Sample records for optical limiting behavior

  1. Preparation, optical and non-linear optical power limiting properties of Cu, CuNi nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udayabhaskar, R.; Karthikeyan, B., E-mail: bkarthik@nitt.edu; Ollakkan, Muhamed Shafi

    2014-01-06

    Metallic nanowires show excellent Plasmon absorption which is tunable based on its aspect ratio and alloying nature. We prepared Cu and CuNi metallic nanowires and studied its optical and nonlinear optical behavior. Optical properties of nanowires are theoretically explained using Gans theory. Nonlinear optical behavior is studied using a single beam open aperture z-scan method with the use of 5 ns Nd: YAG laser. Optical limiting is found to arise from two-photon absorption.

  2. Preparation, optical and non-linear optical power limiting properties of Cu, CuNi nanowires

    NASA Astrophysics Data System (ADS)

    Udayabhaskar, R.; Ollakkan, Muhamed Shafi; Karthikeyan, B.

    2014-01-01

    Metallic nanowires show excellent Plasmon absorption which is tunable based on its aspect ratio and alloying nature. We prepared Cu and CuNi metallic nanowires and studied its optical and nonlinear optical behavior. Optical properties of nanowires are theoretically explained using Gans theory. Nonlinear optical behavior is studied using a single beam open aperture z-scan method with the use of 5 ns Nd: YAG laser. Optical limiting is found to arise from two-photon absorption.

  3. Evolution of the transfer function characterization of surface scatter phenomena

    NASA Astrophysics Data System (ADS)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    Based upon the empirical observation that BRDF measurements of smooth optical surfaces exhibited shift-invariant behavior when plotted versus    o , the original Harvey-Shack (OHS) surface scatter theory was developed as a scalar linear systems formulation in which scattered light behavior was characterized by a surface transfer function (STF) reminiscent of the optical transfer function (OTF) of modern image formation theory (1976). This shift-invariant behavior combined with the inverse power law behavior when plotting log BRDF versus log   o was quickly incorporated into several optical analysis software packages. Although there was no explicit smooth-surface approximation in the OHS theory, there was a limitation on both the incident and scattering angles. In 1988 the modified Harvey-Shack (MHS) theory removed the limitation on the angle of incidence; however, a moderate-angle scattering limitation remained. Clearly for large incident angles the BRDF was no longer shift-invariant as a different STF was now required for each incident angle. In 2011 the generalized Harvey-Shack (GHS) surface scatter theory, characterized by a two-parameter family of STFs, evolved into a practical modeling tool to calculate BRDFs from optical surface metrology data for situations that violate the smooth surface approximation inherent in the Rayleigh-Rice theory and/or the moderate-angle limitation of the Beckmann-Kirchhoff theory. And finally, the STF can be multiplied by the classical OTF to provide a complete linear systems formulation of image quality as degraded by diffraction, geometrical aberrations and surface scatter effects from residual optical fabrication errors.

  4. An Index-Mismatch Scattering Approach to Optical Limiting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Exarhos, Gregory J.; Ferris, Kim F.; Windisch, Charles F.

    A densely packed bed of alkaline earth fluoride particles percolated by a fluid medium has been investigated as a potential index-matched optical limiter in the spirit of a Christiansen-Shelyubskii filter. Marked optical limiting was observed through this transparent medium under conditions where the focused second-harmonic output of a Q-swtiched Nd: YAG laser was on the order of about 1 J/cm2. An open-aperture Z-scan technique was used to quantify the limiting behavior. In this case, the mechanism of optical limiting is thought to be a nonlinear shift in the fluid index of refraction, resulting in an index mismatch between the disparatemore » phases at high laser fluence.« less

  5. Fundamental Limits:. Developing New Tools for a Better Understanding of Second-Order Molecular Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Pérez-Moreno, Javier; Clays, Koen

    The generalized Thomas-Kuhn sum rules are used to characterize the nonlinear optical response of organic chromophores in terms of fundamental parameters that can be measured experimentally. The nonlinear optical performance of organic molecules is evaluated from the combination of hyper-Rayleigh scattering measurements and the analysis in terms of the fundamental limits. Different strategies for the enhancement of nonlinear optical behavior at the molecular and supramolecular level are evaluated and new paradigms for the design of more efficient nonlinear optical molecules are proposed and investigated.

  6. Mathematical nonlinear optics

    NASA Astrophysics Data System (ADS)

    McLaughlin, David W.

    1995-08-01

    The principal investigator, together with a post-doctoral fellows Tetsuji Ueda and Xiao Wang, several graduate students, and colleagues, has applied the modern mathematical theory of nonlinear waves to problems in nonlinear optics and to equations directly relevant to nonlinear optics. Projects included the interaction of laser light with nematic liquid crystals and chaotic, homoclinic, small dispersive, and random behavior of solutions of the nonlinear Schroedinger equation. In project 1, the extremely strong nonlinear response of a continuous wave laser beam in a nematic liquid crystal medium has produced striking undulation and filamentation of the laser beam which has been observed experimentally and explained theoretically. In project 2, qualitative properties of the nonlinear Schroedinger equation (which is the fundamental equation for nonlinear optics) have been identified and studied. These properties include optical shocking behavior in the limit of very small dispersion, chaotic and homoclinic behavior in discretizations of the partial differential equation, and random behavior.

  7. Enhanced optical limiting effect in fluorine-functionalized graphene oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Wang, Zhengping; Wang, Duanliang; Wang, Shenglai; Xu, Xinguang

    2017-09-01

    Nonlinear optical absorption of fluorine-functionalized graphene oxide (F-GO) solution was researched by the open-aperture Z-scan method using 1064 and 532 nm lasers as the excitation sources. The F-GO dispersion exhibited strong optical limiting property and the fitted results demonstrated that the optical limiting behavior was the result of a two-photon absorption process. For F-GO nanosheets, the two-photon absorption coefficients at 1064 nm excitation are 20% larger than the values at 532 nm excitation and four times larger than that of pure GO nanosheets. It indicates that the doping of fluorine can effectively improve the nonlinear optical property of GO especially in infrared waveband, and fluorine-functionalized graphene oxide is an excellent nonlinear absorption material in infrared waveband.

  8. Unexpected optical limiting properties from MoS2 nanosheets modified by a semiconductive polymer.

    PubMed

    Zhao, Min; Chang, Meng-Jie; Wang, Qiang; Zhu, Zhen-Tong; Zhai, Xin-Ping; Zirak, Mohammad; Moshfegh, Alireza Z; Song, Ying-Lin; Zhang, Hao-Li

    2015-08-07

    Direct solvent exfoliation of bulk MoS2 with the assistance of poly(3-hexylthiophene) (P3HT) produces a novel two-dimensional organic/inorganic semiconductor hetero-junction. The obtained P3HT-MoS2 nanohybrid exhibits unexpected optical limiting properties in contrast to the saturated absorption behavior of both P3HT and MoS2, showing potential in future photoelectric applications.

  9. Fe induced optical limiting properties of Zn1-xFexS nanospheres

    NASA Astrophysics Data System (ADS)

    Vineeshkumar, T. V.; Raj, D. Rithesh; Prasanth, S.; Unnikrishnan, N. V.; Mahadevan Pillai, V. P.; Sudarasanakumar, C.

    2018-02-01

    Zn1-xFexS (x = 0.00, 0.01, 0.03, 0.05) nanospheres were synthesized by polyethylene glycol assisted hydrothermal method. XRD studies revealed that samples of all concentrations exhibited cubic structure with crystallite grain size 7-9 nm. TEM and SEM show the formation of nanospheres by dense aggregation of smaller particles. Increasing Zn/Fe ratio tune the band gap from 3.4 to 3.2 eV and also quenches the green luminescence. FTIR spectra reveal the presence of capping agent, intensity variation and shifting of LO and TO phonon modes confirm the presence of Fe ions. Nonlinear optical properties were measured using open and closed aperture z-scan techniques, employing frequency doubled 532 nm pumping sources which indicated reverse saturable absorption (RSA) process. The nonlinear optical coefficients are obtained by two photon absorption (2PA). Composition dependent nonlinear optical coefficients ;β;, nonlinear refractive index, third order susceptibility and optical limiting threshold were estimated. The sample shows good nonlinear absorption and enhancement of optical limiting behavior with increasing Fe volume fraction. Contribution of RSA on optical nonlinearity of Zn1-xFexS nanospheres are also investigated using three different input energies. Zn1-xFexS with comparatively small limiting threshold value is a promising candidate for optical power limiting applications.

  10. Gold nanoparticles in a polycarbonate matrix for optical limiting against a CW laser

    NASA Astrophysics Data System (ADS)

    Frare, M. C.; Weber, V.; Signorini, R.; Bozio, R.

    2014-10-01

    The optical limiting behavior of thin polymer films doped with gold nanoparticles is investigated under continuous wave illumination at two different wavelengths: 488 and 514 nm. Closed aperture Z-scan measurements reveal a negative nonlinear refractive index of around 10-6 W cm-2, comparable with that reported for liquid samples, due to the non-local thermal refraction process. The effectiveness of the optical limiting action is assessed, for varying input powers, by measuring the transmitted irradiance in a 300 ms time interval, corresponding to the blinking time of the human eye. It is thus possible to evaluate the total fluence reaching the retina.

  11. Mechanical Design of Carbon Ion Optics

    NASA Technical Reports Server (NTRS)

    Haag, Thomas

    2005-01-01

    Carbon Ion Optics are expected to provide much longer thruster life due to their resistance to sputter erosion. There are a number of different forms of carbon that have been used for fabricating ion thruster optics. The mechanical behavior of carbon is much different than that of most metals, and poses unique design challenges. In order to minimize mission risk, the behavior of carbon must be well understood, and components designed within material limitations. Thermal expansion of the thruster structure must be compatible with thermal expansion of the carbon ion optics. Specially designed interfaces may be needed so that grid gap and aperture alignment are not adversely affected by dissimilar material properties within the thruster. The assembled thruster must be robust and tolerant of launch vibration. The following paper lists some of the characteristics of various carbon materials. Several past ion optics designs are discussed, identifying strengths and weaknesses. Electrostatics and material science are not emphasized so much as the mechanical behavior and integration of grid electrodes into an ion thruster.

  12. Optical Design of COATLI: A Diffraction-Limited Visible Imager with Fast Guiding and Active Optics Correction

    NASA Astrophysics Data System (ADS)

    Fuentes-Fernández, J.; Cuevas, S.; Watson, A. M.

    2018-04-01

    We present the optical design of COATLI, a two channel visible imager for a comercial 50 cm robotic telescope. COATLI will deliver diffraction-limited images (approximately 0.3 arcsec FWHM) in the riz bands, inside a 4.2 arcmin field, and seeing limited images (approximately 0.6 arcsec FWHM) in the B and g bands, inside a 5 arcmin field, by means of a tip-tilt mirror for fast guiding, and a deformable mirror for active optics, both located on two optically transferred pupil planes. The optical design is based on two collimator-camera systems plus a pupil transfer relay, using achromatic doublets of CaF2 and S-FTM16 and one triplet of N-BK7 and CaF2. We discuss the effciency, tolerancing, thermal behavior and ghosts. COATLI will be installed at the Observatorio Astronómico Nacional in Sierra San Pedro Mártir, Baja California, Mexico, in 2018.

  13. Microsaccadic sampling of moving image information provides Drosophila hyperacute vision

    PubMed Central

    Solanki, Narendra; Rien, Diana; Jaciuch, David; Dongre, Sidhartha Anil; Blanchard, Florence; de Polavieja, Gonzalo G; Hardie, Roger C; Takalo, Jouni

    2017-01-01

    Small fly eyes should not see fine image details. Because flies exhibit saccadic visual behaviors and their compound eyes have relatively few ommatidia (sampling points), their photoreceptors would be expected to generate blurry and coarse retinal images of the world. Here we demonstrate that Drosophila see the world far better than predicted from the classic theories. By using electrophysiological, optical and behavioral assays, we found that R1-R6 photoreceptors’ encoding capacity in time is maximized to fast high-contrast bursts, which resemble their light input during saccadic behaviors. Whilst over space, R1-R6s resolve moving objects at saccadic speeds beyond the predicted motion-blur-limit. Our results show how refractory phototransduction and rapid photomechanical photoreceptor contractions jointly sharpen retinal images of moving objects in space-time, enabling hyperacute vision, and explain how such microsaccadic information sampling exceeds the compound eyes’ optical limits. These discoveries elucidate how acuity depends upon photoreceptor function and eye movements. PMID:28870284

  14. Synthesis, spectral and third-order nonlinear optical properties of terpyridine Zn(II) complexes based on carbazole derivative with polyether group

    NASA Astrophysics Data System (ADS)

    Kong, Ming; Liu, Yanqiu; Wang, Hui; Luo, Junshan; Li, Dandan; Zhang, Shengyi; Li, Shengli; Wu, Jieying; Tian, Yupeng

    2015-01-01

    Four novel Zn(II) terpyridine complexes (ZnLCl2, ZnLBr2, ZnLI2, ZnL(SCN)2) based on carbazole derivative group were designed, synthesized and fully characterized. Their photophysical properties including absorption and one-photon excited fluorescence, two-photon absorption (TPA) and optical power limiting (OPL) were further investigated systematically and interpreted on the basis of theoretical calculations (TD-DFT). The influences of different solvents on the absorption and One-Photon Excited Fluorescence (OPEF) spectral behavior, quantum yields and the lifetime of the chromophores have been investigated in detail. The third-order nonlinear optical (NLO) properties were investigated by open/closed aperture Z-scan measurements using femtosecond pulse laser in the range from 680 to 1080 nm. These results revealed that ZnLCl2 and ZnLBr2 exhibited strong two-photon absorption and ZnLCl2 showed superior optical power limiting property.

  15. Explicit finite-difference simulation of optical integrated devices on massive parallel computers.

    PubMed

    Sterkenburgh, T; Michels, R M; Dress, P; Franke, H

    1997-02-20

    An explicit method for the numerical simulation of optical integrated circuits by means of the finite-difference time-domain (FDTD) method is presented. This method, based on an explicit solution of Maxwell's equations, is well established in microwave technology. Although the simulation areas are small, we verified the behavior of three interesting problems, especially nonparaxial problems, with typical aspects of integrated optical devices. Because numerical losses are within acceptable limits, we suggest the use of the FDTD method to achieve promising quantitative simulation results.

  16. Strategic Applications of Ultracold Atoms

    DTIC Science & Technology

    2004-05-20

    behavior is strongly constrained by the Pauli Exclusion Principle. This limits the variety of possible nonlinear atom optics effects, but also offers the...sensors”, Wolfgang Ketterle, Steven Chu, Eric Cornell and Carl Wieman (2002). 19 Participating Scientific Personnel Steven Chu Wolfgang

  17. Nonlinear optical studies on 1,3-disubstituent chalcones doped polymer films

    NASA Astrophysics Data System (ADS)

    Poornesh, P.; Shettigar, Seetharam; Umesh, G.; Manjunatha, K. B.; Prakash Kamath, K.; Sarojini, B. K.; Narayana, B.

    2009-04-01

    We report the measurements of the third-order nonlinear optical properties of recently synthesized and characterized two different 1,3-disubstituent chalcones doped PMMA films, with the prospective of reaching a good compromise between processability and high nonlinear optical properties. The measurements were done using nanosecond Z-scan at 532 nm. The Z-scan spectra reveal a large negative nonlinear refraction coefficient n2 of the order 10 -11 esu and the molecular two photon absorption cross section is 10 -46 cm 4 s/photon. The doped films exhibit good optical power limiting property under nanosecond regime and the two photon absorption (TPA) is the dominating process leading to the nonlinear behavior. The improvement in the nonlinear properties has been observed when methylenedioxy group is replaced by dimethoxy group due to increase in conjugation length. The observed nonlinear parameters of chalcone derivatives doped PMMA film is comparable with stilbazolieum derivatives, a well-known class of optical materials for photonics and biophotonics applications, which suggests that, these moieties have potential for the application of all-optical limiting and switching devices.

  18. Optical Limiting Based on Liquid-Liquid Immiscibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Exarhos, Gregory J.; Ferris, Kim F.; Samuels, William D.

    A nonionic surfactant is used to stabilize a dispersed droplet phase in a continuous liquid phase when two immiscible liquids are mixed. As both liquid phases approach the index matched condition, interfacial scattering is suppressed, and the mixture takes on the characteristics of a Christiansen-Shelyubskii filter. If, in addition, one of the liquids exhibits a substantial nonlinear optical response, then interfacial light scattering can be reversibly turned on when a laser beam incident upon the filter exceeds a critical fluence. To demonstrate this effect, an organic phase (dichloroethane) was dispersed in an aqueous phase containing sodium thiocyanate (NaSCN) using anmore » alkyl end-capped polyethylene glycol ether. The salt concentration was adjusted so that the index-matched mixture exhibited a large pass band. Marked optical limiting was observed through this transparent medium under conditions where the focused second-harmonic output of a Q-Switched Nd:YAG laser was on the order of about 50 mJ/cm2. An open-aperture Z-scan technique was used to quantify the limiting behavior. Since the thiocyanate anion is both isostructural and isoelectronic with carbon disulfide which exhibits a large optical nonlinearity, the mechanism of optical limiting is thought to be a nonlinear shift in the aqueous fluid index of refraction, resulting in an index mismatch between the disparate phases at high laser fluence. Index mismatch between the two phases leads to multiple reflections, loss of coherence, and a significant transmission decrease due to Mie scattering. The presence of many boundaries significantly amplifies the effect. Experiments also were conducted on the phase-inverted system (aqueous phase in organic liquid). Fundamental studies of such systems are used to verify theoretical predictions of the limiting effect, and aid in the design and development of improved limiters based upon this optical deflection approach.« less

  19. Electro-optically actuated liquid-lens zoom

    NASA Astrophysics Data System (ADS)

    Pütsch, O.; Loosen, P.

    2012-06-01

    Progressive miniaturization and mass market orientation denote a challenge to the design of dynamic optical systems such as zoom-lenses. Two working principles can be identified: mechanical actuation and application of active optical components. Mechanical actuation changes the focal length of a zoom-lens system by varying the axial positions of optical elements. These systems are limited in speed and often require complex coupled movements. However, well established optical design approaches can be applied. In contrast, active optical components change their optical properties by varying their physical structure by means of applying external electric signals. An example are liquidlenses which vary their curvatures to change the refractive power. Zoom-lenses benefit from active optical components in two ways: first, no moveable structures are required and second, fast response characteristics can be realized. The precommercial development of zoom-lenses demands simplified and cost-effective system designs. However the number of efficient optical designs for electro-optically actuated zoom-lenses is limited. In this paper, the systematic development of an electro-optically actuated zoom-lens will be discussed. The application of aberration polynomials enables a better comprehension of the primary monochromatic aberrations at the lens elements during a change in magnification. This enables an enhanced synthesis of the system behavior and leads to a simplified zoom-lens design with no moving elements. The change of focal length is achieved only by varying curvatures of targeted integrated electro-optically actuated lenses.

  20. Porous Silicon Gradient Refractive Index Micro-Optics.

    PubMed

    Krueger, Neil A; Holsteen, Aaron L; Kang, Seung-Kyun; Ocier, Christian R; Zhou, Weijun; Mensing, Glennys; Rogers, John A; Brongersma, Mark L; Braun, Paul V

    2016-12-14

    The emergence and growth of transformation optics over the past decade has revitalized interest in how a gradient refractive index (GRIN) can be used to control light propagation. Two-dimensional demonstrations with lithographically defined silicon (Si) have displayed the power of GRIN optics and also represent a promising opportunity for integrating compact optical elements within Si photonic integrated circuits. Here, we demonstrate the fabrication of three-dimensional Si-based GRIN micro-optics through the shape-defined formation of porous Si (PSi). Conventional microfabrication creates Si square microcolumns (SMCs) that can be electrochemically etched into PSi elements with nanoscale porosity along the shape-defined etching pathway, which imparts the geometry with structural birefringence. Free-space characterization of the transmitted intensity distribution through a homogeneously etched PSi SMC exhibits polarization splitting behavior resembling that of dielectric metasurfaces that require considerably more laborious fabrication. Coupled birefringence/GRIN effects are studied by way of PSi SMCs etched with a linear (increasing from edge to center) GRIN profile. The transmitted intensity distribution shows polarization-selective focusing behavior with one polarization focused to a diffraction-limited spot and the orthogonal polarization focused into two laterally displaced foci. Optical thickness-based analysis readily predicts the experimentally observed phenomena, which strongly match finite-element electromagnetic simulations.

  1. Interaction between Liénard and Ikeda dynamics in a nonlinear electro-optical oscillator with delayed bandpass feedback.

    PubMed

    Marquez, Bicky A; Larger, Laurent; Brunner, Daniel; Chembo, Yanne K; Jacquot, Maxime

    2016-12-01

    We report on experimental and theoretical analysis of the complex dynamics generated by a nonlinear time-delayed electro-optic bandpass oscillator. We investigate the interaction between the slow- and fast-scale dynamics of autonomous oscillations in the breather regime. We analyze in detail the coupling between the fast-scale behavior associated to a characteristic low-pass Ikeda behavior and the slow-scale dynamics associated to a Liénard limit-cycle. Finally, we show that when projected onto a two-dimensional phase space, the attractors corresponding to periodic and chaotic breathers display a spiral-like pattern, which strongly depends on the shape of the nonlinear function.

  2. Optical detection of blade flutter. [in YF-100 turbofan engine

    NASA Technical Reports Server (NTRS)

    Nieberding, W. C.; Pollack, J. L.

    1977-01-01

    The paper examines the capabilities of photoelectric scanning (PES) and stroboscopic imagery (SI) as optical monitoring tools for detection of the onset of flutter in the fan blades of an aircraft gas turbine engine. Both optical techniques give visual data in real time as well as video-tape records. PES is shown to be an ideal flutter monitor, since a single cathode ray tube displays the behavior of all the blades in a stage simultaneously. Operation of the SI system continuously while searching for a flutter condition imposes severe demands on the flash tube and affects its reliability, thus limiting its use as a flutter monitor. A better method of operation is to search for flutter with the PES and limit the use of SI to those times when the PES indicates interesting blade activity.

  3. Spatiotemporal dynamics and optical vortices in a photorefractive phase-conjugate resonator

    NASA Technical Reports Server (NTRS)

    Liu, Siuying Raymond; Indebetouw, Guy

    1992-01-01

    A truncated modal expansion approach is used to study the spatiotemporal dynamics of a phase-conjugate resonator as a function of Bragg detuning. The numerical results reveal a rich variety of behaviors. Emphasis is given to the spatial distribution of optical vortices, their trajectories and their relationship to the beam's spatial coherence. The limitations of the model are discussed and experimental results are presented for comparison with the model's predictions and assessment of its soundness.

  4. Technologies for imaging neural activity in large volumes

    PubMed Central

    Ji, Na; Freeman, Jeremy; Smith, Spencer L.

    2017-01-01

    Neural circuitry has evolved to form distributed networks that act dynamically across large volumes. Collecting data from individual planes, conventional microscopy cannot sample circuitry across large volumes at the temporal resolution relevant to neural circuit function and behaviors. Here, we review emerging technologies for rapid volume imaging of neural circuitry. We focus on two critical challenges: the inertia of optical systems, which limits image speed, and aberrations, which restrict the image volume. Optical sampling time must be long enough to ensure high-fidelity measurements, but optimized sampling strategies and point spread function engineering can facilitate rapid volume imaging of neural activity within this constraint. We also discuss new computational strategies for the processing and analysis of volume imaging data of increasing size and complexity. Together, optical and computational advances are providing a broader view of neural circuit dynamics, and help elucidate how brain regions work in concert to support behavior. PMID:27571194

  5. ZnO nanotube waveguide arrays on graphene films for local optical excitation on biological cells

    NASA Astrophysics Data System (ADS)

    Baek, Hyeonjun; Kwak, Hankyul; Song, Minho S.; Ha, Go Eun; Park, Jongwoo; Tchoe, Youngbin; Hyun, Jerome K.; Park, Hye Yoon; Cheong, Eunji; Yi, Gyu-Chul

    2017-04-01

    We report on scalable and position-controlled optical nanoprobe arrays using ZnO nanotube waveguides on graphene films for use in local optical excitation. For the waveguide fabrication, position-controlled and well-ordered ZnO nanotube arrays were grown on chemical vapor deposited graphene films with a submicron patterned mask layer and Au prepared between the interspace of nanotubes. Mammalian cells were cultured on the nanotube waveguide arrays and were locally excited by light illuminated through the nanotubes. Fluorescence and optogenetic signals could be excited through the optical nanoprobes. This method offers the ability to investigate cellular behavior with a high spatial resolution that surpasses the current limitation.

  6. Superior optical nonlinearity of an exceptional fluorescent stilbene dye

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Tingchao; Division of Physics and Applied Physics, Centre for Disruptive Photonic Technologies; Sreejith, Sivaramapanicker

    2015-03-16

    Strong multiphoton absorption and harmonic generation in organic fluorescent chromophores are, respectively, significant in many fields of research. However, most of fluorescent chromophores fall short of the full potential due to the absence of the combination of such different nonlinear upconversion behaviors. Here, we demonstrate that an exceptional fluorescent stilbene dye could exhibit efficient two- and three-photon absorption under the excitation of femtosecond pulses in solution phase. Benefiting from its biocompatibility and strong excited state absorption behavior, in vitro two-photon bioimaging and superior optical limiting have been exploited, respectively. Simultaneously, the chromophore could generate efficient three-photon excited fluorescence and third-harmonicmore » generation (THG) when dispersed into PMMA film, circumventing the limitations of classical fluorescent chromophores. Such chromophore may find application in the production of coherent light sources of higher photon energy. Moreover, the combination of three-photon excited fluorescence and THG can be used in tandem to provide complementary information in biomedical studies.« less

  7. Nonlinear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Qu, Shiliang; Gao, Yachen; Jiang, Xiongwei; Zeng, Huidan; Song, Yinglin; Qiu, Jianrong; Zhu, Congshan; Hirao, K.

    2003-09-01

    Nonlinear absorptions of Au nanoparticles precipitated silicate glasses by irradiation of a focused femtosecond pulsed laser were investigated using Z-scan technique with 8 ns pulses at 532 nm. Optical limiting (OL) effects in such glasses have been also measured. It is observed that the behaviors of transition from saturable absorption to reverse saturable absorption and the OL performances for different samples are significantly different, which depend drastically on the irradiation power density of the femtosecond laser used for the Au nanoparticles precipitation in the glass. Strong nonlinear absorptions in these samples are mainly attributed to the surface plasmon resonance (SPR) and free carrier absorptions of the precipitated Au nanoparticles.

  8. Fundamental uncertainty limit of optical flow velocimetry according to Heisenberg's uncertainty principle.

    PubMed

    Fischer, Andreas

    2016-11-01

    Optical flow velocity measurements are important for understanding the complex behavior of flows. Although a huge variety of methods exist, they are either based on a Doppler or a time-of-flight measurement principle. Doppler velocimetry evaluates the velocity-dependent frequency shift of light scattered at a moving particle, whereas time-of-flight velocimetry evaluates the traveled distance of a scattering particle per time interval. Regarding the aim of achieving a minimal measurement uncertainty, it is unclear if one principle allows to achieve lower uncertainties or if both principles can achieve equal uncertainties. For this reason, the natural, fundamental uncertainty limit according to Heisenberg's uncertainty principle is derived for Doppler and time-of-flight measurement principles, respectively. The obtained limits of the velocity uncertainty are qualitatively identical showing, e.g., a direct proportionality for the absolute value of the velocity to the power of 32 and an indirect proportionality to the square root of the scattered light power. Hence, both measurement principles have identical potentials regarding the fundamental uncertainty limit due to the quantum mechanical behavior of photons. This fundamental limit can be attained (at least asymptotically) in reality either with Doppler or time-of-flight methods, because the respective Cramér-Rao bounds for dominating photon shot noise, which is modeled as white Poissonian noise, are identical with the conclusions from Heisenberg's uncertainty principle.

  9. Investigation of third-order nonlinear and optical power limiting properties of terphenyl derivatives

    NASA Astrophysics Data System (ADS)

    Kamath, Laxminarayana; Manjunatha, K. B.; Shettigar, Seetharam; Umesh, G.; Narayana, B.; Samshuddin, S.; Sarojini, B. K.

    2014-03-01

    A series of new chalcones containing terphenyl as a core and with different functional groups has been successfully synthesized by Claisen-Schmidt condensation method in search of new nonlinear optical (NLO) materials. Molecular structural characterization for the compounds was achieved by FTIR and single crystal X-ray diffraction. The third-order NLO absorption and refraction coefficients were simultaneously determined by Z-scan technique. The measurements were performed at 532 nm with 7 ns laser pulses using a Nd:YAG laser in solution form. The Z-scan experiments reveal that the compounds exhibit strong nonlinear refraction coefficient of the order 10-11 esu and the molecular two photon absorption cross section is 10-46 cm4 s/photon. The results also show that the structures of the compounds have great impact on NLO properties. The compounds show optical power limiting behavior due to two-photon absorption (TPA).

  10. Coherent Backscattering in the Cross-Polarized Channel

    NASA Technical Reports Server (NTRS)

    Mischenko, Michael I.; Mackowski, Daniel W.

    2011-01-01

    We analyze the asymptotic behavior of the cross-polarized enhancement factor in the framework of the standard low-packing-density theory of coherent backscattering by discrete random media composed of spherically symmetric particles. It is shown that if the particles are strongly absorbing or if the smallest optical dimension of the particulate medium (i.e., the optical thickness of a plane-parallel slab or the optical diameter of a spherically symmetric volume) approaches zero, then the cross-polarized enhancement factor tends to its upper-limit value 2. This theoretical prediction is illustrated using direct computer solutions of the Maxwell equations for spherical volumes of discrete random medium.

