1.000 cm cuvettes. The use of this device was demonstrated by studying the aqueous photochemical reaction of 2,5-dichloro-1,4-benzoquinone. The developed method combines the highly quantitative data collection of CCD spectrophotometers with the possibility of illuminating the sample independently of the detecting light beam, which is a substantial improvement of the method using diode array spectrophotometers as photoreactors.
Online determination of biophysical parameters of mucous membranes of a human body
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.
2013-07-01
We have developed a method for online determination of biophysical parameters of mucous membranes (MMs) of a human body (transport scattering coefficient, scattering anisotropy factor, haemoglobin concentration, degrees of blood oxygenation, average diameter of capillaries with blood) from measurements of spectral and spatial characteristics of diffuse reflection. The method is based on regression relationships between linearly independent components of the measured light signals and the unknown parameters of MMs, obtained by simulation of the radiation transfer in the MM under conditions of its general variability. We have proposed and justified the calibration-free fibre-optic method for determining the concentration of haemoglobin in MMs by measuring the light signals diffusely reflected by the tissue in four spectral regions at two different distances from the illumination spot. We have selected the optimal wavelengths of optical probing for the implementation of the method.
IR luminescence of tellurium-doped silica-based optical fibre
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dianov, Evgenii M; Alyshev, S V; Shubin, Aleksei V
2012-03-31
Tellurium-doped germanosilicate fibre has been fabricated by the MCVD process. In contrast to Te-containing glasses studied earlier, it has a broad luminescence band (full width at half maximum of {approx}350 nm) centred at 1500 nm, with a lifetime of {approx}2 {mu}s. The luminescence of the fibre has been studied before and after gamma irradiation in a {sup 60}Co source to 309 and 992 kGy. The irradiation produced a luminescence band around 1100 nm, with a full width at half maximum of {approx}400 nm and lifetime of {approx}5 {mu}s. (letters)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terentyev, V S; Simonov, V A
2016-02-28
Numerical modelling demonstrates the possibility of fabricating an all-fibre multibeam two-mirror reflection interferometer based on a metal–dielectric diffraction structure in its front mirror. The calculations were performed using eigenmodes of a double-clad single-mode fibre. The calculation results indicate that, using a metallic layer in the structure of the front mirror of such an interferometer and a diffraction effect, one can reduce the Ohmic loss by a factor of several tens in comparison with a continuous thin metallic film. (laser crystals and braggg ratings)
NASA Astrophysics Data System (ADS)
Şansal, S.; Mıstık, S. I.; Fettahov, R.; Ovalı, S.; Duman, M.
2017-10-01
Over the last few decades, more attention is given to lignocellulose based fibres as reinforcement material in the polymer composites owing to the environmental pollution caused by the extensive usage of synthetic and inorganic fibres. Developing new natural fibre reinforced composites is the focus of many researches nowadays. They are made from renewable resources and they have less environmental effect in comparison to inorganic fibre reinforced composites. The interest of consumers in eco-friendly natural fibres and textiles has increased in recent years. Unlike inorganic fibres, natural fibres present light weight, high strength/density ratio and are readily available, environmentally friendly and biodegradable. Many different types of natural fibres are exploited for the production of biodegradable polymer composites. The nettle (Urtica dioica L.) is a well-known plant growing on rural sites of Europe, Asia, and North America. Nettle plant contains fibre similar to hemp and flax. However, similar to other natural fibres, nettle fibres are poorly compatible with the thermoplastic matrix of composites, due to their hydrophilic character which reduces mechanical properties of nettle fibre reinforced thermoplastics. In order to improve the fibrematrix adhesion of the natural fibre reinforced composites, surface treatment processes are applied to the lignocellulose fibres. In this study nettle (urtica dioica) fibre yarns were treated with NaOH by using conventional, ultrasonic and microwave energy methods. After treatment processes tensile strength, elongation, friction strength and SEM observations of the nettle fibre yarns were investigated. All treatment processes were improved the tensile strength, elongation and friction strength properties of the nettle fibre yarns. Also higher tensile strength, elongation and friction strength properties were obtained from treated nettle fibre yarns which treated by using microwave energy method.
NASA Astrophysics Data System (ADS)
Schneider, Konrad
2007-01-01
Over the years different tests are established to characterise the compressive properties of composites in the in-plane direction. The international standard ISO 14126 (2000) (Fibre-reinforced plastic composites — determination of compressive properties in the in-plane direction, ISO 14126: 1999 (E), Faserverstärkte Kunststoffe, Bestimmung der Druckeigenschaften in der Laminatebene, DIN EN ISO 14126: 2000-12) tries to standardise these tests. The described wide range of arrangements enables to continue with the present practice to a large extent. But the standard doesn’t say anything about the precision of the method. Four labs performed a round robin test to check the precision and reproducibility of the Celanese-type arrangement for different composite materials, structures and dimensions. The test procedure is critically discussed and some proposals for the applicability of the method are derived. Mainly the advantages of optical monitoring the overall as well as the local strain of the specimen are demonstrated for the characterisation the failure process. By this method some of the reasons of unsatisfying reproducibility can be cleared up.