Elimination of the light shift in rubidium gas cell frequency standards using pulsed optical pumping
NASA Technical Reports Server (NTRS)
English, T. C.; Jechart, E.; Kwon, T. M.
1978-01-01
Changes in the intensity of the light source in an optically pumped, rubidium, gas cell frequency standard can produce corresponding frequency shifts, with possible adverse effects on the long-term frequency stability. A pulsed optical pumping apparatus was constructed with the intent of investigating the frequency stability in the absence of light shifts. Contrary to original expectations, a small residual frequency shift due to changes in light intensity was experimentally observed. Evidence is given which indicates that this is not a true light-shift effect. Preliminary measurements of the frequency stability of this apparatus, with this small residual pseudo light shift present, are presented. It is shown that this pseudo light shift can be eliminated by using a more homogeneous C-field. This is consistent with the idea that the pseudo light shift is due to inhomogeneity in the physics package (position-shift effect).
Yao, Zhongqi; Luo, Jie; Lai, Yun
2017-12-11
In this work, we propose that one-dimensional ultratransparent dielectric photonic crystals with wide-angle impedance matching and shifted elliptical equal frequency contours are promising candidate materials for illusion optics. The shift of the equal frequency contour does not affect the refractive behaviors, but enables a new degree of freedom in phase modulation. With such ultratransparent photonic crystals, we demonstrate some applications in illusion optics, including creating illusions of a different-sized scatterer and a shifted source with opposite phase. Such ultratransparent dielectric photonic crystals may establish a feasible platform for illusion optics devices at optical frequencies.
Zhang, Shangjian; Wang, Heng; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Liu, Yong
2015-06-15
An extinction-ratio-independent electrical method is proposed for measuring chirp parameters of Mach-Zehnder electric-optic intensity modulators based on frequency-shifted optical heterodyne. The method utilizes the electrical spectrum analysis of the heterodyne products between the intensity modulated optical signal and the frequency-shifted optical carrier, and achieves the intrinsic chirp parameters measurement at microwave region with high-frequency resolution and wide-frequency range for the Mach-Zehnder modulator with a finite extinction ratio. Moreover, the proposed method avoids calibrating the responsivity fluctuation of the photodiode in spite of the involved photodetection. Chirp parameters as a function of modulation frequency are experimentally measured and compared to those with the conventional optical spectrum analysis method. Our method enables an extinction-ratio-independent and calibration-free electrical measurement of Mach-Zehnder intensity modulators by using the high-resolution frequency-shifted heterodyne technique.
Hyperpolarizability and Operational Magic Wavelength in an Optical Lattice Clock
NASA Astrophysics Data System (ADS)
Brown, R. C.; Phillips, N. B.; Beloy, K.; McGrew, W. F.; Schioppo, M.; Fasano, R. J.; Milani, G.; Zhang, X.; Hinkley, N.; Leopardi, H.; Yoon, T. H.; Nicolodi, D.; Fortier, T. M.; Ludlow, A. D.
2017-12-01
Optical clocks benefit from tight atomic confinement enabling extended interrogation times as well as Doppler- and recoil-free operation. However, these benefits come at the cost of frequency shifts that, if not properly controlled, may degrade clock accuracy. Numerous theoretical studies have predicted optical lattice clock frequency shifts that scale nonlinearly with trap depth. To experimentally observe and constrain these shifts in an 171Yb optical lattice clock, we construct a lattice enhancement cavity that exaggerates the light shifts. We observe an atomic temperature that is proportional to the optical trap depth, fundamentally altering the scaling of trap-induced light shifts and simplifying their parametrization. We identify an "operational" magic wavelength where frequency shifts are insensitive to changes in trap depth. These measurements and scaling analysis constitute an essential systematic characterization for clock operation at the 10-18 level and beyond.
Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting
Yun, S. H.; Tearney, G. J.; de Boer, J. F.; Bouma, B. E.
2009-01-01
A novel technique using an acousto-optic frequency shifter in optical frequency domain imaging (OFDI) is presented. The frequency shift eliminates the ambiguity between positive and negative differential delays, effectively doubling the interferometric ranging depth while avoiding image cross-talk. A signal processing algorithm is demonstrated to accommodate nonlinearity in the tuning slope of the wavelength-swept OFDI laser source. PMID:19484034
Light beam frequency comb generator
Priatko, G.J.; Kaskey, J.A.
1992-11-24
A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics. 2 figs.
Light beam frequency comb generator
Priatko, Gordon J.; Kaskey, Jeffrey A.
1992-01-01
A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics.
High-speed optical coherence tomography using fiberoptic acousto-optic phase modulation
NASA Astrophysics Data System (ADS)
Xie, Tuqiang; Wang, Zhenguo; Pan, Yingtian
2003-12-01
We report a new rapid-scanning optical delay device suitable for high-speed optical coherence tomography (OCT) in which an acousto-optic modulator (AOM) is used to independently modulate the Doppler frequency shift of the reference light beam for optical heterodyne detection. Experimental results show that the fluctuation of the measured Doppler frequency shift is less than +/-0.2% over 95% duty cycle of OCT imaging, thus allowing for enhanced signal-to-noise ratio of optical heterodyne detection. The increased Doppler frequency shift by AOM also permits complete envelop demodulation without the compromise of reducing axial resolution; if used with a resonant rapid-scanning optical delay, it will permit high-performance real-time OCT imaging. Potentially, this new rapid-scanning optical delay device will improve the performance of high-speed Doppler OCT techniques.
Hyper-Ramsey spectroscopy of optical clock transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yudin, V. I.; Taichenachev, A. V.; Oates, C. W.
2010-07-15
We present nonstandard optical Ramsey schemes that use pulses individually tailored in duration, phase, and frequency to cancel spurious frequency shifts related to the excitation itself. In particular, the field shifts and their uncertainties can be radically suppressed (by two to four orders of magnitude) in comparison with the usual Ramsey method (using two equal pulses) as well as with single-pulse Rabi spectroscopy. Atom interferometers and optical clocks based on two-photon transitions, heavily forbidden transitions, or magnetically induced spectroscopy could significantly benefit from this method. In the latter case, these frequency shifts can be suppressed considerably below a fractional levelmore » of 10{sup -17}. Moreover, our approach opens the door for high-precision optical clocks based on direct frequency comb spectroscopy.« less
FIBER AND INTEGRATED OPTICS: Radio-frequency electrooptic modulation in optical fibers
NASA Astrophysics Data System (ADS)
Bulyuk, A. N.
1992-10-01
The electrooptic interaction in single-mode optical fibers with both linear and circular birefringe is analyzed. In most cases, a large interaction length imposes a limit on the modulation frequency. A circular birefringence in an optical fiber may lead to an effective coupling of polarization normal modes if a phase-matching condition is satisfied. Through an appropriate choice of polarization states of the light at the entrance and exit of the device, one can achieve a polarization modulation or a frequency shift of the light. There are possible applications in rf polarization modulators, devices for shifting the frequency of light, and detectors of electromagnetic fields.
Methods and apparatus for broadband frequency comb stabilization
Cox, Jonathan A; Kaertner, Franz X
2015-03-17
Feedback loops can be used to shift and stabilize the carrier-envelope phase of a frequency comb from a mode-locked fibers laser or other optical source. Compared to other frequency shifting and stabilization techniques, feedback-based techniques provide a wideband closed-loop servo bandwidth without optical filtering, beam pointing errors, or group velocity dispersion. It also enables phase locking to a stable reference, such as a Ti:Sapphire laser, continuous-wave microwave or optical source, or self-referencing interferometer, e.g., to within 200 mrad rms from DC to 5 MHz. In addition, stabilized frequency combs can be coherently combined with other stable signals, including other stabilized frequency combs, to synthesize optical pulse trains with pulse durations of as little as a single optical cycle. Such a coherent combination can be achieved via orthogonal control, using balanced optical cross-correlation for timing stabilization and balanced homodyne detection for phase stabilization.
Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs.
Durán, Vicente; Schnébelin, Cȏme; Guillet de Chatellus, Hugues
2018-05-28
We propose and characterize experimentally a new source of optical frequency combs for performing multi-heterodyne spectrometry. This comb modality is based on a frequency-shifting loop seeded with a continuous-wave (CW) monochromatic laser. The comb lines are generated by successive passes of the CW laser through an acousto-optic frequency shifter. We report the generation of frequency combs with more than 1500 mutually coherent lines, without resorting to non-linear broadening phenomena or external electronic modulation. The comb line spacing is easily reconfigurable from tens of MHz down to the kHz region. We first use a single acousto-optic frequency comb to conduct self-heterodyne interferometry with a high frequency resolution (500 kHz). By increasing the line spacing to 80 MHz, we demonstrate molecular spectroscopy on the sub-millisecond time scale. In order to reduce the detection bandwidth, we subsequently implement an acousto-optic dual-comb spectrometer with the aid of two mutually coherent frequency shifting loops. In each architecture, the potentiality of acousto-optic frequency combs for spectroscopy is validated by spectral measurements of hydrogen cyanide in the near-infrared region.
Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs
NASA Astrophysics Data System (ADS)
Durán, Vicente; Schnébelin, Cȏme; Guillet de Chatellus, Hugues
2018-05-01
We propose and characterize experimentally a new source of optical frequency combs for performing multi-heterodyne spectrometry. This comb modality is based on a frequency shifting loop seeded with a CW monochromatic laser. The comb lines are generated by successive passes of the CW laser through an acousto-optic frequency shifter. We report the generation of frequency combs with more than 1500 mutually coherent lines, without resorting to non-linear broadening phenomena or external electronic modulation. The comb line spacing is easily reconfigurable from tens of MHz down to the kHz region. We first use a single acousto-optic frequency comb to conduct self-heterodyne interferometry with a high frequency resolution (500 kHz). By increasing the line spacing to 80 MHz, we demonstrate molecular spectroscopy on the sub-millisecond time scale. In order to reduce the detection bandwidth, we subsequently implement an acousto-optic dual-comb spectrometer with the aid of two mutually coherent frequency shifting loops. In each architecture, the potentiality of acousto-optic frequency combs for spectroscopy is validated by spectral measurements of hydrogen cyanide in the near-infrared region.
Electro-optic-waveguide frequency translator in LiNbO(3) fabricated by proton exchange.
Wong, K K; De La Rue, R M; Wright, S
1982-11-01
An optical waveguide phase modulator has been fabricated on X-cut LiNbO(3) by using proton exchange in benzoic acid. The phase modulator was operated as a serrodyne optical-frequency translator with shifted-signal to imagesignal discrimination of 52 dB for a 4-MHz frequency shift. The amplitude of the sawtooth driving signal was 10 V peak to peak. Application of a de bias voltage of either polarity was found to cause a substantial reduction in transmitted-light intensity.
Zhou, Da-Peng; Li, Wenhai; Chen, Liang; Bao, Xiaoyi
2013-01-31
A distributed optical fiber sensor with the capability of simultaneously measuring temperature and strain is proposed using a large effective area non-zero dispersion shifted fiber (LEAF) with sub-meter spatial resolution. The Brillouin frequency shift is measured using Brillouin optical time-domain analysis (BOTDA) with differential pulse-width pair technique, while the spectrum shift of the Rayleigh backscatter is measured using optical frequency-domain reflectometry (OFDR). These shifts are the functions of both temperature and strain, and can be used as two independent parameters for the discrimination of temperature and strain. A 92 m measurable range with the spatial resolution of 50 cm is demonstrated experimentally, and accuracies of ±1.2 °C in temperature and ±15 με in strain could be achieved.
Continuous wave operation of quantum cascade lasers with frequency-shifted feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyakh, A., E-mail: arkadiy.lyakh@ucf.edu; NanoScience Technology Center, University of Central Florida, 12424 Research Pkwy, Orlando, FL 32826; College of Optics and Photonics, University of Central Florida, 304 Scorpius St, Orlando, FL 32826
2016-01-15
Operation of continuous wave quantum cascade lasers with a frequency-shifted feedback provided by an acousto-optic modulator is reported. Measured linewidth of 1.7 cm{sup −1} for these devices, under CW operating conditions, was in a good agreement with predictions of a model based on frequency-shifted feedback seeded by spontaneous emission. Linewidth broadening was observed for short sweep times, consistent with sound wave grating period variation across the illuminated area on the acousto-optic modulator. Standoff detection capability of the AOM-based QCL setup was demonstrated for several solid materials.
Real-Time and High-Resolution 3D Face Measurement via a Smart Active Optical Sensor.
You, Yong; Shen, Yang; Zhang, Guocai; Xing, Xiuwen
2017-03-31
The 3D measuring range and accuracy in traditional active optical sensing, such as Fourier transform profilometry, are influenced by the zero frequency of the captured patterns. The phase-shifting technique is commonly applied to remove the zero component. However, this phase-shifting method must capture several fringe patterns with phase difference, thereby influencing the real-time performance. This study introduces a smart active optical sensor, in which a composite pattern is utilized. The composite pattern efficiently combines several phase-shifting fringes and carrier frequencies. The method can remove zero frequency by using only one pattern. Model face reconstruction and human face measurement were employed to study the validity and feasibility of this method. Results show no distinct decrease in the precision of the novel method unlike the traditional phase-shifting method. The texture mapping technique was utilized to reconstruct a nature-appearance 3D digital face.
Real-Time and High-Resolution 3D Face Measurement via a Smart Active Optical Sensor
You, Yong; Shen, Yang; Zhang, Guocai; Xing, Xiuwen
2017-01-01
The 3D measuring range and accuracy in traditional active optical sensing, such as Fourier transform profilometry, are influenced by the zero frequency of the captured patterns. The phase-shifting technique is commonly applied to remove the zero component. However, this phase-shifting method must capture several fringe patterns with phase difference, thereby influencing the real-time performance. This study introduces a smart active optical sensor, in which a composite pattern is utilized. The composite pattern efficiently combines several phase-shifting fringes and carrier frequencies. The method can remove zero frequency by using only one pattern. Model face reconstruction and human face measurement were employed to study the validity and feasibility of this method. Results show no distinct decrease in the precision of the novel method unlike the traditional phase-shifting method. The texture mapping technique was utilized to reconstruct a nature-appearance 3D digital face. PMID:28362349
Laser frequency stabilization by light shift of optical-magnetic double resonances
NASA Astrophysics Data System (ADS)
Zhan, Yuanzhi; Peng, Xiang; Lin, Zaisheng; Gong, Wei; Guo, Hong
2015-05-01
This work adopts the light shift of optical-magnetic double resonance frequency in metastable-state 4He atoms to lock the laser center frequency to the magic point. At this magic frequency, both the left-circularly and right-circularly optical pumping processes will give the same value of optical-magnetic double resonance. With this method and after locking, experimental results show that the laser frequency fluctuation is dramatically reduced to 2.79 MHz in 3600 seconds, comparing with 34.1 MHz drift in the free running mode. In application, with the locked magic laser frequency, the heading error for laser pumped 4He magnetometer can be eliminated much. The National Science Fund for Distinguished Young Scholars of China (Grant No. 61225003), the National Natural Science Foundation of China (Grant No. 61101081), and the National Hi-Tech Research and Development (863) Program.
What is the Temporal Analog of Reflection and Refraction of Optical Beams?
Plansinis, B W; Donaldson, W R; Agrawal, G P
2015-10-30
It is shown numerically and analytically that when an optical pulse approaches a moving temporal boundary across which the refractive index changes, it undergoes a temporal equivalent of reflection and refraction of optical beams at a spatial boundary. The main difference is that the role of angles is played by changes in the frequency. The frequency dependence of the dispersion of the material in which the pulse is propagating plays a fundamental role in determining the frequency shifts experienced by the reflected and refracted pulses. Our analytic expressions for these frequency shifts allow us to find the condition under which an analog of total internal reflection may occur at the temporal boundary.
NASA Astrophysics Data System (ADS)
Wu, Peng; Ma, Jianxin
2017-03-01
We have proposed and demonstrated a scheme to generate a frequency-sextupling amplitude shift keying (ASK)-single sideband optical millimeter (mm)-wave signal with high dispersion tolerance based on an optical phase modulator (PM) by ably using the-4th-order and +2nd-order sidebands of the optical modulation. The ASK radio frequency signal, superposed by a local oscillator with the same frequency, modulates the lightwave via an optical PM with proper voltage amplitudes, the +2nd-order sideband carries the ASK signal with a constant slope while the -4th-order sideband maintains constant amplitude. These two sidebands can be abstracted by a wavelength selective switch to form a dual-tone optical mm-wave with only one tone carrying the ASK signal. As only one tone bears the ASK signal while the other tone is unmodulated, the generated dual-tone optical mm-wave signal has high dispersion tolerance.
Frequency shifts of an electric-dipole resonance near a conducting surface
NASA Technical Reports Server (NTRS)
Holland, W. R.; Hall, D. G.
1984-01-01
The resonance frequency of an electric dipole placed near a conducting surface is shifted by the dipole-surface interaction. The observation and measurement of these shifts at optical frequencies is reported for an experimental system that consists of a metal-island film spaced a distance d from a continuous Ag film. The dependence of the shift in the frequency of the island resonance on d shows good agreement with that predicted by a classical theory of the dipole-surface interaction.
Micro-Optical Distributed Sensors for Aero Propulsion Applications
NASA Astrophysics Data System (ADS)
Arnold, S.; Otugen, V.
2003-01-01
The objective of this research is to develop micro-opto-mechanical system (MOMS)-based sensors for time- and space-resolved measurements of flow properties in aerodynamics applications. The measurement technique we propose uses optical resonances in dielectric micro-spheres that can be excited by radiation tunneling from optical fibers. It exploits the tunneling-induced and morphology-dependent shifts in the resonant frequencies. The shift in the resonant frequency is dependent on the size, shape, and index of refraction of the micro-sphere. A physical change in the environment surrounding a micro-bead can change one or more of these properties of the sphere thereby causing a shift in frequency of resonance. The change of the resonance frequency can be detected with high resolution by scanning a frequency-tunable laser that is coupled into the fiber and observing the transmission spectrum at the output of the fiber. It is expected that, in the future, the measurement concept will lead to a system of distributed micro-sensors providing spatial data resolved in time and space. The present project focuses on the development and demonstration of temperature sensors using the morphology-dependent optical resonances although in the latter part of the work, we will also develop a pressure sensor. During the period covered in this report, the optical and electronic equipment necessary for the experimental work was assembled and the experimental setup was designed for the single sensor temperature measurements. Software was developed for real-time tracking of the optical resonance shifts. Some preliminary experiments were also carried out to detect temperature using a single bead in a water bath.
Micro-optical Distributed Sensors for Aero Propulsion Applications
NASA Technical Reports Server (NTRS)
Arnold, S.; Otugen, V.; Seasholtz, Richard G. (Technical Monitor)
2003-01-01
The objective of this research is to develop micro-opto-mechanical system (MOMS)-based sensors for time- and space-resolved measurements of flow properties in aerodynamics applications. The measurement technique we propose uses optical resonances in dielectric micro-spheres that can be excited by radiation tunneling from optical fibers. It exploits the tunneling-induced and morphology-dependent shifts in the resonant frequencies. The shift in the resonant frequency is dependent on the size, shape, and index of refraction of the micro-sphere. A physical change in the environment surrounding a micro-bead can change one or more of these properties of the sphere thereby causing a shift in frequency of resonance. The change of the resonance frequency can be detected with high resolution by scanning a frequency-tunable laser that is coupled into the fiber and observing the transmission spectrum at the output of the fiber. It is expected that, in the future, the measurement concept will lead to a system of distributed micro-sensors providing spatial data resolved in time and space. The present project focuses on the development and demonstration of temperature sensors using the morphology-dependent optical resonances although in the latter part of the work, we will also develop a pressure sensor. During the period covered in this report, the optical and electronic equipment necessary for the experimental work was assembled and the experimental setup was designed for the single sensor temperature measurements. Software was developed for real-time tracking of the optical resonance shifts. Some preliminary experiments were also carried out to detect temperature using a single bead in a water bath.
NASA Astrophysics Data System (ADS)
Ibrahim, Dahi Ghareab Abdelsalam; Yasui, Takeshi
2018-04-01
Two-wavelength phase-shift interferometry guided by optical frequency combs is presented. We demonstrate the operation of the setup with a large step sample simultaneously with a resolution test target with a negative pattern. The technique can investigate multi-objects simultaneously with high precision. Using this technique, several important applications in metrology that require high speed and precision are demonstrated.
Multipoint sensing with a low-coherence source using single-arm frequency-shifted interferometry
Zhang, Yiwei; Ye, Fei; Qi, Bing; ...
2016-07-12
We demonstrate that multiple-site sensing along an optical fiber can be done with incoherent continuous-wave light. Here, using a broadband low-coherence noise source, a slow detector, and an optical modulator, we construct a single-arm frequency-shifted interferometer (SA-FSI) capable of simultaneously sensing multiple weak-reflection sites distributed either in parallel or in series along fiber links. By scanning the driving frequency of an electro-optic amplitude modulator in the range of 2.7–3.2 GHz at steps of 41.7 KHz, we demonstrate a spatial resolution of 0.3 m and a measurement range of over 1 km.
Laser Doppler measurement techniques for spacecraft
NASA Technical Reports Server (NTRS)
Kinman, Peter W.; Gagliardi, Robert M.
1986-01-01
Two techniques are proposed for using laser links to measure the relative radial velocity of two spacecraft. The first technique determines the relative radial velocity from a measurement of the two-way Doppler shift on a transponded radio-frequency subcarrier. The subcarrier intensity-modulates reciprocating laser beams. The second technique determines the relative radial velocity from a measurement of the two-way Doppler shift on an optical frequency carrier which is transponded between spacecraft using optical Costas loops. The first technique might be used in conjunction with noncoherent optical communications, while the second technique is compatible with coherent optical communications. The first technique simultaneously exploits the diffraction advantage of laser beams and the maturity of radio-frequency phase-locked loop technology. The second technique exploits both the diffraction advantage of laser beams and the large Doppler effect at optical frequencies. The second technique has the potential for greater accuracy; unfortunately, it is more difficult to implement since it involves optical Costas loops.
NASA Astrophysics Data System (ADS)
Pu, Tao; Wang, Wei wei
2018-01-01
In order to apply optical injection effect in Microwave Photonics system, The red-shift effect of the cavity mode of the DFB semiconductor laser under single-frequency optical injection is studied experimentally, and the red-shift curve of the cavity mode is measured. The wavelength-selective amplification property of the DFB semiconductor laser under multi-frequency optical injection is also investigated, and the gain curves for the injected signals in different injection ratios are measured in the experiment. A novel and simple structure to implement a single-passband MPF with wideband tunability based on the wavelength-selective amplification of a DFB semiconductor laser under optical injection is proposed and experimentally demonstrated. MPFs with center frequency tuned from 13 to 41 GHz are realized in the experiment. A wideband and frequency-tunable optoelectronic oscillator based on a directly modulated distributed feedback (DFB) semiconductor laser under optical injection is proposed and experimentally demonstrated. By optical injection, the relaxation oscillation frequency of the DFB laser is enhanced and its high modulation efficiency makes the loop oscillate without the necessary of the electrical filter. An experiment is performed; microwave signals with frequency tuned from 5.98 to 15.22 GHz are generated by adjusting the injection ratio and frequency detuning between the master and slave lasers.
What is the temporal analog of reflection and refraction of optical beams?
Plansinis, B. W.; Donaldson, W. R.; Agrawal, G. P.
2015-10-28
It is shown numerically and analytically that when an optical pulse approaches a moving temporal boundary across which the refractive index changes, it undergoes a temporal equivalent of reflection and refraction of optical beams at a spatial boundary. The main difference is that the role of angles is played by changes in the frequency. The frequency dependence of the dispersion of the material in which the pulse is propagating plays a fundamental role in determining the frequency shifts experienced by the reflected and refracted pulses. As a result, our analytic expressions for these frequency shifts allow us to find themore » condition under which an analog of total internal reflection may occur at the temporal boundary.« less
Frequency-noise cancellation in semiconductor lasers by nonlinear heterodyne detection.
Bondurant, R S; Welford, D; Alexander, S B; Chan, V W
1986-12-01
The bit-error-rate (BER) performance of conventional noncoherent, heterodyne frequency-shift-keyed (FSK) optical communications systems can be surpassed by the use of a differential FSK modulation format and nonlinear postdetection processing at the receiver. A BER floor exists for conventional frequency-shift keying because of the frequency noise of the transmitter and local oscillator. The use of differential frequency-shift keying with nonlinear postdetection processing suppresses this BER floor for the semiconductor laser system considered here.
FBG wavelength demodulation based on a radio frequency optical true time delay method.
Wang, Jin; Zhu, Wanshan; Ma, Chenyuan; Xu, Tong
2018-06-01
A new fiber Bragg grating (FBG) wavelength shift demodulation method based on optical true time delay microwave phase detection is proposed. We used a microwave photonic link (MPL) to transport a radio frequency (RF) signal over a dispersion compensation fiber (DCF). The wavelength shift of the FBG will cause the time delay change of the optical carrier that propagates in an optical fiber with chromatic dispersion, which will result in the variation of the RF signal phase. A long DCF was adopted to enlarge the RF signal phase variation. An IQ mixer was used to measure the RF phase variation of the RF signal propagating in the MPL, and the wavelength shift of the FBG can be obtained by the measured RF signal phase variation. The experimental results showed that the wavelength shift measurement resolution is 2 pm when the group velocity dispersion of the DCF is 79.5 ps/nm and the frequency of the RF signal is 18 GHz. The demodulation time is as short as 0.1 ms. The measurement resolution can be improved simply by using a higher frequency of the RF signal and a longer DCF or larger chromatic dispersion value of the DCF.
Performance Investigation of Millimeter Wave Generation Reliant on Stimulated Brillouin Scattering
NASA Astrophysics Data System (ADS)
Tickoo, Sheetal; Gupta, Amit
2018-04-01
In this work, photonic method of generating the millimeter waves has been done based on Brillouin scattering effect in optical fiber. Here different approaches are proposed to get maximum frequency shift in mm-wave region using only pumps, radio signals with Mach-Zehnder modulator. Moreover for generated signal validation, signals modulated and send to both wired and wireless medium in optical domain. It is observed that maximum shift of 300 GHz is realized using 60 GHz input sine wave. Basically a frequency doubler is proposed which double shift of input frequency and provide better SNR. For the future generation network system, the generation of millimeter waves makes them well reliable for the transmission of the data.
NASA Astrophysics Data System (ADS)
Lee, Seung Seok; Kim, Ju Ha; Choi, Eun Seo
2017-04-01
We proposed novel phase-shifting interferometry using a fiber-optic vibration sensor. The Doppler shift in the coiled fiber caused by vibrations can be used to detect the vibrations by using a fiber-optic interferometer. The principle can be applied to induce phase shifts. While applying vibrations to the coiled fiber at various vibration frequencies, we recorded the variations in the interference fringes. The interference fringe moved to longer wavelengths when a vibration frequency was increased from 38.00 to 38.40 kHz. Phase variations of 3.59 rad/kHz were obtained. The ability to accurately control the phase by using the vibrations in the coiled fiber was demonstrated by the elimination of the depth degeneracy using the complex signal generated by the phase-shifted interference fringes. Using vibrations to control phase shifting can be an acceptable alternative to conventional methods and can be applied to resolve the depth ambiguity in Fourier domain optical coherence tomography.
NASA Astrophysics Data System (ADS)
Hefferman, Gerald; Chen, Zhen; Wei, Tao
2017-07-01
This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.
Hefferman, Gerald; Chen, Zhen; Wei, Tao
2017-07-01
This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.
Squeezing Alters Frequency Tuning of WGM Optical Resonator
NASA Technical Reports Server (NTRS)
Mohageg, Makan; Maleki, Lute
2010-01-01
Mechanical squeezing has been found to alter the frequency tuning of a whispering-gallery-mode (WGM) optical resonator that has an elliptical shape and is made of lithium niobate. It may be possible to exploit this effect to design reconfigurable optical filters for optical communications and for scientific experiments involving quantum electrodynamics. Some background information is prerequisite to a meaningful description of the squeezing-induced alteration of frequency tuning: The spectrum of a WGM resonator is represented by a comblike plot of intensity versus frequency. Each peak of the comblike plot corresponds to an electromagnetic mode represented by an integer mode number, and the modes are grouped into sets represented by integer mode indices. Because lithium niobate is an electro-optically active material, the WGM resonator can be tuned (that is, the resonance frequencies can be shifted) by applying a suitable bias potential. The frequency shift of each mode is quantified by a tuning rate defined as the ratio between the frequency shift and the applied potential. In the absence of squeezing, all modes exhibit the same tuning rate. This concludes the background information. It has been demonstrated experimentally that when the resonator is squeezed along part of either of its two principal axes, tuning rates differ among the groups of modes represented by different indices (see figure). The differences in tuning rates could be utilized to configure the resonance spectrum to obtain a desired effect; for example, through a combination of squeezing and electrical biasing, two resonances represented by different mode indices could be set at a specified frequency difference something that could not be done through electrical biasing alone.
Nonlinear optical modulation in a plasmonic Bi:YIG Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Firby, C. J.; Elezzabi, A. Y.
2017-02-01
In this work, we propose a magnetoplasmonic modulator for nonlinear radio-frequency (RF) modulation of an integrated optical signal. The modulator consists of a plasmonic Mach-Zehnder interferometer (MZI), constructed of the ferrimagnetic garnet, bismuth-substituted yttrium iron garnet (Bi:YIG). The transverse component of the Bi:YIG magnetization induces a nonreciprocal phase shift (NRPS) onto the guided optical mode, which can be actively modulated through external magnetic fields. In an MZI, the modulated phase shift in turn modulates the output optical intensity. Due to the highly nonlinear evolution of the Bi:YIG magnetization, we show that the spectrum of the output modulated intensity signal can contain harmonics of the driving RF field, frequency splitting around the driving frequency, down-conversion, or mixing of multiple RF signals. This device provides a unique mechanism of simultaneously generating a number of modulation frequencies within a single device.
NASA Astrophysics Data System (ADS)
Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Lin, Tao; Hu, Dapeng
2018-03-01
Photonic microwave frequency down-conversion with independent multichannel phase shifting and zero-intermediate frequency (IF) receiving is proposed and demonstrated by simulation. By combined use of a phase modulator (PM) in a sagnac loop and an optical bandpass filter (OBPF), orthogonal polarized carrier suppression single sideband (CS-SSB) signals are obtained. By adjusting the polarization controllers (PCs) to introduce the phase difference in the optical domain and using balanced detection to eliminate the direct current components, the phase of the generated IF signal can be arbitrarily tuned. Besides, the radio frequency (RF) vector signal can be also frequency down-converted to baseband directly by choosing two quadrature channels. In the simulation, high gain and continuously tunable phase shifts over the 360 degree range are verified. Furthermore, 2.5 Gbit/s RF vector signals centered at 10 GHz with different modulation formats are successfully demodulated.
Optical frequency standards for gravitational wave detection using satellite velocimetry
NASA Astrophysics Data System (ADS)
Vutha, Amar
2015-04-01
Satellite Doppler velocimetry, building on the work of Kaufmann and Estabrook and Wahlquist, is a complementary technique to interferometric methods of gravitational wave detection. This method is based on the fact that the gravitational wave amplitude appears in the apparent Doppler shift of photons propagating from an emitter to a receiver. This apparent Doppler shift can be resolved provided that a frequency standard, capable of quickly averaging down to a high stability, is available. We present a design for a space-capable optical atomic frequency standard, and analyze the sensitivity of satellite Doppler velocimetry for gravitational wave astronomy in the milli-hertz frequency band.
Robust calibration of an optical-lattice depth based on a phase shift
NASA Astrophysics Data System (ADS)
Cabrera-Gutiérrez, C.; Michon, E.; Brunaud, V.; Kawalec, T.; Fortun, A.; Arnal, M.; Billy, J.; Guéry-Odelin, D.
2018-04-01
We report on a method to calibrate the depth of an optical lattice. It consists of triggering the intrasite dipole mode of the cloud by a sudden phase shift. The corresponding oscillatory motion is directly related to the interband frequencies on a large range of lattice depths. Remarkably, for a moderate displacement, a single frequency dominates the oscillation of the zeroth and first orders of the interference pattern observed after a sufficiently long time of flight. The method is robust against atom-atom interactions and the exact value of the extra weak external confinement superimposed to the optical lattice.
Choi, Bo-Hun; Kwon, Il-Bum
2015-03-09
We propose a distributed residual strain sensor that uses an Al-packaged optical fiber for the first time. The residual strain which causes Brillouin frequency shifts in the optical fiber was measured using Brillouin optical correlation domain analysis with 2 cm spatial resolution. We quantified the Brillouin frequency shifts in the Al-packaged optical fiber by the tensile stress and compared them for a varying number of Al layers in the optical fiber. The Brillouin frequency shift of an optical fiber with one Al layer had a slope of 0.038 MHz/με with respect to tensile stress, which corresponds to 78% of that for an optical fiber without Al layers. After removal of the stress, 87% of the strain remained as residual strain. When different tensile stresses were randomly applied, the strain caused by the highest stress was the only one detected as residual strain. The residual strain was repeatedly measured for a time span of nine months for the purpose of reliability testing, and there was no change in the strain except for a 4% reduction, which is within the error tolerance of the experiment. A composite material plate equipped with our proposed Al-packaged optical fiber sensor was hammered for impact experiment and the residual strain in the plate was successfully detected. We suggest that the Al-packaged optical fiber can be adapted as a distributed strain sensor for smart structures, including aerospace structures.
Dielectric waveguide gas-filled stark shift modulator
Hutchinson, Donald P.; Richards, Roger K.
2003-07-22
An optical modulator includes a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide. At least one Stark material is provided in the waveguide. A bias circuit generates a bias signal to produce an electrical field across the Stark material to shift at least one of the Stark absorption frequencies towards the frequency of the optical beam. A circuit for producing a time varying electric field across the Stark material modulates the optical beam. At least a portion of the bias field can be generated by an alternating bias signal, such as a square wave. A method of modulating optical signals includes the steps of providing a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide, the waveguide having at least one Stark material disposed therein, and varying an electric field imposed across the Stark material.
Zaghloul, Mohamed A. S.; Wang, Mohan; Milione, Giovanni; Li, Ming-Jun; Li, Shenping; Huang, Yue-Kai; Wang, Ting; Chen, Kevin P.
2018-01-01
Brillouin optical time domain analysis is the sensing of temperature and strain changes along an optical fiber by measuring the frequency shift changes of Brillouin backscattering. Because frequency shift changes are a linear combination of temperature and strain changes, their discrimination is a challenge. Here, a multicore optical fiber that has two cores is fabricated. The differences between the cores’ temperature and strain coefficients are such that temperature (strain) changes can be discriminated with error amplification factors of 4.57 °C/MHz (69.11 μϵ/MHz), which is 2.63 (3.67) times lower than previously demonstrated. As proof of principle, using the multicore optical fiber and a commercial Brillouin optical time domain analyzer, the temperature (strain) changes of a thermally expanding metal cylinder are discriminated with an error of 0.24% (3.7%). PMID:29649148
Zaghloul, Mohamed A S; Wang, Mohan; Milione, Giovanni; Li, Ming-Jun; Li, Shenping; Huang, Yue-Kai; Wang, Ting; Chen, Kevin P
2018-04-12
Brillouin optical time domain analysis is the sensing of temperature and strain changes along an optical fiber by measuring the frequency shift changes of Brillouin backscattering. Because frequency shift changes are a linear combination of temperature and strain changes, their discrimination is a challenge. Here, a multicore optical fiber that has two cores is fabricated. The differences between the cores' temperature and strain coefficients are such that temperature (strain) changes can be discriminated with error amplification factors of 4.57 °C/MHz (69.11 μ ϵ /MHz), which is 2.63 (3.67) times lower than previously demonstrated. As proof of principle, using the multicore optical fiber and a commercial Brillouin optical time domain analyzer, the temperature (strain) changes of a thermally expanding metal cylinder are discriminated with an error of 0.24% (3.7%).
Girardeau, Vadim; Goloni, Carolina; Jacquin, Olivier; Hugon, Olivier; Inglebert, Mehdi; Lacot, Eric
2016-12-01
In this article, we study the nonlinear dynamics of a laser subjected to frequency shifted optical reinjection coming back from a vibrating target. More specifically, we study the nonlinear dynamical coupling between the carrier and the vibration signal. The present work shows how the nonlinear amplification of the vibration spectrum is related to the strength of the carrier and how it must be compensated to obtain accurate (i.e., without bias) vibration measurements. The theoretical predictions, confirmed by numerical simulations, are in good agreement with the experimental data. The main motivation of this study is the understanding of the nonlinear response of a laser optical feedback imaging sensor for quantitative phase measurements of small vibrations in the case of strong optical feedback.
Thermal microphotonic sensor and sensor array
Watts, Michael R [Albuquerque, NM; Shaw, Michael J [Tijeras, NM; Nielson, Gregory N [Albuquerque, NM; Lentine, Anthony L [Albuquerque, NM
2010-02-23
A thermal microphotonic sensor is disclosed for detecting infrared radiation using heat generated by the infrared radiation to shift the resonant frequency of an optical resonator (e.g. a ring resonator) to which the heat is coupled. The shift in the resonant frequency can be determined from light in an optical waveguide which is evanescently coupled to the optical resonator. An infrared absorber can be provided on the optical waveguide either as a coating or as a plate to aid in absorption of the infrared radiation. In some cases, a vertical resonant cavity can be formed about the infrared absorber to further increase the absorption of the infrared radiation. The sensor can be formed as a single device, or as an array for imaging the infrared radiation.
Simultaneous transfer of optical frequency and time over 306 km long-haul optical fibre link
NASA Astrophysics Data System (ADS)
Hucl, Vaclav; Cizek, Martin; Pravdova, Lenka; Rerucha, Simon; Hrabina, Jan; Mikel, Bretislav; Smotlacha, Vladimir; Vojtech, Josef; Lazar, Josef; Cip, Ondrej
2016-12-01
Optical fibre links for distributing optical frequencies and time stamps were researched and experimentally tested in the past fifteen years. They have been used mainly for stability comparison of experimental optical clocks. But recent development puts demands on a technology transfer from laboratory experiments to the real industry. The remote calibration of interrogators of Fibre Bragg Grating strain sensory networks is one of important examples. The first step of the adoption the time and frequency broadcasting should be the drop-out free long-term operation of this technology between research laboratories connected via long-haul fibre links. We present a 306 km long-haul optical fibre link between the cities of Prague and Brno in the Czech Republic where a coherent transfer of stable optical frequency and a stable time signal has been firstly demonstrated. The link between ISI CAS Brno and CESNET Prague uses an internet communication fibre where a window of 1540-1546 nm is dedicated for the coherent transfer and 1PPS signal. The link is equipped with 6 bidirectional EDFA amplifiers. The optical frequency standard based on the highly-coherent laser Koheras Adjustik working at 1540.5 nm and stabilized with a saturation absorption spectroscopy technique was used for the coherent wave transfer. The suppression of the Doppler shift induced by the optical fibre was based on an accoustooptical modulator with a servo-loop including a fast PID controller processing the beat-note frequency given by mixing of the Adjustik laser (Brno) and the reflected frequency of this laser from the far end of 306 km long-haul fibre link (Prague). We verified the Doppler shift suppression for the coherent wave with a measuring method analysing the transport delay of the 1PPS signal.
Basic Studies on High Pressure Air Plasmas
2006-08-30
which must be added a 1.5 month salary to A. Bugayev for assistance in laser and optic techniques. 2 Part II Technical report Plasma-induced phase shift...two-wavelength heterodyne interferometry applied to atmospheric pressure air plasma 11.1 .A. Plasma-induced phase shift - Electron density...a driver, since the error on the frequency leads to an error on the phase shift. (c) Optical elements Mirrors Protected mirrors must be used to stand
Development of high precision digital driver of acoustic-optical frequency shifter for ROG
NASA Astrophysics Data System (ADS)
Zhang, Rong; Kong, Mei; Xu, Yameng
2016-10-01
We develop a high precision digital driver of the acoustic-optical frequency shifter (AOFS) based on the parallel direct digital synthesizer (DDS) technology. We use an atomic clock as the phase-locked loop (PLL) reference clock, and the PLL is realized by a dual digital phase-locked loop. A DDS sampling clock up to 320 MHz with a frequency stability as low as 10-12 Hz is obtained. By constructing the RF signal measurement system, it is measured that the frequency output range of the AOFS-driver is 52-58 MHz, the center frequency of the band-pass filter is 55 MHz, the ripple in the band is less than 1 dB@3MHz, the single channel output power is up to 0.3 W, the frequency stability is 1 ppb (1 hour duration), and the frequency-shift precision is 0.1 Hz. The obtained frequency stability has two orders of improvement compared to that of the analog AOFS-drivers. For the designed binary frequency shift keying (2-FSK) and binary phase shift keying (2-PSK) modulation system, the demodulating frequency of the input TTL synchronous level signal is up to 10 kHz. The designed digital-bus coding/decoding system is compatible with many conventional digital bus protocols. It can interface with the ROG signal detecting software through the integrated drive electronics (IDE) and exchange data with the two DDS frequency-shift channels through the signal detecting software.
Influence of the ac-Stark shift on GPS atomic clock timekeeping
NASA Astrophysics Data System (ADS)
Formichella, V.; Camparo, J.; Tavella, P.
2017-01-01
The ac-Stark shift (or light shift) is a fundamental aspect of the field/atom interaction arising from virtual transitions between atomic states, and as Alfred Kastler noted, it is the real-photon counterpart of the Lamb shift. In the rubidium atomic frequency standards (RAFS) flying on Global Positioning System (GPS) satellites, it plays an important role as one of the major perturbations defining the RAFS' frequency: the rf-discharge lamp in the RAFS creates an atomic signal via optical pumping and simultaneously perturbs the atoms' ground-state hyperfine splitting via the light shift. Though the significance of the light shift has been known for decades, to date there has been no concrete evidence that it limits the performance of the high-quality RAFS flying on GPS satellites. Here, we show that the long-term frequency stability of GPS RAFS is primarily determined by the light shift as a consequence of stochastic jumps in lamplight intensity. Our results suggest three paths forward for improved GPS system timekeeping: (1) reduce the light-shift coefficient of the RAFS by careful control of the lamp's spectrum; (2) operate the lamp under conditions where lamplight jumps are not so pronounced; and (3) employ a light source for optical pumping that does not suffer pronounced light jumps (e.g., a diode laser).
Computer-aided design comparisons of monolithic and hybrid MEM-tunable VCSELs
NASA Astrophysics Data System (ADS)
Ochoa, Edward M.; Nelson, Thomas R., Jr.; Blum-Spahn, Olga; Lott, James A.
2003-07-01
We report and use our micro-electro-mechanically tunable vertical cavity surface emitting laser (MEM-TVCSEL) computer-aided design methodology to investigate the resonant frequency design space for monolithic and hybrid MEM-TVCSELs. For various initial optical air gap thickness, we examine the sensitivity of monolithic or hybrid MEM-TVCSEL resonant frequency by simulating zero, two, and four percent variations in III-V material growth thickness. As expected, as initial optical airgap increases, tuning range decreases due to less coupling between the active region and the tuning mirror. However, each design has different resonant frequency sensitivity to variations in III-V growth parameters. In particular, since the monolithic design is comprised of III-V material, the shift in all growth thicknesses significantly shifts the resonant frequency response. However, for hybrid MEMTVCSELs, less shift results, since the lower reflector is an Au mirror with reflectivity independent of III-V growth variations. Finally, since the hybrid design is comprised of a MUMPS polysilicon mechanical actuator, pull-in voltage remains independent of the initial optical airgap between the tuning reflector and the III-V material. Conversely, as the initial airgap increases in the monolithic design, the pull-in voltage significantly increases.
Probe-controlled soliton frequency shift in the regime of optical event horizon.
Gu, Jie; Guo, Hairun; Wang, Shaofei; Zeng, Xianglong
2015-08-24
In optical analogy of the event horizon, temporal pulse collision and mutual interactions are mainly between an intense solitary wave (soliton) and a dispersive probe wave. In such a regime, here we numerically investigate the probe-controlled soliton frequency shift as well as the soliton self-compression. In particular, in the dispersion landscape with multiple zero dispersion wavelengths, bi-directional soliton spectral tunneling effects is possible. Moreover, we propose a mid-infrared soliton self-compression to the generation of few-cycle ultrashort pulses, in a bulk of quadratic nonlinear crystals in contrast to optical fibers or cubic nonlinear media, which could contribute to the community with a simple and flexible method to experimental implementations.
Development of Michelson interferometer based spatial phase-shift digital shearography
NASA Astrophysics Data System (ADS)
Xie, Xin
Digital shearography is a non-contact, full field, optical measurement method, which has the capability of directly measuring the gradient of deformation. For high measurement sensitivity, phase evaluation method has to be introduced into digital shearography by phase-shift technique. Catalog by phase-shift method, digital phase-shift shearography can be divided into Temporal Phase-Shift Digital Shearography (TPS-DS) and Spatial Phase-Shift Digital Shearography (SPS-DS). TPS-DS is the most widely used phase-shift shearography system, due to its simple algorithm, easy operation and good phase-map quality. However, the application of TPS-DS is only limited in static/step-by-step loading measurement situation, due to its multi-step shifting process. In order to measure the strain under dynamic/continuous loading situation, a SPS-DS system has to be developed. This dissertation aims to develop a series of Michelson Interferometer based SPS-DS measurement methods to achieve the strain measurement by using only a single pair of speckle pattern images. The Michelson Interferometer based SPS-DS systems utilize special designed optical setup to introduce extra carrier frequency into the laser wavefront. The phase information corresponds to the strain field can be separated on the Fourier domain using a Fourier Transform and can further be evaluated with a Windowed Inverse Fourier Transform. With different optical setups and carrier frequency arrangements, the Michelson Interferometer based SPS-DS method is capable to achieve a variety of measurement tasks using only single pair of speckle pattern images. Catalog by the aimed measurand, these capable measurement tasks can be divided into five categories: 1) measurement of out-of-plane strain field with small shearing amount; 2) measurement of relative out-of-plane deformation field with big shearing amount; 3) simultaneous measurement of relative out-of-plane deformation field and deformation gradient field by using multiple carrier frequencies; 4) simultaneous measurement of two directional strain field using dual measurement channels 5) measurement of pure in-plane strain and pure out-of-plane strain with multiple carrier frequencies. The basic theory, optical path analysis, preliminary studies, results analysis and research plan are shown in detail in this dissertation.
Mass sensor based on split-nanobeam optomechanical oscillator
NASA Astrophysics Data System (ADS)
Zhang, Yeping; Ai, Jie; Xiang, Yanjun; He, Qinghua; Li, Tao; Ma, Jingfang
2016-03-01
Mass sensing based on monitoring the frequency shifts induced by added mass in oscillators is a well-known and widely used technique. The optomechanical crystal cavity has strong interaction between optical mode and mechanical mode. Radiation pressure driven optomechanical crystal cavity are excellent candidates for mass detection due to their simplicity, sensitivity and all optical operation. In an optomechanical crystal cavity, a high quality factor optical mode simultaneously serves as an efficient actuator and a sensitive probe for precise monitoring the mechanical frequency change of the cavity structure. Here, a split-nanobeam optomechanical crystal cavity is proposed, the sensing resolution as small as 0.33ag (1ag=10-21kg) and the frequency shift is more than 30MHz. This is important and promising for achieve ultimate-precision mass sensing including proteins and other molecules.
Energetic radiation influence on temperature dependency of Brillouin frequency in optical fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pheron, X.; Ouerdane, Y.; Delepine-Lesoille, S.
We present a post mortem study of the influence of energetic radiation on optical fiber Brillouin sensors, both Brillouin spectrum and its temperature dependency in two different fibers, a photosensitive optical fiber and a SMF28. The target application is nuclear wastes repository monitoring where optical fiber Brillouin sensors might be exposed to energetic radiation. UV exposure induced optical losses, Brillouin frequency shifts up to 28 MHz and even a variation of the temperature dependency. The photosensitive optical fiber resulted more sensitive than SMF28{sup TM}. (authors)
Single exosome detection in serum using microtoroid optical resonators (Conference Presentation)
NASA Astrophysics Data System (ADS)
Su, Judith
2016-03-01
Recently exosomes have attracted interest due to their potential as cancer biomarkers. We report the real time, label-free sensing of single exosomes in serum using microtoroid optical resonators. We use this approach to assay the progression of tumors implanted in mice by specifically detecting low concentrations of tumor-derived exosomes. Our approach measures the adsorption of individual exosomes onto a functionalized silica microtoroid by tracking changes in the optical resonant frequency of the microtoroid. When exosomes land on the microtoroid, they perturb its refractive index in the evanescent field and thus shift its resonance frequency. Through digital frequency locking, we are able to rapidly track these shifts with accuracies of better than 10 attometers (one part in 10^11). Samples taken from tumor-implanted mice from later weeks generated larger frequency shifts than those from earlier weeks. Control samples taken from a mouse with no tumor generated no such increase in signal between subsequent weeks. Analysis of shifts from tumor-implanted mouse samples show a distribution of unitary steps, with the maximum step having a height of ~1.2 fm, corresponding to an exosome size of 44 ± 4.8 nm. This size range corresponds to that found by performing nanoparticle tracking analysis on the same samples. Our results demonstrate development towards a minimally-invasive tumor "biopsy" that eliminates the need to find and access a tumor.
Laser frequency stabilization and shifting by using modulation transfer spectroscopy
NASA Astrophysics Data System (ADS)
Cheng, Bing; Wang, Zhao-Ying; Wu, Bin; Xu, Ao-Peng; Wang, Qi-Yu; Xu, Yun-Fei; Lin, Qiang
2014-10-01
The stabilizing and shifting of laser frequency are very important for the interaction between the laser and atoms. The modulation transfer spectroscopy for the 87Rb atom with D2 line transition F = 2 → F' = 3 is used for stabilizing and shifting the frequency of the external cavity grating feedback diode laser. The resonant phase modulator with electro—optical effect is used to generate frequency sideband to lock the laser frequency. In the locking scheme, circularly polarized pump- and probe-beams are used. By optimizing the temperature of the vapor, the pump- and probe-beam intensity, the laser linewidth of 280 kHz is obtained. Furthermore, the magnetic field generated by a solenoid is added into the system. Therefore the system can achieve the frequency locking at any point in a range of hundreds of megahertz frequency shifting with very low power loss.
Coherent radio-frequency detection for narrowband direct comb spectroscopy.
Anstie, James D; Perrella, Christopher; Light, Philip S; Luiten, Andre N
2016-02-22
We demonstrate a scheme for coherent narrowband direct optical frequency comb spectroscopy. An extended cavity diode laser is injection locked to a single mode of an optical frequency comb, frequency shifted, and used as a local oscillator to optically down-mix the interrogating comb on a fast photodetector. The high spectral coherence of the injection lock generates a microwave frequency comb at the output of the photodiode with very narrow features, enabling spectral information to be further down-mixed to RF frequencies, allowing optical transmittance and phase to be obtained using electronics commonly found in the lab. We demonstrate two methods for achieving this step: a serial mode-by-mode approach and a parallel dual-comb approach, with the Cs D1 transition at 894 nm as a test case.
Optical ranging and communication method based on all-phase FFT
NASA Astrophysics Data System (ADS)
Li, Zening; Chen, Gang
2014-10-01
This paper describes an optical ranging and communication method based on all-phase fast fourier transform (FFT). This kind of system is mainly designed for vehicle safety application. Particularly, the phase shift of the reflecting orthogonal frequency division multiplexing (OFDM) symbol is measured to determine the signal time of flight. Then the distance is calculated according to the time of flight. Several key factors affecting the phase measurement accuracy are studied. The all-phase FFT, which can reduce the effects of frequency offset, phase noise and the inter-carrier interference (ICI), is applied to measure the OFDM symbol phase shift.
New developments in electronic reference controls for frequency domain optical sensing
NASA Astrophysics Data System (ADS)
Chatni, M. R.; Li, G.; Porterfield, D. M.
2009-05-01
The reference optical path is essential for optical systems which function on the basis of light interference. In the case of frequency domain (FD) fluorescence life-time optrodes, a reference LED is used as a standard for calculating the phase angle. The reference LED is configured so that radiation travels the same length to the detector as that of the fluorescence signal being analyzed. The phase shift, which provides details of fluorescence lifetime, is measured between these two signals - the fluorescence signal and reference LED signal, using a photodetector. We have designed, developed and implemented a FD optrode system without a reference LED. The key requirement of such a system is that phase shifts due to optics at wavelength of fluorescence and electronics have to be calibrated. In the reference-free system, the reference signal comes from the lock-in-amplifier which also drives the excitation LED. The lock-in-amplifier measures the phase shift between the excitation signal and the fluorescence emission signal from the photodetector and is locked at the frequency of modulation of the excitation signal. This insures higher signal to noise ratio and low-noise measurements. The reference-free optrode system removes some constraints on the coupling optics, which help improve the overall performance of the system. After development of electronics, and optimization of coupling optics, the system was calibrated in different oxygen concentration solutions to measure fluorescence intensity and lifetime of the oxygen sensitive dye platinum tetrakis (pentafluorophenyl) porphine (PtTFPP).
Young, Laura K; Smithson, Hannah E
2014-01-01
There is evidence that letter identification is mediated by only a narrow band of spatial frequencies and that the center frequency of the neural channel thought to underlie this selectivity is related to the size of the letters. When letters are spatially filtered (at a fixed size) the channel tuning characteristics change according to the properties of the spatial filter (Majaj et al., 2002). Optical aberrations in the eye act to spatially filter the image formed on the retina-their effect is generally to attenuate high frequencies more than low frequencies but often in a non-monotonic way. We might expect the change in the spatial frequency spectrum caused by the aberration to predict the shift in channel tuning observed for aberrated letters. We show that this is not the case. We used critical-band masking to estimate channel-tuning in the presence of three types of aberration-defocus, coma and secondary astigmatism. We found that the maximum masking was shifted to lower frequencies in the presence of an aberration and that this result was not simply predicted by the spatial-frequency-dependent degradation in image quality, assessed via metrics that have previously been shown to correlate well with performance loss in the presence of an aberration. We show that if image quality effects are taken into account (using visual Strehl metrics), the neural channel required to model the data is shifted to lower frequencies compared to the control (no-aberration) condition. Additionally, we show that when spurious resolution (caused by π phase shifts in the optical transfer function) in the image is masked, the channel tuning properties for aberrated letters are affected, suggesting that there may be interference between visual channels. Even in the presence of simulated aberrations, whose properties change from trial-to-trial, observers exhibit flexibility in selecting the spatial frequencies that support letter identification.
Electro-optic modulation of a laser at microwave frequencies for interferometric purposes
NASA Astrophysics Data System (ADS)
Specht, Paul E.; Jilek, Brook A.
2017-02-01
A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017).]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength.
Electro-optic modulation of a laser at microwave frequencies for interferometric purposes.
Specht, Paul E; Jilek, Brook A
2017-02-01
A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017).]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength.
Spectrum Control through Discrete Frequency Diffraction in the Presence of Photonic Gauge Potentials
NASA Astrophysics Data System (ADS)
Qin, Chengzhi; Zhou, Feng; Peng, Yugui; Sounas, Dimitrios; Zhu, Xuefeng; Wang, Bing; Dong, Jianji; Zhang, Xinliang; Alù; , Andrea; Lu, Peixiang
2018-03-01
By using optical phase modulators in a fiber-optical circuit, we theoretically and experimentally demonstrate large control over the spectrum of an impinging signal, which may evolve analogously to discrete diffraction in spatial waveguide arrays. The modulation phase acts as a photonic gauge potential in the frequency dimension, realizing efficient control of the central frequency and bandwidth of frequency combs. We experimentally achieve a 50 GHz frequency shift and threefold bandwidth expansion of an impinging comb, as well as the frequency analogue of various refraction phenomena, including negative refraction and perfect focusing in the frequency domain, both for discrete and continuous incident spectra. Our study paves a promising way towards versatile frequency management for optical communications and signal processing using time modulation schemes.
All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter.
Gao, Yongsheng; Wen, Aijun; Chen, Wei; Li, Xiaoyan
2017-03-15
An all-optical and ultra-wideband microwave in-phase/quadrature (I/Q) mixer, based on a dual-parallel Mach-Zehnder modulator and a wavelength division multiplexer, is proposed. Due to the simultaneous frequency down-conversion and 360-deg tunable phase shifting in the optical domain, the proposed I/Q mixer has the advantages of high conversion gain and excellent quadrature phase balance (<±1.3 deg) with a wide operating frequency from 10 to 40 GHz. Assisted by an analog or digital intermediate-frequency quadrature coupler, an image-reject frequency down-converter is then implemented, with an image rejection exceeding 50 dB over the working band.
Optical microphone with fiber Bragg grating and signal processing techniques
NASA Astrophysics Data System (ADS)
Tosi, Daniele; Olivero, Massimo; Perrone, Guido
2008-06-01
In this paper, we discuss the realization of an optical microphone array using fiber Bragg gratings as sensing elements. The wavelength shift induced by acoustic waves perturbing the sensing Bragg grating is transduced into an intensity modulation. The interrogation unit is based on a fixed-wavelength laser source and - as receiver - a photodetector with proper amplification; the system has been implemented using devices for standard optical communications, achieving a low-cost interrogator. One of the advantages of the proposed approach is that no voltage-to-strain calibration is required for tracking dynamic shifts. The optical sensor is complemented by signal processing tools, including a data-dependent frequency estimator and adaptive filters, in order to improve the frequency-domain analysis and mitigate the effects of disturbances. Feasibility and performances of the optical system have been tested measuring the output of a loudspeaker. With this configuration, the sensor is capable of correctly detecting sounds up to 3 kHz, with a frequency response that exhibits a top sensitivity within the range 200-500 Hz; single-frequency input sounds inducing an axial strain higher than ~10nɛ are correctly detected. The repeatability range is ~0.1%. The sensor has also been applied for the detection of pulsed stimuli generated from a metronome.
NASA Astrophysics Data System (ADS)
Lisin, V. N.; Shegeda, A. M.; Samartsev, V. V.
2015-09-01
A relative phase shift between the different groups of excited dipoles, which appears as result of its frequency splitting due to action of a pulse of electric or magnetic fields, depends on a time, if the pulse overlaps in time with echo-pulse. As а consequence, the echo waveform is changed. The echo time form is modulated. The inverse modulation period well enough approximates Zeeman and pseudo-Stark splitting in the cases of magnetic and, therefore, electrical fields. Thus the g-factors of ground 4I15/2 and excited 4F9/2 optical states of Er3+ ion in LuLiF4 and YLiF4 have been measured and pseudo-Stark shift of R1 line in ruby has been determined.
Cheng, Tonglei; Usaki, Ryo; Duan, Zhongchao; Gao, Weiqing; Deng, Dinghuan; Liao, Meisong; Kanou, Yasuhire; Matsumoto, Morio; Misumi, Takashi; Suzuki, Takenobu; Ohishi, Yasutake
2014-02-24
Soliton self-frequency shift (SSFS) and third-harmonic generation (THG) are observed in a four-hole As2S5 chalcogenide microstructured optical fiber (MOF). The As2S5 MOF is tapered to offer an ideal environment for SSFS. After tapering, the zero-dispersion wavelength (ZDW) shifts from 2.02 to 1.61 μm, and the rate of SSFS can be enhanced by increasing the energy density of the pulse. By varying the average input power from 220 to 340 mW, SSFS of a soliton central wavelength from 2.206 to 2.600 μm in the mid-infrared is observed in the tapered segment, and THG at 632 nm is observed in the untapered segment.
NASA Astrophysics Data System (ADS)
Wang, Hongxiang; Wang, Qi; Bai, Lin; Ji, Yuefeng
2018-01-01
A scheme is proposed to realize the all-optical phase regeneration of four-channel quadrature phase shift keying (QPSK) signal based on phase-sensitive amplification. By utilizing conjugate pump and common pump in a highly nonlinear optical fiber, degenerate four-wave mixing process is observed, and QPSK signals are regenerated. The number of waves is reduced to decrease the cross talk caused by undesired nonlinear interaction during the coherent superposition process. In addition, to avoid the effect of overlapping frequency, frequency spans between pumps and signals are set to be nonintegral multiples. Optical signal-to-noise ratio improvement is validated by bit error rate measurements. Compared with single-channel regeneration, multichannel regeneration brings 0.4-dB OSNR penalty when the value of BER is 10-3, which shows the cross talk in regeneration process is negligible.
Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain
NASA Astrophysics Data System (ADS)
Li, Dongmei; Guan, Tian; Liu, Fang; Yang, Anping; He, Yonghong; He, Qinghua; Shen, Zhiyuan; Xin, Meiguo
2018-05-01
A transmission optical rotation detection scheme based on a weak measurement was proposed for the chirality detection of enantiomers. In this transmission weak measurement system in the frequency domain, the optical activity of the chiral liquid sample was estimated with the central wavelength shift, by modifying the preselected polarization state with the optical rotation (OR). The central wavelength shift of output spectra is sensitive to the OR angle but immune to the interference of the refractive index change caused by measuring circumstances. Two isomers of chiral amino acid acquired opposite responses with this system, and a resolution of 2.17 × 10-9 mol/ml for Proline detection could be obtained. Such a resolution is about 2 orders of magnitude higher than that of common methods, which shows a high sensitivity. This proposed weak measurement scenario suggested an approach to polarimetry and provided a way to accurately assess molecular chirality.
Wu, Hao; Wang, Ruoxu; Liu, Deming; Fu, Songnian; Zhao, Can; Wei, Huifeng; Tong, Weijun; Shum, Perry Ping; Tang, Ming
2016-04-01
We proposed and demonstrated a few-mode fiber (FMF) based optical-fiber sensor for distributed curvature measurement through quasi-single-mode Brillouin frequency shift (BFS). By central-alignment splicing FMF and single-mode fiber (SMF) with a fusion taper, a SMF-components-compatible distributed curvature sensor based on FMF is realized using the conventional Brillouin optical time-domain analysis system. The distributed BFS change induced by bending in FMF has been theoretically and experimentally investigated. The precise BFS response to the curvature along the fiber link has been calibrated. A proof-of-concept experiment is implemented to validate its effectiveness in distributed curvature measurement.
Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory
Fisher, Kent A. G.; England, Duncan G.; MacLean, Jean-Philippe W.; Bustard, Philip J.; Resch, Kevin J.; Sussman, Benjamin J.
2016-01-01
The spectral manipulation of photons is essential for linking components in a quantum network. Large frequency shifts are needed for conversion between optical and telecommunication frequencies, while smaller shifts are useful for frequency-multiplexing quantum systems, in the same way that wavelength division multiplexing is used in classical communications. Here we demonstrate frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory. Heralded 723.5 nm photons, with 4.1 nm bandwidth, are stored as optical phonons in the diamond via a Raman transition. Upon retrieval from the diamond memory, the spectral shape of the photons is determined by a tunable read pulse through the reverse Raman transition. We report central frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 and 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, as an integrated platform for photon storage and spectral conversion. PMID:27045988
Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory.
Fisher, Kent A G; England, Duncan G; MacLean, Jean-Philippe W; Bustard, Philip J; Resch, Kevin J; Sussman, Benjamin J
2016-04-05
The spectral manipulation of photons is essential for linking components in a quantum network. Large frequency shifts are needed for conversion between optical and telecommunication frequencies, while smaller shifts are useful for frequency-multiplexing quantum systems, in the same way that wavelength division multiplexing is used in classical communications. Here we demonstrate frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory. Heralded 723.5 nm photons, with 4.1 nm bandwidth, are stored as optical phonons in the diamond via a Raman transition. Upon retrieval from the diamond memory, the spectral shape of the photons is determined by a tunable read pulse through the reverse Raman transition. We report central frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 and 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, as an integrated platform for photon storage and spectral conversion.
Biosensing in a microelectrofluidic system using optical whispering-gallery mode spectroscopy
Huang, Lei; Guo, Zhixiong
2011-01-01
Label-free detection of biomolecules using an optical whispering-gallery mode sensor in a microelectrofluidic channel is simulated. Negatively charged bovine serum albumin is considered as the model protein analyte. The analyte transport in aqueous solution is controlled by an externally applied electrical field. The finite element method is employed for solving the equations of the charged species transport, the Poisson equation of electric potential, the equations of conservation of momentum and energy, and the Helmholtz equations of electromagnetic waves. The adsorption process of the protein molecules on the microsensor head surface is monitored by the resonance frequency shifts. Frequency shift caused by temperature variation due to Joule heating is analyzed and found to be negligible. The induced shifts behave in a manner similar to Langmuir-like adsorption kinetics; but the time constant increases due to the presence of the external electrical field. A correlation of the frequency shift, the analyte feed concentration in the solution, and the applied voltage gradient is obtained, in which an excellent linear relationship between the frequency shift and the analyte concentration is revealed. The applied voltage gradient enhances significantly the analyte concentration in the vicinity of the sensor surface; thus, the sensor sensitivity which has a power function of the voltage gradient with exponent 2.85 in the controlled voltage range. Simulated detection of extremely low protein concentration to the pico-molar level is carried out. PMID:22662041
Low jitter RF distribution system
Wilcox, Russell; Doolittle, Lawrence; Huang, Gang
2012-09-18
A timing signal distribution system includes an optical frequency stabilized laser signal amplitude modulated at an rf frequency. A transmitter box transmits a first portion of the laser signal and receive a modified optical signal, and outputs a second portion of the laser signal and a portion of the modified optical signal. A first optical fiber carries the first laser signal portion and the modified optical signal, and a second optical fiber carries the second portion of the laser signal and the returned modified optical signal. A receiver box receives the first laser signal portion, shifts the frequency of the first laser signal portion outputs the modified optical signal, and outputs an electrical signal on the basis of the laser signal. A detector at the end of the second optical fiber outputs a signal based on the modified optical signal. An optical delay sensing circuit outputs a data signal based on the detected modified optical signal. An rf phase detect and correct signal circuit outputs a signal corresponding to a phase stabilized rf signal based on the data signal and the frequency received from the receiver box.
Bloch-Siegert shift in an interacting Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Zhang, Jinyi; Eigen, Christoph; Lopes, Raphael; Garratt, Sam; Rousso, David; Smith, Robert P.; Hadzibabic, Zoran; Navon, Nir
2017-04-01
The Bloch-Siegert shift (BSS) is a paradigmatic frequency shift that arises from the nonlinear response of a two-level system (TLS) subjected to strong driving fields. When a TLS is driven by a linearly polarized field, the co-rotating-wave component leads to the famous Rabi oscillations. By contrast the co-rotating-wave component, whose role is usually neglected in a weak driving, leads to a frequency shift of the TLS resonance frequency. This phenomenon is encountered in various areas, from quantum optics to nuclear magnetic resonance.Here, we investigate the BSS in a box-trapped 87 Rb Bose-Einstein condensate (BEC) driven by a strong oscillating magnetic field gradient. By tuning the chemical potential of the gas, we investigate how the BSS evolves from the ideal shift of the two lowest energy levels of a single particle in a box to the unexplored shift of long-wavelength collective excitations of the interacting BEC.
NASA Astrophysics Data System (ADS)
Ishikawa, K.; Yatabe, K.; Ikeda, Y.; Oikawa, Y.; Onuma, T.; Niwa, H.; Yoshii, M.
2017-02-01
Imaging of sound aids the understanding of the acoustical phenomena such as propagation, reflection, and diffraction, which is strongly required for various acoustical applications. The imaging of sound is commonly done by using a microphone array, whereas optical methods have recently been interested due to its contactless nature. The optical measurement of sound utilizes the phase modulation of light caused by sound. Since light propagated through a sound field changes its phase as proportional to the sound pressure, optical phase measurement technique can be used for the sound measurement. Several methods including laser Doppler vibrometry and Schlieren method have been proposed for that purpose. However, the sensitivities of the methods become lower as a frequency of sound decreases. In contrast, since the sensitivities of the phase-shifting technique do not depend on the frequencies of sounds, that technique is suitable for the imaging of sounds in the low-frequency range. The principle of imaging of sound using parallel phase-shifting interferometry was reported by the authors (K. Ishikawa et al., Optics Express, 2016). The measurement system consists of a high-speed polarization camera made by Photron Ltd., and a polarization interferometer. This paper reviews the principle briefly and demonstrates the high-speed imaging of acoustical phenomena. The results suggest that the proposed system can be applied to various industrial problems in acoustical engineering.
Faraday-Shielded dc Stark-Shift-Free Optical Lattice Clock
NASA Astrophysics Data System (ADS)
Beloy, K.; Zhang, X.; McGrew, W. F.; Hinkley, N.; Yoon, T. H.; Nicolodi, D.; Fasano, R. J.; Schäffer, S. A.; Brown, R. C.; Ludlow, A. D.
2018-05-01
We demonstrate the absence of a dc Stark shift in an ytterbium optical lattice clock. Stray electric fields are suppressed through the introduction of an in-vacuum Faraday shield. Still, the effectiveness of the shielding must be experimentally assessed. Such diagnostics are accomplished by applying high voltage to six electrodes, which are grounded in normal operation to form part of the Faraday shield. Our measurements place a constraint on the dc Stark shift at the 10-20 level, in units of the clock frequency. Moreover, we discuss a potential source of error in strategies to precisely measure or cancel nonzero dc Stark shifts, attributed to field gradients coupled with the finite spatial extent of the lattice-trapped atoms. With this consideration, we find that Faraday shielding, complemented with experimental validation, provides both a practically appealing and effective solution to the problem of dc Stark shifts in optical lattice clocks.
Faraday-Shielded dc Stark-Shift-Free Optical Lattice Clock.
Beloy, K; Zhang, X; McGrew, W F; Hinkley, N; Yoon, T H; Nicolodi, D; Fasano, R J; Schäffer, S A; Brown, R C; Ludlow, A D
2018-05-04
We demonstrate the absence of a dc Stark shift in an ytterbium optical lattice clock. Stray electric fields are suppressed through the introduction of an in-vacuum Faraday shield. Still, the effectiveness of the shielding must be experimentally assessed. Such diagnostics are accomplished by applying high voltage to six electrodes, which are grounded in normal operation to form part of the Faraday shield. Our measurements place a constraint on the dc Stark shift at the 10^{-20} level, in units of the clock frequency. Moreover, we discuss a potential source of error in strategies to precisely measure or cancel nonzero dc Stark shifts, attributed to field gradients coupled with the finite spatial extent of the lattice-trapped atoms. With this consideration, we find that Faraday shielding, complemented with experimental validation, provides both a practically appealing and effective solution to the problem of dc Stark shifts in optical lattice clocks.
Atomic Clocks with Suppressed Blackbody Radiation Shift
NASA Astrophysics Data System (ADS)
Yudin, V. I.; Taichenachev, A. V.; Okhapkin, M. V.; Bagayev, S. N.; Tamm, Chr.; Peik, E.; Huntemann, N.; Mehlstäubler, T. E.; Riehle, F.
2011-07-01
We develop a concept of atomic clocks where the blackbody radiation shift and its fluctuations can be suppressed by 1-3 orders of magnitude independent of the environmental temperature. The suppression is based on the fact that in a system with two accessible clock transitions (with frequencies ν1 and ν2) which are exposed to the same thermal environment, there exists a “synthetic” frequency νsyn ∝ (ν1-ɛ12ν2) largely immune to the blackbody radiation shift. For example, in the case of Yb+171 it is possible to create a synthetic-frequency-based clock in which the fractional blackbody radiation shift can be suppressed to the level of 10-18 in a broad interval near room temperature (300±15K). We also propose a realization of our method with the use of an optical frequency comb generator stabilized to both frequencies ν1 and ν2, where the frequency νsyn is generated as one of the components of the comb spectrum.
A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems
NASA Astrophysics Data System (ADS)
Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.
2017-08-01
This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loh, K. K.; Yeo, K. S.; Shee, Y. G.
2015-04-24
A microwave photonic filter based on double-Brillouin-frequency spaced multiwavelength Brillouin-erbium fiber laser (BEFL) is experimentally demonstrated. The filter selectivity can be easily adjusted by tuning and apodizing the optical taps generated from the multiwavelength BEFL. Reconfiguration of different frequency responses are demonstrated.
Analysis of all-optical temporal integrator employing phased-shifted DFB-SOA.
Jia, Xin-Hong; Ji, Xiao-Ling; Xu, Cong; Wang, Zi-Nan; Zhang, Wei-Li
2014-11-17
All-optical temporal integrator using phase-shifted distributed-feedback semiconductor optical amplifier (DFB-SOA) is investigated. The influences of system parameters on its energy transmittance and integration error are explored in detail. The numerical analysis shows that, enhanced energy transmittance and integration time window can be simultaneously achieved by increased injected current in the vicinity of lasing threshold. We find that the range of input pulse-width with lower integration error is highly sensitive to the injected optical power, due to gain saturation and induced detuning deviation mechanism. The initial frequency detuning should also be carefully chosen to suppress the integration deviation with ideal waveform output.
Frequency-time coherence for all-optical sampling without optical pulse source
Preußler, Stefan; Raoof Mehrpoor, Gilda; Schneider, Thomas
2016-01-01
Sampling is the first step to convert an analogue optical signal into a digital electrical signal. The latter can be further processed and analysed by well-known electrical signal processing methods. Optical pulse sources like mode-locked lasers are commonly incorporated for all-optical sampling, but have several drawbacks. A novel approach for a simple all-optical sampling is to utilise the frequency-time coherence of each signal. The method is based on only using two coupled modulators driven with an electrical sine wave. Since no optical source is required, a simple integration in appropriate platforms, such as Silicon Photonics might be possible. The presented method grants all-optical sampling with electrically tunable bandwidth, repetition rate and time shift. PMID:27687495
Analysis on optical heterodyne frequency error of full-field heterodyne interferometer
NASA Astrophysics Data System (ADS)
Li, Yang; Zhang, Wenxi; Wu, Zhou; Lv, Xiaoyu; Kong, Xinxin; Guo, Xiaoli
2017-06-01
The full-field heterodyne interferometric measurement technology is beginning better applied by employing low frequency heterodyne acousto-optical modulators instead of complex electro-mechanical scanning devices. The optical element surface could be directly acquired by synchronously detecting the received signal phases of each pixel, because standard matrix detector as CCD and CMOS cameras could be used in heterodyne interferometer. Instead of the traditional four-step phase shifting phase calculating, Fourier spectral analysis method is used for phase extracting which brings lower sensitivity to sources of uncertainty and higher measurement accuracy. In this paper, two types of full-field heterodyne interferometer are described whose advantages and disadvantages are also specified. Heterodyne interferometer has to combine two different frequency beams to produce interference, which brings a variety of optical heterodyne frequency errors. Frequency mixing error and beat frequency error are two different kinds of inescapable heterodyne frequency errors. In this paper, the effects of frequency mixing error to surface measurement are derived. The relationship between the phase extraction accuracy and the errors are calculated. :: The tolerance of the extinction ratio of polarization splitting prism and the signal-to-noise ratio of stray light is given. The error of phase extraction by Fourier analysis that caused by beat frequency shifting is derived and calculated. We also propose an improved phase extraction method based on spectrum correction. An amplitude ratio spectrum correction algorithm with using Hanning window is used to correct the heterodyne signal phase extraction. The simulation results show that this method can effectively suppress the degradation of phase extracting caused by beat frequency error and reduce the measurement uncertainty of full-field heterodyne interferometer.
Wave-mixing-induced transparency with zero phase shift in atomic vapors
NASA Astrophysics Data System (ADS)
Zhou, F.; Zhu, C. J.; Li, Y.
2017-12-01
We present a wave-mixing induced transparency that can lead to a hyper-Raman gain-clamping effect. This new type of transparency is originated from a dynamic gain cancellation effect in a multiphoton process where a highly efficient light field of new frequency is generated and amplified. We further show that this novel dynamic gain cancellation effect not only makes the medium transparent to a probe light field at appropriate frequency but also eliminates the probe field propagation phase shift. This gain-cancellation-based induced transparency holds for many potential applications on optical communication and may lead to effective suppression of parasitic Raman/hyper-Raman noise field generated in high intensity optical fiber transmissions.
Improvement in Rayleigh Scattering Measurement Accuracy
NASA Technical Reports Server (NTRS)
Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.
2012-01-01
Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous velocity, density, and temperature measurements. The Fabry-Perot interferometer or etalon is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating these flow properties. This paper investigates the use of an acousto-optic frequency shifting device to improve measurement accuracy in Rayleigh scattering experiments at the NASA Glenn Research Center. The frequency shifting device is used as a means of shifting the incident or reference laser frequency by 1100 MHz to avoid overlap of the Rayleigh and reference signal peaks in the interference pattern used to obtain the velocity, density, and temperature measurements, and also to calibrate the free spectral range of the Fabry-Perot etalon. The measurement accuracy improvement is evaluated by comparison of Rayleigh scattering measurements acquired with and without shifting of the reference signal frequency in a 10 mm diameter subsonic nozzle flow.
Tang, W W; Shu, C
2005-02-21
We demonstrate a regeneratively mode-locked optical pulse source at about 10 GHz using an optoelectronic oscillator constructed with an electro-absorption modulator integrated distributed feedback laser diode. The 10 GHz RF component is derived from the interaction between the pump wave and the backscattered, frequency-downshifted Stokes wave resulted from stimulated Brillouin scattering in an optical fiber. The component serves as a modulation source for the 1556 nm laser diode without the need for any electrical or optical RF filter to perform the frequency extraction. Dispersion-compensated fiber, dispersion-shifted fiber, and standard single-mode fiber have been used respectively to generate optical pulses at variable repetition rates.
NASA Astrophysics Data System (ADS)
Wang, Jian; Sun, Junqiang
2005-11-01
A novel all-optical format conversion scheme from NRZ to RZ based on sum-frequency generation (SFG) in a periodically poled LiNbO 3 (PPLN) waveguide is proposed, using a nonlinear optical loop mirror (NOLM). The conversion mechanism relies on the combination of attenuation and nonlinear phase shift induced on the clockwise signal field during the SFG process. The SFG between pump, and co- and counter- propagating signals in the PPLN waveguide are numerically studied, showing that counter-propagating SFG can be ignored when quasi-phase matching (QPM) for SFG during co-propagating interaction. The nonlinear phase shift induced on the clockwise signal field is analyzed in detail, showing that it is more effective to yield large values for nonlinear phase shift when appropriately phase mismatched for the SFG process. Two tuning schemes are proposed depend on whether the sum-frequency wavelength is variable or fixed. It is found that the latter has a rather wide 3dB signal conversion bandwidth approximately 154nm. Finally, the influence of reversible process of SFG is discussed and the optimum arrangement of pump and signal peak powers is theoretically demonstrated. The result shows that proper power arrangement, pump width, and waveguide length are necessary for achieving a good conversion effect.
H irradiation effects on the GaAs-like Raman modes in GaAs1-xNx/GaAs1-xNx:H planar heterostructures
NASA Astrophysics Data System (ADS)
Giulotto, E.; Geddo, M.; Patrini, M.; Guizzetti, G.; Felici, M.; Capizzi, M.; Polimeni, A.; Martelli, F.; Rubini, S.
2014-12-01
The GaAs-like longitudinal optical phonon frequency in two hydrogenated GaAs1-xNx/GaAs1-xNx:H microwire heterostructures—with similar N concentration, but different H dose and implantation conditions—has been investigated by micro-Raman mapping. In the case of GaAs0.991N0.009 wires embedded in barriers where GaAs-like properties are recovered through H irradiation, the phonon frequency in the barriers undergoes a blue shift with respect to the wires. In GaAs0.992N0.008 wires embedded in less hydrogenated barriers, the phonon frequency exhibits an opposite behavior (red shift). Strain, disorder, phonon localization effects induced by H-irradiation on the GaAs-like phonon frequency are discussed and related to different types of N-H complexes formed in the hydrogenated barriers. It is shown that the red (blue) character of the frequency shift is related to the dominant N-2H (N-3H) type of complexes. Moreover, for specific experimental conditions, an all-optical determination of the uniaxial strain field is obtained. This may improve the design of recently presented devices that exploit the correlation between uniaxial stress and the degree of polarization of photoluminescence.
Frequency metrology using highly charged ions
NASA Astrophysics Data System (ADS)
Crespo López-Urrutia, J. R.
2016-06-01
Due to the scaling laws of relativistic fine structure splitting, many forbidden optical transitions appear within the ground state configurations of highly charged ions (HCI). In some hydrogen-like ions, even the hyperfine splitting of the 1s ground state gives rise to optical transitions. Given the very low polarizability of HCI, such laser-accessible transitions are extremely impervious to external perturbations and systematics that limit optical clock performance and arise from AC and DC Stark effects, such as black-body radiation and light shifts. Moreover, AC and DC Zeeman splitting are symmetric due to the much larger relativistic spin-orbit coupling and corresponding fine-structure splitting. Appropriate choice of states or magnetic sub-states with suitable total angular momentum and magnetic quantum numbers can lead to a cancellation of residual quadrupolar shifts. All these properties are very advantageous for the proposed use of HCI forbidden lines as optical frequency standards. Extremely magnified relativistic, quantum electrodynamic, and nuclear size contributions to the binding energies of the optically active electrons make HCI ideal tools for fundamental research, as in proposed studies of a possible time variation of the fine structure constant. Beyond this, HCI that cannot be photoionized by vacuum-ultraviolet photons could also provide frequency standards for future lasers operating in that range.
Yang, R G; Zhang, J; Zhai, Z H; Zhai, S Q; Liu, K; Gao, J R
2015-08-10
Low-frequency (Hz~kHz) squeezing is very important in many schemes of quantum precision measurement. But it is more difficult than that at megahertz-frequency because of the introduction of laser low-frequency technical noise. In this paper, we propose a scheme to obtain a low-frequency signal beyond the quantum limit from the frequency comb in a non-degenerate frequency and degenerate polarization optical parametric amplifier (NOPA) operating below threshold with type I phase matching by frequency-shift detection. Low-frequency squeezing immune to laser technical noise is obtained by a detection system with a local beam of two-frequency intense laser. Furthermore, the low-frequency squeezing can be used for phase measurement in Mach-Zehnder interferometer, and the signal-to-noise ratio (SNR) can be enhanced greatly.
Using a transportable optical clock for chronometric levelling
NASA Astrophysics Data System (ADS)
Lisdat, Christian; Sterr, Uwe; Koller, Silvio; Grotti, Jacopo; Vogt, Stefan; Häfner, Sebastian; Herbers, Sofia; Al-Masoudi, Ali
2016-07-01
With their supreme accuracy and precision, optical clocks in combination with new methods of long-distance frequency transfer can be used to determine height differences by measuring the gravitational red shift between two clocks without accumulation of measurement errors, as in classical levelling. We are developing transportable optical clocks for this purpose that will also serve for the technology development regarding optical clocks in Space and for international comparisons between optical clocks that cannot be linked with sufficient accuracy otherwise. In this talk we will focus on the transportable strontium lattice clock that we are developing and its first evaluation. Presently, we achieve a fractional frequency instability of 3 × 10^{-17} after 1000 s averaging time, which is equivalent to a height resolution of 30 cm. The first uncertainty evaluation of the system yielded 7 × 10^{-17}. We expect rapid improvements to an uncertainty of a few parts in 10^{17}. The clock is now located within a car trailer, which requires compact and rugged lasers systems and physics package. Special care has been taken in the design of the ultra-frequency stable interrogation laser that has to achieve fractional frequency instabilities of considerably below 10^{-15}. Typical laboratory constructions of the reference resonator system used to pre-stabilize the laser frequency are not compatible with the requirement of transportability. In an actual levelling campaign, this clock will be connected via a stabilized optical fibre link with another, stationary frequency standard. The measured gravitational red shift will be compared with the ones calculated from potential differences derived with state of the art geodetic data and models. We will discuss the status of measurements of geodetic relevance with optical clocks and give an outlook on our next steps. This work is supported by QUEST, DFG (RTG 1729, CRC 1128), EU-FP7 (FACT) and EMRP (ITOC). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.
Gao, Qi; Zhou, Min; Han, Chengyin; Li, Shangyan; Zhang, Shuang; Yao, Yuan; Li, Bo; Qiao, Hao; Ai, Di; Lou, Ge; Zhang, Mengya; Jiang, Yanyi; Bi, Zhiyi; Ma, Longsheng; Xu, Xinye
2018-05-22
Optical clocks are the most precise measurement devices. Here we experimentally characterize one such clock based on the 1 S 0 - 3 P 0 transition of neutral 171 Yb atoms confined in an optical lattice. Given that the systematic evaluation using an interleaved stabilization scheme is unable to avoid noise from the clock laser, synchronous comparisons against a second 171 Yb lattice system were implemented to accelerate the evaluation. The fractional instability of one clock falls below 4 × 10 -17 after an averaging over a time of 5,000 seconds. The systematic frequency shifts were corrected with a total uncertainty of 1.7 × 10 -16 . The lattice polarizability shift currently contributes the largest source. This work paves the way to measuring the absolute clock transition frequency relative to the primary Cs standard or against the International System of Units (SI) second.
Dual-domain lateral shearing interferometer
Naulleau, Patrick P.; Goldberg, Kenneth Alan
2004-03-16
The phase-shifting point diffraction interferometer (PS/PDI) was developed to address the problem of at-wavelength metrology of extreme ultraviolet (EUV) optical systems. Although extremely accurate, the fact that the PS/PDI is limited to use with coherent EUV sources, such as undulator radiation, is a drawback for its widespread use. An alternative to the PS/PDI, with relaxed coherence requirements, is lateral shearing interferometry (LSI). The use of a cross-grating, carrier-frequency configuration to characterize a large-field 4.times.-reduction EUV lithography optic is demonstrated. The results obtained are directly compared with PS/PDI measurements. A defocused implementation of the lateral shearing interferometer in which an image-plane filter allows both phase-shifting and Fourier wavefront recovery. The two wavefront recovery methods can be combined in a dual-domain technique providing suppression of noise added by self-interference of high-frequency components in the test-optic wavefront.
Tolerance of the frequency deviation of LO sources at a MIMO system
NASA Astrophysics Data System (ADS)
Xiao, Jiangnan; Li, Xingying; Zhang, Zirang; Xu, Yuming; Chen, Long; Yu, Jianjun
2015-11-01
We analyze and simulate the tolerance of frequency offset at a W-band optical-wireless transmission system. The transmission system adopts optical polarization division multiplexing (PDM), and multiple-input multiple-output (MIMO) reception. The transmission signal adopts optical quadrature phase shift keying (QPSK) modulation, and the generation of millimeter-wave is based on the optical heterodyning technique. After 20-km single-mode fiber-28 (SMF-28) transmission, tens of Gb/s millimeter-wave signal is delivered. At the receiver, two millimeter-wave signals are down-converted into electrical intermediate-frequency (IF) signals in the analog domain by mixing with two electrical local oscillators (LOs) with different frequencies. We investigate the different frequency LO effect on the 2×2 MIMO system performance for the first time, finding that the process during DSP of implementing frequency offset estimation (FOE) before cascaded multi-modulus-algorithm (CMMA) equalization can get rid of the inter-channel interference (ICI) and improve system bit-error-ratio (BER) performance in this type of transmission system.
Modulation characteristics of a high-power semiconductor Master Oscillator Power Amplifier (MOPA)
NASA Technical Reports Server (NTRS)
Cornwell, Donald Mitchell, Jr.
1992-01-01
A semiconductor master oscillator-power amplifier was demonstrated using an anti-reflection (AR) coated broad area laser as the amplifier. Under CW operation, diffraction-limited single-longitudinal-mode powers up to 340 mW were demonstrated. The characteristics of the far-field pattern were measured and compared to a two-dimensional reflective Fabry-Perot amplifier model of the device. The MOPA configuration was modulated by the master oscillator. Prior to injection into the amplifier, the amplitude and frequency modulation properties of the master oscillator were characterized. The frequency response of the MOPA configuration was characterized for an AM/FM modulated injection beam, and was found to be a function of the frequency detuning between the master oscillator and the resonant amplifier. A shift in the phase was also observed as a function of frequency detuning; this phase shift is attributed to the optical phase shift imparted to a wave reflected from a Fabry-Perot cavity. Square-wave optical pulses were generated at 10 MHz and 250 MHz with diffraction-limited peak powers of 200 mW and 250 mW. The peak power for a given modulation frequency is found to be limited by the injected power and the FM modulation at that frequency. The modulation results make the MOPA attractive for use as a transmitter source in applications such as free-space communications and ranging/altimetry.
Widely tunable laser frequency offset lock with 30 GHz range and 5 THz offset.
Biesheuvel, J; Noom, D W E; Salumbides, E J; Sheridan, K T; Ubachs, W; Koelemeij, J C J
2013-06-17
We demonstrate a simple and versatile method to greatly extend the tuning range of optical frequency shifting devices, such as acousto-optic modulators (AOMs). We use this method to stabilize the frequency of a tunable narrow-band continuous-wave (CW) laser to a transmission maximum of an external Fabry-Perot interferometer (FPI) with a tunable frequency offset. This is achieved through a servo loop which contains an in-loop AOM for simple radiofrequency (RF) tuning of the optical frequency over the full 30 GHz mode-hop-free tuning range of the CW laser. By stabilizing the length of the FPI to a stabilized helium-neon (HeNe) laser (at 5 THz offset from the tunable laser) we simultaneously transfer the ~ 1 MHz absolute frequency stability of the HeNe laser to the entire 30 GHz range of the tunable laser. Thus, our method allows simple, wide-range, fast and reproducible optical frequency tuning and absolute optical frequency measurements through RF electronics, which is here demonstrated by repeatedly recording a 27-GHz-wide molecular iodine spectrum at scan rates up to 500 MHz/s. General technical aspects that determine the performance of the method are discussed in detail.
Laser pumped 4He magnetometer with light shift suppression
NASA Astrophysics Data System (ADS)
Lin, Zaisheng; Wang, He; Peng, Xiang; Wu, Teng; Guo, Hong
2016-11-01
We report a laser-pumped 4He atomic magnetometer with light shift suppression through the atomic sensor itself. A linearly polarized light is used to optically align the 4He metastable atoms and we monitor the magneto-optical double resonance (MODR) signals produced by the left- and right-circularly orthogonal components. It is shown that light shift leads to the atomic alignment to orientation conversion effect, and thus, the difference between the two MODR signals. One of these two MODR signals is locked at the Larmor frequency and is used to measure the ambient magnetic field, while the differential signal is, simultaneously, fed back to suppress the light shift. The scheme could be of the advantage to the design of compact magnetometers by reducing the systematic errors due to light shift.
Self-Mixing Thin-Slice Solid-State Laser Metrology
Otsuka, Kenju
2011-01-01
This paper reviews the dynamic effect of thin-slice solid-state lasers subjected to frequency-shifted optical feedback, which led to the discovery of the self-mixing modulation effect, and its applications to quantum-noise-limited versatile laser metrology systems with extreme optical sensitivity. PMID:22319406
Ahn, Tae-Jung; Jung, Yongmin; Oh, Kyunghwan; Kim, Dug Young
2005-12-12
We propose a new chromatic dispersion measurement method for the higher-order modes of an optical fiber using optical frequency modulated continuous-wave (FMCW) interferometry. An optical fiber which supports few excited modes was prepared for our experiments. Three different guiding modes of the fiber were identified by using far-field spatial beam profile measurements and confirmed with numerical mode analysis. By using the principle of a conventional FMWC interferometry with a tunable external cavity laser, we have demonstrated that the chromatic dispersion of a few-mode optical fiber can be obtained directly and quantitatively as well as qualitatively. We have also compared our measurement results with those of conventional modulation phase-shift method.
Precision spectral manipulation of optical pulses using a coherent photon echo memory.
Buchler, B C; Hosseini, M; Hétet, G; Sparkes, B M; Lam, P K
2010-04-01
Photon echo schemes are excellent candidates for high efficiency coherent optical memory. They are capable of high-bandwidth multipulse storage, pulse resequencing and have been shown theoretically to be compatible with quantum information applications. One particular photon echo scheme is the gradient echo memory (GEM). In this system, an atomic frequency gradient is induced in the direction of light propagation leading to a Fourier decomposition of the optical spectrum along the length of the storage medium. This Fourier encoding allows precision spectral manipulation of the stored light. In this Letter, we show frequency shifting, spectral compression, spectral splitting, and fine dispersion control of optical pulses using GEM.
NASA Astrophysics Data System (ADS)
Wei, Heming; Krishnaswamy, Sridhar
2017-04-01
Damages such as cracking or impact loading in civil, aerospace, and mechanical structures generate transient ultrasonic waves, which can be used to reveal the structural health condition. Hence, it is necessary to find a practical tool based on ultrasonic detection for structural health monitoring. In this work, we describe an intelligent fiber-optic ultrasonic sensing system, which is designed based on a fiber Bragg grating (FBG) and a reflective semiconductor optical amplifier (RSOA) used as an adaptive source, and demodulated by an adaptive photorefractive two wave mixing (TWM) technique without any active compensation of quasi-static strains and temperature. As the wavelength of the FBG shifts due to the excited ultrasonic waves, the wavelength of the optical output from the fiber cavity laser shifts accordingly. With regard to the shift of the FBG reflective spectrum, the adaptivity of the RSOA-based laser is analyzed theoretically and verified by the TWM demodulator. Additionally, due to the response time of the photorefractive crystal, the TWM demodulator is insensitive to low frequency-FBG spectral shift. The results demonstrate that this proposed FBG ultrasonic sensing system has high sensitivity and can respond the ultrasonic waves into the megahertz frequency range, which shows a potential for acoustic emission detection in practical applications.
Extended Coherence Time on the Clock Transition of Optically Trapped Rubidium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleine Buening, G.; Will, J.; Ertmer, W.
2011-06-17
Optically trapped ensembles are of crucial importance for frequency measurements and quantum memories but generally suffer from strong dephasing due to inhomogeneous density and light shifts. We demonstrate a drastic increase of the coherence time to 21 s on the magnetic field insensitive clock transition of {sup 87}Rb by applying the recently discovered spin self-rephasing [C. Deutsch et al., Phys. Rev. Lett. 105, 020401 (2010)]. This result confirms the general nature of this new mechanism and thus shows its applicability in atom clocks and quantum memories. A systematic investigation of all relevant frequency shifts and noise contributions yields a stabilitymore » of 2.4x10{sup -11{tau}-1/2}, where {tau} is the integration time in seconds. Based on a set of technical improvements, the presented frequency standard is predicted to rival the stability of microwave fountain clocks in a potentially much more compact setup.« less
Combining Imaging and Non-Imaging Observations for Improved Space-Object Identification
2011-09-27
Optical and Digital Superresolution Early in the project, we expolited Fisher information (FI) to characterize the extent of spatial-frequency...extrapolation beyond the diffraction-limited optical bandwidth when the support of the object is known a priori. This support-assisted optical superresolution ...both digital (DSR) and optical superresolution (OSR). Indeed, by analyzing a se- quence of sub-pixel-shifted undersampled images one can show the
Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper
2009-04-01
We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.
Liu, Bo-Wen; Hu, Ming-Lie; Fang, Xiao-Hui; Li, Yan-Feng; Chai, Lu; Wang, Ching-Yue; Tong, Weijun; Luo, Jie; Voronin, Aleksandr A; Zheltikov, Aleksei M
2008-09-15
Fiber dispersion and nonlinearity management strategy based on a modification of a photonic-crystal fiber (PCF) core with an air hole is shown to facilitate optimization of PCF components for a stable soliton frequency shift and subpetahertz sideband generation through four-wave mixing. Spectral recoil of an optical soliton by a red-shifted dispersive wave, generated through a soliton instability induced by high-order fiber dispersion, is shown to stabilize the soliton self-frequency shift in a highly nonlinear PCF with an air-hole-modified core relative to pump power variations. A fiber with a 2.3-microm-diameter core modified with a 0.9-microm-diameter air hole is used to demonstrate a robust soliton self-frequency shift of unamplified 50-fs Ti: sapphire laser pulses to a central wavelength of about 960 nm, which remains insensitive to variations in the pump pulse energy within the range from 60 to at least 100 pJ. In this regime of frequency shifting, intense high- and low-frequency branches of dispersive wave radiation are simultaneously observed in the spectrum of PCF output. An air-hole-modified-core PCF with appropriate dispersion and nonlinearity parameters is shown to provide efficient four-wave mixing, giving rise to Stokes and anti-Stokes sidebands whose frequency shift relative to the pump wavelength falls within the subpetahertz range, thus offering an attractive source for nonlinear Raman microspectroscopy.
Autobalanced Ramsey Spectroscopy
NASA Astrophysics Data System (ADS)
Sanner, Christian; Huntemann, Nils; Lange, Richard; Tamm, Christian; Peik, Ekkehard
2018-01-01
We devise a perturbation-immune version of Ramsey's method of separated oscillatory fields. Spectroscopy of an atomic clock transition without compromising the clock's accuracy is accomplished by actively balancing the spectroscopic responses from phase-congruent Ramsey probe cycles of unequal durations. Our simple and universal approach eliminates a wide variety of interrogation-induced line shifts often encountered in high precision spectroscopy, among them, in particular, light shifts, phase chirps, and transient Zeeman shifts. We experimentally demonstrate autobalanced Ramsey spectroscopy on the light shift prone
Accuracy evaluation of the LPTF optically pumped primary frequency standard
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Clercq, E.; Rovera, G.D.; Clairon, A.
1994-12-31
The optically pumped Cesium beam frequency standard under development in our laboratory was first evaluated in `93. The short term stability was {sigma}{sub y}({tau}) is 5.5 x 10{sup -13}, {tau}{sup -1/2}. The accuracy has been estimated to 1.1 x 10{sup -13}, mainly limited by the distributed phase shift. After modification of the cavity, a new evaluation is in progress and will be presented at the conference.
Yu, Yeh-Wei; Xiao, Shuai; Cheng, Chih-Yuan; Sun, Ching-Cherng
2016-05-16
A simple method to decode the stored phase signal of volume holographic data storage with adequate wave aberration tolerance is highly demanded. We proposed and demonstrated a one-shot scheme to decode a binary-phase encoding signal through double-frequency-grating based shearing interferometry (DFGSI). The lateral shearing amount is dependent on the focal length of the collimated lens and the frequency difference between the gratings. Diffracted waves with phase encoding were successfully decoded through experimentation. An optical model for the DFGSI was built to analyze phase-error induction and phase-difference control by shifting the double-frequency grating longitudinally and laterally, respectively. The optical model was demonstrated experimentally. Finally, a high aberration tolerance of the DFGSI was demonstrated using the optical model.
NASA Astrophysics Data System (ADS)
Rozanov, N. N.; Kiselev, Al. S.; Kiselev, An. S.
2008-08-01
Self-reflection of pulses of intense laser radiation from an inhomogeneity induced by them in a medium with fast optical nonlinearity is analyzed. The reflected radiation is characterized by a considerable Doppler shift and by a signal magnitude that is sufficient for experimental detection.
Phase calibration target for quantitative phase imaging with ptychography.
Godden, T M; Muñiz-Piniella, A; Claverley, J D; Yacoot, A; Humphry, M J
2016-04-04
Quantitative phase imaging (QPI) utilizes refractive index and thickness variations that lead to optical phase shifts. This gives contrast to images of transparent objects. In quantitative biology, phase images are used to accurately segment cells and calculate properties such as dry mass, volume and proliferation rate. The fidelity of the measured phase shifts is of critical importance in this field. However to date, there has been no standardized method for characterizing the performance of phase imaging systems. Consequently, there is an increasing need for protocols to test the performance of phase imaging systems using well-defined phase calibration and resolution targets. In this work, we present a candidate for a standardized phase resolution target, and measurement protocol for the determination of the transfer of spatial frequencies, and sensitivity of a phase imaging system. The target has been carefully designed to contain well-defined depth variations over a broadband range of spatial frequencies. In order to demonstrate the utility of the target, we measure quantitative phase images on a ptychographic microscope, and compare the measured optical phase shifts with Atomic Force Microscopy (AFM) topography maps and surface profile measurements from coherence scanning interferometry. The results show that ptychography has fully quantitative nanometer sensitivity in optical path differences over a broadband range of spatial frequencies for feature sizes ranging from micrometers to hundreds of micrometers.
Self-referenced locking of optical coherence by single-detector electronic-frequency tagging
NASA Astrophysics Data System (ADS)
Shay, T. M.; Benham, Vincent; Spring, Justin; Ward, Benjamin; Ghebremichael, F.; Culpepper, Mark A.; Sanchez, Anthony D.; Baker, J. T.; Pilkington, D.; Berdine, Richard
2006-02-01
We report a novel coherent beam combining technique. This is the first actively phase locked optical fiber array that eliminates the need for a separate reference beam. In addition, only a single photodetector is required. The far-field central spot of the array is imaged onto the photodetector to produce the phase control loop signals. Each leg of the fiber array is phase modulated with a separate RF frequency, thus tagging the optical phase shift for each leg by a separate RF frequency. The optical phase errors for the individual array legs are separated in the electronic domain. In contrast with the previous active phase locking techniques, in our system the reference beam is spatially overlapped with all the RF modulated fiber leg beams onto a single detector. The phase shift between the optical wave in the reference leg and in the RF modulated legs is measured separately in the electronic domain and the phase error signal is feedback to the LiNbO 3 phase modulator for that leg to minimize the phase error for that leg relative to the reference leg. The advantages of this technique are 1) the elimination of the reference beam and beam combination optics and 2) the electronic separation of the phase error signals without any degradation of the phase locking accuracy. We will present the first theoretical model for self-referenced LOCSET and describe experimental results for a 3 x 3 array.
Magnetoplasmonic RF mixing and nonlinear frequency generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firby, C. J., E-mail: firby@ualberta.ca; Elezzabi, A. Y.
2016-07-04
We present the design of a magnetoplasmonic Mach-Zehnder interferometer (MZI) modulator facilitating radio-frequency (RF) mixing and nonlinear frequency generation. This is achieved by forming the MZI arms from long-range dielectric-loaded plasmonic waveguides containing bismuth-substituted yttrium iron garnet (Bi:YIG). The magnetization of the Bi:YIG can be driven in the nonlinear regime by RF magnetic fields produced around adjacent transmission lines. Correspondingly, the nonlinear temporal dynamics of the transverse magnetization component are mapped onto the nonreciprocal phase shift in the MZI arms, and onto the output optical intensity signal. We show that this tunable mechanism can generate harmonics, frequency splitting, and frequencymore » down-conversion with a single RF excitation, as well as RF mixing when driven by two RF signals. This magnetoplasmonic component can reduce the number of electrical sources required to generate distinct optical modulation frequencies and is anticipated to satisfy important applications in integrated optics.« less
On-chip beam positioning sensor via frequency locked cascaded ring resonators
NASA Astrophysics Data System (ADS)
Naiman, Alex; Stern, Liron; Levy, Uriel
2018-05-01
We demonstrate an approach for on-chip beam positioning with a position accuracy of up to 100 nm. This approach is based on tracking the resonance of two adjacent microring resonators that are implemented on a silicon on insulator chip. We demonstrate the functionality of our approach by illuminating the chip through a Near Field Scanning Optical Microscope tip and monitoring the shift of the microring resonances due to the thermo-optic effect. We also discuss the contribution of different effects such as free carrier absorption and dispersion to the resonance shift.
Low-frequency gravitational wave detection via double optical clocks in space
NASA Astrophysics Data System (ADS)
Su, Jianfeng; Wang, Qiang; Wang, Qinghua; Jetzer, Philippe
2018-04-01
We propose a Doppler tracking system for gravitational wave detection via double optical clocks in space (DOCS). In this configuration two spacecrafts (each containing an optical clock) are launched to space for Doppler shift observations. Compared to the similar attempt of gravitational wave detection in the Cassini mission, the radio signal of DOCS that contains the relative frequency changes avoids completely noise effects due for instance to troposphere, ionosphere, ground-based antenna and transponder. Given the high stabilities of the two optical clocks (Allan deviation ∼ 4.1× 10-17 @ 1000 s), an overall estimated sensitivity of 5 × 10-19 could be achieved with an observation time of 2 yr, and would allow to detect gravitational waves in the frequency range from ∼10‑4 Hz to ∼10‑2 Hz.
NASA Astrophysics Data System (ADS)
Kim, Tae-Soo; Lim, Seung-Young; Park, Yong-Keun; Jung, Gunwoo; Song, Jung-Hoon; Cha, Ho-Young; Han, Sang-Woo
2018-06-01
We investigated the distributions and the energy levels of defects in SiO2/AlGaN/GaN highelectron-mobility transistors (HEMTs) by using frequency-dependent ( F- D) capacitance-voltage ( C- V) measurements with resonant optical excitation. A Schottky barrier (SB) and a metal-oxidesemiconductor (MOS) HEMT were prepared to compare the effects of defects in their respective layers. We also investigated the effects of those layers on the threshold voltage ( V th ). A drastic voltage shift in the C- V curve at higher frequencies was caused by the large number of defect levels in the SiO2/GaN interface. A significant shift in V th with additional light illumination was observed due to a charging of the defect states in the SiO2/GaN interface. The voltage shifts were attributed to the detrapping of defect states at the SiO2/GaN interface.
Optical antenna enhanced spontaneous emission
Eggleston, Michael S.; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C.
2015-01-01
Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼200 THz optical frequency show a spontaneous emission intensity enhancement of 35× corresponding to a spontaneous emission rate speedup ∼115×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼2,500× spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d2. Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, Io = qω|xo|/d, feeding the antenna-enhanced spontaneous emission, where q|xo| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency. PMID:25624503
Optical antenna enhanced spontaneous emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggleston, Michael S.; Messer, Kevin; Zhang, Liming
Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ~200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ~115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ~2,500 × spontaneous emission speedup at d ~10 nm, proportional to 1/d 2. Unfortunately, at dmore » < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Additionally, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.« less
Optical antenna enhanced spontaneous emission.
Eggleston, Michael S; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C
2015-02-10
Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼ 200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ∼ 115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼ 2,500 × spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d(2). Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.
Optical antenna enhanced spontaneous emission
Eggleston, Michael S.; Messer, Kevin; Zhang, Liming; ...
2015-01-26
Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ~200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ~115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ~2,500 × spontaneous emission speedup at d ~10 nm, proportional to 1/d 2. Unfortunately, at dmore » < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Additionally, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.« less
An optical ASK and FSK phase diversity transmission system
NASA Astrophysics Data System (ADS)
Vandenboom, H.; Vanetten, W.; Dekrom, W. H. C.; Vanbennekom, P.; Huijskens, F.; Niessen, L.; Deleijer, F.
1992-12-01
The results of a contribution to an electrooptical project for a 'phase diversity system', covering ASK and FSK (Amplitude and Frequency Shift Keying), are described. Specifications of subsystems, and tolerances and consequences of these tolerances for the final system performance, were derived. For the optical network of the phase diversity receiver, a manufacturing set up for three by three fused biconical taper fiber couplers was developed. In order to characterize planar optical networks, a set up was constructed to measure the phase relations at 1523 nm. The optical frequency of the local oscillator laser has to be locked on to the frequency of the received optical signal. This locking circuit is described. A complete optical three by three phase diversity transmission system was developed that can be used as a testbed for subsystems. The sensitivity of the receiver at a bit error rate of 10 to the minus 9th power is -47.2 dBm, which is 4.2 dB better than the value of the specifications.
Anomalous time delays and quantum weak measurements in optical micro-resonators
Asano, M.; Bliokh, K. Y.; Bliokh, Y. P.; Kofman, A. G.; Ikuta, R.; Yamamoto, T.; Kivshar, Y. S.; Yang, L.; Imoto, N.; Özdemir, Ş.K.; Nori, F.
2016-01-01
Quantum weak measurements, wavepacket shifts and optical vortices are universal wave phenomena, which originate from fine interference of multiple plane waves. These effects have attracted considerable attention in both classical and quantum wave systems. Here we report on a phenomenon that brings together all the above topics in a simple one-dimensional scalar wave system. We consider inelastic scattering of Gaussian wave packets with parameters close to a zero of the complex scattering coefficient. We demonstrate that the scattered wave packets experience anomalously large time and frequency shifts in such near-zero scattering. These shifts reveal close analogies with the Goos–Hänchen beam shifts and quantum weak measurements of the momentum in a vortex wavefunction. We verify our general theory by an optical experiment using the near-zero transmission (near-critical coupling) of Gaussian pulses propagating through a nano-fibre with a side-coupled toroidal micro-resonator. Measurements demonstrate the amplification of the time delays from the typical inverse-resonator-linewidth scale to the pulse-duration scale. PMID:27841269
Photonic Magnetic Field Sensor
NASA Astrophysics Data System (ADS)
Wyntjes, Geert
2002-02-01
Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.
A frequency-stabilized light source at 399 nm using an Yb hollow-cathode lamp
NASA Astrophysics Data System (ADS)
Tanabe, Takehiko; Akamatsu, Daisuke; Inaba, Hajime; Okubo, Sho; Kobayashi, Takumi; Yasuda, Masami; Hosaka, Kazumoto; Hong, Feng-Lei
2018-06-01
We demonstrate a diode laser system operating at 399 nm that is stabilized to the 6s2 1S0–6s6p 1P1 electric dipole transition in ytterbium (Yb) atoms in a hollow-cathode lamp. The frequency stability of the laser reached 1.1 × 10‑11 at an averaging time of τ = 1 s. We performed an absolute frequency measurement using an optical frequency comb and determined that the absolute frequency of the laser stabilized to the 1S0–1P1 transition in 174Yb was 751 526 522.26(9) MHz. We also investigated several systematic frequency shifts while changing some of the light source parameters and measured several isotope shifts. The measured laser frequency will provide useful information regarding the practical use of the frequency-stabilized light source at 399 nm.
NASA Astrophysics Data System (ADS)
Xie, Changan; Li, Yong-qing
2003-03-01
We report on the study of single biological cells with a confocal micro-Raman spectroscopy system that uses optical trapping and shifted excitation Raman difference technique. A tunable diode laser was used to capture a living cell in solution, confine it in the confocal excitation volume, and then excite the Raman scattering. The optical trapping allows us to lift the cell well off the cover plate so that the fluorescence interference from the plate can be effectively reduced. In order to further remove the interference of the fluorescence and stray light from the trapped cell, we employed a shifted excitation Raman difference technique with slightly tuned laser frequencies. With this system, high-quality Raman spectra were obtained from single optically trapped biological cells including E. coli bacteria, yeast cells, and red blood cells. A significant difference between control and heat-treated E. coli B cells was observed due to the denaturation of biomolecules.
Nanophotonic rare-earth quantum memory with optically controlled retrieval
NASA Astrophysics Data System (ADS)
Zhong, Tian; Kindem, Jonathan M.; Bartholomew, John G.; Rochman, Jake; Craiciu, Ioana; Miyazono, Evan; Bettinelli, Marco; Cavalli, Enrico; Verma, Varun; Nam, Sae Woo; Marsili, Francesco; Shaw, Matthew D.; Beyer, Andrew D.; Faraon, Andrei
2017-09-01
Optical quantum memories are essential elements in quantum networks for long-distance distribution of quantum entanglement. Scalable development of quantum network nodes requires on-chip qubit storage functionality with control of the readout time. We demonstrate a high-fidelity nanophotonic quantum memory based on a mesoscopic neodymium ensemble coupled to a photonic crystal cavity. The nanocavity enables >95% spin polarization for efficient initialization of the atomic frequency comb memory and time bin-selective readout through an enhanced optical Stark shift of the comb frequencies. Our solid-state memory is integrable with other chip-scale photon source and detector devices for multiplexed quantum and classical information processing at the network nodes.
Yi, X; Vahala, K; Li, J; Diddams, S; Ycas, G; Plavchan, P; Leifer, S; Sandhu, J; Vasisht, G; Chen, P; Gao, P; Gagne, J; Furlan, E; Bottom, M; Martin, E C; Fitzgerald, M P; Doppmann, G; Beichman, C
2016-01-27
An important technique for discovering and characterizing planets beyond our solar system relies upon measurement of weak Doppler shifts in the spectra of host stars induced by the influence of orbiting planets. A recent advance has been the introduction of optical frequency combs as frequency references. Frequency combs produce a series of equally spaced reference frequencies and they offer extreme accuracy and spectral grasp that can potentially revolutionize exoplanet detection. Here we demonstrate a laser frequency comb using an alternate comb generation method based on electro-optical modulation, with the comb centre wavelength stabilized to a molecular or atomic reference. In contrast to mode-locked combs, the line spacing is readily resolvable using typical astronomical grating spectrographs. Built using commercial off-the-shelf components, the instrument is relatively simple and reliable. Proof of concept experiments operated at near-infrared wavelengths were carried out at the NASA Infrared Telescope Facility and the Keck-II telescope.
Yi, X.; Vahala, K.; Li, J.; Diddams, S.; Ycas, G.; Plavchan, P.; Leifer, S.; Sandhu, J.; Vasisht, G.; Chen, P.; Gao, P.; Gagne, J.; Furlan, E.; Bottom, M.; Martin, E. C.; Fitzgerald, M. P.; Doppmann, G.; Beichman, C.
2016-01-01
An important technique for discovering and characterizing planets beyond our solar system relies upon measurement of weak Doppler shifts in the spectra of host stars induced by the influence of orbiting planets. A recent advance has been the introduction of optical frequency combs as frequency references. Frequency combs produce a series of equally spaced reference frequencies and they offer extreme accuracy and spectral grasp that can potentially revolutionize exoplanet detection. Here we demonstrate a laser frequency comb using an alternate comb generation method based on electro-optical modulation, with the comb centre wavelength stabilized to a molecular or atomic reference. In contrast to mode-locked combs, the line spacing is readily resolvable using typical astronomical grating spectrographs. Built using commercial off-the-shelf components, the instrument is relatively simple and reliable. Proof of concept experiments operated at near-infrared wavelengths were carried out at the NASA Infrared Telescope Facility and the Keck-II telescope. PMID:26813804
Rotation of an optically trapped vaterite microsphere measured using rotational Doppler effect
NASA Astrophysics Data System (ADS)
Chen, Xinlin; Xiao, Guangzong; Xiong, Wei; Yang, Kaiyong; Luo, Hui; Yao, Baoli
2018-03-01
The angular velocity of a vaterite microsphere spinning in the optical trap is measured using rotational Doppler effect. The perfectly spherical vaterite microspheres are synthesized via coprecipitation in the presence of silk fibroin nanospheres. When trapped by a circularly polarized beam, the vaterite microsphere is uniformly rotated in the trap center. The probe beams containing two Laguerre-Gaussian beams of opposite topological charge l = ± 7, l = ± 8, and l = ± 9 are illuminated on the spinning vaterite. By analyzing the backscattered light, a frequency shift is observed scaling with the rotation rate of the vaterite microsphere. The multiplicative enhancement of the frequency shift proportion to the topological charge has greatly improved the measurement precision. The reliability and practicability of this approach are verified through varying the topological charge of the probe beam and the trapping laser power. In consideration of the excellent measurement precision of the rotation frequency, this technique might be generally applicable in studying the torsional properties of micro-objects.
Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials
NASA Astrophysics Data System (ADS)
Zhou, W. J.; Li, X. P.; Wang, Y. S.; Chen, W. Q.; Huang, G. L.
2018-01-01
The objective of this work is to analyze wave packet propagation in weakly nonlinear acoustic metamaterials and reveal the interior nonlinear wave mechanism through spectro-spatial analysis. The spectro-spatial analysis is based on full-scale transient analysis of the finite system, by which dispersion curves are generated from the transmitted waves and also verified by the perturbation method (the L-P method). We found that the spectro-spatial analysis can provide detailed information about the solitary wave in short-wavelength region which cannot be captured by the L-P method. It is also found that the optical wave modes in the nonlinear metamaterial are sensitive to the parameters of the nonlinear constitutive relation. Specifically, a significant frequency shift phenomenon is found in the middle-wavelength region of the optical wave branch, which makes this frequency region behave like a band gap for transient waves. This special frequency shift is then used to design a direction-biased waveguide device, and its efficiency is shown by numerical simulations.
NASA Astrophysics Data System (ADS)
Li, Xinying; Xiao, Jiangnan
2015-06-01
We propose a novel scheme for optical frequency-locked multi-carrier generation based on one electro-absorption modulated laser (EML) and one phase modulator (PM) in cascade driven by different sinusoidal radio-frequency (RF) clocks. The optimal operating zone for the cascaded EML and PM is found out based on theoretical analysis and numerical simulation. We experimentally demonstrate 25 optical subcarriers with frequency spacing of 12.5 GHz and power difference less than 5 dB can be generated based on the cascaded EML and PM operating in the optimal zone, which agrees well with the numerical simulation. We also experimentally demonstrate 28-Gbaud polarization division multiplexing quadrature phase shift keying (PDM-QPSK) modulated coherent optical transmission based on the cascaded EML and PM. The bit error ratio (BER) can be below the pre-forward-error-correction (pre-FEC) threshold of 3.8 × 10-3 after 80-km single-mode fiber-28 (SMF-28) transmission.
Apparatus for direct-to-digital spatially-heterodyned holography
Thomas, Clarence E.; Hanson, Gregory R.
2006-12-12
An apparatus operable to record a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis includes: a laser; a beamsplitter optically coupled to the laser; an object optically coupled to the beamsplitter; a focusing lens optically coupled to both the beamsplitter and the object; a digital recorder optically coupled to the focusing lens; and a computer that performs a Fourier transform, applies a digital filter, and performs an inverse Fourier transform. A reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis which is recorded by the digital recorder, and the computer transforms the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes and shifts axes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam and cuts off signals around an original origin before performing the inverse Fourier transform.
Thermally controlled femtosecond pulse shaping using metasurface based optical filters
NASA Astrophysics Data System (ADS)
Rahimi, Eesa; Şendur, Kürşat
2018-02-01
Shaping of the temporal distribution of the ultrashort pulses, compensation of pulse deformations due to phase shift in transmission and amplification are of interest in various optical applications. To address these problems, in this study, we have demonstrated an ultra-thin reconfigurable localized surface plasmon (LSP) band-stop optical filter driven by insulator-metal phase transition of vanadium dioxide. A Joule heating mechanism is proposed to control the thermal phase transition of the material. The resulting permittivity variation of vanadium dioxide tailors spectral response of the transmitted pulse from the stack. Depending on how the pulse's spectrum is located with respect to the resonance of the band-stop filter, the thin film stack can dynamically compress/expand the output pulse span up to 20% or shift its phase up to 360°. Multi-stacked filters have shown the ability to dynamically compensate input carrier frequency shifts and pulse span variations besides their higher span expansion rates.
Optical gyroscope with controllable dispersion in four wave mixing regime.
NASA Astrophysics Data System (ADS)
Mikhailov, Eugeniy; Wolfe, Owen; Du, Shuangli; Rochester, Simon; Budker, Dmitry; Novikova, Irina
2016-05-01
We present our work towards realization of the fast-light gyroscope prototype, in which the sensitivity enhancement (compared to a regular laser gyroscopes) is achieved by adjusting the intra-cavity dispersion. We discuss schematics and underlying nonlinear effects leading to the negative dispersion in Rb vapor: level structure, optically addressed transitions, and configuration of the resonant cavity. We investigate dependence of the pulling factor (i.e., the ratio of the lasing frequency shift with the change of the cavity length to the equivalent resonance frequency shift in the empty cavity) on pump lasers detunings, power, and density of the atomic vapor. The observation of the pulling factor exceeding unity implies the gyroscope sensitivity improvement over the regular system This work is supported by Naval Air Warfare Center STTR program N68335-11-C-0428.
Lin, Jian; Liu, Jiaming; Zhang, Hao; Li, Wenxiu; Zhao, Lu; Jin, Junjie; Huang, Anping; Zhang, Xiaofu; Xiao, Zhisong
2016-12-12
Rigorous expressions of resonant frequency shift (RFS) in anomalous dispersion enhanced resonant optical gyroscopes (ADEROGs) are deduced without making approximation, which provides a precise theoretical guidance to achieve ultra-sensitive ADEROGs. A refractive index related modification factor is introduced when considering special theory of relativity (STR). We demonstrate that the RFS will not be "infinitely large" by using critical anomalous dispersion (CAD) and negative modification does not exist, which make the mechanism of anomalous dispersion enhancement clear and coherent. Although step change of RFS will happen when the anomalous dispersion condition varies, the amplification of RFS is limited by attainable variation of refractive index in practice. Moreover, it is shown that the properties of anomalous dispersion will influence not only the amplification of RFS, but also the detection range of ADEROGs.
Ballestra, Alberto; Somà, Aurelio; Pavanello, Renato
2008-02-06
The dynamic characterization of a set of gold micro beams by electrostatic excitation in presence of residual stress gradient has been studied experimentally. A method to determine the micro-cantilever residual stress gradient by measuring the deflection and curvature and then identifying the residual stress model by means of frequency shift behaviour is presented. A comparison with different numerical FEM models and experimental results has been carried out, introducing in the model the residual stress of the structures, responsible for an initial upward curvature. Dynamic spectrum data are measured via optical interferometry and experimental frequency shift curves are obtained by increasing the dc voltage applied to the specimens. A good correspondence is pointed out between measures and numerical models so that the residual stress effect can be evaluated for different configurations.
Ballestra, Alberto; Somà, Aurelio; Pavanello, Renato
2008-01-01
The dynamic characterization of a set of gold micro beams by electrostatic excitation in presence of residual stress gradient has been studied experimentally. A method to determine the micro-cantilever residual stress gradient by measuring the deflection and curvature and then identifying the residual stress model by means of frequency shift behaviour is presented. A comparison with different numerical FEM models and experimental results has been carried out, introducing in the model the residual stress of the structures, responsible for an initial upward curvature. Dynamic spectrum data are measured via optical interferometry and experimental frequency shift curves are obtained by increasing the dc voltage applied to the specimens. A good correspondence is pointed out between measures and numerical models so that the residual stress effect can be evaluated for different configurations. PMID:27879733
Varied absorption peaks of dual-band metamaterial absorber analysis by using reflection theory
NASA Astrophysics Data System (ADS)
Xiong, Han; Yu, Yan-Tao; Tang, Ming-Chun; Chen, Shi-Yong; Liu, Dan-Ping; Ou, Xiang; Zeng, Hao
2016-03-01
Cross-resonator metamaterial absorbers (MMA) have been widely investigated from microwave to optical frequencies. However, only part of the factors influencing the absorption properties were analyzed in previous works at the same time. In order to completely understand how the spacer thickness, dielectric parameter and incidence angle affect the absorption properties of the dual-band MMA, two sets of simulation were performed. It was found that with increasing incident angles, the low-frequency absorption peak showed a blue shift, while the high-frequency absorption peaks showed a red shift. However, with the increase in spacer thickness, both of the absorption peaks showed a red shift. By using the reflection theory expressions, the physical mechanism of the cross-resonator MMA was well explained. This method provides an effective way to analyze multi-band absorber in technology.
Lattice-Induced Frequency Shifts in Sr Optical Lattice Clocks at the 10{sup -17} Level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westergaard, P. G.; Lodewyck, J.; Lecallier, A.
2011-05-27
We present a comprehensive study of the frequency shifts associated with the lattice potential in a Sr lattice clock by comparing two such clocks with a frequency stability reaching 5x10{sup -17} after a 1 h integration time. We put the first experimental upper bound on the multipolar M1 and E2 interactions, significantly smaller than the recently predicted theoretical upper limit, and give a 30-fold improved upper limit on the effect of hyperpolarizability. Finally, we report on the first observation of the vector and tensor shifts in a Sr lattice clock. Combining these measurements, we show that all known lattice relatedmore » perturbations will not affect the clock accuracy down to the 10{sup -17} level, even for lattices as deep as 150 recoil energies.« less
NASA Astrophysics Data System (ADS)
Won, Yong-Yuk; Jung, Sang-Min; Han, Sang-Kook
2014-08-01
A new technique, which reduces optical beat interference (OBI) noise in orthogonal frequency division multiple access-passive optical network (OFDMA-PON) links, is proposed. A self-homodyne balanced detection, which uses a single laser for the optical line terminal (OLT) as well as for the optical network unit (ONU), reduces OBI noise and also improves the signal to noise ratio (SNR) of the discrete multi-tone (DMT) signal. The proposed scheme is verified by transmitting quadrature phase shift keying (QPSK)-modulated DMT signal over a 20-km single mode fiber. The optical signal to noise ratio (OSNR), that is required for BER of 10-5, is reduced by 2 dB in the balanced detection compared with a single channel due to the cancellation of OBI noise in conjunction with the local laser.
Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffer, J.; Encalada, N.; Huang, M.
We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.
NASA Astrophysics Data System (ADS)
Punitha, K.; Sivakumar, R.; Sanjeeviraja, C.
2014-03-01
In this work, we present the pulsing frequency induced change in the structural, optical, vibrational, and luminescence properties of tungsten oxide (WO3) thin films deposited on microscopic glass and fluorine doped tin oxide (SnO2:F) coated glass substrates by pulsed dc magnetron sputtering technique. The WO3 films deposited on SnO2:F substrate belongs to monoclinic phase. The pulsing frequency has a significant influence on the preferred orientation and crystallinity of WO3 film. The maximum optical transmittance of 85% was observed for the film and the slight shift in transmission threshold towards higher wavelength region with increasing pulsing frequency revealed the systematic reduction in optical energy band gap (3.78 to 3.13 eV) of the films. The refractive index (n) of films are found to decrease (1.832 to 1.333 at 550 nm) with increasing pulsing frequency and the average value of extinction coefficient (k) is in the order of 10-3. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (Ed) parameters, dielectric constants, plasma frequency, oscillator strength, and oscillator energy (Eo) of WO3 films were calculated and reported for the first time due to variation in pulsing frequency during deposition by pulsed dc magnetron sputtering. The Eo is change between 6.30 and 3.88 eV, while the Ed varies from 25.81 to 7.88 eV, with pulsing frequency. The Raman peak observed at 1095 cm-1 attributes the presence of W-O symmetric stretching vibration. The slight shift in photoluminescence band is attributed to the difference in excitons transition. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.
1990-09-07
and frequency shifting, (4) Investigation of device processes in optical waveguides and fibers; optical bistability for optical memory operation, and...all relative to urea, unless stated otherwise. Compound SHG Colour (1) 0.60 Yellow (2) 0.70 Dark green (3) 0.01 Pale yellow (4) 0.22 Yellow (5) 0.73...LOUGHBOROUGH T. KING UNIVERSITY OF TECHNOLOGY H. Coles N. PHILIPS I - LASER ENCHANCED 1 - OPTICAL & THERMAL DENSIFICATION PROPERTIES 2 - SOLID STATE
FIBER AND INTEGRATED OPTICS: Multiplexed optical-fiber sensors with autodyne detection
NASA Astrophysics Data System (ADS)
Potapov, V. T.; Mamedov, A. M.; Shatalin, S. V.; Yushkaĭtis, R. V.
1993-09-01
A method is proposed for multiplexing optical-fiber interference sensors. The method involves autodyne reception of frequency-modulated radiation reflected back to the laser. The response of a He-Ne laser with a linearly varying generation frequency to radiation reflected back from a single-mode fiber is studied. The spectrum of beats caused in the laser radiation by the reflection is shown to be governed by the distribution of reflectors along the fiber. The phases of the spectral components contain information about the phase shift of the reflected optical signal. A hydrophone array with a sensitivity of 30 μrad/Hz1/2 is described. A distributed temperature sensor with a spatial resolution of 1 m is also described.
Direct measurement for organic solvents diffusion using ultra-sensitive optical resonator
NASA Astrophysics Data System (ADS)
Ali, Amir R.; Elias, Catherine M.
2017-06-01
In this paper, novel techniques using ultra-sensitive chemical optical sensor based on whispering gallery modes (WGM) are proposed through two different configurations. The first one will use a composite micro-sphere, when the solvent interacts with the polymeric optical sensors through diffusion the sphere start to swallow that solvent. In turn, that leads to change the morphology and mechanical properties of the polymeric spheres. Also, these changes could be measured by tracking the WGM shifts. Several experiments were carried out to study the solvent induced WGM shift using microsphere immersed in a solvent atmosphere. It can be potentially used for sensing the trace organic solvents like ethanol and methanol. The second configuration will use a composite beam nitrocellulose composite (NC) structure that acts as a sensing element. In this configuration, a beam is anchored to a substrate in one end, and the other end is compressing the polymeric sphere causing a shift in its WGM. When a chemical molecule is attached to the beam, the resonant frequency of the cantilever will be changed for a certain amount. By sensing this certain resonant frequency change, the existence of a single chemical molecule can be detected. A preliminary experimental model is developed to describe the vibration of the beam structure. The resonant frequency change of the cantilever due to attached mass is examined imperially using acetone as an example. Breath diagnosis can use this configuration in diabetic's diagnosis. Since, solvent like acetone concentration in human breath leads to a quick, convenient, accurate and painless breath diagnosis of diabetics. These micro-optical sensors have been examined using preliminary experiments to fully investigate its response. The proposed chemical sensor can achieve extremely high sensitivity in molecular level.
Hunting for dark matter with ultra-stable fibre as frequency delay system.
Yang, Wanpeng; Li, Dawei; Zhang, Shuangyou; Zhao, Jianye
2015-07-10
Many cosmological observations point towards the existence of dark-matter(DM) particles and consider them as the main component of the matter content of the universe. The goal of revealing the nature of dark-matter has triggered the development of new, extremely sensitive detectors. It has been demonstrated that the frequencies and phases of optical clock have a transient shift during the DMs' arrival due to the DM-SM(Standard Model) coupling. A simple, reliable and feasible experimental scheme is firstly proposed in this paper, based on "frequency-delay system" to search dark-matter by "self-frequency comparison" of an optical clock. During the arrival of a dark-matter, frequency discrepancy is expected between two signals with a short time difference(~ms) of the same optical clock to exhibit the interaction between atoms and dark-matter. Furthermore, this process can determine the exact position of dark-matter when it is crossing the optical clocks, therefore a network of detecting stations located in different places is recommended to reduce the misjudgment risk to an acceptable level.
Hunting for dark matter with ultra-stable fibre as frequency delay system
Yang, Wanpeng; Li, Dawei; Zhang, Shuangyou; Zhao, Jianye
2015-01-01
Many cosmological observations point towards the existence of dark-matter(DM) particles and consider them as the main component of the matter content of the universe. The goal of revealing the nature of dark-matter has triggered the development of new, extremely sensitive detectors. It has been demonstrated that the frequencies and phases of optical clock have a transient shift during the DMs’ arrival due to the DM-SM(Standard Model) coupling. A simple, reliable and feasible experimental scheme is firstly proposed in this paper, based on “frequency-delay system” to search dark-matter by “self-frequency comparison” of an optical clock. During the arrival of a dark-matter, frequency discrepancy is expected between two signals with a short time difference(~ms) of the same optical clock to exhibit the interaction between atoms and dark-matter. Furthermore, this process can determine the exact position of dark-matter when it is crossing the optical clocks, therefore a network of detecting stations located in different places is recommended to reduce the misjudgment risk to an acceptable level. PMID:26159113
Light shift measurements in a Cesium Fountain without the use of mechanical shutters
NASA Technical Reports Server (NTRS)
Tjoelker, Robert L.; Enzer, D. G.; Klipstein, W. M.
2005-01-01
We present measurements confirming operation of a cesium fountain frequency standard with light shift below 10^-15 (and with evidence suggesting it is several orders of magnitude below this level) but without the use of mechanical shutters. Suppression of the light shift is realized using a master-slave laser configuration by reducing the overall optical power delivered to the physics package as well as spoiling the injection of the slave, causing it to lase far off resonance (1-2 nm) as proposed by the authors several years ago [l]. In the absence of any mitigation, this (AC Stark) shift, due to near-resonant laser light reaching the atoms during their microwave interrogation period, is the largest shift in such frequency standards (2x10^-11 for Our fountain). Mechanical shutters provided adequate light attenuation but have been prone to failure.
Recent results of the pulsed optically pumped rubidium clock
NASA Astrophysics Data System (ADS)
Levi, F.; Micalizio, S.; Godone, A.; Calosso, C.; Bertacco, E.
2017-11-01
A laboratory prototype of a pulsed optically pumped (POP) clock based on a rubidium cell with buffer gas is described. This clock has shown very interesting physical and metrological features, such as negligible light-shift, strongly reduced cavity-pulling and very good frequency stability. In this regard, an Allan deviation of σy(τ) = 1.2 τ-1/2 for measurement times up to τ = 105 s has been measured. These results confirm the interesting perspectives of such a frequency standard and make it very attractive for several technological applications, such as radionavigation.
NASA Astrophysics Data System (ADS)
Terra, Osama; Hussein, Hatem
2016-02-01
In this study, we report the development of a frequency standard for optical fiber communication applications based on a two-photon transition in rubidium at 385.2 THz. This standard kills two birds with one stone in the sense it is capable of providing us with two highly stable serviceable wavelengths at 778.1 and 1556.2 nm. In this system, we exploit the narrow line-width of a fiber laser emitting at 1556.2 nm in conjunction with an erbium-doped fiber amplifier to generate a sufficient second harmonic laser beam at 778.1 nm in a periodically polled lithium niobate waveguide mixer in order to probe and frequency-lock the laser to the 5S1/2 ( F g = 3)-5D5/2 ( F e = 5) hyperfine two-photon transition component in 85Rb. The metrological performance of the standard is evaluated with the aid of an optical frequency comb synthesizer. Allan variance measurement shows a stability of 4 × 10-12 at 1 s (limited by the comb stability), reaching a floor of 6.8 × 10-13 at 1000 s. After correction of all the major systematic frequency shifts including the light shift, the absolute frequency is found to be 385 285 142 374.0 (5.0) kHz. Moreover, the absolute frequencies of most of the hyperfine components of the 5S1/2-5D5/2 transition of the two naturally existing rubidium isotopes are measured using a femtosecond frequency comb synthesizer after stabilizing a laser on each component.
Ma, Tian-Xue; Zou, Kui; Wang, Yue-Sheng; Zhang, Chuanzeng; Su, Xiao-Xing
2014-11-17
Phoxonic crystal is a promising material for manipulating sound and light simultaneously. In this paper, we theoretically demonstrate the propagation of acoustic and optical waves along the truncated surface of a two-dimensional square-latticed phoxonic crystal. Further, a phoxonic crystal hetero-structure cavity is proposed, which can simultaneously confine surface acoustic and optical waves. The interface motion and photoelastic effects are taken into account in the acousto-optical coupling. The results show obvious shifts in eigenfrequencies of the photonic cavity modes induced by different phononic cavity modes. The symmetry of the phononic cavity modes plays a more important role in the single-phonon exchange process than in the case of the multi-phonon exchange. Under the same deformation, the frequency shift of the photonic transverse electric mode is larger than that of the transverse magnetic mode.
The properties of electromagnetic responses and optical modulation in terahertz metamaterials
NASA Astrophysics Data System (ADS)
Chen, Wei; Shi, Yulei; Wang, Wei; Zhou, Qingli; Zhang, Cunlin
2016-11-01
Metamaterials with subwavelength structural features show unique electromagnetic responses that are unattainable with natural materials. Recently, the research on these artificial materials has been pushed forward to the terahertz (THz) region because of potential applications in biological fingerprinting, security imaging, and high frequency magnetic and electric resonant devices. Furthermore, active control of their properties could further facilitate and open up new applications in terms of modulation and switching. In our work, we will first present our studies of dipole arrays at terahertz frequencies. Then in experimental and theoretical studies of terahertz subwavelength L-shaped structure, we proposed an unusual-mode current resonance responsible for low-frequency characteristic dip in transmission spectra. Comparing spectral properties of our designed simplified structures with that of split-ring resonators, we attribute this unusual mode to the resonance coupling and splitting under the broken symmetry of the structure. Finally, we use optical pump-terahertz probe method to investigate the spectral and dynamic behaviour of optical modulation in the split-ring resonators. We have observed the blue-shift and band broadening in the spectral changes of transmission under optical excitation at different delay times. The calculated surface currents using finite difference time domain simulation are presented to characterize these resonances, and the blue-shift can be explained by the changed refractive index and conductivity in the photoexcited semiconductor substrate.
NASA Astrophysics Data System (ADS)
Ullah, Rahat; Liu, Bo; Zhang, Qi; Tian, Qinghua; Tian, Feng; Qu, Zhaowei; Yan, Cheng; Khan, Muhammad Saad; Ahmad, Ibrar; Xin, Xiangjun
2015-11-01
We propose a technique for the generation of optical frequency comb from a single source, which reduces the costs of optical access networks. Two Mach-Zehnder modulators are cascaded with one phase modulator driven by radiofrequency signals. With 10-GHz frequency spacing, the generated 40 optical multicarriers have good tone-to-noise ratio with least excursions in their comb lines. The laser array at the optical line terminal of the conventional wavelength division multiplexed passive optical network (WDM-PON) system has been replaced with optical frequency comb generator (OFCG), which may result in cost-effective optical line terminal (OLT) supporting a large-capacity WDM-PON system. Of 40 carriers generated, each carrier carries 10 Gbps data based on differential phase-shift keying. Four hundred Gbps multiplexed data from all channels are successfully transmitted through a fiber span of 25 km with negligible power penalties. Part of the downlink signal is used in uplink transmission at optical network unit where intensity-modulated on-off keying is deployed for remodulation. Theoretical analysis of the proposed WDM-PON system based on OFCG are in good agreement with simulation results. The metrics considered for the analysis of the proposed OFCG in a WDM-PON system are power penalties of the full-duplex transmission, eye diagrams, and bit error rate.
NASA Astrophysics Data System (ADS)
Pavone, F. S.; Marin, F.; de Natale, P.; Inguscio, M.; Biraben, F.
1994-07-01
The 23S1-33P40He transition at λ0=389 nm is measured with respect to a previously frequency calibrated 87Rb two-photon transition at 2λ0=778 nm. The 4He absolute frequency is 770 732 839 058 (190) kHz, with an accuracy of 2.4 parts in 1010. A Lamb shift value of +4057.61 (79) MHz, with 600 kHz uncertainty arising from the theoretical position of the 33P0 energy level, is extracted for the 23S1 level. This value is more than 2 orders of magnitude more accurate than the current best theoretical predictions.
A transportable optical clock for chronometric levelling
NASA Astrophysics Data System (ADS)
Lisdat, C.; Koller, S. B.; Grotti, J.; Vogt, S.; Al-Masoudi, A.; Dörscher, S.; Herbers, S.; Häfner, S.; Sterr, U.
2016-12-01
With their supreme accuracy and precision, optical clocks in combination with new methods of long-distance frequency transfer can be used to determine height differences by measuring the gravitational red shift between two clocks without accumulation of measurement errors, as in classical levelling. We are developing transportable optical clocks for this purpose that will also serve for the technology development regarding optical clocks in Space and for international comparisons between optical clocks that cannot be linked with sufficient accuracy otherwise.In this talk we will focus on the transportable strontium lattice clock that we are developing and its first evaluation. Presently, we achieve a fractional frequency instability of 3×10-17 after 1000 s averaging time, which is equivalent to a height resolution of 30 cm. The first uncertainty evaluation of the system yielded 7×10-17. We expect rapid improvements to an uncertainty of a few parts in 1017.The clock then placed within a car trailer, which requires compact and rugged lasers systems and physics package. Special care has been taken in the design of the ultra-frequency stable interrogation laser that has to achieve fractional frequency instabilities of considerably below 10-15. Typical laboratory constructions of the reference resonator system used to pre-stabilize the laser frequency are not compatible with the requirement of transportability.In an actual levelling campaign, this clock will be connected e.g. via a stabilized optical fibre link with another, stationary frequency standard. The measured gravitational red shift can be compared to the ones calculated from potential differences derived with state of the art geodetic data and models. A first campaign has been completed in cooperation with colleagues from the Italian and UK metrology institutes INRIM and NPL, respectively, and the Institut für Erdmessung (IfE), Leibniz University Hannover. We will discuss the status of the evaluation and give an outlook on our next steps.This work is supported by QUEST, DFG (CRC 1128, 1227), EU-FP7 (FACT) and EMRP (ITOC). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.
Optical signal splitting and chirping device modeling
NASA Astrophysics Data System (ADS)
Vinogradova, Irina L.; Andrianova, Anna V.; Meshkov, Ivan K.; Sultanov, Albert Kh.; Abdrakhmanova, Guzel I.; Grakhova, Elizaveta P.; Ishmyarov, Arsen A.; Yantilina, Liliya Z.; Kutlieva, Gulnaz R.
2017-04-01
This article examines the devices for optical signal splitting and chirping device modeling. Models with splitting and switching functions are taken into consideration. The described device for optical signal splitting and chirping represents interferential splitter with profiled mixer which provides allocation of correspondent spectral component from ultra wide band frequency diapason, and signal phase shift for aerial array (AA) directive diagram control. This paper proposes modeling for two types of devices for optical signal splitting and chirping: the interference-type optical signal splitting and chirping device and the long-distance-type optical signal splitting and chirping device.
All-optical control of group velocity dispersion in tellurite photonic crystal fibers.
Liu, Lai; Tian, Qijun; Liao, Meisong; Zhao, Dan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping
2012-12-15
We demonstrate all-optical control of group velocity dispersion (GVD) via optical Kerr effect in highly nonlinear tellurite photonic crystal fibers. The redshift of the zero-dispersion wavelength is over 307 nm, measured by soliton self-frequency shift cancellation, when the pump peak power of a 1.56 μm femtosecond fiber laser is increased to 11.6 kW. The all-optical control of GVD not only offers a new platform for constructing all-optical-control photonic devices but also promises a new class of experiments in nonlinear fiber optics and light-matter interactions.
Confocal Fabry-Perot interferometer for frequency stabilization of laser
NASA Astrophysics Data System (ADS)
Pan, H.-J.; Ruan, P.; Wang, H.-W.; Li, F.
2011-02-01
The frequency shift of laser source of Doppler lidar is required in the range of a few megahertzs. To satisfy this demand, a confocal Fabry-Perot (F-P) interferometer was manufactured as the frequency standard for frequency stabilization. After analyzing and contrasting the center frequency shift of confocal Fabry-Perot interferometers that are made of three different types of material with the change of temperature, the zerodur material was selected to fabricate the interferometer, and the cavity mirrors were optically contacted onto the end of spacer. The confocal Fabry-Perot interferometer was situated within a double-walled chamber, and the change of temperature in the chamber was less than 0.01 K. The experimental results indicate that the free spectral range is 500 MHz, the full-width at half maximum is 3.33 MHz, and the finesse is 150.
Vibrating Optical Fibers to Make Laser Speckle Disappear
NASA Technical Reports Server (NTRS)
McGill, Matthew; Scott, V. Stanley
2005-01-01
In optical systems in which laser illumination is delivered via multimode optical fibers, laser speckle can be rendered incoherent by a simple but highly effective technique. The need to eliminate speckle arises because speckle can make it difficult to observe edges and other sharp features, thereby making it difficult to perform precision alignment of optical components. The basic ideas of the technique is to vibrate the optical fiber(s) to cause shifting of electromagnetic modes within the fiber(s) and consequent shifting of the speckle pattern in the light emerging from the fiber(s). If the frequency of vibration is high enough, a human eye cannot follow the shifting speckle pattern, so that instead of speckle, a human observer sees a smoothed pattern of light corresponding to a mixture of many electromagnetic modes. If necessary, the optical fiber(s) could be vibrated manually. However, in a typical laboratory situation, it would be more practical to attach a vibrating mechanism to the fiber(s) for routine use as part of the fiber-optic illuminator. In experiments, a commercially available small, gentle, quiet, variable- speed vibratory device was used in this way, with the result that the appearance of speckle was eliminated, as expected. Figures 1 and 2 illustrate the difference.
Wideband quad optical sensor for high-speed sub-nanometer interferometry.
Riobo, L M; Veiras, F E; Sorichetti, P A; Garea, M T
2017-01-20
This paper describes the design and performance of a low-noise and high-speed optical sensor that provides two output signals in quadrature from the simultaneous detection of four phase-shifted interferograms. The sensor employs four high-speed photodiodes and high-speed, low-noise transimpedance amplifiers. The optical and electronic design was optimized for high-speed displacement measurement interferometry, over a broad range of operating frequencies. Compared to other experimental schemes, the sensor is simpler and of lower cost. The performance of the sensor is demonstrated by characterizing a piezoelectric transducer for ultrasonic applications. We measured displacements between 38 pm and 32 nm with 6% relative uncertainty, in the frequency range from 1 to 2 MHz.
Generation of picosecond optical pulse based on chirp compensation
NASA Astrophysics Data System (ADS)
Sun, Xiaofeng; Yang, Jiaqian; Li, Shangyuan; Xue, Xiaoxiao; Zheng, Xiaoping; Zhou, Bingkun
2017-10-01
Picosecond optical pulses are widely used in optical communication systems, such as the optical time division multiplexing (OTDM) and photonic analog-to-digital converter (ADC). We have proposed and demonstrated a simple method to generate picosecond optical pulse using the mach-zehnder modulator (MZM), phase modulator (PM) and single model fiber (SMF). The phase modulator is used to generate a frequency chirp which varies periodically with time. The MZM is used to suppress the pedestal of the pulse and improve the performance of the pulse. The SMF is used to compensate the frequency chirp. We have carried out theoretical analysis and numerical simulation for the generation process of the picosecond optical pulse. The influence of phase shift between the modulation signals loaded on the MZM and PM is analyzed by numerical simulation and the conditions for the generation of picosecond optical pulse are given. The formula for calculating the optimum length of SMF which is used to compensate the linear chirp is given. The optical pulses with a repetition frequency of 10 GHz and a pulse width of 8.5 ps were obtained. The time-bandwidth product was as small as 1.09 and the timing jitter is as low as 83 fs.
NASA Astrophysics Data System (ADS)
Al-Asadi, H. A.
2013-02-01
We present a theoretical analysis of an additional nonlinear phase shift of backward Stokes wave based on stimulated Brillouin scattering in the system with a bi-directional pumping scheme. We optimize three parameters of the system: the numerical aperture, the optical loss and the pumping wavelength to minimize an additional nonlinear phase shift of backward Stokes waves due to stimulated Brillouin scattering. The optimization is performed with various Brillouin pump powers and the optical reflectivity values are based on the modern, global evolutionary computation algorithm, particle swarm optimization. It is shown that the additional nonlinear phase shift of backward Stokes wave varies with different optical fiber lengths, and can be minimized to less than 0.07 rad according to the particle swarm optimization algorithm for 5 km. The bi-directional pumping configuration system is shown to be efficient when it is possible to transmit the power output to advanced when frequency detuning is negative and delayed when it is positive, with the optimum values of the three parameters to achieve the reduction of an additional nonlinear phase shift.
Bilenca, A; Yun, S H; Tearney, G J; Bouma, B E
2006-03-15
Recent results have demonstrated unprecedented wavelength-tuning speed and repetition rate performance of semiconductor ring lasers incorporating scanning filters. However, several unique operational characteristics of these lasers have not been adequately explained, and the lack of an accurate model has hindered optimization. We numerically investigated the characteristics of these sources, using a semiconductor optical amplifier (SOA) traveling-wave Langevin model, and found good agreement with experimental measurements. In particular, we explored the role of the SOA refractive-index nonlinearities in determining the intracavity frequency-shift-broadening and the emitted power dependence on scan speed and direction. Our model predicts both continuous-wave and pulse operation and shows a universal relationship between the output power of lasers that have different cavity lengths and the filter peak frequency shift per round trip, therefore revealing the advantage of short cavities for high-speed biomedical imaging.
Optical spectroscopy study of the three-dimensional Dirac semimetal ZrTe 5
Chen, R. Y.; Gu, G. D.; Zhang, S. J.; ...
2015-08-05
Three-dimensional (3D) topological Dirac materials have been under intensive study recently. The layered compound ZrTe 5 has been suggested to be one such material as a result of transport and angle-resolved photoemission spectroscopy experiments. Here, we perform infrared reflectivity measurements to investigate the underlying physics of this material. The derived optical conductivity increases linearly with frequency below normal interband transitions, which provides optical spectroscopic proof of a 3D Dirac semimetal. In addition, the plasma edge shifts dramatically to lower energy upon temperature cooling, which might be due to the shrinking of the lattice parameters. Additionally, an extremely sharp peak showsmore » up in the frequency-dependent optical conductivity, indicating the presence of a Van Hove singularity in the joint density of state.« less
Optical fiber sources and transmission controls for multi-Tb/s systems
NASA Astrophysics Data System (ADS)
Nowak, George Adelbert
The accelerating demand for bandwidth capacity in backbone links of terrestrial communications systems is projected to exceed 1Tb/s by 2002. Lightwave carrier frequencies and fused-silica optical fibers provide the natural combination of high passband frequencies and low- loss medium to satisfy this evolving demand for bandwidth capacity. This thesis addresses three key technologies for enabling multi-Tb/s optical fiber communication systems. The first technology is a broadband source based on supercontinuum generation in optical fiber. Using a single modelocked laser with output pulsewidths of 0.5psec pulses, we generate in ~2m of dispersion-shifted fiber more that 200nm of spectral continuum in the vicinity of 1550nm that is flat to better than +/- 0.5 dB over more than 60nm. The short fiber length prevents degradation of timing jitter of the seed pulses and preserves coherence of the continuum by inhibiting environmental perturbations and mapping of random noise from the vicinity of the input pulse across the continuum. Through experiments and simulations, we find that the continuum characteristics result from 3rd order dispersion effects on higher-order soliton compression. We determine optimal fiber properties to provide desired continuum broadness and flatness for given input pulsewidth and energy conditions. The second technology is a novel delay-shifted nonlinear optical loop mirror (DS-NOLM) that performs a transmission control function by serving as an intensity filter and frequency compensator for <5psec soliton transmission systems. A theoretical and experimental study of the DS-NOLM as a transmission control element in a periodically amplified soliton transmission system is presented. We show that DS-NOLMs enable 4ps soliton transmission over 75km of standard dispersion fiber, with 25km spacing between amplifiers, by filtering the dispersive waves and compensating for Raman-induced soliton self-frequency shift. The third technology is all-fiber wavelength conversion employing induced modulational instability. We obtain wavelength conversion over 40nm with a peak conversion efficiency of 28dB using 600mW pump pulses in 720m of high-nonlinearity optical fiber. We show that the high- nonlinearity fiber enhances the phase-matching bandwidth as well as reducing the required fiber lengths and pump powers.
Low-Light-Shift Cesium Fountain without Mechanical Shutters
NASA Technical Reports Server (NTRS)
Enzer, Daphna
2008-01-01
A new technique for reducing errors in a laser-cooled cesium fountain frequency standard provides for strong suppression of the light shift without need for mechanical shutters. Because mechanical shutters are typically susceptible to failure after operating times of the order of months, the elimination of mechanical shutters could contribute significantly to the reliability of frequency standards that are required to function continuously for longer time intervals. With respect to the operation of an atomic-fountain frequency standard, the term "light shift" denotes an undesired relative shift in the two energy levels of the atoms (in this case, cesium atoms) in the atomic fountain during interrogation by microwaves. The shift in energy levels translates to a frequency shift that reduces the precision and possibly accuracy of the frequency standard. For reasons too complex to describe within the space available for this article, the light shift is caused by any laser light that reaches the atoms during the microwave- interrogation period, but is strongest for near-resonance light. In the absence of any mitigating design feature, the light shift, expressed as a fraction of the standard fs frequency, could be as large as approx. 2 x 10(exp -11), the largest error in the standard. In a typical prior design, to suppress light shift, the intensity of laser light is reduced during the interrogation period by using a single-pass acoustooptic modulator to deflect the majority of light away from the main optical path. Mechanical shutters are used to block the remaining undeflected light to ensure complete attenuation. Without shutters, this remaining undeflected light could cause a light shift of as much as .10.15, which is unacceptably large in some applications. The new technique implemented here involves additionally shifting the laser wavelength off resonance by a relatively large amount (typically of the order of nanometers) during microwave interrogation. In this design, when microwave interrogation is not underway, the atoms are illuminated by a slave laser locked to the lasing frequency of a lower power master laser.
Time delay generation at high frequency using SOA based slow and fast light.
Berger, Perrine; Bourderionnet, Jérôme; Bretenaker, Fabien; Dolfi, Daniel; Alouini, Mehdi
2011-10-24
We show how Up-converted Coherent Population Oscillations (UpCPO) enable to get rid of the intrinsic limitation of the carrier lifetime, leading to the generation of time delays at any high frequencies in a single SOA device. The linear dependence of the RF phase shift with respect to the RF frequency is theoretically predicted and experimentally evidenced at 16 and 35 GHz. © 2011 Optical Society of America
Accurate deuterium spectroscopy for fundamental studies
NASA Astrophysics Data System (ADS)
Wcisło, P.; Thibault, F.; Zaborowski, M.; Wójtewicz, S.; Cygan, A.; Kowzan, G.; Masłowski, P.; Komasa, J.; Puchalski, M.; Pachucki, K.; Ciuryło, R.; Lisak, D.
2018-07-01
We present an accurate measurement of the weak quadrupole S(2) 2-0 line in self-perturbed D2 and theoretical ab initio calculations of both collisional line-shape effects and energy of this rovibrational transition. The spectra were collected at the 247-984 Torr pressure range with a frequency-stabilized cavity ring-down spectrometer linked to an optical frequency comb (OFC) referenced to a primary time standard. Our line-shape modeling employed quantum calculations of molecular scattering (the pressure broadening and shift and their speed dependencies were calculated, while the complex frequency of optical velocity-changing collisions was fitted to experimental spectra). The velocity-changing collisions are handled with the hard-sphere collisional kernel. The experimental and theoretical pressure broadening and shift are consistent within 5% and 27%, respectively (the discrepancy for shift is 8% when referred not to the speed averaged value, which is close to zero, but to the range of variability of the speed-dependent shift). We use our high pressure measurement to determine the energy, ν0, of the S(2) 2-0 transition. The ab initio line-shape calculations allowed us to mitigate the expected collisional systematics reaching the 410 kHz accuracy of ν0. We report theoretical determination of ν0 taking into account relativistic and QED corrections up to α5. Our estimation of the accuracy of the theoretical ν0 is 1.3 MHz. We observe 3.4σ discrepancy between experimental and theoretical ν0.
Few-Nucleon Charge Radii and a Precision Isotope Shift Measurement in Helium
NASA Astrophysics Data System (ADS)
Hassan Rezaeian, Nima; Shiner, David
2015-05-01
Precision atomic theory and experiment provide a valuable method to determine few nucleon charge radii, complementing the more direct scattering approaches, and providing sensitive tests of few-body nuclear theory. Some puzzles with respect to this method exist, particularly in the muonic and electronic measurements of the proton radius, and as well with respect to measurements of nuclear size in helium. We perform precision measurements of the isotope shift of the 23S -23P transitions in 3He and 4He. A tunable laser frequency discriminator and electro-optic modulation technique give precise frequency and intensity control. We select (ts <50 ms) and stabilize the intensity of the required sideband and eliminate the unused sidebands (<= 10¬5) . The technique uses a MEMS fiber switch (ts = 10 ms) and several temperature stabilized narrow band (3 GHz) fiber gratings. A fiber based optical circulator and amplifier provide the desired isolation and net gain for the selected frequency. A beam with both species of helium is achieved using a custom fiber laser for simultaneous optical pumping. A servo-controlled retro-reflected laser beam eliminates Doppler effects. Careful detection design and software control allows for unbiased data collection. Current results will be discussed. This work is supported by NSF PHY-1068868 and PHY-1404498.
Yu, Aifang; Chen, Xiangyu; Wang, Rui; Liu, Jingyu; Luo, Jianjun; Chen, Libo; Zhang, Yang; Wu, Wei; Liu, Caihong; Yuan, Hongtao; Peng, Mingzeng; Hu, Weiguo; Zhai, Junyi; Wang, Zhong Lin
2016-04-26
In this paper, we demonstrate an application of a triboelectric nanogenerator (TENG) as a self-powered communication unit. An elaborately designed TENG is used to translate a series of environmental triggering signals into binary digital signals and drives an electronic-optical device to transmit binary digital data in real-time without an external power supply. The elaborately designed TENG is built in a membrane structure that can effectively drive the electronic-optical device in a bandwidth from 1.30 to 1.65 kHz. Two typical communication modes (amplitude-shift keying and frequency-shift keying) are realized through the resonant response of TENG to different frequencies, and two digital signals, i.e., "1001" and "0110", are successfully transmitted and received through this system, respectively. Hence, in this study, a simple but efficient method for directly transmitting ambient vibration to the receiver as a digital signal is established using an elaborately designed TENG and an optical communication technique. This type of the communication system, as well as the implementation method presented, exhibits great potential for applications in the smart city, smart home, password authentication, and so on.
NASA Astrophysics Data System (ADS)
Santiago-Lona, Cynthia V.; Hernández-Montes, María del Socorro; Mendoza-Santoyo, Fernando; Esquivel-Tejeda, Jesús
2018-02-01
The study and quantification of the tympanic membrane (TM) displacements add important information to advance the knowledge about the hearing process. A comparative statistical analysis between two commonly used demodulation methods employed to recover the optical phase in digital holographic interferometry, namely the fast Fourier transform and phase-shifting interferometry, is presented as applied to study thin tissues such as the TM. The resulting experimental TM surface displacement data are used to contrast both methods through the analysis of variance and F tests. Data are gathered when the TMs are excited with continuous sound stimuli at levels 86, 89 and 93 dB SPL for the frequencies of 800, 1300 and 2500 Hz under the same experimental conditions. The statistical analysis shows repeatability in z-direction displacements with a standard deviation of 0.086, 0.098 and 0.080 μm using the Fourier method, and 0.080, 0.104 and 0.055 μm with the phase-shifting method at a 95% confidence level for all frequencies. The precision and accuracy are evaluated by means of the coefficient of variation; the results with the Fourier method are 0.06143, 0.06125, 0.06154 and 0.06154, 0.06118, 0.06111 with phase-shifting. The relative error between both methods is 7.143, 6.250 and 30.769%. On comparing the measured displacements, the results indicate that there is no statistically significant difference between both methods for frequencies at 800 and 1300 Hz; however, errors and other statistics increase at 2500 Hz.
NASA Astrophysics Data System (ADS)
Udem, Th.; Huber, A.; Gross, B.; Reichert, J.; Prevedelli, M.; Weitz, M.; Hänsch, T. W.
1997-10-01
We have measured the absolute frequency of the hydrogen 1S-2S two-photon resonance with an accuracy of 3.4 parts in 1013 by comparing it with the 28th harmonic of a methane-stabilized 3.39 μm He-Ne laser. A frequency mismatch of 2.1 THz at the 7th harmonic is bridged with a phase-locked chain of five optical frequency interval dividers. From the measured frequency f1S-2S = 2 466 061 413 187.34\\(84\\) kHz and published data of other authors we derive precise new values of the Rydberg constant, R∞ = 10 973 731.568 639\\(91\\) m-1 and of the Lamb shift of the 1S ground state, L1S = 8172.876\\(29\\) MHz. These are now the most accurate values available.
Yüce, Emre; Ctistis, Georgios; Claudon, Julien; Gérard, Jean-Michel; Vos, Willem L
2016-01-11
We have switched GaAs/AlAs and AlGaAs/AlAs planar microcavities that operate in the "Original" (O) telecom band by exploiting the instantaneous electronic Kerr effect. We observe that the resonance frequency reversibly shifts within one picosecond when the nanostructure is pumped with low-energy photons. We investigate experimentally and theoretically the role of several parameters: the material backbone and its electronic bandgap, the quality factor, and the duration of the switch pulse. The magnitude of the frequency shift is reduced when the backbone of the central λ-layer has a greater electronic bandgap compared to the cavity resonance frequency and the frequency of the pump. This observation is caused by the fact that pumping with photon energies near the bandgap resonantly enhances the switched magnitude. We thus find that cavities operating in the telecom O-band are more amenable to ultrafast Kerr switching than those operating at lower frequencies, such as the C-band. Our results indicate that the large bandgap of AlGaAs/AlAs cavity allows to tune both the pump and the probe to the telecom range to perform Kerr switching without detrimental two-photon absorption. We observe that the magnitude of the resonance frequency shift decreases with increasing quality factor of the cavity. Our model shows that the magnitude of the resonance frequency shift depends on the pump pulse duration and is maximized when the duration matches the cavity storage time to within a factor two. In our experiments, we obtain a maximum shift of the cavity resonance relative to the cavity linewidth of 20%. We project that the shift of the cavity resonance can be increased twofold with a pump pulse duration that better matches the cavity storage time. We provide the essential parameter settings for different materials so that the frequency shift of the cavity resonance can be maximized using the electronic Kerr effect.
698-nm diode laser with 1-Hz linewidth
NASA Astrophysics Data System (ADS)
Chen, Long; Zhang, Linbo; Xu, Guanjun; Liu, Jun; Dong, Ruifang; Liu, Tao
2017-01-01
Two diode lasers at 698 nm are separately locked to two independent optical reference cavities with a finesse of about 128,000 by the Pound-Drever-Hall method. The more accurate coefficient between voltage and frequency of the error signal is measured, with which quantitative evaluation of the effect of many noises on the frequency stability can be made much more conveniently. A temperature-insensitive method is taken to reduce the effect of residual amplitude modulation on laser frequency stability. With an active fiber noise cancellation, the optical heterodyne beat between two independent lasers shows that the linewidth of one diode laser reaches 1 Hz. The fractional Allan deviation removed linear frequency shift less than 30 mHz/s is below 2.6×10-15 with 1- to 100-s average time.
NASA Astrophysics Data System (ADS)
Ullah, Rahat; Liu, Bo; Zhang, Qi; Saad Khan, Muhammad; Ahmad, Ibrar; Ali, Amjad; Khan, Razaullah; Tian, Qinghua; Yan, Cheng; Xin, Xiangjun
2016-09-01
An architecture for flattened and broad spectrum multicarriers is presented by generating 60 comb lines from pulsed laser driven by user-defined bit stream in cascade with three modulators. The proposed scheme is a cost-effective architecture for optical line terminal (OLT) in wavelength division multiplexed passive optical network (WDM-PON) system. The optical frequency comb generator consists of a pulsed laser in cascade with a phase modulator and two Mach-Zehnder modulators driven by an RF source incorporating no phase shifter, filter, or electrical amplifier. Optical frequency comb generation is deployed in the simulation environment at OLT in WDM-PON system supports 1.2-Tbps data rate. With 10-GHz frequency spacing, each frequency tone carries data signal of 20 Gbps-based differential quadrature phase shift keying (DQPSK) in downlink transmission. We adopt DQPSK-based modulation technique in the downlink transmission because it supports 2 bits per symbol, which increases the data rate in WDM-PON system. Furthermore, DQPSK format is tolerant to different types of dispersions and has a high spectral efficiency with less complex configurations. Part of the downlink power is utilized in the uplink transmission; the uplink transmission is based on intensity modulated on-off keying. Minimum power penalties have been observed with excellent eye diagrams and other transmission performances at specified bit error rates.
Progress in high temperature speckle-shift strain measurement system
NASA Technical Reports Server (NTRS)
Lant, Christian T.; Barranger, John P.
1990-01-01
A fast, easy to use speckle tracking system is under development for the speckle-shift strain measurement technique. Preliminary correlation tests on wire specimens show strong correlations of well-developed speckle patterns. Stable cross-correlations were obtained from a tungsten filament at 2480 C. An analysis of the optical system determines the minimum required sampling frequency of the speckle pattern to be 2.55 pixels per speckle.
Transverse Pupil Shifts for Adaptive Optics Non-Common Path Calibration
NASA Technical Reports Server (NTRS)
Bloemhof, Eric E.
2011-01-01
A simple new way of obtaining absolute wavefront measurements with a laboratory Fizeau interferometer was recently devised. In that case, the observed wavefront map is the difference of two cavity surfaces, those of the mirror under test and of an unknown reference surface on the Fizeau s transmission flat. The absolute surface of each can be determined by applying standard wavefront reconstruction techniques to two grids of absolute surface height differences of the mirror under test, obtained from pairs of measurements made with slight transverse shifts in X and Y. Adaptive optics systems typically provide an actuated periscope between wavefront sensor (WFS) and commonmode optics, used for lateral registration of deformable mirror (DM) to WFS. This periscope permits independent adjustment of either pupil or focal spot incident on the WFS. It would be used to give the required lateral pupil motion between common and non-common segments, analogous to the lateral shifts of the two phase contributions in the lab Fizeau. The technique is based on a completely new approach to calibration of phase. It offers unusual flexibility with regard to the transverse spatial frequency scales probed, and will give results quite quickly, making use of no auxiliary equipment other than that built into the adaptive optics system. The new technique may be applied to provide novel calibration information about other optical systems in which the beam may be shifted transversely in a controlled way.
Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence
Sinefeld, David; Paudel, Hari P.; Ouzounov, Dimitre G.; Bifano, Thomas G.; Xu, Chris
2015-01-01
We demonstrate adaptive optics system based on nonlinear feedback from 3- and 4-photon fluorescence. The system is based on femtosecond pulses created by soliton self-frequency shift of a 1550-nm fiber-based femtosecond laser together with micro-electro-mechanical system (MEMS) phase spatial light modulator (SLM). We perturb the 1020-segment SLM using an orthogonal Walsh sequence basis set with a modified version of three-point phase shifting interferometry. We show the improvement after aberrations correction in 3-photon signal from fluorescent beads. In addition, we compare the improvement obtained in the same adaptive optical system for 2-, 3- and 4-photon fluorescence using dye pool. We show that signal improvement resulting from aberration correction grows exponentially as a function of the order of nonlinearity. PMID:26698772
Single-mode dispersive waves and soliton microcomb dynamics
Yi, Xu; Yang, Qi-Fan; Zhang, Xueyue; Yang, Ki Youl; Li, Xinbai; Vahala, Kerry
2017-01-01
Dissipative Kerr solitons are self-sustaining optical wavepackets in resonators. They use the Kerr nonlinearity to both compensate dispersion and offset optical loss. Besides providing insights into nonlinear resonator physics, they can be applied in frequency metrology, precision clocks, and spectroscopy. Like other optical solitons, the dissipative Kerr soliton can radiate power as a dispersive wave through a process that is the optical analogue of Cherenkov radiation. Dispersive waves typically consist of an ensemble of optical modes. Here, a limiting case is studied in which the dispersive wave is concentrated into a single cavity mode. In this limit, its interaction with the soliton induces hysteresis behaviour in the soliton's spectral and temporal properties. Also, an operating point of enhanced repetition-rate stability occurs through balance of dispersive-wave recoil and Raman-induced soliton-self-frequency shift. The single-mode dispersive wave can therefore provide quiet states of soliton comb operation useful in many applications. PMID:28332495
Photovoltaic dependence of photorefractive grating on the externally applied dc electric field
NASA Astrophysics Data System (ADS)
Maurya, M. K.; Yadav, R. A.
2013-04-01
Photovoltaic dependence of photorefractive grating (i.e., space-charge field and phase-shift of the index grating) on the externally applied dc electric field in photovoltaic-photorefractive materials has been investigated. The influence of photovoltaic field (EPhN), diffusion field and carrier concentration ratio r (donor/acceptor impurity concentration ratio) on the space-charge field (SCF) and phase-shift of the index grating in the presence and absence of the externally applied dc electric field have also been studied in details. Our results show that, for a given value of EPhN and r, the magnitude of the SCF and phase-shift of the index grating can be enhanced significantly by employing the lower dc electric field (EON<10) across the photovoltaic-photorefractive crystal and higher value of diffusion field (EDN>40). Such an enhancement in the magnitude of the SCF and phase-shift of the index grating are responsible for the strongest beam coupling in photovoltaic-photorefractive materials. This sufficiently strong beam coupling increases the two-beam coupling gain that may be exceed the absorption and reflection losses of the photovoltaic-photorefractive sample, and optical amplification can occur. The higher value of optical amplification in photovoltaic-photorefractive sample is required for the every applications of photorefractive effect so that technology based on the photorefractive effect such as holographic storage devices, optical information processing, acousto-optic tunable filters, gyro-sensors, optical modulators, optical switches, photorefractive-photovoltaic solitons, biomedical applications, and frequency converters could be improved.
NASA Astrophysics Data System (ADS)
Ma, Qian; Liu, Yu; Xiang, Yuanjiang
2018-07-01
Due to its merits of flexible bandwidth allocation and robustness towards fiber transmission impairments, coherent optical orthogonal frequency division multiplexing (CO-OFDM) technology draws a lot of attention for passive optical networks (PON). However, a CO-OFDM system is vulnerable to frequency offsets between modulated optical signals and optical local oscillators (OLO). This is particularly serious for low cost PONs where low cost lasers are used. Thus, it is of great interest to develop efficient algorithms for frequency synchronization in CO-OFDM systems. Usually frequency synchronization proposed in CO-OFDM systems are done by detecting the phase shift in time domain. In such a way, there is a trade-off between estimation accuracy and range. Considering that the integer frequency offset (IFO) contributes to the major frequency offset, a more efficient method to estimate IFO is of demand. By detecting IFO induced circular channel rotation (CCR), the frequency offset can be directly estimated after fast Fourier transforming (FFT). In this paper, circular acquisition offset frequency and timing synchronization (CAO-FTS) scheme is proposed. A specially-designed frequency domain pseudo noise (PN) sequence is used for CCR detection and timing synchronization. Full-range frequency offset compensation and non-plateau timing synchronization are experimentally demonstrated in presence of fiber dispersion. Based on CAO-FTS, 16.9 Gb/s CO-OFDM signal is successfully delivered over a span of 80-km single mode fiber.
VISAR Analysis in the Frequency Domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolan, D. H.; Specht, P.
2017-05-18
VISAR measurements are typically analyzed in the time domain, where velocity is approximately proportional to fringe shift. Moving to the frequency domain clarifies the limitations of this approximation and suggests several improvements. For example, optical dispersion preserves high-frequency information, so a zero-dispersion (air delay) interferometer does not provide optimal time resolution. Combined VISAR measurements can also improve time resolution. With adequate bandwidth and reasonable noise levels, it is quite possible to achieve better resolution than the VISAR approximation allows.
Imaging Optical Frequencies with 100 μHz Precision and 1.1 μm Resolution.
Marti, G Edward; Hutson, Ross B; Goban, Akihisa; Campbell, Sara L; Poli, Nicola; Ye, Jun
2018-03-09
We implement imaging spectroscopy of the optical clock transition of lattice-trapped degenerate fermionic Sr in the Mott-insulating regime, combining micron spatial resolution with submillihertz spectral precision. We use these tools to demonstrate atomic coherence for up to 15 s on the clock transition and reach a record frequency precision of 2.5×10^{-19}. We perform the most rapid evaluation of trapping light shifts and record a 150 mHz linewidth, the narrowest Rabi line shape observed on a coherent optical transition. The important emerging capability of combining high-resolution imaging and spectroscopy will improve the clock precision, and provide a path towards measuring many-body interactions and testing fundamental physics.
Magnetic Compensation for Second-Order Doppler Shift in LITS
NASA Technical Reports Server (NTRS)
Burt, Eric; Tjoelker, Robert
2008-01-01
The uncertainty in the frequency of a linear-ion-trap frequency standard (LITS) can be reduced substantially by use of a very small magnetic inhomogeneity tailored to compensate for the residual second-order Doppler shift. An effect associated with the relativistic time dilatation, one cause of the second-order Doppler shift, is ion motion that is attributable to the trapping radio-frequency (RF)electromagnetic field used to trap ions. The second-order Doppler shift is reduced by using a multi-pole trap; however it is still the largest source of systematic frequency shift in the latest generation of LITSs, which are among the most stable clocks in the world. The present compensation scheme reduces the frequency instability of the affected LITS to about a tenth of its previous value. The basic principles of prior generation LITSs were discussed in several prior NASA Tech Briefs articles. Below are recapitulated only those items of basic information necessary to place the present development in context. A LITS includes a microwave local oscillator, the frequency of which is stabilized by comparison with the frequency of the ground state hyperfine transition of 199Hg+ ions. The comparison involves a combination of optical and microwave excitation and interrogation of the ions in a linear ion trap in the presence of a nominally uniform magnetic field. In the current version of the LITS, there are two connected traps (see figure): (1) a quadrupole trap wherein the optical excitation and measurement take place and (2) a 12-pole trap (denoted the resonance trap), wherein the microwave interrogation takes place. The ions are initially loaded into the quadrupole trap and are thereafter shuttled between the two traps. Shuttling ions into the resonance trap allows sensitive microwave interrogation to take place well away from loading interference. The axial magnetic field for the resonance trap is generated by an electric current in a finely wound wire coil surrounded by magnetic shields. In the quadrupole and 12-pole traps, the potentials are produced by RF voltages applied to even numbers (4 and 12, respectively) of parallel rods equally spaced around a circle. The polarity of the voltage on each rod is opposite that of the voltage on the adjacent rod. As a result, the amplitude of the RF trapping field is zero along the centerline and increases, with radius, to a maximum value near the rods.
Li, Xiujian; Liao, Jiali; Nie, Yongming; Marko, Matthew; Jia, Hui; Liu, Ju; Wang, Xiaochun; Wong, Chee Wei
2015-04-20
We demonstrate the temporal and spectral evolution of picosecond soliton in the slow light silicon photonic crystal waveguides (PhCWs) by sum frequency generation cross-correlation frequency resolved optical grating (SFG-XFROG) and nonlinear Schrödinger equation (NLSE) modeling. The reference pulses for the SFG-XFROG measurements are unambiguously pre-characterized by the second harmonic generation frequency resolved optical gating (SHG-FROG) assisted with the combination of NLSE simulations and optical spectrum analyzer (OSA) measurements. Regardless of the inevitable nonlinear two photon absorption, high order soliton compressions have been observed remarkably owing to the slow light enhanced nonlinear effects in the silicon PhCWs. Both the measurements and the further numerical analyses of the pulse dynamics indicate that, the free carrier dispersion (FCD) enhanced by the slow light effects is mainly responsible for the compression, the acceleration, and the spectral blue shift of the soliton.
Nonlinear optics of fibre event horizons.
Webb, Karen E; Erkintalo, Miro; Xu, Yiqing; Broderick, Neil G R; Dudley, John M; Genty, Goëry; Murdoch, Stuart G
2014-09-17
The nonlinear interaction of light in an optical fibre can mimic the physics at an event horizon. This analogue arises when a weak probe wave is unable to pass through an intense soliton, despite propagating at a different velocity. To date, these dynamics have been described in the time domain in terms of a soliton-induced refractive index barrier that modifies the velocity of the probe. Here we complete the physical description of fibre-optic event horizons by presenting a full frequency-domain description in terms of cascaded four-wave mixing between discrete single-frequency fields, and experimentally demonstrate signature frequency shifts using continuous wave lasers. Our description is confirmed by the remarkable agreement with experiments performed in the continuum limit, reached using ultrafast lasers. We anticipate that clarifying the description of fibre event horizons will significantly impact on the description of horizon dynamics and soliton interactions in photonics and other systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Punitha, K.; Sivakumar, R., E-mail: krsivakumar1979@yahoo.com; Sanjeeviraja, C.
2014-03-21
In this work, we present the pulsing frequency induced change in the structural, optical, vibrational, and luminescence properties of tungsten oxide (WO{sub 3}) thin films deposited on microscopic glass and fluorine doped tin oxide (SnO{sub 2}:F) coated glass substrates by pulsed dc magnetron sputtering technique. The WO{sub 3} films deposited on SnO{sub 2}:F substrate belongs to monoclinic phase. The pulsing frequency has a significant influence on the preferred orientation and crystallinity of WO{sub 3} film. The maximum optical transmittance of 85% was observed for the film and the slight shift in transmission threshold towards higher wavelength region with increasing pulsingmore » frequency revealed the systematic reduction in optical energy band gap (3.78 to 3.13 eV) of the films. The refractive index (n) of films are found to decrease (1.832 to 1.333 at 550 nm) with increasing pulsing frequency and the average value of extinction coefficient (k) is in the order of 10{sup −3}. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (E{sub d}) parameters, dielectric constants, plasma frequency, oscillator strength, and oscillator energy (E{sub o}) of WO{sub 3} films were calculated and reported for the first time due to variation in pulsing frequency during deposition by pulsed dc magnetron sputtering. The E{sub o} is change between 6.30 and 3.88 eV, while the E{sub d} varies from 25.81 to 7.88 eV, with pulsing frequency. The Raman peak observed at 1095 cm{sup −1} attributes the presence of W-O symmetric stretching vibration. The slight shift in photoluminescence band is attributed to the difference in excitons transition. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.« less
Refractive-index-sensing fiber comb using intracavity multi-mode interference fiber sensor
NASA Astrophysics Data System (ADS)
Oe, Ryo; Minamikawa, Takeo; Taue, Shuji; Fukano, Hideki; Nakajima, Yoshiaki; Minoshima, Kaoru; Yasui, Takeshi
2018-02-01
Refractive index measurement is important for evaluation of liquid materials, optical components, and bio sensing. One promising approach for such measurement is use of optical fiber sensors such as surface plasmonic resonance or multi-mode interference (MMI), which measure the change of optical spectrum resulting from the refractive index change. However, the precision of refractive index measurement is limited by the performance of optical spectrum analyzer. If such the refractive index measurement can be performed in radio frequency (RF) region in place of optical region, the measurement precision will be further improved by the frequency-standard-based RF measurement. To this end, we focus on the disturbance-to-RF conversion in a fiber optical frequency comb (OFC) cavity. Since frequency spacing frep of OFC depends on an optical cavity length nL, frep sensitively reflects the external disturbance interacted with nL. Although we previously demonstrated the precise strain measurement based on the frep measurement, the measurable physical quantity is limited to strain or temperature, which directly interacts with the fiber cavity itself. If a functional fiber sensor can be installed into the fiber OFC cavity, the measurable physical quantity will be largely expanded. In this paper, we introduce a MMI fiber sensor into a ring-type fiber OFC cavity for refractive index measurement. We confirmed the refractive-index-dependent frep shift.
NASA Astrophysics Data System (ADS)
Sowoidnich, Kay; Kronfeldt, Heinz-Detlef
2012-05-01
The identification of food products and the detection of adulteration are of global interest for food safety and quality control. We present a non-invasive in-situ approach for the differentiation of meat from selected animal species using microsystem diode laser based shifted excitation Raman difference spectroscopy (SERDS) at 671 nm and 785 nm. In that way, the fingerprint Raman spectra can be used for identification without a disturbing fluorescence background masking Raman signals often occurring in the investigation of biological samples. Two miniaturized SERDS measurement heads including the diode laser and all optical elements are fiber-optically coupled to compact laboratory spectrometers. To realize two slightly shifted excitation wavelengths necessary for SERDS the 671 nm laser (spectral shift: 0.7 nm, optical power: 50 mW) comprises two separate laser cavities each with a volume Bragg grating for frequency selection whereas the 785 nm light source (spectral shift: 0.5 nm, optical power: 110 mW) is a distributed feedback laser. For our investigations we chose the most consumed meat types in the US and Europe, i.e. chicken and turkey as white meat as well as pork and beef as red meat species. The applied optical powers were sufficient to detect meat Raman spectra with integration times of 10 seconds pointing out the ability for a rapid discrimination of meat samples. Principal components analysis was applied to the SERDS spectra to reveal spectral differences between the animals suitable for their identification. The results will be discussed with respect to specific characteristics of the analyzed meat species.
NASA Astrophysics Data System (ADS)
Voigt, Kristen; Hertzberg, Jared; Dutta, Sudeep; Budoyo, Rangga; Ballard, Cody; Lobb, Chris; Wellstood, Frederick
As part of an experiment to optically trap 87Rb atoms near a superconducting device, we have coupled an optical fiber to a translatable thin-film lumped-element superconducting Al microwave resonator that is cooled to 15 mK in a dilution refrigerator. The lumped-element resonator has a resonance frequency of 6.15 GHz, a quality factor of 8 x 105 at high powers, and is mounted inside a superconducting aluminum 3D cavity. The 60-µm-diameter optical fiber passes through small openings in the cavity and close to the lumped-element resonator. The 3D cavity is mounted on an x-z Attocube-translation stage that allows the lumped-element resonator and optical fiber to be moved relative to each other. When the resonator is brought near to the fiber, we observe a shift in resonance frequency, of up to 8 MHz, due to the presence of the fiber dielectric. When optical power is sent through the fiber, Rayleigh scattering in the fiber causes a position-dependent weak illumination of the thin-film resonator affecting its resonance frequency and Q. We model the optical response of the resonator by taking into account optical production, recombination, and diffusion of quasiparticles as well as the non-uniform position-dependent illumination of the resonator.
Hydrodynamic influences on acoustical and optical backscatter in a fringing reef environment
NASA Astrophysics Data System (ADS)
Pawlak, Geno; Moline, Mark A.; Terrill, Eric J.; Colin, Patrick L.
2017-01-01
Observations of hydrodynamics along with optical and acoustical water characteristics in a tropical fringing reef environment reveal a distinct signature associated with flow characteristics and tidal conditions. Flow conditions are dominated by tidal forcing with an offshore component from the reef flat during ebb. Measurements span variable wave conditions enabling identification of wave effects on optical and acoustical water properties. High-frequency acoustic backscatter (6 MHz) is strongly correlated with tidal forcing increasing with offshore directed flow and modulated by wave height, indicating dominant hydrodynamic influence. Backscatter at 300 and 1200 kHz is predominantly diurnal suggesting a biological component. Optical backscatter is closely correlated with high-frequency acoustic backscatter across the range of study conditions. Acoustic backscatter frequency dependence is used along with changes in optical properties to interpret particle-size variations. Changes across wave heights suggest shifts in particle-size distributions with increases in relative concentrations of smaller particles for larger wave conditions. Establishing a connection between the physical processes of a fringing tropical reef and the resulting acoustical and optical signals allows for interpretation and forecasting of the remote sensing response of these phenomena over larger scales.
Tunable terahertz reflection spectrum based on band gaps of GaP materials excited by ultrasonic
NASA Astrophysics Data System (ADS)
Cui, H.; Zhang, X. B.; Wang, X. F.; Wang, G. Q.
2018-02-01
Tunable terahertz (THz) reflection spectrum, ranged from 0.2 to 8 THz, in band gaps of gallium phosphide (GaP) materials excited by ultrasonic is investigated in the present paper, in which tunable ultrasonic and terahertz wave collinear transmission in the same direction is postulated. Numerical simulation results show that, under the acousto-optic interaction, band gaps of transverse optical phonon polariton dispersion curves are turned on, this leads to a dis-propagation of polariton in GaP bulk. On the other side, GaP material has less absorption to THz wave according to experimental studies, as indicates that THz wave could be reflected by the band gaps spontaneously. The band gaps width and acousto-optic coupling strength are proportional with ultrasonic frequency and its intensity in ultrasonic frequency range of 0-250 MHz, in which low-frequency branch of transverse optical phonon polariton dispersion curves demonstrate periodicity and folding as well as. With the increase of ultrasonic frequency, frequency of band gap is blue-shifted, and total reflectivity decreased with -1-order and -2-order reflectivity decrease. The band gaps converge to the restrahlen band infinitely with frequency of ultrasonic exceeding over 250 MHz, total reflectivity of which is attenuated. As is show above, reflection of THz wave can be accommodated by regulating the frequency and its intensity of ultrasonic frequency. Relevant technology may be available in tunable THz frequency selection and filtering.
A precise few-nucleon size difference by isotope shift measurements of helium
NASA Astrophysics Data System (ADS)
Rezaeian, Nima Hassan
We perform high precision measurements of an isotope shift between the two stable isotopes of helium. We use laser excitation of the 23 S1 -- 23P0 transition at 1083 .... in a metastable beam of 3He and 4He atoms. A newly developed tunable laser frequency selector along with our previous electro-optic frequency modulation technique provides extremely reliable, adaptable, and precise frequency and intensity control. The intensity control contributes negligibly to overall experimental uncertainty by selecting (t selection < 50 ) and stabilizing the intensity of the required sideband and eliminating (˜10-5) the unwanted frequencies generated during the modulation of 1083 nm laser carrier frequency. The selection technique uses a MEMS based fiber switch (tswitch ≈ 10 ms) and several temperature stabilized narrow band (˜3 GHz) fiber gratings. A fiber based optical circulator and an inline fiber amplifier provide the desired isolation and the net gain for the selected frequency. Also rapid (˜2 sec.) alternating measurements of the 23 S1 -- 23P0 interval for both species of helium is achieved with a custom fiber laser for simultaneous optical pumping. A servo-controlled retro-reflected laser beam eliminates residual Doppler effects during the isotope shift measurement. An improved detection design and software control makes negligible subtle potential biases in the data collection. With these advances, combined with new internal and external consistency checks, we are able to obtain results consistent with the best previous measurements, but with substantially improved precision. Our measurement of the 23S 1 -- 23P0 isotope shift between 3He and 4He is 31 097 535.2 (5)kHz. The most recent theoretic calculation combined with this measuremen. yields a new determination for nuclear size differences between 3He and 4He: Deltarc = 0.292 6 (1)exp (8)th(52)expfm, with a precision of less than a part in 104 coming from the experimental uncertainty (first parenthesis), and a part in 10 3 coming from theory. This value is consistent with electron scattering measurement, but a factor of 10 more precise. It is inconsistent (4 sigma) with a recent isotope shift measurement on another helium transition (2 1S0 -- 23 S1). Comparisons with ongoing muonic helium measurements may provide clues to the origin of what is currently called the proton puzzle: electronic and muonic measurements of the proton size do not agree. In the future, the experimental improvements described here can be used for higher precision tests of atomic theory and quantum electrodynamics, as well as an important atomic physics source of the fine structure constant.
Doppler-corrected Balmer spectroscopy of Rydberg positronium
NASA Astrophysics Data System (ADS)
Jones, A. C. L.; Hisakado, T. H.; Goldman, H. J.; Tom, H. W. K.; Mills, A. P.; Cassidy, D. B.
2014-07-01
The production of long-lived Rydberg positronium (Ps) and correction for Doppler shifts in the excitation laser frequencies are crucial elements of proposed measurements of the gravitational freefall of antimatter and for precision measurements of the optical spectrum of Ps. Using a two-step optical transition via 2P levels, we have prepared Ps atoms in Rydberg states up to the term limit. The spectra are corrected for the first-order Doppler shift using measured velocities, and the Balmer transitions are resolved for 15≤n≤31. The excitation signal amplitude begins to decrease for n >50, consistent with the onset of motional electric field ionization in the 3.5-mT magnetic field at the Ps formation target.