  11. Nonlinear optical behavior of two tetrathiafulvalene derivatives in the picosecond regime

    NASA Astrophysics Data System (ADS)

    Marcovicz, Crislaine; Ferreira, Rudson C.; Santos, Arthur B. S.; Reyna, Albert S.; de Araújo, Cid B.; Malvestiti, Ivani; Falcão, Eduardo H. L.

    2018-06-01

    We report the microwave-assisted synthesis of two symmetrical tetrathiafulvalene (TTF) derivatives via trialkyl phosphite-promoted coupling of a DMIT precursor. The microwave irradiation led to an increase in the reaction yield and significantly reduced the reaction time, affording the 2,3,6,7-tetrakis(2‧-methylacetatethio)tetrathiafulvalene (4) in 74% isolated yield. Hydrolysis of 4 yielded the tetraacid 5 in excellent yield. The nonlinear optical properties of both TTF compounds at 532 nm were studied by using the Z-scan technique in the picosecond regime exhibiting large third-order refractive index and saturated nonlinear absorption with promising applications in optical limiting devices.

  12. Developing an ultrasound correlation velocimetry system

    NASA Astrophysics Data System (ADS)

    Surup, Gerrit; White, Christopher; UNH Team

    2011-11-01

    The process of building an ultrasound correlation velocimetry (UCV) system by integrating a commercial medical ultrasound with a PC running commercial PIV software is described and preliminary validation measurements in pipe flow using UCV and optical particle image velocimetry (PIV) are reported. In principles of operation, UCV is similar to the technique of PIV, differing only in the image acquisition process. The benefits of UCV are that it does not require optical access to the flow field and can be used for measuring flows of opaque fluids. While the limitations of UVC are the inherently low frame rates (limited by the imaging capabilities of the commercial ultrasound system) and low spatial resolution, which limits the range of velocities and transient flow behavior that can be measured. The support of the NSF (CBET0846359, grant monitor Horst Henning Winter) is gratefully acknowledged.

  13. Tunable emission and excited state absorption induced optical limiting in Tb2(MoO4)3: Sm3+/Eu3+ nanophosphors

    NASA Astrophysics Data System (ADS)

    Mani, Kamal P.; Sreekanth, Perumbilavil; Vimal, G.; Biju, P. R.; Unnikrishnan, N. V.; Ittyachen, M. A.; Philip, Reji; Joseph, Cyriac

    2016-12-01

    Photoluminescence properties and optical limiting behavior of pure and Sm3+/Eu3+ doped Tb2(MoO4)3 nanophosphors are investigated. The prepared nanophosphors exhibit excellent emission when excited by UV light. Color-tunable emissions in Tb2-xSmx(MoO4)3 and Tb2-xEux(MoO4)3 are realized by employing different excitation wavelengths or by controlling the doping concentration of Sm3+ and Eu3+. Luminescence quantum yield and CIE chromatic coordinates of the prepared phosphors were also presented. Optical limiting properties of the samples are investigated by open aperture Z-scan technique using 5 ns laser pulses at 532 nm. Numerical fitting of the measured Z-scan data to the relevant nonlinear transmission equations reveals that the nonlinear absorption is arising from strong excited state absorption, along with weak absorption saturation and it is found that the optical nonlinearity of Tb2(MoO4)3 increases with Sm3+/Eu3+doping. Parameters such as saturation fluence, excited state absorption cross section and ground state absorption cross section of the samples have been determined numerically, from which the figure of merit for nonlinear absorption is calculated. The excited state absorption cross-section of the samples is found to be one order of magnitude higher than that of the ground state absorption cross-section, indicating strong reverse saturable absorption. These results indicate that Sm3+/Eu3+ doped Tb2(MoO4)3 nanophosphors are efficient media for UV/n-UV pumped LEDs, and are also potential candidates for designing efficient optical limiting devices for the protection of human eyes and sensitive optical detectors from harmful laser radiation.

  14. Developing improved silica materials and devices for integrated optics applications

    NASA Astrophysics Data System (ADS)

    Maker, Ashley Julia

    Due to their favorable optical and material properties, silica-based materials and devices have found many important applications throughout science and engineering, especially in sensing, communications, lasers, and integrated optics. Often, silica's properties ultimately limit the performance of these applications. To address this limitation, this thesis investigates the development of improved silica materials and optical devices, including silica films, coatings, waveguides, resonators, lasers, and sensors. Using sol-gel chemistry and microfabrication procedures, custom silica materials and devices are developed to benefit many applications. In this thesis, it is first demonstrated how the low optical loss of silica enables fabrication of low loss integrated waveguides and toroidal resonators with ultra-high quality factors. Then, by adding various rare earth and metal dopants to sol-gel silica, hybrid silica materials and devices are made with custom properties such as high refractive index and lasing capabilities. Finally, several applications are demonstrated, including the use of high refractive index coatings to control the behavior of light, development of Raman and ultra-low threshold rare earth microlasers, and a heterodyned microlaser sensor with significantly improved sensing performance. Future applications and directions of this research are also discussed.

  15. Self-assembly of cadmium metasilicate nanowires as a broadband optical limiter

    NASA Astrophysics Data System (ADS)

    Zheng, Chan; Dai, Chongchong; Huang, Li; Li, Wei; Chen, Wenzhe

    2016-04-01

    Cadmium metasilicate nanowires (CdSiO3 NWs) have been synthesized through a facile, eco-friendly, low-cost water-ethanol mixed-solution hydrothermal route. The transmission electron microscopy measurements of as-prepared samples indicate that the CdSiO3 NWs with diameters in the range of 10-60 nm and lengths of more than 1 μm were constructed by self-assembly of 5-10-nm CdSiO3 nanoparticles with good crystallinity. The monoclinic phase formation of the sample is studied in detail by X-ray diffraction, Fourier-transform infrared spectroscopy, and thermo gravimetric analysis. The results indicate that a pure monoclinic phase of CdSiO3 can be obtained by a hydrothermal route without further calcinations and SiO4 tetrahedra were the main constituents of the CdSiO3 NWs. The nanosecond optical limiting (OL) effects were characterized by using an open-aperture (OA) Z-scan technique with 4-ns laser pulses at both 532 and 1064 nm. Theses CdSiO3 NWs displayed an excellent OL performance at 532 and 1064 nm, which was better than carbon nanotubes, a benchmark optical limiter. Input-fluence dependent scattering measurements suggested than nonlinear scattering played an important role in the observed optical limiting behavior in CdSiO3 NWs at 532 and 1064 nm. More significantly, the NLO performance in CdSiO3 NWs incorporated solid silica gel glass has been improved in comparison to those dispersed in water. The unique structure and excellent OL property render these CdSiO3 NWs competitors in the realms of optical limiting applications.

  16. Imaging of mesoscopic-scale organisms using selective-plane optoacoustic tomography.

    PubMed

    Razansky, Daniel; Vinegoni, Claudio; Ntziachristos, Vasilis

    2009-05-07

    Mesoscopic-scale living organisms (i.e. 1 mm to 1 cm sized) remain largely inaccessible by current optical imaging methods due to intensive light scattering in tissues. Therefore, imaging of many important model organisms, such as insects, fishes, worms and similarly sized biological specimens, is currently limited to embryonic or other transparent stages of development. This makes it difficult to relate embryonic cellular and molecular mechanisms to consequences in organ function and animal behavior in more advanced stages and adults. Herein, we have developed a selective-plane illumination optoacoustic tomography technique for in vivo imaging of optically diffusive organisms and tissues. The method is capable of whole-body imaging at depths from the sub-millimeter up to centimeter range with a scalable spatial resolution in the order of magnitude of a few tenths of microns. In contrast to pure optical methods, the spatial resolution here is not determined nor limited by light diffusion; therefore, such performance cannot be achieved by any other optical imaging technology developed so far. The utility of the method is demonstrated on several whole-body models and small-animal extremities.

  17. Outer planet Grand Tour missions photometry/polarimetry experiment critical components study

    NASA Technical Reports Server (NTRS)

    Pellicori, S. F.; Russell, E. E.; Watts, L. A.

    1972-01-01

    Work performed during this effort was limited to two primary areas of technical concern: optical design optimization, and sensor selection. An optical system concept was established, and various system components were evaluated through experimental test sequences. Photodetectors were investigated for the applicability in meeting OPGT requirements as constrained by the photometry/polarimetry team directives. The most promising (gallium arsenide PMT) was further experimentally tested to ascertain its behavior with respect to anticipated environmental conditions. Results of testing and summary of the preceding tradeoff study effort are presented.

  18. Opto-mechanical design of ShaneAO: the adaptive optics system for the 3-meter Shane Telescope

    NASA Astrophysics Data System (ADS)

    Ratliff, C.; Cabak, J.; Gavel, D.; Kupke, R.; Dillon, D.; Gates, E.; Deich, W.; Ward, J.; Cowley, D.; Pfister, T.; Saylor, M.

    2014-07-01

    A Cassegrain mounted adaptive optics instrument presents unique challenges for opto-mechanical design. The flexure and temperature tolerances for stability are tighter than those of seeing limited instruments. This criteria requires particular attention to material properties and mounting techniques. This paper addresses the mechanical designs developed to meet the optical functional requirements. One of the key considerations was to have gravitational deformations, which vary with telescope orientation, stay within the optical error budget, or ensure that we can compensate with a steering mirror by maintaining predictable elastic behavior. Here we look at several cases where deformation is predicted with finite element analysis and Hertzian deformation analysis and also tested. Techniques used to address thermal deformation compensation without the use of low CTE materials will also be discussed.

  19. Optical characterization limits of nanoparticle aggregates at different wavelengths using approximate Bayesian computation

    NASA Astrophysics Data System (ADS)

    Eriçok, Ozan Burak; Ertürk, Hakan

    2018-07-01

    Optical characterization of nanoparticle aggregates is a complex inverse problem that can be solved by deterministic or statistical methods. Previous studies showed that there exists a different lower size limit of reliable characterization, corresponding to the wavelength of light source used. In this study, these characterization limits are determined considering a light source wavelength range changing from ultraviolet to near infrared (266-1064 nm) relying on numerical light scattering experiments. Two different measurement ensembles are considered. Collection of well separated aggregates made up of same sized particles and that of having particle size distribution. Filippov's cluster-cluster algorithm is used to generate the aggregates and the light scattering behavior is calculated by discrete dipole approximation. A likelihood-free Approximate Bayesian Computation, relying on Adaptive Population Monte Carlo method, is used for characterization. It is found that when the wavelength range of 266-1064 nm is used, successful characterization limit changes from 21-62 nm effective radius for monodisperse and polydisperse soot aggregates.

  20. Third order nonlinear optical properties of Mn doped CeO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Mani Rahulan, K.; Angeline Little Flower, N.; Annie Sujatha, R.; Mohana Priya, P.; Gopalakrishnan, C.

    2018-05-01

    Mn doped CeO2 nanoparticles with different ratios of Mn were synthesized by hydrothermal method and their structural properties were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). XRD patterns revealed that the peaks are highly crystalline structure with no segregation of Mn. The surface morphology from SEM reveals that particle size decreases with increase in Mn concentration. Nonlinear optical studies of the samples were measured by single-beam open aperture Z-scan technique using 5 ns laser pulses at 532 nm. The measured optical nonlinearity of all the samples exhibit typical third order nonlinear optical behavior including two-photon absorption (2 PA) and reverse saturable absorption (RSA). The experimental results show that the presence of RSA in these nanoparticles makes them a promising material for the fabrication of optical limiting devices. .

  1. How to assess good candidate molecules for self-activated optical power limiting

    NASA Astrophysics Data System (ADS)

    Lundén, Hampus; Glimsdal, Eirik; Lindgren, Mikael; Lopes, Cesar

    2018-03-01

    Reverse saturable absorbers have shown great potential to attenuate laser radiation. Good candidate molecules and various particles have successfully been incorporated into different glass matrices, enabling the creation of self-activated filters against damaging laser radiation. Although the performance of such filters has been impressive, work is still ongoing to improve the performance in a wider range of wavelengths and pulse widths. The purpose of this tutorial is, from an optical engineering perspective, to give an understanding of the strengths and weaknesses of this class of smart materials, how relevant photophysical parameters are measured and influence system performance and comment on the pitfalls in experimental evaluation of materials. A numerical population model in combination with simple physical formulas is used to demonstrate system behavior from a performance standpoint. Geometrical reasoning shows the advantage of reverse saturable absorption over nonlinear scattering due to a fraction of scattered light being recollected by imaging system optics. The numerical population model illustrates the importance of the optical power limiting performance during the leading edge of a nanosecond pulse, which is most strongly influenced by changes in the two-photon absorption cross section and the triplet linear absorption cross section for a modeled Pt-acetylide. This tutorial not only targets optical engineers evaluating reverse saturable absorbing materials but also aims to assist researchers with a chemistry background working on optical power limiting materials. We also present photophysical data for a series of coumarins that can be useful for the determination of quantum yields and two-photon cross sections and show examples of characterization of molecules with excited triplet states.

  2. Optical limiting of high-repetition-rate laser pulses by carbon nanofibers suspended in polydimethylsiloxane

    NASA Astrophysics Data System (ADS)

    Videnichev, Dmitry A.; Belousova, Inna M.

    2014-06-01

    The optical limiting (OL) behavior of carbon nanofibers (CNFs) in polydimethylsiloxane (PDMS) was studied and compared with that of CNFs in water, and polyhedral multi-shell fullerene-like nanostructures (PMFNs) also in water. It was shown that when switching from single-shot to pulse-periodic regime of laser pulses (10 Hz), the CNF in PDMS suspension retains its OL characteristics, while in the aqueous suspensions, considerable degradation of OL characteristics is observed. It was also observed that a powerful laser pulse causes the CNF in PDMS suspension to become opaque for at least three seconds, while such a pulse brings out a bleaching effect in aqueous PMFN and CNF suspensions. The processes of OL degradation in aqueous suspensions, bleaching and darkening of the studied materials are discussed herein.

  3. Speckle Noise in Highly Corrected Coronagraphs

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.

    2004-01-01

    Speckles in a highly corrected adaptive optic imaging system have been studied through numerical simulations and through analytic and algebraic investigations of the Fourier-optical expressions connecting pupil plane and focal plane, which simplify at high Strehl ratio. Significant insights into the behavior of speckles, and the speckle noise caused when they vary over time, have thus been gained. Such speckle noise is expected to set key limits on the sensitivity of searches for companions around other stars, including extrasolar planets. In most cases, it is advantageous to use a coronagraph of some kind to suppress the bright primary star and so enhance the dynamic range of companion searches. In the current paper, I investigate speckle behavior and its impact on speckle noise in some common coronagraphic architectures, including the classical Lyot coronagraph and the new four quadrant phase mask (FQPM) concept.

  4. Continuous variable quantum optical simulation for time evolution of quantum harmonic oscillators

    PubMed Central

    Deng, Xiaowei; Hao, Shuhong; Guo, Hong; Xie, Changde; Su, Xiaolong

    2016-01-01

    Quantum simulation enables one to mimic the evolution of other quantum systems using a controllable quantum system. Quantum harmonic oscillator (QHO) is one of the most important model systems in quantum physics. To observe the transient dynamics of a QHO with high oscillation frequency directly is difficult. We experimentally simulate the transient behaviors of QHO in an open system during time evolution with an optical mode and a logical operation system of continuous variable quantum computation. The time evolution of an atomic ensemble in the collective spontaneous emission is analytically simulated by mapping the atomic ensemble onto a QHO. The measured fidelity, which is used for quantifying the quality of the simulation, is higher than its classical limit. The presented simulation scheme provides a new tool for studying the dynamic behaviors of QHO. PMID:26961962

  5. Optical forces, torques, and force densities calculated at a microscopic level using a self-consistent hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Ding, Kun; Chan, C. T.

    2018-04-01

    The calculation of optical force density distribution inside a material is challenging at the nanoscale, where quantum and nonlocal effects emerge and macroscopic parameters such as permittivity become ill-defined. We demonstrate that the microscopic optical force density of nanoplasmonic systems can be defined and calculated using the microscopic fields generated using a self-consistent hydrodynamics model that includes quantum, nonlocal, and retardation effects. We demonstrate this technique by calculating the microscopic optical force density distributions and the optical binding force induced by external light on nanoplasmonic dimers. This approach works even in the limit when the nanoparticles are close enough to each other so that electron tunneling occurs, a regime in which classical electromagnetic approach fails completely. We discover that an uneven distribution of optical force density can lead to a light-induced spinning torque acting on individual particles. The hydrodynamics method offers us an accurate and efficient approach to study optomechanical behavior for plasmonic systems at the nanoscale.

  6. Enumerating virus-like particles in an optically concentrated suspension by fluorescence correlation spectroscopy.

    PubMed

    Hu, Yi; Cheng, Xuanhong; Daniel Ou-Yang, H

    2013-01-01

    Fluorescence correlation spectroscopy (FCS) is one of the most sensitive methods for enumerating low concentration nanoparticles in a suspension. However, biological nanoparticles such as viruses often exist at a concentration much lower than the FCS detection limit. While optically generated trapping potentials are shown to effectively enhance the concentration of nanoparticles, feasibility of FCS for enumerating field-enriched nanoparticles requires understanding of the nanoparticle behavior in the external field. This paper reports an experimental study that combines optical trapping and FCS to examine existing theoretical predictions of particle concentration. Colloidal suspensions of polystyrene (PS) nanospheres and HIV-1 virus-like particles are used as model systems. Optical trapping energies and statistical analysis are used to discuss the applicability of FCS for enumerating nanoparticles in a potential well produced by a force field.

  7. On the universality of the two-point galaxy correlation function

    NASA Technical Reports Server (NTRS)

    Davis, Marc; Meiksin, Avery; Strauss, Michael A.; Da Costa, L. Nicolaci; Yahil, Amos

    1988-01-01

    The behavior of the two-point galaxy correlation function in volume-limited subsamples of three complete redshift surveys is investigated. The correlation length is shown to scale approximately as the square root of the distance limit in both the CfA and Southern Sky catalogs, but to be independent of the distance limit in the IRAS sample. This effect is found to be due to factors such as the large positive density fluctuations in the foreground of the optically selected catalogs biasing the correlation length estimate downward, and the brightest galaxies appearing to be more strongly clustered than the mean.

  8. Miniaturized video-microscopy system for near real-time water quality biomonitoring using microfluidic chip-based devices

    NASA Astrophysics Data System (ADS)

    Huang, Yushi; Nigam, Abhimanyu; Campana, Olivia; Nugegoda, Dayanthi; Wlodkowic, Donald

    2016-12-01

    Biomonitoring studies apply biological responses of sensitive biomonitor organisms to rapidly detect adverse environmental changes such as presence of physic-chemical stressors and toxins. Behavioral responses such as changes in swimming patterns of small aquatic invertebrates are emerging as sensitive endpoints to monitor aquatic pollution. Although behavioral responses do not deliver information on an exact type or the intensity of toxicants present in water samples, they could provide orders of magnitude higher sensitivity than lethal endpoints such as mortality. Despite the advantages of behavioral biotests performed on sentinel organisms, their wider application in real-time and near realtime biomonitoring of water quality is limited by the lack of dedicated and automated video-microscopy systems. Current behavioral analysis systems rely mostly on static test conditions and manual procedures that are time-consuming and labor intensive. Tracking and precise quantification of locomotory activities of multiple small aquatic organisms requires high-resolution optical data recording. This is often problematic due to small size of fast moving animals and limitations of culture vessels that are not specially designed for video data recording. In this work, we capitalized on recent advances in miniaturized CMOS cameras, high resolution optics and biomicrofluidic technologies to develop near real-time water quality sensing using locomotory activities of small marine invertebrates. We present proof-of-concept integration of high-resolution time-resolved video recording system and high-throughput miniaturized perfusion biomicrofluidic platform for optical tracking of nauplii of marine crustacean Artemia franciscana. Preliminary data demonstrate that Artemia sp. exhibits rapid alterations of swimming patterns in response to toxicant exposure. The combination of video-microscopy and biomicrofluidic platform facilitated straightforward recording of fast moving objects. We envisage that prospectively such system can be scaled up to perform high-throughput water quality sensing in a robotic biomonitoring facility.

  9. Nonlinear plasmonic imaging techniques and their biological applications

    NASA Astrophysics Data System (ADS)

    Deka, Gitanjal; Sun, Chi-Kuang; Fujita, Katsumasa; Chu, Shi-Wei

    2017-01-01

    Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics), as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.

  10. Microsolvation of phthalocyanine molecules in superfluid helium nanodroplets as revealed by the optical line shape at electronic origin.

    PubMed

    Fuchs, S; Fischer, J; Slenczka, A; Karra, M; Friedrich, B

    2018-04-14

    We investigate the solvent shift of phthalocyanine (Pc) doped into superfluid helium droplets and probed by optical spectroscopy at the electronic origin. Our present work complements extant studies and provides results that in part contradict previous conclusions. In particular, the solvent shift does not increase monotonously with droplet radius all the way up to the bulk limit, but exhibits just the reverse dependence instead. Moreover, a substructure is resolved, whose characteristics depend on the droplet size. This behavior can hardly be reconciled with that of a freely rotating Pc-helium complex.

  11. Mechanical and optical behavior of a tunable liquid lens using a variable cross section membrane: modeling results

    NASA Astrophysics Data System (ADS)

    Flores-Bustamante, Mario C.; Rosete-Aguilar, Martha; Calixto, Sergio

    2016-03-01

    A lens containing a liquid medium and having at least one elastic membrane as one of its components is known as an elastic membrane lens (EML). The elastic membrane may have a constant or variable thickness. The optical properties of the EML change by modifying the profile of its elastic membrane(s). The EML formed of elastic constant thickness membrane(s) have been studied extensively. However, EML information using elastic membrane of variable thickness is limited. In this work, we present simulation results of the mechanical and optical behavior of two EML with variable thickness membranes (convex-plane membranes). The profile of its surfaces were modified by liquid medium volume increases. The model of the convex-plane membranes, as well as the simulation of its mechanical behavior, were performed using Solidworks® software; and surface's points of the deformed elastic lens were obtained. Experimental stress-strain data, obtained from a silicone rubber simple tensile test, according to ASTM D638 norm, were used in the simulation. Algebraic expressions, (Schwarzschild formula, up to four deformation coefficients, in a cylindrical coordinate system (r, z)), of the meridional profiles of the first and second surfaces of the deformed convex-plane membranes, were obtained using the results from Solidworks® and a program in the software Mathematica®. The optical performance of the EML was obtained by simulation using the software OSLO® and the algebraic expressions obtained in Mathematica®.

  12. Reduced ventral cingulum integrity and increased behavioral problems in children with isolated optic nerve hypoplasia and mild to moderate or no visual impairment.

    PubMed

    Webb, Emma A; O'Reilly, Michelle A; Clayden, Jonathan D; Seunarine, Kiran K; Dale, Naomi; Salt, Alison; Clark, Chris A; Dattani, Mehul T

    2013-01-01

    To assess the prevalence of behavioral problems in children with isolated optic nerve hypoplasia, mild to moderate or no visual impairment, and no developmental delay. To identify white matter abnormalities that may provide neural correlates for any behavioral abnormalities identified. Eleven children with isolated optic nerve hypoplasia (mean age 5.9 years) underwent behavioral assessment and brain diffusion tensor imaging, Twenty four controls with isolated short stature (mean age 6.4 years) underwent MRI, 11 of whom also completed behavioral assessments. Fractional anisotropy images were processed using tract-based spatial statistics. Partial correlation between ventral cingulum, corpus callosum and optic radiation fractional anisotropy, and child behavioral checklist scores (controlled for age at scan and sex) was performed. Children with optic nerve hypoplasia had significantly higher scores on the child behavioral checklist (p<0.05) than controls (4 had scores in the clinically significant range). Ventral cingulum, corpus callosum and optic radiation fractional anisotropy were significantly reduced in children with optic nerve hypoplasia. Right ventral cingulum fractional anisotropy correlated with total and externalising child behavioral checklist scores (r = -0.52, p<0.02, r = -0.46, p<0.049 respectively). There were no significant correlations between left ventral cingulum, corpus callosum or optic radiation fractional anisotropy and behavioral scores. Our findings suggest that children with optic nerve hypoplasia and mild to moderate or no visual impairment require behavioral assessment to determine the presence of clinically significant behavioral problems. Reduced structural integrity of the ventral cingulum correlated with behavioral scores, suggesting that these white matter abnormalities may be clinically significant. The presence of reduced fractional anisotropy in the optic radiations of children with mild to moderate or no visual impairment raises questions as to the pathogenesis of these changes which will need to be addressed by future studies.

  13. Optical and electrical properties of P3HT:graphene composite based devices

    NASA Astrophysics Data System (ADS)

    Yadav, Anjali; Verma, Ajay Singh; Gupta, Saral Kumar; Negi, Chandra Mohan Singh

    2018-04-01

    The polymer-carbon derivate composites are well known for their uses and performances in the photovoltaic and optoelectronic industries. In this paper, we synthesis P3HT:graphene composites and discuss their optical and electrical properties. The composites have been prepared by using spin-coating technique onto the glass substrates. It has been found that the incorporation of graphene reduces absorption intensity. However, absorption peak remain unchanged with addition of graphene. The surface morphology studies display homogeneous distribution of graphene with P3HT. Raman studies suggest that chemical structure was not affected by graphene doping. Devices having the structure of glass/ITO/P3HT/ Al and glass ITO/P3HT:graphene/Al were then fabricated. I-V behavior of the fabricated devices was found to be similar to the Schottky diode. ITO/P3HT:graphene/Al structure shows tremendous increase in current values as compared to the ITO/P3HT/Al. Furthermore, charge transport mechanism were studied by analyzing the double logarithmic J-V characteristics curve, which indicates that the current at low voltage follows Ohmic behavior, trap-charge limited conduction (TCLC) mechanism at an intermediate voltage and space charge limited conduction (SCLC) mechanism at sufficiently high voltages.

  14. Determination of SBS induced damage limits in large fused silica optics for intense, time varying laser pulses

    NASA Astrophysics Data System (ADS)

    Kyrazis, D. T.; Weiland, T. L.

    1990-10-01

    The propagation of intense 3rd harmonic light (0.351 micron) through large optical components of the Nova laser results in fracture damage of the center of the component. This damage is caused by an intense acoustical wave brought to focus in the center by reflecting off the circular edge of the optic. The source of this wave is light generated by transverse stimulated Brillouin scattering (SBS). By taking into account the transient gain characteristics of the SBS, the pulse energy can be correctly predicted that would cause damage for any time variation in intensity in the pump beam, and predict the relative intensity of the Brillouin light. The model is based on the transient behavior of a first order linear system.

  15. Log-amplitude variance and wave structure function: A new perspective for Gaussian beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, W.B.; Ricklin, J.C.; Andrews, L.C.

    1993-04-01

    Two naturally linked pairs of nondimensional parameters are identified such that either pair, together with wavelength and path length, completely specifies the diffractive propagation environment for a lowest-order paraxial Gaussian beam. Both parameter pairs are intuitive, and within the context of locally homogeneous and isotropic turbulence they reflect the long-recognized importance of the Fresnel zone size in the behavior of Rytov propagation statistics. These parameter pairs, called, respectively, the transmitter and receiver parameters, also provide a change in perspective in the analysis of optical turbulence effects on Gaussian beams by unifying a number of behavioral traits previously observed or predicted,more » and they create an environment in which the determination of limiting interrelationships between beam forms is especially simple. The fundamental nature of the parameter pairs becomes apparent in the derived analytical expressions for the log-amplitude variance and the wave structure function. These expressions verify general optical turbulence-related characteristics predicted for Gaussian beams, provide additional insights into beam-wave behavior, and are convenient tools for beam-wave analysis. 22 refs., 10 figs., 2 tabs.« less

  16. Time-resolved analysis of nonlinear optical limiting for laser synthesized carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, G. X.; Hong, M. H.

    2010-11-01

    Nonlinear optical limiting materials have attracted much research interest in recent years. Carbon nanoparticles suspended in liquids show a strong nonlinear optical limiting function. It is important to investigate the nonlinear optical limiting process of carbon nanoparticles for further improving their nonlinear optical limiting performance. In this study, carbon nanoparticles were prepared by laser ablation of a carbon target in tetrahydrofuran (THF). Optical limiting properties of the samples were studied with 532-nm laser light, which is in the most sensitive wavelength band for human eyes. The shape of the laser pulse plays an important role for initializing the nonlinear optical limiting effect. Time-resolved analysis of laser pulses discovered 3 fluence stages of optical limiting. Theoretical simulation indicates that the optical limiting is initialized by a near-field optical enhancement effect.

  17. A fundamental study of laser-induced breakdown spectroscopy using fiber optics for remote measurements of trace metals. Interim progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goode, S.R.; Angel, S.M.

    1997-01-01

    'The long-term goal of this project is to develop a system to measure the elemental composition of unprepared samples using laser-induced breakdown spectroscopy, LIBS, with a fiber-optic probe. From images shown in this report it is evident that the temporal and spatial behavior of laser-induced plasmas IS a complex process. However, through the use of spectral imaging, optimal conditions can be determined for collecting the atomic emission signal in these plasmas. By tailoring signal collection to the regions of the plasma that contain the highest emission signal with the least amount of background interference both the detection limits and themore » precision of LIBS measurements could be improved. The optimal regions for both gated and possibly non-gated LIBS measurements have been shown to correspond to the inner regions and outer regions, respectively, in an axial plasma. By using this data fiber-optic LIBS probe designs can be optimized for collecting plasma emission at the optimal regions for improved detection limits and precision in a LIBS measurement.'« less

  18. Ionization studies in laser-excited alkaline-earth vapors.

    PubMed

    Hermann, J P; Wynne, J J

    1980-06-01

    We report on the time behavior of ionization signals produced by laser excitation of Ca and Ba atomic vapor to high-Rydberg states. A space-charge-limited thermionic diode detector shows a long-lived (>I-msec) ionization signal. However, optical detection of atomic ions (Ca+, Ba+) shows that these species live for much shorter times (<100 microsec). These results, in conjunction with published results on mass-spectrometric studies of high-density atomic beams, suggest that our ionization signal is primarily due to molecular species (Ca2+, Ba2+). We also observed optically pumped amplified spontaneous emission and stimulated electronic Raman scattering in Ca+ and Ba+.

  19. ScintSim1: A new Monte Carlo simulation code for transport of optical photons in 2D arrays of scintillation detectors

    PubMed Central

    Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali

    2014-01-01

    Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization. PMID:24600168

  20. ScintSim1: A new Monte Carlo simulation code for transport of optical photons in 2D arrays of scintillation detectors.

    PubMed

    Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali

    2014-01-01

    Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization.

  1. On chip frequency comb: Characterization and optical arbitrary waveform generation

    NASA Astrophysics Data System (ADS)

    Ferdous, Fahmida

    Recently, on-chip comb generation methods based on nonlinear optical modulation in ultrahigh quality factor monolithic micro-resonators have been demonstrated. In these methods, two pump photons are transformed into sideband photons in a four wave mixing process mediated by the Kerr nonlinearity. The essential advantages of these methods are simplicity, small size, very high repetition rates and sometimes CMOS compatibility. We investigate line-by-line pulse shaping of such combs generated in silicon nitride ring resonators. We demonstrate a simple example of optical arbitrary waveform generation (OAWG) from Kerr comb. We observe two distinct paths to comb formation which exhibit strikingly different time domain behaviors. For combs formed as a cascade of sidebands spaced by a single free spectral range (FSR) that spread from the pump, we are able to compress to nearly bandwidth limited pulses. This indicates high coherence across the spectra and provides new data on the high passive stability of the spectral phase. For combs where the initial sidebands are spaced by multiple FSRs which then fill in to give combs with single FSR spacing, the time domain data reveal partially coherent behavior. We also investigate the behaviors of a few sub-families of the partially coherent combs selected by a pulse shaper. We observe different coherence properties for different groups of comb lines. Furthermore we will discuss an ultrafast characterization techniques called dual comb electric eld cross correlation. This linear technique will provide both low optical power and broader bandwidth capability for full time domain characterization of OAWG from Kerr comb.

  2. Visualization of cortical, subcortical, and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses

    PubMed Central

    Resendez, Shanna L.; Jennings, Josh H.; Ung, Randall L.; Namboodiri, Vijay Mohan K.; Zhou, Zhe Charles; Otis, James M.; Nomura, Hiroshi; McHenry, Jenna A.; Kosyk, Oksana; Stuber, Garret D.

    2016-01-01

    Genetically encoded calcium indicators for visualizing dynamic cellular activity have greatly expanded our understanding of the brain. However, due to light scattering properties of the brain as well as the size and rigidity of traditional imaging technology, in vivo calcium imaging has been limited to superficial brain structures during head fixed behavioral tasks. This limitation can now be circumvented by utilizing miniature, integrated microscopes in conjunction with an implantable microendoscopic lens to guide light into and out of the brain, thus permitting optical access to deep brain (or superficial) neural ensembles during naturalistic behaviors. Here, we describe procedural steps to conduct such imaging studies using mice. However, we anticipate the protocol can be easily adapted for use in other small vertebrates. Successful completion of this protocol will permit cellular imaging of neuronal activity and the generation of data sets with sufficient statistical power to correlate neural activity with stimulus presentation, physiological state, and other aspects of complex behavioral tasks. This protocol takes 6–11 weeks to complete. PMID:26914316

  3. Stratified Diffractive Optic Approach for Creating High Efficiency Gratings

    NASA Technical Reports Server (NTRS)

    Chambers, Diana M.; Nordin, Gregory P.

    1998-01-01

    Gratings with high efficiency in a single diffracted order can be realized with both volume holographic and diffractive optical elements. However, each method has limitations that restrict the applications in which they can be used. For example, high efficiency volume holographic gratings require an appropriate combination of thickness and permittivity modulation throughout the bulk of the material. Possible combinations of those two characteristics are limited by properties of currently available materials, thus restricting the range of applications for volume holographic gratings. Efficiency of a diffractive optic grating is dependent on its approximation of an ideal analog profile using discrete features. The size of constituent features and, consequently, the number that can be used within a required grating period restricts the applications in which diffractive optic gratings can be used. These limitations imply that there are applications which cannot be addressed by either technology. In this paper we propose to address a number of applications in this category with a new method of creating high efficiency gratings which we call stratified diffractive optic gratings. In this approach diffractive optic techniques are used to create an optical structure that emulates volume grating behavior. To illustrate the stratified diffractive optic grating concept we consider a specific application, a scanner for a space-based coherent wind lidar, with requirements that would be difficult to meet by either volume holographic or diffractive optic methods. The lidar instrument design specifies a transmissive scanner element with the input beam normally incident and the exiting beam deflected at a fixed angle from the optical axis. The element will be rotated about the optical axis to produce a conical scan pattern. The wavelength of the incident beam is 2.06 microns and the required deflection angle is 30 degrees, implying a grating period of approximately 4 microns. Creating a high efficiency volume grating with these parameters would require a grating thickness that cannot be attained with current photosensitive materials. For a diffractive optic grating, the number of binary steps necessary to produce high efficiency combined with the grating period requires feature sizes and alignment tolerances that are also unattainable with current techniques. Rotation of the grating and integration into a space-based lidar system impose the additional requirements that it be insensitive to polarization orientation, that its mass be minimized and that it be able to withstand launch and space environments.

  4. Maximum Likelihood Time-of-Arrival Estimation of Optical Pulses via Photon-Counting Photodetectors

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Moision, Bruce E.

    2010-01-01

    Many optical imaging, ranging, and communications systems rely on the estimation of the arrival time of an optical pulse. Recently, such systems have been increasingly employing photon-counting photodetector technology, which changes the statistics of the observed photocurrent. This requires time-of-arrival estimators to be developed and their performances characterized. The statistics of the output of an ideal photodetector, which are well modeled as a Poisson point process, were considered. An analytical model was developed for the mean-square error of the maximum likelihood (ML) estimator, demonstrating two phenomena that cause deviations from the minimum achievable error at low signal power. An approximation was derived to the threshold at which the ML estimator essentially fails to provide better than a random guess of the pulse arrival time. Comparing the analytic model performance predictions to those obtained via simulations, it was verified that the model accurately predicts the ML performance over all regimes considered. There is little prior art that attempts to understand the fundamental limitations to time-of-arrival estimation from Poisson statistics. This work establishes both a simple mathematical description of the error behavior, and the associated physical processes that yield this behavior. Previous work on mean-square error characterization for ML estimators has predominantly focused on additive Gaussian noise. This work demonstrates that the discrete nature of the Poisson noise process leads to a distinctly different error behavior.

  5. Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources.

    PubMed

    Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas

    2017-09-01

    Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu K α wavelength with a photon flux of up to 10 9 photons per pulse into the full solid angle, perfectly synchronized to the sub-100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source.

  6. Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources

    PubMed Central

    Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas

    2017-01-01

    Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu Kα wavelength with a photon flux of up to 109 photons per pulse into the full solid angle, perfectly synchronized to the sub-100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source. PMID:28795079

  7. Impact of atmospheric anisoplanaticity on earth-to-satellite time transfer over laser communication links

    NASA Astrophysics Data System (ADS)

    Belmonte, Aniceto; Taylor, Michael T.; Hollberg, Leo; Kahn, Joseph M.

    2017-02-01

    The need for an accurate time and position reference on orbiting platforms motivates the study of time transfer over satellite optical communication links. The transfer of precise optical clock signals to space would benefit many fields in fundamental science and applications. However, the precise role of atmospheric turbulence during the optical time transfer process is not well-known and documented. In free-space optical links, atmospheric turbulence represents a major impairment, since it causes degradation of the spatial and temporal coherence of the optical signals. We present possible link scenarios in which the atmospheric channel behavior for time transfer between ground and space can be investigated, and have identified the major challenges to be overcome. We found in our analysis that, despite the limited reciprocity in uplink and downlink propagation, partial two-way cancellation of atmospheric effects still occurs. We established that laser communication links make possible high-quality time transfer in most practical propagation scenarios and over a single satellite visibility period. Our results demonstrate that sharing of optical communication resources for optical time transfer and range determination is an effective and relevant scheme for space clock developments and enabling for future space missions.

  8. Smart fiber-reinforced polymer anchorage system with optical fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Huang, Minghua; Zhou, Zhi; He, Jianping; Chen, Genda; Ou, Jinping

    2010-03-01

    Civil Engineers have used fiber reinforced polymer (FRP) with high axial strength as an effective and economical alternative to steel in harsh corrosion environments. However, the practical applications of FRP are limited by the tendency of FRP materials to fail suddenly under lateral pressure and surface injury. For example, shear stresses result from the bonding effect between the FRP material and the structure of the anchorage system due to the lower shear strength of FRP. This paper proposes a novel smart FRP anchorage system with embedded optical fiber Bragg grating (FBG) sensors to monitor the axial strain state and accordingly the interfacial shear stress, as well as the interfacial damage characteristics of FRP anchorage. One FBG sensor was embedded in an FRP rod outside the anchorage region to evaluate the properties of the material, and seven FBG sensors were distributed along the rod in the anchor to monitor the axial strain variations and study the interfacial mechanical behaviors of the smart FRP anchorage under a static pulling load. The experimental results agreed well with theoretical predictions. The smart FRP anchorage system with optical FBG sensors proves effective and practical for monitoring the long-term mechanical behavior of FRP anchorage systems.

  9. Suppressed blinking behavior of CdSe/CdS QDs by polymer coating

    NASA Astrophysics Data System (ADS)

    Zhang, Aidi; Bian, Yannan; Wang, Jinjie; Chen, Kuiyong; Dong, Chaoqing; Ren, Jicun

    2016-02-01

    Semiconductor quantum dots (QDs) are very important fluorescent nanocrystals with excellent optical properties. However, QDs, at the single-particle level, show severe fluorescence intermittency (or blinking) on a wide time scale from milliseconds to minutes, which limits certain optical and biological applications. Generally, blinking behavior of QDs strongly depends on their surface state and surrounding environment. Therefore, current blinking suppression approaches are mostly focused on the introduction of an inorganic shell and organic small molecule compounds. In this study, we described a ``bottom up'' approach for the synthesis of CdSe/CdS/polymer core/shell/shell QDs via the in situ one-pot polymerization approach in order to control the blinking behavior of QDs. Three monomers (dithiothreitol (DTT), phenylenediamine (PDA), and hexamethylenediamine (HDA)) were respectively used to polymerize with hexachlorocyclotriphosphazene (HCCP), and then the polyphosphazene polymers were obtained with cyclotriphosphazene as the basic macromolecular backbone. By regulating the molar ratios of the activated comonomers, we can control the blinking behavior of CdSe/CdS/polymer QDs. Under the optimal conditions, the percentage of ``non-blinking'' CdSe/CdS/polymer QDs (the ``on time'' fraction > 99% of the overall observation time) was up to 78%. The suppression mechanism was attributed to the efficient passivation of QD surface traps by the sulfhydryl or phenyl groups in the polyphosphazene polymers.Semiconductor quantum dots (QDs) are very important fluorescent nanocrystals with excellent optical properties. However, QDs, at the single-particle level, show severe fluorescence intermittency (or blinking) on a wide time scale from milliseconds to minutes, which limits certain optical and biological applications. Generally, blinking behavior of QDs strongly depends on their surface state and surrounding environment. Therefore, current blinking suppression approaches are mostly focused on the introduction of an inorganic shell and organic small molecule compounds. In this study, we described a ``bottom up'' approach for the synthesis of CdSe/CdS/polymer core/shell/shell QDs via the in situ one-pot polymerization approach in order to control the blinking behavior of QDs. Three monomers (dithiothreitol (DTT), phenylenediamine (PDA), and hexamethylenediamine (HDA)) were respectively used to polymerize with hexachlorocyclotriphosphazene (HCCP), and then the polyphosphazene polymers were obtained with cyclotriphosphazene as the basic macromolecular backbone. By regulating the molar ratios of the activated comonomers, we can control the blinking behavior of CdSe/CdS/polymer QDs. Under the optimal conditions, the percentage of ``non-blinking'' CdSe/CdS/polymer QDs (the ``on time'' fraction > 99% of the overall observation time) was up to 78%. The suppression mechanism was attributed to the efficient passivation of QD surface traps by the sulfhydryl or phenyl groups in the polyphosphazene polymers. Electronic supplementary information (ESI) available: Synthesis and characterization of QDs, FTIR analysis, particle distribution, PL decays, TGA data and power-law distribution of QDs. See DOI: 10.1039/c5nr08504g

  10. Simultaneous optical and meteor head echo measurements using the Middle Atmosphere Alomar Radar System (MAARSY): Data collection and preliminary analysis

    NASA Astrophysics Data System (ADS)

    Brown, P.; Stober, G.; Schult, C.; Krzeminski, Z.; Cooke, W.; Chau, J. L.

    2017-07-01

    The initial results of a two year simultaneous optical-radar meteor campaign are described. Analysis of 105 double-station optical meteors having plane of sky intersection angles greater than 5° and trail lengths in excess of 2 km also detected by the Middle Atmosphere Alomar Radar System (MAARSY) as head echoes was performed. These events show a median deviation in radiants between radar and optical determinations of 1.5°, with 1/3 of events having radiant agreement to less than one degree. MAARSY tends to record average speeds roughly 0.5 km/s and 1.3 km higher than optical records, in part due to the higher sensitivity of MAARSY as compared to the optical instruments. More than 98% of all head echoes are not detected with the optical system. Using this non-detection ratio and the known limiting sensitivity of the cameras, we estimate that the limiting meteoroid detection mass of MAARSY is in the 10-9-10-10 kg (astronomical limiting meteor magnitudes of +11 to +12) appropriate to speeds from 30 to 60 km/s. There is a clear trend of higher peak RCS for brighter meteors between 35 and -30 dBsm. For meteors with similar magnitudes, the MAARSY head echo radar cross-section is larger at higher speeds. Brighter meteors at fixed heights and similar speeds have consistently, on average, larger RCS values, in accordance with established scattering theory. However, our data show RCS ∝ v/2, much weaker than the normally assumed RCS ∝ v3, a consequence of our requiring head echoes to also be detectable optically. Most events show a smooth variation of RCS with height broadly following the light production behavior. A significant minority of meteors show large variations in RCS relative to the optical light curve over common height intervals, reflecting fragmentation or possibly differential ablation. No optically detected meteor occurring in the main radar beam and at times when the radar was collecting head echo data went unrecorded by MAARSY. Thus there does not appear to be any large scale bias in MAARSY head echo detections for the (comparatively) larger optical events in our dataset, even at very low speeds.

  11. Optical Remote Sensing of Electric Fields Above Thunderstorms

    NASA Astrophysics Data System (ADS)

    Burns, B. M.; Carlson, B. E.; Lauben, D.; Cohen, M.; Smith, D.; Inan, U. S.

    2010-12-01

    Measurement of thunderstorm electric fields typically require balloon-borne measurements in the region of interest. Such measurements are cumbersome and provide limited information at a single point. Remote sensing of electric fields by Kerr-effect induced optical polarization changes of background skylight circumvents many of these difficulties and can in principle provide a high-speed movie of electric field behavior. Above-thundercloud 100 kV/m quasi-static electric fields are predicted to produce polarization changes at above the part in one million level that should be detectable at a ground instrument featuring 1 cm2sr geometric factor and 1 kHz bandwidth (though more sensitivity is nonetheless desired). Currently available optical and electronic components may meet these requirements. We review the principles of this measurement and discuss the current status of a field-ready prototype instrument currently in construction.

  12. A Constitutive Relationship between Fatigue Limit and Microstructure in Nanostructured Bainitic Steels

    PubMed Central

    Mueller, Inga; Rementeria, Rosalia; Caballero, Francisca G.; Kuntz, Matthias; Sourmail, Thomas; Kerscher, Eberhard

    2016-01-01

    The recently developed nanobainitic steels show high strength as well as high ductility. Although this combination seems to be promising for fatigue design, fatigue properties of nanostructured bainitic steels are often surprisingly low. To improve the fatigue behavior, an understanding of the correlation between the nanobainitic microstructure and the fatigue limit is fundamental. Therefore, our hypothesis to predict the fatigue limit was that the main function of the microstructure is not necessarily totally avoiding the initiation of a fatigue crack, but the microstructure has to increase the ability to decelerate or to stop a growing fatigue crack. Thus, the key to understanding the fatigue behavior of nanostructured bainite is to understand the role of the microstructural features that could act as barriers for growing fatigue cracks. To prove this hypothesis, we carried out fatigue tests, crack growth experiments, and correlated these results to the size of microstructural features gained from microstructural analysis by light optical microscope and EBSD-measurements. Finally, we were able to identify microstructural features that influence the fatigue crack growth and the fatigue limit of nanostructured bainitic steels. PMID:28773953

  13. Discrete-state phasor neural networks

    NASA Astrophysics Data System (ADS)

    Noest, André J.

    1988-08-01

    An associative memory network with local variables assuming one of q equidistant positions on the unit circle (q-state phasors) is introduced, and its recall behavior is solved exactly for any q when the interactions are sparse and asymmetric. Such models can describe natural or artifical networks of (neuro-)biological, chemical, or electronic limit-cycle oscillators with q-fold instead of circular symmetry, or similar optical computing devices using a phase-encoded data representation.

  14. Peak-power limits on fiber amplifiers imposed by self-focusing

    NASA Astrophysics Data System (ADS)

    Farrow, Roger L.; Kliner, Dahv A. V.; Hadley, G. Ronald; Smith, Arlee V.

    2006-12-01

    We have numerically investigated the behavior of the fundamental mode of a step-index, multimode (MM) fiber as the optical power approaches the self-focusing limit (Pcrit). The analysis includes the effects of gain and bending (applicable to coiled fiber amplifiers). We find power-dependent, stationary solutions that propagate essentially without change at beam powers approaching Pcrit in straight and bent fibers. We show that in a MM fiber amplifier seeded with its fundamental eigenmode at powers ≪Pcrit, the transverse spatial profile adiabatically evolves through a continuum of stationary solutions as the beam is amplified toward Pcrit.

  15. Emergent equilibrium in many-body optical bistability

    NASA Astrophysics Data System (ADS)

    Foss-Feig, Michael; Niroula, Pradeep; Young, Jeremy; Hafezi, Mohammad; Gorshkov, Alexey; Wilson, Ryan; Maghrebi, Mohammad

    2017-04-01

    Many-body systems constructed of quantum-optical building blocks can now be realized in experimental platforms ranging from exciton-polariton fluids to Rydberg gases, establishing a fascinating interface between traditional many-body physics and the non-equilibrium setting of cavity-QED. At this interface the standard intuitions of both fields are called into question, obscuring issues as fundamental as the role of fluctuations, dimensionality, and symmetry on the nature of collective behavior and phase transitions. We study the driven-dissipative Bose-Hubbard model, a minimal description of atomic, optical, and solid-state systems in which particle loss is countered by coherent driving. Despite being a lattice version of optical bistability-a foundational and patently non-equilibrium model of cavity-QED-the steady state possesses an emergent equilibrium description in terms of an Ising model. We establish this picture by identifying a limit in which the quantum dynamics is asymptotically equivalent to non-equilibrium Langevin equations, which support a phase transition described by model A of the Hohenberg-Halperin classification. Simulations of the Langevin equations corroborate this picture, producing results consistent with the behavior of a finite-temperature Ising model. M.F.M., J.T.Y., and A.V.G. acknowledge support by ARL CDQI, ARO MURI, NSF QIS, ARO, NSF PFC at JQI, and AFOSR. R.M.W. acknowledges partial support from the NSF under Grant No. PHYS-1516421. M.H. acknowledges support by AFOSR-MURI, ONR and Sloan Foundation.

  16. Plastic behavior of polycrystalline copper at optical scales of deformation

    NASA Astrophysics Data System (ADS)

    Domber, Jeanette Leah

    Microplasticity is permanent deformation that occurs below the proportional limit of a material. For precision deployable optical spacecraft, it is unknown how microplasticity will affect the performance of the precision structure. An examination of the rolling of thin film optical reflectors indicates a strong dependence of the post-deployed shape on the strain hardening exponent of the material. However, confirmation of the valid extension of the constitutive model used to predict the deployed shape to microscopic strain regimes is necessary. The primary objective of this thesis is threefold: determine the relationship between stress and strain at nano to microstrain levels for representative materials; determine if the relationship between microscopic and macroscopic plastic behavior can be accurately characterized by the Ramberg-Osgood strain hardening constitutive model with a single set of material parameters; and determine if dislocation motion is the root cause of microplastic behavior at room temperature. The test apparatus, with a dynamic force range of 40,000 to 1, measures strains from 0.01 to 1000 parts per million (ppm) of cylindrical amorphous quartz and cold-worked and annealed tempered polycrystalline copper specimen. Elastic behavior in all three materials was consistent with typical values. However, plastic responses were larger than expected. Stresses on the order of 10 to 10,000 kPa (1.45 to 1450 psi) produced permanent strain in all three types of materials ranging from 0.01 to 1 ppm, some of which was attributable to a systematic error in the measurement. Extrapolating macroplastic behavior to lower stress and strain values underestimates the amount of microplasticity observed in the material. Therefore, material property characterization is required at all strain levels that are of concern for a particular application. The similarity in the levels of measured permanent strain for a given stress level between the as-drawn and annealed copper is consistent with the observed dislocation substructure of the two materials, which is also similar. This uniformity indicates that microplastic behavior at room temperature is driven by dislocation glide.

  17. Ring lens focusing and push-pull tracking scheme for optical disk systems

    NASA Technical Reports Server (NTRS)

    Gerber, R.; Zambuto, J.; Erwin, J. K.; Mansuripur, M.

    1993-01-01

    An experimental comparison of the ring lens and the astigmatic techniques of generating focus-error-signal (FES) in optical disk systems reveals that the ring lens generates a FES over two times steeper than that produced by the astigmat. Partly due to this large slope and, in part, because of its diffraction-limited behavior, the ring lens scheme exhibits superior performance characteristics. In particular the undesirable signal known as 'feedthrough' (induced on the FES by track-crossings during the seek operation) is lower by a factor of six compared to that observed with the astigmatic method. The ring lens is easy to align and has reasonable tolerance for positioning errors.

  18. Pockels effect in strained silicon photonics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vivien, Laurent; Berciano, Mathias; Damas, Pedro; Marcaud, Guillaume; Le Roux, Xavier; Crozat, Paul; Alonso-Ramos, Carlos A.; Benedikovic, Daniel; Marris-Morini, Delphine; Cassan, Eric

    2017-05-01

    Silicon photonics has generated a strong interest in recent years, mainly for optical communications and optical interconnects in CMOS circuits. The main motivations for silicon photonics are the reduction of photonic system costs and the increase of the number of functionalities on the same integrated chip by combining photonics and electronics, along with a strong reduction of power consumption. However, one of the constraints of silicon as an active photonic material is its vanishing second order optical susceptibility, the so called χ(2) , due to the centrosymmety of the silicon crystal. To overcome this limitation, strain has been used as a way to deform the crystal and destroy the centrosymmetry which inhibits χ(2). The paper presents the recent advances in the development of second-order nonlinearities including discussions from fundamental origin of Pockels effect in silicon until its implementation in a real device. Carrier effects induced by an electric field leading to an electro-optics behavior will also be discussed.

  19. Optical Properties and Aging of Gasochromic WO3

    NASA Astrophysics Data System (ADS)

    Ghosh, Rudresh; Baker, Matthew B.; Lopez, Rene

    2009-03-01

    WO3 as a possible optical gas sensor has gained increasing importance with H2 becoming a major fuel of the future. This has led to efforts to understand the theoretical and practical aspects of the gasochromic behavior of WO3. WO3 films were fabricated using pulsed laser deposition (PLD). Morphological and stoichiometric ratios of films obtained were observed as functions of deposition parameters. We present the optical constants induced by 2% H2:Ar in WO3 films. This allows us to obtain the limits of the gasochromic change in comparison to ion injection. It was found using Langmuir's adsorption equation that at low H2 concentrations a high sensitivity is predicted but the coloration could saturate at 57.9 % of the material's maximum ion adsorption. Poisoning of the films was also addressed by coating with a permeable polydimethylsiloxane layer. It is shown that gasochromic degradation is prevented thus eliminating common atmospheric gases as possible contaminants. Our studies suggest WO3 thin films as highly sensitive and stable optical hydrogen sensors. .

  20. Optical Properties and Aging of Gasochromic WO3

    NASA Astrophysics Data System (ADS)

    Ghosh, Rudresh; Baker, Matthew B.; Lopez, Rene

    2008-10-01

    WO3 as a possible optical gas sensor has gained increasing importance with H2 becoming a major fuel of the future. This has led to efforts to understand the theoretical and practical aspects of the gasochromic behavior of WO3. WO3 films were fabricated using pulsed laser deposition (PLD). Morphological and stoichiometric ratios of films obtained were observed as functions of deposition parameters. We present the optical constants induced by 2% H2:Ar in WO3 films. This allows us to obtain the limits of the gasochromic change in comparison to ion injection. It was found using Langmuir's adsorption equation that at low H2 concentrations a high sensitivity is predicted but the coloration could saturate at 57.9 % of the material's maximum ion adsorption. Poisoning of the films was also addressed by coating with a permeable polydimethylsiloxane layer. It is shown that gasochromic degradation is prevented thus eliminating common atmospheric gases as possible contaminants. Our studies suggest WO3 thin films as highly sensitive and stable optical hydrogen sensors.

  1. Performance and Vibration of 30 cm Pyrolytic Ion Thruster Optics

    NASA Technical Reports Server (NTRS)

    Haag, Thomas; Soulas, George C.

    2004-01-01

    Carbon has a sputter erosion rate about an order of magnitude less than that of molybdenum, over the voltages typically used in ion thruster applications. To explore its design potential, 30 cm pyrolytic carbon ion thruster optics have been fabricated geometrically similar to the molybdenum ion optics used on NSTAR. They were then installed on an NSTAR Engineering Model thruster, and experimentally evaluated over much of the original operating envelope. Ion beam currents ranged from 0.51 to 1.76 Angstroms, at total voltages up to 1280 V. The perveance, electron back-streaming limit, and screen-grid transparency were plotted for these operating points, and compared with previous data obtained with molybdenum. While thruster performance with pyrolytic carbon was quite similar to that with molybdenum, behavior variations can reasonably be explained by slight geometric differences. Following all performance measurements, the pyrolytic carbon ion optics assembly was subjected to an abbreviated vibration test. The thruster endured 9.2 g(sub rms) of random vibration along the thrust axis, similar to DS 1 acceptance levels. Despite significant grid clashing, there was no observable damage to the ion optics assembly.

  2. One-dimensional photonic crystal optical limiter.

    PubMed

    Soon, Boon Yi; Haus, Joseph; Scalora, Michael; Sibilia, Concita

    2003-08-25

    We explore a new passive optical limiter design using transverse modulation instability in the one-dimensional photonic crystal (PC) using x(3) materials. The performance of PC optical limiters strongly depends on the choice of the materials and the geometry and it improves as the duration of the incident pulse is extended. PC optical limiter performance is compared with that of a device made from homogeneous material. We identify three criteria for benchmarking the PC optical limiter. We also include a discussion of the advantages and disadvantages of PC optical limiters for real world applications.

  3. Optical Polarization and Spectral Variability in the M87 Jet

    NASA Technical Reports Server (NTRS)

    Perlman, Eric S.; Adams, Steven C.; Cara, Mihai; Bourque, Matthew; Harris, D. E.; Madrid, Juan P.; Simons, Raymond C.; Clausen-Brown, Eric; Cheung, C. C.; Stawarz, Lukasz; hide

    2011-01-01

    During the last decade, M87's jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability was also seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST -1 shows a highly significant correlation between flux and polarization, with P increasing from approx 20% at minimum to > 40% at maximum, while the orientation of its electric vector stayed constant. HST-l's optical-UV spectrum is very hard (alpha(sub uv-0) approx. 0.5, F(sub v) varies as (v(exp -alpha)), and displays "hard lags" during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2alpha upper limits of 0.5 delta parsecs and 1.02c on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet PA, makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and 'looping' in the (I, P) plane. The nucleus has a much steeper spectrum ((alpha(sub uv-0) approx. 1.5) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.

  4. Comparison of distributed Bragg reflector ridge waveguide diode lasers and monolithic master oscillator power amplifiers

    NASA Astrophysics Data System (ADS)

    Werner, Nils; Wegemund, Jan; Gerke, Sebastian; Feise, David; Bugge, Frank; Paschke, Katrin; Tränkle, Günther

    2018-02-01

    Diode lasers with ridge waveguide structures and wavelength stabilization by a distributed Bragg-reflector (DBR) are key components for many different applications. These lasers provide diffraction limited laser emission in a single spectral mode, while an arbitrary emission wavelength can be chosen as long as the semiconductor allows for amplification. Furthermore, the DBR grating can be fabricated during the lateral structuring of the device which makes them well suited for mass production. A variety of different concepts can be used for the actual realization of the laser. While standard DBR ridge waveguide lasers (DBR-RWL) with a DBR as reflection grating provide up to 1W optical output power, the DBR can be also used as transmission grating for improved efficiency. Furthermore, more complex structures like monolithic master oscillator power amplifiers (MOPA), which show less spectral mode hops than DBR-RWLs, have been fabricated. The wide range of possible applications have different requirements on the emission characteristic of the used lasers. While the lasers can fulfill the requirements on the emission spectrum and the optical output power, the effects due to optical feedback from optical elements of the setup may limit their practical use in the respective application. Thus, it is of high importance to analyze the emission behavior of the different laser designs at various operation conditions with and without optical feedback. Here, the detailed investigation of the emission characteristics of lasers at an exemplary emission wavelength of 1120 nm is be presented.