Observation of an optical spring with a beam splitter
NASA Astrophysics Data System (ADS)
Cripe, Jonathan; Danz, Baylee; Lane, Benjamin; Lorio, Mary Catherine; Falcone, Julia; Cole, Garrett D.; Corbitt, Thomas
2018-05-01
We present the experimental observation of an optical spring without the use of an optical cavity. The optical spring is produced by interference at a beamsplitter and, in principle, does not have the damping force associated with optical springs created in detuned cavities. The experiment consists of a Michelson-Sagnac interferometer (with no recycling cavities) with a partially reflective GaAs microresonator as the beamsplitter that produces the optical spring. Our experimental measurements at input powers of up to 360 mW show the shift of the optical spring frequency as a function of power and are in excellent agreement with theoretical predictions. In addition, we show that the optical spring is able to keep the interferometer stable and locked without the use of external feedback.
NASA Astrophysics Data System (ADS)
Zhong, Xianqiong; Yao, Na; Sheng, Jia'nan; Cheng, Ke
2018-02-01
Nonlinear evolutions of dark soliton pulses with initially constant frequency chirps are investigated numerically for different soliton orders and chirp parameters in different dispersion regimes of optical fibers. The results show interestingly that, in the normal dispersion regime, the evolution properties remain unchanged apart from their straight-line shifts of the temporal trajectories compared with the chirp-free case. While in the anomalous dispersion regime, the dark solitons can evolve to bright-dark soliton trains with a wide black soliton in the symmetric center. The longer the distance, the more the pulse number. The larger the soliton order, the more the pulse number at the same distance. Similarly, straight-line shift of the temporal trajectory of the bright-dark soliton trains will also appear. The shifting amount and direction depend on the absolute value and the sign of the chirp parameter, respectively. This result inspires people to generate bright-dark soliton trains by using ordinary passive optical fibers instead of fiber lasers. Besides, this work also provides us an alternative approach to guide the formed solitons or soliton trains to move their temporal trajectories along straight lines.
NASA Astrophysics Data System (ADS)
Zhang, Xuyan; Zhang, Zhiyao; Wang, Shubing; Liang, Dong; Li, Heping; Liu, Yong
2018-03-01
We propose and demonstrate an approach that can achieve high-resolution quantization by employing soliton self-frequency shift and spectral compression. Our approach is based on a bi-directional comb-fiber architecture which is composed of a Sagnac-loop-based mirror and a comb-like combination of N sections of interleaved single-mode fibers and high nonlinear fibers. The Sagnac-loop-based mirror placed at the terminal of a bus line reflects the optical pulses back to the bus line to achieve additional N-stage spectral compression, thus single-stage soliton self-frequency shift (SSFS) and (2 N - 1)-stage spectral compression are realized in the bi-directional scheme. The fiber length in the architecture is numerically optimized, and the proposed quantization scheme is evaluated by both simulation and experiment in the case of N = 2. In the experiment, a quantization resolution of 6.2 bits is obtained, which is 1.2-bit higher than that of its uni-directional counterpart.
NASA Astrophysics Data System (ADS)
Jiang, Wen; Yang, Yanfu; Zhang, Qun; Sun, Yunxu; Zhong, Kangping; Zhou, Xian; Yao, Yong
2016-09-01
The frequency offset estimation (FOE) schemes based on Kalman filter are proposed and investigated in detail via numerical simulation and experiment. The schemes consist of a modulation phase removing stage and Kalman filter estimation stage. In the second stage, the Kalman filters are employed for tracking either differential angles or differential data between two successive symbols. Several implementations of the proposed FOE scheme are compared by employing different modulation removing methods and two Kalman algorithms. The optimal FOE implementation is suggested for different operating conditions including optical signal-to-noise ratio and the number of the available data symbols.
Improved polar display technique of the phase angle of optical interference
NASA Astrophysics Data System (ADS)
Umeda, N.; Shirai, H.; Takasaki, H.
1984-02-01
A technique which displays the fractional order of optical interference by the azimuthal angle of radial arm has been improved by using a digital electronic circuit such as phase-locked loop and D flip-flop. The phase quadrature reference signals of this system are derived by reforming a reference signal and shifting it by a quarter wavelength referring to its waveform. As the result the orthogonal phase relation of the two signals is not affected by the frequency of the signal. This system has been proven to operate properly over the frequency range of 200-600 kHz without readjusting the electric system.
Doppler lidar wind measurement with the edge technique
NASA Technical Reports Server (NTRS)
Korb, C. Laurence; Gentry, Bruce M.
1992-01-01
The edge technique is a new and powerful method for measuring small frequency shifts. Range resolved lidar measurements of winds can be made with high accuracy and high vertical resolution using the edge technique to measure the Doppler shift of an atmospheric backscattered signal from a pulsed laser. The edge technique can be used at near-infrared or visible wavelengths using well developed solid state lasers and detectors with various edge filters. In the edge technique, the laser frequency is located on the steep slope of the spectral response function of a high resolution optical filter. Due to the steep slope of the edge, very small frequency shifts cause large changes in measured signal. The frequency of the outgoing laser pulse is determined by measuring its location on the edge of the filter. This is accomplished by sending a small portion of the beam to the edge detection setup where the incoming light is split into two channels - an edge filter and an energy monitor channel. The energy monitor signal is used to normalize the edge filter signal for magnitude. The laser return backscattered from the atmosphere is collected by a telescope and directed through the edge detection setup to determine its frequency (location on the edge) in a similar manner for each range element. The Doppler shift, and thus the wind, is determined from a differential measurement of the frequency of the outgoing laser pulse and the frequency of the laser return backscattered from the atmosphere. We have conducted simulations of the performance of an edge lidar system using an injection seeded pulsed Nd:YAG laser at 1.06 microns. The central fringe of a Fabry-Perot etalon is used as a high resolution edge filter to measure the shift of the aerosol return.
Coherent Population Trapping and Optical Ramsey Interference for Compact Rubidium Clock Development
NASA Astrophysics Data System (ADS)
Warren, Zachary Aron
Coherent population trapping (CPT) and optical Ramsey interference provide new avenues for developing compact, high-performance atomic clocks. In this work, I have studied the fundamental aspects of CPT and optical Ramsey interference for Raman clock development. This thesis research is composed of two parts: theoretical and experimental studies. The theoretical component of the research was initially based on pre-existing atomic models of a three-level ?-type system in which the phenomena of CPT and Ramsey interference are formed. This model served as a starting point for studying basic characteristics of CPT and Ramsey interference such as power dependence of CPT, effects of average detuning, and ground-state decoherence on linewidth, which directly impact the performance of the Raman clock. The basic three-level model was also used to model pulsed CPT excitation and measure light shift in Ramsey interference which imposes a fundamental limit on the long-term frequency stability of the Raman clock. The theoretical calculations illustrate reduction (or suppression) of light shift in Ramsey interference as an important advantage over CPT for Raman clock development. To make the model more accurate than an ideal three-level system, I developed a comprehensive atomic model using density-matrix equations including all sixteen Zeeman sublevels in the D1 manifold of 87Rb atoms in a vapor medium. The multi-level atomic model has been used for investigating characteristics of CPT and Ramsey interference under different optical excitation schemes pertaining to the polarization states of the frequency-modulated CPT beam in a Raman clock. It is also used to study the effects of axial and traverse magnetic fields on the contrast of CPT and Ramsey interference. More importantly, the multi-level atomic model is also used to accurately calculate light shift in Ramsey interference in the D1 manifold of 87Rb atoms by taking into account all possible off-resonant excitations and the ground-state decoherence among the Zeeman sublevels. Light shift suppression in Ramsey interference with pulse saturation is also found to be evident in this comprehensive model. In the experimental component of the research, I designed a prototype of the Raman clock using a small (2 cm in length), buffer-gas filled, and isotopically pure 87Rb cell. A fiber-coupled waveguide electro-optic modulator was used to generate the frequency-modulated CPT beam for the experiments. The experimental setup was operated either by continuous excitation or pulsed excitation for experimentally characterizing CPT and Ramsey interference under different experimental conditions and for testing different optical excitation schemes which were investigated theoretically. Several iterations of the clock physics package were developed in order to attain better frequency stability performance in the Raman clock. The experimental work also provided a basis to develop a new repeated-query technique for producing an ultra-narrow linewidth central fringe with a high S/N ratio, and suppressing the side fringes in Ramsey interference. The above described research was carried out keeping in mind compact, high-performance clock development, which relies on technologies that can be miniaturized. Vapor cell based atomic clocks are ideal candidates for compact clock technology. The CPT phenomenon, observed by Raman excitation in a vapor medium, is a promising candidate for compact, high-performance Raman clock development. However, atom-field interaction involved in a vapor medium is often more complex than other media such as cold atom or atomic beam. It is difficult to model this interaction in order to predict its influence on CPT characteristics and, hence, the performance of the Raman clock. This dissertation addresses one such problem by developing a comprehensive atomic model to investigate light shift and modification of light shift in the Raman clock, particularly with pulsed excitation. It demonstrates a clear possibility of reducing (or suppressing) the light shift associated with Ramsey interference in a vapor medium for achieving higher frequency stability in the Raman clock. Additionally, theoretical comparisons of various optical excitation techniques have been calculated to demonstrate the relative strengths and weaknesses of different schemes for Raman clock development. (Abstract shortened by ProQuest.).
Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers.
Chen, He; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing
2016-05-19
Pulsed fibre lasers operating in the eye-safe 2 μm spectral region have numerous potential applications in areas such as remote sensing, medicine, mid-infrared frequency conversion, and free-space communication. Here, for the first time, we demonstrate versatile 2 μm ps-ns pulses generation from Tm-based fibre lasers based on frequency shifted feedback and provide a comprehensive report of their special behaviors. The lasers are featured with elegant construction and the unparalleled capacity of generating versatile pulses. The self-starting mode-locking is initiated by an intra-cavity acousto-optical frequency shifter. Diversified mode-locked pulse dynamics were observed by altering the pump power, intra-cavity polarization state and cavity structure, including as short as 8 ps single pulse sequence, pulse bundle state and up to 12 nJ, 3 ns nanosecond rectangular pulse. A reflective nonlinear optical loop mirror was introduced to successfully shorten the pulses from 24 ps to 8 ps. Beside the mode-locking operation, flexible Q-switching and Q-switched mode-locking operation can also be readily achieved in the same cavity. Up to 78 μJ high energy nanosecond pulse can be generated in this regime. Several intriguing pulse dynamics are characterized and discussed.
NASA Astrophysics Data System (ADS)
Kosarev, N. I.
2018-03-01
The non-LTE radiative transfer in spherical plasma containing resonantly absorbing light ions has been studied numerically under conditions of macroscopic motion of substance. Two types of macroscopic motion were simulated: radial expansion and compression (pulsation) of spherical plasma; rotation of plasma relative to an axis of symmetry. The calculations of absorption line profile of transmitted broadband radiation and the emission line profile were performed for the optically dense plasma of calcium ions on the resonance transition with wavelength 397 nm. Numerical results predict frequency shifts in the emission line profile to red wing of the spectrum for radial expansion of the plasma and to blue wing of the spectrum for the plasma compression at an average velocity of ions along the ray of sight equal to zero. The width of the emission line profile of a rotating plasma considerably exceeds the width of the profile of the static plasma, and the shift of the central frequency of resonance transition from the resonance frequency of the static plasma gives a linear velocity of ion motion along a given ray trajectory in units of thermal velocity. Knowledge of the linear radial velocity of ions can be useful for diagnostic purposes in determining the frequency and period of rotation of optically dense plasmas.
Automatic Alignment of Displacement-Measuring Interferometer
NASA Technical Reports Server (NTRS)
Halverson, Peter; Regehr, Martin; Spero, Robert; Alvarez-Salazar, Oscar; Loya, Frank; Logan, Jennifer
2006-01-01
A control system strives to maintain the correct alignment of a laser beam in an interferometer dedicated to measuring the displacement or distance between two fiducial corner-cube reflectors. The correct alignment of the laser beam is parallel to the line between the corner points of the corner-cube reflectors: Any deviation from parallelism changes the length of the optical path between the reflectors, thereby introducing a displacement or distance measurement error. On the basis of the geometrical optics of corner-cube reflectors, the length of the optical path can be shown to be L = L(sub 0)cos theta, where L(sub 0) is the distance between the corner points and theta is the misalignment angle. Therefore, the measurement error is given by DeltaL = L(sub 0)(cos theta - 1). In the usual case in which the misalignment is small, this error can be approximated as DeltaL approximately equal to -L(sub 0)theta sup 2/2. The control system (see figure) is implemented partly in hardware and partly in software. The control system includes three piezoelectric actuators for rapid, fine adjustment of the direction of the laser beam. The voltages applied to the piezoelectric actuators include components designed to scan the beam in a circular pattern so that the beam traces out a narrow cone (60 microradians wide in the initial application) about the direction in which it is nominally aimed. This scan is performed at a frequency (2.5 Hz in the initial application) well below the resonance frequency of any vibration of the interferometer. The laser beam makes a round trip to both corner-cube reflectors and then interferes with the launched beam. The interference is detected on a photodiode. The length of the optical path is measured by a heterodyne technique: A 100- kHz frequency shift between the launched beam and a reference beam imposes, on the detected signal, an interferometric phase shift proportional to the length of the optical path. A phase meter comprising analog filters and specialized digital circuitry converts the phase shift to an indication of displacement, generating a digital signal proportional to the path length.
Optical resonators for true-time-delay beam steering
NASA Astrophysics Data System (ADS)
Gesell, Leslie H.; Evanko, Stephen M.
1996-06-01
Conventional true time delay beamforming and steering devices rely on switching between various lengths of delay line. Therefore only discrete delays are possible. Proposed is a new photonics concept for true time delay beamforming which provides a finely controlled continuum of delays with switching speeds on the order of 10's of nanoseconds or faster. The architecture uses an array of waveguide cavities with different resonate frequencies to channelize the signal. Each spectral component of the signal is phase shifted by an amount proportional to the frequency of that component and the desired time delay. These phase shifted spectral components are then summed to obtain the delayed signal. This paper provides an overview of the results of a Phase I SBIR contract where this concept has been refined and analyzed. The parameters for an operational system are determined and indication of the feasibility of this approach is given. Among the issues addressed are the requirements of the resonators and the methods necessary to implement fiber optic Bragg gratings as these resonators.
Progress towards a cesium atomic fountain clock
NASA Astrophysics Data System (ADS)
Klipstein, William M.; Raithel, Georg A.; Rolston, Steven L.; Phillips, William D.; Ekstrom, Christopher R.
1997-04-01
We have been developing a fountain of laser--cooled cesium atoms for use as an atomic clock. Our design largely follows that of the fountain built at LPTF in Paris. In our fountain, chirp--slowed atoms are first collected in a Magneto--Optic Trap (MOT) and then cooled to a few μK in optical molasses. The cooled atoms are then launched vertically into a "moving molasses" by shifting the frequencies of the vertical cooling beams. The atoms then travel through a microwave cavity tuned to the 9.2 GHz cesium hyperfine frequency for a first Ramsey pulse. After roughly 0.5 seconds of free flight under the influence of gravity, the atoms fall back through the microwave cavity and into an optical state--detection region which detects the number of atoms making the F=3 arrow F=4 transition. The increased Ramsey interaction time improves the short--time precision as compared to traditional atomic beam experiments, while many systematic shifts which limit the accuracy of an atomic beam clock are reduced by the low atomic velocity and the retrace of the atomic trajectory through the microwave cavity. We will discuss the progress towards a working fountain being assembled in our laboratory.
Application of Spectroscopic Doppler Velocimetry for Measurement of Streamwise Vorticity
NASA Technical Reports Server (NTRS)
Fagan, Amy; Zaman, Khairul B.; Elam, Kristie A.; Clem, Michelle M.
2013-01-01
A spectroscopic Doppler velocimetry technique has been developed for measuring two transverse components of velocity and hence streamwise vorticity in free jet flows. The nonintrusive optical measurement system uses Mie scattering from a 200 mW green continuous-wave laser interacting with dust and other tracer particulates naturally present in the air flow to measure the velocities. Scattered light is collected in two opposing directions to provide measurements of two orthogonal velocity components. An air-spaced Fabry-Perot interferometer is used for spectral analysis to determine the optical frequency shift between the incident laser light and the Mie scattered light. This frequency shift is directly proportional to the velocity component in the direction of the bisector of the incident and scattered light wave propagation vectors. Data were acquired for jet Mach numbers of 1.73 and 0.99 using a convergent 1.27-cm diameter round nozzle fitted with a single triangular "delta-tab". The velocity components and the streamwise vorticity calculated from the measurements are presented. The results demonstrate the ability of this novel optical system to obtain velocity and vorticity data without any artificial seeding and using a low power laser system.
A reflective-type, quasi-optical metasurface filter
NASA Astrophysics Data System (ADS)
Sima, Boyu; Momeni Hasan Abadi, Seyed Mohamad Amin; Behdad, Nader
2017-08-01
We introduce a new technique for designing quasi-optical, reflective-type spatial filters. The proposed filter is a reflective metasurface with a one dimensional, frequency-dependent phase gradient along the aperture. By careful design of each unit cell of the metasurface, the phase shift gradient provided by the adjacent unit cells can be engineered to steer the beam towards a desired, anomalous reflection direction over the passband region of the filter. Outside of that range, the phase shift gradient required to produce the anomalous reflection is not present and hence, the wave is reflected towards the specular reflection direction. This way, the metasurface acts as a reflective filter in a quasi-optical system where the detector is placed along the direction of anomalous reflection. The spectral selectivity of this filter is determined by the frequency dispersion of the metasurface's phase response. Based on this principle, a prototype of the proposed metasurface filter, which operates at 10 GHz and has a bandwidth of 3%, is designed. The device is modeled using a combination of theoretical analysis using the phased-array theory and full-wave electromagnetic simulations. A prototype of this device is also fabricated and characterized using a free-space measurement system. Experimental results agree well with the simulations.
NASA Astrophysics Data System (ADS)
Lehmann, L.; Darré, P.; Szemendera, L.; Gomes, J. T.; Baudoin, R.; Ceus, D.; Brustlein, S.; Delage, L.; Grossard, L.; Reynaud, F.
2018-04-01
This paper gives an overview of the Astronomical Light Optical Hybrid Analysis (ALOHA) project dedicated to investigate a new method for high resolution imaging in mid infrared astronomy. This proposal aims to use a non-linear frequency conversion process to shift the thermal infrared radiation to a shorter wavelength domain compatible with proven technology such as guided optics and detectors. After a description of the principle, we summarise the evolution of our study from the high flux seminal experiments to the latest results in the photon counting regime.
Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa
2007-07-27
We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.
NASA Astrophysics Data System (ADS)
Zhu, Zihang; Zhao, Shanghong; Yao, Zhoushi; Tan, Qinggui; Li, Yongjun; Chu, Xingchun; Shi, Lei; Zhang, Xi
2012-06-01
We propose a novel approach to generate quadrupling-frequency optical millimeter-wave using a dual-drive Mach-Zehnder modulator (MZM) in radio-over-fiber system. By properly adjusting the phase difference in the two modulation arms of MZM, the direct current (DC) bias, the modulation index and the gain of base-band signal, the quadrupling-frequency optical millimeter-wave with signal only carried by one second-order sideband is generated. As the signal is transmitted along the fiber, there is no time shift of the codes caused by chromatic dispersion. Theoretical analysis and simulation results show that the eye diagram keeps open and clear even when the quadrupling-frequency optical millimeter-wave are transmitted over 110 km and the power penalty is about 0.45 dB after fiber transmission distance of 60 km. Furthermore, due to another second-order sideband carrying no signals, a full duplex radio-over-fiber link based on wavelength reuse is also built to simplify the base station. The bidirectional 2.5 Gbit/s data is successfully transmitted over 40 km standard single mode fiber with less than 0.6 dB power penalty in the simulation.
Zhang, Peng; Tan, Yi-Dong; Liu, Ning; Wu, Yun; Zhang, Shu-Lian
2013-11-01
We present an experimental observation of the output responses of a Nd:YAG microchip laser with an anisotropic external cavity under weak optical feedback. The feedback mirror is stationary during the experiments. A pair of acousto-optic modulators is used to produce a frequency shift in the feedback light with respect to the initial light. The laser output is a beat signal with 40 kHz modulation frequency and is separated into two orthogonal directions by a Wollaston prism. Phase differences between the two intensity curves are observed as the laser works in two orthogonal modes, and vary with the external birefringence element and the pump power. Theoretical analyses are given, and the simulated results are consistent with the experimental phenomena.
Gaburro, Zeno; Ghulinyan, Mher; Riboli, Francesco; Pavesi, Lorenzo; Recati, Alessio; Carusotto, Iacopo
2006-08-07
We propose a time-dependent, spatially periodic photonic structure which is able to shift the carrier frequency of an optical pulse which propagates through it. Taking advantage of the slow group velocity of light in periodic photonic structures, the wavelength conversion process can be performed with an efficiency close to 1 and without affecting the shape and the coherence of the pulse. Quantitative Finite Difference Time Domain simulations are performed for realistic systems with optical parameters of conventional silicon technology.
Wang, Yiping; Ni, Xiaoqi; Wang, Ming; Cui, Yifeng; Shi, Qingyun
2017-01-23
In this paper, a demodulation method for optic fiber micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filter technique is firstly proposed and experimentally demonstrated. A single bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized optical fiber MEMS EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure demodulation method has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4Mpa. Moreover, the sensitivity can be easily adjusted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collister, R.; Gwinner, G.; Tandecki, M.
We present the isotope shifts of the 7s 1/2 to 7p 1/2 transition for francium isotopes ²⁰⁶⁻²¹³Fr with reference to ²²¹Fr collected from two experimental periods. The shifts are measured on a sample of atoms prepared within a magneto-optical trap by a fast sweep of radio-frequency sidebands applied to a carrier laser. King plot analysis, which includes literature values for 7s 1/2 to 7p 3/2 isotope shifts, provides a field shift constant ratio of 1.0520(10) and a difference between the specific mass shift constants of 170(100) GHz amu between the D₁ and D₂ transitions, of sufficient precision to differentiate betweenmore » ab initio calculations.« less
Isotope shifts in francium isotopes Fr 206 - 213 and Fr 221
Collister, R.; Gwinner, G.; Tandecki, M.; ...
2014-11-07
We present the isotope shifts of the 7s 1/2 to 7p 1/2 transition for francium isotopes ²⁰⁶⁻²¹³Fr with reference to ²²¹Fr collected from two experimental periods. The shifts are measured on a sample of atoms prepared within a magneto-optical trap by a fast sweep of radio-frequency sidebands applied to a carrier laser. King plot analysis, which includes literature values for 7s 1/2 to 7p 3/2 isotope shifts, provides a field shift constant ratio of 1.0520(10) and a difference between the specific mass shift constants of 170(100) GHz amu between the D₁ and D₂ transitions, of sufficient precision to differentiate betweenmore » ab initio calculations.« less
Dual-Mode Operation of an Optical Lattice Clock Using Strontium and Ytterbium Atoms.
Akamatsu, Daisuke; Kobayashi, Takumi; Hisai, Yusuke; Tanabe, Takehiko; Hosaka, Kazumoto; Yasuda, Masami; Hong, Feng-Lei
2018-06-01
We have developed an optical lattice clock that can operate in dual modes: a strontium (Sr) clock mode and an ytterbium (Yb) clock mode. Dual-mode operation of the Sr-Yb optical lattice clock is achieved by alternately cooling and trapping 87 Sr and 171 Yb atoms inside the vacuum chamber of the clock. Optical lattices for Sr and Yb atoms were arranged with horizontal and vertical configurations, respectively, resulting in a small distance of the order of between the trapped Sr and Yb atoms. The 1 S 0 - 3 P 0 clock transitions in the trapped atoms were interrogated in turn and the clock lasers were stabilized to the transitions. We demonstrated the frequency ratio measurement of the Sr and Yb clock transitions by using the dual-mode operation of the Sr-Yb optical lattice clock. The dual-mode operation can reduce the uncertainty of the blackbody radiation shift in the frequency ratio measurement, because both Sr and Yb atoms share the same blackbody radiation.
Coherent ultra dense wavelength division multiplexing passive optical networks
NASA Astrophysics Data System (ADS)
Shahpari, Ali; Ferreira, Ricardo; Ribeiro, Vitor; Sousa, Artur; Ziaie, Somayeh; Tavares, Ana; Vujicic, Zoran; Guiomar, Fernando P.; Reis, Jacklyn D.; Pinto, Armando N.; Teixeira, António
2015-12-01
In this paper, we firstly review the progress in ultra-dense wavelength division multiplexing passive optical network (UDWDM-PON), by making use of the key attributes of this technology in the context of optical access and metro networks. Besides the inherit properties of coherent technology, we explore different modulation formats and pulse shaping. The performance is experimentally demonstrated through a 12 × 10 Gb/s bidirectional UDWDM-PON over hybrid 80 km standard single mode fiber (SSMF) and optical wireless link. High density, 6.25 GHz grid, Nyquist shaped 16-ary quadrature amplitude modulation (16QAM) and digital frequency shifting are some of the properties exploited together in the tests. Also, bidirectional transmission in fiber, relevant in the context, is analyzed in terms of nonlinear and back-reflection effects on receiver sensitivity. In addition, as a basis for the discussion on market readiness, we experimentally demonstrate real-time detection of a Nyquist-shaped quaternary phase-shift keying (QPSK) signal using simple 8-bit digital signal processing (DSP) on a field-programmable gate array (FPGA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen Pham, Hai Huy, E-mail: haihuynguyenpham135@s.ee.es.osaka-u.ac.jp; Hisatake, Shintaro, E-mail: hisatake@ee.es.osaka-u.ac.jp; Nagatsuma, Tadao, E-mail: nagatuma@ee.es.osaka-u.ac.jp
2016-05-09
The generation of the terajet at the terahertz (THz) frequency with the capability of subwavelength beam-compression has been attracting increasing research interest, as did the generation of the nanojet at the optical frequency. In particular, a terajet generated from a dielectric cuboid was not previously studied experimentally in the THz region. We here experimentally demonstrate three-dimensional visualizations and characterization of a terajet generated from a dielectric cuboid with a refractive index of n = 1.46 at 125 GHz. The subwavelength compressed beam and the Gouy phase shift phenomena of the terajet are directly observed. It is also found out that a calculation modelmore » of Gouy phase shift based on focused Gaussian beam by a lens cannot explain the Gouy phase shift of compressed beam by the terajet. The intensity enhancement of about 7.4 dB and full width at half maximum of 0.6λ are obtained at the distance 0.5λ from the cuboid.« less
Optoelectrical clock recovery with dispersion monitoring for high speed transmission
NASA Astrophysics Data System (ADS)
Wen, He; Liao, Jinxin; Zheng, Xiaoping; Zhang, Hanyi; Guo, Yili
2010-12-01
The proposed clock recovery scheme introduces electrooptical modulation to down convert the clock frequency facilitating succeeding narrow band filtering by a phase locked loop (PLL) with ordinary radio frequency (RF) devices, further, employs a quadrature phase detector in the PLL to provide an indication signal for monitoring residual dispersion. It was demonstrated in a polarization multiplexed 160-Gbit/s optical non-return to zero quadrature phase shift keying (NRZ-QPSK) transmission system.
Yu, Yinan; Wang, Yicheng; Pratt, Jon R
2016-03-01
Residual amplitude modulation (RAM) is one of the most common noise sources known to degrade the sensitivity of frequency modulation spectroscopy. RAM can arise as a result of the temperature dependent birefringence of the modulator crystal, which causes the orientation of the crystal's optical axis to shift with respect to the polarization of the incident light with temperature. In the fiber-based optical interferometer used on the National Institute of Standards and Technology calculable capacitor, RAM degrades the measured laser frequency stability and correlates with the environmental temperature fluctuations. We have demonstrated a simple approach that cancels out excessive RAM due to polarization mismatch between the light and the optical axis of the crystal. The approach allows us to measure the frequency noise of a heterodyne beat between two lasers individually locked to different resonant modes of a cavity with an accuracy better than 0.5 ppm, which meets the requirement to further determine the longitudinal mode number of the cavity length. Also, this approach has substantially mitigated the temperature dependency of the measurements of the cavity length and consequently the capacitance.
Observation of an optical spring with a beam splitter.
Cripe, Jonathan; Danz, Baylee; Lane, Benjamin; Lorio, Mary Catherine; Falcone, Julia; Cole, Garrett D; Corbitt, Thomas
2018-05-01
We present the experimental observation of an optical spring without the use of an optical cavity. The optical spring is produced by interference at a beam splitter and, in principle, does not have the damping force associated with optical springs created in detuned cavities. The experiment consists of a Michelson-Sagnac interferometer (with no recycling cavities) with a partially reflective GaAs microresonator as the beam splitter that produces the optical spring. Our experimental measurements at input powers of up to 360 mW show the shift of the optical spring frequency as a function of power and are in excellent agreement with theoretical predictions. In addition, we show that the optical spring is able to keep the interferometer stable and locked without the use of external feedback.
Radio-frequency-modulated Rydberg states in a vapor cell
NASA Astrophysics Data System (ADS)
Miller, S. A.; Anderson, D. A.; Raithel, G.
2016-05-01
We measure strong radio-frequency (RF) electric fields using rubidium Rydberg atoms prepared in a room-temperature vapor cell as field sensors. Electromagnetically induced transparency is employed as an optical readout. We RF-modulate the 60{{{S}}}1/2 and 58{{{D}}}5/2 Rydberg states with 50 and 100 MHz fields, respectively. For weak to moderate RF fields, the Rydberg levels become Stark-shifted, and sidebands appear at even multiples of the driving frequency. In high fields, the adjacent hydrogenic manifold begins to intersect the shifted levels, providing rich spectroscopic structure suitable for precision field measurements. A quantitative description of strong-field level modulation and mixing of S and D states with hydrogenic states is provided by Floquet theory. Additionally, we estimate the shielding of DC electric fields in the interior of the glass vapor cell.
Cardinal and anti-cardinal points, equalities and chromatic dependence.
Evans, Tanya; Harris, William F
2017-05-01
Cardinal points are used for ray tracing through Gaussian systems. Anti-principal and anti-nodal points (which we shall refer to as the anti-cardinal points), along with the six familiar cardinal points, belong to a much larger set of special points. The purpose of this paper is to obtain a set of relationships and resulting equalities among the cardinal and anti-cardinal points and to illustrate them using Pascal's ring. The methodology used relies on Gaussian optics and the transference T. We make use of two equations, obtained via the transference, which give the locations of the six cardinal and four anti-cardinal points with respect to the system. We obtain equalities among the cardinal and anti-cardinal points. We utilise Pascal's ring to illustrate which points depend on frequency and their displacement with change in frequency. Pascal described a memory schema in the shape of a hexagon for remembering equalities among the points and illustrating shifts in these points when an aspect of the system changes. We modify and extend Pascal's ring to include the anti-cardinal points. We make use of Pascal's ring extended to illustrate which points are dependent on the frequency of light and the direction of shift of the equalities with change in frequency. For the reduced eye the principal and nodal points are independent of frequency, but the focal points and the anti-cardinal points depend on frequency. For Le Grand's four-surface model eye all six cardinal and four anti-cardinal points depend on frequency. This has implications for definitions, particularly of chromatic aberrations of the eye, that make use of cardinal points and that themselves depend on frequency. Pascal's ring and Pascal's ring extended are novel memory schema for remembering the equalities among the cardinal and anti-cardinal points. The rings are useful for illustrating changes among the equalities and direction of shift of points when an aspect of a system changes. Care should be taken when defining concepts that rely on cardinal points that depend on frequency. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Zou, Weiwen; Jiang, Wenning; Chen, Jianping
2013-03-11
This paper demonstrates stimulated Brillouin scattering (SBS) characterization in silica optical fiber tapers drawn from commercial single mode optical fibers by hydrogen flame. They have different waist diameters downscaled from 5 μm to 42 μm. The fully-distributed SBS measurement along the fiber tapers is implemented by Brillouin optical correlation domain analysis technique with millimeter spatial resolution. It is found that the Brillouin frequency shift (BFS) in the waist of all fiber tapers is approximately the same (i.e., ~11.17 GHz at 1550 nm). However, the BFS is gradually reduced and the Brillouin gain decreases from the waist to the untapered zone in each fiber taper.
NASA Astrophysics Data System (ADS)
Takeda, Kotaro; Honda, Kentaro; Takeya, Tsutomu; Okazaki, Kota; Hiraki, Tatsurou; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Fukuda, Hiroshi; Usui, Mitsuo; Nosaka, Hideyuki; Yamamoto, Tsuyoshi; Yamada, Koji
2015-01-01
We developed a design technique for a photonics-electronics convergence system by using an equivalent circuit of optical devices in an electrical circuit simulator. We used the transfer matrix method to calculate the response of an optical device. This method used physical parameters and dimensions of optical devices as calculation parameters to design a device in the electrical circuit simulator. It also used an intermediate frequency to express the wavelength dependence of optical devices. By using both techniques, we simulated bit error rates and eye diagrams of optical and electrical integrated circuits and calculated influences of device structure change and wavelength shift penalty.
Semiconductor Microcavity Flow Spectroscopy of Intracellular Protein in Human Cells
NASA Astrophysics Data System (ADS)
Gourley, Paul; Cox, Jim; Hendricks, Judy; McDonald, Anthony; Copeland, Guild; Sasaki, Darryl; Skirboll, Steve; Curry, Mark
2001-03-01
The speed of light through a biofluid or biological cell is inversely related to the biomolecular concentration of proteins and other complex molecules that modify the refractive index at wavelengths accessible to semiconductor lasers. By placing a fluid or cell into a semiconductor microcavity laser, these decreases in light speed can be sensitively recorded in picoseconds as frequency red-shifts in the laser output spectrum. This biocavity laser equipped with microfluidics for transporting cells at high speed through the laser microcavity has shown potential for rapid analysis of biomolecular mass of normal and malignant human cells in their physiologic condition without time-consuming fixing, staining, or tagging. We have used biocavity laser spectroscopy to measure the optical properties of solutions of standard biomolecules (sugars, proteins, DNA, and ions) and human cells. The technique determines the frequency shift, relative to that of water, of spontaneous or stimulated emission from cavity filled with a biomolecular solution. The shift was also measured in human glioblastoma cells that had been sorted by conventional fluorescence-activated cell sorting according to protein content. The results show a direct correlation between protein measured by fluorescence and the frequency shift observed in the microcavity laser.
Electromagnetic and nuclear radiation detector using micromechanical sensors
Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.
2000-01-01
Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.
Chaotic Brillouin optical correlation-domain analysis
NASA Astrophysics Data System (ADS)
Zhang, Jianzhong; Zhang, Mingtao; Zhang, Mingjiang; Liu, Yi; Feng, Changkun; Wang, Yahui; Wang, Yuncai
2018-04-01
We propose and experimentally demonstrate a chaotic Brillouin optical correlation-domain analysis (BOCDA) system for distributed fiber sensing. The utilization of the chaotic laser with low coherent state ensures high spatial resolution. The experimental results demonstrate a 3.92-cm spatial resolution over a 906-m measurement range. The uncertainty in the measurement of the local Brillouin frequency shift is 1.2MHz. The measurement signal-to-noise ratio is given, which is agreement with the theoretical value.
Cooperation and Environment Characterize the Low-Lying Optical Spectrum of Liquid Water.
P, Sudheer Kumar; Genova, Alessandro; Pavanello, Michele
2017-10-19
The optical spectrum of liquid water is analyzed by subsystem time-dependent density functional theory. We provide simple explanations for several important (and so far elusive) features. Due to the disordered environment surrounding each water molecule, the joint density of states of the liquid is much broader than that of the vapor, thus explaining the red-shifted Urbach tail of the liquid compared to the gas phase. Confinement effects provided by the first solvation shell are responsible for the blue shift of the first absorption peak compared to the vapor. In addition, we also characterize many-body excitonic effects. These dramatically affect the spectral weights at low frequencies, contributing to the refractive index by a small but significant amount.
Effect of metal coating in all-fiber acousto-optic tunable filter using torsional wave.
Song, Du-Ri; Jun, Chang Su; Do Lim, Sun; Kim, Byoung Yoon
2014-12-15
Torsional mode acousto-optic tunable filter (AOTF) is demonstrated using a metal-coated birefringent optical fiber for an improved robustness. The changes in acoustic and optical properties of a metal-coated birefringent optical fiber induced by the thin metal coating were analyzed experimentally and theoretically. The filter wavelength shift is successfully explained as a result of combined effect of acoustic wavelength change and optical birefringence change. We also demonstrated a small form-factor configuration by coiling the fiber with 6 cm diameter without performance degradation. The center wavelength of the filter can be tuned >35 nm by changing the applied frequency, and the coupling efficiency is higher than 92% with <5 nm 3-dB bandwidth.
NASA Astrophysics Data System (ADS)
Heisterkamp, F.; Greilich, A.; Zhukov, E. A.; Kirstein, E.; Kazimierczuk, T.; Korenev, V. L.; Yugova, I. A.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.
2015-12-01
Optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer is studied by time-resolved Kerr rotation using resonant excitation of donor-bound excitons. Excitation with helicity-modulated laser pulses results in a transverse nuclear spin polarization, which is detected as a change of the Larmor precession frequency of the donor-bound electron spins. The frequency shift in dependence on the transverse magnetic field exhibits a pronounced dispersion-like shape with resonances at the fields of nuclear magnetic resonance of the constituent zinc and selenium isotopes. It is studied as a function of external parameters, particularly of constant and radio frequency external magnetic fields. The width of the resonance and its shape indicate a strong spatial inhomogeneity of the nuclear spin polarization in the vicinity of a fluorine donor. A mechanism of optically induced nuclear spin polarization is suggested based on the concept of resonant nuclear spin cooling driven by the inhomogeneous Knight field of the donor-bound electron.
Xiong, Lian; Bai, Wenyu; Chen, Feifei; Zhao, Xian; Yu, Fapeng; Diebold, Gerald J
2017-07-11
The amplitude of the photoacoustic effect for an optical source moving at the sound speed in a one-dimensional geometry increases linearly in time without bound in the linear acoustic regime. Here, use of this principle is described for trace detection of gases, using two frequency-shifted beams from a CO 2 laser directed at an angle to each other to give optical fringes that move at the sound speed in a cavity with a longitudinal resonance. The photoacoustic signal is detected with a high-[Formula: see text], piezoelectric crystal with a resonance on the order of [Formula: see text] kHz. The photoacoustic cell has a design analogous to a hemispherical laser resonator and can be adjusted to have a longitudinal resonance to match that of the detector crystal. The grating frequency, the length of the resonator, and the crystal must all have matched frequencies; thus, three resonances are used to advantage to produce sensitivity that extends to the parts-per-quadrillion level.
Evaluating the coherence and time-domain profile of quantum cascade laser frequency combs
Burghoff, David; Yang, Yang; Hayton, Darren J.; ...
2015-01-01
Recently, much attention has been focused on the generation of optical frequency combs from quantum cascade lasers. We discuss how fast detectors can be used to demonstrate the mutual coherence of such combs, and present an inequality that can be used to quantitatively evaluate their performance. We discuss several technical issues related to shifted wave interference Fourier Transform spectroscopy (SWIFTS), and show how such measurements can be used to elucidate the time-domain properties of such combs, showing that they can possess signatures of both frequency-modulation and amplitude-modulation.
Stitching-error reduction in gratings by shot-shifted electron-beam lithography
NASA Technical Reports Server (NTRS)
Dougherty, D. J.; Muller, R. E.; Maker, P. D.; Forouhar, S.
2001-01-01
Calculations of the grating spatial-frequency spectrum and the filtering properties of multiple-pass electron-beam writing demonstrate a tradeoff between stitching-error suppression and minimum pitch separation. High-resolution measurements of optical-diffraction patterns show a 25-dB reduction in stitching-error side modes.
Fiber Optic Magnetic Field Sensors Using Metallic Glass Coatings.
NASA Astrophysics Data System (ADS)
Wang, Yu.
1990-01-01
In this thesis we have investigated the use of a magnetostrictive material with a single-mode optical fiber for detecting weak magnetic fields. The amorphous alloy Metglas^circler 2605SC (Fe_{81}B_ {13.5}Si_{3.5} C_2) was chosen as the magnetostrictive material because of the combination of its large magnetostriction and small magnetic anisotropy field among all available metals. For efficient coupling between the magnetostrictive material and the optical fiber, the magnetostrictive material was directly deposited onto the single-mode optical fiber. The coated fibers were used as the sensing element in the fiber optic magnetic field sensor (FOMS). Very high quality thick metallic glass films of the Metglas 2605 SC have been deposited using triode-magneton sputtering. This is the first time such material has been successfully deposited onto an optical fiber or onto any other substrate. The films were also deposited onto glass slides to allow the study of the magnetic properties of the film. The thicknesses of these films were 5-15 mum. The magnetic property of primary interest for our sensor application is the induced longitudinal magnetostrictive strain. However, the other magnetic properties such as magnetic anisotropy, surface and bulk coercivities, magnetic homogeneity and magnetization all affect the magnetostrictive response of the material. We have used ferromagnetic resonance (FMR) at microwave frequencies to study the magnetic anisotropy and homogeneity; vibrating sample magnetometry (VSM) to study the bulk magnetic hysteresis responses and coercivity; and the longitudinal magneto-optic kerr effect (LMOKE) to study the surface magnetic hysteresis responses and coercivity. The isothermalmagnetic annealing effect on these properties has also been studied in detail. The fiber optic magnetic field sensor constructed using the metallic-glass-coated fiber was tested. An electronic feedback control loop using a PZT cylinder was constructed for stabilizing the sensor operation. Magnetic field detection at different dither frequencies was studied in detail. The estimated minimum detectable magnetic field was about 3 times 10^{-7 } Oe. A simplified elastic model was used for the theoretical calculation of the phase shift induced in a metallic-glass -coated optical fiber with a longitudinal applied magnetic field. The phase shift as a function of coating thickness was calculated, and the experimental results at certain thicknesses were compared with the calculation. The frequency response of the FOMS was also studied in some detail. Three different configurations were used for the study of the frequency response. The results indicate that the resonances observed in the FOMS are most likely related to the mechanical resonance of the optical fiber.
Internal optical bistability of quasi-two-dimensional semiconductor nanoheterostructures
NASA Astrophysics Data System (ADS)
Derevyanchuk, Oleksandr V.; Kramar, Natalia K.; Kramar, Valeriy M.
2018-01-01
We represent the results of numerical computations of the frequency and temperature domains of possible realization of internal optical bistability in flat quasi-two-dimensional semiconductor nanoheterostructures with a single quantum well (i.e., nanofilms). Particular computations have been made for a nanofilm of layered semiconductor PbI2 embedded in dielectric medium, i.e. ethylene-methacrylic acid (E-MAA) copolymer. It is shown that an increase in the nanofilm's thickness leads to a long-wave shift of the frequency range of the manifestation the phenomenon of bistability, to increase the size of the hysteresis loop, as well as to the expansion of the temperature interval at which the realization of this phenomenon is possible.
Frequency conversion by the transformation-optical analogue of the cosmological redshift
NASA Astrophysics Data System (ADS)
Ginis, Vincent; Tassin, Philippe; Craps, Ben; Veretennicoff, Irina
2011-10-01
Recently, there has been a lot of interest in electromagnetic analogues of general relativistic effects. Using the techniques of transformation optics, the material parameters of table-top devices have been calculated such that they implement several effects that occur in outer space, e.g., the implementation of an artificial event horizon inside an optical fiber, an inhomogeneous refractive index profile to mimic celestial mechanics, or an omnidirectional absorber based on an equivalence with black holes. In this communication, we show how we have extended the framework of transformation optics to a time-dependent metric-the Robertson-Walker metric, a popular model for our universe describing the cosmological redshift. This redshift occurs due to the expansion of the universe, where a photon of frequency ωem emitted at instance tem, will be measured at a different frequency ωobs at time tobs. The relation between these two frequencies is given by ωobsa(tobs) = ωema(tem), where a(t) is the time-dependent scale factor of the expanding universe. Our results show that the transformation-optical analogue of the Robertson-Walker metric is a medium with linear, isotropic, and homogeneous material parameters that evolve as a given function of time. The electromagnetic solutions inside such a medium are frequency shifted according to the cosmological redshift formula. Furthermore, we have demonstrated that a finite slab of such a material allows for the frequency conversion of an optical signal without the creation of unwanted sidebands. Because the medium is linear, the superposition principle remains applicable and arbitrary wavepackets can be converted [V. Ginis, P. Tassin, B. Craps, and I. Veretennicoff Opt. Express 18, 5350-5355 (2010)1].
Nanophotonic rare-earth quantum memory with optically controlled retrieval.
Zhong, Tian; Kindem, Jonathan M; Bartholomew, John G; Rochman, Jake; Craiciu, Ioana; Miyazono, Evan; Bettinelli, Marco; Cavalli, Enrico; Verma, Varun; Nam, Sae Woo; Marsili, Francesco; Shaw, Matthew D; Beyer, Andrew D; Faraon, Andrei
2017-09-29
Optical quantum memories are essential elements in quantum networks for long-distance distribution of quantum entanglement. Scalable development of quantum network nodes requires on-chip qubit storage functionality with control of the readout time. We demonstrate a high-fidelity nanophotonic quantum memory based on a mesoscopic neodymium ensemble coupled to a photonic crystal cavity. The nanocavity enables >95% spin polarization for efficient initialization of the atomic frequency comb memory and time bin-selective readout through an enhanced optical Stark shift of the comb frequencies. Our solid-state memory is integrable with other chip-scale photon source and detector devices for multiplexed quantum and classical information processing at the network nodes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
On-field measurement trial of 4×128 Gbps PDM-QPSK signals by linear optical sampling
NASA Astrophysics Data System (ADS)
Bin Liu; Wu, Zhichao; Fu, Songnian; Feng, Yonghua; Liu, Deming
2017-02-01
Linear optical sampling is a promising characterization technique for advanced modulation formats, together with digital signal processing (DSP) and software-synchronized algorithm. We theoretically investigate the acquisition of optical sampling, when the high-speed signal under test is either periodic or random. Especially, when the profile of optical sampling pulse is asymmetrical, the repetition frequency of sampling pulse needs careful adjustment in order to obtain correct waveform. Then, we demonstrate on-field measurement trial of commercial four-channel 128 Gbps polarization division multiplexing quadrature phase shift keying (PDM-QPSK) signals with truly random characteristics by self-developed equipment. A passively mode-locked fiber laser (PMFL) with a repetition frequency of 95.984 MHz is used as optical sampling source, meanwhile four balanced photo detectors (BPDs) with 400 MHz bandwidth and four-channel analog-to-digital convertor (ADC) with 1.25 GS/s sampling rate are used for data acquisition. The performance comparison with conventional optical modulation analyzer (OMA) verifies that the self-developed equipment has the advantages of low cost, easy implementation, and fast response.
NASA Astrophysics Data System (ADS)
Hasan, Mehedi; Hu, Jianqi; Nikkhah, Hamdam; Hall, Trevor
2017-08-01
A novel photonic integrated circuit architecture for implementing orthogonal frequency division multiplexing by means of photonic generation of phase-correlated sub-carriers is proposed. The circuit can also be used for implementing complex modulation, frequency up-conversion of the electrical signal to the optical domain and frequency multiplication. The principles of operation of the circuit are expounded using transmission matrices and the predictions of the analysis are verified by computer simulation using an industry-standard software tool. Non-ideal scenarios that may affect the correct function of the circuit are taken into consideration and quantified. The discussion of integration feasibility is illustrated by a photonic integrated circuit that has been fabricated using 'library' components and which features most of the elements of the proposed circuit architecture. The circuit is found to be practical and may be fabricated in any material platform that offers a linear electro-optic modulator such as organic or ferroelectric thin films hybridized with silicon photonics.
Unusual phonon behavior and ultra-low thermal conductance of monolayer InSe.
Zhou, Hangbo; Cai, Yongqing; Zhang, Gang; Zhang, Yong-Wei
2017-12-21
Monolayer indium selenide (InSe) possesses numerous fascinating properties, such as high electron mobility, quantum Hall effect and anomalous optical response. However, its phonon properties, thermal transport properties and the origin of its structural stability remain unexplored. Using first-principles calculations, we show that the atoms in InSe are highly polarized and such polarization causes strong long-range dipole-dipole interaction (DDI). For acoustic modes, DDI is essential for maintaining its structural stability. For optical modes, DDI causes a significant frequency shift of its out-of-phase vibrations. Surprisingly, we observed that there were two isolated frequency regimes, which were completely separated from other frequency regimes with large frequency gaps. Within each frequency regime, only a single phonon mode exists. We further reveal that InSe possesses the lowest thermal conductance among the known two-dimensional materials due to the low cut-off frequency, low phonon group velocities and the presence of large frequency gaps. These unique behaviors of monolayer InSe can enable the fabrication of novel devices, such as thermoelectric module, single-mode phonon channel and phononic laser.
Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics.
Mitrofanov, A V; Voronin, A A; Mitryukovskiy, S I; Sidorov-Biryukov, D A; Pugžlys, A; Andriukaitis, G; Flöry, T; Stepanov, E A; Fedotov, A B; Baltuška, A; Zheltikov, A M
2015-05-01
A high-energy supercontinuum spanning 4.7 octaves, from 250 to 6500 nm, is generated using a 0.3-TW, 3.9-μm output of a mid-infrared optical parametric chirped-pulse amplifier as a driver inducing a laser filament in the air. The high-frequency wing of the supercontinuum spectrum is enhanced by odd-order optical harmonics of the mid-infrared driver. Optical harmonics up to the 15th order are observed in supercontinuum spectra as overlapping, yet well-resolved peaks broadened, as verified by numerical modeling, due to spatially nonuniform ionization-induced blue shift.
Observation of an optical event horizon in a silicon-on-insulator photonic wire waveguide.
Ciret, Charles; Leo, François; Kuyken, Bart; Roelkens, Gunther; Gorza, Simon-Pierre
2016-01-11
We report on the first experimental observation of an optical analogue of an event horizon in integrated nanophotonic waveguides, through the reflection of a continuous wave on an intense pulse. The experiment is performed in a dispersion-engineered silicon-on-insulator waveguide. In this medium, solitons do not suffer from Raman induced self-frequency shift as in silica fibers, a feature that is interesting for potential applications of optical event horizons. As shown by simulations, this also allows the observation of multiple reflections at the same time on fundamental solitons ejected by soliton fission.
Masoudi, Ali; Belal, Mohammad; Newson, Trevor P
2013-09-01
A Brillouin-based distributed optical fiber dynamic strain sensor is described which converts strain-induced Brillouin frequency shift into optical intensity variations by using an imbalanced Mach-Zhender interferometer. A 3×3 coupler is used at the output of this interferometer to permit differentiate and cross multiply demodulation. The demonstrated sensor is capable of probing dynamic strain disturbances over 2 km of sensing length every 0.5 s up to a strain of 10 mε with an accuracy of ±50 με and spatial resolution of 1.3 m.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madani, A.; Schmidt, O. G.; Material Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainer Str. 70, 09107 Chemnitz
2016-04-25
Spatially and temporally overlapping double potential wells are realized in a hybrid optical microtube cavity due to the coexistence of an aggregate of luminescent quantum dots embedded in the tube wall and the cone-shaped tube's geometry. The double potential wells produce two independent sets of optical modes with different sets of mode numbers, indicating phase velocity separation for the modes overlapping at the same frequency. The overlapping mode position can be tuned by modifying the tube cavity, where these mode sets shift with different magnitudes, allowing for a vernier-scale-like tuning effect.
Magneto-optical polarization rotation in a ladder-type atomic system for tunable offset locking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parniak, Michał, E-mail: michal.parniak@fuw.edu.pl; Leszczyński, Adam; Wasilewski, Wojciech
2016-04-18
We demonstrate an easily tunable locking scheme for stabilizing frequency-sum of two lasers on a two-photon ladder transition based on polarization rotation in warm rubidium vapors induced by magnetic field and circularly polarized drive field. Unprecedented tunability of the two-photon offset frequency is due to strong splitting and shifting of magnetic states in external field. In our experimental setup, we achieve two-photon detuning of up to 700 MHz.
Improved Measurement of Dispersion in an Optical Fiber
NASA Technical Reports Server (NTRS)
Huang, Shouhua; Le, Thanh; Maleki, Lute
2004-01-01
An improved method of measuring chromatic dispersion in an optical fiber or other device affords a lower (relative to prior such methods) limit of measurable dispersion. This method is a modified version of the amplitude-modulation (AM) method, which is one of the prior methods. In comparison with the other prior methods, the AM method is less complex. However, the AM method is limited to dispersion levels . 160 ps/nm and cannot be used to measure the symbol of the dispersion. In contrast, the present modified version of the AM method can be used to measure the symbol of the symbol of the dispersion and affords a measurement range from about 2 ps/nm to several thousand ps/nm with a resolution of 0.27 ps/nm or finer. The figure schematically depicts the measurement apparatus. The source of light for the measurement is a laser, the wavelength of which is monitored by an optical spectrum analyzer. A light-component analyzer amplitude-modulates the light with a scanning radio-frequency signal. The modulated light is passed through a buffer (described below) and through the device under test (e.g., an optical fiber, the dispersion of which one seeks to measure), then back to the light-component analyzer for spectrum analysis. Dispersion in the device under test gives rise to phase shifts among the carrier and the upper and lower sideband components of the modulated signal. These phase shifts affect the modulation-frequency component of the output of a photodetector exposed to the signal that emerges from the device under test. One of the effects is that this component goes to zero periodically as the modulation frequency is varied.
Controlling the light shift of the CPT resonance by modulation technique
NASA Astrophysics Data System (ADS)
Tsygankov, E. A.; Petropavlovsky, S. V.; Vaskovskaya, M. I.; Zibrov, S. A.; Velichansky, V. L.; Yakovlev, V. P.
2017-12-01
Motivated by recent developments in atomic frequency standards employing the effect of coherent population trapping (CPT), we propose a theoretical framework for the frequency modulation spectroscopy of the CPT resonances. Under realistic assumptions we provide simple yet non-trivial analytical formulae for the major spectroscopic signals such as the CPT resonance line and the in-phase/quadrature responses. We discuss the influence of the light shift and, in particular, derive a simple expression for the displacement of the resonance as a function of modulation index. The performance of the model is checked against numerical simulations, the agreement is good to perfect. The obtained results can be used in more general models accounting for light absorption in the thick optical medium.
Veligdan, James T.
2000-01-11
An optical microphone includes a laser and beam splitter cooperating therewith for splitting a laser beam into a reference beam and a signal beam. A reflecting sensor receives the signal beam and reflects it in a plurality of reflections through sound pressure waves. A photodetector receives both the reference beam and reflected signal beam for heterodyning thereof to produce an acoustic signal for the sound waves. The sound waves vary the local refractive index in the path of the signal beam which experiences a Doppler frequency shift directly analogous with the sound waves.
Progress Toward an Neutral Yb Frequency Standard
NASA Astrophysics Data System (ADS)
Cramer, Claire; Hong, Tao; Nagourney, Warren; Fortson, Norval
2004-05-01
We report recent progress toward a direct observation of the ^1S_0^ -- ^3P0 clock transition at 578 nm in atomic Yb and review the experimental path to an optical frequency standard based on neutral Yb confined in a Stark-free optical lattice. Lamb-Dicke confinement in an optical lattice at the ``magic wavelength'' (λ _M) at which ground and excited state light shifts cancel will free the spectrum from Doppler and recoil shifts, providing an optimal environment for a clock consisting of an ensemble of cold, trapped atoms. In^171Yb the ^3P0 level has a hfs induced lifetime of 21 s. With this isotope in a Stark-free lattice at λ M ng 750 nm, perturbations to the clock energy levels can be held below the mHz level, providing an accuracy of a few parts in 10^18[1]. To observe the clock transition we use a shelving scheme that creates a leak in a MOT on the ^1S_0^ -- ^1P1 transition. A laser resonant with the clock transition drives atoms into the ^3P0 state, in which they can escape the MOT, leading to an observable decrease in MOT fluorescence. [1] S. Porsev and A. Derevianko, to be published in PRA
NASA Astrophysics Data System (ADS)
Xiao, H.; Ren, G.; Dong, Y.; Li, H.; Xiao, S.; Wu, B.; Jian, S.
2018-06-01
A numerical analysis of a GeO2-doped single-mode optical fiber with a multi-step index core toward stimulated Brillouin scattering (SBS) based dual-parameter sensing applications is proposed. Adjusting the parameters in the fiber design, higher-order acoustic modes are sufficiently enhanced, making the fiber feasible for discriminative measurements of temperature and strain in the meantime. Numerical simulations indicate that the Brillouin frequency shifts and peak SBS efficiencies are strongly dependent on the doping concentration and the thickness of low-index ring in the proposed fiber. With appropriate structural and optical parameters, this fiber could support two distinct acoustic modes with comparable peak SBS efficiencies and well-spaced Brillouin frequency shifts. The sensing characteristics contributed by the dual-peak feature in the Brillouin gain spectrum are explored. Calculated accuracies of temperature and strain in simultaneous measurements can be up to 0.64 °C and 15.4 με, respectively. The proposed fiber might have potential applications for long-haul distributed dual-parameter simultaneous measurements.
Electrically Tunable Goos-Hänchen Effect with Graphene in the Terahertz Regime
Fan, Yuancheng; Shen, Nian-Hai; Zhang, Fuli; ...
2016-07-14
Goos-Hänchen (G-H) effect is of great interest in the manipulation of optical beams. However, it is still fairly challenging to attain efficient controls of the G-H shift for diverse applications. Here, we propose a mechanism to realize tunable G-H shift in the terahertz regime with electrically controllable graphene. Taking monolayer graphene covered epsilon-near-zero metamaterial as a planar model system, it is found that the G-H shift for the orthogonal s-polarized and p-polarized terahertz beams at oblique incidence are positive and negative, respectively. The G-H shift can be modified substantially by electrically controlling the Fermi energy of the monolayer graphene. Reversely,more » the Fermi energy dependent G-H effect can also be used as a strategy for measuring the doping level of graphene. In addition, the G-H shifts of the system are of strong frequency-dependence at oblique angles of incidence, therefore the proposed graphene hybrid system can potentially be used for the generation of terahertz “rainbow”, a flat analog of the dispersive prism in optics. The proposed scheme of hybrid system involving graphene for dynamic control of G-H shift will have potential applications in the manipulation of terahertz waves.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aseeva, N. V., E-mail: vtyutin@hse.ru; Gromov, E. M.; Tyutin, V. V.
2015-12-15
The dynamics of high-frequency field solitons is considered using the extended nonhomogeneous nonlinear Schrödinger equation with induced scattering from damped low-frequency waves (pseudoinduced scattering). This scattering is a 3D analog of the stimulated Raman scattering from temporal spatially homogeneous damped low-frequency modes, which is well known in optics. Spatial inhomogeneities of secondorder linear dispersion and cubic nonlinearity are also taken into account. It is shown that the shift in the 3D spectrum of soliton wavenumbers toward the short-wavelength region is due to nonlinearity increasing in coordinate and to decreasing dispersion. Analytic results are confirmed by numerical calculations.
Xu, Chunxin; Zhang, Shulian; Tan, Yidong; Zhao, Shijie
2013-05-20
We describe a new optical tomography technology based on feedback of microchip Nd:YAG lasers. In the case of feedback light frequency-shifted, light can be magnified by a fact of 10(6) in the Nd:YAG microchip lasers, which makes it possible to realize optical tomography with a greater depth than current optical tomography. The results of the measuring and imaging of kinds of samples are presented, which demonstrate the feasibility and potential of this approach in the inner structure detection. The system has a lateral resolution of ~1 μm, a vertical resolution of 15 μm and a longitudinal scanning range of over 10mm.
All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring.
Du, Cong; Owusu Twumasi, Jones; Tang, Qixiang; Guo, Xu; Zhou, Jingcheng; Yu, Tzuyang; Wang, Xingwei
2018-04-27
This article presents an application of an active all-optical photoacoustic sensing system with four elements for steel rebar corrosion monitoring. The sensor utilized a photoacoustic mechanism of gold nanocomposites to generate 8 MHz broadband ultrasound pulses in 0.4 mm compact space. A nanosecond 532 nm pulsed laser and 400 μm multimode fiber were employed to incite an ultrasound reaction. The fiber Bragg gratings were used as distributed ultrasound detectors. Accelerated corrosion testing was applied to four sections of a single steel rebar with four different corrosion degrees. Our results demonstrated that the mass loss of steel rebar displayed an exponential growth with ultrasound frequency shifts. The sensitivity of the sensing system was such that 0.175 MHz central frequency reduction corresponded to 0.02 g mass loss of steel rebar corrosion. It was proved that the all-optical photoacoustic sensing system can actively evaluate the corrosion of steel rebar via ultrasound spectrum. This multipoint all-optical photoacoustic method is promising for embedment into a concrete structure for distributed corrosion monitoring.
Imaging nanoparticle flow using magneto-motive optical Doppler tomography.
Kim, Jeehyun; Oh, Junghwan; Milner, Thomas E; Nelson, J Stuart
2007-01-24
We introduce a novel approach for imaging solutions of superparamagnetic iron oxide (SPIO) nanoparticles using magneto-motive optical Doppler tomography (MM-ODT). MM-ODT combines an externally applied temporally oscillating high-strength magnetic field with ODT to detect nanoparticles flowing through a microfluidic channel. A solenoid with a cone-shaped ferrite core extensively increased the magnetic field strength (B(max) = 1 T, [Formula: see text]) at the tip of the core and also focused the magnetic field in microfluidic channels containing nanoparticle solutions. Nanoparticle contrast was demonstrated in a microfluidic channel filled with an SPIO solution by imaging the Doppler frequency shift which was observed independently of the nanoparticle flow rate and direction. Results suggest that MM-ODT may be applied to image Doppler shift of SPIO nanoparticles in microfluidic flows with high contrast.
Special types of FBG and CoaxBG structures for telecommunication and monitoring systems
NASA Astrophysics Data System (ADS)
Morozov, Oleg G.; Nasybullin, Aidar R.; Morozov, Gennady A.; Danilaev, Maxim P.; Zastela, Mikhail Y.; Farkhutdinov, Rafael V.; Faskhutdinov, Lenar M.
2015-03-01
The technology of fiber Bragg gratings is used as one of the most applicable technologies for construction of fiber optic sensors and telecommunication systems. Periodic irregular wave resistance located in the guiding waveguide can be regarded as analog of the fiber Bragg grating structure in the field of radio-frequency. Coaxial waveguide can be used as a guide system, so a special case of this structure is the Bragg grating on coaxial cable. Recently, the special structure of sensors were beginning to be used with heterogeneity as a discrete phase π-shift. Based on the properties analysis of the Bragg reflection characteristics of structures with a phase shift in the optical and microwave range shown advantage of using these devices in measuring systems.
NASA Astrophysics Data System (ADS)
Wang, Dai-Hua; Jia, Ping-Gang
2013-05-01
The principle of a fiber optic Fabry-Perot (F-P) accelerometer (FOFPA) system using the laser emission frequency modulated phase generated carrier (FMPGC) demodulation scheme is first described and experimentally demonstrated. The F-P cavity, which is constituted by placing the end face of a gradient-index lens in parallel with the reflector on the inertial mass, directly translates the inertial mass's displacement generated by the measured acceleration into phase shifts of the interference output from the F-P cavity. An FMPGC demodulation scheme based on the arctangent (Arctan) algorithm is adapted to demodulate the phase shifts. The sensing model for the FOFPA system using the FMPGC-Arctan demodulation scheme is established and the sensing characteristics are theoretically analyzed. On these bases, the FOFPA is designed and fabricated and a prototyping system is built and tested. The results indicate that: (1) the nonlinearity of the FOFPA system using the FMPGC-Arctan demodulation scheme is less than 0.58%, (2) the resonant frequency, on-axial sensitivity, and resolution are 393 Hz, 13.11 rad/g, and 450 μ, respectively, and (3) the maximum deviation of the phase sensitivity of the FOFPA within the temperature range of 30 to 80°C is 0.49 dB re 1 rad/g.
Polarizability and the optical theorem for a two-level atom with radiative broadening
NASA Astrophysics Data System (ADS)
Berman, Paul R.; Boyd, Robert W.; Milonni, Peter W.
2006-11-01
The effect of spontaneous decay on the linear polarizability of an atom is typically included by adding imaginary parts to the frequency denominators that appear in the Kramers-Heisenberg formula. It has been shown for a two-level atom with radiative broadening that these (frequency-dependent) imaginary parts must be included in both the resonant and antiresonant frequency denominators [P. W. Milonni and R. W. Boyd, Phys. Rev. A 69, 023814 (2004)]; however, the expression obtained by Milonni and Boyd for the polarizability does not satisfy the optical theorem, if contributions from non-rotating-wave terms are included. In this paper, we derive a more accurate expression for the polarizability. The calculations are rather complicated and require that we go beyond the standard Weisskopf-Wigner approximation. We present calculations carried out in both the Heisenberg and Schrödinger pictures, since they offer complementary methods for understanding the dynamics of the Rayleigh scattering associated with the atomic polarizability. Moreover, it is shown that the shifts associated with the excited state are not the Lamb shifts of an isolated atom, but depend on the dynamics of the atom-field interaction. Our results for the polarizability are consistent with those obtained recently by Loudon and Barnett using a Green’s-function approach.
Coherent dual-frequency lidar system design for distance and speed measurements
NASA Astrophysics Data System (ADS)
Zheng, Xingyuan; Zhao, Changming; Zhang, Haiyang; Zheng, Zheng; Yang, Hongzhi
2018-01-01
Lidars have a wide range of applications in military detection and civilian remote sensing. Coherent Dual-Frequency Lidar (CDFL) is a new concept of laser radar that is using electrical coherence instead of optical coherence. It uses laser with two coherent frequency components as transmitting wave. The method is based on the use of an optically-carried radio frequency (RF) signal, which is the frequency difference between the two components, which is specially designed for distance and speed measurements. It not only ensures the system has the characteristics of high spatial resolution, high ranging and velocity precision of laser radar, but also can use mature signal processing technology of microwave radar, and it is a research direction that attracts more concern in recent years. A CDFL detection system is constructed and field experiment is carried out. In the system, a narrow linewidth fiber laser with a wavelength of 1064nm is adopted. The dual-frequency laser with frequency difference of 200MHz and 200.6MHz is obtained by acousto-optic frequency shift and recombination. The maximum output power of dual frequency laser is 200mW. The receiver consists of all-fiber balanced InGaAs photo-detector and homemade analog signal processing board. The experimental results show that the distance resolution and velocity resolution of the system are 0.1m and 0.1m/s separately when the working distance is greater than 200m, and the spatial resolution is 0.5mrad.
1THz synchronous tuning of two optical synthesizers
NASA Astrophysics Data System (ADS)
Neuhaus, Rudolf; Rohde, Felix; Benkler, Erik; Puppe, Thomas; Raab, Christoph; Unterreitmayer, Reinhard; Zach, Armin; Telle, Harald R.; Stuhler, Jürgen
2016-04-01
Single-frequency optical synthesizers (SFOS) provide an optical field with arbitrarily adjustable frequency and phase which is phase-coherently linked to a reference signal. Ideally, they combine the spectral resolution of narrow linewidth frequency stabilized lasers with the broad spectral coverage of frequency combs in a tunable fashion. In state-of-the-art SFOSs tuning across comb lines requires comb line order switching,1, 2 which imposes technical overhead with problems like forbidden frequency gaps or strong phase glitches. Conventional tunable lasers often tune over only tens of GHz before mode-hops occur. Here, we present a novel type of SFOSs, which relies on a serrodyne technique with conditional flyback,3 shifting the carrier frequency of the employed frequency comb without an intrusion into the comb generator. It utilizes a new continuously tunable diode laser that tunes mode-hop-free across the full gain spectrum of the integrated laser diode. We investigate the tuning behavior of two identical SFOSs that share a common reference, by comparing the phases of their output signals. Previously, we achieved phase-stable and cycle-slip free frequency tuning over 28.1 GHz with a maximum zero-to-peak phase deviation of 62 mrad4 when sharing a common comb generator. With the new continuously tunable lasers, the SFOSs tune synchronously across nearly 17800 comb lines (1 THz). The tuning range in this approach can be extended to the full bandwidth of the frequency comb and the 110 nm mode-hop-free tuning range of the diode laser.
Airy pulse shaping using time-dependent power-law potentials
NASA Astrophysics Data System (ADS)
Han, Tianwen; Chen, Hao; Qin, Chengzhi; Li, Wenwan; Wang, Bing; Lu, Peixiang
2018-06-01
We investigate the temporal and spectral evolutions of finite-energy Airy pulses in the presence of power-law optical potentials. The potentials are generated by the time-dependent pumped light, which propagates together with the Airy pulses in a highly nonlinear optical fiber. We show that the intrinsic acceleration of Airy pulses can be modified by an external force that stems from a linear potential, and hence unidirectional frequency shift can be realized. When a triangle potential is employed, the pulse will exhibit self-splitting both in temporal and spectral domains. Additionally, as a parabolic potential is utilized, both the temporal waveform and frequency spectrum of the Airy pulse will exchange alternately between the Airy and Gaussian profiles. By using higher-order power-law potentials, we also realize both revival and antirevival effects for the Airy pulses. The study may find wide applications in pulse reshaping and spectral-temporal imaging for both optical communication and signal processing.
NASA Astrophysics Data System (ADS)
Han, Xifeng; Zhou, Wen
2018-03-01
Optical vector radio-frequency (RF) signal generation based on optical carrier suppression (OCS) in one Mach-Zehnder modulator (MZM) can realize frequency-doubling. In order to match the phase or amplitude of the recovered quadrature amplitude modulation (QAM) signal, phase or amplitude pre-coding is necessary in the transmitter side. The detected QAM signals usually have one non-uniform phase distribution after square-law detection at the photodiode because of the imperfect characteristics of the optical and electrical devices. We propose to use optimal threshold of error decision for non-uniform phase contribution to reduce the bit error rate (BER). By employing this scheme, the BER of 16 Gbaud (32 Gbit/s) quadrature-phase-shift-keying (QPSK) millimeter wave signal at 36 GHz is improved from 1 × 10-3 to 1 × 10-4 at - 4 . 6 dBm input power into the photodiode.
Optical Data Processing for Missile Guidance.
1983-09-30
detector outputs are a. This light intensity multiplies the signal in the AG shifted down at a clock rate 1/Tq and if successive cell and At waves leave the...lolit matrix matrix matrix multiplier -ytem. of B. We thus input these later columns ofB into the input LE) array at successive times with their...converted to frequency and time/space by the results Bj, = B.+ I on two successive iterations k and k frequency-multiplexing unit in Fig. 5 as shown in Eq
NASA Astrophysics Data System (ADS)
Murakami, Hiroshi
2018-04-01
Persistent optical hole-burning spectroscopy has been conducted for a dye molecule within a very small (˜1 nm) reverse micelle at room temperature. The spectra show a spectral narrowing due to site-selective excitation. This definitely demonstrates that the surroundings of the dye molecule are in a glassy state regardless of a solution at room temperature. On the other hand, the hole-burning spectra exhibit large shifts from excitation frequencies, and their positions are almost independent of excitation frequencies. The hole-burning spectra have been theoretically calculated by taking account of a vibronic absorption band of the dye molecule under the assumption that the surroundings of the dye molecule are in a glassy state. The calculated results agree with the experimental ones that were obtained for the dye molecule in a polymer glass for comparison, where it has been found that the ratio of hole-burning efficiencies of vibronic- to electronic-band excitations is quite high. On the other hand, the theoretical results do not explain the large spectral shift from the excitation frequency and small spectral narrowing observed in the hole-burning spectra measured for the dye-containing reverse micelle. It is thought that the spectral shift and broadening occur within the measurement time owing to the relaxation process of the surroundings that are hot with the thermal energy deposited by the dye molecule optically excited. Furthermore, the relaxation should be temporary because the cooling of the inside of the reverse micelle takes place with the dissipation of the excess thermal energy to the outer oil solvent, and so the surroundings of the dye molecule return to the glassy state and do not attain the thermal equilibrium. These results suggest that a very small reverse micelle provides a unique reaction field in which the diffusional motion can be controlled by light in a glassy state.
Adaptive frequency-domain equalization in digital coherent optical receivers.
Faruk, Md Saifuddin; Kikuchi, Kazuro
2011-06-20
We propose a novel frequency-domain adaptive equalizer in digital coherent optical receivers, which can reduce computational complexity of the conventional time-domain adaptive equalizer based on finite-impulse-response (FIR) filters. The proposed equalizer can operate on the input sequence sampled by free-running analog-to-digital converters (ADCs) at the rate of two samples per symbol; therefore, the arbitrary initial sampling phase of ADCs can be adjusted so that the best symbol-spaced sequence is produced. The equalizer can also be configured in the butterfly structure, which enables demultiplexing of polarization tributaries apart from equalization of linear transmission impairments. The performance of the proposed equalization scheme is verified by 40-Gbits/s dual-polarization quadrature phase-shift keying (QPSK) transmission experiments.
Spectral changes induced by a phase modulator acting as a time lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plansinis, B. W.; Donaldson, W. R.; Agrawal, G. P.
2015-07-06
We show both numerically and experimentally that a phase modulator, acting as a time lens in the Fourier-lens configuration, can induce spectral broadening, narrowing, or shifts, depending on the phase of the modulator cycle. These spectral effects depend on the maximum phase shift that can be imposed by the modulator. In our numerical simulations, pulse spectrum could be compressed by a factor of 8 for a 30 rad phase shift. Experimentally, spectral shifts over a 1.35 nm range and spectral narrowing and broadening by a factor of 2 were demonstrated using a lithium niobate phase modulator with a maximum phasemore » shift of 16 rad at a 10 GHz modulation frequency. All spectral changes were accomplished without employing optical nonlinear effects such as self- or cross-phase modulation.« less
High-order Stokes generation in a KTP Raman laser pumped by a passively Q-switched ND:YLF laser
NASA Astrophysics Data System (ADS)
Wang, Maorong; Zhong, Kai; Mei, Jialin; Guo, Shibei; Xu, Degang; Yao, Jianquan
2015-12-01
High-order Stokes wave was observed in an x-cut KTP crystal based on stimulated Raman scattering (SRS) pumped by a passively Q-switched Nd:YLF laser with a Cr4+:YAG saturable absorber. Output spectra including the fundamental wave at 1047 nm and six Stokes wavelengths at 1077 nm, 1110 nm, 1130 nm, 1143 nm, 1164 nm, 1180 nm based on two Raman frequency shift at 267.4 cm-1 and 693.0 cm-1 were obtained simultaneously. We also detected green light generation with output power of 12 mW from self frequency mixing in the KTP crystal. The maximum total output power reached 452 mW at the repetition frequency of 8.1 kHz, corresponding to the optical-to-optical conversion efficiency of 4.61% and pump-to-Raman conversion efficiency of 3.6%.
Strain induced optical properties of BaReO3
NASA Astrophysics Data System (ADS)
Kumavat, Sandip R.; Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh
2018-05-01
Here, we have performed strain induce optical properties of BaReO3 by using density functional theory (DFT). We noticed that after applying intrinsic and extrinsic strain to the BaReO3, it shows the metallic behavior. We also studied optical properties, which show good activity in the ultraviolet region. The results show that after applying intrinsic and extrinsic strain to BaReO3 the absorption peaks are shifted towards the high UV region of the spectrum. Thus, we concluded that, BaReO3 material with extrinsic strain can be useful for high frequency UV device and optoelectronic devices.
Optical ferris wheel for ultracold atoms
NASA Astrophysics Data System (ADS)
Franke-Arnold, S.; Leach, J.; Padgett, M. J.; Lembessis, V. E.; Ellinas, D.; Wright, A. J.; Girkin, J. M.; Ohberg, P.; Arnold, A. S.
2007-07-01
We propose a versatile optical ring lattice suitable for trapping cold and quantum degenerate atomic samples. We demonstrate the realisation of intensity patterns from pairs of Laguerre-Gauss (exp(iℓө) modes with different ℓ indices. These patterns can be rotated by introducing a frequency shift between the modes. We can generate bright ring lattices for trapping atoms in red-detuned light, and dark ring lattices suitable for trapping atoms with minimal heating in the optical vortices of blue-detuned light. The lattice sites can be joined to form a uniform ring trap, making it ideal for studying persistent currents and the Mott insulator transition in a ring geometry.
NASA Astrophysics Data System (ADS)
Jagodzinski, Jeremy James
2007-12-01
The development to date of a diode-laser based velocimeter providing point-velocity-measurements in unseeded flows using molecular Rayleigh scattering is discussed. The velocimeter is based on modulated filtered Rayleigh scattering (MFRS), a novel variation of filtered Rayleigh scattering (FRS), utilizing modulated absorption spectroscopy techniques to detect a strong absorption of a relatively weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption; alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry. Semiconductor diode lasers are used to generate the relatively weak Rayleigh scattered signal; due to their compact, rugged construction diode lasers are ideally suited for the environmental extremes encountered in many experiments. The MFRS technique utilizes the frequency-tuning capability of diode lasers to implement a homodyne detection scheme using lock-in amplifiers. The optical frequency of the diode-based laser system used to interrogate the flow is rapidly modulated about a reference frequency in the D2-line of Rb. The frequency modulation is imposed on the Rayleigh scattered light that is collected from the probe volume in the flow under investigation. The collected frequency modulating Rayleigh scattered light is transmitted through a Rb vapor filter before being detected. The detected modulated absorption signal is fed to two lock-in amplifers synchronized with the modulation frequency of the source laser. High levels of background rejection are attained since the lock-ins are both frequency and phase selective. The two lock-in amplifiers extract different Fourier components of the detected modulated absorption signal, which are ratioed to provide an intensity normalized frequency dependent signal from a single detector. A Doppler frequency shift in the collected Rayleigh scattered light due to a change in the velocity of the flow under investigation results in a change in the detected modulated absorption signal. This change in the detected signal provides a quantifiable measure of the Doppler frequency shift, and hence the velocity in the probe volume, provided that the laser source exhibits acceptable levels of frequency stability (determined by the magnitude of the velocities being measured). An extended cavity diode laser (ECDL) in the Littrow configuration provides frequency tunable, relatively narrow-linewidth lasing for the MFRS velocimeter. Frequency stabilization of the ECDL is provided by a proportional-integral-differential (PID) controller based on an error signal in the reference arm of the experiment. The optical power of the Littrow laser source is amplified by an antireflection coated (AR coated) broad stripe diode laser. The single-mode, frequency-modulatable, frequency-stable O(50 mW) of optical power provided by this extended cavity diode laser master oscillator power amplifier (ECDL-MOPA) system provided sufficient scattering signal from a condensing jet of CO2 to implement the MFRS technique in the frequency-locked mode of operation.
NASA Technical Reports Server (NTRS)
Justak, John
2010-01-01
An acousto-optic cryogenic flow sensor (CFS) determines mass flow of cryogens for spacecraft propellant management. The CFS operates unobtrusively in a high-pressure, high-flowrate cryogenic environment to provide measurements for fluid quality as well as mass flow rate. Experimental hardware uses an optical plane-of-light (POL) to detect the onset of two-phase flow, and the presence of particles in the flow of water. Acousto-optic devices are used in laser equipment for electronic control of the intensity and position of the laser beam. Acousto-optic interaction occurs in all optical media when an acoustic wave and a laser beam are present. When an acoustic wave is launched into the optical medium, it generates a refractive index wave that behaves like a sinusoidal grating. An incident laser beam passing through this grating will diffract the laser beam into several orders. Its angular position is linearly proportional to the acoustic frequency, so that the higher the frequency, the larger the diffracted angle. If the acoustic wave is traveling in a moving fluid, the fluid velocity will affect the frequency of the traveling wave, relative to a stationary sensor. This frequency shift changes the angle of diffraction, hence, fluid velocity can be determined from the diffraction angle. The CFS acoustic Bragg grating data test indicates that it is capable of accurately determining flow from 0 to 10 meters per second. The same sensor can be used in flow velocities exceeding 100 m/s. The POL module has successfully determined the onset of two-phase flow, and can distinguish vapor bubbles from debris.
NASA Astrophysics Data System (ADS)
Smetanin, I. V.; Erokhin, A. I.; Baranov, A. N.
2018-07-01
We report the results of the experimental and theoretical study of stimulated temperature scattering in toluene and hexane solutions of Ag-nanoparticles, as well as in pure toluene in the two-photon absorption regime. A four-wave mixing scheme with two counter-propagating pump waves of the same frequency is utilised to demonstrate the lasing effect and the amplification of the backscattered anti-Stokes signal. For the first time, we have measured anti-Stokes spectral shifts which turn out to appreciably exceed the Rayleigh line widths in those liquids. It is shown that the amplification effect is provided predominantly by thermally induced coherent polarisation oscillations, while the dynamic interference temperature grating causes the formation of a self-induced optical cavity inside the interaction region.
Infrared Reflectance Spectroscopy of Porous Silicas
NASA Astrophysics Data System (ADS)
Guiton, Theresa Anne
Fourier transform infrared (FTIR) specular reflectance spectroscopy was used to examine the fundamental phonon behavior of a series of porous silicas including porous Vycor, xerogels, aerogels, and colloidal solids. The spectra were deconvoluted using Kramers-Kronig analysis techniques, and the corresponding optical constants were determined via the Fresnel equations. The resulting spectra represent the first compilation of such data for low density silicas. The porous silicas revealed unique resonance modes for the imaginary dielectric function and energy loss function. A key distinction amongst the spectra was the change in the band shape of the antisymmetric Si-O-Si stretching modes. For instance, as the porosity level of the particulate systems increased, the peak maxima of the imaginary dielectric functions shifted to higher frequencies while the peak maxima of the associated energy loss function shifted to lower frequencies. In essence, with increasing porosity, the peak maxima of the imaginary dielectric functions and the energy loss functions were converging towards frequencies intermediate to the transverse optical and longitudinal optical modes of fused silica. A similar trend was not observed for the semi-continuous silica matrices. Maxwell Garnett effective medium modeling verified that these modes were a function of the porous microstructure and can be attributed to surface phonon modes. The effect of surface phonon modes was also evident in the absorption coefficient data. However, contrary to the traditional view that changes in the absorption spectra of porous silicas are strictly due to molecular structure, this study has demonstrated that variations can be attributed--both qualitatively and quantitatively--to electrostatic screening effects of finite particles.
Thermal emission and absorption of radiation in finite inverted-opal photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florescu, Marian; Stimpson, Andrew J.; Lee, Hwang
We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strongmore » reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.« less
LTP interferometer—noise sources and performance
NASA Astrophysics Data System (ADS)
Robertson, David; Killow, Christian; Ward, Harry; Hough, Jim; Heinzel, Gerhard; Garcia, Antonio; Wand, Vinzenz; Johann, Ulrich; Braxmaier, Claus
2005-05-01
The LISA Technology Package (LTP) uses laser interferometry to measure the changes in relative displacement between two inertial test masses. The goals of the mission require a displacement measuring precision of 10 pm Hz-1/2 at frequencies in the 3 30 mHz band. We report on progress with a prototype LTP interferometer optical bench in which fused silica mirrors and beamsplitters are fixed to a ZERODUR® substrate using hydroxide catalysis bonding to form a rigid interferometer. The couplings to displacement noise of this interferometer of two expected noise sources—laser frequency noise and ambient temperature fluctuations—have been investigated, and an additional, unexpected, noise source has been identified. The additional noise is due to small amounts of signal at the heterodyne frequency arriving at the photodiode preamplifiers with a phase that quasistatically changes with respect to the optical signal. The phase shift is caused by differential changes in the external optical paths the beams travel before they reach the rigid interferometer. Two different external path length stabilization systems have been demonstrated and these allowed the performance of the overall system to meet the LTP displacement noise requirement.
Structural and optical properties of the ZnS/GaSe heterojunctions
NASA Astrophysics Data System (ADS)
Alharbi, S. R.; Abdallaha, Maisam M. A.; Qasrawi, A. F.
2017-11-01
In the current work, the ZnS/GaSe thin film heterojunction interfaces are experimentally designed and characterized by means of x-ray diffraction, scanning electron microscopy, energy dispersion spectroscopy and optical spectroscopy techniques. The heterojunction is observed to exhibit physical nature of formation with an induced crystallization of GaSe by the ZnS substrate. For this heterojunction, the hot probe technique suggested the formation of a p-ZnS/n-GaSe interface. In addition, the designed energy band diagram of the heterojunction which was actualized with the help of the optical spectrophotometric data analysis revealed a respective conduction and valence band offsets of 0.67 and 0.73 eV. On the other hand, the dielectric dispersion analysis and modeling which was studied in the frequency range of 270-1000 THz, have shown that the interfacing of the ZnS with GaSe strongly affects the properties of ZnS as it reduces the number of free carriers, shifts down the plasmon frequency, increases the charge carrier scattering time and results in higher values of drift mobility at Terahertz frequencies.
Plasmonic Optical Fiber Sensor Based on Double Step Growth of Gold Nano-Islands
Vasconcelos, Helena
2018-01-01
It is presented the fabrication and characterization of optical fiber sensors for refractive index measurement based on localized surface plasmon resonance (LSPR) with gold nano-islands obtained by single and by repeated thermal dewetting of gold thin films. Thin films of gold deposited on silica (SiO2) substrates and produced by different experimental conditions were analyzed by Scanning Electron Microscope/Dispersive X-ray Spectroscopy (SEM/EDS) and optical means, allowing identifying and characterizing the formation of nano-islands. The wavelength shift sensitivity to the surrounding refractive index of sensors produced by single and by repeated dewetting is compared. While for the single step dewetting, a wavelength shift sensitivity of ~60 nm/RIU was calculated, for the repeated dewetting, a value of ~186 nm/RIU was obtained, an increase of more than three times. It is expected that through changing the fabrication parameters and using other fiber sensor geometries, higher sensitivities may be achieved, allowing, in addition, for the possibility of tuning the plasmonic frequency. PMID:29677108
Plasmonic Optical Fiber Sensor Based on Double Step Growth of Gold Nano-Islands.
de Almeida, José M M M; Vasconcelos, Helena; Jorge, Pedro A S; Coelho, Luis
2018-04-20
It is presented the fabrication and characterization of optical fiber sensors for refractive index measurement based on localized surface plasmon resonance (LSPR) with gold nano-islands obtained by single and by repeated thermal dewetting of gold thin films. Thin films of gold deposited on silica (SiO₂) substrates and produced by different experimental conditions were analyzed by Scanning Electron Microscope/Dispersive X-ray Spectroscopy (SEM/EDS) and optical means, allowing identifying and characterizing the formation of nano-islands. The wavelength shift sensitivity to the surrounding refractive index of sensors produced by single and by repeated dewetting is compared. While for the single step dewetting, a wavelength shift sensitivity of ~60 nm/RIU was calculated, for the repeated dewetting, a value of ~186 nm/RIU was obtained, an increase of more than three times. It is expected that through changing the fabrication parameters and using other fiber sensor geometries, higher sensitivities may be achieved, allowing, in addition, for the possibility of tuning the plasmonic frequency.
Modelling of rotation-induced frequency shifts in whispering gallery modes
NASA Astrophysics Data System (ADS)
Venediktov, V. Yu; Kukaev, A. S.; Filatov, Yu V.; Shalymov, E. V.
2018-02-01
We study the angular velocity sensors based on whispering gallery mode resonators. Rotation of such resonators gives rise to various effects that can cause a spectral shift of their modes. Optical methods allow this shift to be determined with high precision, which can be used practically to measure the angular velocity in inertial orientation and navigation systems. The basic principles of constructing the angular velocity sensors utilising these effects are considered, their advantages and drawbacks are indicated. We also study the interrelation between the effects and the possibility of their mutual influence on each other. Based on the analytical studies of the effects, we consider the possibility of their combined application for angular velocity measurements.
Low-coherence interferometric tip-clearance probe
NASA Astrophysics Data System (ADS)
Kempe, Andreas; Schlamp, Stefan; Rösgen, Thomas; Haffner, Ken
2003-08-01
We propose an all-fiber, self-calibrating, economical probe that is capable of near-real-time, single-port, simultaneous blade-to-blade tip-clearance measurements with submillimeter accuracy (typically <100 μm, absolute) in the first stages of a gas turbine. Our probe relies on the interference between backreflected light from the blade tips during the 1-μs blade passage time and a frequency-shifted reference with variable time delay, making use of a low-coherence light source. A single optical fiber of arbitrary length connects the self-contained optics and electronics to the turbine.
Mizuno, Yosuke; Nakamura, Kentaro
2010-12-01
We investigated the dependences of Brillouin frequency shift (BFS) on strain and temperature in a perfluorinated graded-index polymer optical fiber (PFGI-POF) at 1.55 μm wavelength. They showed negative dependences with coefficients of -121.8 MHz/% and -4.09 MHz/K, respectively, which are -0.2 and -3.5 times as large as those in silica fibers. These unique BFS dependences indicate that the Brillouin scattering in PFGI-POFs has a big potential for strain-insensitive high-accuracy temperature sensing.
Parallel multiplex laser feedback interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Song; Tan, Yidong; Zhang, Shulian, E-mail: zsl-dpi@mail.tsinghua.edu.cn
2013-12-15
We present a parallel multiplex laser feedback interferometer based on spatial multiplexing which avoids the signal crosstalk in the former feedback interferometer. The interferometer outputs two close parallel laser beams, whose frequencies are shifted by two acousto-optic modulators by 2Ω simultaneously. A static reference mirror is inserted into one of the optical paths as the reference optical path. The other beam impinges on the target as the measurement optical path. Phase variations of the two feedback laser beams are simultaneously measured through heterodyne demodulation with two different detectors. Their subtraction accurately reflects the target displacement. Under typical room conditions, experimentalmore » results show a resolution of 1.6 nm and accuracy of 7.8 nm within the range of 100 μm.« less
NASA Astrophysics Data System (ADS)
Wolf, Alexey; Dostovalov, Alexandr; Skvortsov, Mikhail; Raspopin, Kirill; Parygin, Alexandr; Babin, Sergey
2018-05-01
In this work, long high-quality fiber Bragg gratings with phase shifts in the structure are inscribed directly in the optical fiber by point-by-point technique using femtosecond laser pulses. Phase shifts are introduced during the inscription process with a piezoelectric actuator, which rapidly shifts the fiber along the direction of its movement in a chosen point of the grating with a chosen shift value. As examples, single and double π phase shifts are introduced in fiber Bragg gratings with a length up to 34 mm in passive fibers, which provide corresponding transmission peaks with bandwidth less than 1 pm. It is shown that 37 mm π -phase-shifted grating inscribed in an active Er-doped fiber forms high-quality DFB laser cavity generating single-frequency radiation at 1550 nm with bandwidth of 20 kHz and signal-to-noise ratio of >70 dB. The inscription technique has a high degree of performance and flexibility and can be easily implemented in fibers of various types.
NASA Technical Reports Server (NTRS)
Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute
2000-01-01
In this paper we review the development of Hg(+) microwave frequency standards for use in high reliability and continuous operation applications. In recent work we have demonstrated short-term frequency stability of 3 x 10(exp -14)/nu(sub tau) when a cryogenic oscillator of stability 2-3 x 10(exp 15) was used a the local oscillator. The trapped ion frequency standard employs a Hg-202 discharge lamp to optically pump the trapped Hg(+)-199 clock ions and a helium buffer gas to cool the ions to near room temperature. We describe a small Hg(+) ion trap based frequency standard with an extended linear ion trap (LITE) architecture which separates the optical state selection region from the clock resonance region. This separation allows the use of novel trap configurations in the resonance region since no optical pumping is carried out there. A method for measuring the size of an ion cloud inside a linear trap with a 12-rod trap is currently being investigated. At approx. 10(exp -12), the 2nd order Doppler shift for trapped mercury ion frequency standards is one of the largest frequency offsets and its measurement to the 1% level would represent an advance in insuring the very long-term stability of these standards to the 10(exp -14) or better level. Finally, we describe atomic clock comparison experiments that can probe for a time variation of the fine structure constant, alpha = e(exp 2)/2(pi)hc, at the level of 10(exp -20)/year as predicted in some Grand Unified String Theories.
Optical digital chaos cryptography
NASA Astrophysics Data System (ADS)
Arenas-Pingarrón, Álvaro; González-Marcos, Ana P.; Rivas-Moscoso, José M.; Martín-Pereda, José A.
2007-10-01
In this work we present a new way to mask the data in a one-user communication system when direct sequence - code division multiple access (DS-CDMA) techniques are used. The code is generated by a digital chaotic generator, originally proposed by us and previously reported for a chaos cryptographic system. It is demonstrated that if the user's data signal is encoded with a bipolar phase-shift keying (BPSK) technique, usual in DS-CDMA, it can be easily recovered from a time-frequency domain representation. To avoid this situation, a new system is presented in which a previous dispersive stage is applied to the data signal. A time-frequency domain analysis is performed, and the devices required at the transmitter and receiver end, both user-independent, are presented for the optical domain.
THz transceiver characterization : LDRD project 139363 final report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordquist, Christopher Daniel; Wanke, Michael Clement; Cich, Michael Joseph
2009-09-01
LDRD Project 139363 supported experiments to quantify the performance characteristics of monolithically integrated Schottky diode + quantum cascade laser (QCL) heterodyne mixers at terahertz (THz) frequencies. These integrated mixers are the first all-semiconductor THz devices to successfully incorporate a rectifying diode directly into the optical waveguide of a QCL, obviating the conventional optical coupling between a THz local oscillator and rectifier in a heterodyne mixer system. This integrated mixer was shown to function as a true heterodyne receiver of an externally received THz signal, a breakthrough which may lead to more widespread acceptance of this new THz technology paradigm. Inmore » addition, questions about QCL mode shifting in response to temperature, bias, and external feedback, and to what extent internal frequency locking can improve stability have been answered under this project.« less
Laser modulator for LISA pathfinder
NASA Astrophysics Data System (ADS)
Voland, C.; Lund, G.; Coppoolse, W.; Crosby, P.; Stadler, M.; Kudielka, K.; Özkan, C.
2017-11-01
LISA Pathfinder is an ESA experiment to demonstrate the key technologies needed for the LISA mission to detect gravitational waves in space. The LISA Pathfinder spacecraft represents one arm of the LISA interferometer, containing an optical metrology system and two proof masses as inertial references for the drag-free control system. The LISA Pathfinder payload consists of two drag-free floating test masses located in the inertial sensors with their control electronics and an optical metrology subsystem. The optical metrology subsystem monitors the movement of both test masses relative to each other and to the spacecraft with very high sensitivity and resolution. This is achieved with a heterodyne Mach- Zehnder interferometer. This interferometer requires as input two coherent laser beams with a heterodyne frequency difference of a few kHz. To generate the two laser beams with a heterodyne frequency difference a Nd:YAG laser is used together with the Laser Modulator. The Nd:YAG laser generates a single coherent laser signal at a wavelength of 1064nm which is fibre coupled to the Laser Modulator. The Laser Modulator then generates the two optical beams with the required heterodyne frequency offset. In addition, the Laser Modulator is required to perform laser amplitude stabilization and optical path difference control for the two optical signals. The Laser Modulator consists of an optical unit - the LMU - and RF synthesiser, power amplification and control electronics. These electronics are all housed in the Laser Modulator Electronics (LME). The LMU has four primary functions: • Splitting of the input laser beam into two paths for later superposition in the interferometer. • Applying different frequency shifts to each of the beams. • Providing amplitude modulation control to each of the beams. • Providing active control of the optical path length difference between the two optical paths. The present paper describes the design and performance of the LMU together with a summary of the results of the Laser Modulator engineering model test campaign.
International Comparison of Methane-Stabilized He-Ne Lasers
NASA Astrophysics Data System (ADS)
Koshelyaevskii, N. B.; Oboukhov, A.; Tatarenkov, V. M.; Titov, A. N.; Chartier, J.-M.; Felder, R.
1981-01-01
Two portable methane-stabilized lasers designed at BIPM have been compared with a type a stationary Soviet device developed in VNIIFTRI1. This comparison is one of a series aimed at establishing the coherence of laser wavelength and frequency measurements throughout the world and took place in June 1979. The VNIIFTRI and BIPM lasers using different methods of stabilization, have different optical and mechanical designs and laser tubes. The results of previous measurements, made in VNIIFTRI, of the most important frequency shifts for Soviet lasers together with a method of reproducing their frequency which leads to a precision of 1.10-12 are also presented.
Homodyne locking of a squeezer.
Heurs, M; Petersen, I R; James, M R; Huntington, E H
2009-08-15
We report on the successful implementation of an approach to locking the frequencies of an optical parametric oscillator (OPO)-based squeezed-vacuum source and its driving laser. The technique allows the simultaneous measurement of the phase shifts induced by a cavity, which may be used for the purposes of frequency locking, as well as the simultaneous measurement of the sub-quantum-noise-limited (sub-QNL) phase quadrature output of the OPO. The homodyne locking technique is cheap, easy to implement, and has the distinct advantage that subsequent homodyne measurements are automatically phase locked. The homodyne locking technique is also unique in that it is a sub-QNL frequency discriminator.
Frequency metrology of the acetylene lines near 789 nm from lamb-dip measurements
NASA Astrophysics Data System (ADS)
Tao, Lei-Gang; Hua, Tian-Peng; Sun, Yu R.; Wang, Jin; Liu, An-Wen; Hu, Shui-Ming
2018-05-01
Lamb-dips of the ro-vibrational lines of 12C2H2 near 789 nm were recorded using cavity ring-down saturation spectroscopy. Calibrated by an optical frequency comb, frequencies of 45 acetylene lines were determined with an accuracy of 1.1 ×10-7 cm-1 (δν / ν = 8 ×10-12), which is over two orders of magnitude more accurate than previous Doppler-limited studies. An averaged shift of about 0.01 cm-1 were found by comparing the upper energies obtained in this work to those recently presented by Chubb et al. from a MARVEL analysis.
Wavelength dependence of the Brillouin spectral width of boron doped germanosilicate optical fibers.
Law, Pi-Cheng; Dragic, Peter D
2010-08-30
Boron co-doped germanosilicate fibers are investigated via the Brillouin light scattering technique using two wavelengths, 1534 nm and 1064 nm. Several fibers are investigated, including four drawn from the same preform but at different draw temperatures. The Stokes' shifts and the Brillouin spectral widths are found to increase with increasing fiber draw temperature. A frequency-squared law has adequately described the wavelength dependence of the Brillouin spectral width of conventional Ge-doped fibers. However, it is found that unlike conventional Ge-doped fibers these fibers do not follow the frequency-squared law. This is explained through a frequency-dependent dynamic viscosity that modifies this law.
NASA Astrophysics Data System (ADS)
Limes, M. E.; Sheng, D.; Romalis, M. V.
2018-01-01
We describe a
Transmitted spectral modulation of double-ring resonator using liquid crystals in terahertz range
NASA Astrophysics Data System (ADS)
Sun, Huijuan; Zhou, Qingli; Wang, Xiumin; Li, Chenyu; Wu, Ani; Zhang, Cunlin
2013-12-01
Metamaterials with subwavelength structural features show unique electromagnetic responses that are unattainable with natural materials. Recent research on these artificial materials has been pushed forward to the terahertz region because of potential applications in biological fingerprinting, security imaging, remote sensing, and high frequency magnetic and electric resonant devices. Active control of their properties could further facilitate and open up new applications in terms of modulation and switching. Liquid crystals, which have been the subject of research for more than a century, have the unique properties for the development of many other optical components such as light valves, tunable filters and tunable lenses. In this paper, we investigated the transmitted spectral modulation in terahertz range by using liquid crystals (5CB and TEB300) covering on the fabricated double-ring resonators to realize the shift of the resonance frequency. Our obtained results indicate the low frequency resonance shows the obvious blue-shift, while the location of high frequency resonance is nearly unchanged. We believe this phenomenon is related to not only the refractive index of the covering liquid crystals but also the resonant mechanism of both resonances.
Non-reciprocal wave propagation in one-dimensional nonlinear periodic structures
NASA Astrophysics Data System (ADS)
Luo, Benbiao; Gao, Sha; Liu, Jiehui; Mao, Yiwei; Li, Yifeng; Liu, Xiaozhou
2018-01-01
We study a one-dimensional nonlinear periodic structure which contains two different spring stiffness and an identical mass in each period. The linear dispersion relationship we obtain indicates that our periodic structure has obvious advantages compared to other kinds of periodic structures (i.e. those with the same spring stiffness but two different mass), including its increased flexibility for manipulating the band gap. Theoretically, the optical cutoff frequency remains unchanged while the acoustic cutoff frequency shifts to a lower or higher frequency. A numerical simulation verifies the dispersion relationship and the effect of the amplitude-dependent signal filter. Based upon this, we design a device which contains both a linear periodic structure and a nonlinear periodic structure. When incident waves with the same, large amplitude pass through it from opposite directions, the output amplitude of the forward input is one order magnitude larger than that of the reverse input. Our devised, non-reciprocal device can potentially act as an acoustic diode (AD) without an electrical circuit and frequency shifting. Our result represents a significant step forwards in the research of non-reciprocal wave manipulation.
A Microwave Tunable Bandpass Filter for Liquid Crystal Applications
NASA Astrophysics Data System (ADS)
Cao, Weiping; Jiang, Di; Liu, Yupeng; Yang, Yuanwang; Gan, Baichuan
2017-07-01
In this paper, a novel microwave continuously tunable band-pass filter, based on nematic liquid crystals (LCs), is proposed. It uses liquid crystal (LC) as the electro-optic material to mainly realize frequency shift at microwave band by changing the dielectric anisotropy, when applying the bias voltage. According to simulation results, it achieves 840 MHz offset. Comparing to the existing tunable filter, it has many advantages, such as continuously tunable, miniaturization, low processing costs, low tuning voltage, etc. Thus, it has shown great potentials in frequency domain and practical applications in modern communication.
Cross-phase modulation bandwidth in ultrafast fiber wavelength converters
NASA Astrophysics Data System (ADS)
Luís, Ruben S.; Monteiro, Paulo; Teixeira, António
2006-12-01
We propose a novel analytical model for the characterization of fiber cross-phase modulation (XPM) in ultrafast all-optical fiber wavelength converters, operating at modulation frequencies higher than 1THz. The model is used to compare the XPM frequency limitations of a conventional and a highly nonlinear dispersion shifted fiber (HN-DSF) and a bismuth oxide-based fiber, introducing the XPM bandwidth as a design parameter. It is shown that the HN-DSF presents the highest XPM bandwidth, above 1THz, making it the most appropriate for ultrafast wavelength conversion.
Repetitive Interrogation of 2-Level Quantum Systems
NASA Technical Reports Server (NTRS)
Prestage, John D.; Chung, Sang K.
2010-01-01
Trapped ion clocks derive information from a reference atomic transition by repetitive interrogations of the same quantum system, either a single ion or ionized gas of many millions of ions. Atomic beam frequency standards, by contrast, measure reference atomic transitions in a continuously replenished "flow through" configuration where initial ensemble atomic coherence is zero. We will describe some issues and problems that can arise when atomic state selection and preparation of the quantum atomic system is not completed, that is, optical pumping has not fully relaxed the coherence and also not fully transferred atoms to the initial state. We present a simple two-level density matrix analysis showing how frequency shifts during the state-selection process can cause frequency shifts of the measured clock transition. Such considerations are very important when a low intensity lamp light source is used for state selection, where there is relatively weak relaxation and re-pumping of ions to an initial state and much weaker 'environmental' relaxation of the atomic coherence set-up in the atomic sample.
All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring
Du, Cong; Owusu Twumasi, Jones; Tang, Qixiang; Guo, Xu; Zhou, Jingcheng; Yu, Tzuyang; Wang, Xingwei
2018-01-01
This article presents an application of an active all-optical photoacoustic sensing system with four elements for steel rebar corrosion monitoring. The sensor utilized a photoacoustic mechanism of gold nanocomposites to generate 8 MHz broadband ultrasound pulses in 0.4 mm compact space. A nanosecond 532 nm pulsed laser and 400 μm multimode fiber were employed to incite an ultrasound reaction. The fiber Bragg gratings were used as distributed ultrasound detectors. Accelerated corrosion testing was applied to four sections of a single steel rebar with four different corrosion degrees. Our results demonstrated that the mass loss of steel rebar displayed an exponential growth with ultrasound frequency shifts. The sensitivity of the sensing system was such that 0.175 MHz central frequency reduction corresponded to 0.02 g mass loss of steel rebar corrosion. It was proved that the all-optical photoacoustic sensing system can actively evaluate the corrosion of steel rebar via ultrasound spectrum. This multipoint all-optical photoacoustic method is promising for embedment into a concrete structure for distributed corrosion monitoring. PMID:29702554
NASA Astrophysics Data System (ADS)
Iribas, Haritz; Loayssa, Alayn; Sauser, Florian; Llera, Miguel; Le Floch, Sébastien
2017-04-01
We demonstrate a simple technique to enhance the signal-to-noise ratio (SNR) in Brillouin optical time-domain analysis sensors by the addition of gain and loss processes. The technique is based on the shift of the pump pulse optical frequency in a double-sideband probe system, so that the gain and loss processes take place at different frequencies. In this manner, the loss and the gain do not cancel each other out, and it makes possible to take advantage of both informations at the same time, obtaining an improvement of 3 dB on the SNR. Furthermore, the technique does not need an optical filtering, so that larger improvement on SNR and a simplification of the setup are obtained. The method is experimentally demonstrated in a 101 km fiber spool, obtaining a measurement uncertainty of 2.6 MHz (2σ) at the worst-contrast position for 2 m spatial resolution. This leads, to the best of our knowledge, to the highest figure-of-merit in a BOTDA without using coding or raman amplification.
Self-frequency shift of dark solitons in optical fibers
NASA Astrophysics Data System (ADS)
Uzunov, Ivan M.; Gerdjikov, Vladimir S.
1993-02-01
An analytical description of the soliton self-frequency shift (SSFS) of dark solitons is presented, using the conservation laws of the nonlinear Schrödinger equation. It is shown that the influence of intrapulse Raman scattering on dark solitons crucially depends on the sign of soliton's velocity. Our analytical expressions qualitatively explain the main features of the SSFS of the dark solitons observed recently both in experiment [A. M. Weiner, R. N. Thurston, W. J. Tomlinson, J. P. Heritage, D. E. Leaird, E. M. Kirschner, and R. J. Hawkins, Opt. Lett. 14, 868 (1989)] and in numerical simulation [A. M. Weiner, R. N. Thurston, W. J. Tomlinson, J. P. Heritage, D. E. Leaird, E. M. Kirschner, and R. J. Hawkins, Opt. Lett. 14, 868 (1989); Yu. S. Kivshar and V. V. Afanasjev, ibid. 16, 285 (1991)].
Guillen Bonilla, José Trinidad; Guillen Bonilla, Alex; Rodríguez Betancourtt, Verónica M.; Guillen Bonilla, Héctor; Casillas Zamora, Antonio
2017-01-01
The application of the sensor optical fibers in the areas of scientific instrumentation and industrial instrumentation is very attractive due to its numerous advantages. In the industry of civil engineering for example, quasi-distributed sensors made with optical fiber are used for reliable strain and temperature measurements. Here, a quasi-distributed sensor in the frequency domain is discussed. The sensor consists of a series of low-finesse Fabry-Perot interferometers where each Fabry-Perot interferometer acts as a local sensor. Fabry-Perot interferometers are formed by pairs of identical low reflective Bragg gratings imprinted in a single mode fiber. All interferometer sensors have different cavity length, provoking frequency-domain multiplexing. The optical signal represents the superposition of all interference patterns which can be decomposed using the Fourier transform. The frequency spectrum was analyzed and sensor’s properties were defined. Following that, a quasi-distributed sensor was numerically simulated. Our sensor simulation considers sensor properties, signal processing, noise system, and instrumentation. The numerical results show the behavior of resolution vs. signal-to-noise ratio. From our results, the Fabry-Perot sensor has high resolution and low resolution. Both resolutions are conceivable because the Fourier Domain Phase Analysis (FDPA) algorithm elaborates two evaluations of Bragg wavelength shift. PMID:28420083
Guillen Bonilla, José Trinidad; Guillen Bonilla, Alex; Rodríguez Betancourtt, Verónica M; Guillen Bonilla, Héctor; Casillas Zamora, Antonio
2017-04-14
The application of the sensor optical fibers in the areas of scientific instrumentation and industrial instrumentation is very attractive due to its numerous advantages. In the industry of civil engineering for example, quasi-distributed sensors made with optical fiber are used for reliable strain and temperature measurements. Here, a quasi-distributed sensor in the frequency domain is discussed. The sensor consists of a series of low-finesse Fabry-Perot interferometers where each Fabry-Perot interferometer acts as a local sensor. Fabry-Perot interferometers are formed by pairs of identical low reflective Bragg gratings imprinted in a single mode fiber. All interferometer sensors have different cavity length, provoking frequency-domain multiplexing. The optical signal represents the superposition of all interference patterns which can be decomposed using the Fourier transform. The frequency spectrum was analyzed and sensor's properties were defined. Following that, a quasi-distributed sensor was numerically simulated. Our sensor simulation considers sensor properties, signal processing, noise system, and instrumentation. The numerical results show the behavior of resolution vs. signal-to-noise ratio. From our results, the Fabry-Perot sensor has high resolution and low resolution. Both resolutions are conceivable because the Fourier Domain Phase Analysis (FDPA) algorithm elaborates two evaluations of Bragg wavelength shift.
Multispectral photoacoustic tomography for detection of small tumors inside biological tissues
NASA Astrophysics Data System (ADS)
Hirasawa, Takeshi; Okawa, Shinpei; Tsujita, Kazuhiro; Kushibiki, Toshihiro; Fujita, Masanori; Urano, Yasuteru; Ishihara, Miya
2018-02-01
Visualization of small tumors inside biological tissue is important in cancer treatment because that promotes accurate surgical resection and enables therapeutic effect monitoring. For sensitive detection of tumor, we have been developing photoacoustic (PA) imaging technique to visualize tumor-specific contrast agents, and have already succeeded to image a subcutaneous tumor of a mouse using the contrast agents. To image tumors inside biological tissues, extension of imaging depth and improvement of sensitivity were required. In this study, to extend imaging depth, we developed a PA tomography (PAT) system that can image entire cross section of mice. To improve sensitivity, we discussed the use of the P(VDF-TrFE) linear array acoustic sensor that can detect PA signals with wide ranges of frequencies. Because PA signals produced from low absorbance optical absorbers shifts to low frequency, we hypothesized that the detection of low frequency PA signals improves sensitivity to low absorbance optical absorbers. We developed a PAT system with both a PZT linear array acoustic sensor and the P(VDF-TrFE) sensor, and performed experiment using tissue-mimicking phantoms to evaluate lower detection limits of absorbance. As a result, PAT images calculated from low frequency components of PA signals detected by the P(VDF-TrFE) sensor could visualize optical absorbers with lower absorbance.
Catenary optics for achromatic generation of perfect optical angular momentum
Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Hu, Chenggang; Gao, Ping; Huang, Cheng; Ren, Haoran; Li, Xiangping; Qin, Fei; Yang, Jing; Gu, Min; Hong, Minghui; Luo, Xiangang
2015-01-01
The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a “true mathematical and mechanical form” in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer. PMID:26601283
Optical vector network analysis of ultranarrow transitions in 166Er3+ : 7LiYF4 crystal.
Kukharchyk, N; Sholokhov, D; Morozov, O; Korableva, S L; Cole, J H; Kalachev, A A; Bushev, P A
2018-02-15
We present optical vector network analysis (OVNA) of an isotopically purified Er166 3+ :LiYF 4 7 crystal. The OVNA method is based on generation and detection of a modulated optical sideband by using a radio-frequency vector network analyzer. This technique is widely used in the field of microwave photonics for the characterization of optical responses of optical devices such as filters and high-Q resonators. However, dense solid-state atomic ensembles induce a large phase shift on one of the optical sidebands that results in the appearance of extra features on the measured transmission response. We present a simple theoretical model that accurately describes the observed spectra and helps to reconstruct the absorption profile of a solid-state atomic ensemble as well as corresponding change of the refractive index in the vicinity of atomic resonances.
Catenary optics for achromatic generation of perfect optical angular momentum.
Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Hu, Chenggang; Gao, Ping; Huang, Cheng; Ren, Haoran; Li, Xiangping; Qin, Fei; Yang, Jing; Gu, Min; Hong, Minghui; Luo, Xiangang
2015-10-01
The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a "true mathematical and mechanical form" in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer.
Silicon Integrated Cavity Optomechanical Transducer
NASA Astrophysics Data System (ADS)
Zou, Jie; Miao, Houxun; Michels, Thomas; Liu, Yuxiang; Srinivasan, Kartik; Aksyuk, Vladimir
2013-03-01
Cavity optomechanics enables measurements of mechanical motion at the fundamental limits of precision imposed by quantum mechanics. However, the need to align and couple devices to off-chip optical components hinders development, miniaturization and broader application of ultrahigh sensitivity chip-scale optomechanical transducers. Here we demonstrate a fully integrated and optical fiber pigtailed optomechanical transducer with a high Q silicon micro-disk cavity near-field coupled to a nanoscale cantilever. We detect the motion of the cantilever by measuring the resonant frequency shift of the whispering gallery mode of the micro-disk. The sensitivity near the standard quantum limit can be reached with sub-uW optical power. Our on-chip approach combines compactness and stability with great design flexibility: the geometry of the micro-disk and cantilever can be tailored to optimize the mechanical/optical Q factors and tune the mechanical frequency over two orders of magnitudes. Electrical transduction in addition to optical transduction was also demonstrated and both can be used to effectively cool the cantilever. Moreover, cantilevers with sharp tips overhanging the chip edge were fabricated to potentially allow the mechanical cantilever to be coupled to a wide range of off-chip systems, such as spins, DNA, nanostructures and atoms on clean surfaces.
NASA Astrophysics Data System (ADS)
Ni, Wei-Tou; Han, Sen; Jin, Tao
2016-11-01
With the LIGO announcement of the first direct detection of gravitational waves (GWs), the GW Astronomy was formally ushered into our age. After one-hundred years of theoretical investigation and fifty years of experimental endeavor, this is a historical landmark not just for physics and astronomy, but also for industry and manufacturing. The challenge and opportunity for industry is precision and innovative manufacturing in large size - production of large and homogeneous optical components, optical diagnosis of large components, high reflectance dielectric coating on large mirrors, manufacturing of components for ultrahigh vacuum of large volume, manufacturing of high attenuating vibration isolation system, production of high-power high-stability single-frequency lasers, production of high-resolution positioning systems etc. In this talk, we address the requirements and methods to satisfy these requirements. Optical diagnosis of large optical components requires large phase-shifting interferometer; the 1.06 μm Phase Shifting Interferometer for testing LIGO optics and the recently built 24" phase-shifting Interferometer in Chengdu, China are examples. High quality mirrors are crucial for laser interferometric GW detection, so as for ring laser gyroscope, high precision laser stabilization via optical cavities, quantum optomechanics, cavity quantum electrodynamics and vacuum birefringence measurement. There are stringent requirements on the substrate materials and coating methods. For cryogenic GW interferometer, appropriate coating on sapphire or silicon are required for good thermal and homogeneity properties. Large ultrahigh vacuum components and high attenuating vibration system together with an efficient metrology system are required and will be addressed. For space interferometry, drag-free technology and weak-light manipulation technology are must. Drag-free technology is well-developed. Weak-light phase locking is demonstrated in the laboratories while weak-light manipulation technology still needs developments.
Measurement of the Lamb shift in the hydrogen atom (n = 2)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, Y.L.; Yakovlev, V.P.
1982-07-01
A principle is proposed for the observation of the stationary interference pattern of two phase-shifted components of the 2p (or 2s) state of the hydrogen atom (Yu. L. Sokolov, Sov. Phys. JETP 36, 243 (1973)); (Proc. 6-th Internat. Conf. on Atomic Phys., Riga, 1978, p. 207). An atomic interferometer, a device analogous in principle to a two-channel optical (such as Michelson's) interferometer, is used to measure the frequency of the (2s/sub 1/2/, F = 0)--(2p/sub 1/2/, F = 0) transition in the hydrogen atom, which is found to equal 909.9014 +- 0.0019 MHz. The corresponding Lamb shift is delta(H, nmore » = 2) = 1057.8594 +- 0.0019 MHz.« less
NASA Astrophysics Data System (ADS)
van Howe, James William
Telecommunication technology has often been applied to areas of science and engineering seemingly unrelated to communication systems. Innovations such as electronic amplifiers, the transistor, digital coding, optical fiber, and the laser, which all had roots in communication technology, have been implemented in devices from bar-code scanners to fiber endoscopes for medical procedures. In the same way, the central theme of the work in the following chapters has been to borrow both the concepts and technology of telecommunications systems to develop novel optical instrumentation for non-telecom pursuits. This work particularly leverages fiber-integrated electro-optic phase modulators to apply custom phase profiles to ultrafast pulses for control and manipulation. Such devices are typically used in telecom transmitters to encode phase data onto optical pulses (differential phase-shift keying), or for chirped data transmission. We, however, use electro-optic phase modulators to construct four novel optical devices: (1) a programmable ultrafast optical delay line with record scanning speed for applications in optical metrology, interferometry, or broad-band phase arrays, (2) a multiwavelength pulse generator for real-time optical sampling of electronic waveforms, (3) a simple femtosecond pulse generator for uses in biomedical imaging or ultrafast spectroscopy, and (4) a nonlinear phase compensator to increase the energy of fiber-amplified ultrashort pulse systems. In addition, we describe a fifth instrument which makes use of a higher-order mode fiber, similar in design to dispersion compensating fibers used for telecom. Through soliton self-frequency shift in the higher-order mode fiber, we can broadly-tune the center frequency of ultrashort pulses in energy regimes useful for biomedical imaging or ultrafast spectroscopy. The advantages gained through using telecom components in each of these systems are the simplicity and robustness of all-fiber configurations, high-speed operation, and electronic control of signals. Finally, we devote much attention to the paradigm of space-time duality and temporal imaging which allows the electro-optic phase modulators used in our instrumentation to be framed as temporal analogs of diffractive optical elements such as lenses and prisms. We show how the concepts of "time-lenses" and "time-prisms" give an intuitive understanding of our work as well as insight for the general development of optical instrumentation.
Influence of OPD in wavelength-shifting interferometry
NASA Astrophysics Data System (ADS)
Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan
2009-12-01
Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.
Influence of OPD in wavelength-shifting interferometry
NASA Astrophysics Data System (ADS)
Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan
2010-03-01
Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.
NASA Astrophysics Data System (ADS)
Tíjaro Rojas, Omar J.; Torres Moreno, Yezid; Rhodes, William T.
2017-06-01
Different theories including Kolmogorov have been valid to explain and model physic phenomenal like vertical atmospheric turbulence. In horizontal path, we still have many questions, due to weather problems and consequences that it generates. To emulate some conditions of environment, we built an Optical Turbulence Generator (OTG) having spatial, humidity and temperature, measurements that were captured in the same time from optical synchronization. This development was made using digital modules as ADC (Analog to Digital Converters) and communications protocol as SPI. We all made from microcontrollers. On the other hand, to measure optical signal, we used a photomultiplier tube (PMT) where captured the intensity of fringes that shifted with a known frequency. Outcomes show temporal shift and phase drive from dependent samples (in time domain) that correspond with frozen turbulence given by Taylor theory. Parameters studied were C2n, scintillation and inner scale in temporal patterns and analysis of their relationship with the physical associated variables. These patterns were taken from Young Interferometer in laboratory room scale. In the future, we hope with these studies, we will can implement an experiment to characterize atmospheric turbulence in a long distance, placed in the equatorial weather zone.
Faraday spectroscopy of ultracold atoms guided in hollow core optical fibers
NASA Astrophysics Data System (ADS)
Fatemi, Fredrik; Pechkis, Joseph
2013-05-01
We have performed spatially and temporally resolved magnetometry using Faraday spectroscopy of ultracold rubidium atoms confined in hollow core optical fibers. We first guide 105 Rb atoms into a 3-cm-long, 100-micron-core hollow fiber using blue-detuned hollow waveguide modes. Inside the fiber, the atoms are exposed to an optical pumping pulse, and the Larmor precession is monitored by the polarization rotation of a probe laser beam detuned by 50 GHz. The intense guide beams can perturb the detected Larmor precession frequencies, but we show that by confining the atoms to the intensity null of higher order blue-detuned hollow modes, these perturbations are reduced by over 95% compared to red-detuned guides. By adjusting the guide beam detuning and polarization, the deleterious effects of both photon scattering and frequency shifts can be suppressed such that multiple magnetic field measurements with sensitivity of 30 nT per sampling pulse can be obtained throughout the length of the fiber in a single loading cycle. Work supported by ONR and DARPA.
Bloch-Siegert shift in Dirac-Weyl fermionic systems
NASA Astrophysics Data System (ADS)
Kumar, Upendra; Kumar, Vipin; Enamullah, Setlur, Girish S.
2018-04-01
The Bloch-Siegert shift is a phenomenon in quantum optics, typically seen in two-level systems, when the driving field is sufficiently strong. The inclusion of frequency doubling effect (counter rotating term) in the conventional rotating wave approximation (RWA) changes the resonance condition thereby producing a rather small shift in the resonance condition, which is known as the Bloch-Siegert shift (BSS). Rabi oscillations in Dirac-Weyl fermionic systems exhibit anomalous behavior far from resonance, called anomalous Rabi oscillations. Therefore, in the present work, we study the phenomenon of the Bloch-Siegert shift in Weyl semimetal and topological insulator (TI) far from resonance, called anomalous Bloch-Siegert shift (ABSS). It is seen that the change in the resonance condition of anomalous Rabi oscillations is drastic in Weyl semimetal and TI. The ABSS in Weyl semimetals is highly anisotropic, whereas it is isotropic in TI. In case of TI, it is the Chern number which plays a crucial role to produce substantial change in the ABSS.
Linear and nonlinear magneto-optical properties of monolayer phosphorene
NASA Astrophysics Data System (ADS)
Nguyen, Chuong V.; Ngoc Hieu, Nguyen; Duque, C. A.; Quoc Khoa, Doan; Van Hieu, Nguyen; Van Tung, Luong; Vinh Phuc, Huynh
2017-01-01
We theoretically study the magneto-optical properties of monolayer phosphorene under a perpendicular magnetic field. We evaluate linear, third-order nonlinear, and total absorption coefficients and relative refractive index changes as functions of the photon energy and the magnetic field, and show that they are strongly influenced by the magnetic field. The magneto-optical absorption coefficients and relative refractive index changes appear in two different regimes: the microwave to THz and the visible frequency. The amplitude of intra-band transition peaks is larger than that of the inter-band transitions. The resonant peaks are blue-shifted with the magnetic field. Our results demonstrate the potential of monolayer phosphorene as a new two-dimensional material for applications in nano-electronic and optical devices as a promising alternative to graphene.
Ultra-wideband microwave photonic link based on single-sideband modulation
NASA Astrophysics Data System (ADS)
Li, Jingnan; Wang, Yunxin; Wang, Dayong; Zhou, Tao; Zhong, Xin; Xu, Jiahao; Yang, Dengcai; Rong, Lu
2017-10-01
Comparing with the conventional double-sideband (DSB) modulation in communication system, single-sideband (SSB) modulation only demands half bandwidth of DSB in transmission. Two common ways are employed to implement SSB modulation by using optical filter (OF) or electrical 90° phase shift, respectively. However, the bandwidth of above methods is limited by characteristics of current OF and electrical phase shift. To overcome this problem, an ultra-wideband microwave photonic link based on SSB modulation is proposed and demonstrated. The radio frequency (RF) signal modulates a single-drive dual-parallel Mach-Zehnder modulator, and the SSB modulation is realized by combining an electrical 90° hybrid coupler and an optical bandpass filter. The experimental results indicate that the system can achieve SSB modulation for RF signal from 2 to 40 GHz. The proposed microwave photonic link provides an ultra-wideband approach based on SSB modulation for radio-over-fiber system.
Effect of annealing induced residual stress on the resonance frequency of SiO2 microcantilevers
NASA Astrophysics Data System (ADS)
Balasubramanian, S.; Prabakar, K.; Tripura Sundari, S.