  5. Low-loss tunable 1D ITO-slot photonic crystal nanobeam cavity

    NASA Astrophysics Data System (ADS)

    Amin, Rubab; Tahersima, Mohammad H.; Ma, Zhizhen; Suer, Can; Liu, Ke; Dalir, Hamed; Sorger, Volker J.

    2018-05-01

    Tunable optical material properties enable novel applications in both versatile metamaterials and photonic components including optical sources and modulators. Transparent conductive oxides (TCOs) are able to highly tune their optical properties with applied bias via altering their free carrier concentration and hence plasma dispersion. The TCO material indium tin oxide (ITO) exhibits unity-strong index change and epsilon-near-zero behavior. However, with such tuning the corresponding high optical losses, originating from the fundamental Kramers–Kronig relations, result in low cavity finesse. However, achieving efficient tuning in ITO-cavities without using light–matter interaction enhancement techniques such as polaritonic modes, which are inherently lossy, is a challenge. Here we discuss a novel one-dimensional photonic crystal nanobeam cavity to deliver a cavity system offering a wide range of resonance tuning range, while preserving physical compact footprints. We show that a vertical silicon-slot waveguide incorporating an actively gated-ITO layer delivers ∼3.4 nm of tuning. By deploying distributed feedback, we are able to keep the Q-factor moderately high with tuning. Combining this with the sub-diffraction limited mode volume (0.1 (λ/2n)3) from the photonic (non-plasmonic) slot waveguide, facilitates a high Purcell factor exceeding 1000. This strong light–matter-interaction shows that reducing the mode volume of a cavity outweighs reducing the losses in diffraction limited modal cavities such as those from bulk Si3N4. These tunable cavities enable future modulators and optical sources such as tunable lasers.

  6. Gold nanorods-silicone hybrid material films and their optical limiting property

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Qi, Yanhai; Hao, Xiongwen; Peng, Xue; Li, Dongxiang

    2015-10-01

    As a kind of new optical limiting materials, gold nanoparticles have optical limiting property owing to their optical nonlinearities induced by surface plasmon resonance (SPR). Gold nanorods (GNRs) possess transversal SPR absorption and tunable longitudinal SPR absorption in the visible and near-infrared region, so they can be used as potential optical limiting materials against tunable laser pulses. In this letter, GNRs were prepared using seed-mediated growth method and surface-modified by silica coating to obtain good dispersion in polydimethylsiloxane prepolymers. Then the silicone rubber films doped with GNRs were prepared after vulcanization, whose optical limiting property and optical nonlinearity were investigated. The silicone rubber samples doped with more GNRs were found to exhibit better optical limiting performance.

  7. Ab initio calculations of optical properties of silver clusters: cross-over from molecular to nanoscale behavior

    NASA Astrophysics Data System (ADS)

    Titantah, John T.; Karttunen, Mikko

    2016-05-01

    Electronic and optical properties of silver clusters were calculated using two different ab initio approaches: (1) based on all-electron full-potential linearized-augmented plane-wave method and (2) local basis function pseudopotential approach. Agreement is found between the two methods for small and intermediate sized clusters for which the former method is limited due to its all-electron formulation. The latter, due to non-periodic boundary conditions, is the more natural approach to simulate small clusters. The effect of cluster size is then explored using the local basis function approach. We find that as the cluster size increases, the electronic structure undergoes a transition from molecular behavior to nanoparticle behavior at a cluster size of 140 atoms (diameter ~1.7 nm). Above this cluster size the step-like electronic structure, evident as several features in the imaginary part of the polarizability of all clusters smaller than Ag147, gives way to a dominant plasmon peak localized at wavelengths 350 nm ≤ λ ≤ 600 nm. It is, thus, at this length-scale that the conduction electrons' collective oscillations that are responsible for plasmonic resonances begin to dominate the opto-electronic properties of silver nanoclusters.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamboa, E. J.; Fletcher, L. B.; Lee, H. J.

    The extraordinary mechanical and optical properties of diamond are the basis of numerous technical applications and make diamond anvil cells a premier device to explore the high-pressure behavior of materials. However, at applied pressures above a few hundred GPa, optical probing through the anvils becomes difficult because of the pressure-induced changes of the transmission and the excitation of a strong optical emission. Such features have been interpreted as the onset of a closure of the optical gap in diamond, and can significantly impair spectroscopy of the material inside the cell. In contrast, a comparable widening has been predicted for purelymore » hydrostatic compressions, forming a basis for the presumed pressure stiffening of diamond and resilience to the eventual phase change to BC8. We here present the first experimental evidence of this effect at geo-planetary pressures, exceeding the highest ever reported hydrostatic compression of diamond by more than 200 GPa and any other measurement of the band gap by more than 350 GPa. We here apply laser driven-ablation to create a dynamic, high pressure state in a thin, synthetic diamond foil together with frequency-resolved x-ray scattering as a probe. The frequency shift of the inelastically scattered x-rays encodes the optical properties and, thus, the behavior of the band gap in the sample. Using the ultra-bright x-ray beam from the Linac Coherent Light Source (LCLS), we observe an increasing direct band gap in diamond up to a pressure of 370 GPa. This finding points to the enormous strains in the anvils and the impurities in natural Type Ia diamonds as the source of the observed closure of the optical window. Our results demonstrate that diamond remains an insulating solid to pressures approaching its limit strength.« less

  9. Investigation on the behavioral difference in third order nonlinearity and optical limiting of Mn0.55Cu0.45Fe2O4 nanoparticles annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Yuvaraj, S.; Manikandan, N.; Vinitha, G.

    2017-11-01

    Mn0.55Cu0.45Fe2O4 nanoparticles were synthesized by wet chemical co-precipitation method. The obtained samples were annealed at different temperatures (500 °C to 1250 °C). All annealed samples were characterized for their structural, magnetic, linear and non-linear optical properties. XRD results confirm single phase cubic spinel structure only for samples annealed at 800 °C and 1250 °C. The average crystallite sizes of the samples are in the range of 11-37 nm. HR-SEM image of the sample annealed at 800 °C exposed spherical morphology. The quantitative analysis of EDX results is close to the expected values. Bandgaps were evaluated from UV-DRS. The FTIR spectrum showing the essential peaks around 452.1 and 567.2 cm-1 prove the formation of spinel nanoparticles. In PL spectrum, a broad emission peak is attained in visible region at 485 nm. The saturation magnetization (M s), coercivity (H c) and remanence magnetization (M r) are obtained from the hysteresis curve. Nonlinear absorption coefficients (10-4 cm W-1), nonlinear indices of refraction (10-8 cm2 W-1) and the third order nonlinear susceptibilities (10-6 esu) are determined using Z-scan experiment. CW laser beam is utilized to study the optical limiting characteristics and the results prove these materials to be a potential candidate for device applications like optical switches and power limiters.

  10. Control over photo-inscription and thermal annealing to obtain high-quality Bragg gratings in doped PMMA optical fibers.

    PubMed

    Hu, Xuehao; Kinet, Damien; Mégret, Patrice; Caucheteur, Christophe

    2016-07-01

    Bragg gratings are photo-inscribed in trans-4-stilbenemethanol doped PMMA fibers using a 325 nm He-Cd laser and a phase mask. Two distinct behaviors are reported depending on the laser power density. In the high-density regime with 637  mW/mm2, the grating reflectivity is stable over time after the writing process, but the reflected spectrum is of limited quality, as the grating length is limited to the laser width (1.2 mm). The beam is then enlarged to 6 mm, decreasing the power density to 127  mW/mm2. In this case, the grating reflectivity strongly decays after the writing process. A fortunate property here results from the recovery of the initial reflectivity using a post-inscription thermal annealing. Both behaviors are attributed to the evolution between trans- and cis-isomers.

  11. Overlay improvement methods with diffraction based overlay and integrated metrology

    NASA Astrophysics Data System (ADS)

    Nam, Young-Sun; Kim, Sunny; Shin, Ju Hee; Choi, Young Sin; Yun, Sang Ho; Kim, Young Hoon; Shin, Si Woo; Kong, Jeong Heung; Kang, Young Seog; Ha, Hun Hwan

    2015-03-01

    To accord with new requirement of securing more overlay margin, not only the optical overlay measurement is faced with the technical limitations to represent cell pattern's behavior, but also the larger measurement samples are inevitable for minimizing statistical errors and better estimation of circumstance in a lot. From these reasons, diffraction based overlay (DBO) and integrated metrology (IM) were mainly proposed as new approaches for overlay enhancement in this paper.

  12. Enhanced absorption in a reverse saturable absorbing dye blended with carbon nanotubes.

    PubMed

    Webster, Scott; Reyes-Reyes, Marisol; Williams, Richard; Carroll, David L

    2008-12-01

    Using nonlinear absorption at 532 nm in the nanosecond temporal regime, we have measured the low fluence nonlinear transmittance properties of the reverse saturable absorbing carbocyanine dye, 1,1',3,3,3',3'-hexamethylindotricarbocyanine iodide (HITCI), blended with well dispersed carbon nanotubes. The nonlinear optical properties of the blends are strongly dependent on the ratio of dye to nanotubes in solution. In the case where the nanotubes per dye molecule ratio is large, we see a distinctive enhancement in optical fluence limiting properties of the system, suggesting enhanced absorption of the excited states. However, when the nanotube to dye ratio decreases, the system's response is dominated by the behavior of the dye. We suggest that this can be understood as a two component system in which sensitized dye molecules associated with the nanotubes have an effectively different optical cross-section from the dye molecules far from the nanotubes. From classical antennae considerations, this is expected.

  13. L-Phenylalanine functionalized silver nanoparticles: Photocatalytic and nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Nidya, M.; Umadevi, M.; Sankar, Pranitha; Philip, Reji; Rajkumar, Beulah J. M.

    2015-04-01

    An extensive study on the behavior of L-Phenylalanine capped silver nanoparticles (Phe-Ag NPs) in the aqueous phase and in a sol-gel thin film showed different UV/Vis, Transmission Electron Microscope (TEM), Dynamic Light Scattering and Zeta potential profiles. Scanning Electron Microscope (SEM) images of the samples in the sol gel film showed Ag embedded in the SiO2 matrix. Surface Enhanced Raman Spectra (SERS) confirmed that both in the aqueous media and in the sol gel film, the attachment of Phe to the Ag NP surface was through the benzene ring, with the sol-gel film showing a better enhancement. Photocatalytic degradation of crystal violet was measured spectrophotometrically using Phe-Ag NPs as a nanocatalyst under visible light illumination. Intensity-dependent nonlinear optical absorption of Phe-Ag measured using the open aperture Z-scan technique revealed that the material is an efficient optical limiter with potential applications.

  14. Transport properties of correlated metals: A dynamical mean field theory perspective

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoyu

    Strongly correlated metals, including many transition metal oxides, are characterized by unconventional transport properties with anomalous temperature dependence. For example, in many systems Fermi liquid behavior holds only below an extremely low temperature while at high temperature these bad metals have large resistivity which exceeds the Mott-Ioffe-Regel (MIR) limit. Material specific calculation of these anomalous transport properties is an outstanding challenge. Recent advances enabled us to study the transport and optical properties of two archetypal correlated oxides, vanadium oxides and ruthenates, using the LDA +DMFT method. In V2O3, the prototypical Mott system, our computed resistivity and optical conductivity are in very good agreement with experimental measurements, which clearly demonstrates that the strong correlation dominates the transport of this material. Furthermore by expressing the resistivity in terms of an effective plasma frequency and an effective scattering rate, we uncover the so-called ''hidden Fermi liquid'' [1, 2, 3] behavior, in both the computed and measured optical response of V2O3. This paradigm explains the optics and transport in other materials such as NdNiO3 film and CaRuO3. In the ruthenates family, we carried out a systematical theoretical study on the transport properties of four metallic members, Sr2RuO4, Sr3Ru2O7, SrRuO3 and CaRuO3, which generally encapsulates the gradually structure evolution from two-dimension to three dimension. With a unified computational scheme, we are able to obtain the electronic structure and transport properties of all these materials. The computed effective mass enhancement, resistivity and optical conductivity are good agreement with experimental measurements, which indicates that electron-electron scattering dominates the transport of ruthenates. We explain why the single layered compound Sr2RuO4 has a relative weak correlation with respect to its siblings, which corroborates its good metallicity. Comparing our results with experimental data, benchmarks the capability as well as the limitations of existing methodologies for describing transport properties of realistic correlated materials. Supported by NSF DMR-1308141.

  15. MEMS Integrated Submount Alignment for Optoelectronics

    NASA Astrophysics Data System (ADS)

    Shakespeare, W. Jeffrey; Pearson, Raymond A.; Grenestedt, Joachim L.; Hutapea, Parsaoran; Gupta, Vikas

    2005-02-01

    One of the most expensive and time-consuming production processes for single-mode fiber-optic components is the alignment of the photonic chip or waveguide to the fiber. The alignment equipment is capital intensive and usually requires trained technicians to achieve desired results. Current technology requires active alignment since tolerances are only ~0.2 μ m or less for a typical laser diode. This is accomplished using piezoelectric actuated stages and active optical feedback. Joining technologies such as soldering, epoxy bonding, or laser welding may contribute significant postbond shift, and final coupling efficiencies are often less than 80%. This paper presents a method of adaptive optical alignment to freeze in place directly on an optical submount using a microelectromechanical system (MEMS) shape memory alloy (SMA) actuation technology. Postbond shift is eliminated since the phase change is the alignment actuation. This technology is not limited to optical alignment but can be applied to a variety of MEMS actuations, including nano-actuation and nano-alignment for biomedical applications. Experimental proof-of-concept results are discussed, and a simple analytical model is proposed to predict the stress strain behavior of the optical submount. Optical coupling efficiencies and alignment times are compared with traditional processes. The feasibility of this technique in high-volume production is discussed.

  16. LSPV+7, a branch-point-tolerant reconstructor for strong turbulence adaptive optics.

    PubMed

    Steinbock, Michael J; Hyde, Milo W; Schmidt, Jason D

    2014-06-20

    Optical wave propagation through long paths of extended turbulence presents unique challenges to adaptive optics (AO) systems. As scintillation and branch points develop in the beacon phase, challenges arise in accurately unwrapping the received wavefront and optimizing the reconstructed phase with respect to branch cut placement on a continuous facesheet deformable mirror. Several applications are currently restricted by these capability limits: laser communication, laser weapons, remote sensing, and ground-based astronomy. This paper presents a set of temporally evolving AO simulations comparing traditional least-squares reconstruction techniques to a complex-exponential reconstructor and several other reconstructors derived from the postprocessing congruence operation. The reconstructors' behavior in closed-loop operation is compared and discussed, providing several insights into the fundamental strengths and limitations of each reconstructor type. This research utilizes a self-referencing interferometer (SRI) as the high-order wavefront sensor, driving a traditional linear control law in conjunction with a cooperative point source beacon. The SRI model includes practical optical considerations and frame-by-frame fiber coupling effects to allow for realistic noise modeling. The "LSPV+7" reconstructor is shown to offer the best performance in terms of Strehl ratio and correction stability-outperforming the traditional least-squares reconstructed system by an average of 120% in the studied scenarios. Utilizing a continuous facesheet deformable mirror, these reconstructors offer significant AO performance improvements in strong turbulence applications without the need for segmented deformable mirrors.

  17. Quantifying fluxes and characterizing compositional changes of dissolved organic matter in aquatic systems in situ using combined acoustic and optical measurements

    USGS Publications Warehouse

    Downing, B.D.; Boss, E.; Bergamaschi, B.A.; Fleck, J.A.; Lionberger, M.A.; Ganju, N.K.; Schoellhamer, D.H.; Fujii, R.

    2009-01-01

    Studying the dynamics and geochemical behavior of dissolved and particulate organic material is difficult because concentration and composition may rapidly change in response to aperiodic as well as periodic physical and biological forcing. Here we describe a method useful for quantifying fluxes and analyzing dissolved organic matter (DOM) dynamics. The method uses coupled optical and acoustic measurements that provide robust quantitative estimates of concentrations and constituent characteristics needed to investigate processes and calculate fluxes of DOM in tidal and other lotic environments. Data were collected several times per hour for 2 weeks or more, with the frequency and duration limited only by power consumption and data storage capacity. We assessed the capabilities and limitations of the method using data from a winter deployment in a natural tidal wetland of the San Francisco Bay estuary. We used statistical correlation of in situ optical data with traditional laboratory analyses of discrete water samples to calibrate optical properties suited as proxies for DOM concentrations and characterizations. Coupled with measurements of flow velocity, we calculated long-term residual horizontal fluxes of DOC into and out from a tidal wetland. Subsampling the dataset provides an estimate for the maximum sampling interval beyond which the error in flux estimate is significantly increased.?? 2009, by the American Society of Limnology and Oceanography, Inc.

  18. Quantum and classical properties of soliton propagation in optical fibers

    NASA Astrophysics Data System (ADS)

    Krylov, Dmitriy

    2001-05-01

    Quantum and classical aspects of nonlinear optical pulse propagation in optical fibers are studied with the emphasis on temporal solitons. The theoretical and experimental investigation focuses on phenomena that can fundamentally limit transmission and detection of optical signals in fiber-optic communication systems that employ solitons. In transmission experiments the first evidence is presented that a pre-chirped high-order soliton pulse propagating in a low anomalous dispersion optical fiber will irreversibly break up into an ordered train of fundamental (N = 1) solitons. The experimental results confirm previous analytical predictions and show excellent agreement with numerical simulations. This phenomenon presents a fundamental limitation on systems that utilize dispersion-management or pre-chirping of optical pulses, and has to be taken into consideration when designing such systems. The experiments also show that the breakup process can be repeated by cascading two independent breakup stages. Each stage accepts a single input pulse and produces two independent pulses. The stages are cascaded to produce a one-to-four breakup. Solitons are also shown to be ideally suited for investigating non-classical properties of light. Based on the general quantum theory of optical pulse propagation, a new scheme for generating amplitude-squeezed solitons is designed and implemented in a highly asymmetric fiber Sagnac interferometer. A record reduction of 5.7dB (73%) and, with correction for linear losses, 7.0dB (81%) in photon-number fluctuations below the shot-noise level is measured by direct detection. The same scheme is also shown to generate significant classical noise reduction and is limited by Raman effects in fiber. Such large squeezing levels can be employed in practical fiber optic communication systems to achieve noiseless amplification and better signal to noise ratios in direct detection. The photon number states can also be used in quantum non- demolition measurements and quantum communications. Amplitude squeezing is shown to be present in the normal- dispersion regime where no soliton formation is possible. In this case, a noise reduction of 1.7dB (33%) and, with correction for linear losses, 2.5dB (47%) below the shot- noise level is measured. The dependence of noise behavior on dispersion is investigated both experimentally and theoretically.

  19. An upper limit on ultraviolet shot noise from Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Duthie, J. G.; Mcmillan, R. S.

    1979-01-01

    Rapid photometry of Cygnus X-1 through an ultraviolet filter centered on 0.35 micron has been obtained at 100-ms sampling intervals. The autocorrelation function of these data has been examined for shot noise analogous to the behavior of the X-ray light curve. The ultraviolet data are entirely consistent with white noise. Considering randomly occurring ultraviolet shots with the same duration (0.5 s) and average rate (1 per sec) as the X-ray shots, a 3-sigma upper limit on the ratio of optical to X-ray energies per shot is estimated to be 0.13, before the ultraviolet light is attenuated by interstellar dust. This limit is then generalized for shots of arbitrary duration and rate.

  20. Nanofabrication for On-Chip Optical Levitation, Atom-Trapping, and Superconducting Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Norte, Richard Alexander

    Researchers have spent decades refining and improving their methods for fabricating smaller, finer-tuned, higher-quality nanoscale optical elements with the goal of making more sensitive and accurate measurements of the world around them using optics. Quantum optics has been a well-established tool of choice in making these increasingly sensitive measurements which have repeatedly pushed the limits on the accuracy of measurement set forth by quantum mechanics. A recent development in quantum optics has been a creative integration of robust, high-quality, and well-established macroscopic experimental systems with highly-engineerable on-chip nanoscale oscillators fabricated in cleanrooms. However, merging large systems with nanoscale oscillators often require them to have extremely high aspect-ratios, which make them extremely delicate and difficult to fabricate with an experimentally reasonable repeatability, yield and high quality. In this work we give an overview of our research, which focused on microscopic oscillators which are coupled with macroscopic optical cavities towards the goal of cooling them to their motional ground state in room temperature environments. The quality factor of a mechanical resonator is an important figure of merit for various sensing applications and observing quantum behavior. We demonstrated a technique for pushing the quality factor of a micromechanical resonator beyond conventional material and fabrication limits by using an optical field to stiffen and trap a particular motional mode of a nanoscale oscillator. Optical forces increase the oscillation frequency by storing most of the mechanical energy in a nearly loss-less optical potential, thereby strongly diluting the effects of material dissipation. By placing a 130 nm thick SiO2 pendulum in an optical standing wave, we achieve an increase in the pendulum center-of-mass frequency from 6.2 to 145 kHz. The corresponding quality factor increases 50-fold from its intrinsic value to a final value of Qm = 5.8(1.1) x 105, representing more than an order of magnitude improvement over the conventional limits of SiO2 for a pendulum geometry. Our technique may enable new opportunities for mechanical sensing and facilitate observations of quantum behavior in this class of mechanical systems. We then give a detailed overview of the techniques used to produce high-aspect-ratio nanostructures with applications in a wide range of quantum optics experiments. The ability to fabricate such nanodevices with high precision opens the door to a vast array of experiments which integrate macroscopic optical setups with lithographically engineered nanodevices. Coupled with atom-trapping experiments in the Kimble Lab, we use these techniques to realize a new waveguide chip designed to address ultra-cold atoms along lithographically patterned nanobeams which have large atom-photon coupling and near 4pi Steradian optical access for cooling and trapping atoms. We describe a fully integrated and scalable design where cold atoms are spatially overlapped with the nanostring cavities in order to observe a resonant optical depth of d0 ≈ 0.15. The nanodevice illuminates new possibilities for integrating atoms into photonic circuits and engineering quantum states of atoms and light on a microscopic scale. We then describe our work with superconducting microwave resonators coupled to a phononic cavity towards the goal of building an integrated device for quantum-limited microwave-to-optical wavelength conversion. We give an overview of our characterizations of several types of substrates for fabricating a low-loss high-frequency electromechanical system. We describe our electromechanical system fabricated on a SiN membrane which consists of a 12 GHz superconducting LC resonator coupled capacitively to the high frequency localized modes of a phononic nanobeam. Using our suspended membrane geometry we isolate our system from substrates with significant loss tangents, drastically reducing the parasitic capacitance of our superconducting circuit to ≈ 2.5 fF. This opens up a number of possibilities in making a new class of low-loss high-frequency electromechanics with relatively large electromechanical coupling. We present our substrate studies, fabrication methods, and device characterization.

  1. Synthesis of colloidal silver iron oxide nanoparticles--study of their optical and magnetic behavior.

    PubMed

    Kumar, Anil; Singhal, Aditi

    2009-07-22

    Silver iron oxide nanoparticles of fairly small size (average diameter approximately 1 nm) with narrow size distribution have been synthesized by the interaction of colloidal beta- Fe2O3 and silver nanoparticles. The surface morphology and size of these particles have been analyzed by using atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Their structural analysis has been carried out by employing x-ray diffraction (XRD), selected-area electron diffraction (SAED), optical and infrared (IR) spectroscopic techniques. The ageing of these particles exhibits the formation of self-assembly, possibly involving weak supramolecular interactions between Ag(I)O4 and Fe(III)O4 species. These particles display the onset of absorption in the near-infrared region and have higher absorption coefficient in the visible range compared to that of its precursors. Magnetic measurements reveal an interesting transition in their magnetic behavior from diamagnetic to superparamagnetic. The magnetic moment of these particles attains a limiting value of about 0.19 emu cm(-2), which is more than two times higher than that of colloidal beta- Fe2O3. With enhanced optical and magnetic properties, this system is suggested to have possible applications in optoelectronic and magnetic devices.

  2. Au-rich filamentary behavior and associated subband gap optical absorption in hyperdoped Si

    NASA Astrophysics Data System (ADS)

    Yang, W.; Akey, A. J.; Smillie, L. A.; Mailoa, J. P.; Johnson, B. C.; McCallum, J. C.; Macdonald, D.; Buonassisi, T.; Aziz, M. J.; Williams, J. S.

    2017-12-01

    Au-hyperdoped Si, synthesized by ion implantation and pulsed laser melting, is known to exhibit a strong sub-band gap photoresponse that scales monotonically with the Au concentration. However, there is thought to be a limit to this behavior since ultrahigh Au concentrations (>1 ×1020c m-3 ) are expected to induce cellular breakdown during the rapid resolidification of Si, a process that is associated with significant lateral impurity precipitation. This work shows that the cellular morphology observed in Au-hyperdoped Si differs from that in conventional, steady-state cellular breakdown. In particular, Rutherford backscattering spectrometry combined with channeling and transmission electron microscopy revealed an inhomogeneous Au distribution and a subsurface network of Au-rich filaments, within which the Au impurities largely reside on substitutional positions in the crystalline Si lattice, at concentrations as high as ˜3 at. %. The measured substitutional Au dose, regardless of the presence of Au-rich filaments, correlates strongly with the sub-band gap optical absorptance. Upon subsequent thermal treatment, the supersaturated Au forms precipitates, while the Au substitutionality and the sub-band gap optical absorption both decrease. These results offer insight into a metastable filamentary regime in Au-hyperdoped Si that has important implications for Si-based infrared optoelectronics.

  3. Capillary Array Waveguide Amplified Fluorescence Detector for mHealth

    PubMed Central

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2013-01-01

    Mobile Health (mHealth) analytical technologies are potentially useful for carrying out modern medical diagnostics in resource-poor settings. Effective mHealth devices for underserved populations need to be simple, low cost, and portable. Although cell phone cameras have been used for biodetection, their sensitivity is a limiting factor because currently it is too low to be effective for many mHealth applications, which depend on detection of weak fluorescent signals. To improve the sensitivity of portable phones, a capillary tube array was developed to amplify fluorescence signals using their waveguide properties. An array configured with 36 capillary tubes was demonstrated to have a ~100X increase in sensitivity, lowering the limit of detection (LOD) of mobile phones from 1000 nM to 10 nM for fluorescein. To confirm that the amplification was due to waveguide behavior, we coated the external surfaces of the capillaries with silver. The silver coating interfered with the waveguide behavior and diminished the fluorescence signal, thereby proving that the waveguide behavior was the main mechanism for enhancing optical sensitivity. The optical configuration described here is novel in several ways. First, the use of capillaries waveguide properties to improve detection of weak florescence signal is new. Second we describe here a three dimensional illumination system, while conventional angular laser waveguide illumination is spot (or line), which is functionally one-dimensional illumination, can illuminate only a single capillary or a single column (when a line generator is used) of capillaries and thus inherently limits the multiplexing capability of detection. The planar illumination demonstrated in this work enables illumination of a two dimensional capillary array (e.g. x columns and y rows of capillaries). In addition, the waveguide light propagation via the capillary wall provides a third dimension for illumination along the axis of the capillaries. Such an array can potentially be used for sensitive analysis of multiple fluorescent detection assays simultaneously. The simple phone based capillary array approach presented in this paper is capable of amplifying weak fluorescent signals thereby improving the sensitivity of optical detectors based on mobile phones. This may allow sensitive biological assays to be measured with low sensitivity detectors and may make mHealth practical for many diagnostics applications, especially in resource-poor and global health settings. PMID:24039345

  4. Development of integrated semiconductor optical sensors for functional brain imaging

    NASA Astrophysics Data System (ADS)

    Lee, Thomas T.

    Optical imaging of neural activity is a widely accepted technique for imaging brain function in the field of neuroscience research, and has been used to study the cerebral cortex in vivo for over two decades. Maps of brain activity are obtained by monitoring intensity changes in back-scattered light, called Intrinsic Optical Signals (IOS), that correspond to fluctuations in blood oxygenation and volume associated with neural activity. Current imaging systems typically employ bench-top equipment including lamps and CCD cameras to study animals using visible light. Such systems require the use of anesthetized or immobilized subjects with craniotomies, which imposes limitations on the behavioral range and duration of studies. The ultimate goal of this work is to overcome these limitations by developing a single-chip semiconductor sensor using arrays of sources and detectors operating at near-infrared (NIR) wavelengths. A single-chip implementation, combined with wireless telemetry, will eliminate the need for immobilization or anesthesia of subjects and allow in vivo studies of free behavior. NIR light offers additional advantages because it experiences less absorption in animal tissue than visible light, which allows for imaging through superficial tissues. This, in turn, reduces or eliminates the need for traumatic surgery and enables long-term brain-mapping studies in freely-behaving animals. This dissertation concentrates on key engineering challenges of implementing the sensor. This work shows the feasibility of using a GaAs-based array of vertical-cavity surface emitting lasers (VCSELs) and PIN photodiodes for IOS imaging. I begin with in-vivo studies of IOS imaging through the skull in mice, and use these results along with computer simulations to establish minimum performance requirements for light sources and detectors. I also evaluate the performance of a current commercial VCSEL for IOS imaging, and conclude with a proposed prototype sensor.

  5. Silver nanoprisms/silicone hybrid rubber materials and their optical limiting property to femtosecond laser

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Liu, Miao; Jiang, Nengkai; Wang, Chunlei; Lin, Weihong; Li, Dongxiang

    2017-08-01

    Optical limiters against femtosecond laser are essential for eye and sensor protection in optical processing system with femtosecond laser as light source. Anisotropic Ag nanoparticles are expected to develop into optical limiting materials for femtosecond laser pulses. Herein, silver nanoprisms are prepared and coated by silica layer, which are then doped into silicone rubber to obtain hybrid rubber sheets. The silver nanoprisms/silicone hybrid rubber sheets exhibit good optical limiting property to femtosecond laser mainly due to nonlinear optical absorption.