2018-04-01
In the present work, effect of residual stress, induced due to annealing of SiO2 microcantilevers (MCs) on their resonance frequency is studied. SiO2MCs of various dimensions were fabricated using direct laser writer & wet chemical etching method and were annealed at 800 °C in oxygen environment, post release. The residual stress was estimated from the deflection profile of the MCs measured using 3D optical microscope, before and after annealing. Resonance frequency of the MCs was measured using nano-vibration analyzer and was found to change after annealing. Further the frequency shift was found to depend on the MC dimensions. This is attributed to the large stress gradients induced by annealing and associated stiffness changes.
Optical signal monitoring in phase modulated optical fiber transmission systems
NASA Astrophysics Data System (ADS)
Zhao, Jian
Optical performance monitoring (OPM) is one of the essential functions for future high speed optical networks. Among the parameters to be monitored, chromatic dispersion (CD) is especially important since it has a significant impact on overall system performance. In this thesis effective CD monitoring approaches for phase-shift keying (PSK) based optical transmission systems are investigated. A number of monitoring schemes based on radio frequency (RF) spectrum analysis and delay-tap sampling are proposed and their performance evaluated. A method for dispersion monitoring of differential phase-shift keying (DPSK) signals based on RF power detection is studied. The RF power spectrum is found to increase with the increase of CD and decrease with polarization mode dispersion (PMD). The spectral power density dependence on CD is studied theoretically and then verified through simulations and experiments. The monitoring sensitivity for nonreturn-to-zero differential phase-shift keying (NRZ-DPSK) and return-to-zero differential phase-shift keying (RZ-DPSK) based systems can reach 80ps/nm/dB and 34ps/nm/dB respectively. The scheme enables the monitoring of differential group delay (DGD) and CD simultaneously. The monitoring sensitivity of CD and DGD can reach 56.7ps/nm/dB and 3.1ps/dB using a bandpass filter. The effects of optical signal-to-noise ratio (OSNR), DGD, fiber nonlinearity and chirp on the monitoring results are investigated. Two RF pilot tones are employed for CD monitoring of DPSK signals. Specially selected pilot tone frequencies enable good monitoring sensitivity with minimum influence on the received signals. The dynamic range exceeding 35dB and monitoring sensitivity up to 9.5ps/nm/dB are achieved. Asynchronous sampling technique is employed for CD monitoring. A signed CD monitoring method for 10Gb/s NRZ-DPSK and RZ-DPSK systems using asynchronous delay-tap sampling technique is studied. The demodulated signals suffer asymmetric waveform distortion if there is a phase error (Deltaphi) in the delay interferometer (DI) and in the presence of residual CD. Using delay-tap sampling the scatter plots can reflect this signal distortion through their asymmetric characteristics. A distance ratio (DR) is defined to represent the change of the scatter plots which is directly related to the accumulated CD. The monitoring range can be up to +/-400ps/nm and to +/-720ps/nm for 10Gb/s NRZ-DPSK and RZ-DPSK signals with 450 phase error in DI. The monitoring sensitivity reaches +/-8ps/nm and CD polarity discrimination is realized. It is found that the signal degradation is related to the increment of the absolute value of CD or phase mismatch. The effect of different polarities of phase error on CD monitoring is also analyzed. The shoulders location depends on the sign of the product DLDeltaphi. If DLDeltaphi > 0, the shoulder will appear on trailing edge else the shoulder will appear on leading edge when DLDeltaphi < 0. The analysis shows that the phase error is identical to the frequency offset of optical source so a signed frequency offset monitoring is also demonstrated. The monitoring results show that the monitoring range can reach +/-2.2GHz and the monitoring sensitivity is around 27MHz. The effect of nonlinearity, OSNR and bandwidth of the lowpass filter on the proposed monitoring method has also been studied. The signed CD monitoring for 100Gb/s carrier suppressed return-to-zero differential quadrature phase-shift keying (CSRZ-DQPSK) system based on the delay-tap sampling technology is demonstrated. The monitoring range and monitoring resolution can goes up to +/-32ps/nm and +/-8ps/nm, respectively. A signed CD and optical carrier wavelength monitoring scheme using cross-correlation method for on-off keying (00K) wavelength division multiplexing (WDM) system is proposed and demonstrated. CD monitoring sensitivity is high and can be less than 10% of the bit period. Wavelength monitoring is implemented using the proposed approach. The monitoring results show that the sensitivity can reach up to 1.37ps/GHz.
NASA Astrophysics Data System (ADS)
Lin, Gong-Ru
2002-12-01
We develop a delay-line-free and frequency traceable electro-optic sampling oscilloscope by use of a digital phase-locked loop phase shifter (PLL-PS) controlled delay-time-tunable gain-switched laser diode (GSLD). The home-made voltage-controllable PLL-PS exhibits a linear transfer function with ultra-wide phase shifting range of ±350° and tuning error of <±5%, which benefits the advantages of frequency tracking to free-running signals with suppressed timing-jitter. The maximum delay-time of PLL-PS controlled GSLD is up to 1.95 periods by changing the controlling voltage ( VREF) from -3.5 to 3.5 V, which corresponds to 3.9 ns at repetition frequency of 500 MHz. The tuning responsivity and resolution are about 0.56 ns/V and 0.15˜0.2 ps, respectively. The maximum delay-time switching bandwidth of 100 Hz is determined under the control of a saw-tooth modulated VREF function. The waveform sampling of microwave PECL signals generated from a free-running digital frequency divider is performed with acceptable measuring deviation.
El-Sharkawy, Yasser H; Elbasuney, Sherif
2018-06-07
Energy-rich bonds such as nitrates (NO 3 - ) and percholorates (ClO 4 - ) have an explosive nature; they are frequently encountered in high energy materials. These bonds encompass two highly electronegative atoms competing for electrons. Common explosive materials including urea nitrate, ammonium nitrate, and ammonium percholorates were subjected to photoacoustic spectroscopy. The captured signal was processed using novel digital algorithm designed for time and frequency domain analysis. Frequency domain analysis offered not only characteristic frequencies for NO 3 - and ClO 4 - groups; but also characteristic fingerprint spectra (based on thermal, acoustical, and optical properties) for different materials. The main outcome of this study is that phase-shift domain analysis offered an outstanding signature for each explosive material, with novel discrimination between explosive and similar non-explosive material. Photoacoustic spectroscopy offered different characteristic signatures that can be employed for real time detection with stand-off capabilities. There is no two materials could have the same optical, thermal, and acoustical properties. Copyright © 2018 Elsevier B.V. All rights reserved.
Nouman, M Tayyab; Hwang, Ji Hyun; Faiyaz, Mohd; Lee, Kye-Jeong; Noh, Do-Young; Jang, Jae-Hyung
2018-05-14
Metasurfaces are two dimensional arrays of artificial subwavelength resonators, which can manipulate the amplitude and phase profile of incident electromagnetic fields. To date, limited progress has been achieved in realizing reconfigurable phase control of incident waves using metasurfaces. Here, an active metasurface is presented, whose resonance frequency can be tuned by employing insulator to metal transition in vanadium dioxide. By virtue of the phase jump accompanied by the resonance frequency tuning, the proposed metasurface acts as a phase shifter at THz frequency. It is further demonstrated that by appropriately tailoring the anisotropy of the metasurface, the observed phase shift can be used to switch the transmitted polarization from circular to approximately linear. This work thus shows potential for reconfigurable phase and polarization control at THz frequencies using vanadium dioxide based frequency tunable metasurfaces.
Lu, Guo-Wei; Shinada, Satoshi; Furukawa, Hideaki; Wada, Naoya; Miyazaki, Tetsuya; Ito, Hiromasa
2010-03-15
We experimentally demonstrated ultra-fast phase-transparent wavelength conversion using cascaded sum- and difference-frequency generation (cSFG-DFG) in linear-chirped periodically poled lithium niobate (PPLN). Error-free wavelength conversion of a 160-Gb/s return-to-zero differential phase-shift keying (RZ-DPSK) signal was successfully achieved. Thanks to the enhanced conversion bandwidth in the PPLN with linear-chirped periods, no optical equalizer was required to compensate the spectrum distortion after conversion, unlike a previous demonstration of 160-Gb/s RZ on-off keying (OOK) using fixed-period PPLN.
High-speed optical phase-shifting apparatus
Zortman, William A.
2016-11-08
An optical phase shifter includes an optical waveguide, a plurality of partial phase shifting elements arranged sequentially, and control circuitry electrically coupled to the partial phase shifting elements. The control circuitry is adapted to provide an activating signal to each of the N partial phase shifting elements such that the signal is delayed by a clock cycle between adjacent partial phase shifting elements in the sequence. The transit time for a guided optical pulse train between the input edges of consecutive partial phase shifting elements in the sequence is arranged to be equal to a clock cycle, thereby enabling pipelined processing of the optical pulses.
Single-frequency Nd:YAG ring lasers with corner cube prism
NASA Astrophysics Data System (ADS)
Wu, Ke Ying; Yang, Su Hui; Zhao, Chang Ming; Wei, Guang Hui
2000-04-01
Kane and Byer reported the first monolithic non-planar miniature ring lasers in 1985. An intrinsic optical diode enforces unidirectional and hence single-frequency oscillation of this device. It has the advantages of compactness, reliability and high efficiency. We put forward another form of the non-planar ring lasers, in which the corner cube prism is the key element and the Nd:YAG crystal is used as a Porro prism to enclose the ring resonator. The phase shift due to the total internal reflections of the three differently orientated reflection planes of the corner cube prism, Faraday rotation in the Nd:YAG crystal placed in a magnetic field and the different output coupling in S and P polarization form an optical diode and enforce the single- frequency generating. A round trip analysis of the polarization properties of the resonator is made by the evaluation of Jones matrix. The results of our initial experiment are given in the paper.
Celestial Reference Frames at Multiple Radio Wavelengths
NASA Technical Reports Server (NTRS)
Jacobs, Christopher S.
2012-01-01
In 1997 the IAU adopted the International Celestial Reference Frame (ICRF) built from S/X VLBI data. In response to IAU resolutions encouraging the extension of the ICRF to additional frequency bands, VLBI frames have been made at 24, 32, and 43 gigahertz. Meanwhile, the 8.4 gigahertz work has been greatly improved with the 2009 release of the ICRF-2. This paper discusses the motivations for extending the ICRF to these higher radio bands. Results to date will be summarized including evidence that the high frequency frames are rapidly approaching the accuracy of the 8.4 gigahertz ICRF-2. We discuss current limiting errors and prospects for the future accuracy of radio reference frames. We note that comparison of multiple radio frames is characterizing the frequency dependent systematic noise floor from extended source morphology and core shift. Finally, given Gaia's potential for high accuracy optical astrometry, we have simulated the precision of a radio-optical frame tie to be approximately10-15 microarcseconds ((1-sigma) (1-standard deviation), per component).
Spin-injection optical pumping of molten cesium salt and its NMR diagnosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, Kiyoshi
2015-07-15
Nuclear spin polarization of cesium ions in the salt was enhanced during optical pumping of cesium vapor at high magnetic field. Significant motional narrowing and frequency shift of NMR signals were observed by intense laser heating of the salt. When the hyperpolarized salt was cooled by blocking the heating laser, the signal width and frequency changed during cooling and presented the phase transition from liquid to solid. Hence, we find that the signal enhancement is mostly due to the molten salt and nuclear spin polarization is injected into the salt efficiently in the liquid phase. We also show that opticalmore » pumping similarly induces line narrowing in the solid phase. The use of powdered salt provided an increase in effective surface area and signal amplitude without glass wool in the glass cells.« less
Fast and low-cost structured light pattern sequence projection.
Wissmann, Patrick; Forster, Frank; Schmitt, Robert
2011-11-21
We present a high-speed and low-cost approach for structured light pattern sequence projection. Using a fast rotating binary spatial light modulator, our method is potentially capable of projection frequencies in the kHz domain, while enabling pattern rasterization as low as 2 μm pixel size and inherently linear grayscale reproduction quantized at 12 bits/pixel or better. Due to the circular arrangement of the projected fringe patterns, we extend the widely used ray-plane triangulation method to ray-cone triangulation and provide a detailed description of the optical calibration procedure. Using the proposed projection concept in conjunction with the recently published coded phase shift (CPS) pattern sequence, we demonstrate high accuracy 3-D measurement at 200 Hz projection frequency and 20 Hz 3-D reconstruction rate. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Chen, Yang
2018-03-01
A novel wideband photonic microwave phase shifter with 360-degree phase tunable range is proposed based on a single dual-polarization quadrature phase shift-keying (DP-QPSK) modulator. The two dual-parallel Mach-Zehnder modulators (DP-MZMs) in the DP-QPSK modulator are properly biased to serve as a carrier-suppressed single-sideband (CS-SSB) modulator and an optical phase shifter (OPS), respectively. The microwave signal is applied to the CS-SSB modulator, while a control direct-current (DC) voltage is applied to the OPS. The first-order optical sideband generated from the CS-SSB modulator and the phase tunable optical carrier from the OPS are combined and then detected in a photodetector, where a microwave signal is generated with its phase controlled by the DC voltage applied to the OPS. The proposed technique is theoretically analyzed and experimentally demonstrated. Microwave signals with a carrier frequency from 10 to 23 GHz are continuously phase shifted over 360-degree phase range. The proposed technique features very compact configuration, easy phase tuning and wide operation bandwidth.
NASA Astrophysics Data System (ADS)
Ramos, Andira; Moore, Kaitlin; Raithel, Georg
2015-05-01
Recent significant disagreement with the previously established size of the proton demonstrates a need to reconsider the current value of the Rydberg constant, the effects of the nuclear charge distribution and QED in hydrogen-like atoms. An experiment is in progress to obtain a measurement of the Rydberg constant by studying circular Rydberg atoms, which exhibit very small QED shifts and electron wavefunctions which do not overlap with the nucleus. Cold Rydberg atoms are trapped using a ponderomotive potential. To drive the transitions, a novel type of spectroscopy is used which utilizes an optical-lattice field that is intensity-modulated at the frequencies of atomic transitions. The method is free of typical spectroscopic selection rules and has been shown to drive transitions up to fifth order. Combined with optical Rydberg-atom trapping, the method enables the measurement of narrow, sub-THz transitions between long-lived circular Rydberg levels. Energy shifts affecting this precision measurement will also be discussed. This work is suported by NSF, NIST and NASA grants.
Seki, Hirofumi; Yoshikawa, Masanobu; Kobayashi, Takuma; Kimoto, Tsunenobu; Ozaki, Yukihiro
2017-05-01
Fourier transform infrared (FT-IR) spectra were measured for thermal oxides with different electrical properties grown on 4H-SiC substrates. The peak frequency of the transverse optical (TO) phonon mode was blue-shifted by 5 cm -1 as the oxide-layer thickness decreased to 3 nm. The blue shift of the TO mode indicates interfacial compressive stress in the oxide. Comparison of data for the oxide on a SiC substrate with that for similar oxides on a Si substrate implies that the peak shift of the TO mode at the SiO 2 /SiC interface is larger than that of SiO 2 /Si, which suggests that the interfacial stress for the oxide on the SiC substrate is larger than that on the Si substrate. For the SiO 2 /SiC interfacial region (<3 nm oxide thickness), despite the fact that the blue shift of the TO modes becomes larger while approaching the oxide/SiC interface, the peak frequency of the TO modes red-shifts at the oxide/SiC interface. The peak-frequency shift of the TO mode for the sample without post-oxidation annealing was larger than that for the samples post-annealed in a nitric oxide atmosphere. The channel mobilities are correlated with the degree of shift of the TO mode when the oxide thickness is <3 nm. It appears that the compressive stress at the SiO 2 /SiC interface generates silicon suboxide components and weakens the Si-O bonds. As the result, the TO mode was red-shifted and the oxygen deficiency increased to relax the compressive stress in the oxide with <3 nm thickness. Fourier transform infrared spectroscopy measurements provide unique and useful information about stress and inhomogeneity at the oxide/SiC interface.
Development of a Multi-Point Microwave Interferometry (MPMI) Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, Paul Elliott; Cooper, Marcia A.; Jilek, Brook Anton
2015-09-01
A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a single-point, heterodyne microwave interferometry capability was established. The design, construction, and verification of the single-point interferometer provided a knowledge base for the creation of the MPMI concept. The MPMI concept uses an electro-optic (EO) crystal to impart a time-varying phase lag onto a laser at the microwave frequency. Polarization optics converts this phase lag into an amplitude modulation, which is analyzed in a heterodyne interfer- ometer to detect Doppler shifts in the microwave frequency. A version of themore » MPMI was constructed to experimentally measure the frequency of a microwave source through the EO modulation of a laser. The successful extraction of the microwave frequency proved the underlying physical concept of the MPMI design, and highlighted the challenges associated with the longer microwave wavelength. The frequency measurements made with the current equipment contained too much uncertainty for an accurate velocity measurement. Potential alterations to the current construction are presented to improve the quality of the measured signal and enable multiple accurate velocity measurements.« less
Iodine absorption cells quality evaluation methods
NASA Astrophysics Data System (ADS)
Hrabina, Jan; Zucco, Massimo; Holá, Miroslava; Šarbort, Martin; Acef, Ouali; Du-Burck, Frédéric; Lazar, Josef; Číp, Ondřej
2016-12-01
The absorption cells represent an unique tool for the laser frequency stabilization. They serve as irreplaceable optical frequency references in realization of high-stable laser standards and laser sources for different brands of optical measurements, including the most precise frequency and dimensional measurement systems. One of the most often used absorption media covering visible and near IR spectral range is molecular iodine. It offers rich atlas of very strong and narrow spectral transitions which allow realization of laser systems with ultimate frequency stabilities in or below 10-14 order level. One of the most often disccussed disadvantage of the iodine cells is iodine's corrosivity and sensitivity to presence of foreign substances. The impurities react with absorption media and cause spectral shifts of absorption spectra, spectral broadening of the transitions and decrease achievable signal-to-noise ratio of the detected spectra. All of these unwanted effects directly influence frequency stability of the realized laser standard and due to this fact, the quality of iodine cells must be precisely controlled. We present a comparison of traditionally used method of laser induced fluorescence (LIF) with novel technique based on hyperfine transitions linewidths measurement. The results summarize advantages and drawbacks of these techniques and give a recommendation for their practical usage.
NASA Astrophysics Data System (ADS)
Zhang, Xiaolei; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian
2018-03-01
The measurement of microstructured components is a challenging task in optical engineering. Digital holographic microscopy has attracted intensive attention due to its remarkable capability of measuring complex surfaces. However, speckles arise in the recorded interferometric holograms, and they will degrade the reconstructed wavefronts. Existing speckle removal methods suffer from the problems of frequency aliasing and phase distortions. A reconstruction method based on the antialiasing shift-invariant contourlet transform (ASCT) is developed. Salient edges and corners have sparse representations in the transform domain of ASCT, and speckles can be recognized and removed effectively. As subsampling in the scale and directional filtering schemes is avoided, the problems of frequency aliasing and phase distortions occurring in the conventional multiscale transforms can be effectively overcome, thereby improving the accuracy of wavefront reconstruction. As a result, the proposed method is promising for the digital holographic measurement of complex structures.
User manual of the CATSS system (version 1.0) communication analysis tool for space station
NASA Technical Reports Server (NTRS)
Tsang, C. S.; Su, Y. T.; Lindsey, W. C.
1983-01-01
The Communication Analysis Tool for the Space Station (CATSS) is a FORTRAN language software package capable of predicting the communications links performance for the Space Station (SS) communication and tracking (C & T) system. An interactive software package was currently developed to run on the DEC/VAX computers. The CATSS models and evaluates the various C & T links of the SS, which includes the modulation schemes such as Binary-Phase-Shift-Keying (BPSK), BPSK with Direct Sequence Spread Spectrum (PN/BPSK), and M-ary Frequency-Shift-Keying with Frequency Hopping (FH/MFSK). Optical Space Communication link is also included. CATSS is a C & T system engineering tool used to predict and analyze the system performance for different link environment. Identification of system weaknesses is achieved through evaluation of performance with varying system parameters. System tradeoff for different values of system parameters are made based on the performance prediction.
Precision Isotope Shift Measurements in Calcium Ions Using Quantum Logic Detection Schemes.
Gebert, Florian; Wan, Yong; Wolf, Fabian; Angstmann, Christopher N; Berengut, Julian C; Schmidt, Piet O
2015-07-31
We demonstrate an efficient high-precision optical spectroscopy technique for single trapped ions with nonclosed transitions. In a double-shelving technique, the absorption of a single photon is first amplified to several phonons of a normal motional mode shared with a cotrapped cooling ion of a different species, before being further amplified to thousands of fluorescence photons emitted by the cooling ion using the standard electron shelving technique. We employ this extension of the photon recoil spectroscopy technique to perform the first high precision absolute frequency measurement of the 2D(3/2)→2P(1/2) transition in calcium, resulting in a transition frequency of f=346 000 234 867(96) kHz. Furthermore, we determine the isotope shift of this transition and the 2S(1/2)→2P(1/2) transition for 42Ca+, 44Ca+, and 48Ca+ ions relative to 40Ca+ with an accuracy below 100 kHz. Improved field and mass shift constants of these transitions as well as changes in mean square nuclear charge radii are extracted from this high resolution data.
Peregrine rogue waves induced by the interaction between a continuous wave and a soliton.
Yang, Guangye; Li, Lu; Jia, Suotang
2012-04-01
Based on the soliton solution on a continuous wave background for an integrable Hirota equation, the reduction mechanism and the characteristics of the Peregrine rogue wave in the propagation of femtosecond pulses of optical fiber are discussed. The results show that there exist two processes of the formation of the Peregrine rogue wave: one is the localized process of the continuous wave background, and the other is the reduction process of the periodization of the bright soliton. The characteristics of the Peregrine rogue wave are exhibited by strong temporal and spatial localization. Also, various initial excitations of the Peregrine rogue wave are performed and the results show that the Peregrine rogue wave can be excited by a small localized (single peak) perturbation pulse of the continuous wave background, even for the nonintegrable case. The numerical simulations show that the Peregrine rogue wave is unstable. Finally, through a realistic example, the influence of the self-frequency shift to the dynamics of the Peregrine rogue wave is discussed. The results show that in the absence of the self-frequency shift, the Peregrine rogue wave can split into several subpulses; however, when the self-frequency shift is considered, the Peregrine rogue wave no longer splits and exhibits mainly a peak changing and an increasing evolution property of the field amplitude.
Optical assessment of tissue mechanics: acousto-optical elastography of skin
NASA Astrophysics Data System (ADS)
Kirkpatrick, Sean J.
2003-10-01
A multiphysics approach, combining acoustics, optics, and mechanics can be used to detect regions of skin with distinct mechanical behavior that may indicate a pathology, such as a cancerous skin lesion. Herein, an acousto - optical approach to evaluating the viscoelastic behavior of superficial skin layers will be presented. The method relies upon inducing low frequency guided surface waves in the skin and detecting these waves by monitoring the shift in the backscattered laser speckle pattern created by illuminating a small region of the skin with coherent light. Artificial lesions in the form of chemical cross-linking and chemical softening were induced in superficial porcine skin layers and detected based upon variations in local mechanical behavior. The lesions affect not only the time-of-flight of the guided surface waves, but also change the relative phase of the acoustic waves as determined optically. The method may be applicable in the study and diagnosis of superficial skin lesions.
Plasma q -plate for generation and manipulation of intense optical vortices
NASA Astrophysics Data System (ADS)
Qu, Kenan; Jia, Qing; Fisch, Nathaniel J.
2017-11-01
An optical vortex is a light wave with a twisting wavefront around its propagation axis and null intensity in the beam center. Its unique spatial structure of field lends itself to a broad range of applications, including optical communication, quantum information, superresolution microscopy, and multidimensional manipulation of particles. However, accessible intensity of optical vortices have been limited to material ionization threshold. This limitation might be removed by using the plasma medium. Here we propose the design of suitably magnetized plasmas which, functioning as a q -plate, leads to a direct conversion from a high-intensity Gaussian beam into a twisted beam. A circularly polarized laser beam in the plasma accumulates an azimuthal-angle-dependent phase shift and hence forms a twisting wavefront. Our three-dimensional particle-in-cell simulations demonstrate extremely high-power conversion efficiency. The plasma q -plate can work in a large range of frequencies spanning from terahertz to the optical domain.
Liu, Xianwen; Sun, Changzheng; Xiong, Bing; Wang, Jian; Wang, Lai; Han, Yanjun; Hao, Zhibiao; Li, Hongtao; Luo, Yi; Yan, Jianchang; Wei, Tong Bo; Zhang, Yun; Wang, Junxi
2016-08-01
An all-optically tunable microwave photonic phase shifter is demonstrated based on an epitaxial aluminum nitride (AlN) microring with an intrinsic quality factor of 3.2×106. The microring adopts a pedestal structure, which allows overcoupling with 700 nm gap size and facilitates the fabrication process. A phase shift for broadband signals from 4 to 25 GHz is demonstrated by employing the thermo-optic effect and the separate carrier tuning technique. A phase tuning range of 0°-332° is recorded with a 3 dB radio frequency (RF) power variation and 48 mW optical power consumption. In addition, AlN exhibits intrinsic second-order optical nonlinearity. Thus, our work presents a novel platform with a low propagation loss and the capability of electro-optic modulation for applications in integrated microwave photonics.
Kang, Kwangu; Koh, Yee Kan; Chiritescu, Catalin; Zheng, Xuan; Cahill, David G
2008-11-01
We describe a simple approach for rejecting unwanted scattered light in two types of time-resolved pump-probe measurements, time-domain thermoreflectance (TDTR) and time-resolved incoherent anti-Stokes Raman scattering (TRIARS). Sharp edged optical filters are used to create spectrally distinct pump and probe beams from the broad spectral output of a femtosecond Ti:sapphire laser oscillator. For TDTR, the diffusely scattered pump light is then blocked by a third optical filter. For TRIARS, depolarized scattering created by the pump is shifted in frequency by approximately 250 cm(-1) relative to the polarized scattering created by the probe; therefore, spectral features created by the pump and probe scattering can be easily distinguished.
Optical properties of anthocyanins in the gas phase
NASA Astrophysics Data System (ADS)
Ge, Xiaochuan; Calzolari, Arrigo; Baroni, Stefano
2015-01-01
The gas-phase optical properties of the six most common anthocyanins are studied using time-dependent density-functional theory. Different anthocyanins are classified into three groups, according to the number of low-frequency peaks displayed in the UV-vis spectrum. This behavior is analyzed in terms of one-electron transitions and interaction effects, the latter being rationalized using a suitable double-pole model. Moving from PBE to hybrid exchange-correlation functionals results in a hypsochromic shift of the optical gap. While the colors thus predicted do not quite match those observed in solution, thus highlighting the importance of solvation effects, adoption of hybrid functionals remarkably determines a greater chromatic uniformity of different molecules, in qualitative agreement with experimental evidence in acidic solutions.
Chakraborty, Arup Lal; Ruxton, Keith; Johnstone, Walter; Lengden, Michael; Duffin, Kevin
2009-06-08
A new fiber-optic technique to eliminate residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy is presented. The modulated laser output is split to pass in parallel through the gas measurement cell and an optical fiber delay line, with the modulation frequency / delay chosen to introduce a relative phase shift of pi between them. The two signals are balanced using a variable attenuator and recombined through a fiber coupler. In the absence of gas, the direct laser intensity modulation cancels, thereby eliminating the high background. The presence of gas induces a concentration-dependent imbalance at the coupler's output from which the absolute absorption profile is directly recovered with high accuracy using 1f detection.
Ultra-wideband microwave photonic phase shifter with configurable amplitude response.
Pagani, M; Marpaung, D; Eggleton, B J
2014-10-15
We introduce a new principle that enables separate control of the amplitude and phase of an optical carrier, simply by controlling the power of two stimulated Brillouin scattering (SBS) pumps. This technique is used to implement a microwave photonic phase shifter with record performance, which solves the bandwidth limitation of previous gain-transparent SBS-based phase shifters, while achieving unprecedented minimum power fluctuations, as a function of phase shift. We demonstrate 360° continuously tunable phase shift, with less than 0.25 dB output power fluctuations, over a frequency band from 1.5 to 31 GHz, limited only by the measurement equipment.
LDPC coded OFDM over the atmospheric turbulence channel.
Djordjevic, Ivan B; Vasic, Bane; Neifeld, Mark A
2007-05-14
Low-density parity-check (LDPC) coded optical orthogonal frequency division multiplexing (OFDM) is shown to significantly outperform LDPC coded on-off keying (OOK) over the atmospheric turbulence channel in terms of both coding gain and spectral efficiency. In the regime of strong turbulence at a bit-error rate of 10(-5), the coding gain improvement of the LDPC coded single-side band unclipped-OFDM system with 64 sub-carriers is larger than the coding gain of the LDPC coded OOK system by 20.2 dB for quadrature-phase-shift keying (QPSK) and by 23.4 dB for binary-phase-shift keying (BPSK).
NASA Astrophysics Data System (ADS)
Trusiak, M.; Patorski, K.; Tkaczyk, T.
2014-12-01
We propose a fast, simple and experimentally robust method for reconstructing background-rejected optically-sectioned microscopic images using two-shot structured illumination approach. Innovative data demodulation technique requires two grid-illumination images mutually phase shifted by π (half a grid period) but precise phase displacement value is not critical. Upon subtraction of the two frames the input pattern with increased grid modulation is computed. The proposed demodulation procedure comprises: (1) two-dimensional data processing based on the enhanced, fast empirical mode decomposition (EFEMD) method for the object spatial frequency selection (noise reduction and bias term removal), and (2) calculating high contrast optically-sectioned image using the two-dimensional spiral Hilbert transform (HS). The proposed algorithm effectiveness is compared with the results obtained for the same input data using conventional structured-illumination (SIM) and HiLo microscopy methods. The input data were collected for studying highly scattering tissue samples in reflectance mode. In comparison with the conventional three-frame SIM technique we need one frame less and no stringent requirement on the exact phase-shift between recorded frames is imposed. The HiLo algorithm outcome is strongly dependent on the set of parameters chosen manually by the operator (cut-off frequencies for low-pass and high-pass filtering and η parameter value for optically-sectioned image reconstruction) whereas the proposed method is parameter-free. Moreover very short processing time required to efficiently demodulate the input pattern predestines proposed method for real-time in-vivo studies. Current implementation completes full processing in 0.25s using medium class PC (Inter i7 2,1 GHz processor and 8 GB RAM). Simple modification employed to extract only first two BIMFs with fixed filter window size results in reducing the computing time to 0.11s (8 frames/s).
Quantum limited performance of optical receivers
NASA Astrophysics Data System (ADS)
Farrell, Thomas C.
2018-05-01
While the fundamental performance limit for traditional radio frequency (RF) communications is often set by background noise on the channel, the fundamental limit for optical communications is set by the quantum nature of light. Both types of systems are based on electro-magnetic waves, differing only in carrier frequency. It is, in fact, the frequency that determines which of these limits dominates. We explore this in the first part of this paper. This leads to a difference in methods of analysis of the two different types of systems. While equations predicting the probability of bit error for RF systems are usually based on the signal to background noise ratio, similar equations for optical systems are often based on the physics of the quantum limit and are simply a function of the detected signal energy received per bit. These equations are derived in the second part of this paper for several frequently used modulation schemes: On-off keying (OOK), pulse position modulation (PPM), and binary differential phase shift keying (DPSK). While these equations ignore the effects of background noise and non-quantum internal noise sources in the detector and receiver electronics, they provide a useful bound for obtainable performance of optical communication systems. For example, these equations may be used in initial link budgets to assess the feasibility of system architectures, even before specific receiver designs are considered.
NASA Astrophysics Data System (ADS)
Sakurai, T.; Okubo, S.; Ohta, H.
2017-07-01
We present a historical review of high-pressure ESR systems with emphasis on our recent development of a high-pressure, high-field, multi-frequency ESR system. Until 2000, the X-band system was almost established using a resonator filled with dielectric materials or a combination of the anvil cell and dielectric resonators. Recent developments have shifted from that in the low-frequency region, such as X-band, to that in multi-frequency region. High-pressure, high-field, multi-frequency ESR systems are classified into two types. First are the systems that use a vector network analyzer or a quasi-optical bridge, which have high sensitivity but a limited frequency region; the second are like our system, which has a very broad frequency region covering the THz region, but lower sensitivity. We will demonstrate the usefulness of our high-pressure ESR system, in addition to its experimental limitations. We also discuss the recent progress of our system and future plans.
Stimulated Brillouin Scattering: its Generation and Applications in Optical Fibre
NASA Astrophysics Data System (ADS)
Culverhouse, David
1992-01-01
Available from UMI in association with The British Library. In the work presented in this thesis, the generation of stimulated Brillouin scattering and its applications in optical fibres is theoretically and experimentally investigated. The study pursues three special cases: (i) Backward stimulated Brillouin scattering in long fibre lengths; (ii) Backward stimulated Brillouin scattering in high finesse all fibre ring resonators; (iii) Forward stimulated Brillouin scattering in dual moded single core fibres. Stimulated Brillouin scattering (SBS) occurs for relatively low input powers in monomode optical fibres, as the power density is very high because of the relatively small core size. For applications such as optical communications, SBS is seen as a potentially deleterious effect because it can limit the maximum optical power transmitted by the fibre and hence decrease the distance between repeaters. SBS, however, can also be used to advantage in optical fibres, for example to produce amplification. In this thesis the comprehensive study of SBS in relation to other non-linear scattering mechanisms in optical fibres leads to the derivation of explicit definitions for the Brillouin gain and the Brillouin threshold. The study of SBS in high finesse all fibre ring resonators also demonstrates how threshold powers can be reduced, typically, from milliwatts observed in long fibre lengths to microwatts. Because Brillouin scattering is primarily a result of the interaction of the incident optical beam with spontaneously generated (thermal) fluctuations in the density of the medium, the spectral features show a considerable variation with temperature thus providing a mechanism with sufficient sensitivity to realise tunable microwave generation and frequency shifting devices. Finally, the observation of stimulated Brillouin scattering in a forward direction (FSBS) in dual moded single-core fibre is also reported. Frequency shifts in the order of 17MHz are observed in optical fibre supporting LP_ {01} and LP_{11} modes at 514.5nm. The phenomenon is examined here in detail and the governing differential equations of the three wave parametric process (involving pump/laser, Brillouin signal and acoustic flexural wave phonon) is derived and solved. FSBS is possible because, although the overlap integral between a fibre flexural mode and the light is small, the phonon lifetime is much longer than in conventional SBS. FSBS may also be the first example of a non-linear effect which is enhanced by increasing the optical mode area at constant pump power.
Quasi-Phasematched Nonlinear Optics: Materials and Devices
2012-02-29
effects all contribute, and that the group velocity dispersion in the vicinity of the pump wavelength and are important factors influencing the breadth...for the physics underlying χ(2) SC generation, so the work was purely empirical, but still resulted in octave-class SC and envelop locking with...specific goals, e.g soliton self-frequency shift, SC generation, etc. emerged, and could then be optimized with the numerical simulation tool
Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation
NASA Astrophysics Data System (ADS)
Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou
2018-06-01
Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.
NASA Astrophysics Data System (ADS)
Shi, Nuannuan; Hao, Tengfei; Li, Wei; Zhu, Ninghua; Li, Ming
2018-01-01
We propose a photonic scheme to realize a reconfigurable microwave photonic filter (MPF) with flexible tunability using a multi-wavelength laser (MWL) and a multi-channel phase-shifted fiber Bragg grating (PS-FBG). The proposed MPF is capable of performing reconfigurability including single bandpass filter, two independently bandpass filter and a flat-top bandpass filter. The performance such as the central frequency and the bandwidth of passband is tuned by controlling the wavelengths of the MWL. In the MPF, The light waves from a MWL are sent to a phase modulator (PM) to generate the phase-modulated optical signals. By applying a multi-channel PS-FBG, which has a series of narrow notches in the reflection spectrum with the free spectral range (FSR) of 0.8 nm, the +1st sidebands are removed in the notches and the phased-modulated signals are converted to the intensity-modulated signals without beating signals generation between each two optical carriers. The proposed MPF is also experimentally verified. The 3-dB bandwidth of the MPF is broadened from 35 MHz to 135 MHz and the magnitude deviation of the top from the MPF is less than 0.2 dB within the frequency tunable range from 1 GHz to 5 GHz.
A symmetrical laser Doppler velocity meter and its application to turbulence characterization
NASA Technical Reports Server (NTRS)
Mazumder, M. K.
1972-01-01
A symmetrical method of optical heterodyning of the Doppler shifted scattered laser radiation developed for velocity measurements with a minimal instrumental spectral broadening and a high signal-to-noise ratio. The method employs two laser beams incident on the moving scatterer and does not use any reference beam for heterodyning. The Doppler signal frequency is independent of the scattering angle and the signal possesses no receiving aperture broadening. Optical alignment is simple. Typical values of the instrumental spectral broadening were approximately 0.8 percent of the center frequency of the Doppler signal, and the signal-to-noise ratio was approximately 25 dB, obtained from an air flow system using submicron dioctylphthalate scattering aerosol. Experimental and theoretical studies were made on the characteristics of the Doppler signal and the effect of system parameters in turbulent flow measurement. The optimization process involved in the beam optics and in the use of a spatial filter is described. For localized flow measurement in any direction of the three-dimensional orthogonal coordinates, the system, using uncorrected optical components, had a sensing volume which can be described by a sensitive length of 600 microns and a diameter of 100 microns.
A novel optical millimeter-wave signal generation approach to overcome chromatic dispersion
NASA Astrophysics Data System (ADS)
Liang, Dong; Jiang, Wei; Tan, Qinggui; Zhu, Zhongbo; Liu, Feng
2014-06-01
In this paper, a novel frequency octupling approach for optical millimeter-wave signal generation to overcome chromatic dispersion is proposed and demonstrated. The frequency octupling mm-wave with the baseband signal carried only by -4th order sideband is generated by properly adjusting a series of parameters, which are the modulation constant, the gain of baseband signal, the direct current bias and the different phase of the modulation arms. As the optical millimeter-wave signal is transmitted along the fiber, there is no time shift caused by chromatic dispersion. Theoretical analyses and simulated results show that when the optical mm-wave carrying 2.5 Gbps baseband signal transmits a distance of over 110 km, the eye diagram still keeps open and clear. The power penalty is about 0.4 dB after the optical signal transmits over 40 km. In additions, given the +4th order sideband carries no data, a full-duplex RoF link based on wavelength reuse is built for the uplink. The bidirectional 2.5 Gbps baseband signal could successfully transmit over 40 km with about 0.8 dB power penalty in the simulation. Both theoretical analyses and simulation results show that the full-duplex RoF link has good performance.
NASA Astrophysics Data System (ADS)
Alireza, Samavati; Othaman, Z.; K. Ghoshal, S.; K. Mustafa, M.
2015-02-01
The influences of thermal annealing on the structural and optical features of radio frequency (rf) magnetron sputtered self-assembled Ge quantum dots (QDs) on Si (100) are investigated. Preferentially oriented structures of Ge along the (220) and (111) directions together with peak shift and reduced strain (4.9% to 2.7%) due to post-annealing at 650 °C are discerned from x-ray differaction (XRD) measurement. Atomic force microscopy (AFM) images for both pre-annealed and post-annealed (650 °C) samples reveal pyramidal-shaped QDs (density ˜ 0.26× 1011 cm-2) and dome-shape morphologies with relatively high density ˜ 0.92 × 1011 cm-2, respectively. This shape transformation is attributed to the mechanism of inter-diffusion of Si in Ge interfacial intermixing and strain non-uniformity. The annealing temperature assisted QDs structural evolution is explained using the theory of nucleation and growth kinetics where free energy minimization plays a pivotal role. The observed red-shift ˜ 0.05 eV in addition to the narrowing of the photoluminescence peaks results from thermal annealing, and is related to the effect of quantum confinement. Furthermore, the appearance of a blue-violet emission peak is ascribed to the recombination of the localized electrons in the Ge-QDs/SiO2 or GeOx and holes in the ground state of Ge dots. Raman spectra of both samples exhibit an intense Ge-Ge optical phonon mode which shifts towards higher frequency compared with those of the bulk counterpart. An experimental Raman profile is fitted to the models of phonon confinement and size distribution combined with phonon confinement to estimate the mean dot sizes. A correlation between thermal annealing and modifications of the structural and optical behavior of Ge QDs is established. Tunable growth of Ge QDs with superior properties suitable for optoelectronic applications is demonstrated. Project supported by Ibnu Sina Institute for Fundamental Science Study, Universiti Teknologi Malaysia through Vote Q.J130000.2526.02H94, O5 and Postdoctoral Research Grant.
Scattering of charged particles on two spatially separated time-periodic optical fields
NASA Astrophysics Data System (ADS)
Szabó, Lóránt Zs.; Benedict, Mihály G.; Földi, Péter
2017-12-01
We consider a monoenergetic beam of moving charged particles interacting with two separated oscillating electric fields. Time-periodic linear potential is assumed to model the light-particle interaction using a nonrelativistic, quantum mechanical description based on Gordon-Volkov states. Applying Floquet theory, we calculate transmission probabilities as a function of the laser field parameters. The transmission resonances in this Ramsey-like setup are interpreted as if they originated from a corresponding static double-potential barrier with heights equal to the ponderomotive potential resulting from the oscillating field. Due to the opening of new "Floquet channels," the resonances are repeated at input energies when the corresponding frequency is shifted by an integer multiple of the exciting frequency. These narrow resonances can be used as precise energy filters. The fine structure of the transmission spectra is determined by the phase difference between the two oscillating light fields, allowing for the optical control of the transmission.
Longitudinal optical phonon-plasmon coupled modes of degenerate Al-doped ZnO films
NASA Astrophysics Data System (ADS)
Ding, K.; Hu, Q. C.; Lin, W. W.; Huang, J. K.; Huang, F.
2012-07-01
We have investigated the interaction between carriers and polar phonons by using Raman scattering spectroscopy in highly conductive Al-doped ZnO films grown by metalorganic chemical vapor deposition. Different from the longitudinal optical phonon-plasmon coupled modes (LOPPCM) observed in nondegenerate ZnO, an A1(LO)-like mode appears at the low frequency side of the uncoupled A1(LO) mode, and it monotonically shifts to higher frequencies and approaches to the uncoupled A1(LO) mode as Al composition increases. Based on line shape calculations, the A1(LO)-like mode is assigned to the large wave-vector LOPPCM arising from nonconserving scattering dominated by the Al impurity-induced Fröhlich mechanism. Benefiting from the nonmonotonic Al composition dependence of the electron density, it is revealed that the LOPPCM depends mainly on the doping level but not the carrier concentration.
Recent Developments in Microwave Ion Clocks
NASA Astrophysics Data System (ADS)
Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute
We review the development of microwave-frequency standards based on trapped ions. Following two distinct paths, microwave ion clocks have evolved greatly in the last twenty years since the earliest Paul-trap-based units. Laser-cooled ion frequency standards reduce the second-order Doppler shift from ion micromotion and thermal secular motion achieving good signal-to-noise ratios via cycling transitions where as many as ~10^8 photons per second per ion may be scattered. Today, laser-cooled ion standards are based on linear Paul traps which hold ions near the node line of the trapping electric field, minimizing micromotion at the trapping-field frequency and the consequent second-order Doppler frequency shift. These quadrupole (radial) field traps tightly confine tens of ions to a crystalline single-line structure. As more ions are trapped, space charge forces some ions away from the node-line axis and the second-order Doppler effect grows larger, even at negligibly small secular temperatures. Buffer-gas-cooled clocks rely on large numbers of ions, typically ~10^7, optically pumped by a discharge lamp at a scattering rate of a few photons per second per ion. To reduce the second-order Doppler shift from space charge repulsion of ions from the trap node line, novel multipole ion traps are now being developed where ions are weakly bound with confining fields that are effectively zero through the trap interior and grow rapidly near the trap electrode ``walls''.
Hatef, Ali; Sadeghi, Seyed M; Fortin-Deschênes, Simon; Boulais, Etienne; Meunier, Michel
2013-03-11
It is well-known that optical properties of semiconductor quantum dots can be controlled using optical cavities or near fields of localized surface plasmon resonances (LSPRs) of metallic nanoparticles. In this paper we study the optics, energy transfer pathways, and exciton states of quantum dots when they are influenced by the near fields associated with plasmonic meta-resonances. Such resonances are formed via coherent coupling of excitons and LSPRs when the quantum dots are close to metallic nanorods and driven by a laser beam. Our results suggest an unprecedented sensitivity to the refractive index of the environment, causing significant spectral changes in the Förster resonance energy transfer from the quantum dots to the nanorods and in exciton transition energies. We demonstrate that when a quantum dot-metallic nanorod system is close to its plasmonic meta-resonance, we can adjust the refractive index to: (i) control the frequency range where the energy transfer from the quantum dot to the metallic nanorod is inhibited, (ii) manipulate the exciton transition energy shift of the quantum dot, and (iii) disengage the quantum dot from the metallic nanoparticle and laser field. Our results show that near meta-resonances the spectral forms of energy transfer and exciton energy shifts are strongly correlated to each other.
NASA Astrophysics Data System (ADS)
Gopalakrishna, Smitha Mysore; Murugendrappa, Malalkere Veerappa
2018-05-01
In this paper we bring forth the effect of La0.7Ca0.3MnO3 (LCM) perovskite nano particle on the optical band gap in composition with conducting Polypyrrole (PPy) prepared by chemical oxidation method. The morphology and crystalline phase were determined by SEM, TEM and X-Ray diffraction studies. The Optical band gap studies were analyzed using the UV-VIS spectrometer scanned in the range 200 nm to 600 nm for pure PPy and PPy/LCM composites. There is a characteristic peak observed for the composites situated around 315 nm for pure PPy, PPy/LCM10 and PPy/LCM50. But for higher compositions of LCM weight percentage like 30%, 40% and 50% the peak shift slightly to higher wavelength side. The peak shifts to 320 nm, 325 nm and 335 nm respectively. The optical band gap increased for Pure PPy, PPy/LCM10 and PPy/LCM20 and found to decrease gradually for PPy/LCM30, PPy/LCM40 and PPy/LCM50. The studies suggest that LCM composition in the PPy chain has a role in modifying the wavelength and in turn its band gap. The study may find application in organic devices working at high frequency and voltage.
Investigation on a fiber optic accelerometer based on FBG-FP interferometer
NASA Astrophysics Data System (ADS)
Lin, Chongyu; Luo, Hong; Xiong, Shuidong; Li, Haitao
2014-12-01
A fiber optic accelerometer based on fiber Bragg grating Fabry-Perot (FBG-FP) interferometer is presented. The sensor is a FBG-FP cavity which is formed with two weak fiber Bragg gratings (FBGs) in a single-mode fiber. The reflectivity of the two FBGs is 9.42% and 7.74% respectively, and the fiber between them is 10 meters long. An optical demodulation system was set up to analyze the reflected light of FBG-FP cavity. Acceleration signals of different frequencies and intensities were demodulated correctly and stably by the system. Based on analyzing the optical spectrum of weak FBG based FBG-FP cavity, we got the equivalent length of FBG-FP cavity. We used a path-matching Michelson interferometer (MI) to demodulate the acceleration signal. The visibility of the interference fringe we got was 41%~42% while the theory limit was 50%. This indicated that the difference of interferometer's two arms and the equivalent length of FBG-FP cavity were matched well. Phase generated carrier (PGC) technology was used to eliminate phase fading caused by random phase shift and Faraday rotation mirrors (FRMs) were used to eliminate polarization-induced phase fading. The accelerometer used a compliant cylinder design and its' sensitivity and frequency response were analyzed and simulated based on elastic mechanics. Experiment result showed that the accelerometer had a flat frequency response over the frequency range of 31-630Hz. The sensitivity was about 31dB (0dB=1rad/g) with fluctuation less than 1.5dB.
NASA Astrophysics Data System (ADS)
Goncharenko, I. A.
1990-04-01
The shift formula method is used to obtain analytic expressions which provide estimates of the influence of nonlinearity on the parameters of fiber waveguide modes. Depending on the sign of the nonlinear susceptibility of the waveguide core, the nonlinearity can improve or impair (right down to complete loss) the waveguiding properties of fibers. The optical power at which a fiber loses its guiding properties is constant far from the cutoff, but rises steeply near the critical cutoff frequency. The nonlinearity can be used to vary the zero dispersion wavelength and the range of single-mode operation of a fiber waveguide.
NASA Astrophysics Data System (ADS)
Isaac, Aboagye Adjaye; Yongsheng, Cao; Fushen, Chen
2018-05-01
We present and compare the outcome of implicit and explicit labels using intensity modulation (IM), differential quadrature phase shift keying (DQPSK), and polarization division multiplexed (PDM-DQPSK). A payload bit rate of 1, 2, and 5 Gb/s is considered for IM implicit labels, while payloads of 40, 80, and 112 Gb/s are considered in DQPSK and PDM-DQPSK explicit labels by stimulating a 4-code 156-Mb/s SAC label. The generated label and payloads are observed by assessing the eye diagram, received optical power (ROP), and optical signal to noise ratio (OSNR).
A High Sensitivity and Wide Dynamic Range Fiber-Optic Sensor for Low-Concentration VOC Gas Detection
Khan, Md. Rajibur Rahaman; Kang, Shin-Won
2014-01-01
In this paper, we propose a volatile organic compound (VOC) gas sensing system with high sensitivity and a wide dynamic range that is based on the principle of the heterodyne frequency modulation method. According to this method, the time period of the sensing signal shift when Nile Red containing a VOC-sensitive membrane of a fiber-optic sensing element comes into contact with a VOC. This sensing membrane produces strong, fast and reversible signals when exposed to VOC gases. The response and recovery times of the proposed sensing system were less than 35 s, and good reproducibility and accuracy were obtained. PMID:25490592
Optical absorption and thermal transport of individual suspended carbon nanotube bundles.
Hsu, I-Kai; Pettes, Michael T; Bushmaker, Adam; Aykol, Mehmet; Shi, Li; Cronin, Stephen B
2009-02-01
A focused laser beam is used to heat individual single-walled carbon nanotube bundles bridging two suspended microthermometers. By measurement of the temperature rise of the two thermometers, the optical absorption of 7.4-10.3 nm diameter bundles is found to be between 0.03 and 0.44% of the incident photons in the 0.4 microm diameter laser spot. The thermal conductance of the bundle is obtained with the additional measurement of the temperature rise of the nanotubes in the laser spot from shifts in the Raman G band frequency. According to the nanotube bundle diameter determined by transmission electron microscopy, the thermal conductivity is obtained.
NASA Astrophysics Data System (ADS)
Abbas, Samir; Dupont, Laurent; Dozov, Ivan; Davidson, Patrick; Chanéac, Corinne
2018-02-01
We have investigated the feasibility of optical tunable filters based on a Fabry-Perot etalon that uses a suspension of goethite (α-FeOOH) nanorods as electro-optic material for application in optical telecommunications in the near IR range. These synthetic nanoparticles have a high optical anisotropy that give rise to a very strong Kerr effect in their colloidal suspensions. Currently, these particles are dispersed in aqueous solvent, with pH2 to ensure the colloidal electrostatic stability. However, the high conductivity of these suspensions requires using high-frequency electric fields (f > 1 MHz), which brings about a high power consumption of the driver. To decrease the field frequency, we have changed the solvent to ethylene glycol which has a lower electrical conductivity than the aqueous solvent. We have built a Fabry-Perot cell, filled with this colloidal suspension in the isotropic phase, and showed that a phase shift of 14 nm can be obtained in a field of 3V/μm. Therefore, the device can operate as a tunable filter. A key advantage of this filter is that it is, by principle, completely insensitive to the polarization of the input light. However, several technological issues still need to be solved, such as ionic contamination of the suspension from the blocking layers, and dielectrophoretic and thermal effects.
Lu, Guo-Wei; Luís, Ruben S; Mendinueta, José Manuel Delgado; Sakamoto, Takahide; Yamamoto, Naokatsu
2018-01-22
As one of the promising multiplexing and multicarrier modulation technologies, Nyquist subcarrier multiplexing (Nyquist SCM) has recently attracted research attention to realize ultra-fast and ultra-spectral-efficient optical networks. In this paper, we propose and experimentally demonstrate optical subcarrier processing technologies for Nyquist SCM signals such as frequency conversion, multicast and data aggregation of subcarriers, through the coherent spectrum overlapping between subcarriers in four-wave mixing (FWM) with coherent multi-tone pump. The data aggregation is realized by coherently superposing or combining low-level subcarriers to yield high-level subcarriers in the optical field. Moreover, multiple replicas of the data-aggregated subcarriers and the subcarriers carrying the original data are obtained. In the experiment, two 5 Gbps quadrature phase-shift keying (QPSK) subcarriers are coherently combined to generate a 10 Gbps 16 quadrature amplitude modulation (QAM) subcarrier with frequency conversions through the FWM with coherent multi-tone pump. Less than 1 dB optical signal-to-noise ratio (OSNR) penalty variation is observed for the synthesized 16QAM subcarriers after the data aggregation. In addition, some subcarriers are kept in the original formats, QPSK, with a power penalty of less than 0.4 dB with respect to the original input subcarriers. The proposed subcarrier processing technology enables flexibility for spectral management in future dynamic optical networks.
The second filter’s second coming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramamoorthy, Sripriya; Jacques, Steven L.; Choudhoury, Niloy
We measured sound-evoked vibrations at the stereociliary side of inner and outer hair cells and their surrounding supporting cells, using optical coherence tomography interferometry in living anesthetized guinea pigs. Our measurements demonstrate a gradient in frequency tuning among different cell types, going from a high best frequency at the inner hair cells to a lower one at the Hensen cells. This causes the locus of maximum inner hair cell activation to be shifted toward the apex of the cochlea as compared to the outer hair cells. These observations show that additional processing and filtering of acoustic signals occurs within themore » organ of Corti prior to inner hair cell excitation, thus reinstating a transformed second filter as a mechanism contributing to cochlear frequency tuning.« less
The second filter's second coming
NASA Astrophysics Data System (ADS)
Ramamoorthy, Sripriya; Chen, Fangyi; Zha, Dingjun; Jacques, Steven L.; Wang, Ruikang; Choudhoury, Niloy; Nuttall, Alfred L.; Fridberger, Anders
2015-12-01
We measured sound-evoked vibrations at the stereociliary side of inner and outer hair cells and their surrounding supporting cells, using optical coherence tomography interferometry in living anesthetized guinea pigs. Our measurements demonstrate a gradient in frequency tuning among different cell types, going from a high best frequency at the inner hair cells to a lower one at the Hensen cells. This causes the locus of maximum inner hair cell activation to be shifted toward the apex of the cochlea as compared to the outer hair cells. These observations show that additional processing and filtering of acoustic signals occurs within the organ of Corti prior to inner hair cell excitation, thus reinstating a transformed second filter as a mechanism contributing to cochlear frequency tuning.
1 million-Q optomechanical microdisk resonators for sensing with very large scale integration
NASA Astrophysics Data System (ADS)
Hermouet, M.; Sansa, M.; Banniard, L.; Fafin, A.; Gely, M.; Allain, P. E.; Santos, E. Gil; Favero, I.; Alava, T.; Jourdan, G.; Hentz, S.
2018-02-01
Cavity optomechanics have become a promising route towards the development of ultrasensitive sensors for a wide range of applications including mass, chemical and biological sensing. In this study, we demonstrate the potential of Very Large Scale Integration (VLSI) with state-of-the-art low-loss performance silicon optomechanical microdisks for sensing applications. We report microdisks exhibiting optical Whispering Gallery Modes (WGM) with 1 million quality factors, yielding high displacement sensitivity and strong coupling between optical WGMs and in-plane mechanical Radial Breathing Modes (RBM). Such high-Q microdisks with mechanical resonance frequencies in the 102 MHz range were fabricated on 200 mm wafers with Variable Shape Electron Beam lithography. Benefiting from ultrasensitive readout, their Brownian motion could be resolved with good Signal-to-Noise ratio at ambient pressure, as well as in liquid, despite high frequency operation and large fluidic damping: the mechanical quality factor reduced from few 103 in air to 10's in liquid, and the mechanical resonance frequency shifted down by a few percent. Proceeding one step further, we performed an all-optical operation of the resonators in air using a pump-probe scheme. Our results show our VLSI process is a viable approach for the next generation of sensors operating in vacuum, gas or liquid phase.
Liu, Chao; Pei, Li; Li, Zhuoxuan; Ning, Tigang; Yu, Shaowei; Kang, Zexin
2013-05-10
Fourier mode coupling theory was first employed in the spectral analysis of several nonuniform fiber Bragg grating (FBG)-based acousto-optic modulators (NU-FBG-AOMs) with the effects of Gaussian-apodization (GA), phase shift (PS), and linear chirp (LC). Because of the accuracy and simplicity of the algorithm applied in this model, the modulation performances of these modulators can be acquired effectively and efficiently. Based on the model, the reflected spectra of these modulators were simulated under various acoustic frequencies and acoustically induced strains. The simulation results of the GA-FBG-AOM and PS-FBG-AOM showed that the wavelength spacing between the primary reflection peak and the secondary reflection peak is proportional to the acoustic frequency, and the reflectivity of reflection peaks depends on the acoustically induced strains. But for the LC-FBG-AOM, the wavelength spacing between the neighboring reflection peaks increased linearly and inversely with the acoustic frequency, and the extinction ratio of each peak relates to the acoustically induced strain. These numerical analysis results, which were effectively used in the designs and fabrications of these NU-FBG-AOMs, can broaden the AOM-based application scope and shed light on the performance optimization of optical wavelength-division multiplex system.
NASA Astrophysics Data System (ADS)
Dong, Jun; Wang, Xiaolei; Zhang, Mingming; Wang, Xiaojie; He, Hongsen
2018-04-01
Structured optical vortices with 4 phase singularities have been generated in a laser diode pumped continuous-wave Yb:Y3Al5O12/YVO4 (Yb:YAG/YVO4) Raman microchip laser. The broadband comb-like first order Stokes laser emitting spectrum including 30 longitudinal modes covers from 1072.49 nm to 1080.13 nm with a bandwidth of 7.64 nm, which is generated with the Raman shift 259 cm-1 of the c-cut YVO4 crystal converted from the fundamental laser around 1.05 μm. Pump power dependent optical vortex beams are attributed to overlap of the Stokes laser field with the fundamental laser field caused by dynamically changing the coupling losses of the fundamental laser field. The maximum output power is 1.16 W, and the optical-to-optical efficiency is 18.4%. This work provides a method for generating structured optical vortices with an optical frequency comb in solid-state Raman microchip lasers, which have potential applications in quantum computations, micro-machining, and information processing.
Enhanced autocompensating quantum cryptography system.
Bethune, Donald S; Navarro, Martha; Risk, William P
2002-03-20
We have improved the hardware and software of our autocompensating system for quantum key distribution by replacing bulk optical components at the end stations with fiber-optic equivalents and implementing software that synchronizes end-station activities, communicates basis choices, corrects errors, and performs privacy amplification over a local area network. The all-fiber-optic arrangement provides stable, efficient, and high-contrast routing of the photons. The low-bit error rate leads to high error-correction efficiency and minimizes data sacrifice during privacy amplification. Characterization measurements made on a number of commercial avalanche photodiodes are presented that highlight the need for improved devices tailored specifically for quantum information applications. A scheme for frequency shifting the photons returning from Alice's station to allow them to be distinguished from backscattered noise photons is also described.
Kashiwagi, Ken; Mozawa, Kiyonobu; Tanaka, Yosuke; Kurokawa, Takashi
2013-12-16
We precisely generate dark solitons using an optical pulse synthesizer (OPS) at a repetition rate of 25 GHz and experimentally investigate soliton transmission through a normal-dispersion fiber. Because of their particular waveform, there are not many experimental studies. The OPS provides frequency-domain line-by-line modulation and produces arbitrary pulse waveforms. The soliton waveform has an intensity contrast greater than 20 dB. At certain input peak power, the pulse exhibits soliton transmission and maintains its initial waveform. The power agrees with soliton transmission theory. We confirm that the π phase shift at the center of the dark soliton is maintained after transmission through the fiber. We also investigate the influence of stimulated Brillouin scattering for long-distance transmission.
Frequency-chirp rates of harmonics driven by a few-cycle pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, M.; Mauritsson, J.; Gaarde, M.B.
2005-08-15
We present numerical calculations of the time-frequency characteristics of cutoff harmonics generated by few-cycle laser pulses. We find that for driving pulses as short as three optical cycles, the adiabatic prediction for the harmonic chirp rate is very accurate. This negative chirp is so large that the resulting bandwidth causes substantial overlap between neighboring harmonics, and the harmonic phase therefore appears to not vary in time or frequency. By adding a compensating positive chirp to the driving pulse, which reduces the harmonic bandwidth and allows for the appearance of the negative chirp, we can measure the harmonic chirp rates. Wemore » also find that the positive chirp on the driving pulse causes the harmonics to shift down in frequency. We show that this counterintuitive result is caused by the change in the strong field continuum dynamics introduced by the variation of the driving frequency with time.« less
An L-band multi-wavelength Brillouin-erbium fiber laser with switchable frequency spacing
NASA Astrophysics Data System (ADS)
Zhou, Xuefang; Hu, Kongwen; Wei, Yizhen; Bi, Meihua; Yang, Guowei
2017-01-01
In this paper, a novel L-band multi-wavelength Brillouin-erbium fiber laser consisting of two ring cavities is proposed and demonstrated. The frequency spacing can be switched, corresponding to the single and double Brillouin frequency shifts, by toggling the optical switch. Under a 980 nm pump power of 600 mw, and a Brillouin pump power of 4 mW and wavelength of 1599.4 nm, up to 16 Stokes signals with a frequency spacing of 0.089 nm and 5 Stokes signals with double spacing of 0.178 nm are generated. A wavelength tunability of 15 nm (1593 nm - 1608 nm) is realized for both frequency spacings. The fluctuation of Stokes signals for both single and double Brillouin spacing regimes in the proposed setup is less than 1.5 dB throughout a 30 min time span.