  6. Hard and Transparent Films Formed by Nanocellulose–TiO2 Nanoparticle Hybrids

    PubMed Central

    Schütz, Christina; Sort, Jordi; Bacsik, Zoltán; Oliynyk, Vitaliy; Pellicer, Eva; Fall, Andreas; Wågberg, Lars; Berglund, Lars; Bergström, Lennart; Salazar-Alvarez, German

    2012-01-01

    The formation of hybrids of nanofibrillated cellulose and titania nanoparticles in aqueous media has been studied. Their transparency and mechanical behavior have been assessed by spectrophotometry and nanoindentation. The results show that limiting the titania nanoparticle concentration below 16 vol% yields homogeneous hybrids with a very high Young’s modulus and hardness, of up to 44 GPa and 3.4 GPa, respectively, and an optical transmittance above 80%. Electron microscopy shows that higher nanoparticle contents result in agglomeration and an inhomogeneous hybrid nanostructure with a concomitant reduction of hardness and optical transmittance. Infrared spectroscopy suggests that the nanostructure of the hybrids is controlled by electrostatic adsorption of the titania nanoparticles on the negatively charged nanocellulose surfaces. PMID:23049689

  7. Efficient matrix approach to optical wave propagation and Linear Canonical Transforms.

    PubMed

    Shakir, Sami A; Fried, David L; Pease, Edwin A; Brennan, Terry J; Dolash, Thomas M

    2015-10-05

    The Fresnel diffraction integral form of optical wave propagation and the more general Linear Canonical Transforms (LCT) are cast into a matrix transformation form. Taking advantage of recent efficient matrix multiply algorithms, this approach promises an efficient computational and analytical tool that is competitive with FFT based methods but offers better behavior in terms of aliasing, transparent boundary condition, and flexibility in number of sampling points and computational window sizes of the input and output planes being independent. This flexibility makes the method significantly faster than FFT based propagators when only a single point, as in Strehl metrics, or a limited number of points, as in power-in-the-bucket metrics, are needed in the output observation plane.

  8. Design and evaluation of a THz time domain imaging system using standard optical design software.

    PubMed

    Brückner, Claudia; Pradarutti, Boris; Müller, Ralf; Riehemann, Stefan; Notni, Gunther; Tünnermann, Andreas

    2008-09-20

    A terahertz (THz) time domain imaging system is analyzed and optimized with standard optical design software (ZEMAX). Special requirements to the illumination optics and imaging optics are presented. In the optimized system, off-axis parabolic mirrors and lenses are combined. The system has a numerical aperture of 0.4 and is diffraction limited for field points up to 4 mm and wavelengths down to 750 microm. ZEONEX is used as the lens material. Higher aspherical coefficients are used for correction of spherical aberration and reduction of lens thickness. The lenses were manufactured by ultraprecision machining. For optimization of the system, ray tracing and wave-optical methods were combined. We show how the ZEMAX Gaussian beam analysis tool can be used to evaluate illumination optics. The resolution of the THz system was tested with a wire and a slit target, line gratings of different period, and a Siemens star. The behavior of the temporal line spread function can be modeled with the polychromatic coherent line spread function feature in ZEMAX. The spectral and temporal resolutions of the line gratings are compared with the respective modulation transfer function of ZEMAX. For maximum resolution, the system has to be diffraction limited down to the smallest wavelength of the spectrum of the THz pulse. Then, the resolution on time domain analysis of the pulse maximum can be estimated with the spectral resolution of the center of gravity wavelength. The system resolution near the optical axis on time domain analysis of the pulse maximum is 1 line pair/mm with an intensity contrast of 0.22. The Siemens star is used for estimation of the resolution of the whole system. An eight channel electro-optic sampling system was used for detection. The resolution on time domain analysis of the pulse maximum of all eight channels could be determined with the Siemens star to be 0.7 line pairs/mm.

  9. Controllable optical steady behavior from nonradiative coherence in GaAs quantum well driven by a single elliptically polarized field

    NASA Astrophysics Data System (ADS)

    Zhu, Zhonghu; Chen, Ai-Xi; Bai, Yanfeng; Yang, Wen-Xing; Lee, Ray-Kuang

    2014-05-01

    In this paper, we analyze theoretically the optical steady behavior in GaAs quantum well structure which interacts with a single elliptically polarized field (EPF) and a π-polarized probe field. Due to the existence of the robust nonradiative coherence, we demonstrate that the controllable optical steady behavior including multi-stability (OM) and optical bistability (OB) can be obtained. More interestingly, our numerical results also illustrate that tuning the phase difference between two components of polarized electric field of the EPF can realize the conversion between OB and OM. Our results illustrate the potential to utilize the optical phase for developing the new all-optical switching devices, as well as a guidance in the design for possible experimental implementations.

  10. Instabilities and Chaotic Behavior of Active and Passive Laser Systems.

    DTIC Science & Technology

    1985-03-01

    Some of these attractors, already well-known from elementary calculus, are the steady states of the system, i.e., configurations such that all the time ...charactaristic fundamental frequencies (the reciprocal of the round-trip time around the limit cycle) and usually a host of harmonic components, whose origin is...provided with a hybrid electro-optic device in which the delay of the feed- 2 back loop was made considerably larger than the response time of the system

  11. Dynamical gauge effects in an open quantum network

    NASA Astrophysics Data System (ADS)

    Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan

    2016-05-01

    We describe new experimental techniques for simulation of high-energy field theories based on an analogy between open thermodynamic systems and effective dynamical gauge-fields following SU(2) × U(1) Yang-Mills models. By coupling near-resonant laser-modes to atoms moving in a disordered optical environment, we create an open system which exhibits a non-equilibrium phase transition between two steady-state behaviors, exhibiting scale-invariant behavior near the transition. By measuring transport of atoms through the disordered network, we observe two distinct scaling behaviors, corresponding to the classical and quantum limits for the dynamical gauge field. This behavior is loosely analogous to dynamical gauge effects in quantum chromodynamics, and can mapped onto generalized open problems in theoretical understanding of quantized non-Abelian gauge theories. Additional, the scaling behavior can be understood from the geometric structure of the gauge potential and linked to the measure of information in the local disordered potential, reflecting an underlying holographic principle. We acknowledge support from NSF Award No.1068570, and the Charles E. Kaufman Foundation.

  12. Bulk damage and absorption in fused silica due to high-power laser applications

    NASA Astrophysics Data System (ADS)

    Nürnberg, F.; Kühn, B.; Langner, A.; Altwein, M.; Schötz, G.; Takke, R.; Thomas, S.; Vydra, J.

    2015-11-01

    Laser fusion projects are heading for IR optics with high broadband transmission, high shock and temperature resistance, long laser durability, and best purity. For this application, fused silica is an excellent choice. The energy density threshold on IR laser optics is mainly influenced by the purity and homogeneity of the fused silica. The absorption behavior regarding the hydroxyl content was studied for various synthetic fused silica grades. The main absorption influenced by OH vibrational excitation leads to different IR attenuations for OH-rich and low-OH fused silica. Industrial laser systems aim for the maximum energy extraction possible. Heraeus Quarzglas developed an Yb-doped fused silica fiber to support this growing market. But the performance of laser welding and cutting systems is fundamentally limited by beam quality and stability of focus. Since absorption in the optical components of optical systems has a detrimental effect on the laser focus shift, the beam energy loss and the resulting heating has to be minimized both in the bulk materials and at the coated surfaces. In collaboration with a laser research institute, an optical finisher and end users, photo thermal absorption measurements on coated samples of different fused silica grades were performed to investigate the influence of basic material properties on the absorption level. High purity, synthetic fused silica is as well the material of choice for optical components designed for DUV applications (wavelength range 160 nm - 260 nm). For higher light intensities, e.g. provided by Excimer lasers, UV photons may generate defect centers that effect the optical properties during usage, resulting in an aging of the optical components (UV radiation damage). Powerful Excimer lasers require optical materials that can withstand photon energy close to the band gap and the high intensity of the short pulse length. The UV transmission loss is restricted to the DUV wavelength range below 300 nm and consists of three different absorption bands centered at 165 nm (peroxy radicals), 215 nm (E'-center), and 265 nm (non-bridging oxygen hole center (NBOH)), which change the transmission behavior of material.

  13. Microscale optical cryptography using a subdiffraction-limit optical key

    NASA Astrophysics Data System (ADS)

    Ogura, Yusuke; Aino, Masahiko; Tanida, Jun

    2018-04-01

    We present microscale optical cryptography using a subdiffraction-limit optical pattern, which is finer than the diffraction-limit size of the decrypting optical system, as a key and a substrate with a reflectance distribution as an encrypted image. Because of the subdiffraction-limit spatial coding, this method enables us to construct a secret image with the diffraction-limit resolution. Simulation and experimental results demonstrate, both qualitatively and quantitatively, that the secret image becomes recognizable when and only when the substrate is illuminated with the designed key pattern.

  14. Analysis of behavior of focusing error signals generated by astigmatic method when a focused spot moves beyond the radius of a land-groove-type optical disk

    NASA Astrophysics Data System (ADS)

    Shinoda, Masahisa; Nakatani, Hidehiko; Nakai, Kenya; Ohmaki, Masayuki

    2015-09-01

    We theoretically calculate behaviors of focusing error signals generated by an astigmatic method in a land-groove-type optical disk. The focusing error signal from the land does not coincide with that from the groove. This behavior is enhanced when a focused spot of an optical pickup moves beyond the radius of the optical disk. A gain difference between the slope sensitivities of focusing error signals from the land and the groove is an important factor with respect to stable focusing servo control. In our calculation, the format of digital versatile disc-random access memory (DVD-RAM) is adopted as the land-groove-type optical disk model, and the dependences of the gain difference on various factors are investigated. The gain difference strongly depends on the optical intensity distribution of the laser beam in the optical pickup. The calculation method and results in this paper will be reflected in newly developed land-groove-type optical disks.

  15. Tungsten Oxide Photonic Crystals as Optical Transducer for Gas Sensing.

    PubMed

    Amrehn, Sabrina; Wu, Xia; Wagner, Thorsten

    2018-01-26

    Some metal oxide semiconductors, such as tungsten trioxide or tin dioxide, are well-known as resistive transducers for gas sensing and offer high sensitivities down to the part per billion level. Electrical signal read-out, however, limits the information obtained on the electronic properties of metal oxides to a certain frequency range and its application because of the required electrical contacts. Therefore, a novel approach for building an optical transducer for gas reactions utilizing metal oxide photonic crystals is presented here. By the rational design of the structure and composition it is possible to synthesize a functional material which allows one to obtain insight into its electronic properties in the optical frequency range with simple experimental measures. The concept is demonstrated by tungsten trioxide inverse opal structure as optical transducer material for hydrogen sensing. The sensing behavior is analyzed in a temperature range from room temperature to 500 °C and in a wide hydrogen concentration range (3000 ppm to 10%). The sensing mechanism is mainly the refractive index change resulting from hydrogen intercalation in tungsten trioxide, but the back reaction has also impact on the optical properties of this system. Detailed chemical reaction studies provide suggestions for specific sensing conditions.

  16. Improved Optical-Fiber Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Egalon, Claudio O.

    1993-01-01

    In optical-fiber temperature sensors of proposed type, phosphorescence and/or fluorescence in temperature-dependent coating layers coupled to photodetectors. Phosphorescent and/or fluorescent behavior(s) of coating material(s) depend on temperature; coating material or mixture of materials selected so one can deduce temperature from known temperature dependence of phosphorescence and/or fluorescence spectrum, and/or characteristic decay of fluorescence. Basic optical configuration same as that of optical-fiber chemical detectors described in "Making Optical-Fiber Chemical Detectors More Sensitive" (LAR-14525).

  17. Studies of third-order optical nonlinearities and optical limiting properties of azo dyes.

    PubMed

    Gayathri, C; Ramalingam, A

    2008-03-01

    In order to protect optical sensors and human eyes from debilitating laser effects, the intensity of the incoming laser light has to be opportunely reduced. Here, we report our results on the third-order optical nonlinearity and optical limiting properties of three azo dyes exposed to a 532nm continuous wave laser. We have observed low power optical limiting based on nonlinear refraction in our samples.

  18. Motion as a source of environmental information: a fresh view on biological motion computation by insect brains

    PubMed Central

    Egelhaaf, Martin; Kern, Roland; Lindemann, Jens Peter

    2014-01-01

    Despite their miniature brains insects, such as flies, bees and wasps, are able to navigate by highly erobatic flight maneuvers in cluttered environments. They rely on spatial information that is contained in the retinal motion patterns induced on the eyes while moving around (“optic flow”) to accomplish their extraordinary performance. Thereby, they employ an active flight and gaze strategy that separates rapid saccade-like turns from translatory flight phases where the gaze direction is kept largely constant. This behavioral strategy facilitates the processing of environmental information, because information about the distance of the animal to objects in the environment is only contained in the optic flow generated by translatory motion. However, motion detectors as are widespread in biological systems do not represent veridically the velocity of the optic flow vectors, but also reflect textural information about the environment. This characteristic has often been regarded as a limitation of a biological motion detection mechanism. In contrast, we conclude from analyses challenging insect movement detectors with image flow as generated during translatory locomotion through cluttered natural environments that this mechanism represents the contours of nearby objects. Contrast borders are a main carrier of functionally relevant object information in artificial and natural sceneries. The motion detection system thus segregates in a computationally parsimonious way the environment into behaviorally relevant nearby objects and—in many behavioral contexts—less relevant distant structures. Hence, by making use of an active flight and gaze strategy, insects are capable of performing extraordinarily well even with a computationally simple motion detection mechanism. PMID:25389392

  19. Motion as a source of environmental information: a fresh view on biological motion computation by insect brains.

    PubMed

    Egelhaaf, Martin; Kern, Roland; Lindemann, Jens Peter

    2014-01-01

    Despite their miniature brains insects, such as flies, bees and wasps, are able to navigate by highly erobatic flight maneuvers in cluttered environments. They rely on spatial information that is contained in the retinal motion patterns induced on the eyes while moving around ("optic flow") to accomplish their extraordinary performance. Thereby, they employ an active flight and gaze strategy that separates rapid saccade-like turns from translatory flight phases where the gaze direction is kept largely constant. This behavioral strategy facilitates the processing of environmental information, because information about the distance of the animal to objects in the environment is only contained in the optic flow generated by translatory motion. However, motion detectors as are widespread in biological systems do not represent veridically the velocity of the optic flow vectors, but also reflect textural information about the environment. This characteristic has often been regarded as a limitation of a biological motion detection mechanism. In contrast, we conclude from analyses challenging insect movement detectors with image flow as generated during translatory locomotion through cluttered natural environments that this mechanism represents the contours of nearby objects. Contrast borders are a main carrier of functionally relevant object information in artificial and natural sceneries. The motion detection system thus segregates in a computationally parsimonious way the environment into behaviorally relevant nearby objects and-in many behavioral contexts-less relevant distant structures. Hence, by making use of an active flight and gaze strategy, insects are capable of performing extraordinarily well even with a computationally simple motion detection mechanism.

  20. Fundamental Scaling Laws in Nanophotonics

    PubMed Central

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.

    2016-01-01

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors. PMID:27869159

  1. Fundamental Scaling Laws in Nanophotonics.

    PubMed

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J

    2016-11-21

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of "smaller-is-better" has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.

  2. Fundamental Scaling Laws in Nanophotonics

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.

    2016-11-01

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.

  3. High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget.

    PubMed

    Jarosz, Jessica; Mecê, Pedro; Conan, Jean-Marc; Petit, Cyril; Paques, Michel; Meimon, Serge

    2017-04-01

    We formed a database gathering the wavefront aberrations of 50 healthy eyes measured with an original custom-built Shack-Hartmann aberrometer at a temporal frequency of 236 Hz, with 22 lenslets across a 7-mm diameter pupil, for a duration of 20 s. With this database, we draw statistics on the spatial and temporal behavior of the dynamic aberrations of the eye. Dynamic aberrations were studied on a 5-mm diameter pupil and on a 3.4 s sequence between blinks. We noted that, on average, temporal wavefront variance exhibits a n -2 power-law with radial order n and temporal spectra follow a f -1.5 power-law with temporal frequency f . From these statistics, we then extract guidelines for designing an adaptive optics system. For instance, we show the residual wavefront error evolution as a function of the number of corrected modes and of the adaptive optics loop frame rate. In particular, we infer that adaptive optics performance rapidly increases with the loop frequency up to 50 Hz, with gain being more limited at higher rates.

  4. High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget

    PubMed Central

    Jarosz, Jessica; Mecê, Pedro; Conan, Jean-Marc; Petit, Cyril; Paques, Michel; Meimon, Serge

    2017-01-01

    We formed a database gathering the wavefront aberrations of 50 healthy eyes measured with an original custom-built Shack-Hartmann aberrometer at a temporal frequency of 236 Hz, with 22 lenslets across a 7-mm diameter pupil, for a duration of 20 s. With this database, we draw statistics on the spatial and temporal behavior of the dynamic aberrations of the eye. Dynamic aberrations were studied on a 5-mm diameter pupil and on a 3.4 s sequence between blinks. We noted that, on average, temporal wavefront variance exhibits a n−2 power-law with radial order n and temporal spectra follow a f−1.5 power-law with temporal frequency f. From these statistics, we then extract guidelines for designing an adaptive optics system. For instance, we show the residual wavefront error evolution as a function of the number of corrected modes and of the adaptive optics loop frame rate. In particular, we infer that adaptive optics performance rapidly increases with the loop frequency up to 50 Hz, with gain being more limited at higher rates. PMID:28736657

  5. Optical limiting in gelatin stabilized Cu-PVP nanocomposite colloidal suspension

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Gedam, P. P.; Thakare, N. B.; Talwatkar, S. S.; Sunatkari, A. L.; Muley, G. G.

    2018-05-01

    This article illustrates investigations on optical limiting properties of Cu-PVP nanocomposite colloidal suspension. Gelatin stabilized Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD), Ultraviolet-visible (UV-vis) spectroscopy, etc. for structural and linear optical studies. Optical limiting properties of Colloidal Cu-PVP nanocomposites have been investigated at 808 nm diode CW laser. Minimum optical limiting threshold was found for GCu3-PVP nanocomposites sample. The strong optical limiting is thermal in origin as CW laser is used and effects are attributed to thermal lensing effect.

  6. Correlated Photon Dynamics in Dissipative Rydberg Media

    NASA Astrophysics Data System (ADS)

    Zeuthen, Emil; Gullans, Michael J.; Maghrebi, Mohammad F.; Gorshkov, Alexey V.

    2017-07-01

    Rydberg blockade physics in optically dense atomic media under the conditions of electromagnetically induced transparency (EIT) leads to strong dissipative interactions between single photons. We introduce a new approach to analyzing this challenging many-body problem in the limit of a large optical depth per blockade radius. In our approach, we separate the single-polariton EIT physics from Rydberg-Rydberg interactions in a serialized manner while using a hard-sphere model for the latter, thus capturing the dualistic particle-wave nature of light as it manifests itself in dissipative Rydberg-EIT media. Using this approach, we analyze the saturation behavior of the transmission through one-dimensional Rydberg-EIT media in the regime of nonperturbative dissipative interactions relevant to current experiments. Our model is able to capture the many-body dynamics of bright, coherent pulses through these strongly interacting media. We compare our model with available experimental data in this regime and find good agreement. We also analyze a scheme for generating regular trains of single photons from continuous-wave input and derive its scaling behavior in the presence of imperfect single-photon EIT.

  7. G-index: A new metric to describe dynamic refractive index effects in HPLC absorbance detection.

    PubMed

    Kraiczek, Karsten G; Rozing, Gerard P; Zengerle, Roland

    2018-09-01

    High performance liquid chromatography (HPLC) with a solvent gradient and absorbance detection is one of the most widely used methods in analytical chemistry. The observed absorbance baseline is affected by the changes in the refractive index (RI) of the mobile phase. Near the limited of detection, this complicates peak quantitation. The general aspects of these RI-induced apparent absorbance effects are discussed. Two different detectors with fundamentally different optics and flow cell concepts, a variable-wavelength detector equipped with a conventional flow cell and a diode-array detector equipped with a liquid core waveguide flow cell, are compared with respect to their RI behavior. A simple method to separate static - partly unavoidable - RI effects from dynamic RI effects is presented. It is shown that the dynamic RI behavior of an absorbance detector can be well described using a single, relatively easy-to-determine metric called the G-index. The G-index is typically in the order of a few seconds and its sign depends on the optical flow cell concept. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Smooth Optical Self-similar Emission of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lipunov, Vladimir; Simakov, Sergey; Gorbovskoy, Evgeny; Vlasenko, Daniil

    2017-08-01

    We offer a new type of calibration for gamma-ray bursts (GRB), in which some class of GRB can be marked and share a common behavior. We name this behavior Smooth Optical Self-similar Emission (SOS-similar Emission) and identify this subclasses of GRBs with optical light curves described by a universal scaling function.

  9. Effectiveness of Environment-Based Interventions That Address Behavior, Perception, and Falls in People With Alzheimer's Disease and Related Major Neurocognitive Disorders: A Systematic Review.

    PubMed

    Jensen, Lou; Padilla, René

    This systematic review evaluated the effectiveness of environment-based interventions that address behavior, perception, and falls in the home and other settings for people with Alzheimer's disease (AD) and related major neurocognitive disorders (NCDs). Database searches were limited to outcomes studies published in English in peer-reviewed journals between January 2006 and April 2014. A total of 1,854 articles were initially identified, of which 42 met inclusion criteria. Strong evidence indicates that person-centered approaches can improve behavior. Moderate evidence supports noise regulation, environmental design, unobtrusive visual barriers, and environmental relocation strategies to reduce problematic behaviors. Evidence is insufficient for the effectiveness of mealtime ambient music, bright light, proprioceptive input, wander gardens, optical strategies, and sensory devices in improving behavior or reducing wandering and falls. Although evidence supports many environment-based interventions used by occupational therapy practitioners to address behavior, perception, and falls in people with AD and related major NCDs, more studies are needed. Copyright © 2017 by the American Occupational Therapy Association, Inc.

  10. Microstructure-failure mode correlations in braided composites

    NASA Technical Reports Server (NTRS)

    Filatovs, G. J.; Sadler, Robert L.; El-Shiekh, Aly

    1992-01-01

    Explication of the fracture processes of braided composites is needed for modeling their behavior. Described is a systematic exploration of the relationship between microstructure, loading mode, and micro-failure mechanisms in carbon/epoxy braided composites. The study involved compression and fracture toughness tests and optical and scanning electron fractography, including dynamic in-situ testing. Principal failure mechanisms of low sliding, buckling, and unstable crack growth are correlated to microstructural parameters and loading modes; these are used for defining those microstructural conditions which are strength limiting.

  11. Theoretical and experimental characterization of the first hyperpolarizability

    NASA Astrophysics Data System (ADS)

    Perez-Moreno, Javier

    We present a theoretical and experimental study of the molecular susceptibilities. The generalized Thomas-Kuhn sum rules are used to characterize the nonlinear response of organic chromophores in terms of fundamental parameters. The nonlinear optical performance of real molecules is evaluated from the calculation of the quantum limits and Hyper-Rayleigh scattering measurements. Different strategies for the enhancement of nonlinear behavior at the molecular and supramolecular level are evaluated and new paradigms for de design of more efficient nonlinear molecules are proposed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikheev, Evgeny; Himmetoglu, Burak; Kajdos, Adam P.

    We analyze and compare the temperature dependence of the electron mobility of two- and three-dimensional electron liquids in SrTiO{sub 3}. The contributions of electron-electron scattering must be taken into account to accurately describe the mobility in both cases. For uniformly doped, three-dimensional electron liquids, the room temperature mobility crosses over from longitudinal optical (LO) phonon-scattering-limited to electron-electron-scattering-limited as a function of carrier density. In high-density, two-dimensional electron liquids, LO phonon scattering is completely screened and the mobility is dominated by electron-electron scattering up to room temperature. The possible origins of the observed behavior and the consequences for approaches to improvemore » the mobility are discussed.« less

  13. Quantum Limits of Space-to-Ground Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Dolinar, S.

    2012-01-01

    Quantum limiting factors contributed by the transmitter, the optical channel, and the receiver of a space-to-ground optical communications link are described. Approaches to move toward the ultimate quantum limit are discussed.

  14. Coherently aligned nanoparticles within a biogenic single crystal: A biological prestressing strategy

    NASA Astrophysics Data System (ADS)

    Polishchuk, Iryna; Bracha, Avigail Aronhime; Bloch, Leonid; Levy, Davide; Kozachkevich, Stas; Etinger-Geller, Yael; Kauffmann, Yaron; Burghammer, Manfred; Giacobbe, Carlotta; Villanova, Julie; Hendler, Gordon; Sun, Chang-Yu; Giuffre, Anthony J.; Marcus, Matthew A.; Kundanati, Lakshminath; Zaslansky, Paul; Pugno, Nicola M.; Gilbert, Pupa U. P. A.; Katsman, Alex; Pokroy, Boaz

    2017-12-01

    In contrast to synthetic materials, materials produced by organisms are formed in ambient conditions and with a limited selection of elements. Nevertheless, living organisms reveal elegant strategies for achieving specific functions, ranging from skeletal support to mastication, from sensors and defensive tools to optical function. Using state-of-the-art characterization techniques, we present a biostrategy for strengthening and toughening the otherwise brittle calcite optical lenses found in the brittlestar Ophiocoma wendtii. This intriguing process uses coherent nanoprecipitates to induce compressive stresses on the host matrix, functionally resembling the Guinier-Preston zones known in classical metallurgy. We believe that these calcitic nanoparticles, being rich in magnesium, segregate during or just after transformation from amorphous to crystalline phase, similarly to segregation behavior from a supersaturated quenched alloy.

  15. Nonlinear optical studies of curcumin metal derivatives with cw laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henari, F. Z., E-mail: fzhenari@rcsi-mub.com; Cassidy, S.

    2015-03-30

    We report on measurements of the nonlinear refractive index and nonlinear absorption coefficients for curcumin and curcumin metal complexes of boron, copper, and iron at different wavelengths using the Z-scan technique. These materials are found to be novel nonlinear media. It was found that the addition of metals slightly influences its nonlinearity. These materials show a large negative nonlinear refractive index of the order of 10{sup −7} cm{sup 2}/W and negative nonlinear absorption of the order of 10{sup −6} cm/W. The origin of the nonlinearity was investigated by comparison of the formalism that is known as the Gaussian decomposition modelmore » with the thermal lens model. The optical limiting behavior based on the nonlinear refractive index was also investigated.« less

  16. Systematic study of the elastic, optoelectronic, and thermoelectric behavior of MRh2O4 (M = Zn, Cd) based on first principles calculations

    NASA Astrophysics Data System (ADS)

    Abbas, Syed Adeel; Rashid, Muhammad; Faridi, Muhammad Ayub; Saddique, Muhammad Bilal; Mahmood, Asif; Ramay, Shahid Muhammad

    2018-02-01

    In the present study, we performed first principles total energy calculations to explore the electronic, elastic, optical, and thermoelectric behavior of MRh2O4(M = Zn, Cd) spinel oxides. We employed Perdew-Burke-Ernzerhof-sol as well as the modified Becke and Johnson potential to compute the elastic, optoelectronic, and thermoelectric behavior of MRh2O4(M = Zn, Cd). The optical behavior was investigated by calculating the complex dielectric constant, refractive index, optical reflectivity, absorption coefficient, and optical conductivity. All of the optical parameters indicated a shift to lower energies as the atomic size increased from Zn to Cd, thereby suggesting potential applications of the spinel oxides in optoelectronic device. Moreover, the thermoelectric properties of MRh2O4(M = Zn, Cd) spinel oxides were computed in terms of the electrical conductivity (σ), Seebeck coefficient (S), thermal conductivity (k), and power factor (σS2) using the BoltzTraP code.

  17. Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis

    PubMed Central

    Liu, Han-Hsuan

    2016-01-01

    Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. SIGNIFICANCE STATEMENT Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual conditioning-induced behavioral plasticity in vivo. PMID:27383604

  18. Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis.

    PubMed

    Liu, Han-Hsuan; Cline, Hollis T

    2016-07-06

    Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual conditioning-induced behavioral plasticity in vivo. Copyright © 2016 the authors 0270-6474/16/367325-15$15.00/0.

  19. Flexible Near-Field Wireless Optoelectronics as Subdermal Implants for Broad Applications in Optogenetics.

    PubMed

    Shin, Gunchul; Gomez, Adrian M; Al-Hasani, Ream; Jeong, Yu Ra; Kim, Jeonghyun; Xie, Zhaoqian; Banks, Anthony; Lee, Seung Min; Han, Sang Youn; Yoo, Chul Jong; Lee, Jong-Lam; Lee, Seung Hee; Kurniawan, Jonas; Tureb, Jacob; Guo, Zhongzhu; Yoon, Jangyeol; Park, Sung-Il; Bang, Sang Yun; Nam, Yoonho; Walicki, Marie C; Samineni, Vijay K; Mickle, Aaron D; Lee, Kunhyuk; Heo, Seung Yun; McCall, Jordan G; Pan, Taisong; Wang, Liang; Feng, Xue; Kim, Tae-Il; Kim, Jong Kyu; Li, Yuhang; Huang, Yonggang; Gereau, Robert W; Ha, Jeong Sook; Bruchas, Michael R; Rogers, John A

    2017-02-08

    In vivo optogenetics provides unique, powerful capabilities in the dissection of neural circuits implicated in neuropsychiatric disorders. Conventional hardware for such studies, however, physically tethers the experimental animal to an external light source, limiting the range of possible experiments. Emerging wireless options offer important capabilities that avoid some of these limitations, but the current size, bulk, weight, and wireless area of coverage is often disadvantageous. Here, we present a simple but powerful setup based on wireless, near-field power transfer and miniaturized, thin, flexible optoelectronic implants, for complete optical control in a variety of behavioral paradigms. The devices combine subdermal magnetic coil antennas connected to microscale, injectable light-emitting diodes (LEDs), with the ability to operate at wavelengths ranging from UV to blue, green-yellow, and red. An external loop antenna allows robust, straightforward application in a multitude of behavioral apparatuses. The result is a readily mass-producible, user-friendly technology with broad potential for optogenetics applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Flexible near field wireless optoelectronics as subdermal implants for broad applications in optogenetics

    PubMed Central

    Shin, Gunchul; Gomez, Adrian M.; Al-Hasani, Ream; Jeong, Yu Ra; Kim, Jeonghyun; Xie, Zhaoqian; Banks, Anthony; Lee, Seung Min; Han, Sang Youn; Yoo, Chul Jong; Lee, Jong-Lam; Lee, Seung Hee; Kurniawan, Jonas; Tureb, Jacob; Guo, Zhongzhu; Yoon, Jangyeol; Park, Sung-Il; Bang, Sang Yun; Nam, Yoonho; Walicki, Marie C.; Samineni, Vijay K.; Mickle, Aaron D.; Lee, Kunhyuk; Heo, Seung Yun; McCall, Jordan G.; Pan, Taisong; Wang, Liang; Feng, Xue; Kim, Taeil; Kim, Jong Kyu; Li, Yuhang; Huang, Yonggang; Gereau, Robert W.; Ha, Jeong Sook; Bruchas, Michael R.; Rogers, John A.