Frequency-comb-assisted precision laser spectroscopy of CHF{sub 3} around 8.6 μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gambetta, Alessio; Coluccelli, Nicola; Cassinerio, Marco
2015-12-21
We report a high-precision spectroscopic study of room-temperature trifluoromethane around 8.6 μm, using a CW quantum cascade laser phase-locked to a mid-infrared optical frequency comb. This latter is generated by a nonlinear down-conversion process starting from a dual-branch Er:fiber laser and is stabilized against a GPS-disciplined rubidium clock. By tuning the comb repetition frequency, several transitions falling in the υ{sub 5} vibrational band are recorded with a frequency resolution of 20 kHz. Due to the very dense spectra, a special multiple-line fitting code, involving a Voigt profile, is developed for data analysis. The combination of the adopted experimental approach andmore » survey procedure leads to fractional accuracy levels in the determination of line center frequencies, down to 2 × 10{sup −10}. Line intensity factors, pressure broadening, and shifting parameters are also provided.« less
Terahertz Active Photonic Crystals for Condensed Gas Sensing
Benz, Alexander; Deutsch, Christoph; Brandstetter, Martin; Andrews, Aaron M.; Klang, Pavel; Detz, Hermann; Schrenk, Werner; Strasser, Gottfried; Unterrainer, Karl
2011-01-01
The terahertz (THz) spectral region, covering frequencies from 1 to 10 THz, is highly interesting for chemical sensing. The energy of rotational and vibrational transitions of molecules lies within this frequency range. Therefore, chemical fingerprints can be derived, allowing for a simple detection scheme. Here, we present an optical sensor based on active photonic crystals (PhCs), i.e., the pillars are fabricated directly from an active THz quantum-cascade laser medium. The individual pillars are pumped electrically leading to laser emission at cryogenic temperatures. There is no need to couple light into the resonant structure because the PhC itself is used as the light source. An injected gas changes the resonance condition of the PhC and thereby the laser emission frequency. We achieve an experimental frequency shift of 10−3 times the center lasing frequency. The minimum detectable refractive index change is 1.6 × 10−5 RIU. PMID:22163939
NASA Astrophysics Data System (ADS)
Harrell, Lee; Moore, Eric; Lee, Sanggap; Hickman, Steven; Marohn, John
2011-03-01
We present data and theoretical signal and noise calculations for a protocol using parametric amplification to evade the inherent tradeoff between signal and detector frequency noise in force-gradient magnetic resonance force microscopy signals, which are manifested as a modulated frequency shift of a high- Q microcantilever. Substrate-induced frequency noise has a 1 / f frequency dependence, while detector noise exhibits an f2 dependence on modulation frequency f . Modulation of sample spins at a frequency that minimizes these two contributions typically results in a surface frequency noise power an order of magnitude or more above the thermal limit and may prove incompatible with sample spin relaxation times as well. We show that the frequency modulated force-gradient signal can be used to excite the fundamental resonant mode of the cantilever, resulting in an audio frequency amplitude signal that is readily detected with a low-noise fiber optic interferometer. This technique allows us to modulate the force-gradient signal at a sufficiently high frequency so that substrate-induced frequency noise is evaded without subjecting the signal to the normal f2 detector noise of conventional demodulation.
Gravitational lensing and ghost images in the regular Bardeen no-horizon spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schee, Jan; Stuchlík, Zdeněk, E-mail: jan.schee@fpf.slu.cz, E-mail: zdenek.stuchlik@fpf.slu.cz
We study deflection of light rays and gravitational lensing in the regular Bardeen no-horizon spacetimes. Flatness of these spacetimes in the central region implies existence of interesting optical effects related to photons crossing the gravitational field of the no-horizon spacetimes with low impact parameters. These effects occur due to existence of a critical impact parameter giving maximal deflection of light rays in the Bardeen no-horizon spacetimes. We give the critical impact parameter in dependence on the specific charge of the spacetimes, and discuss 'ghost' direct and indirect images of Keplerian discs, generated by photons with low impact parameters. The ghostmore » direct images can occur only for large inclination angles of distant observers, while ghost indirect images can occur also for small inclination angles. We determine the range of the frequency shift of photons generating the ghost images and determine distribution of the frequency shift across these images. We compare them to those of the standard direct images of the Keplerian discs. The difference of the ranges of the frequency shift on the ghost and direct images could serve as a quantitative measure of the Bardeen no-horizon spacetimes. The regions of the Keplerian discs giving the ghost images are determined in dependence on the specific charge of the no-horizon spacetimes. For comparison we construct direct and indirect (ordinary and ghost) images of Keplerian discs around Reissner-Nördström naked singularities demonstrating a clear qualitative difference to the ghost direct images in the regular Bardeen no-horizon spacetimes. The optical effects related to the low impact parameter photons thus give clear signature of the regular Bardeen no-horizon spacetimes, as no similar phenomena could occur in the black hole or naked singularity spacetimes. Similar direct ghost images have to occur in any regular no-horizon spacetimes having nearly flat central region.« less
Ultrashort Pulse (USP) Laser-Matter Interactions
2013-03-05
spectroscopy • Frequency/time transfer • High-capacity comms • Coherent LIDAR • Optical clocks • Calibration Material Science ultrashort, high...Laboratory 41 Laser -driven x-rays generation (0.1 – 10 MeV) • Scattering from a 300 MeV electron beam can Doppler shift a 1-eV energy laser ...1 Integrity Service Excellence Ultrashort Pulse (USP) Laser – Matter Interactions 5 MAR 2013 Dr. Riq Parra Program Officer AFOSR/RTB
Modification of optical properties by adiabatic shifting of resonances in a four-level atom
NASA Astrophysics Data System (ADS)
Dutta, Bibhas Kumar; Panchadhyayee, Pradipta
2018-04-01
We describe the linear and nonlinear optical properties of a four-level atomic system, after reducing it to an effective two-level atomic model under the condition of adiabatic shifting of resonances driven by two coherent off-resonant fields. The reduced form of the Hamiltonian corresponding to the two-level system is obtained by employing an adiabatic elimination procedure in the rate equations of the probability amplitudes for the proposed four-level model. For a weak probe field operating in the system, the nonlinear dependence of complex susceptibility on the Rabi frequencies and the detuning parameters of the off-resonant driving fields makes it possible to exhibit coherent control of single-photon and two-photon absorption and transparency, the evolution of enhanced Self-Kerr nonlinearity and noticeable dispersive switching. We have shown how the quantum interference results in the generic four-level model at the adiabatic limit. The present scheme describes the appearance of single-photon transparency without invoking any exact two-photon resonance.
Optical lattice clock with atoms confined in a shallow trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemonde, Pierre; Wolf, Peter; Bureau International des Poids et Mesures, Pavillon de Breteuil, 92312 Sevres Cedex
2005-09-15
We study the trap depth requirement for the realization of an optical clock using atoms confined in a lattice. We show that site-to-site tunneling leads to a residual sensitivity to the atom dynamics hence requiring large depths [(50-100)E{sub r} for Sr] to avoid any frequency shift or line broadening of the atomic transition at the 10{sup -17}-10{sup -18} level. Such large depths and the corresponding laser power may, however, lead to difficulties (e.g., higher-order light shifts, two-photon ionization, technical difficulties) and therefore one would like to operate the clock in much shallower traps. To circumvent this problem we propose themore » use of an accelerated lattice. Acceleration lifts the degeneracy between adjacents potential wells which strongly inhibits tunneling. We show that using the Earth's gravity, much shallower traps (down to 5E{sub r} for Sr) can be used for the same accuracy goal.« less
Acousto-optical assessment of skin viscoelasticity
NASA Astrophysics Data System (ADS)
Kirkpatrick, Sean J.; Duncan, Donald D.
2003-07-01
A multiphysics approach, combining acoustics, optics, and mechanics can be used to detect regions of skin with distinct mechanical behavior that may indicate a pathology, such as a cancerous skin lesion. Herein, an acousto-optical approach to evaluating the viscoelastic behavior of superficial skin layers will be presented. The method relies upon inducing low frequency guided surface waves in the skin and detecting these waves by monitoring the shift in the backscattered laser speckle pattern created by illuminating a small region of the skin with coherent light. Artificial lesions in the form of chemical cross-linking and chemical softening were induced in superficial porcine skin layers and detected based upon variations in local mechanical behavior. The lesions affect not only the time-of-flight of the guided surface waves, but also change the relative phase of the acoustic waves as determined optically. The method may be applicable in the study and diagnosis of superficial skin lesions.
Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing
NASA Technical Reports Server (NTRS)
Guo, Junpeng (Inventor)
2015-01-01
The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.
Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing
NASA Technical Reports Server (NTRS)
Guo, Junpeng (Inventor)
2016-01-01
The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.
NASA Astrophysics Data System (ADS)
Eichenfield, Matt; Chan, Jasper; Safavi-Naeini, Amir H.; Vahala, Kerry J.; Painter, Oskar
2009-10-01
Periodically structured materials can sustain both optical and mechanical excitations which are tailored by the geometry. Here we analyze the properties of dispersively coupled planar photonic and phononic crystals: optomechanical crystals. In particular, the properties of co-resonant optical and mechanical cavities in quasi-1D (patterned nanobeam) and quasi-2D (patterned membrane) geometries are studied. It is shown that the mechanical Q and optomechanical coupling in these structures can vary by many orders of magnitude with modest changes in geometry. An intuitive picture is developed based upon a perturbation theory for shifting material boundaries that allows the optomechanical properties to be designed and optimized. Several designs are presented with mechanical frequency ~ 1-10 GHz, optical Q-factor Qo > 10^7, motional masses meff 100 femtograms, optomechanical coupling length LOM < 5 microns, and a radiation-limited mechanical Q-factor Qm > 10^7.
Efferent control of temporal response properties of the Limulus lateral eye
1990-01-01
The sensitivity of the Limulus lateral eye exhibits a pronounced circadian rhythm. At night a circadian oscillator in the brain activates efferent fibers in the optic nerve, inducing multiple changes in the physiological and anatomical characteristics of retinal cells. These changes increase the sensitivity of the retina by about five orders of magnitude. We investigated whether this increase in retinal sensitivity is accompanied by changes in the ability of the retina to process temporal information. We measured the frequency transfer characteristic (FTC) of single receptors (ommatidia) by recording the response of their optic nerve fibers to sinusoidally modulated light. We first measured the FTC in the less sensitive daytime state and then after converting the retina to the more sensitive nighttime state by electrical stimulation of the efferent fibers. The activation of these fibers shifted the peak of the FTC to lower frequencies and reduced the slope of the low-frequency limb. These changes reduce the eye's ability to detect rapid changes in light intensity but enhance its ability to detect dim flashes of light. Apparently Limulus sacrifices temporal resolution for increased visual sensitivity at night. PMID:2307958
NASA Astrophysics Data System (ADS)
Kornienko, Vladimir V.; Kitaeva, Galiya Kh.; Sedlmeir, Florian; Leuchs, Gerd; Schwefel, Harald G. L.
2018-05-01
We study a calibration scheme for terahertz wave nonlinear-optical detectors based on spontaneous parametric down-conversion. Contrary to the usual low wavelength pump in the green, we report here on the observation of spontaneous parametric down-conversion originating from an in-growth poled lithium niobate crystal pumped with a continuous wave 50 mW, 795 nm diode laser system, phase-matched to a terahertz frequency idler wave. Such a system is more compact and allows for longer poling periods as well as lower losses in the crystal. Filtering the pump radiation by a rubidium-87 vapor cell allowed the frequency-angular spectra to be obtained down to ˜0.5 THz or ˜1 nm shift from the pump radiation line. The presence of an amplified spontaneous emission "pedestal" in the diode laser radiation spectrum significantly hampers the observation of spontaneous parametric down-conversion spectra, in contrast to conventional narrowband gas lasers. Benefits of switching to longer pump wavelengths are pointed out, such as collinear optical-terahertz phase-matching in bulk crystals.
Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate.
Yan, Leilei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang
2015-10-12
The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and undesired carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion.
Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate
Yan, Leilei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang
2015-01-01
The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and undesired carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion. PMID:26455901
Li, Dongmei; Guan, Tian; He, Yonghong; Liu, Fang; Yang, Anping; He, Qinghua; Shen, Zhiyuan; Xin, Meiguo
2018-07-01
A new chiral sensor based on weak measurement to accurately measure the optical rotation (OR) has been developed for the estimation of a trace amount of chiral molecule. With the principle of optical weak measurement in frequency domain, the central wavelength shift of output spectra is quantitatively relative to the angle of preselected polarization. Hence, a chiral molecule (e.g., L-amino acid, or D-amino acid) can be enantioselectively determined by modifying the preselection angle with the OR, which will cause the rotation of a polarization plane. The concentration of the chiral sample, corresponding to its optical activity, is quantitatively analyzed with the central wavelength shift of output spectra, which can be collected in real time. Immune to the refractive index change, the proposed chiral sensor is valid in complicated measuring circumstance. The detections of Proline enantiomer concentration in different solvents were implemented. The results demonstrated that weak measurement acted as a reliable method to chiral recognition of Proline enantiomers in diverse circumstance with the merits of high precision and good robustness. In addition, this real-time monitoring approach plays a crucial part in asymmetric synthesis and biological systems. Copyright © 2018. Published by Elsevier B.V.
Arteaga-Sierra, F R; Milián, C; Torres-Gómez, I; Torres-Cisneros, M; Moltó, G; Ferrando, A
2014-09-22
We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during supercontinuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed.
Rahman, Rezwanur; Taylor, P C; Scales, John A
2013-08-01
Quasi-optical (QO) methods of dielectric spectroscopy are well established in the millimeter and submillimeter frequency bands. These methods exploit standing wave structure in the sample produced by a transmitted Gaussian beam to achieve accurate, low-noise measurement of the complex permittivity of the sample [e.g., J. A. Scales and M. Batzle, Appl. Phys. Lett. 88, 062906 (2006); R. N. Clarke and C. B. Rosenberg, J. Phys. E 15, 9 (1982); T. M. Hirovnen, P. Vainikainen, A. Lozowski, and A. V. Raisanen, IEEE Trans. Instrum. Meas. 45, 780 (1996)]. In effect the sample itself becomes a low-Q cavity. On the other hand, for optically thin samples (films of thickness much less than a wavelength) or extremely low loss samples (loss tangents below 10(-5)) the QO approach tends to break down due to loss of signal. In such a case it is useful to put the sample in a high-Q cavity and measure the perturbation of the cavity modes. Provided that the average mode frequency divided by the shift in mode frequency is less than the Q (quality factor) of the mode, then the perturbation should be resolvable. Cavity perturbation techniques are not new, but there are technological difficulties in working in the millimeter/submillimeter wave region. In this paper we will show applications of cavity perturbation to the dielectric characterization of semi-conductor thin films of the type used in the manufacture of photovoltaics in the 100 and 350 GHz range. We measured the complex optical constants of hot-wire chemical deposition grown 1-μm thick amorphous silicon (a-Si:H) film on borosilicate glass substrate. The real part of the refractive index and dielectric constant of the glass-substrate varies from frequency-independent to linearly frequency-dependent. We also see power-law behavior of the frequency-dependent optical conductivity from 316 GHz (9.48 cm(-1)) down to 104 GHz (3.12 cm(-1)).
Metrological properties of {CO 2}/{OsO 4} optical frequency standard
NASA Astrophysics Data System (ADS)
Acef, O.
1997-02-01
Recent progress on the metrological performance of the BNM-LPTF {CO 2}/{OsO 4} frequency standards in the {28}/{29}THz range, using OsO 4 molecular transitions as a frequency reference is reported. Significant improvements in terms of both short-term stability ( {6.6×10 -14}/{τup to τ=300s }) and long-term stability (4 × 10 -15 up to τ = 1 000 s, Δν ˜ 0.1 Hz) are obtained. Long term reproducibility (over more than 18 months) of about 3 × 10 -13 has been achieved. This high level enables the transfer, in terms of absolute frequency at the 3 × 10 -13 level of uncertainty, from primary frequency standards in the microwave domain to near infrared and visible domains, using frequency chains with {CO 2}/{OsO 4} as a transfer frequency standard. Preliminary estimates of the main effects which may shift the OsO 4 center line are reported.
Dang, Yunli; Zhao, Zhiyong; Tang, Ming; Zhao, Can; Gan, Lin; Fu, Songnian; Liu, Tongqing; Tong, Weijun; Shum, Perry Ping; Liu, Deming
2017-08-21
Featuring a dependence of Brillouin frequency shift (BFS) on temperature and strain changes over a wide range, Brillouin distributed optical fiber sensors are however essentially subjected to the relatively poor temperature/strain measurement resolution. On the other hand, phase-sensitive optical time-domain reflectometry (Φ-OTDR) offers ultrahigh temperature/strain measurement resolution, but the available frequency scanning range is normally narrow thereby severely restricts its measurement dynamic range. In order to achieve large dynamic range and high measurement resolution simultaneously, we propose to employ both the Brillouin optical time domain analysis (BOTDA) and Φ-OTDR through space-division multiplexed (SDM) configuration based on the multicore fiber (MCF), in which the two sensors are spatially separately implemented in the central core and a side core, respectively. As a proof of concept, the temperature sensing has been performed for validation with 2.5 m spatial resolution over 1.565 km MCF. Large temperature range (10 °C) has been measured by BOTDA and the 0.1 °C small temperature variation is successfully identified by Φ-OTDR with ~0.001 °C resolution. Moreover, the temperature changing process has been recorded by continuously performing the measurement of Φ-OTDR with 80 s frequency scanning period, showing about 0.02 °C temperature spacing at the monitored profile. The proposed system enables the capability to see finer and/or farther upon requirement in distributed optical fiber sensing.
Yallapragada, Venkata Jayasurya; Mulay, Gajendra L; Rao, Ch N; Ravishankar, Ajith P; Achanta, Venu Gopal
2016-10-01
High precision measurements of optical beam shifts are important in various fields including sensing, atomic force microscopy, and measuring beam shifts at interfaces. Sub-micron shifts are generally measured by indirect techniques such as weak measurements. We demonstrate a straightforward and robust measurement scheme for the shift, based on a scanning quadrant photodiode (QPD) that is biased using a low noise electronic circuit. The shift is measured with respect to a reference beam that is co-propagating with the signal beam. Thus, the shift of the signal beam is readout directly as the difference between the x-intercepts of the QPD scan plot of the signal and reference beams versus the position of the detector. To measure the beam shift, we use polarization multiplexing scheme where the p-polarized signal and s-polarized reference beams are modulated at two different frequencies and co-launched into a polarization-maintaining fiber. Both the signal and reference beam positions are readout by two lock-in amplifiers simultaneously. In order to demonstrate the utility of this method, we perform a direct measurement of Goos-Hänchen shift of a beam that is reflected from a plane gold surface. Accuracy of 150 nm is achieved using this technique.
NASA Astrophysics Data System (ADS)
Yallapragada, Venkata Jayasurya; Mulay, Gajendra L.; Rao, Ch. N.; Ravishankar, Ajith P.; Achanta, Venu Gopal
2016-10-01
High precision measurements of optical beam shifts are important in various fields including sensing, atomic force microscopy, and measuring beam shifts at interfaces. Sub-micron shifts are generally measured by indirect techniques such as weak measurements. We demonstrate a straightforward and robust measurement scheme for the shift, based on a scanning quadrant photodiode (QPD) that is biased using a low noise electronic circuit. The shift is measured with respect to a reference beam that is co-propagating with the signal beam. Thus, the shift of the signal beam is readout directly as the difference between the x-intercepts of the QPD scan plot of the signal and reference beams versus the position of the detector. To measure the beam shift, we use polarization multiplexing scheme where the p-polarized signal and s-polarized reference beams are modulated at two different frequencies and co-launched into a polarization-maintaining fiber. Both the signal and reference beam positions are readout by two lock-in amplifiers simultaneously. In order to demonstrate the utility of this method, we perform a direct measurement of Goos-Hänchen shift of a beam that is reflected from a plane gold surface. Accuracy of 150 nm is achieved using this technique.
Optical rogue waves generation in a nonlinear metamaterial
NASA Astrophysics Data System (ADS)
Onana Essama, Bedel Giscard; Atangana, Jacques; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Kofane, Timoleon Crepin
2014-11-01
We investigate the behavior of electromagnetic wave which propagates in a metamaterial for negative index regime. The optical pulse propagation is described by the nonlinear Schrödinger equation with cubic-quintic nonlinearities, second- and third-order dispersion effects. The behavior obtained for negative index regime is compared to that observed for positive index regime. The characterization of electromagnetic wave uses some pulse parameters obtained analytically and called collective coordinates such as amplitude, temporal position, width, chirp, frequency shift and phase. Six frequency ranges have been pointed out where a numerical evolution of collective coordinates and their stability are studied under a typical example to verify our analysis. It appears that a robust soliton due to a perfect compensation process between second-order dispersion and cubic-nonlinearity is presented at each frequency range for both negative and positive index regimes. Thereafter, the stability of the soliton pulse and physical conditions leading to optical rogue waves generation are discussed at each frequency range for both regimes, when third-order dispersion and quintic-nonlinearity come into play. We have demonstrated that collective coordinates give much useful information on external and internal behavior of rogue events. Firstly, we determine at what distance begins the internal excitation leading to rogue waves. Secondly, what kind of internal modification and how it modifies the system in order to build-up rogue events. These results lead to a best comprehension of the mechanism of rogue waves generation. So, it clearly appears that the rogue wave behavior strongly depends on nonlinearity strength of distortion, frequency and regime considered.
Plasma q -plate for generation and manipulation of intense optical vortices
Qu, Kenan; Jia, Qing; Fisch, Nathaniel J.
2017-11-28
An optical vortex is a light wave with a twisting wavefront around its propagation axis and null intensity in the beam center. Its unique spatial structure of field lends itself to a broad range of applications, including optical communication, quantum information, superresolution microscopy, and multidimensional manipulation of particles. However, accessible intensity of optical vortices have been limited to material ionization threshold. This limitation might be removed by using the plasma medium. Here in this paper, we propose the design of suitably magnetized plasmas which, functioning as a q-plate, leads to a direct conversion from a high-intensity Gaussian beam into amore » twisted beam. A circularly polarized laser beam in the plasma accumulates an azimuthal-angle-dependent phase shift and hence forms a twisting wavefront. Our three-dimensional particle-in-cell simulations demonstrate extremely high-power conversion efficiency. The plasma q-plate can work in a large range of frequencies spanning from terahertz to the optical domain.« less
Plasma q -plate for generation and manipulation of intense optical vortices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Kenan; Jia, Qing; Fisch, Nathaniel J.
An optical vortex is a light wave with a twisting wavefront around its propagation axis and null intensity in the beam center. Its unique spatial structure of field lends itself to a broad range of applications, including optical communication, quantum information, superresolution microscopy, and multidimensional manipulation of particles. However, accessible intensity of optical vortices have been limited to material ionization threshold. This limitation might be removed by using the plasma medium. Here in this paper, we propose the design of suitably magnetized plasmas which, functioning as a q-plate, leads to a direct conversion from a high-intensity Gaussian beam into amore » twisted beam. A circularly polarized laser beam in the plasma accumulates an azimuthal-angle-dependent phase shift and hence forms a twisting wavefront. Our three-dimensional particle-in-cell simulations demonstrate extremely high-power conversion efficiency. The plasma q-plate can work in a large range of frequencies spanning from terahertz to the optical domain.« less
Design and implementation of an optical Gaussian noise generator
NASA Astrophysics Data System (ADS)
Za~O, Leonardo; Loss, Gustavo; Coelho, Rosângela
2009-08-01
A design of a fast and accurate optical Gaussian noise generator is proposed and demonstrated. The noise sample generation is based on the Box-Muller algorithm. The functions implementation was performed on a high-speed Altera Stratix EP1S25 field-programmable gate array (FPGA) development kit. It enabled the generation of 150 million 16-bit noise samples per second. The Gaussian noise generator required only 7.4% of the FPGA logic elements, 1.2% of the RAM memory, 0.04% of the ROM memory, and a laser source. The optical pulses were generated by a laser source externally modulated by the data bit samples using the frequency-shift keying technique. The accuracy of the noise samples was evaluated for different sequences size and confidence intervals. The noise sample pattern was validated by the Bhattacharyya distance (Bd) and the autocorrelation function. The results showed that the proposed design of the optical Gaussian noise generator is very promising to evaluate the performance of optical communications channels with very low bit-error-rate values.
Frequency Standards and Metrology
NASA Astrophysics Data System (ADS)
Maleki, Lute
2009-04-01
Preface / Lute Maleki -- Symposium history / Jacques Vanier -- Symposium photos -- pt. I. Fundamental physics. Variation of fundamental constants from the big bang to atomic clocks: theory and observations (Invited) / V. V. Flambaum and J. C. Berengut. Alpha-dot or not: comparison of two single atom optical clocks (Invited) / T. Rosenband ... [et al.]. Variation of the fine-structure constant and laser cooling of atomic dysprosium (Invited) / N. A. Leefer ... [et al.]. Measurement of short range forces using cold atoms (Invited) / F. Pereira Dos Santos ... [et al.]. Atom interferometry experiments in fundamental physics (Invited) / S. W. Chiow ... [et al.]. Space science applications of frequency standards and metrology (Invited) / M. Tinto -- pt. II. Frequency & metrology. Quantum metrology with lattice-confined ultracold Sr atoms (Invited) / A. D. Ludlow ... [et al.]. LNE-SYRTE clock ensemble: new [symbol]Rb hyperfine frequency measurement - spectroscopy of [symbol]Hg optical clock transition (Invited) / M. Petersen ... [et al.]. Precise measurements of S-wave scattering phase shifts with a juggling atomic clock (Invited) / S. Gensemer ... [et al.]. Absolute frequency measurement of the [symbol] clock transition (Invited) / M. Chwalla ... [et al.]. The semiclassical stochastic-field/atom interaction problem (Invited) / J. Camparo. Phase and frequency noise metrology (Invited) / E. Rubiola ... [et al.]. Optical spectroscopy of atomic hydrogen for an improved determination of the Rydberg constant / J. L. Flowers ... [et al.] -- pt. III. Clock applications in space. Recent progress on the ACES mission (Invited) / L. Cacciapuoti and C. Salomon. The SAGAS mission (Invited) / P. Wolf. Small mercury microwave ion clock for navigation and radioScience (Invited) / J. D. Prestage ... [et al.]. Astro-comb: revolutionizing precision spectroscopy in astrophysics (Invited) / C. E. Kramer ... [et al.]. High frequency very long baseline interferometry: frequency standards and imaging an event horizon (Invited) / S. Doeleman. Optically-pumped space cesium clock for Galileo: results of the breadboard / R. Ruffieux ... [et al.] -- pt. IV. Optical clocks I: lattice clocks. Optical lattice clock: seven years of progress and next steps (Invited) / H. Katori, M. Takamoto and T. Akatsuka. The Yb optical lattice clock (Invited) / N. D. Demke ... [et al.]. Optical Lattice clock with Sr atoms (Invited) / P. G. Westergaard ... [et al.]. Development of an optical clock based on neutral strontium atoms held in a lattice trap / E. A. Curtis ... [et al.]. Decoherence and losses by collisions in a [symbol]Sr lattice clock / J. S. R. Vellore Winfred ... [et al.]. Lattice Yb optical clock and cryogenic Cs fountain at INRIM / F. Levi ... [et al.] -- pt. V. Optical clocks II: ion clocks. [Symbol]Yb+ single-ion optical frequency standards (Invited) / Chr. Tamm ... [et al.]. An optical clock based on a single trapped [symbol]Sr+ ion (Invited) / H. S. Margolis ... [et al.]. A trapped [symbol]Yb+ ion optical frequency standard based on the [symbol] transition (Invited) / P. Gill ... [et al.]. Overview of highly accurate RF and optical frequency standards at the National Research Council of Canada (Invited) / A. A. Madej ... [et al.] -- pt. VI. Optical frequency combs. Extreme ultraviolet frequency combs for spectroscopy (Invited) / A. Ozawa ... [et al.]. Development of an optical clockwork for the single trapped strontium ion standard at 445 THz / J. E. Bernard ... [et al.]. A phase-coherent link between the visible and infrared spectral ranges using a combination of CW OPO and femtosecond laser frequency comb / E. V. Kovalchuk and A. Peters. Improvements to the robustness of a TI: sapphire-based femtosecond comb at NPL / V. Tsatourian ... [et al.] -- pt. VII. Atomic microwave standards. NIST FI and F2 (Invited) / T. P. Heavner ... [et al.]. Atomic fountains for the USNO master clock (Invited) / C. Ekstrom ... [et al.]. The transportable cesium fountain clock NIM5: its construction and performance (Invited) / T. Li ... [et al.].Compensated multi-pole mercury trapped ion frequency standard and stability evaluation of systematic effects (Invited) / E. A. Burt ... [et al.]. Research of frequency standards in SIOM - atomic frequency standards based on coherent storage (Invited) / B. Yan ... [et al.]. The PTB fountain clock ensemble preliminary characterization of the new fountain CSF2 / N. Nemitz ... [et al.]. The pulsed optically pumped clock: microwave and optical detection / S. Micalizio ... [et al.]. Research on characteristics of pulsed optically pumped rubidium frequency standard / J. Deng ... [et al.]. Status of the continuous cold fountain clocks at METAS-LTF / A. Joyet ... [et al.]. Experiments with a new [symbol]Hg+ ion clock / E. A. Burt ... [et al.]. Optimising a high-stability CW laser-pumped rubidium gas-cell frequency standard / C. Affolderbach ... [et al.]. Raman-Ramsey Cs cell atomic clock / R. Boudot ... [et al.] -- pt. VIII. Microwave resonators & oscillators. Solutions and ultimate limits in temperature compensation of metallic cylindrical microwave resonators (Invited) / A. De Marchi. Cryogenic sapphire oscillators (Invited) / J. G. Hartnett, E. N. Ivanov and M. E. Tobar. Ultra-stable optical cavity: design and experiments / J. Millo ... [et al.]. New results for whispering gallery mode cryogenic sapphire maser oscillators / K. Benmessai ... [et al.] -- pt. IX. Advanced techniques. Fundamental noise-limited optical phase locking at Femtowatt light levels (Invited) / J. Dick ... [et al.]. Microwave and optical frequency transfer via optical fibre / G. Marra ... [et al.]. Ultra-stable laser source for the [symbol]Sr+ single-ion optical frequency standard at NRC / P. Dubé, A. A. Madej and J. E. Bernard. Clock laser system for a strontium lattice clock / T. Legero ... [et al.]. Measurement noise floor for a long-distance optical carrier transmission via fiber / G. Grosche ... [et al.]. Optical frequency transfer over 172 KM of installed fiber / S. Crane -- pt. X. Miniature systems. Chip-scale atomic devices: precision atomic instruments based on MEMS (Invited) / J. Kitching ... [et al.]. CSAC - the chip-scale atomic clock (Invited) / R. Lutwak ... [et al.]. Reaching a few 10[symbol] stability level with a compact cold atom clock / F. X. Esnault ... [et al.]. Evaluation of Lin||Lin CPT for compact and high performance frequency standard / E. Breschi ... [et al.] -- pt. XI. Time scales. Atomic time scales TAI and TI(BIPM): present status and prospects (Invited) / G. Petit. Weight functions for biases in atomic frequency standards / J. H. Shirley -- pt. XII. Interferometers. Definition and construction of noise budget in atom interferometry (Invited) / E. D'Ambriosio. Characterization of a cold atom gyroscope (Invited) / A. Landragin ... [et al.]. A mobile atom interferometer for high precision measurements of local gravity / M. Schmidt ... [et al.]. Demonstration of atom interferometer comprised of geometric beam splitters / Hiromitsu Imai and Atsuo Morinaga -- pt. XIII. New directions. Active optical clocks (Invited) / J. Chen. Prospects for a nuclear optical frequency standard based on Thorium-229 (Invited) / E. Peik ... [et al.]. Whispering gallery mode oscillators and optical comb generators (Invited) / A. B. Matsko ... [et al.]. Frequency comparison using energy-time entangled photons / A. Stefanov -- List of participants.
Tran, Nina; Chiu, Sara; Tian, Yibin; Wildsoet, Christine F.
2009-01-01
Purpose This study sought further insight into the stimulus dependence of form deprivation myopia, a common response to retinal image degradation in young animals. Methods Each of 4 Bangerter diffusing filters (0.6, 0.1, <0.1, and LP (light perception only)) combined with clear plano lenses, as well as plano lenses alone, were fitted monocularly to 4-day-old chicks. Axial ocular dimensions and refractive errors were monitored over a 14-day treatment period, using high frequency A-scan ultrasonography and an autorefractor, respectively. Results Only the <0.1 and LP filters induced significant form deprivation myopia; these filters induced similarly large myopic shifts in refractive error (mean interocular differences ±SEM: -9.92 ±1.99, -7.26 ± 1.60 D respectively), coupled to significant increases in both vitreous chamber depths and optical axial lengths (p<0.001). The other 3 groups showed comparable, small changes in their ocular dimensions (p>0.05), and only small myopic shifts in refraction (<3.00 D). The myopia-inducing filters eliminated mid-and-high spatial frequency information. Conclusions Our results are consistent with emmetropization being tuned to mid-spatial frequencies. They also imply that form deprivation is not a graded phenomenon. PMID:18533221
NASA Astrophysics Data System (ADS)
Rymanov, Vitaly; Tekin, Tolga; Stöhr, Andreas
2012-03-01
High data rate photonic wireless systems operating at millimeter wave carrier frequencies are considered as a disruptive technology e.g. for reach extension in optical access networks and for mobile backhauling. Recently, we demonstrated 60 GHz photonic wireless systems with record data rates up to 27 Gbit/s. Because of the oxygen absorption at 60 GHz, it is beneficial for fixed wireless systems with spans exceeding 1 km to operate at even higher frequencies. Here, the recently regulated 10 GHz bandwidth within the E-band (60-90 GHz) is of particular interest, covering the 71-76 GHz and 81-86 GHz allocations for multi-gigabit wireless transmission. For this purpose, wideband waveguide photodetectors with high external quantum efficiency are required. Here, we report on double mushroom 1.55 μm waveguide photodetectors for integration in an E-band wireless transmitter module. The developed photodetector consists of a partially p-doped, partly non-intentionally doped absorbing layer centered in a mushroom-type optical waveguide, overcoming the compromise between the junction capacitance and the series resistance. For efficient fiber-chip coupling, a second mushroom-type passive optical waveguide is used. In contrast to the conventional shallow ridge waveguide approach, the mushroom-type passive waveguide allows to shift the center of the optical mode further away from the top surface, thus reducing waveguide losses due to the surface roughness. Experimentally, a very flat frequency response with a deviation up to +/-1 dB in the entire E-band has been found together with an output power level of -15.7 dBm at 10 mA photocurrent and at a frequency of 73 GHz.
NASA Astrophysics Data System (ADS)
Cook, Eryn C.
Casimir and Casimir-Polder effects are forces between electrically neutral bodies and particles in vacuum, arising entirely from quantum fluctuations. The modification to the vacuum electromagnetic-field modes imposed by the presence of any particle or surface can result in these mechanical forces, which are often the dominant interaction at small separations. These effects play an increasingly critical role in the operation of micro- and nano-mechanical systems as well as miniaturized atomic traps for precision sensors and quantum-information devices. Despite their fundamental importance, calculations present theoretical and numeric challenges, and precise atom-surface potential measurements are lacking in many geometric and distance regimes. The spectroscopic measurement of Casimir-Polder-induced energy level shifts in optical-lattice trapped atoms offers a new experimental method to probe atom-surface interactions. Strontium, the current front-runner among optical frequency metrology systems, has demonstrated characteristics ideal for such precision measurements. An alkaline earth atom possessing ultra-narrow intercombination transitions, strontium can be loaded into an optical lattice at the "magic" wavelength where the probe transition is unperturbed by the trap light. Translation of the lattice will permit controlled transport of tightly-confined atomic samples to well-calibrated atom-surface separations, while optical transition shifts serve as a direct probe of the Casimir-Polder potential. We have constructed a strontium magneto-optical trap (MOT) for future Casimir-Polder experiments. This thesis will describe the strontium apparatus, initial trap performance, and some details of the proposed measurement procedure.
Ciret, Charles; Gorza, Simon-Pierre
2016-06-15
The scattering of a linear wave on an optical event horizon, induced by a cross-polarized soliton, is experimentally and numerically investigated in integrated structures. The experiments are performed in a dispersion-engineered birefringent silicon nanophotonic waveguide. In stark contrast with copolarized waves, the large difference between the group velocity of the two cross-polarized waves enables a frequency conversion almost independent of the soliton wavelength. It is shown that the generated idler is only shifted by 10 nm around 1550 nm over a pump tuning range of 350 nm. Simulations using two coupled full vectorial nonlinear Schrödinger equations fully support the experimental results.
2010-11-01
fluctuations may be approximated using eq. 1: LAS g FIB g FIB g FIB n c L T TL L c Ln T T n c L , (1) where FIBT is...the temperature change of the fiber, LAS is the shift of the laser wavelength, gn is the group refractive index, L is the length of the fiber...transfer,” Metrologia , 46, 305-314. [6] K. T. V. Grattan and B. T. Meggitt, 1999, Optical Fiber Sensor Technology, Vol. 3 (Kluwer Academic Publishers
Material properties of Cd1-xMgxO alloys synthesized by radio frequency sputtering
NASA Astrophysics Data System (ADS)
Chen, Guibin; Yu, K. M.; Reichertz, L. A.; Walukiewicz, W.
2013-07-01
We have studied structural, electrical, and optical properties of sputter deposited ternary CdMgO alloy thin films with total Mg concentration as high as 44%. We found that only a fraction (50%-60%) of Mg is incorporated as substitutional Mg contributing to the modification of the electronic structures of the alloys. The electrical and optical results of the Cd1-xMgxO alloys are analyzed in terms of a large upward shift of the conduction band edge with increasing Mg concentration. With the increase of the intrinsic bandgap, appropriately doped Cd-rich CdMgO alloys can be potentially useful as transparent conductors for photovoltaics.
Refractive index sensing by Brillouin scattering in side-polished optical fibers.
Bernini, Romeo; Persichetti, Gianluca; Catalano, Ester; Zeni, Luigi; Minardo, Aldo
2018-05-15
In this Letter, we demonstrate the possibility to measure the refractive index of a liquid, using the stimulating Brillouin scattering in a 3-cm-long side-polished optical fiber. In addition, we show that by depositing a high-refractive index layer on the polished surface the sensitivity of the Brillouin frequency shift (BFS) can be increased due to a higher penetration of the evanescent field in the outer medium. Experiments show a maximum BFS change of about 11 MHz when varying the refractive index of the external medium from 1 (air) to 1.402, and a BFS sensitivity to refractive index of about 293 MHz/RIU around 1.40.
Whispering gallery resonators for optical sensing
NASA Astrophysics Data System (ADS)
Madugani, Ramgopal; Kasumie, Sho; Yang, Yong; Ward, Jonathan; Lei, Fuchuan; Nic Chormaic, Síle
2017-04-01
In recent years, whispering gallery mode devices have extended their functionality across a number of research fields from photonics to sensing applications. Here, we will discuss environmental sensing applications, such as pressure, flow, and temperature using ultrahigh Q-factor microspheres fabricated from ultrathin optical fiber and microbubbles fabricated from pretapered glass capillary. We will discuss device fabrication and the different types of sensing that can be pursued using such systems. Finally, we will introduce the concept of using cavity ring-up spectroscopy to perform dispersive transient sensing, whereby a perturbation to the environment leads to a frequency mode shift, and dissipative transient sensing, which can lead to broadening of the mode, in a whispering gallery mode resonator.
Long-Term Stability of NIST Chip-Scale Atomic Clock Physics Packages
2007-01-01
vacuum packaging), as has been demonstrated by Lutwak et al. [3]. Nevertheless, we tried to investigate the causes for the frequency shifts of...stability,” Optics Express, 13, 1249-1253. [3] R. Lutwak , J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib...the 1st Annual Multiconference on Electronics and Photonics, 7-11 November 2006, Guanajuato, Mexico, in press. [6] R. Lutwak , P. Vlitas, M
Research Laboratory of Electronics Annual Report Number 125.
1983-01-01
Picosecond Optics 35 7.4 Ultrashort Pulse Formation 37 7.5 Ferntosecond Laser System 37 7.6 Parametric Scattering with Femtosecond Pulses 38 7.7 Near-IR...ionization of atomic hydrogen as calculated by 10 Reinhardt for a single frequency laser . To facilitate comparison, the cross section has been divided by 13...As the intensity increases, the peaks shift to the blue and become broader. Figure 3-3: Ionization profiles produced by laser intensity 10 and at five
Digital Data Acquisition for Laser Radar for Vibration Analysis
1998-06-01
and the resulting signal is a function of the relative phase of the two waves , which changes as the target vibrates. The relative phase is inversely...light crosses the medium in a direction perpendicular to the acoustic waves , a modulated optical wave front will result. A standing acoustic wave in the...mean that the frequency can be up or down-shifted, depending on the orientation of the AOM, or the direction of the traveling acoustic waves . An
Metrology Camera System Using Two-Color Interferometry
NASA Technical Reports Server (NTRS)
Dubovitsky, Serge; Liebe, Carl Christian; Peters, Robert; Lay, Oliver
2007-01-01
A metrology system that contains no moving parts simultaneously measures the bearings and ranges of multiple reflective targets in its vicinity, enabling determination of the three-dimensional (3D) positions of the targets with submillimeter accuracy. The system combines a direction-measuring metrology camera and an interferometric range-finding subsystem. Because the system is based partly on a prior instrument denoted the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor and because of its 3D capability, the system is denoted the MSTAR3D. Developed for use in measuring the shape (for the purpose of compensating for distortion) of large structures like radar antennas, it can also be used to measure positions of multiple targets in the course of conventional terrestrial surveying. A diagram of the system is shown in the figure. One of the targets is a reference target having a known, constant distance with respect to the system. The system comprises a laser for generating local and target beams at a carrier frequency; a frequency shifting unit to introduce a frequency shift offset between the target and local beams; a pair of high-speed modulators that apply modulation to the carrier frequency in the local and target beams to produce a series of modulation sidebands, the highspeed modulators having modulation frequencies of FL and FM; a target beam launcher that illuminates the targets with the target beam; optics and a multipixel photodetector; a local beam launcher that launches the local beam towards the multi-pixel photodetector; a mirror for projecting to the optics a portion of the target beam reflected from the targets, the optics being configured to focus the portion of the target beam at the multi-pixel photodetector; and a signal-processing unit connected to the photodetector. The portion of the target beam reflected from the targets produces spots on the multi-pixel photodetector corresponding to the targets, respectively, and the signal-processing unit centroids the spots to determine bearings of the targets, respectively. As the spots oscillate in intensity because they are mixed with the local laser beam that is flood illuminating the focal plane, the phase of oscillation of each spot is measured, the phase of sidebands in the oscillation of each spot being proportional to a distance to the corresponding target relative to the reference target A.
Technologies for Elastic Optical Networking Systems in Spatial, Temporal and Spectral Domains
NASA Astrophysics Data System (ADS)
Qin, Chuan
As the demand for more data capacity keeps increasing, the need for the more efficient use of the data channel becomes more imperative. The fixed wavelength grid which has been in use for more than ten years in conventional wavelength division multiplexing (WDM) is a bottleneck that prevents the capacity from upgrading towards 400 Gb/s and above. A new elastic optical networking scheme where both transceivers and interconnects become flexible break the boundary of wavelength grids and allow a more efficient use of the limited optical bands for communication. This dissertation focuses on a few enabling technologies for elastic optical networking systems. Optical arbitrary waveform generation (OAWG) uses Fourier synthesis and generates user-defined broad-band scalable optical waveforms with high-fidelity through line-by-line full field control of a coherent optical frequency comb. OAWG finds its niche in elastic optical networking since it provides no grids, and scales to user-defined bandwidth. When elastic optical networking builds various connections to use an arbitrary number of subcarriers depending on the users' bandwidth needs, the flexibility also creates non-contiguous spectral fragmentation, much like a computer hard disk generating fragments. Spectral defragmentation aims to re-optimize and re-assign the optical spectrum to achieve more efficient use of the spectrum. One of the technologies is "hop tuning" defragmentation method with a fast auto-tracking local oscillator (LO). In the demonstrated defragmentation experiment, I used a field-programmable gate array (FPGA) to monitor the wavelength change in the signal laser and tune the front and rear current that controls the wavelength of the local oscillator laser. However, the control of the front and rear current needs a complete and accurate calibration of the LO laser and may not apply to a larger number of coherent communication links. A single-tone optical frequency shifter can shift the LO laser wavelength to track the signal wavelength, thus providing a technique for authentically automatic wavelength tracking. I also explored different materials and crystal orientations to reduce the radio-frequency (RF) power consumption required to shift the wavelengths. Based on the elastic optical networking in the temporal, spectral and spatial domains, an additional degree of freedom has been investigated recently to increase the data capacity. The exploration to use the spatial domain to carry more data is termed as spatial division multiplexing (SDM). One such SDM method is orbital angular momentum(OAM), which is a group of orthogonal light beams carrying orbital angular momentum exhibiting an azimuthal phase variation. The utilization of OAM states has the potential to significantly increase the spectral efficiency and channel capacity. The thesis also includes the demonstration to establish a connection by exploiting the elasticity steering in spatial, temporal and spectral domains. Beam steering based on optical phased array (OPA) is also a potential candidate of SDM to carry information when a different linear phase will distribute light to different spatial locations. The states are intrinsically orthogonal to one another. Using 4x4 3-D waveguides written by ultrafast laser inscription (ULI), we demonstrated 2-D optical phased array (OPA) beam steering that shows steering in both vertical and horizontal directions. Enabling technologies provide future pathways for elastic optical networking and will fundamentally impact optical communication systems in many ways.
Phase shift of TE and TM modes in an optical fiber due to axial strain (exact solution)
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1992-01-01
Axial strain may be determined by monitoring the phase shift of modes of a variety of optical fiber sensors. In this paper, the exact solution of a circular optical fiber is used to calculate the phase shift of the TE and TM modes. Whenever an optical fiber is stressed, the optical path length, the index of refraction, and the propagation constants of each fiber mode change. In consequence, the modal phase term, beta(ln)z, of the fields is shifted by an amount Delta phi. In certain cases, it is desirable to control the phase shift term in order to make the fiber either more or less sensitive to certain kinds of strain. It is shown that it can be accomplished by choosing appropriate fiber parameters.
Guan, Liu; Zhao, Jiahao; Yu, Shijie; Li, Peng; You, Zheng
2010-01-01
Micro-cantilever sensors for mass detection using resonance frequency have attracted considerable attention over the last decade in the field of gas sensing. For such a sensing system, an oscillator circuit loop is conventionally used to actuate the micro-cantilever, and trace the frequency shifts. In this paper, gas experiments are introduced to investigate the mechanical resonance frequency shifts of the micro-cantilever within the circuit loop(mechanical resonance frequency, MRF) and resonating frequency shifts of the electric signal in the oscillator circuit (system working frequency, SWF). A silicon beam with a piezoelectric zinc oxide layer is employed in the experiment, and a Self-Actuating-Detecting (SAD) circuit loop is built to drive the micro-cantilever and to follow the frequency shifts. The differences between the two resonating frequencies and their shifts are discussed and analyzed, and a coefficient α related to the two frequency shifts is confirmed. PMID:22163588
NASA Astrophysics Data System (ADS)
Schaefer, Semjon; Gregory, Mark; Rosenkranz, Werner
2016-11-01
We present simulative and experimental investigations of different coherent receiver designs for high-speed optical intersatellite links. We focus on frequency offset (FO) compensation in homodyne and intradyne detection systems. The considered laser communication terminal uses an optical phase-locked loop (OPLL), which ensures stable homodyne detection. However, the hardware complexity increases with the modulation order. Therefore, we show that software-based intradyne detection is an attractive alternative for OPLL-based homodyne systems. Our approach is based on digital FO and phase noise compensation, in order to achieve a more flexible coherent detection scheme. Analytic results will further show the theoretical impact of the different detection schemes on the receiver sensitivity. Finally, we compare the schemes in terms of bit error ratio measurements and optimal receiver design.
Flexible wavelength de-multiplexer for elastic optical networking.
Zhou, Rui; Gutierrez Pascual, M Deseada; Anandarajah, Prince M; Shao, Tong; Smyth, Frank; Barry, Liam P
2016-05-15
We report an injection locked flexible wavelength de-multiplexer (de-mux) that shows 24-h frequency stability of 1 kHz for optical comb-based elastic optical networking applications. We demonstrate 50 GHz, 87.5 GHz equal spacing and 6.25G-25G-50 GHz, 75G-50G-100 GHz unequal spacing for the de-multiplexer outputs. We also implement an unequally spaced (75G-50G-100 GHz), mixed symbol rate (12.5 GBaud and 40 GBaud) and modulation format (polarization division multiplexed quadrature phase shift keying and on-off keying) wavelength division multiplexed transmission system using the de-multiplexer outputs. The results show 0.6 dB receiver sensitivity penalty, at 7% hard decision forward error correction coding limit, of the 100 km transmitted de-mux outputs when compared to comb source seeding laser back-to-back.
Bhattacharya, Rupak; Mondal, Richarj; Khatua, Pradip; Rudra, Alok; Kapon, Eli; Malzer, Stefan; Döhler, Gottfried; Pal, Bipul; Bansal, Bhavtosh
2015-01-30
We study a specific type of lifetime broadening resulting in the well-known exponential "Urbach tail" density of states within the energy gap of an insulator. After establishing the frequency and temperature dependence of the Urbach edge in GaAs quantum wells, we show that the broadening due to the zero-point optical phonons is the fundamental limit to the Urbach slope in high-quality samples. In rough analogy with Welton's heuristic interpretation of the Lamb shift, the zero-temperature contribution to the Urbach slope can be thought of as arising from the electric field of the zero-point longitudinal-optical phonons. The value of this electric field is experimentally measured to be 3 kV cm-1, in excellent agreement with the theoretical estimate.
Diode-Laser Pumped Far-Infrared Local Oscillator Based on Semiconductor Quantum Wells
NASA Technical Reports Server (NTRS)
Kolokolov, K.; Li, J.; Ning, C. Z.; Larrabee, D. C.; Tang, J.; Khodaparast, G.; Kono, J.; Sasa, S.; Inoue, M.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
The contents include: 1) Tetrahertz Field: A Technology Gap; 2) Existing THZ Sources and Shortcomings; 3) Applications of A THZ Laser; 4) Previous Optical Pumped LW Generations; 5) Optically Pumped Sb based Intersubband Generation Whys; 6) InGaAs/InP/AlAsSb QWs; 7) Raman Enhanced Optical Gain; 8) Pump Intensity Dependence of THZ Gain; 9) Pump-Probe Interaction Induced Raman Shift; 10) THZ Laser Gain in InGaAs/InP/AlAsSb QWs; 11) Diode-Laser Pumped Difference Frequency Generation (InGaAs/InP/AlAsSb QWs); 12) 6.1 Angstrom Semiconductor Quantum Wells; 13) InAs/GaSb/AlSb Nanostructures; 14) InAs/AlSb Double QWs: DFG Scheme; 15) Sb-Based Triple QWs: Laser Scheme; and 16) Exciton State Pumped THZ Generation. This paper is presented in viewgraph form.
High power pumped MID-IR wavelength devices using nonlinear frequency mixing (NFM)
NASA Technical Reports Server (NTRS)
Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)
2001-01-01
Laser diode pumped mid-IR wavelength sources include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.
High power pumped mid-IR wavelength systems using nonlinear frequency mixing (NFM) devices
NASA Technical Reports Server (NTRS)
Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)
1999-01-01
Laser diode pumped mid-IR wavelength systems include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.
NASA Technical Reports Server (NTRS)
Sanders, Steven (Inventor); Lang, Robert J. (Inventor)
2001-01-01
Laser diode pumped mid-IR wavelength sources include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polulyakh, Valeriy; Poutivski, Iouri
Laser Doppler Vibrometer and Range Meter (3D-MRV) is designed for middle range distances [1–100 meters]. 3D-MRV combines more than one laser in one device for a simultaneous real time measuring the distance and movement of the targets. The first laser has a short pulse (t∼30psec) and low energy (E∼200nJ) for distance measurement and the second one is a CW (continuous wave) single frequency laser for the velocity measurement with output power (P∼30mW). Both lasers perform on the eye-safe wavelength 1.5 μm. 3D-MRV uses the same mono-static optical transmitting and receiving channel for both lasers including an output telescope and amore » scanning angular system. 3D-MRV has an optical polarization switch to combine linear polarized laser beams from two lasers into one optical channel. The laser beams from both lasers by turns illuminate the target and the scattered laser radiation is collected by the telescope on a photo detector. The electrical signal from photo detector is used for measuring the distance to the target and its movement. For distance measurement the time of flight method is employed. For targets movement the optical heterodyne method is employed. The received CW laser radiation is mixed on a photo detector with the frequency-shifted laser radiation that is taken from CW laser and passed through an acousto-optic cell. The electrical signal from a photo detector on the difference frequency and phase has information about movement of the scattered targets. 3D-MVR may be used for the real time picturing of vibration of the extensive targets like bridges or aircrafts.« less
Characteristics of silicon-based Sagnac optical switches using magneto-optical micro-ring array
NASA Astrophysics Data System (ADS)
Ni, Shuang; Wu, Baojian; Liu, Yawen
2018-01-01
The miniaturization and integration of optical switches are necessary for photonic switching networks and the utilization of magneto optical effects is a promising candidate. We propose a Sagnac optical switch chip based on the principle of nonreciprocal phase shift (NPS) of the magneto-optical (MO) micro-ring (MOMR) array, composed of SiO2/Si/Ce:YIG/SGGG. The MO switching function is realized by controlling the drive current in the snake-like metal microstrip circuit layered on the MOMRs. The transmission characteristics of the Sagnac MO switch chip dependent on magnetization intensity, waveguide coupling coefficient and waveguide loss are simulated. By optimizing the coupling coefficients, we design an MO switch using two serial MOMRs with a circumference of 38.37 μm, and the 3dB bandwidth and the extinction ratio are respectively up to 1.6 nm and 50dB for the waveguide loss coefficient of ?. And the switching magnetization can be further reduced by increasing the number of parallel MOMRs. The frequency response of the MO Sagnac switch is analyzed as well.
NASA Astrophysics Data System (ADS)
Diamanti, Eleni; Takesue, Hiroki; Langrock, Carsten; Fejer, M. M.; Yamamoto, Yoshihisa
2006-12-01
We present a quantum key distribution experiment in which keys that were secure against all individual eavesdropping attacks allowed by quantum mechanics were distributed over 100 km of optical fiber. We implemented the differential phase shift quantum key distribution protocol and used low timing jitter 1.55 µm single-photon detectors based on frequency up-conversion in periodically poled lithium niobate waveguides and silicon avalanche photodiodes. Based on the security analysis of the protocol against general individual attacks, we generated secure keys at a practical rate of 166 bit/s over 100 km of fiber. The use of the low jitter detectors also increased the sifted key generation rate to 2 Mbit/s over 10 km of fiber.
Method and apparatus for timing of laser beams in a multiple laser beam fusion system
Eastman, Jay M.; Miller, Theodore L.
1981-01-01
The optical path lengths of a plurality of comparison laser beams directed to impinge upon a common target from different directions are compared to that of a master laser beam by using an optical heterodyne interferometric detection technique. The technique consists of frequency shifting the master laser beam and combining the master beam with a first one of the comparison laser beams to produce a time-varying heterodyne interference pattern which is detected by a photo-detector to produce an AC electrical signal indicative of the difference in the optical path lengths of the two beams which were combined. The optical path length of this first comparison laser beam is adjusted to compensate for the detected difference in the optical path lengths of the two beams. The optical path lengths of all of the comparison laser beams are made equal to the optical path length of the master laser beam by repeating the optical path length adjustment process for each of the comparison laser beams. In this manner, the comparison laser beams are synchronized or timed to arrive at the target within .+-.1.times.10.sup.-12 second of each other.
Optical Properties of Al-Doped ZnO Films in the Infrared Region and Their Absorption Applications
NASA Astrophysics Data System (ADS)
Zheng, Hua; Zhang, Rong-Jun; Li, Da-Hai; Chen, Xin; Wang, Song-You; Zheng, Yu-Xiang; Li, Meng-Jiao; Hu, Zhi-Gao; Dai, Ning; Chen, Liang-Yao
2018-05-01
The optical properties of aluminum-doped zinc oxide (AZO) thin films were calculated rapidly and accurately by point-by-point analysis from spectroscopic ellipsometry (SE) data. It was demonstrated that there were two different physical mechanisms, i.e., the interfacial effect and crystallinity, for the thickness-dependent permittivity in the visible and infrared regions. In addition, there was a blue shift for the effective plasma frequency of AZO when the thickness increased, and the effective plasma frequency did not exist for AZO ultrathin films (< 25 nm) in the infrared region, which demonstrated that AZO ultrathin films could not be used as a negative index metamaterial. Based on detailed permittivity research, we designed a near-perfect absorber at 2-5 μm by etching AZO-ZnO alternative layers. The alternative layers matched the phase of reflected light, and the void cylinder arrays extended the high absorption range. Moreover, the AZO absorber demonstrated feasibility and applicability on different substrates.
Method and apparatus for determining pressure-induced frequency-shifts in shock-compressed materials
Moore, David S.; Schmidt, Stephen C.
1985-01-01
A method and an apparatus for conducting coherent anti-Stokes Raman scattering spectroscopy in shock-compressed materials are disclosed. The apparatus includes a sample vessel having an optically transparent wall and an opposing optically reflective wall. Two coherent laser beams, a pump beam and a broadband Stokes beam, are directed through the window and focused on a portion of the sample. In the preferred embodiment, a projectile is fired from a high-pressure gas gun to impact the outside of the reflective wall, generating a planar shock wave which travels through the sample toward the window. The pump and Stokes beams result in the emission from the shock-compressed sample of a coherent anti-Stokes beam, which is emitted toward the approaching reflective wall of the vessel and reflected back through the window. The anti-Stokes beam is folded into a spectrometer for frequency analysis. The results of such analysis are useful for determining chemical and physical phenomena which occur during the shock-compression of the sample.
Experimental observation of acoustic sub-harmonic diffraction by a grating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jingfei, E-mail: benjamin.jf.liu@gatech.edu; Declercq, Nico F., E-mail: declercqdepatin@gatech.edu
2014-06-28
A diffraction grating is a spatial filter causing sound waves or optical waves to reflect in directions determined by the frequency of the waves and the period of the grating. The classical grating equation is the governing principle that has successfully described the diffraction phenomena caused by gratings. However, in this work, we show experimental observation of the so-called sub-harmonic diffraction in acoustics that cannot be explained by the classical grating equation. Experiments indicate two physical phenomena causing the effect: internal scattering effects within the corrugation causing a phase shift and nonlinear acoustic effects generating new frequencies. This discovery expandsmore » our current understanding of the diffraction phenomenon, and it also makes it possible to better design spatial diffraction spectra, such as a rainbow effect in optics with a more complicated color spectrum than a traditional rainbow. The discovery reveals also a possibly new technique to study nonlinear acoustics by exploitation of the natural spatial filtering effect inherent to an acoustic diffraction grating.« less
NASA Astrophysics Data System (ADS)
Ning, Renxia; Bao, Jie; Jiao, Zheng; Xu, Yuan
2015-11-01
Tunable absorption based on graphene metamaterial with nanodisk structure at near-infrared frequency was investigated using the finite difference time domain method. The absorption of the nanodisk structure which consisting of Au-MgF2-graphene-Au-polyimide (from bottom to top) can be tuned by the chemical potential of graphene at certain diameter of nanodisk. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. It is shown that the increased value of the chemical potential of graphene can lead to blue-shifted of the absorption peaks and the values decreased. Moreover, dual-band and triple-band absorption can be achieved for resonance frequencies at normal incidence. Compared with diameter of nanodisks, the multilayer structure shows multi-band absorber, and an omnidirectional absorption at 195.25 THz is insensitive to TE/TM polarization. This omnidirectional polarization insensitive absorption may be applied by optical communications such as optical absorber, near infrared stealth, and filter.
Method and apparatus for determining pressure-induced frequency-shifts in shock-compressed materials
Moore, D.S.; Schmidt, S.C.
1983-12-16
A method and an apparatus for conducting coherent anti-Stokes Raman scattering spectroscopy in shock-compressed materials are disclosed. The apparatus includes a sample vessel having an optically transparent wall and an opposing optically reflective wall. Two coherent laser beams, a pump beam and a broadband Stokes beam, are directed through the window and focused on a portion of the sample. In the preferred embodiment, a projectile is fired from a high-pressure gas gun to impact the outside of the reflective wall, generating a planar shock wave which travels through the sample toward the window. The pump and Stokes beams result in the emission from the shock-compressed sample of a coherent anti-Stokes beam, which is emitted toward the approaching reflective wall of the vessel and reflected back through the window. The anti-Stokes beam is folded into a spectrometer for frequency analysis. The results of such analysis are useful for determining chemical and physical phenomena which occur during the shock-compression of the sample.
Acousto-optic devices for operation with 2μm fibre lasers
NASA Astrophysics Data System (ADS)
Ward, J. D.; Stevens, G.; Shardlow, P. C.
2016-03-01
Fibre lasers operating in the 2μm region are of increasing interest for a range of applications, including laser machining and biomedical systems. The large mode area compared to 1μm fibre lasers combined with operation in an "eye-safe" region of the spectrum makes them particularly attractive. When developing fibre lasers at 1μm and 1·5μm manufacturers were able to call upon enabling technologies used by the telecoms industry, but at longer wavelengths, including 2μm, many such components are either unavailable or immature. We report on recent developments of Acousto-Optic Modulators and Tunable Filters that are specifically optimised for use with fibre systems operating at or around 2μm. AO devices are interesting due to their ability to conserve spatial-coherence, making them appropriate for use with single-mode optical fibres. We describe how the choice of interaction medium is an important consideration, particularly affecting the drive power and the polarisation behaviour of the device - the latter being an important parameter when used in a fibre system. We also describe two designs of AO Tunable Filter intended for laser tuning. Both designs have been demonstrated intracavity in 2μm fibre lasers. The first gives exceptionally narrow resolution (δλ/λ<0·1%). The second design is of a novel type of AOTF where a matched pair of AOTFs is configured to give a substantially net zero frequency-shift with little or no loss of pointing stability, any minor deviations in manufacture being self-compensated. Furthermore, small controlled frequency-shifts (up to about 10kHz) may be introduced with little or no detriment to the alignment of the system.