    2017-01-01

    Summary In vivo optogenetics provides unique, powerful capabilities in the dissection of neural circuits implicated in neuropsychiatric disorders. Conventional hardware for such studies, however, physically tethers the experimental animal to an external light source limiting the range of possible experiments. Emerging wireless options offer important capabilities that avoid some of these limitations, but the current size, bulk, weight, and wireless area of coverage is often disadvantageous. Here, we present a simple but powerful setup based on wireless, near-field power transfer and miniaturized, thin flexible optoelectronic implants, for complete optical control in a variety of behavioral paradigms. The devices combine subdermal magnetic coil antennas connected to microscale, injectable LEDs, with the ability to operate at wavelengths ranging from ultraviolet to blue, green/yellow, and red. An external loop antenna allows robust, straightforward application in a multitude of behavioral apparatuses. The result is a readily mass-producible, user-friendly technology with broad potential for optogenetics applications. PMID:28132830

  1. Coherent Beam Combining of Fiber Amplifiers via LOCSET (Postprint)

    DTIC Science & Technology

    2012-07-10

    load on final optics , and atmospheric turbulence compensation [20]. More importantly, tiled array systems are being investigated for extension to...compactness, near diffraction limited beam quality, superior thermal- optical properties, and high optical to optical conversion efficiencies. Despite...including: compactness, near diffraction limited beam quality, superior thermal- optical properties, and high optical to optical conversion efficiencies

  2. Design of optical mirror structures

    NASA Technical Reports Server (NTRS)

    Soosaar, K.

    1971-01-01

    The structural requirements for large optical telescope mirrors was studied with a particular emphasis placed on the three-meter Large Space Telescope primary mirror. Analysis approaches through finite element methods were evaluated with the testing and verification of a number of element types suitable for particular mirror loadings and configurations. The environmental conditions that a mirror will experience were defined and a candidate list of suitable mirror materials with their properties compiled. The relation of the mirror mechanical behavior to the optical performance is discussed and a number of suitable design criteria are proposed and implemented. A general outline of a systematic method to obtain the best structure for the three-meter diffraction-limited system is outlined. Finite element programs, using the STRUDL 2 analysis system, were written for specific mirror structures encompassing all types of active and passive mirror designs. Parametric studies on support locations, effects of shear deformation, diameter to thickness ratios, lightweight and sandwich mirror configurations, and thin shell active mirror needs were performed.

  3. The effect of laser ablation parameters on optical limiting properties of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Gursoy, Irmak; Yaglioglu, Halime Gul

    2017-09-01

    This paper presents the effect of laser ablation parameters on optical limiting properties of silver nanoparticles. The current applications of lasers such as range finding, guidance, detection, illumination and designation have increased the potential of damaging optical imaging systems or eyes temporary or permanently. The applications of lasers introduce risks for sensors or eyes, when laser power is higher than damage threshold of the detection system. There are some ways to protect these systems such as neutral density (nd) filters, shutters, etc. However, these limiters reduce the total amount of light that gets into the system. Also, response time of these limiters may not be fast enough to prevent damage and cause precipitation in performance due to deprivation of transmission or contrast. Therefore, optical limiting filters are needed that is transparent for low laser intensities and limit or block the high laser intensities. Metal nanoparticles are good candidates for such optical limiting filters for ns pulsed lasers or CW lasers due to their high damage thresholds. In this study we investigated the optical limiting performances of silver nanoparticles produced by laser ablation technique. A high purity silver target immersed in pure water was ablated with a Nd:YAG nanosecond laser at 532 nm. The effect of altering laser power and ablation time on laser ablation efficiency of nanoparticles was investigated experimentally and optimum values were specified. Open aperture Zscan experiment was used to investigate the effect of laser ablation parameters on the optical limiting performances of silver nanoparticles in pure water. It was found that longer ablation time decreases the optical limiting threshold. These results are useful for silver nanoparticles solutions to obtain high performance optical limiters.

  4. Pore-level determination of spectral reflection behaviors of high-porosity metal foam sheets

    NASA Astrophysics Data System (ADS)

    Li, Yang; Xia, Xin-Lin; Ai, Qing; Sun, Chuang; Tan, He-Ping

    2018-03-01

    Open cell metal foams are currently attracting attention and their radiative behaviors are of primary importance in high temperature applications. The spectral reflection behaviors of high-porosity metal foam sheets, bidirectional reflectance distribution function (BRDF) and directional-hemispherical reflectivity were numerically investigated. A set of realistic nickel foams with porosity from 0.87 to 0.97 and pore density from 10 to 40 pores per inch were tomographied to obtain their 3-D digital cell network. A Monte Carlo ray-tracing method was employed in order to compute the pore-level radiative transfer inside the network within the limit of geometrical optics. The apparent reflection behaviors and their dependency on the textural parameters and strut optical properties were comprehensively computed and analysed. The results show a backward scattering of the reflected energy at the foam sheet surface. Except in the cases of large incident angles, an energy peak is located almost along the incident direction and increases with increasing incident angles. Through an analytical relation established, the directional-hemispherical reflectivity can be related directly to the porosity of the foam sheet and to the complex refractive index of the solid phase as well as the specularity parameter which characterizes the local reflection model. The computations show that a linear decrease in normal-hemispherical reflectivity occurs with increasing porosity. The rate of this decrease is directly proportional to the strut normal reflectivity. In addition, the hemispherical reflectivity increases as a power function of the incident angle cosine.

  5. The Untimely Demise of SN 2008S

    NASA Astrophysics Data System (ADS)

    Sugerman, Ben; Benge, Ashlee; Cosgrove, Andrew; Snyder, Kayla

    2016-01-01

    Supernova (SN) 2008S in the "Fireworks Galaxy" (NGC 6946) has been enigmatic ever since its initial outburst was discovered in Feb 1, 2008. Initially classified a Type IIn due to early spectral features, it's subsequent spectral and photometric behavior over the first ~200 days led to two divergent explanations for the event. Citing photometric behavior atypical for any known explosion mechanisms, some have concluded this was "supernova imposter," such as a giant eruption in a massive Luminous Blue Variable star. Others report that its evolution was in fact consistent with the faintest Type-IIP SNe, which combined with the discovery of an intermediate-mass progenitor in mid-IR imaging, led to the conclusion that it was an electron-capture SN. Using a combination of ground-based, Hubble Space Telescope optical and near-infrared, and Spitzer Space Telescope mid-infrared imaging, we have traced the optical-through-infrared evolution of the SN from outburst to disappearance by 2014. We show that the limited intermediate-time optical data are consistent with radioactive 56-Co decay, however there are not enough late-time observations to assert with confidence whether or not the light curve supports a supernova hypothesis. We also show that the mid-infrared source identified as the progenitor is still present after the disappearance of the SN, suggesting either that this source is unrelated to the progenitor, or that the progenitor has returned to its pre-outburst state.

  6. Cluster Dynamical Mean Field Methods and the Momentum-selective Mott transition

    NASA Astrophysics Data System (ADS)

    Gull, Emanuel

    2011-03-01

    Innovations in methodology and computational power have enabled cluster dynamical mean field calculations of the Hubbard model with interaction strengths and band structures representative of high temperature copper oxide superconductors, for clusters large enough that the thermodyamic limit behavior may be determined. We present the methods and show how extrapolations to the thermodynamic limit work in practice. We show that the Hubbard model with next-nearest neighbor hopping at intermediate interaction strength captures much of the exotic behavior characteristic of the high temperature superconductors. An important feature of the results is a pseudogap for hole doping but not for electron doping. The pseudogap regime is characterized by a gap for momenta near Brillouin zone face and gapless behavior near the zone diagonal. for dopings outside of the pseudogap regime we find scattering rates which vary around the fermi surface in a way consistent with recent transport measurements. Using the maximum entropy method we calculate spectra, self-energies, and response functions for Raman spectroscopy and optical conductivities, finding results also in good agreement with experiment. Olivier Parcollet, Philipp Werner, Nan Lin, Michel Ferrero, Antoine Georges, Andrew J. Millis; NSF-DMR-0705847.

  7. Role of quantum coherence in shaping the line shape of an exciton interacting with a spatially and temporally correlated bath

    PubMed Central

    Dutta, Rajesh; Bagchi, Kaushik

    2017-01-01

    Kubo’s fluctuation theory of line shape forms the backbone of our understanding of optical and vibrational line shapes, through such concepts as static heterogeneity and motional narrowing. However, the theory does not properly address the effects of quantum coherences on optical line shape, especially in extended systems where a large number of eigenstates are present. In this work, we study the line shape of an exciton in a one-dimensional lattice consisting of regularly placed and equally separated optical two level systems. We consider both linear array and cyclic ring systems of different sizes. Detailed analytical calculations of line shape have been carried out by using Kubo’s stochastic Liouville equation (SLE). We make use of the observation that in the site representation, the Hamiltonian of our system with constant off-diagonal coupling J is a tridiagonal Toeplitz matrix (TDTM) whose eigenvalues and eigenfunctions are known analytically. This identification is particularly useful for long chains where the eigenvalues of TDTM help understanding crossover between static and fast modulation limits. We summarize the new results as follows. (i) In the slow modulation limit when the bath correlation time is large, the effects of spatial correlation are not negligible. Here the line shape is broadened and the number of peaks increases beyond the ones obtained from TDTM (constant off-diagonal coupling element J and no fluctuation). (ii) However, in the fast modulation limit when the bath correlation time is small, the spatial correlation is less important. In this limit, the line shape shows motional narrowing with peaks at the values predicted by TDTM (constant J and no fluctuation). (iii) Importantly, we find that the line shape can capture that quantum coherence affects in the two limits differently. (iv) In addition to linear chains of two level systems, we also consider a cyclic tetramer. The cyclic polymers can be designed for experimental verification. (v) We also build a connection between line shape and population transfer dynamics. In the fast modulation limit, both the line shape and the population relaxation, for both correlated and uncorrelated bath, show similar behavior. However, in slow modulation limit, they show profoundly different behavior. (vi) This study explains the unique role of the rate of fluctuation (inverse of the bath correlation time) in the sustenance and propagation of coherence. We also examine the effects of off-diagonal fluctuation in spectral line shape. Finally, we use Tanimura-Kubo formalism to derive a set of coupled equations to include temperature effects (partly neglected in the SLE employed here) and effects of vibrational mode in energy transfer dynamics. PMID:28527457

  8. 3D vertical nanostructures for enhanced infrared plasmonics.

    PubMed

    Malerba, Mario; Alabastri, Alessandro; Miele, Ermanno; Zilio, Pierfrancesco; Patrini, Maddalena; Bajoni, Daniele; Messina, Gabriele C; Dipalo, Michele; Toma, Andrea; Proietti Zaccaria, Remo; De Angelis, Francesco

    2015-11-10

    The exploitation of surface plasmon polaritons has been mostly limited to the visible and near infrared range, due to the low frequency limit for coherent plasmon excitation and the reduction of confinement on the metal surface for lower energies. In this work we show that 3D--out of plane--nanostructures can considerably increase the intrinsic quality of the optical output, light confinement and electric field enhancement factors, also in the near and mid-infrared. We suggest that the physical principle relies on the combination of far field and near field interactions between neighboring antennas, promoted by the 3D out-of-plane geometry. We first analyze the changes in the optical behavior, which occur when passing from a single on-plane nanostructure to a 3D out-of-plane configuration. Then we show that by arranging the nanostructures in periodic arrays, 3D architectures can provide, in the mid-IR, a much stronger plasmonic response, compared to that achievable with the use of 2D configurations, leading to higher energy harvesting properties and improved Q-factors, with bright perspective up to the terahertz range.

  9. Gregorian optical system with non-linear optical technology for protection against intense optical transients

    DOEpatents

    Ackermann, Mark R [Albuquerque, NM; Diels, Jean-Claude M [Albuquerque, NM

    2007-06-26

    An optical system comprising a concave primary mirror reflects light through an intermediate focus to a secondary mirror. The secondary mirror re-focuses the image to a final image plane. Optical limiter material is placed near the intermediate focus to optically limit the intensity of light so that downstream components of the optical system are protected from intense optical transients. Additional lenses before and/or after the intermediate focus correct optical aberrations.

  10. Interaction of ultrashort laser pulses with epsilon-near-zero materials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Boyd, Robert W.

    2017-05-01

    Abstract: The nonlinear optical response of a material is conventionally assumed to be very much smaller than its linear response. Here we report that the nonlinear contribution to the refractive index of a sample of indium-tin oxide can be much larger than the linear contribution when the optical wavelength is close to the material's bulk plasma wavelength, where the material exhibits epsilon-near-zero behavior. In particular, we demonstrate that a change in refractive index as large as 0.7 can be obtained in an ultra-thin indium-tin oxide film using an optical intensity of 140 GW/cm2. Nonlinear optical phenomena result from the light-induced modification of the optical properties of a material lead to a broad range of applications, including microscopy, all-optical data processing, and quantum information. However, nonlinear (NL) effects are typically extremely weak. The size of nonlinear effects is typically limited by the largest intensity that can be used without permanently damaging of the material. Consequently, the resulting change in refractive index is typically of the order of 0.001 or smaller. A long-standing goal of nonlinear optics (NLO) has been the development of materials that can display a light-induced change in the refractive index of the order of unity. Such materials would lead to exciting new applications of NLO. Indeed, much effort in the fields of plasmonics and metamaterials is devoted to the development of such materials. Furthermore, it has been suggested that materials with vanishing permittivity, commonly known as epsilon-nearzero (ENZ) materials, can be used to induce highly nonlinear phenomena and unusual phase-matching behavior. In this work, we describe our studies of indium-tin oxide (ITO) at its ENZ wavelength, and we demonstrate a refractive index change of 0.7. Materials possessing free charges, such as metals and doped semiconductors, exhibit a vanishing permittivity at the bulk plasmon wavelength. The zero-permittivity wavelength in doped semiconductors typically lies at infrared wavelengths and can be fine tuned by controlling the level of doping. Here we study the case of an ultra-thin layer of ITO exhibiting ENZ behavior at wavelengths around 1.24 µm. We show that in this spectral region the nonlinear response (intensity-dependent change in refractive index, Δn) is enhanced approximately 2000-fold with respect to that observed at shorter wavelengths and that a Δn of the order of unity can be observed.

  11. Mechanical Behavior of Al-SiC Nanolaminate Composites Using Micro-Scale Testing Methods

    NASA Astrophysics Data System (ADS)

    Mayer, Carl Randolph

    Nanolaminate composite materials consist of alternating layers of materials at the nanoscale (≤100 nm). Due to the nanometer scale thickness of their layers, these materials display unique and tailorable properties. This enables us to alter both mechanical attributes such as strength and wear properties, as well as functional characteristics such as biocompatibility, optical, and electronic properties. This dissertation focuses on understanding the mechanical behavior of the Al-SiC system. From a practical perspective, these materials exhibit a combination of high toughness and strength which is attractive for many applications. Scientifically, these materials are interesting due to the large elastic modulus mismatch between the layers. This, paired with the small layer thickness, allows a unique opportunity for scientists to study the plastic deformation of metals under extreme amounts of constraint. Previous studies are limited in scope and a more diverse range of mechanical characterization is required to understand both the advantages and limitations of these materials. One of the major challenges with testing these materials is that they are only able to be made in thicknesses on the order of micrometers so the testing methods are limited to small volume techniques. This work makes use of both microscale testing techniques from the literature as well as novel methodologies. Using these techniques we are able to gain insight into aspects of the material's mechanical behavior such as the effects of layer orientation, flaw dependent fracture, tension-compression asymmetry, fracture toughness as a function of layer thickness, and shear behavior as a function of layer thickness.

  12. Chip-integrated optical power limiter based on an all-passive micro-ring resonator

    NASA Astrophysics Data System (ADS)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang

    2014-10-01

    Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.

  13. IR Reflectance Properties Of Weakly And Strongly Absorbing Surface Films

    NASA Astrophysics Data System (ADS)

    Yen, Yu-Sze; Wong, James S.

    1989-12-01

    In an external reflection measurement, the optical properties of a surface film can give rise to a variety of spectral behavior on metallic and nonmetallic substrates. The diversity of behavior can be explained by the presence of transverse optical (TO) and longitudinal optical (LO) bands of the film in the infrared region. The excitation modes associated with these bands are directional with respect to the plane of the surface. Spectral interpretation is facilitated by understanding the roles of the TO and LO bands in reflectance spectra, the substrate selection rules for the appearance of these bands, and the relationship between the TO and LO frequencies. We will show that weakly absorbing films have a simpler optical behavior than strongly absorbing films.

  14. Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator.

    PubMed

    Fernández, Enrique J; Prieto, Pedro M; Artal, Pablo

    2009-06-22

    Liquid crystal on Silicon (LCOS) spatial phase modulators offer enhanced possibilities for adaptive optics applications in terms of response velocity and fidelity. Unlike deformable mirrors, they present a capability for reproducing discontinuous phase profiles. This ability also allows an increase in the effective stroke of the device by means of phase wrapping. The latter is only limited by the diffraction related effects that become noticeable as the number of phase cycles increase. In this work we estimated the ranges of generation of the Zernike polynomials as a means for characterizing the performance of the device. Sets of images systematically degraded with the different Zernike polynomials generated using a LCOS phase modulator have been recorded and compared with their theoretical digital counterparts. For each Zernike mode, we have found that image degradation reaches a limit for a certain coefficient value; further increase in the aberration amount has no additional effect in image quality. This behavior is attributed to the intensification of the 0-order diffraction. These results have allowed determining the usable limits of the phase modulator virtually free from diffraction artifacts. The results are particularly important for visual simulation and ophthalmic testing applications, although they are equally interesting for any adaptive optics application with liquid crystal based devices.

  15. Spectral engineering of optical fiber through active nanoparticle doping

    NASA Astrophysics Data System (ADS)

    Lindstrom-James, Tiffany

    The spectral engineering of optical fiber is a method of intentional doping of the core region in order to absorb/emit specific wavelengths of light therby providing enhanced performance over current fibers. Efforts here focused on developing an understanding of optically active nanoparticles based on alkaline earth fluorides that could be easily and homogeneously incorporated into the core of a silica based optical fiber preform and result in efficient and tailorable spectral emissions. Doped and undoped calcium, strontium and barium fluoride nanoparticles were successfully synthesized and characterized for their physical, chemical, and optical behavior. Distinct spectroscopic differences as a result of different host materials, varying rare earth doping levels and processing conditions, indicated the ability to influence the spectral behavior of the doped nanoparticle. By using photoluminescence to predict diffusion behavior, the application of a simple one dimensional model for diffusion provided a method for predicting the diffusion coefficient of europium ions in alkaline earth fluorides with order of magnitude accuracy. Modified chemical vapor deposition derived silica preforms were individually solution doped with europium doped alkaline earth fluoride nanoparticles. By using the rare earth doped alkaline earth fluoride nanoparticles as the dopant materials in the core of optical fiber preforms, the resultant optical properties of the glass were significantly influenced by their presence in the core. The incorporation of these rare earth doped alkaline earth fluoride nanoparticles was found to significantly influence the local chemical and structural environment about the rare earth ion, demonstrated homogeneity and uniform distribution of the rare earth dopant and resulted in specifically unique spectral behavior when compared to conventional doping methods. A more detailed structural model of the doped core glass region has been developed based on the spectral behavior of these active fiber preforms. It has been shown that rare earth doping of alkaline earth fluoride nanoparticles provides a material which can be 'tuned' to specific applications through the use of different host materials, processing conditions and doping levels of the rare earth and when used as dopant materials for active optical fibers, provides a means to tailor the optical behavior.

  16. Optothermal transport behavior in whispering gallery mode optical cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltani, Soheil; Armani, Andrea M., E-mail: armani@usc.edu; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089

    Over the past century, whispering gallery mode optical cavities have enabled numerous advances in science and engineering, such as discoveries in quantum mechanics and non-linear optics, as well as the development of optical gyroscopes and add drop filters. One reason for their widespread appeal is their ability to confine light for long periods of time, resulting in high circulating intensities. However, when sufficiently large amounts of optical power are coupled into these cavities, they begin to experience optothermal or photothermal behavior, in which the optical energy is converted into heat. Above the optothermal threshold, the resonance behavior is no longermore » solely defined by electromagnetics. Previous work has primarily focused on the role of the optothermal coefficient of the material in this instability. However, the physics of this optothermal behavior is significantly more complex. In the present work, we develop a predictive theory based on a generalizable analytical expression in combination with a geometry-specific COMSOL Multiphysics finite element method model. The simulation couples the optical and thermal physics components, accounting for geometry variations as well as the temporal and spatial profile of the optical field. To experimentally verify our theoretical model, the optothermal thresholds of a series of silica toroidal resonant cavities are characterized at different wavelengths (visible through near-infrared) and using different device geometries. The silica toroid offers a particularly rigorous case study for the developed optothermal model because of its complex geometrical structure which provides multiple thermal transport paths.« less

  17. New solutions to realize complex optical systems by a combination of diffractive and refractive optical components

    NASA Astrophysics Data System (ADS)

    Brunner, Robert; Steiner, Reinhard; Dobschal, Hans-Juergen; Martin, Dietrich; Burkhardt, Matthias; Helgert, Michael

    2003-11-01

    Diffractive optical elements (DOEs) have a great potential in the complete or partial substitution of refractive or reflective optical elements in imaging systems. The greater design flexibility compared to an all-refractive/reflective solution allows a more convenient realization of the optical systems and additionally opens up new possibilities for optimizing the performance or compactness. To demonstrate the opportunities of the hybrid optical concept we discuss different imaging systems for various applications. We present the lens design of a hybrid microscope objective which is especially applicable for wafer inspection technologies. Meeting the requirements for such a system used in the deep-UV regime (248 nm) is very challenging. The short wavelength limits the material selection and demands cement free optical groups. The additional requirement of an autofocus system, working at a wavelength in the near infrared region, is fulfilled by the special combination of two selected and adjusted DOEs. Furthermore, we discuss the opportunities of the hybrid concept c of a slit lamp used for ophthalmologic examinations. The DOEs are the basic elements of this hybrid concept. We demonstrate that holographic lithography is an appropriate technology to realize a wide variety of elements with different profile geometries. We address in particular the additional possibilities of an UV-laser system as an exposure tool. Additionally to the high spatial frequencies, the 266 nm exposure wavelength allows the use of novel photo resists with advantageous development behavior.

  18. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.

    PubMed

    Gabor, Nathaniel M

    2013-06-18

    In semiconductor photovoltaics, photoconversion efficiency is governed by a simple competition: the incident photon energy is either transferred to the crystal lattice (heat) or transferred to electrons. In conventional materials, energy loss to the lattice is more efficient than energy transferred to electrons, thus limiting the power conversion efficiency. Quantum electronic systems, such as quantum dots, nanowires, and two-dimensional electronic membranes, promise to tip the balance in this competition by simultaneously limiting energy transfer to the lattice and enhancing energy transfer to electrons. By exploring the optical, thermal, and electronic properties of quantum materials, we may perhaps find an ideal optoelectronic material that provides low cost fabrication, facile systems integration, and a means to surpass the standard limit for photoconversion efficiency. Nanoscale carbon materials, such as graphene and carbon nanotubes, provide ideal experimental quantum systems in which to explore optoelectronic behavior for applications in solar energy harvesting. Within essentially the same material, researchers can achieve a broad spectrum of energetic configurations, from a gapless semimetal to a large band-gap semiconducting nanowire. Owing to their nanoscale dimensions, graphene and carbon nanotubes exhibit electronic and optical properties that reflect strong electron-electron interactions. Such strong interactions may lead to exotic low-energy electron transport behavior and high-energy electron scattering processes such as impact excitation and the inverse process of Auger recombination. High-energy processes, which become very important under photoexcitation, may be particularly efficient in nanoscale carbon materials due to the relativistic-like, charged particle band structure and sensitivity to the dielectric environment. In addition, due to the covalently bonded carbon framework that makes up these materials, electron-phonon coupling is very weak. In carbon nanomaterials, strong electron-electron interactions combined with weak electron-phonon interactions results in excellent optical, thermal and electronic properties, the exploration of which promises to reveal fundamentally new physical processes and deliver advanced nanotechnologies. In this Account, we review the results of novel optoelectronic experiments that explore the intrinsic photoresponse of carbon nanomaterials integrated into nanoscale devices. By fabricating gate voltage-controlled photodetectors composed of atomically thin sheets of graphene and individual carbon nanotubes, we are able to fully explore electron transport in these systems under optical illumination. We find that strong electron-electron interactions play a key role in the intrinsic photoresponse of both materials, as evidenced by hot carrier transport in graphene and highly efficient multiple electron-hole pair generation in nanotubes. In both of these quantum systems, photoexcitation leads to high-energy electron-hole pairs that relax energy predominantly into the electronic system, rather than heating the lattice. Due to highly efficient energy transfer from photons into electrons, graphene and carbon nanotubes may be ideal materials for solar energy harvesting devices with efficiencies that could exceed the Shockley-Queisser limit.

  19. Optical limiting properties of optically active phthalocyanine derivatives

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhang, Shuang; Wu, Peiji; Ye, Cheng; Liu, Hongwei; Xi, Fu

    2001-06-01

    The optical limiting properties of four optically active phthalocyanine derivatives in chloroform solutions and epoxy resin thin plates were measured at 532 nm with 10 ns pulses. The excited state absorption cross-section σex and refractive-index cross-section σr were determined with the Z-scan technique. These chromophores possess larger σex than the ground state absorption cross-section σ0, indicating that they are the potential materials for reverse saturable absorption (RSA). The negative σr values of these chromophores add to the thermal contribution, producing a larger defocusing effect, which may be helpful in further enhancing their optical limiting performance. The optical limiting responses of the thin plate samples are stronger than those of the chloroform solutions.

  20. Optical assessment of tissue mechanics: acousto-optical elastography of skin

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Sean J.

    2003-10-01

    A multiphysics approach, combining acoustics, optics, and mechanics can be used to detect regions of skin with distinct mechanical behavior that may indicate a pathology, such as a cancerous skin lesion. Herein, an acousto - optical approach to evaluating the viscoelastic behavior of superficial skin layers will be presented. The method relies upon inducing low frequency guided surface waves in the skin and detecting these waves by monitoring the shift in the backscattered laser speckle pattern created by illuminating a small region of the skin with coherent light. Artificial lesions in the form of chemical cross-linking and chemical softening were induced in superficial porcine skin layers and detected based upon variations in local mechanical behavior. The lesions affect not only the time-of-flight of the guided surface waves, but also change the relative phase of the acoustic waves as determined optically. The method may be applicable in the study and diagnosis of superficial skin lesions.

  1. Pressure dependence of the optical properties of the charge-density-wave compound LaTe2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavagnini, M.; Sacchetti, A.; Degiorgi, L.

    2009-12-14

    We report the pressure dependence of the optical response of LaTe{sub 2}, which is deep in the charge-density-wave (CDW) ground state even at 300 K. The reflectivity spectrum is collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 7 GPa. We extract the energy scale due to the single particle excitation across the CDW gap and the Drude weight. We establish that the gap decreases upon compressing the lattice, while the Drude weight increases. This signals a reduction in the quality of nesting upon applying pressure, therefore inducing a lesser impact of the CDWmore » condensate on the electronic properties of LaTe{sub 2}. The consequent suppression of the CDW gap leads to a release of additional charge carriers, manifested by the shift of weight from the gap feature into the metallic component of the optical response. On the contrary, the power-law behavior, seen in the optical conductivity at energies above the gap excitation and indicating a weakly interacting limit within the Tomonaga-Luttinger liquid scenario, seems to be only moderately dependent on pressure.« less

  2. Tunable optical and excitonic properties of phosphorene via oxidation

    NASA Astrophysics Data System (ADS)

    Sadki, S.; Drissi, L. B.

    2018-06-01

    The optical properties and excitonic wave function of phosphorene oxides (PO) are studied using the first principle many-body Green function and the Bethe–Salpeter equation formalism. In this work, the optical properties are determined using ab initio calculations of the dielectric function. At the long wavelength limit q of EM wave (i.e. ), the dielectric function, the absorption spectrum, the lectivity, the electron energy loss spectra (EELS) and the wave function are calculated. The results show an excitonic binding energy of 818 meV with a bright exciton located in the armchair direction in pristine phosphorene. For PO, the arrangement of the oxygen atoms significantly influences the optical properties. In particular, the absorption spectrum is extended along the solar spectrum, with a high absorption coefficient observed in the dangling structures. The maximum lectivity values are observed for the high energies of the light spectrum. Moreover, the first EELS peak is located in the visible region in all the structures except for one configuration that exhibits the same behavior as pure phosphorene. Finally, the exciton effect reveals that all PO conformers have a dark exciton state, which is suitable for long-lived applications.