Single-Frequency Nd:YAG Ring Lasers with Corner Cube Prism
NASA Astrophysics Data System (ADS)
Wu, Ke-Ying; Yang, Su-Hui; Zhao, Chang-Ming; Wei, Guang-Hui
2000-10-01
We put forward another form of the non-planar ring lasers, in which the corner cube prism is the key element and the Nd:YAG crystal is used as a Porro prism to enclose the ring resonator. The phase shift due to the total internal reflections of the three differently orientated reflection planes of the corner cube prism, Faraday rotation in the Nd:YAG crystal placed in a magnetic field and the different output coupling in S and P polarization form an optical diode and enforce the single-frequency generating power. A round trip analysis of the polarization properties of the resonator is made by the evaluation of Jones matrix.
Laser heating and detection of bilayer microcantilevers for non-contact thermodynamic measurements
NASA Astrophysics Data System (ADS)
Burke, Brian G.; LaVan, David A.
2013-01-01
We describe a method for optical detection (frequency and position) and heating of bilayer microcantilevers (BMCs) to high temperatures at fast heating rates (106°C/s to 109°C/s) for non-contact thermodynamic measurements of small quantities of materials in the femtogram range. The current experimental apparatus with a 2 μm × 10 μm BMC achieves a deflection sensitivity of 0.1 Å, heating rate of 3.0 × 106°C/s, and heat sensitivity of 18 pJ in a 3 kHz bandwidth in air. By measuring the resonant frequency shift after sample loading, we achieve a mass resolution of 2.67 fg.
Beam shuttering interferometer and method
Deason, V.A.; Lassahn, G.D.
1993-07-27
A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.
Beam shuttering interferometer and method
Deason, Vance A.; Lassahn, Gordon D.
1993-01-01
A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.
Exploiting solitons in all-optical networks
NASA Astrophysics Data System (ADS)
Atieh, Ahmad K.
Two key components, the pulse generator and optical signal demultiplexer, needed for the implementation of all-optical soliton-based local area and wide area networks are investigated. The technology of generating a bright soliton pulse train from a sinusoidal pulse train produced as the beat signal of two distributed feedback laser diodes passed through a so-called comblike fiber structure is developed. A design methodology for this structure is discussed, and using this approach a soliton pulse source is constructed generating 1553 nm pulses at a repetition rate of 50 GHz, with pulses of full width at half maximum of 2.0 ps. The fiber structure used to generate the bright soliton pulse train employs the lowest average power for the beat signal ever reported in the literature, and the shortest length of fiber. The same structure (with a different design) is also used to produce a 47.6 GHz dark soliton pulse train with a full width at half maximum of 3.8 ps. This is the first reported use of this structure to generate dark solitons. It is shown that the comblike dispersion profile fiber structures may also be exploited for soliton pulse compression producing widths as short as 200 fs. Two approaches to implementation of optical signal demultiplexing are discussed. These are the nonlinear optical loop mirror (NOLM) and the separation of multilevel time division multiplexed signal pulses in the frequency domain by exploiting the relationship between the pulse's energy (i.e. pulse amplitude and width) and the Raman self-frequency shift. A modification of the NOLM scheme is investigated where feedback that adjusts the power of the control signal (by controlling the gain of an erbium-doped fiber amplifier introduced into the control signal input path) is employed to make the structure insensitive to the state of polarization of the signal and control pulses. In order to better understand the physical phenomena exploited in optical fiber soliton transmission and the above schemes, two experiments are conducted to measure the fiber nonlinear ratio (n2/Aeff) and the Raman time constant (TR) in single-mode fibers at 1550 nm. The fiber nonlinear ratio was measured for standard telecommunication fiber, dispersion shifted fiber, and dispersion compensating fiber. A value of 3.0 fs for the Raman time constant was measured and is recommended for soliton pulse propagation modeling in single-mode optical fibers.
Ground Vibration Test of the Aerostructure Test Wing 2
NASA Technical Reports Server (NTRS)
Herrera, Claudia; Moholt, Matthew
2009-01-01
The Aerostructures Test Wing (ATW) was developed to test unique concepts for flutter prediction and control synthesis. A follow-on to the successful ATW, denoted ATW2, was fabricated as a test bed to validate a variety of instrumentation in flight and to collect data for development of advanced signal processing algorithms for flutter prediction and aviation safety. As a means to estimate flutter speed, a ground vibration test (GVT) was performed. The results of a GVT are typically utilized to update structural dynamics finite element (FE) models used for flutter analysis. In this study, two GVT methodologies were explored to determine which nodes provide the best sensor locations: (i) effective independence and (ii) kinetic energy sorting algorithms. For measurement, ten and twenty sensors were used for three and 10 target test modes. A total of six accelerometer configurations measured frequencies and mode shapes. This included locations used in the original ATW GVT. Moreover, an optical measurement system was used to acquire data without mass effects added by conventional sensors. A considerable frequency shift was observed in comparing the data from the accelerometers to the optical data. The optical data provided robust data for use of the ATW2 finite element model update.
Invited Article: Terahertz microfluidic chips sensitivity-enhanced with a few arrays of meta-atoms
NASA Astrophysics Data System (ADS)
Serita, Kazunori; Matsuda, Eiki; Okada, Kosuke; Murakami, Hironaru; Kawayama, Iwao; Tonouchi, Masayoshi
2018-05-01
We present a nonlinear optical crystal (NLOC)-based terahertz (THz) microfluidic chip with a few arrays of split ring resonators (SRRs) for ultra-trace and quantitative measurements of liquid solutions. The proposed chip operates on the basis of near-field coupling between the SRRs and a local emission of point like THz source that is generated in the process of optical rectification in NLOCs on a sub-wavelength scale. The liquid solutions flowing inside the microchannel modify the resonance frequency and peak attenuation in the THz transmission spectra. In contrast to conventional bio-sensing with far/near-field THz waves, our technique can be expected to compactify the chip design as well as realize high sensitive near-field measurement of liquid solutions without any high-power optical/THz source, near-field probes, and prisms. Using this chip, we have succeeded in observing the 31.8 fmol of ion concentration in actual amount of 318 pl water solutions from the shift of the resonance frequency. The technique opens the door to microanalysis of biological samples with THz waves and accelerates development of THz lab-on-chip devices.
Spectral wings of the fiber supercontinuum and the dark-bright soliton interaction.
Milián, C; Marest, T; Kudlinski, A; Skryabin, D V
2017-05-01
We present experimental and numerical data on the supercontinuum generation in an optical fiber pumped in the normal dispersion range where the seeded dark and the spontaneously generated bright solitons contribute to the spectral broadening. We report the dispersive radiation arising from the interaction of the bright and dark solitons. This radiation consists of the two weak dispersing pulses that continuously shift their frequencies and shape the short and long wavelength wings of the supercontinuum spectrum.
Mercury Trapped Ion Frequency Standard for Ultra-Stable Reference Applications
NASA Technical Reports Server (NTRS)
Larsen, Kameron (Inventor); Burt, Eric A. (Inventor); Tjoelker, Robert L. (Inventor); Hamell, Robert L. (Inventor); Tucker, Blake C. (Inventor)
2017-01-01
An atomic clock including an ion trap assembly, a C-field coil positioned for generating a first magnetic field in the interrogation region of the ion trap assembly, a compensation coil positioned for generating a second magnetic field in the interrogation region, wherein the combination of the first and second magnetic fields produces an ion number-dependent second order Zeeman shift (Zeeman shift) in the resonance frequency that is opposite in sign to an ion number-dependent second order Doppler shift (Doppler shift) in the resonance frequency, the C-field coil has a radius selected using data indicating how changes in the radius affect an ion-number-dependent shift in the resonance frequency, such that a difference in magnitude between the Doppler shift and the Zeeman shift is controlled or reduced, and the resonance frequency, including the adjustment by the Zeeman shift, is used to obtain the frequency standard.
Methods of Laser, Non-Linear, and Fiber Optics in Studying Fundamental Problems of Astrophysics
NASA Astrophysics Data System (ADS)
Kryukov, P. G.
2018-04-01
Precise measurements of Doppler shifts of lines in stellar spectra allowing the radial velocity to be measured are an important field of astrophysical studies. A remarkable feature of the Doppler spectroscopy is the possibility to reliably measure quite small variations of the radial velocities (its acceleration, in fact) during long periods of time. Influence of a planet on a star is an example of such a variation. Under the influence of a planet rotating around a star, the latter demonstrates periodic motion manifested in the Doppler shift of the stellar spectrum. Precise measurements of this shift made it possible to indirectly discover planets outside the Solar system (exoplanets). Along with this, searching for Earth-type exoplanets within the habitable zone is an important challenge. For this purpose, accuracy of spectral measurements has to allow one to determine radial velocity variations at the level of centimeters per second during the timespans of about a year. Suchmeasurements on the periods of 10-15 years also would serve as a directmethod for determination of assumed acceleration of the Universe expansion. However, the required accuracy of spectroscopic measurements for this exceeds the possibilities of the traditional spectroscopy (an iodine cell, spectral lamps). Methods of radical improvement of possibilities of astronomical Doppler spectroscopy allowing one to attain the required measurement accuracy of Doppler shifts are considered. The issue of precise calibration can be solved through creating a system of a laser optical frequency generator of an exceptionally high accuracy and stability.
Wei, Wenjia; Heinze, Stefanie; Gerstner, Doris G; Walser, Sandra M; Twardella, Dorothee; Reiter, Christina; Weilnhammer, Veronika; Perez-Alvarez, Carmelo; Steffens, Thomas; Herr, Caroline E W
2017-01-01
Studies investigating leisure noise effect on extended high frequency hearing are insufficient and they have inconsistent results. The aim of this study was to investigate if extended high-frequency hearing threshold shift is related to audiometric notch, and if total leisure noise exposure is associated with extended high-frequency hearing threshold shift. A questionnaire of the Ohrkan cohort study was used to collect information on demographics and leisure time activities. Conventional and extended high-frequency audiometry was performed. We did logistic regression between extended high-frequency hearing threshold shift and audiometric notch as well as between total leisure noise exposure and extended high-frequency hearing threshold shift. Potential confounders (sex, school type, and firecrackers) were included. Data from 278 participants (aged 18-23 years, 53.2% female) were analyzed. Associations between hearing threshold shift at 10, 11.2, 12.5, and 14 kHz with audiometric notch were observed with a higher prevalence of threshold shift at the four frequencies, compared to the notch. However, we found no associations between total leisure noise exposure and hearing threshold shift at any extended high frequency. This exploratory analysis suggests that while extended high-frequency hearing threshold shifts are not related to total leisure noise exposure, they are strongly associated with audiometric notch. This leads us to further explore the hypothesis that extended high-frequency threshold shift might be indicative of the appearance of audiometric notch at a later time point, which can be investigated in the future follow-ups of the Ohrkan cohort.
Large, valley-exclusive Bloch-Siegert shift in monolayer WS2
NASA Astrophysics Data System (ADS)
Sie, Edbert J.; Lui, Chun Hung; Lee, Yi-Hsien; Fu, Liang; Kong, Jing; Gedik, Nuh
2017-03-01
Coherent interaction with off-resonance light can be used to shift the energy levels of atoms, molecules, and solids. The dominant effect is the optical Stark shift, but there is an additional contribution from the so-called Bloch-Siegert shift that has eluded direct and exclusive observation in solids. We observed an exceptionally large Bloch-Siegert shift in monolayer tungsten disulfide (WS2) under infrared optical driving. By controlling the light helicity, we could confine the Bloch-Siegert shift to occur only at one valley, and the optical Stark shift at the other valley, because the two effects obey opposite selection rules at different valleys. Such a large and valley-exclusive Bloch-Siegert shift allows for enhanced control over the valleytronic properties of two-dimensional materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, V.V.; Conley, R.; Anderson, E.H.
Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binarypseudo-random (BPR) gratings and arrays has been suggested and and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer. Here we describe the details of development of binarypseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electronmore » microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi{sub 2}/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML testsamples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.« less
Shift-invariant optical associative memories
NASA Astrophysics Data System (ADS)
Psaltis, Demetri; Hong, John
1987-01-01
Shift invariance in the context of associative memories is discussed. Two optical systems that exhibit shift invariance are described in detail with attention given to the analysis of storage capacities. It is shown that full shift invariance cannot be achieved with systems that employ only linear interconnections to store the associations.
Lin, Guoping; Chembo, Yanne K
2015-01-26
Optical whispering gallery mode (WGM) resonators have been very attracting platforms for versatile Kerr frequency comb generations. We report a systematic study on the material dispersion of various optical materials that are capable of supporting quality factors above 109. Using an analytical approximation of WGM resonant frequencies in disk resonators, we investigate the effect of the geometry and transverse mode order on the total group-velocity dispersion (GVD). We demonstrate that the major radii and the radial mode indices play an important role in tailoring the GVD of WGM resonators. In particular, our study shows that in WGM disk-resonators, the polar families of modes have very similar GVD, while the radial families of modes feature dispersion values that can differ by up to several orders of magnitude. The effect of these giant dispersion shifts are experimentally evidenced in Kerr comb generation with magnesium fluoride. From a more general perspective, this critical feature enables to push the zero-dispersion wavelength of fluorite crystals towards the mid-infrared (mid-IR) range, thereby allowing for efficient Kerr comb generation in that spectral range. We show that barium fluoride is the most interesting crystal in this regard, due to its zero dispersion wavelength (ZDW) at 1.93 μm and an optimal dispersion profile in the mid-IR regime. We expect our results to facilitate the design of different platforms for Kerr frequency comb generations in both telecommunication and mid-IR spectral ranges.
Jing, Wencai; Zhang, Yimo; Zhou, Ge
2002-07-15
A new structure for bit synchronization in a tera-bit/s optical interconnection network has been designed using micro-electro-mechanical system (MEMS) technique. Link multiplexing has been adopted to reduce data packet communication latency. To eliminate link set-up time, adjustable optical delay lines (AODLs) have been adopted to shift the phases of the distributed optical clock signals for bit synchronization. By changing the optical path distance of the optical clock signal, the phase of the clock signal can be shifted at a very high resolution. A phase-shift resolution of 0.1 ps can be easily achieved with 30-microm alternation of the optical path length in vacuum.
Novel sensor for color control in solid state lighting applications
NASA Astrophysics Data System (ADS)
Gourevitch, Alex; Thurston, Thomas; Singh, Rajiv; Banachowicz, Bartosz; Korobov, Vladimir; Drowley, Cliff
2010-02-01
LED wavelength and luminosity shifts due to temperature, dimming, aging, and binning uncertainty can cause large color errors in open-loop light-mixing illuminators. Multispectral color light sensors combined with feedback circuits can compensate for these LED shifts. Typical color light sensor design variables include the choice of light-sensing material, filter configuration, and read-out circuitry. Cypress Semiconductor has designed and prototyped a color sensor chip that consists of photodiode arrays connected to a I/F (Current to Frequency) converter. This architecture has been chosen to achieve high dynamic range (~100dB) and provide flexibility for tailoring sensor response. Several different optical filter configurations were evaluated in this prototype. The color-sensor chip was incorporated into an RGB light color mixing system with closed-loop optical feedback. Color mixing accuracy was determined by calculating the difference between (u',v') set point values and CIE coordinates measured with a reference colorimeter. A typical color precision ▵u'v' less than 0.0055 has been demonstrated over a wide range of colors, a temperature range of 50C, and light dimming up to 80%.
Appendix: Limits on the use of heterodyning and amplification in optical interferometry
NASA Technical Reports Server (NTRS)
Burke, Bernard F.
1992-01-01
The development of optical fibers, lasers, and mixers at optical frequencies has offered the hope that active methods can contribute to optical interferometry. Heterodyning, in particular, looks attractive, even though bandwidths are narrower than one would like at present; one might expect this limitation to lessen as technology develops. That expectation, unfortunately, is not likely to benefit interferometry at optical wavelengths because of the intervention of quantum mechanics and the second law of thermodynamics, as Burke (1985a) pointed out. So much 'second quantization' noise is generated that only at infrared frequencies, somewhere in the 10-100 micron range, can one look forward to heterodyning in any realistic sense. The reason is easily understood. Every amplifier, in the quantum limit, works by stimulated emission, even though this basic truth is not obvious at radio frequencies. This means that there must be spontaneous emission occurring within every amplifier, and Strandberg (1957) showed that this implied a limiting noise temperature, T sub N = h nu/k, for any amplifier. Burke (1969) used this result to demonstrate that, if it were not for this quantum noise, the VLBI method would allow one to tell which slit a photon went through before forming an interference pattern, thus violating basic tenants of quantum mechanics. In essence, the second quantization condition Delta N Delta phi greater than or = 1 saves one from paradox. One can state the conclusion simply: any amplifier produces approximately one photon per Hertz of bandwidth. In optical interferometry, one will certainly want bandwidth in the 10(exp 12) to 10(exp 14) Hz range, and that implies an intolerable cacophony of noise photons. Only at infrared frequencies can one tolerate the quantum noise, where the natural noise background may be high and the mixers are not as efficient as one would hope for. The crossover at present is about 10 or 20 microns, but the boundary will shift to longer wavelengths as noise performance improves. One might guess that ultimately a wavelength of about 100 microns will mark the limit of useful amplification and heterodyning in astronomical aperture synthesis interferometry.
Viscoelastic optical nonlocality of low-loss epsilon-near-zero nanofilms.
de Ceglia, Domenico; Scalora, Michael; Vincenti, Maria A; Campione, Salvatore; Kelley, Kyle; Runnerstrom, Evan L; Maria, Jon-Paul; Keeler, Gordon A; Luk, Ting S
2018-06-19
Optical nonlocalities are elusive and hardly observable in traditional plasmonic materials like noble and alkali metals. Here we report experimental observation of viscoelastic nonlocalities in the infrared optical response of epsilon-near-zero nanofilms made of low-loss doped cadmium-oxide. The nonlocality is detectable thanks to the low damping rate of conduction electrons and the virtual absence of interband transitions at infrared wavelengths. We describe the motion of conduction electrons using a hydrodynamic model for a viscoelastic fluid, and find excellent agreement with experimental results. The electrons' elasticity blue-shifts the infrared plasmonic resonance associated with the main epsilon-near-zero mode, and triggers the onset of higher-order resonances due to the excitation of electron-pressure modes above the bulk plasma frequency. We also provide evidence of the existence of nonlocal damping, i.e., viscosity, in the motion of optically-excited conduction electrons using a combination of spectroscopic ellipsometry data and predictions based on the viscoelastic hydrodynamic model.
Viscoelastic optical nonlocality of doped cadmium oxide epsilon-near-zero thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luk, Ting S.; De Ceglia, Domenico; Scalora, Michael
Optical nonlocalities are elusive and hardly observable in traditional plasmonic materials like noble and alkali metals. Here we experimentally observe and theoretically model viscoelastic nonlocalities in the infrared optical response of a doped, cadmium oxide epsilon-near-zero thin film. The nonlocality is clearly detectable thanks to the low damping rate of conduction electrons and the virtual absence of interband transitions at infrared wavelengths. We describe the motion of conduction electrons using a hydrodynamic model for a viscoelastic fluid, and find excellent agreement with experimental results. The electrons’ elasticity blue-shifts the infrared plasmonic resonance associated with the main epsilon-near-zero mode, and triggersmore » the onset of higher-order resonances due to the excitation of electron-pressure modes above the bulk plasma frequency. We also provide evidence of the existence of nonlocal damping, i.e., viscosity, in the motion of optically-excited conduction electrons using a combination of spectroscopic ellipsometry data and predictions based on the viscoelastic hydrodynamic model.« less
Layer-Dependent Ultrafast Carrier and Coherent Phonon Dynamics in Black Phosphorus.
Miao, Xianchong; Zhang, Guowei; Wang, Fanjie; Yan, Hugen; Ji, Minbiao
2018-05-09
Black phosphorus is a layered semiconducting material, demonstrating strong layer-dependent optical and electronic properties. Probing the photophysical properties on ultrafast time scales is of central importance in understanding many-body interactions and nonequilibrium quasiparticle dynamics. Here, we applied temporally, spectrally, and spatially resolved pump-probe microscopy to study the transient optical responses of mechanically exfoliated few-layer black phosphorus, with layer numbers ranging from 2 to 9. We have observed layer-dependent resonant transient absorption spectra with both photobleaching and red-shifted photoinduced absorption features, which could be attributed to band gap renormalization of higher subband transitions. Surprisingly, coherent phonon oscillations with unprecedented intensities were observed when the probe photons were in resonance with the optical transitions, which correspond to the low-frequency layer-breathing mode. Our results reveal strong Coulomb interactions and electron-phonon couplings in photoexcited black phosphorus, providing important insights into the ultrafast optical, nanomechanical, and optoelectronic properties of this novel two-dimensional material.
NASA Astrophysics Data System (ADS)
Beterov, I. I.; Hamzina, G. N.; Yakshina, E. A.; Tretyakov, D. B.; Entin, V. M.; Ryabtsev, I. I.
2018-03-01
High-fidelity entangled Bell states are of great interest in quantum physics. Entanglement of ultracold neutral atoms in two spatially separated optical dipole traps is promising for implementation of quantum computing and quantum simulation and for investigation of Bell states of material objects. We propose a method to entangle two atoms via long-range Rydberg-Rydberg interaction. Alternative to previous approaches, based on Rydberg blockade, we consider radio-frequency-assisted Stark-tuned Förster resonances in Rb Rydberg atoms. To reduce the sensitivity of the fidelity of Bell states to the fluctuations of interatomic distance, we propose to use the double adiabatic passage across the radio-frequency-assisted Stark-tuned Förster resonances, which results in a deterministic phase shift of the collective two-atom state.
NASA Astrophysics Data System (ADS)
Tosi, Daniele; Schena, Emiliano; Molardi, Carlo; Korganbayev, Sanzhar
2018-07-01
One of the current frontier of optical fiber sensors, and a unique asset of this sensing technology is the possibility to use a whole optical fiber, or optical fiber device, as a sensor. This solution allows shifting the whole sensing paradigm, from the measurement of a single physical parameter (such as temperature, strain, vibrations, pressure) to the measurement of a spatial distribution, or profiling, of a physical parameter along the fiber length. In the recent years, several technologies are achieving this task with unprecedentedly narrow spatial resolution, ranging from the sub-millimeter to the centimeter-level. In this work, we review the main fiber optic sensing technologies that achieve a narrow spatial resolution: Fiber Bragg Grating (FBG) dense arrays, chirped FBG (CFBG) sensors, optical frequency domain reflectometry (OFDR) based on either Rayleigh scattering or reflective elements, and microwave photonics (MWP). In the second part of the work, we present the impact of spatially dense fiber optic sensors in biomedical applications, where they find the main impact, presenting the key results obtained in thermo-therapies monitoring, high-resolution diagnostic, catheters monitoring, smart textiles, and other emerging applicative fields.
Structured FBG filters for 10-Gb/s DPSK signal demodulation in single ended applications
NASA Astrophysics Data System (ADS)
Marazzi, L.; Boffi, P.; Parolari, P.; Martinelli, M.; Gatti, D.; Coluccelli, N.; Longhi, S.
2011-05-01
Differential phase-shift keying (DPSK) demodulations operated by a structured fiber Bragg grating (FBG) filter and by a Mach-Zehnder delay interferometer (MZDI) in a single-ended configuration are compared. Experimental measurements at 10 Gb/s demonstrate that a specially designed FBG outperforms an integrated-optic MZDI of ˜4 dB and ˜3.5 dB in back-to-back and after 25-km propagation, respectively. Both demodulators show low polarization sensitivity and signal frequency detuning dependence, but only MZDI operating point requires a thermal control. FBG filter proves an interesting solution for DPSK demodulation in low-cost applications and, moreover, can be designed to match colorless requirements of wave division multiplexed passive optical network (WDM-PON) applications.
Savini, Giorgio; Pisano, Giampaolo; Ade, Peter A R
2006-12-10
We adopted an existing formalism and modified it to simulate, with high precision, the transmission, reflection, and absorption of multiple-plate birefringent devices as a function of frequency. To validate the model, we use it to compare the measured properties of an achromatic five-plate device with a broadband antireflection coating to expectations derived from the material optical constants and its geometric configuration. The half-wave plate presented here is observed to perform well with a phase shift variation of < 2 degrees from the ideal 180 degrees over a bandwidth of Deltav/v approximately 1 at millimeter wavelengths. This formalism represents a powerful design tool for birefringent polarization modulators and enables its optical properties to be specified with high accuracy.
Modification of the surface properties of glass-ceramic materials at low-pressure RF plasma stream
NASA Astrophysics Data System (ADS)
Tovstopyat, Alexander; Gafarov, Ildar; Galeev, Vadim; Azarova, Valentina; Golyaeva, Anastasia
2018-05-01
The surface roughness has a huge effect on the mechanical, optical, and electronic properties of materials. In modern optical systems, the specifications for the surface accuracy and smoothness of substrates are becoming even more stringent. Commercially available pre-polished glass-ceramic substrates were treated with the radio frequency (RF) inductively coupled (13.56 MHz) low-pressure plasma to clean the surface of the samples and decrease the roughness. Optical emission spectroscopy was used to investigate the plasma stream parameters and phase-shifted interferometry to investigate the surface of the specimen. In this work, the dependence of RF inductively coupled plasma on macroscopic parameters was investigated with the focus on improving the surfaces. The ion energy, sputtering rate, and homogeneity were investigated. The improvements of the glass-ceramic surfaces from 2.6 to 2.2 Å root mean square by removing the "waste" after the previous operations had been achieved.
Terahertz Focusing and Polarization Control in Large-Area Bias-Free Semiconductor Emitters
NASA Astrophysics Data System (ADS)
Carthy, Joanna L.; Gow, Paul C.; Berry, Sam A.; Mills, Ben; Apostolopoulos, Vasilis
2018-03-01
We show that, when large-area multiplex terahertz semiconductor emitters, that work on diffusion currents and Schottky potentials, are illuminated by ultrashort optical pulses they can radiate a directional electromagnetic terahertz pulse which is controlled by the angular spectrum of the incident optical beam. Using the lens that focuses the incident near-infrared pulse, we have demonstrated THz emission focusing in free space, at the same point where the optical radiation would focus. We investigated the beam waist and Gouy phase shift of the THz emission as a function of frequency. We also show that the polarization profile of the emitted THz can be tailored by the metallic patterning on the semiconductor, demonstrating radial polarization when a circular emitter design is used. Our techniques can be used for fast THz beam steering and mode control for efficiently coupling to waveguides without the need for THz lenses or parabolic mirrors.
Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits
NASA Astrophysics Data System (ADS)
Sohn, Donggyu B.; Kim, Seunghwi; Bahl, Gaurav
2018-02-01
Achieving non-reciprocal light propagation via stimuli that break time-reversal symmetry, without magneto-optics, remains a major challenge for integrated nanophotonic devices. Recently, optomechanical microsystems in which light and vibrational modes are coupled through ponderomotive forces have demonstrated strong non-reciprocal effects through a variety of techniques, but always using optical pumping. None of these approaches has demonstrated bandwidth exceeding that of the mechanical system, and all of them require optical power; these are both fundamental and practical issues. Here, we resolve both challenges by breaking time-reversal symmetry using a two-dimensional acoustic pump that simultaneously provides a non-zero overlap integral for light-sound interaction and also satisfies the necessary phase-matching. We use this technique to produce a non-reciprocal modulator (a frequency shifting isolator) by means of indirect interband scattering. We demonstrate mode conversion asymmetry up to 15 dB and efficiency as high as 17% over a bandwidth exceeding 1 GHz.
Ebad-Allah, J; Baldassarre, L; Sing, M; Claessen, R; Brabers, V A M; Kuntscher, C A
2013-01-23
The optical properties of magnetite at room temperature were studied by infrared reflectivity measurements as a function of pressure up to 8 GPa. The optical conductivity spectrum consists of a Drude term, two sharp phonon modes, a far-infrared band at around 600 cm(-1) and a pronounced mid-infrared absorption band. With increasing pressure both absorption bands shift to lower frequencies and the phonon modes harden in a linear fashion. Based on the shape of the MIR band, the temperature dependence of the dc transport data, and the occurrence of the far-infrared band in the optical conductivity spectrum, the polaronic coupling strength in magnetite at room temperature should be classified as intermediate. For the lower energy phonon mode an abrupt increase of the linear pressure coefficient occurs at around 6 GPa, which could be attributed to minor alterations of the charge distribution among the different Fe sites.
Highly localized distributed Brillouin scattering response in a photonic integrated circuit
NASA Astrophysics Data System (ADS)
Zarifi, Atiyeh; Stiller, Birgit; Merklein, Moritz; Li, Neuton; Vu, Khu; Choi, Duk-Yong; Ma, Pan; Madden, Stephen J.; Eggleton, Benjamin J.
2018-03-01
The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS) has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis to locally measure the SBS spectrum with high spatial resolution of 800 μm and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit. This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications.
Suppression of thermal transients in advanced LIGO interferometers using CO2 laser preheating
NASA Astrophysics Data System (ADS)
Jaberian Hamedan, V.; Zhao, C.; Ju, L.; Blair, C.; Blair, D. G.
2018-06-01
In high optical power interferometric gravitational wave detectors, such as Advanced LIGO, the thermal effects due to optical absorption in the mirror coatings and the slow thermal response of fused silica substrate cause time dependent changes in the mirror profile. After locking, high optical power builds up in the arm cavities. Absorption induced heating causes optical cavity transverse mode frequencies to drift over a period of hours, relative to the fundamental mode. At high optical power this can cause time dependent transient parametric instability, which can lead to interferometer disfunction. In this paper, we model the use of CO2 laser heating designed to enable the interferometer to be maintained in a thermal condition such that transient changes in the mirrors are greatly reduced. This can minimize transient parametric instability and compensate dark port power fluctuations. Modeling results are presented for both single compensation where a CO2 laser acting on one test mass per cavity, and double compensation using one CO2 laser for each test mass. Using parameters of the LIGO Hanford Observatory X-arm as an example, single compensation allows the maximum mode frequency shift to be limited to 6% of its uncompensated value. However, single compensation causes transient degradation of the contrast defect. Double compensation minimise contrast defect degradation and reduces transients to less than 1% if the CO2 laser spot is positioned within 2 mm of the cavity beam position.
Magneto-optical non-reciprocal devices in silicon photonics
Shoji, Yuya; Mizumoto, Tetsuya
2014-01-01
Silicon waveguide optical non-reciprocal devices based on the magneto-optical effect are reviewed. The non-reciprocal phase shift caused by the first-order magneto-optical effect is effective in realizing optical non-reciprocal devices in silicon waveguide platforms. In a silicon-on-insulator waveguide, the low refractive index of the buried oxide layer enhances the magneto-optical phase shift, which reduces the device footprints. A surface activated direct bonding technique was developed to integrate a magneto-optical garnet crystal on the silicon waveguides. A silicon waveguide optical isolator based on the magneto-optical phase shift was demonstrated with an optical isolation of 30 dB and insertion loss of 13 dB at a wavelength of 1548 nm. Furthermore, a four port optical circulator was demonstrated with maximum isolations of 15.3 and 9.3 dB in cross and bar ports, respectively, at a wavelength of 1531 nm. PMID:27877640
Wei, Wenjia; Heinze, Stefanie; Gerstner, Doris G.; Walser, Sandra M.; Twardella, Dorothee; Reiter, Christina; Weilnhammer, Veronika; Perez-Alvarez, Carmelo; Steffens, Thomas; Herr, Caroline E.W.
2017-01-01
Background: Studies investigating leisure noise effect on extended high frequency hearing are insufficient and they have inconsistent results. The aim of this study was to investigate if extended high-frequency hearing threshold shift is related to audiometric notch, and if total leisure noise exposure is associated with extended high-frequency hearing threshold shift. Materials and Methods: A questionnaire of the Ohrkan cohort study was used to collect information on demographics and leisure time activities. Conventional and extended high-frequency audiometry was performed. We did logistic regression between extended high-frequency hearing threshold shift and audiometric notch as well as between total leisure noise exposure and extended high-frequency hearing threshold shift. Potential confounders (sex, school type, and firecrackers) were included. Results: Data from 278 participants (aged 18–23 years, 53.2% female) were analyzed. Associations between hearing threshold shift at 10, 11.2, 12.5, and 14 kHz with audiometric notch were observed with a higher prevalence of threshold shift at the four frequencies, compared to the notch. However, we found no associations between total leisure noise exposure and hearing threshold shift at any extended high frequency. Conclusion: This exploratory analysis suggests that while extended high-frequency hearing threshold shifts are not related to total leisure noise exposure, they are strongly associated with audiometric notch. This leads us to further explore the hypothesis that extended high-frequency threshold shift might be indicative of the appearance of audiometric notch at a later time point, which can be investigated in the future follow-ups of the Ohrkan cohort. PMID:29319010
NASA Astrophysics Data System (ADS)
Rahman, Rezwanur; Taylor, P. C.; Scales, John A.
2013-08-01
Quasi-optical (QO) methods of dielectric spectroscopy are well established in the millimeter and submillimeter frequency bands. These methods exploit standing wave structure in the sample produced by a transmitted Gaussian beam to achieve accurate, low-noise measurement of the complex permittivity of the sample [e.g., J. A. Scales and M. Batzle, Appl. Phys. Lett. 88, 062906 (2006);, 10.1063/1.2172403 R. N. Clarke and C. B. Rosenberg, J. Phys. E 15, 9 (1982);, 10.1088/0022-3735/15/1/002 T. M. Hirovnen, P. Vainikainen, A. Lozowski, and A. V. Raisanen, IEEE Trans. Instrum. Meas. 45, 780 (1996)], 10.1109/19.516996. In effect the sample itself becomes a low-Q cavity. On the other hand, for optically thin samples (films of thickness much less than a wavelength) or extremely low loss samples (loss tangents below 10-5) the QO approach tends to break down due to loss of signal. In such a case it is useful to put the sample in a high-Q cavity and measure the perturbation of the cavity modes. Provided that the average mode frequency divided by the shift in mode frequency is less than the Q (quality factor) of the mode, then the perturbation should be resolvable. Cavity perturbation techniques are not new, but there are technological difficulties in working in the millimeter/submillimeter wave region. In this paper we will show applications of cavity perturbation to the dielectric characterization of semi-conductor thin films of the type used in the manufacture of photovoltaics in the 100 and 350 GHz range. We measured the complex optical constants of hot-wire chemical deposition grown 1-μm thick amorphous silicon (a-Si:H) film on borosilicate glass substrate. The real part of the refractive index and dielectric constant of the glass-substrate varies from frequency-independent to linearly frequency-dependent. We also see power-law behavior of the frequency-dependent optical conductivity from 316 GHz (9.48 cm-1) down to 104 GHz (3.12 cm-1).
Dynamic Control over the Optical Transmission of Nanoscale Dielectric Metasurface by Alkali Vapors.
Bar-David, Jonathan; Stern, Liron; Levy, Uriel
2017-02-08
In recent years, dielectric and metallic nanoscale metasurfaces are attracting growing attention and are being used for variety of applications. Resulting from the ability to introduce abrupt changes in optical properties at nanoscale dimensions, metasurfaces enable unprecedented control over light's different degrees of freedom, in an essentially two-dimensional configuration. Yet, the dynamic control over metasurface properties still remains one of the ultimate goals of this field. Here, we demonstrate the optical resonant interaction between a form birefringent dielectric metasurface made of silicon and alkali atomic vapor to control and effectively tune the optical transmission pattern initially generated by the nanoscale dielectric metasurface. By doing so, we present a controllable metasurface system, the output of which may be altered by applying magnetic fields, changing input polarization, or shifting the optical frequency. Furthermore, we also demonstrate the nonlinear behavior of our system taking advantage of the saturation effect of atomic transition. The demonstrated approach paves the way for using metasurfaces in applications where dynamic tunability of the metasurface is in need, for example, for scanning systems, tunable focusing, real time displays, and more.
Limitations to THz generation by optical rectification using tilted pulse fronts.
Ravi, Koustuban; Huang, W Ronny; Carbajo, Sergio; Wu, Xiaojun; Kärtner, Franz
2014-08-25
Terahertz (THz) generation by optical rectification (OR) using tilted-pulse-fronts is studied. A one-dimensional (1-D) model which simultaneously accounts for (i) the nonlinear coupled interaction of the THz and optical radiation, (ii) angular and material dispersion, (iii) absorption, iv) self-phase modulation and (v) stimulated Raman scattering is presented. We numerically show that the large experimentally observed cascaded frequency down-shift and spectral broadening (cascading effects) of the optical pump pulse is a direct consequence of THz generation. In the presence of this large spectral broadening, the large angular dispersion associated with tilted-pulse-fronts which is ~15-times larger than material dispersion, accentuates phase mismatch and degrades THz generation. Consequently, this cascading effect in conjunction with angular dispersion is shown to be the strongest limitation to THz generation in lithium niobate for pumping at 1 µm. It is seen that the exclusion of these cascading effects in modeling OR, leads to a significant overestimation of the optical-to-THz conversion efficiency. The results are verified with calculations based on a 2-D spatial model. The simulation results are supported by experiments.
NASA Astrophysics Data System (ADS)
Torres, Jhon James Granada; Soto, Ana María Cárdenas; González, Neil Guerrero
2016-10-01
In the context of gridless optical multicarrier systems, we propose a method for intercarrier interference (ICI) mitigation which allows bit error correction in scenarios of nonspectral flatness between the subcarriers composing the multicarrier system and sub-Nyquist carrier spacing. We propose a hybrid ICI mitigation technique which exploits the advantages of signal equalization at both levels: the physical level for any digital and analog pulse shaping, and the bit-data level and its ability to incorporate advanced correcting codes. The concatenation of these two complementary techniques consists of a nondata-aided equalizer applied to each optical subcarrier, and a hard-decision forward error correction applied to the sequence of bits distributed along the optical subcarriers regardless of prior subchannel quality assessment as performed in orthogonal frequency-division multiplexing modulations for the implementation of the bit-loading technique. The impact of the ICI is systematically evaluated in terms of bit-error-rate as a function of the carrier frequency spacing and the roll-off factor of the digital pulse-shaping filter for a simulated 3×32-Gbaud single-polarization quadrature phase shift keying Nyquist-wavelength division multiplexing system. After the ICI mitigation, a back-to-back error-free decoding was obtained for sub-Nyquist carrier spacings of 28.5 and 30 GHz and roll-off values of 0.1 and 0.4, respectively.
Detection and monitoring of surface micro-cracks by PPP-BOTDA.
Meng, Dewei; Ansari, Farhad; Feng, Xin
2015-06-01
Appearance of micrometer size surface cracks is common in structural elements such as welded connections, beams, and gusset plates in bridges. Brillouin scattering-based sensors are capable of making distributed strain measurements. Pre-pump-pulse Brillouin optical time domain analysis (PPP-BOTDA) provides a centimeter-level spatial resolution, which facilitates detection and monitoring of the cracks. In the work described here, in addition to the shift in Brillouin frequency (distributed strains), change in the Brillouin gain spectrum (BGS) width is investigated for the detection and monitoring of surface micro-cracks. A theoretical analysis was undertaken in order to verify the rationality of the proposed method. The theoretical approach involved simulation of strain within a segment of the optical fiber traversing a crack and use of the simulated strain distribution in the opto-mechanical relations in order to numerically obtain the change in the BGS. Simulations revealed that the increase in crack opening displacements is associated with increase in BGS width and decrease in its peak power. Experimental results also indicated that the increases in crack opening displacements are accompanied with increases in BGS widths. However, it will be difficult to use the decrease in BGS power peak as another indicator due to practical difficulties in establishing generalized power amplitude in all the experiments. The study indicated that, in combination with the shift in Brillouin frequency, the increase in BGS width will provide a strong tool for detection and monitoring of surface micro-crack growths.
NASA Astrophysics Data System (ADS)
İnkaya, Ersin; Günnaz, Salih; Özdemir, Namık; Dayan, Osman; Dinçer, Muharrem; Çetinkaya, Bekir
2013-02-01
The title molecule, 2,6-bis(1-benzyl-1H-benzo[d]imidazol-2-yl)pyridine (C33H25N5), was synthesized and characterized by elemental analysis, FT-IR spectroscopy, one- and two-dimensional NMR spectroscopies, and single-crystal X-ray diffraction. In addition, the molecular geometry, vibrational frequencies and gauge-independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the title compound in the ground state have been calculated using the density functional theory at the B3LYP/6-311G(d,p) level, and compared with the experimental data. The complete assignments of all vibrational modes were performed by potential energy distributions using VEDA 4 program. The geometrical parameters of the optimized structure are in good agreement with the X-ray crystallographic data, and the theoretical vibrational frequencies and GIAO 1H and 13C NMR chemical shifts show good agreement with experimental values. Besides, molecular electrostatic potential (MEP) distribution, frontier molecular orbitals (FMO) and non-linear optical properties of the title compound were investigated by theoretical calculations at the B3LYP/6-311G(d,p) level. The linear polarizabilities and first hyper polarizabilities of the molecule indicate that the compound is a good candidate of nonlinear optical materials. The thermodynamic properties of the compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures.
Effects of hydrogen atom spin exchange collisions on atomic hydrogen maser oscillation frequency
NASA Technical Reports Server (NTRS)
Crampton, S. B.
1979-01-01
Frequency shifts due to collisions between hydrogen atoms in an atomic hydrogen maser frequency standard are studied. Investigations of frequency shifts proportional to the spin exchange frequency shift cross section and those proportional to the duration of exchange collisions are discussed. The feasibility of operating a hydrogen frequency standard at liquid helium temperatures is examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fajardo, Mario E., E-mail: mario.fajardo@eglin.af.mil; Molek, Christopher D.; Vesely, Annamaria L.
2015-10-14
We report the first successful results from our novel Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus, along with unanticipated oscillatory signals due to coherent optical transients generated within pure Rb vapor cells. RALF is a high-velocity and high-acceleration extension of the well-known Doppler Global Velocimetry (DGV) technique for constructing multi-dimensional flow velocity vector maps in aerodynamics experiments [H. Komine, U.S. Patent No. 4,919,536 (24 April 1990)]. RALF exploits the frequency dependence of pressure-broadened Rb atom optical absorptions in a heated Rb/N{sub 2} gas cell to encode the Doppler shift of reflected near-resonant (λ{sub 0} ≈ 780.24 nm) laser light onto the intensitymore » transmitted by the cell. The present RALF apparatus combines fiber optic and free-space components and was built to determine suitable operating conditions and performance parameters for the Rb/N{sub 2} gas cells. It yields single-spot velocities of thin laser-driven-flyer test surfaces and incorporates a simultaneous Photonic Doppler Velocimetry (PDV) channel [Strand et al., Rev. Sci. Instrum. 77, 083108 (2006)] for validation of the RALF results, which we demonstrate here over the v = 0 to 1 km/s range. Both RALF and DGV presume the vapor cells to be simple Beer's Law optical absorbers, so we were quite surprised to observe oscillatory signals in experiments employing low pressure pure Rb vapor cells. We interpret these oscillations as interference between the Doppler shifted reflected light and the Free Induction Decay (FID) coherent optical transient produced within the pure Rb cells at the original laser frequency; this is confirmed by direct comparison of the PDV and FID signals. We attribute the different behaviors of the Rb/N{sub 2} vs. Rb gas cells to efficient dephasing of the atomic/optical coherences by Rb-N{sub 2} collisions. The minimum necessary N{sub 2} buffer gas density ≈0.3 amagat translates into a smallest useful velocity range of 0 to 2 km/s, which can readily be extended to cover the 0 to 10 km/s range, and beyond. The recognition that coherent optical transients can be produced within low pressure vapor cells during velocimetry experiments may offer new insights into some quantitative discrepancies reported in earlier DGV studies. Future plans include “line-RALF” experiments with streak camera detection, and two-dimensional surface velocity mapping using pulsed laser illumination and/or gated intensified CCD camera detection.« less
Optical Fibers Would Sense Local Strains
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1994-01-01
Proposed fiber-optic transducers measure local strains. Includes lead-in and lead-out lengths producing no changes in phase shifts, plus short sensing length in which phase shift is sensitive to strain. Phase shifts in single-mode fibers vary with strains. In alternative version, multiple portions of optical fiber sensitive to strains characteristic of specific vibrational mode of object. Same principle also used with two-mode fiber.
Topological Phase Transitions in the Photonic Spin Hall Effect
Kort-Kamp, Wilton Junior de Melo
2017-10-04
The recent synthesis of two-dimensional staggered materials opens up burgeoning opportunities to study optical spin-orbit interactions in semiconducting Dirac-like systems. In this work, we unveil topological phase transitions in the photonic spin Hall effect in the graphene family materials. It is shown that an external static electric field and a high frequency circularly polarized laser allow for active on-demand manipulation of electromagnetic beam shifts. The spin Hall effect of light presents a rich dependence with radiation degrees of freedom, and material properties, and features nontrivial topological properties. Finally, we discover that photonic Hall shifts are sensitive to spin and valleymore » properties of the charge carriers, providing an unprecedented pathway to investigate spintronics and valleytronics in staggered 2D semiconductors.« less
NASA Astrophysics Data System (ADS)
Arnold, S.
2013-03-01
The BioPhotonics community is buzzing at the prospect that ulta-small bio-nanoparticles such as Polio virus and protein can be detected label-free in their native state and sized one at a time. As the awareness that the claim of label-free single protein sensing through the frequency shift of a bare microcavity by A.M. Armani et al in Science in 2007 fades from lack of independent experimental confirmation or a viable physical mechanism to account for the magnitude of the reported wavelength shifts, a new approach has captured the community's interest. It is a product of a marriage between nano-optics and micro-photonics, and is poised to take label-free sensing to the limit.
Precision Spectroscopy of Atomic Hydrogen
NASA Astrophysics Data System (ADS)
Hänsch, Theodor W.
1994-08-01
The simple hydrogen atom permits unique confrontations between spectroscopic experiment and fundamental theory. The experimental resolution and measurement accuracy continue to improve exponentially. Recent advances include a new measurement of the Lamb shift of the 1S ground state which provides now the most stringent test of QED for an atom and reveals unexpectedly large two-loop binding corrections. The H-D isotope shift of the extremely narrow 1S-2S two-photon resonance is yielding a new value for the structure radius of the deuteron, in agreement with nuclear theory. The Rydberg constant as determined within 3 parts in 1011 by two independent groups has become the most accurately known of any fundamental constant. Advances in the art of absolute optical frequency measurements will permit still more precise experiments in the near future.
Phase-Shift Interferometry with a Digital Photocamera
ERIC Educational Resources Information Center
Vannoni, Maurizio; Trivi, Marcelo; Molesini, Giuseppe
2007-01-01
A phase-shift interferometry experiment is proposed, working on a Twyman-Green optical configuration with additional polarization components. A guideline is provided to modern phase-shift interferometry, using concepts and laboratory equipment at the level of undergraduate optics courses. (Contains 5 figures.)
A source mechanism producing HF-induced plasma lines (HFPLS) with up-shifted frequencies
NASA Technical Reports Server (NTRS)
Kuo, S. P.; Lee, M. C.
1992-01-01
Attention is given to a nonlinear scattering process analyzed as a source mechanism producing the frequency up-shifted HFPLs observed in the Arecibo ionospheric heating experiments. A physical picture is offered to explain how Langmuir waves with frequencies greater than the HF heater wave frequency can be produced in the heating experiments and be detected by incoherent radars as frequency up-shifted HFPLs. Since the considered scattering process occurs in a region near the reflection height, it explains why the frequency up-shifted HFPLs should originate from the altitude near the reflection height as observed. The theory also shows that the amount of frequency up-shift is inversely proportional to the frequency of the HF heater and increases linearly with the electron temperature. The quantitative analysis of the theory shows a good agreement with the experimental results.
Solvent-Induced Shift of Spectral Lines in Polar–Polarizable Solvents
Matyushov, Dmitry V.; Newton, Marshall D.
2017-03-09
Solvent-induced shift of optical transition lines is traditionally described by the Lippert- McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. Here we have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for themore » reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert- McRae equation equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, non-additive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. Finally, the main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.« less
Solvent-Induced Shift of Spectral Lines in Polar-Polarizable Solvents.
Matyushov, Dmitry V; Newton, Marshall D
2017-03-23
Solvent-induced shift of optical transition lines is traditionally described by the Lippert-McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. We have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived, and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for the reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert-McRae equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, nonadditive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. The main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.
Frequency Correction for MIRO Chirp Transformation Spectroscopy Spectrum
NASA Technical Reports Server (NTRS)
Lee, Seungwon
2012-01-01
This software processes the flyby spectra of the Chirp Transform Spectrometer (CTS) of the Microwave Instrument for Rosetta Orbiter (MIRO). The tool corrects the effect of Doppler shift and local-oscillator (LO) frequency shift during the flyby mode of MIRO operations. The frequency correction for CTS flyby spectra is performed and is integrated with multiple spectra into a high signal-to-noise averaged spectrum at the rest-frame RF frequency. This innovation also generates the 8 molecular line spectra by dividing continuous 4,096-channel CTS spectra. The 8 line spectra can then be readily used for scientific investigations. A spectral line that is at its rest frequency in the frame of the Earth or an asteroid will be observed with a time-varying Doppler shift as seen by MIRO. The frequency shift is toward the higher RF frequencies on approach, and toward lower RF frequencies on departure. The magnitude of the shift depends on the flyby velocity. The result of time-varying Doppler shift is that of an observed spectral line will be seen to move from channel to channel in the CTS spectrometer. The direction (higher or lower frequency) in the spectrometer depends on the spectral line frequency under consideration. In order to analyze the flyby spectra, two steps are required. First, individual spectra must be corrected for the Doppler shift so that individual spectra can be superimposed at the same rest frequency for integration purposes. Second, a correction needs to be applied to the CTS spectra to account for the LO frequency shifts that are applied to asteroid mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodson, Richard; Rioja, María J.; Molina, Sol N.
In this paper we describe a new approach for millimeter Very Long Baseline Interferometry (mm-VLBI) calibration that provides bona-fide astrometric alignment of the millimeter-wavelength images from a single source, for the measurement of frequency-dependent effects, such as “core-shifts” near the black hole of active galactic nucleus jets. We achieve our astrometric alignment by solving first for the ionospheric (dispersive) contributions using wide-band centimeter-wavelength observations. Second, we solve for the tropospheric (non-dispersive) contributions by using fast frequency-switching at the target millimeter-wavelengths. These solutions can be scaled and transferred from low frequency to the high frequency. To complete the calibration chain anmore » additional step is required to remove a residual constant phase offset on each antenna. The result is an astrometric calibration and the measurement of the core-shift between 22 and 43 GHz for the jet in BL Lacertae to be −8 ± 5, 20 ± 6 μ as, in R.A. and decl., respectively. By comparison to conventional phase referencing at centimeter-wavelengths we are able to show that this core shift at millimeter-wavelengths is significantly less than what would be predicted by extrapolating the low-frequency result, which closely followed the predictions of the Blandford and Königl conical jet model. As such it would be the first demonstration for the association of the VLBI core with a recollimation shock, normally hidden at low frequencies due to the optical depth, which could be responsible for the γ -ray production in blazar jets.« less
Optical Characterization of Tissue Phantoms Using a Silicon Integrated fdNIRS System on Chip.
Sthalekar, Chirag C; Miao, Yun; Koomson, Valencia Joyner
2017-04-01
An interface circuit with signal processing and digitizing circuits for a high frequency, large area avalanche photodiode (APD) has been integrated in a 130 nm BiCMOS chip. The system enables the absolute oximetry of tissue using frequency domain Near Infrared Spectroscopy (fdNIRS). The system measures the light absorbed and scattered by the tissue by measuring the reduction in the amplitude of signal and phase shift introduced between the light source and detector which are placed a finite distance away from each other. The received 80 MHz RF signal is downconverted to a low frequency and amplified using a heterodyning scheme. The front-end transimpedance amplifier has a 3-level programmable gain that increases the dynamic range to 60 dB. The phase difference between an identical reference channel and the optical channel is measured with a 0.5° accuracy. The detectable current range is [Formula: see text] and with a 40 A/W reponsivity using the APD, power levels as low as 500 pW can be detected. Measurements of the absorption and reduced scattering coefficients of solid tissue phantoms using this system are compared with those using a commercial instrument with differences within 30%. Measurement of a milk based liquid tissue phantom show an increase in absorption coefficient with addition of black ink. The miniaturized circuit serves as an efficiently scalable system for multi-site detection for applications in neonatal cerebral oximetry and optical mammography.
Fe induced optical limiting properties of Zn1-xFexS nanospheres
NASA Astrophysics Data System (ADS)
Vineeshkumar, T. V.; Raj, D. Rithesh; Prasanth, S.; Unnikrishnan, N. V.; Mahadevan Pillai, V. P.; Sudarasanakumar, C.
2018-02-01
Zn1-xFexS (x = 0.00, 0.01, 0.03, 0.05) nanospheres were synthesized by polyethylene glycol assisted hydrothermal method. XRD studies revealed that samples of all concentrations exhibited cubic structure with crystallite grain size 7-9 nm. TEM and SEM show the formation of nanospheres by dense aggregation of smaller particles. Increasing Zn/Fe ratio tune the band gap from 3.4 to 3.2 eV and also quenches the green luminescence. FTIR spectra reveal the presence of capping agent, intensity variation and shifting of LO and TO phonon modes confirm the presence of Fe ions. Nonlinear optical properties were measured using open and closed aperture z-scan techniques, employing frequency doubled 532 nm pumping sources which indicated reverse saturable absorption (RSA) process. The nonlinear optical coefficients are obtained by two photon absorption (2PA). Composition dependent nonlinear optical coefficients ;β;, nonlinear refractive index, third order susceptibility and optical limiting threshold were estimated. The sample shows good nonlinear absorption and enhancement of optical limiting behavior with increasing Fe volume fraction. Contribution of RSA on optical nonlinearity of Zn1-xFexS nanospheres are also investigated using three different input energies. Zn1-xFexS with comparatively small limiting threshold value is a promising candidate for optical power limiting applications.
Using Arago's spot to monitor optical axis shift in a Petzval refractor.
Bruns, Donald G
2017-03-10
Measuring the change in the optical alignment of a camera attached to a telescope is necessary to perform astrometric measurements. Camera movement when the telescope is refocused changes the plate constants, invalidating the calibration. Monitoring the shift in the optical axis requires a stable internal reference source. This is easily implemented in a Petzval refractor by adding an illuminated pinhole and a small obscuration that creates a spot of Arago on the camera. Measurements of the optical axis shift for a commercial telescope are given as an example.
NASA Astrophysics Data System (ADS)
John, Rita; Merlin, Benita
2017-11-01
This study offers an analysis of optical properties of Graphene and its 2D analogues: Silicene, Germanene, and Stanene with the help of band structures based on Density Functional Theory. The complex dielectric function and complex refractive index are calculated in both parallel (||) and perpendicular (⊥) polarization directions of the electromagnetic field. From these calculated values, optical observables like absorption, reflection, optical conductivity, and electron loss function have been studied. The optical response of all materials is shifted from ultraviolet (UV) to infrared (IR) from graphene to stanene; Graphene is more into UV region and other materials in the IR and visible regions. The intensity of absorption is maximum for stanene. The real part of dielectric function reveals the existence of plasma frequency in the || polarization direction indicating the metal to dielectric transition except for graphene. Study on refractive index clearly displays the birefringence characteristics of all materials. Reflectivity is enhanced in the mid IR and visible regions when light is polarized in the || direction. The in-depth investigations arrive at fine results which would enable the prediction of their potential applications in the optical and optoelectronic industries.
NASA Astrophysics Data System (ADS)
Isago, Ryoichi; Nakamura, Kentaro
2009-10-01
In this report, we propose an endoscopic scanner head for optical coherence tomography (OCT) using bending vibration of an optical fiber. The optical fiber is attached to the center of a cylindrical piezoelectric actuator with four outer electrodes, and the voltages with the phase shift of π/2 are applied to the electrodes to excite a circular vibration of the fiber end. The output light from the fiber end is collimated by a lens, and deflected by 90 degrees using a cone mirror. The collimated light is scanned along the circumference of the endoscope due to the vibration of the optical fiber end. We made a prototype scanner head of 7.0 mm in outer diameter, and demonstrated tomographic imaging of tubular objects. The circumferential scan is carried out at 1 kHz which is the frequency of the fiber vibration, while the radial (depth) scan is performed at 20 kHz by the wavelength sweep of the light source. Two-dimensional OCT images were obtained in a short measuring time of 5 ms (flame rate of 200 fps), and three-dimensional dynamic imaging were demonstrated.
Wave front sensing for next generation earth observation telescope
NASA Astrophysics Data System (ADS)
Delvit, J.-M.; Thiebaut, C.; Latry, C.; Blanchet, G.
2017-09-01
High resolution observations systems are highly dependent on optics quality and are usually designed to be nearly diffraction limited. Such a performance allows to set a Nyquist frequency closer to the cut off frequency, or equivalently to minimize the pupil diameter for a given ground sampling distance target. Up to now, defocus is the only aberration that is allowed to evolve slowly and that may be inflight corrected, using an open loop correction based upon ground estimation and refocusing command upload. For instance, Pleiades satellites defocus is assessed from star acquisitions and refocusing is done with a thermal actuation of the M2 mirror. Next generation systems under study at CNES should include active optics in order to allow evolving aberrations not only limited to defocus, due for instance to in orbit thermal variable conditions. Active optics relies on aberration estimations through an onboard Wave Front Sensor (WFS). One option is using a Shack Hartmann. The Shack-Hartmann wave-front sensor could be used on extended scenes (unknown landscapes). A wave-front computation algorithm should then be implemented on-board the satellite to provide the control loop wave-front error measure. In the worst case scenario, this measure should be computed before each image acquisition. A robust and fast shift estimation algorithm between Shack-Hartmann images is then needed to fulfill this last requirement. A fast gradient-based algorithm using optical flows with a Lucas-Kanade method has been studied and implemented on an electronic device developed by CNES. Measurement accuracy depends on the Wave Front Error (WFE), the landscape frequency content, the number of searched aberrations, the a priori knowledge of high order aberrations and the characteristics of the sensor. CNES has realized a full scale sensitivity analysis on the whole parameter set with our internally developed algorithm.
Intruder signature analysis from a phase-sensitive distributed fiber-optic perimeter sensor
NASA Astrophysics Data System (ADS)
Madsen, C. K.; Bae, T.; Snider, T.
2007-09-01
Using a phase-sensitive optical time-domain reflectometer developed at Texas A&M University, this paper reports on recent advances in intruder detection and classificatoin for long perimeters or borders. The system uses light pulses from a narrow linewidth CW laser with low frequency drift to interrogate an optical fiber. The backscattered light is detected, and real-time processing of the received signal is performed. Signatures from single and multiple humans on foot, nearby vehicle traffic on a road, construction-like vehicle activity, and animals have been obtained. Individual footsteps are clearly identified and the cadence readily observed. Time-frequency plots are used to compare the signatures. The detected signal contains information regarding the weight of the intruder as well. An adult weighing around 60kg may produce several π-radian shifts in the optical phase, which is detected by the system. While distances up to 20km have been monitored in previous remote field tests, we report measurements on a local test site with a total fiber length of 12km. A 3-mm diameter fiber cable is buried at a depth of 20-46 cm over a distance of 44m, with a 2km spool of fiber attached prior to the buried fiber and a 10km fiber spool connected in series after the buried section. Recent advances in data acquisition and signal processing allow us to avoid false alarms due to drifts in the laser center frequency and greatly improve the probability of detection. With these advancements, this technology is prime for low-cost perimeter monitoring of high-value and high-security installations such as nuclear power plants and military bases as well as national borders.
NASA Technical Reports Server (NTRS)
Ancellet, G. M.; Menzies, R. T.; Brothers, A. M.
1987-01-01
Longitudinal mode selection by injection has been demonstrated as a viable technique for TEA-CO2 lasers with pulse energies of a Joule or greater. Once reliable generation of single-longitudinal-mode (SLM) pulses is obtained, the characteristics and the causes of intrapulse frequency variation can be studied. These include the effect of the decaying plasma, the thermal gradient due to the energy dissipation associated with the laser mechanism itself, and the pressure shift of the center frequency of the laser transition. The use of the positive-branch unstable resonator as an efficient means of coupling a discharge with large spatial dimensions to an optical cavity mode introduces another concern: namely, what can be done to emphasize transverse mode discrimination in an unstable resonator cavity while maintaining high coupling efficiency. These issues are discussed in this paper, and relevant experimental results are included.
Advanced microwave radiometer antenna system study
NASA Technical Reports Server (NTRS)
Kummer, W. H.; Villeneuve, A. T.; Seaton, A. F.
1976-01-01
The practicability of a multi-frequency antenna for spaceborne microwave radiometers was considered in detail. The program consisted of a comparative study of various antenna systems, both mechanically and electronically scanned, in relation to specified design goals and desired system performance. The study involved several distinct tasks: definition of candidate antennas that are lightweight and that, at the specified frequencies of 5, 10, 18, 22, and 36 GHz, can provide conical scanning, dual linear polarization, and simultaneous multiple frequency operation; examination of various feed systems and phase-shifting techniques; detailed analysis of several key performance parameters such as beam efficiency, sidelobe level, and antenna beam footprint size; and conception of an antenna/feed system that could meet the design goals. Candidate antennas examined include phased arrays, lenses, and optical reflector systems. Mechanical, electrical, and performance characteristics of the various systems were tabulated for ease of comparison.
Binaural beats and frequency-coding.
Fritze, W; Köhler, W
1986-01-01
Binaural beats were studied before and during a situation of temporary threshold shift, and no frequency shift could be found. In contrast, subjective binaural frequency comparison revealed a distinct shift. These findings demonstrate the two known modes of perception.
In-fiber Fabry-Perot refractometer assisted by a long-period grating.
Mosquera, L; Sáez-Rodriguez, D; Cruz, J L; Andrés, M V
2010-02-15
We present an optical fiber refractometer based on a Fabry-Perot interferometer defined by two fiber Bragg gratings and an intracavity long-period grating that makes the light confined in the resonator interact with the surrounding medium. The external refractive index is monitored by the resonant frequencies of the Fabry-Perot interferometer, which can be measured either in transmission or in reflection. In this first experiment, wavelength shifts measured with a resolution of 0.1 pm have allowed one to establish a refractive index detection limit of 2.1x10(-5).