  3. Aperture Array Photonic Metamaterials: Theoretical approaches, numerical techniques and a novel application

    NASA Astrophysics Data System (ADS)

    Lansey, Eli

    Optical or photonic metamaterials that operate in the infrared and visible frequency regimes show tremendous promise for solving problems in renewable energy, infrared imaging, and telecommunications. However, many of the theoretical and simulation techniques used at lower frequencies are not applicable to this higher-frequency regime. Furthermore, technological and financial limitations of photonic metamaterial fabrication increases the importance of reliable theoretical models and computational techniques for predicting the optical response of photonic metamaterials. This thesis focuses on aperture array metamaterials. That is, a rectangular, circular, or other shaped cavity or hole embedded in, or penetrating through a metal film. The research in the first portion of this dissertation reflects our interest in developing a fundamental, theoretical understanding of the behavior of light's interaction with these aperture arrays, specifically regarding enhanced optical transmission. We develop an approximate boundary condition for metals at optical frequencies, and a comprehensive, analytical explanation of the physics underlying this effect. These theoretical analyses are augmented by computational techniques in the second portion of this thesis, used both for verification of the theoretical work, and solving more complicated structures. Finally, the last portion of this thesis discusses the results from designing, fabricating and characterizing a light-splitting metamaterial.

  4. Emergent Optical Phononic Modes upon Nanoscale Mesogenic Phase Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolmatov, Dima; Zhernenkov, Mikhail; Sharpnack, Lewis

    The investigation of phononic collective excitations in soft matter systems at the molecular scale has always been challenging due to limitations of experimental techniques in resolving low-energy modes. Recent advances in inelastic X-ray scattering (IXS) enabled the study of such systems with unprecedented spectral contrast at meV excitation energies. In particular, it has become possible to shed light on the low-energy collective motions in materials whose morphology and phase behavior can easily be manipulated, such as mesogenic systems. The understanding of collective mode behavior with a Q-dependence is the key to implement heat management based on the control of amore » sample structure. The latter has great potential for a large number of energy-inspired innovations. As a first step toward this goal, we carried out high contrast IXS measurements on a liquid crystal sample, D7AOB, which exhibits solid-like dynamic features, such as the coexistence of longitudinal and transverse phononic modes. For the first time, we found that these terahertz phononic excitations persist in the crystal, smectic A, and isotropic phases. Furthermore, the intermediate smectic A phase is shown to support a van der Waals-mediated nonhydrodynamic mode with an optical-like phononic behavior. In conclusion, the tunability of the collective excitations at nanometer–terahertz scales via selection of the sample mesogenic phase represents a new opportunity to manipulate optomechanical properties of soft metamaterials.« less

  5. Emergent Optical Phononic Modes upon Nanoscale Mesogenic Phase Transitions

    DOE PAGES

    Bolmatov, Dima; Zhernenkov, Mikhail; Sharpnack, Lewis; ...

    2017-05-26

    The investigation of phononic collective excitations in soft matter systems at the molecular scale has always been challenging due to limitations of experimental techniques in resolving low-energy modes. Recent advances in inelastic X-ray scattering (IXS) enabled the study of such systems with unprecedented spectral contrast at meV excitation energies. In particular, it has become possible to shed light on the low-energy collective motions in materials whose morphology and phase behavior can easily be manipulated, such as mesogenic systems. The understanding of collective mode behavior with a Q-dependence is the key to implement heat management based on the control of amore » sample structure. The latter has great potential for a large number of energy-inspired innovations. As a first step toward this goal, we carried out high contrast IXS measurements on a liquid crystal sample, D7AOB, which exhibits solid-like dynamic features, such as the coexistence of longitudinal and transverse phononic modes. For the first time, we found that these terahertz phononic excitations persist in the crystal, smectic A, and isotropic phases. Furthermore, the intermediate smectic A phase is shown to support a van der Waals-mediated nonhydrodynamic mode with an optical-like phononic behavior. In conclusion, the tunability of the collective excitations at nanometer–terahertz scales via selection of the sample mesogenic phase represents a new opportunity to manipulate optomechanical properties of soft metamaterials.« less

  6. Wear behavior of austenite containing plate steels

    NASA Astrophysics Data System (ADS)

    Hensley, Christina E.

    As a follow up to Wolfram's Master of Science thesis, samples from the prior work were further investigated. Samples from four steel alloys were selected for investigation, namely AR400F, 9260, Hadfield, and 301 Stainless steels. AR400F is martensitic while the Hadfield and 301 stainless steels are austenitic. The 9260 exhibited a variety of hardness levels and retained austenite contents, achieved by heat treatments, including quench and tempering (Q&T) and quench and partitioning (Q&P). Samples worn by three wear tests, namely Dry Sand/Rubber Wheel (DSRW), impeller tumbler impact abrasion, and Bond abrasion, were examined by optical profilometry. The wear behaviors observed in topography maps were compared to the same in scanning electron microscopy micrographs and both were used to characterize the wear surfaces. Optical profilometry showed that the scratching abrasion present on the wear surface transitioned to gouging abrasion as impact conditions increased (i.e. from DSRW to impeller to Bond abrasion). Optical profilometry roughness measurements were also compared to sample hardness as well as normalized volume loss (NVL) results for each of the three wear tests. The steels displayed a relationship between roughness measurements and observed wear rates for all three categories of wear testing. Nanoindentation was used to investigate local hardness changes adjacent to the wear surface. DSRW samples generally did not exhibit significant work hardening. The austenitic materials exhibited significant hardening under the high impact conditions of the Bond abrasion wear test. Hardening in the Q&P materials was less pronounced. The Q&T microstructures also demonstrated some hardening. Scratch testing was performed on samples at three different loads, as a more systematic approach to determining the scratching abrasion behavior. Wear rates and scratch hardness were calculated from scratch testing results. Certain similarities between wear behavior in scratch testing and DSRW samples were observed. Different microstructures exhibited different scratching behaviors. Martensitic microstructures exhibited chipping and cracking, whereas Q&P microstructures exhibited limited or no chipping. The Q&P samples exhibited more deformation at greater loads and hardness levels than the martensitic microstructures. Austenitic microstructures exhibited significant deformation adjacent to the scratches.

  7. Tunable microwave generation of a monolithic dual-wavelength distributed feedback laser.

    PubMed

    Lo, Yen-Hua; Wu, Yu-Chang; Hsu, Shun-Chieh; Hwang, Yi-Chia; Chen, Bai-Ci; Lin, Chien-Chung

    2014-06-02

    The dynamic behavior of a monolithic dual-wavelength distributed feedback laser was fully investigated and mapped. The combination of different driving currents for master and slave lasers can generate a wide range of different operational modes, from single mode, period 1 to chaos. Both the optical and microwave spectrum were recorded and analyzed. The detected single mode signal can continuously cover from 15GHz to 50GHz, limited by photodetector bandwidth. The measured optical four-wave-mixing pattern indicates that a 70GHz signal can be generated by this device. By applying rate equation analysis, the important laser parameters can be extracted from the spectrum. The extracted relaxation resonant frequency is found to be 8.96GHz. With the full operational map at hand, the suitable current combination can be applied to the device for proper applications.

  8. Noise analysis for CCD-based ultraviolet and visible spectrophotometry.

    PubMed

    Davenport, John J; Hodgkinson, Jane; Saffell, John R; Tatam, Ralph P

    2015-09-20

    We present the results of a detailed analysis of the noise behavior of two CCD spectrometers in common use, an AvaSpec-3648 CCD UV spectrometer and an Ocean Optics S2000 Vis spectrometer. Light sources used include a deuterium UV/Vis lamp and UV and visible LEDs. Common noise phenomena include source fluctuation noise, photoresponse nonuniformity, dark current noise, fixed pattern noise, and read noise. These were identified and characterized by varying light source, spectrometer settings, or temperature. A number of noise-limiting techniques are proposed, demonstrating a best-case spectroscopic noise equivalent absorbance of 3.5×10(-4)  AU for the AvaSpec-3648 and 5.6×10(-4)  AU for the Ocean Optics S2000 over a 30 s integration period. These techniques can be used on other CCD spectrometers to optimize performance.

  9. Optical limiting materials

    DOEpatents

    McBranch, Duncan W.; Mattes, Benjamin R.; Koskelo, Aaron C.; Heeger, Alan J.; Robinson, Jeanne M.; Smilowitz, Laura B.; Klimov, Victor I.; Cha, Myoungsik; Sariciftci, N. Serdar; Hummelen, Jan C.

    1998-01-01

    Optical limiting materials. Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO.sub.2) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400-1100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes.

  10. Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages

    NASA Astrophysics Data System (ADS)

    Zheng, Chan; Huang, Jiaxin; Lei, Li; Chen, Wenzhe; Wang, Haiyan; Li, Wei

    2018-01-01

    Gold nanocages (NCs) were prepared using the galvanic replacement reaction. Transmission electron microscopy images confirmed the porous morphology and completely hollow interior of the gold NCs. The nanosecond nonlinear optical and optical limiting (OL) properties of the NCs were characterized using the open-aperture Z-scan technique with 8-ns laser pulses at 532 nm. The gold NCs exhibited intensity-dependent transformation from saturable absorption to reverse-saturable absorption. The nonlinear absorption coefficient and saturable energy of the NCs were 5 × 10- 12 m/W and 2.5 × 1010 W/m2, respectively. Meanwhile, the gold NCs were found to display strong OL properties towards nanosecond laser pulses. The OL threshold of the gold NCs was lower than that of solid gold nanoparticles and comparable with that of a carbon nanotube suspension. Input fluence and angle-dependent scattering measurements indicated that nonlinear scattering plays an important role in the OL behavior of the gold nanostructures at high laser excitation. The improved OL response in gold NCs was discussed from the viewpoint of structural characteristic. The ultrathin and highly porous walls of the gold NCs can effectively transfer the photon-induced heat to the surrounding solvent, resulting in enhanced OL properties compared with those of solid gold nanoparticles. The intensity-dependent transformation from saturable absorption to reverse-saturable absorption and excellent OL response indicate that the smart gold NCs with ultrathin and highly porous walls can be considered as potential candidate in pulse shaping, passive mode locking, and eye protection against powerful lasers.

  11. Heterogeneous Mixtures as NLO Christiansen Filters for Optical Limiting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Exarhos, Gregory J.; Ferris, Kim F.; Samuels, William D.

    Mixtures of two non-absorbing and index-matched materials with contrasting nonlinear optical response have been shown to optically limit above a critical fluence of pulsed nanosecond laser light. Under these conditions, index mismatch is induced between the disparate phases leading to strong Tyndall scattering. The effect has been demonstrated previously by the authors in both solid-liquid mixtures (hexadecane and calcium fluoride), and surfactant-stabilized liquid-liquid emulsions consisting of dichloroethane as the organic phase and a concentrated aqueous phase of sodium thiocyanate (NaSCN). Materials used in these studies exhibit low absorption coefficients over extended wavelength regions allowing for a broadband response of themore » limiter. Recently, limiting has been observed at 532 nm in a polymer composite consisting of barium fluoride and poly-(n-butyl acrylate). A modified open-aperture z-scan method was used to quantify optical limiter performance in this system. Modeling studies provide the basis for designing optical limiters based upon this light scattering mechanism and show the importance of size resonance and constituent optical properties on limiter performance.« less

  12. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    PubMed Central

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-01-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing. PMID:26349444

  13. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-09-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.

  14. Vibration (?) spikes during natural rain events

    NASA Technical Reports Server (NTRS)

    Short, David A.

    1994-01-01

    Limited analysis of optical rain gauge (ORG) data from shipboard and ground based sensors has shown the existence of spikes, possibly attributable to sensor vibration, while rain is occurring. An extreme example of this behavior was noted aboard the PRC#5 on the evening of December 24, 1992 as the ship began repositioning during a rain event in the TOGA/COARE IFA. The spikes are readily evident in the one-second resolution data, but may be indistinguishable from natural rain rate fluctuations in subsampled or averaged data. Such spikes result in increased rainfall totals.

  15. Tracking the eye non-invasively: simultaneous comparison of the scleral search coil and optical tracking techniques in the macaque monkey

    PubMed Central

    Kimmel, Daniel L.; Mammo, Dagem; Newsome, William T.

    2012-01-01

    From human perception to primate neurophysiology, monitoring eye position is critical to the study of vision, attention, oculomotor control, and behavior. Two principal techniques for the precise measurement of eye position—the long-standing sclera-embedded search coil and more recent optical tracking techniques—are in use in various laboratories, but no published study compares the performance of the two methods simultaneously in the same primates. Here we compare two popular systems—a sclera-embedded search coil from C-N-C Engineering and the EyeLink 1000 optical system from SR Research—by recording simultaneously from the same eye in the macaque monkey while the animal performed a simple oculomotor task. We found broad agreement between the two systems, particularly in positional accuracy during fixation, measurement of saccade amplitude, detection of fixational saccades, and sensitivity to subtle changes in eye position from trial to trial. Nonetheless, certain discrepancies persist, particularly elevated saccade peak velocities, post-saccadic ringing, influence of luminance change on reported position, and greater sample-to-sample variation in the optical system. Our study shows that optical performance now rivals that of the search coil, rendering optical systems appropriate for many if not most applications. This finding is consequential, especially for animal subjects, because the optical systems do not require invasive surgery for implantation and repair of search coils around the eye. Our data also allow laboratories using the optical system in human subjects to assess the strengths and limitations of the technique for their own applications. PMID:22912608

  16. Quantum theory of the far-off-resonance continuous-wave Raman laser: Heisenberg-Langevin approach

    NASA Astrophysics Data System (ADS)

    Roos, P. A.; Murphy, S. K.; Meng, L. S.; Carlsten, J. L.; Ralph, T. C.; White, A. G.; Brasseur, J. K.

    2003-07-01

    We present the quantum theory of the far-off-resonance continuous-wave Raman laser using the Heisenberg-Langevin approach. We show that the simplified quantum Langevin equations for this system are mathematically identical to those of the nondegenerate optical parametric oscillator in the time domain with the following associations: pump ↔ pump, Stokes ↔ signal, and Raman coherence ↔ idler. We derive analytical results for both the steady-state behavior and the time-dependent noise spectra, using standard linearization procedures. In the semiclassical limit, these results match with previous purely semiclassical treatments, which yield excellent agreement with experimental observations. The analytical time-dependent results predict perfect photon statistics conversion from the pump to the Stokes and nonclassical behavior under certain operational conditions.

  17. Critical behavior of a chiral superfluid in a bipartite square lattice

    NASA Astrophysics Data System (ADS)

    Okamoto, Junichi; Huang, Wen-Min; Höppner, Robert; Mathey, Ludwig

    2018-01-01

    We study the critical behavior of Bose-Einstein condensation in the second band of a bipartite optical square lattice in a renormalization group framework at one-loop order. Within our field theoretical representation of the system, we approximate the system as a two-component Bose gas in three dimensions. We demonstrate that the system is in a different universality class than the previously studied condensation in a frustrated triangular lattice due to an additional Umklapp scattering term, which stabilizes the chiral superfluid order at low temperatures. We derive the renormalization group flow of the system and show that this order persists in the low energy limit. Furthermore, the renormalization flow suggests that the phase transition from the thermal phase to the chiral superfluid state is first order.

  18. Optical limiting device and method of preparation thereof

    DOEpatents

    Wang, Hsing-Lin; Xu, Su; McBranch, Duncan W.

    2003-01-01

    Optical limiting device and method of preparation thereof. The optical limiting device includes a transparent substrate and at least one homogeneous layer of an RSA material in polyvinylbutyral attached to the substrate. The device may be produced by preparing a solution of an RSA material, preferably a metallophthalocyanine complex, and a solution of polyvinylbutyral, and then mixing the two solutions together to remove air bubbles. The resulting solution is layered onto the substrate and the solvent is evaporated. The method can be used to produce a dual tandem optical limiting device.

  19. Optical limiting in Pluronic F-127 hydrogel with nanocarbon inclusions

    NASA Astrophysics Data System (ADS)

    Nikolaeva, A. L.; Povarov, S. A.; Bocharov, V. N.

    2017-02-01

    Characteristics of nonlinear optical limiting (limiting curves) of laser radiation in aqueous polymer systems with nanocarbon inclusions have been studied. Suspensions of nanotubes and soot stabilized by the amphiphilic polymer Pluronic F-127, the additives of which provide the system's transition to a solid-like hydrogel aggregate state at room temperature, have been considered. The limiting materials after their optical breakdown by high-intensity radiation in the gel state have been regenerated using the thermoreversible hydrogel-isotropic solution phase transition. These systems are shown to be promising for self-healing optical materials.

  20. A DECam Search for an Optical Counterpart to the LIGO Gravitational Wave Event GW151226

    DOE PAGES

    Cowperthwaite, P. S.

    2016-07-29

    We report the results of a Dark Energy Camera optical follow-up of the gravitational-wave (GW) event GW151226, discovered by the Advanced Laser Interferometer Gravitational-wave Observatory detectors. Our observations cover 28.8 deg(2) of the localization region in the i and z bands (containing 3% of the BAYESTAR localization probability), starting 10 hr after the event was announced and spanning four epochs at 2–24 days after the GW detection. We achievemore » $$5\\sigma $$ point-source limiting magnitudes of $$i\\approx 21.7$$ and $$z\\approx 21.5$$, with a scatter of 0.4 mag, in our difference images. Given the two-day delay, we search this area for a rapidly declining optical counterpart with $$\\gtrsim 3\\sigma $$ significance steady decline between the first and final observations. We recover four sources that pass our selection criteria, of which three are cataloged active galactic nuclei. The fourth source is offset by 5.8 arcsec from the center of a galaxy at a distance of 187 Mpc, exhibits a rapid decline by 0.5 mag over 4 days, and has a red color of $$i-z\\approx 0.3$$ mag. These properties could satisfy a set of cuts designed to identify kilonovae. However, this source was detected several times, starting 94 days prior to GW151226, in the Pan-STARRS Survey for Transients (dubbed as PS15cdi) and is therefore unrelated to the GW event. Given its long-term behavior, PS15cdi is likely a Type IIP supernova that transitioned out of its plateau phase during our observations, mimicking a kilonova-like behavior. We comment on the implications of this detection for contamination in future optical follow-up observations.« less

  1. Universal Behavior of Quantum Spin Liquid and Optical Conductivity in the Insulator Herbertsmithite

    NASA Astrophysics Data System (ADS)

    Shaginyan, V. R.; Msezane, A. Z.; Stephanovich, V. A.; Popov, K. G.; Japaridze, G. S.

    2018-04-01

    We analyze optical conductivity with the goal to demonstrate experimental manifestation of a new state of matter, the so-called fermion condensate. Fermion condensates are realized in quantum spin liquids, exhibiting typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite provide important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to expose the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field. We consider an experimental manifestation (optical conductivity) of a new state of matter (so-called fermion condensate) realized in quantum spin liquids, for, in many ways, they exhibit typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite produce important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of a strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to reveal the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field.

  2. Directed assembly of hybrid nanostructures using optically resonant nanotweezers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, David

    This represents the final report for this project. Over the course of the project we have made significant progress in photonically driven nano-assembly including: (1) demonstrating the first direct optical tweezer based manipulation of proteins, (2) the ability to apply optical angular torques to microtubuals and other rod-shaped microparticles, (3) direct assembly of hybrid nanostructures comprising of polymeric nanoparticles and carbon nanotubes and, (4) the ability to drive biological reactions (specifically protein aggregation) that are thermodynamically unfavorable by applying localized optical work. These advancements are described in the list of papers provided in section 2.0 of the below. Summary detailsmore » are provided in prior year annual reports. We have two additional papers which will be submitted shortly based on the work done under this award. An updated publication list will be provided to the program manager when those are accepted. In this report, we report on a new advancement made in the final project year, which uses the nanotweezer technology to perform direct measurements of particle-surface interactions. Briefly, these measurements are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions and current techniques are limited in their ability to measure piconewton scale interaction forces on sub-micrometer particles due to signal detection limits and thermal noise. In this project year we developed a new technique called “Nanophotonic Force Microscopy” which uses the localized region of exponentially decaying, near-field, light to confine small particles close to a surface. From the statistical distribution of the light intensity scattered by the particle the technique maps out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. The major advantage of the technique is that it can measure forces and energy wells below the thermal noise limit, resolving interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.« less

  3. A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes

    PubMed Central

    Bertrand, Olivier J. N.; Lindemann, Jens P.; Egelhaaf, Martin

    2015-01-01

    Avoiding collisions is one of the most basic needs of any mobile agent, both biological and technical, when searching around or aiming toward a goal. We propose a model of collision avoidance inspired by behavioral experiments on insects and by properties of optic flow on a spherical eye experienced during translation, and test the interaction of this model with goal-driven behavior. Insects, such as flies and bees, actively separate the rotational and translational optic flow components via behavior, i.e. by employing a saccadic strategy of flight and gaze control. Optic flow experienced during translation, i.e. during intersaccadic phases, contains information on the depth-structure of the environment, but this information is entangled with that on self-motion. Here, we propose a simple model to extract the depth structure from translational optic flow by using local properties of a spherical eye. On this basis, a motion direction of the agent is computed that ensures collision avoidance. Flying insects are thought to measure optic flow by correlation-type elementary motion detectors. Their responses depend, in addition to velocity, on the texture and contrast of objects and, thus, do not measure the velocity of objects veridically. Therefore, we initially used geometrically determined optic flow as input to a collision avoidance algorithm to show that depth information inferred from optic flow is sufficient to account for collision avoidance under closed-loop conditions. Then, the collision avoidance algorithm was tested with bio-inspired correlation-type elementary motion detectors in its input. Even then, the algorithm led successfully to collision avoidance and, in addition, replicated the characteristics of collision avoidance behavior of insects. Finally, the collision avoidance algorithm was combined with a goal direction and tested in cluttered environments. The simulated agent then showed goal-directed behavior reminiscent of components of the navigation behavior of insects. PMID:26583771

  4. Nonlinear multilayers as optical limiters

    NASA Astrophysics Data System (ADS)

    Turner-Valle, Jennifer Anne

    1998-10-01

    In this work we present a non-iterative technique for computing the steady-state optical properties of nonlinear multilayers and we examine nonlinear multilayer designs for optical limiters. Optical limiters are filters with intensity-dependent transmission designed to curtail the transmission of incident light above a threshold irradiance value in order to protect optical sensors from damage due to intense light. Thin film multilayers composed of nonlinear materials exhibiting an intensity-dependent refractive index are used as the basis for optical limiter designs in order to enhance the nonlinear filter response by magnifying the electric field in the nonlinear materials through interference effects. The nonlinear multilayer designs considered in this work are based on linear optical interference filter designs which are selected for their spectral properties and electric field distributions. Quarter wave stacks and cavity filters are examined for their suitability as sensor protectors and their manufacturability. The underlying non-iterative technique used to calculate the optical response of these filters derives from recognizing that the multi-valued calculation of output irradiance as a function of incident irradiance may be turned into a single-valued calculation of incident irradiance as a function of output irradiance. Finally, the benefits and drawbacks of using nonlinear multilayer for optical limiting are examined and future research directions are proposed.

  5. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures

    PubMed Central

    Zhang, Feng; Gradinaru, Viviana; Adamantidis, Antoine R; Durand, Remy; Airan, Raag D; de Lecea, Luis; Deisseroth, Karl

    2015-01-01

    Elucidation of the neural substrates underlying complex animal behaviors depends on precise activity control tools, as well as compatible readout methods. Recent developments in optogenetics have addressed this need, opening up new possibilities for systems neuroscience. Interrogation of even deep neural circuits can be conducted by directly probing the necessity and sufficiency of defined circuit elements with millisecond-scale, cell type-specific optical perturbations, coupled with suitable readouts such as electrophysiology, optical circuit dynamics measures and freely moving behavior in mammals. Here we collect in detail our strategies for delivering microbial opsin genes to deep mammalian brain structures in vivo, along with protocols for integrating the resulting optical control with compatible readouts (electrophysiological, optical and behavioral). The procedures described here, from initial virus preparation to systems-level functional readout, can be completed within 4–5 weeks. Together, these methods may help in providing circuit-level insight into the dynamics underlying complex mammalian behaviors in health and disease. PMID:20203662

  6. Switchable vanadium oxide films by a sol-gel process

    NASA Astrophysics Data System (ADS)

    Partlow, D. P.; Gurkovich, S. R.; Radford, K. C.; Denes, L. J.

    1991-07-01

    Thin polycrystalline films of VO2 and V2O3 were deposited on a variety of substrates using a sol-gel process. The orientation, microstructure, optical constants, and optical and electrical switching behavior are presented. These films exhibited sharp optical switching behavior even on an amorphous substrate such as fused silica. The method yields reproducible results and is amenable to the coating of large substrates and curved surfaces such as mirrors and lenses.

  7. Study of Third-Order Optical Nonlinearities of Se-Sn (Bi,Te) Quaternary Chalcogenide Thin Films Using Ti: Sapphire Laser in Femtosecond Regime

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2017-01-01

    The objective of the present research work is to study the nonlinear optical properties of quaternary Se-Sn (Bi,Te) chalcogenide thin films. A Z-scan technique utilizing 800 nm femtosecond laser source has been used for the determination of the nonlinear refractive index ( n 2), two-photon absorption coefficient ( β 2) and third-order susceptibility ( χ (3)). In the measurement of n 2, an aperture is placed in the far field before the detector (closed aperture), while for the measurement of β 2, entire transmitted light is collected by the detector without an aperture (open aperture). Self-focusing has been observed in closed aperture transmission spectra. The appearance of the peak after the valley in this spectrum reflects the positive nonlinear refractive index. The calculated value of n 2 of the studied thin films varies from 1.06 × 10-12 cm2/W to 0.88 × 10-12 cm2/W. The compound-dependent behavior of n 2 is explained in this paper. We have also compared the experimental values of n 2 with the theoretically determined values, other compounds of chalcogenide glass and pure silica. The n 2 of the investigated thin films is found to be 3200 times higher than pure silica. The results of the open aperture Z-scan revealed that the value of β 2 of the studied compound is in the order of 10-8 cm/W. The behavior of two-photon absorption is described by means of the optical band gap ( E g) of the studied compound. The variation in the figure-of-merit from 0.32 to 1.4 with varying Sn content is also reported in this paper. The higher value of nonlinearity makes this material advantageous for optical fibers, waveguides and optical limiting devices.

  8. Wave optics simulation of atmospheric turbulence and reflective speckle effects in carbon dioxide lidar

    NASA Astrophysics Data System (ADS)

    Nelson, Douglas Harold

    Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. This investigation develops a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects. The simulation, previously utilized to simulate the effects of atmospheric optical turbulence alone, is based on implementing a Huygens-Fresnel approximation to laser propagation. A series of phase screens, with the appropriate atmospheric statistical characteristics, is used to simulate the effect of atmospheric optical turbulence. A single random phase screen is used to simulate scattering of the entire beam from a rough surface. These investigations compare the output of the numerical model with separate CO2 lidar measurements of atmospheric turbulence and reflective speckle. This work also compares the output of the model with separate analytical predictions for atmospheric turbulence and reflective speckle. Good agreement is found between the model and the experimental data. Good agreement is also found with analytical predictions. Additionally, results of simulation of the combined effects on a finite aperture lidar system show agreement with experimental observations of increasing RMS noise with increasing turbulence level and the behavior of the experimental integrated intensity probability distribution. Simulation studies are included that demonstrate the usefulness of the model, examine its limitations and provide greater insight into the process of combined atmospheric optical turbulence and reflective speckle. One highlight of these studies is examination of the limitations of the simulation that shows, in general, precision increases with increasing grid size. The study of the backscatter intensity enhancement predicted by analytical theory show it to behave as a multi-path effect, like scintillation, with the highest contributions from atmospheric optical turbulence weighted at the middle of the propagation path. Aperture geometry also affects the signal-to-noise ratio with thin annular apertures exhibiting lower RMS noise than circular apertures of the same active area. The simulation is capable of studying a variety of lidar schemes including varying atmospheric optical turbulence along the propagation path as well as diverse transmitter and receiver geometries.

  9. Binary optics: Trends and limitations

    NASA Technical Reports Server (NTRS)

    Farn, Michael W.; Veldkamp, Wilfrid B.

    1993-01-01

    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.

  10. Development of a Strontium Magneto-Optical Trap for Probing Casimir-Polder Potentials

    NASA Astrophysics Data System (ADS)

    Martin, Paul J.

    In recent years, cold atoms have been the centerpiece of many remarkably sensitive measurements, and much effort has been made to devise miniaturized quantum sensors and quantum information processing devices. At small distances, however, mechanical effects of the quantum vacuum begin to significantly impact the behavior of the cold-atom systems. A better understanding of how surface composition and geometry affect Casimir and Casimir-Polder potentials would benefit future engineering of small-scale devices. Unfortunately, theoretical solutions are limited and the number of experimental techniques that can accurately detect such short-range forces is relatively small. We believe the exemplary properties of atomic strontium--which have enabled unprecedented frequency metrology in optical lattice clocks--make it an ideal candidate for probing slight spectroscopic perturbations caused by vacuum fluctuations. To that end, we have constructed a magneto-optical trap for strontium to enable future study of atom-surface potentials, and the apparatus and proposed detection scheme are discussed herein. Of special note is a passively stable external-cavity diode laser we developed that is both affordable and competitive with high-end commercial options.

  11. Simulation of the light emission properties of patterned metal-based nanostructures for ultra-high density optical storage

    NASA Astrophysics Data System (ADS)

    Li, Weijun; Zhu, Yaping; Luo, Jun; Peng, Sha; Lei, Yu; Tong, Qing; Zhang, Xinyu; Xie, Changsheng

    2015-10-01

    Current researches show that the surface plasmon-polariton modes (SPPMs) in metallic nanostructures can lead to a powerful localization of guided light signals, which is generally as small as a few nanometers and thus far beyond the diffraction limit of electromagnetic waves in dielectric media. In this paper, our attention is paid to the modeling and simulation of particular kinds of patterned metal-based nanostructure fabricated over several common wafers such as typical silicon dioxide. The nanostructures are designed for concentrating and delivering incident light energy into nanoscale regions. In our research, the factors, for instance, optical materials, patterned nano-structures, the distance arrangement between adjacent single nanopattern, and the frequency of incident electromagnetic wave, are taken as variables, and further the CST microwave studio is used to simulate optical behaviors of the devices developed by us. By comparing the transmittance and electric field intensity distribution in small area, the nano-light-emission effects are analyzed, and the conditions for obtaining near-field nanospots have been chosen.

  12. Steady-state mechanical squeezing and ground-state cooling of a Duffing anharmonic oscillator in an optomechanical cavity assisted by a nonlinear medium

    NASA Astrophysics Data System (ADS)

    Momeni, F.; Naderi, M. H.

    2018-05-01

    In this paper, we study theoretically a hybrid optomechanical system consisting of a degenerate optical parametric amplifier inside a driven optical cavity with a moving end mirror which is modeled as a stiffening Duffing-like anharmonic quantum mechanical oscillator. By providing analytical expressions for the critical values of the system parameters corresponding to the emergence of the multistability behavior in the steady-state response of the system, we show that the stiffening mechanical Duffing anharmonicity reduces the width of the multistability region while the optical parametric nonlinearity can be exploited to drive the system toward the multistability region. We also show that for appropriate values of the mechanical anharmonicity strength the steady-state mechanical squeezing and the ground-state cooling of the mechanical resonator can be achieved. Moreover, we find that the presence of the nonlinear gain medium can lead to the improvement of the mechanical anharmonicity-induced cooling of the mechanical motion, as well as to the mechanical squeezing beyond the standard quantum limit of 3 dB.

  13. Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers.

    PubMed

    Sazegari, Vahid; Milani, Mohammad Reza Jafari; Jafari, Ahmad Khayat

    2010-12-20

    We employ a Monte Carlo ray-tracing code along with the ANSYS package to predict the optical and structural behavior in end-pumped CW Yb:YAG disk lasers. The presence of inhomogeneous temperature, stress, and strain distributions is responsible for many deleterious effects for laser action through disk fracture, strain-induced birefringence, and thermal lensing. The thermal lensing, in turn, results in the optical phase distortion in solid-state lasers. Furthermore, the dependence of optical phase distortion on variables such as the heat transfer coefficient, the cooling fluid temperature, and crystal thickness is discussed.

  14. High-gradient SRF R&D for ILC at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Rongli; Crawford, Anthony; Ciovati, Gianluigi

    2008-10-01

    Jefferson Lab plays an active role in high-gradient SRF R&D in the frame work of the internationally coordinated ILC S0 program. The S0 aim is to push the yield at 35 MV/m in 9-cell cavities. So far, twelve cavities have been electropolishing (EP) processed and RF tested by using the state-of-the-art recipes at JLab, in close collaboration with FNAL and KEK. Seven of them reached a best gradient of over 31.5 MV/m. Understanding gradient limiting mechanisms in real 9-cell cavities is an important component of our studies. Thermometry and high-resolution optical inspection are used to locate and understand the sourcemore » of gradient limits. Experimenting with selective cavities is still a necessary method for process optimization. One example is the first demonstration of 35 MV/m without detectable Bremsstrahlung X-ray after a light EP is applied to a previously heavy BCP etched 7-cell cavity. Some new understanding has been gained with regard to quench behaviors, field emission behaviors as« less

  15. Hyperbolic metamaterials: Novel physics and applications

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor I.; Smolyaninova, Vera N.

    2017-10-01

    Hyperbolic metamaterials were originally introduced to overcome the diffraction limit of optical imaging. Soon thereafter it was realized that hyperbolic metamaterials demonstrate a number of novel phenomena resulting from the broadband singular behavior of their density of photonic states. These novel phenomena and applications include super resolution imaging, new stealth technologies, enhanced quantum-electrodynamic effects, thermal hyperconductivity, superconductivity, and interesting gravitation theory analogues. Here we briefly review typical material systems, which exhibit hyperbolic behavior and outline important novel applications of hyperbolic metamaterials. In particular, we will describe recent imaging experiments with plasmonic metamaterials and novel VCSEL geometries, in which the Bragg mirrors may be engineered in such a way that they exhibit hyperbolic metamaterial properties in the long wavelength infrared range, so that they may be used to efficiently remove excess heat from the laser cavity. We will also discuss potential applications of three-dimensional self-assembled photonic hypercrystals, which are based on cobalt ferrofluids in external magnetic field. This system bypasses 3D nanofabrication issues, which typically limit metamaterial applications. Photonic hypercrystals combine the most interesting features of hyperbolic metamaterials and photonic crystals.

  16. Model for a pulsed terahertz quantum cascade laser under optical feedback.

    PubMed

    Agnew, Gary; Grier, Andrew; Taimre, Thomas; Lim, Yah Leng; Bertling, Karl; Ikonić, Zoran; Valavanis, Alexander; Dean, Paul; Cooper, Jonathan; Khanna, Suraj P; Lachab, Mohammad; Linfield, Edmund H; Davies, A Giles; Harrison, Paul; Indjin, Dragan; Rakić, Aleksandar D

    2016-09-05

    Optical feedback effects in lasers may be useful or problematic, depending on the type of application. When semiconductor lasers are operated using pulsed-mode excitation, their behavior under optical feedback depends on the electronic and thermal characteristics of the laser, as well as the nature of the external cavity. Predicting the behavior of a laser under both optical feedback and pulsed operation therefore requires a detailed model that includes laser-specific thermal and electronic characteristics. In this paper we introduce such a model for an exemplar bound-to-continuum terahertz frequency quantum cascade laser (QCL), illustrating its use in a selection of pulsed operation scenarios. Our results demonstrate significant interplay between electro-optical, thermal, and feedback phenomena, and that this interplay is key to understanding QCL behavior in pulsed applications. Further, our results suggest that for many types of QCL in interferometric applications, thermal modulation via low duty cycle pulsed operation would be an alternative to commonly used adiabatic modulation.

  17. Microgravity Processing and Photonic Applications of Organic and Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Frazier, Donald 0; Penn, Benjamin G.; Smith, David; Witherow, William K.; Paley, M. S.; Abdeldayem, Hossin A.

    1998-01-01

    In recent years, a great deal of interest has been directed toward the use of organic materials in the development of high-efficiency optoelectronic and photonic devices. There is a myriad of possibilities among organic which allow flexibility in the design of unique structures with a variety of functional groups. The use of nonlinear optical (NLO) organic materials such as thin-film waveguides allows full exploitation of their desirable qualities by permitting long interaction lengths and large susceptibilities allowing modest power input. There are several methods in use to prepare thin films, such as Langmuir-Blodgett (LB) and self-assembly techniques, vapor deposition, growth from sheared solution or melt, and melt growth between glass plates. Organics have many features that make Abstract: them desirable for use in optical devices such as high second- and third-order nonlinearities, flexibility of molecular design, and damage resistance to optical radiation. However, their use in devices has been hindered by processing difficulties for crystals and thin films. In this chapter, we discuss photonic and optoelectronic applications of a few organic materials and the potential role of microgravity on processing these materials. It is of interest to note how materials with second- and third-order nonlinear optical behavior may be improved in a diffusion-limited environment and ways in which convection may be detrimental to these materials. We focus our discussion on third-order materials for all-optical switching, and second-order materials for all-optical switching, and second-order materials for frequency conversion and electrooptics.

  18. Parallel processing of embossing dies with ultrafast lasers

    NASA Astrophysics Data System (ADS)

    Jarczynski, Manfred; Mitra, Thomas; Brüning, Stephan; Du, Keming; Jenke, Gerald

    2018-02-01

    Functionalization of surfaces equips products and components with new features like hydrophilic behavior, adjustable gloss level, light management properties, etc. Small feature sizes demand diffraction-limited spots and adapted fluence for different materials. Through the availability of high power fast repeating ultrashort pulsed lasers and efficient optical processing heads delivering diffraction-limited small spot size of around 10μm it is feasible to achieve fluences higher than an adequate patterning requires. Hence, parallel processing is becoming of interest to increase the throughput and allow mass production of micro machined surfaces. The first step on the roadmap of parallel processing for cylinder embossing dies was realized with an eight- spot processing head based on ns-fiber laser with passive optical beam splitting, individual spot switching by acousto optical modulation and an advanced imaging. Patterning of cylindrical embossing dies shows a high efficiency of nearby 80%, diffraction-limited and equally spaced spots with pitches down to 25μm achieved by a compression using cascaded prism arrays. Due to the nanoseconds laser pulses the ablation shows the typical surrounding material deposition of a hot process. In the next step the processing head was adapted to a picosecond-laser source and the 500W fiber laser was replaced by an ultrashort pulsed laser with 300W, 12ps and a repetition frequency of up to 6MHz. This paper presents details about the processing head design and the analysis of ablation rates and patterns on steel, copper and brass dies. Furthermore, it gives an outlook on scaling the parallel processing head from eight to 16 individually switched beamlets to increase processing throughput and optimized utilization of the available ultrashort pulsed laser energy.

  19. Barium borate nanorod decorated reduced graphene oxide for optical power limiting applications

    NASA Astrophysics Data System (ADS)

    Muruganandi, G.; Saravanan, M.; Vinitha, G.; Jessie Raj, M. B.; Sabari Girisun, T. C.

    2018-01-01

    By simple hydrothermal method, nanorods of barium boate were successfully loaded on reduced graphene oxide sheets. Powder XRD confirms the incorporation of barium borate (2θ = 29°, (202)) along with the transition of graphene oxide (2θ = 12°, (001)) into reduced graphene oxide (2θ = 25°, (002)). In the FTIR spectra, presence of characteristic absorption peaks of rGO (1572 and 2928 cm-1) and barium borate (510, 760 and 856 cm-1) further evidences the formation of BBO:rGO nanocomposite. FESEM images potray the existence of graphene sheets as thin layers and growth of barium borate as nanorods on the sheets of reduced graphene oxide. Ground state absorption studies reveal the hypsochromic shift in the absorption maxima of the graphene layers due to reduction of graphene oxide and hypochromic shift in the absorbance intensity due to the inclusion of highly transparent barium bortae. The photoluminescence of BBO:rGO shows maximum emission in the UV region arising from the direct transitions involving the valence band and conduction band in the band gap region. Z-scan technique using CW diode pumped Nd:YAG laser (532 nm, 50 mW) exposes that both nanocomposite and individual counterpart possess saturable absorption and self-defocusing behavior. Third-order nonlinear optical coefficients of BBO:rGO nanocomposite is found to be higher than bare graphene oxide. In particular the nonlinear refractive index of nanocomposite is almost four times higher than GO which resulted in superior optical power limiting action. Strong nonlinear refraction (self-defocusing) and lower onset limiting thershold makes the BBO:rGO nanocomposite preferable candidate for laser safety devices.

  20. Polyaniline decorated Bi2MoO6 nanosheets with effective interfacial charge transfer as photocatalysts and optical limiters.

    PubMed

    Zhao, Wei; Li, Cheng; Wang, Aijian; Lv, Cuncai; Zhu, Weihua; Dou, Shengping; Wang, Qian; Zhong, Qin

    2017-11-01

    Polyaniline (PANI)-decorated Bi 2 MoO 6 nanosheets (BMO/PANI) were prepared by a facile solvothermal method. Different characterization techniques, including X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, diffuse reflectance ultraviolet-visible spectroscopy, photoluminescence spectroscopy, electrochemical impedance spectroscopy, photocurrent spectroscopy, and nanosecond time-resolved emission studies, have been employed to investigate the structure, optical and electrical properties of the BMO/PANI composites. The wide absorption of the samples in the visible light region makes them suitable for nonlinear transmission and photocatalytic activity studies. The associated photocatalytic activity and optical nonlinearities for the BMO/PANI composites are shown to be dependent on the PANI loadings. The rational mechanisms responsible for deteriorating pollutants and improving optical nonlinearities were also proposed, which could be mainly attributed to the efficient interfacial charge transfer and the interfacial electronic interactions between PANI and Bi 2 MoO 6 . The photoluminescence spectroscopy, electrochemical impedance spectroscopy, and photocurrent spectroscopy studies confirmed that the interface charge separation efficiency was greatly improved by coupling Bi 2 MoO 6 with PANI. The tuning of photocatalysis and nonlinear optical behaviors with variation in the content of PANI provides an easy way to attain tunable properties, which are exceedingly required in optoelectronics applications.

  1. Analysis and modeling of optical crosstalk in InP-based Geiger-mode avalanche photodiode FPAs

    NASA Astrophysics Data System (ADS)

    Chau, Quan; Jiang, Xudong; Itzler, Mark A.; Entwistle, Mark; Piccione, Brian; Owens, Mark; Slomkowski, Krystyna

    2015-05-01

    Optical crosstalk is a major factor limiting the performance of Geiger-mode avalanche photodiode (GmAPD) focal plane arrays (FPAs). This is especially true for arrays with increased pixel density and broader spectral operation. We have performed extensive experimental and theoretical investigations on the crosstalk effects in InP-based GmAPD FPAs for both 1.06-μm and 1.55-μm applications. Mechanisms responsible for intrinsic dark counts are Poisson processes, and their inter-arrival time distribution is an exponential function. In FPAs, intrinsic dark counts and cross talk events coexist, and the inter-arrival time distribution deviates from purely exponential behavior. From both experimental data and computer simulations, we show the dependence of this deviation on the crosstalk probability. The spatial characteristics of crosstalk are also demonstrated. From the temporal and spatial distribution of crosstalk, an efficient algorithm to identify and quantify crosstalk is introduced.

  2. Physical probing of cells

    NASA Astrophysics Data System (ADS)

    Rehfeldt, Florian; Schmidt, Christoph F.

    2017-11-01

    In the last two decades, it has become evident that the mechanical properties of the microenvironment of biological cells are as important as traditional biochemical cues for the control of cellular behavior and fate. The field of cell and matrix mechanics is quickly growing and so is the development of the experimental approaches used to study active and passive mechanical properties of cells and their surroundings. Within this topical review we will provide a brief overview, on the one hand, over how cellular mechanics can be probed physically, how different geometries allow access to different cellular properties, and, on the other hand, how forces are generated in cells and transmitted to the extracellular environment. We will describe the following experimental techniques: atomic force microscopy, traction force microscopy, magnetic tweezers, optical stretcher and optical tweezers pointing out both their advantages and limitations. Finally, we give an outlook on the future of the physical probing of cells.

  3. In-volume structuring of a bilayered polymer foil using direct laser interference patterning

    NASA Astrophysics Data System (ADS)

    Rößler, Florian; Günther, Katja; Lasagni, Andrés F.

    2018-05-01

    Periodic surface patterns can provide materials with special optical properties, which are usable in decorative or security applications. However, they can be sensitive to contact wear and thus their lifetime and functionality are limited. This study describes the use of direct laser interference patterning for structuring a multilayered polymer film at its interface creating periodic in-volume structures which are resistant to contact wear. The spatial period of the structures are varied in the range of 1.0 μm to 2.0 μm in order to produce decorative elements. The pattern formation at the interface is explained using cross sectional observations and a thermal simulation of the temperature evolution during the laser treatment at the interface. Both, the diffraction efficiency and direct transmission are characterized by light intensity measurements to describe the optical behavior of the produced periodic structures and a decorative application example is presented.

  4. Optical dynamic deformation measurements at translucent materials.

    PubMed

    Philipp, Katrin; Koukourakis, Nektarios; Kuschmierz, Robert; Leithold, Christoph; Fischer, Andreas; Czarske, Jürgen

    2015-02-15

    Due to their high stiffness-to-weight ratio, glass fiber-reinforced polymers are an attractive material for rotors, e.g., in the aerospace industry. A fundamental understanding of the material behavior requires non-contact, in-situ dynamic deformation measurements. The high surface speeds and particularly the translucence of the material limit the usability of conventional optical measurement techniques. We demonstrate that the laser Doppler distance sensor provides a powerful and reliable tool for monitoring radial expansion at fast rotating translucent materials. We find that backscattering in material volume does not lead to secondary signals as surface scattering results in degradation of the measurement volume inside the translucent medium. This ensures that the acquired signal contains information of the rotor surface only, as long as the sample surface is rough enough. Dynamic deformation measurements of fast-rotating fiber-reinforced polymer composite rotors with surface speeds of more than 300 m/s underline the potential of the laser Doppler sensor.

  5. Twisted intramolecular charge transfer investigation of semi organic L-Glutamic acid hydrochloride single crystal for organic light-emitting and optical limiting applications

    NASA Astrophysics Data System (ADS)

    Joy, Lija K.; George, Merin; Alex, Javeesh; Aravind, Arun; Sajan, D.; Vinitha, G.

    2018-03-01

    Single crystals of L-Glutamic acid hydrochloride (LGHCl) were grown by slow evaporation solution technique and good crystalline perfection was confirmed by Powder X-ray diffraction studies. The complete vibrational studies of the compound were analyzed by FT-IR, FT-Raman and UV-visible spectra combined with Normal Coordinate Analysis (NCA) following the scaled quantum mechanical force field methodology and density functional theory (DFT). Twisted Intramolecular Charge Transfer (ICT) occurs due to the presence of strong ionic intra-molecular Nsbnd H⋯O hydrogen bonding was confirmed by Hirshfeld Surface analysis. The existence of intermolecular Nsbnd H⋯Cl hydrogen bonds due to the interaction between the lone pair of oxygen with the antibonding orbital was established by NBO analysis. The Z-scan result indicated that the title molecule exhibits saturable absorption behavior. The attractive third-order nonlinear properties suggest that LGHCl can be a promising candidate for the design and development devices for optical limiting applications. LGHCL exhibits distinct emission in the blue region of the fluorescence lifetime which proves to be a potential candidate for blue- Organic light-emitting diodes (OLEDs) fabrication.

  6. Performance Evaluation of Titanium Ion Optics for the NASA 30 cm Ion Thruster

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    The results of performance tests with titanium ion optics were presented and compared to those of molybdenum ion optics. Both titanium and molybdenum ion optics were initially operated until ion optics performance parameters achieved steady state values. Afterwards, performance characterizations were conducted. This permitted proper performance comparisons of titanium and molybdenum ion optics. Ion optics' performance A,as characterized over a broad thruster input power range of 0.5 to 3.0 kW. All performance parameters for titanium ion optics of achieved steady state values after processing 1200 gm of propellant. Molybdenum ion optics exhibited no burn-in. Impingement-limited total voltages for titanium ion optics where up to 55 V greater than those for molybdenum ion optics. Comparisons of electron backstreaming limits as a function of peak beam current density for molybdenum and titanium ion optics demonstrated that titanium ion optics operated with a higher electron backstreaming limit than molybdenum ion optics for a given peak beam current density. Screen grid ion transparencies for titanium ion optics were as much as 3.8 percent lower than those for molybdenum ion optics. Beam divergence half-angles that enclosed 95 percent of the total beam current for titanium ion optics were within 1 to 3 deg. of those for molybdenum ion optics. All beam divergence thrust correction factors for titanium ion optics were within 1 percent of those with molybdenum ion optics.

  7. Broadband optical limiting and nonlinear optical absorption properties of a novel hyperbranched conjugated polymer

    NASA Astrophysics Data System (ADS)

    Li, Chao; Liu, Chunling; Li, Quanshui; Gong, Qihuang

    2004-12-01

    The nonlinear transmittance of a novel hyperbranched conjugated polymer named DMA-HPV has been measured in CHCl 3 solution using a nanosecond optical parametric oscillator. DMA-HPV shows excellent optical limiting performance in the visible region from 490 to 610 nm. An explanation based on the combination of two-photon absorption and reverse saturable absorption was proposed for its huge and broadband nonlinear optical absorption.

  8. Nonlinear optical switching and optical limiting in colloidal CdSe quantum dots investigated by nanosecond Z-scan measurement

    NASA Astrophysics Data System (ADS)

    Valligatla, Sreeramulu; Haldar, Krishna Kanta; Patra, Amitava; Desai, Narayana Rao

    2016-10-01

    The semiconductor nanocrystals are found to be promising class of third order nonlinear optical materials because of quantum confinement effects. Here, we highlight the nonlinear optical switching and optical limiting of cadmium selenide (CdSe) quantum dots (QDs) using nanosecond Z-scan measurement. The intensity dependent nonlinear absorption and nonlinear refraction of CdSe QDs were investigated by applying the Z-scan technique with 532 nm, nanosecond laser pulses. At lower intensities, the nonlinear process is dominated by saturable absorption (SA) and it is changed to reverse saturable absorption (RSA) at higher intensities. The SA behaviour is attributed to the ground state bleaching and the RSA is ascribed to free carrier absorption (FCA) of CdSe QDs. The nonlinear optical switching behaviour and reverse saturable absorption makes CdSe QDs are good candidate for all-optical device and optical limiting applications.

  9. Scattering effects of machined optical surfaces

    NASA Astrophysics Data System (ADS)

    Thompson, Anita Kotha

    1998-09-01

    Optical fabrication is one of the most labor-intensive industries in existence. Lensmakers use pitch to affix glass blanks to metal chucks that hold the glass as they grind it with tools that have not changed much in fifty years. Recent demands placed on traditional optical fabrication processes in terms of surface accuracy, smoothnesses, and cost effectiveness has resulted in the exploitation of precision machining technology to develop a new generation of computer numerically controlled (CNC) optical fabrication equipment. This new kind of precision machining process is called deterministic microgrinding. The most conspicuous feature of optical surfaces manufactured by the precision machining processes (such as single-point diamond turning or deterministic microgrinding) is the presence of residual cutting tool marks. These residual tool marks exhibit a highly structured topography of periodic azimuthal or radial deterministic marks in addition to random microroughness. These distinct topographic features give rise to surface scattering effects that can significantly degrade optical performance. In this dissertation project we investigate the scattering behavior of machined optical surfaces and their imaging characteristics. In particular, we will characterize the residual optical fabrication errors and relate the resulting scattering behavior to the tool and machine parameters in order to evaluate and improve the deterministic microgrinding process. Other desired information derived from the investigation of scattering behavior is the optical fabrication tolerances necessary to satisfy specific image quality requirements. Optical fabrication tolerances are a major cost driver for any precision optical manufacturing technology. The derivation and control of the optical fabrication tolerances necessary for different applications and operating wavelength regimes will play a unique and central role in establishing deterministic microgrinding as a preferred and a cost-effective optical fabrication process. Other well understood optical fabrication processes will also be reviewed and a performance comparison with the conventional grinding and polishing technique will be made to determine any inherent advantages in the optical quality of surfaces produced by other techniques.

  10. Tunable phonon-induced transparency in bilayer graphene nanoribbons.

    PubMed

    Yan, Hugen; Low, Tony; Guinea, Francisco; Xia, Fengnian; Avouris, Phaedon

    2014-08-13

    In the phenomenon of plasmon-induced transparency, which is a classical analogue of electromagnetically induced transparency (EIT) in atomic gases, the coherent interference between two plasmon modes results in an optical transparency window in a broad absorption spectrum. With the requirement of contrasting lifetimes, typically one of the plasmon modes involved is a dark mode that has limited coupling to the electromagnetic radiation and possesses relatively longer lifetime. Plasmon-induced transparency not only leads to light transmission at otherwise opaque frequency regions but also results in the slowing of light group velocity and enhanced optical nonlinearity. In this article, we report an analogous behavior, denoted as phonon-induced transparency (PIT), in AB-stacked bilayer graphene nanoribbons. Here, light absorption due to the plasmon excitation is suppressed in a narrow window due to the coupling with the infrared active Γ-point optical phonon, whose function here is similar to that of the dark plasmon mode in the plasmon-induced transparency. We further show that PIT in bilayer graphene is actively tunable by electrostatic gating and estimate a maximum slow light factor of around 500 at the phonon frequency of 1580 cm(-1), based on the measured spectra. Our demonstration opens an avenue for the exploration of few-photon nonlinear optics and slow light in this novel two-dimensional material.

  11. Microgravity Processing and Photonic Applications of Organic and Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O.; Penn, Benjamin G.; Smith, David D.; Witherow, William K.; Paley, Mark S.; Abdeldayem, Hossin A.

    1997-01-01

    In recent years, a great deal of interest has been directed toward the use of organic materials in the development of high-efficiency optoelectronic and photonic devices. There is a myriad of possibilities among organics which allow flexibility in the design of unique structures with a variety of functional groups. The use of nonlinear optical (NLO) organic materials such as thin-film waveguides allows full exploitation of their desirable qualities by permitting long interaction lengths and large susceptibilities allowing modest power input. There are several methods in use to prepare thin films, such as Langmuir-Blodgett (LB) and self-assembly techniques, vapor deposition, growth from sheared solution or melt, and melt growth between glass plates. Organics have many features that make them desirable for use in optical devices such as high second- and third-order nonlinearities, flexibility of molecular design, and damage resistance to optical radiation. However, their use in devices has been hindered by processing difficulties for crystals and thin films. In this chapter, we discuss photonic and optoelectronic applications of a few organic materials and the potential role of microgravity on processing these materials. It is of interest to note how materials with second- and third-order nonlinear optical behavior may be improved in a diffusion-limited environment and ways in which convection may be detrimental to these materials.

  12. Design and finite element modeling of a novel optical microsystems-based tactile sensor for minimal invasive robotic surgery

    NASA Astrophysics Data System (ADS)

    Ghanbari Mardasi, Amir; Ghanbari, Mahmood; Salmani Tehrani, Mehdi

    2014-09-01

    Although recently Minimal Invasive Robotic Surgery (MIRS) has been more addressed because of its wide range of benefits, however there are still some limitations in this regard. In order to address the shortcomings of MIRS systems, various types of tactile sensors with different sensing principles have been presented in the last few years. In the present paper a MEMS-based optical sensor, which has been recently proposed by researchers, is investigated using numerical simulation. By this type of sensors real time quantification of both dynamic and statics contact forces between the tissue and surgical instrument would be possible. The presented sensor has one moving part and works based on the intensity modulation principle of optical fibers. It is electrically-passive, MRI-compatible and it is possible to be fabricated using available standard micro fabrication techniques. The behavior of the sensor has been simulated using COMSOL MULTIPHYSICS 3.5 software. Stress analysis is conducted on the sensor to assess the deflection of the moving part of the sensor due to applied force. The optical simulation is then conducted to estimate the power loss due to the moving part deflection. Using FEM modeling, the relation between force and deflection is derived which is necessary for the calibration of the sensor.

  13. Electronic structure and optical properties of twisted bilayer graphene calculated via time evolution of states in real space

    NASA Astrophysics Data System (ADS)

    Le, H. Anh; Do, V. Nam

    2018-03-01

    We investigate the electronic and optical properties of twisted bilayer graphene with arbitrary twist angles θ . Our results are based on a method of evolving in time quantum states in lattice space. We propose an efficient scheme of sampling lattice nodes that helps to reduce significantly computational cost, particularly for tiny twist angles. We demonstrate the continuous variation of the density of states and the optical conductivity with respect to the twist angle. It indicates that the commensurability between the two graphene layers does not play an essential role in governing the electronic and optical properties. We point out that, for the twist angles roughly in the range 0 .1∘<θ <3∘ , the density of states in the vicinity of the Fermi energy exhibits the typical W shape with a small peak locating at the Fermi energy. This peak is formed as the merging of two van Hove peaks and reflects the appearance of states strongly localized in the AA-like region of moiré zones. When decreasing the twist angle to zero, the W shape is gradually transformed to the U shape, which is seen as the behavior of the density of states in the limit of θ →0∘ .

  14. Acousto-optical assessment of skin viscoelasticity

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Sean J.; Duncan, Donald D.

    2003-07-01

    A multiphysics approach, combining acoustics, optics, and mechanics can be used to detect regions of skin with distinct mechanical behavior that may indicate a pathology, such as a cancerous skin lesion. Herein, an acousto-optical approach to evaluating the viscoelastic behavior of superficial skin layers will be presented. The method relies upon inducing low frequency guided surface waves in the skin and detecting these waves by monitoring the shift in the backscattered laser speckle pattern created by illuminating a small region of the skin with coherent light. Artificial lesions in the form of chemical cross-linking and chemical softening were induced in superficial porcine skin layers and detected based upon variations in local mechanical behavior. The lesions affect not only the time-of-flight of the guided surface waves, but also change the relative phase of the acoustic waves as determined optically. The method may be applicable in the study and diagnosis of superficial skin lesions.

  15. Nonlinear absorption properties of silicene nanosheets.

    PubMed

    Zhang, Fang; Wang, Mengxia; Wang, Zhengping; Han, Kezhen; Liu, Xiaojuan; Xu, Xinguang

    2018-06-01

    As the cousins of graphene, i.e. same group IVA element, the nonlinear absorption (NLA) properties of silicene nanosheets were rarely studied. In this paper, we successfully exfoliated the two-dimensional silicene nanosheets from bulk silicon crystal using liquid phase exfoliation method. The NLA properties of silicene nanosheets were systemically investigated for the first time, as we have known. Silicene performed exciting saturable absorption and two photon absorption (2PA) behavior. The lower saturable intensity and larger 2PA coefficient at 532 nm excitation indicates that silicene has potential application in ultrafast lasers and optical limiting devices, especially in visible waveband.

  16. Beam wandering statistics of twin thin laser beam propagation under generalized atmospheric conditions.

    PubMed

    Pérez, Darío G; Funes, Gustavo

    2012-12-03

    Under the Geometrics Optics approximation is possible to estimate the covariance between the displacements of two thin beams after they have propagated through a turbulent medium. Previous works have concentrated in long propagation distances to provide models for the wandering statistics. These models are useful when the separation between beams is smaller than the propagation path-regardless of the characteristics scales of the turbulence. In this work we give a complete model for these covariances, behavior introducing absolute limits to the validity of former approximations. Moreover, these generalizations are established for non-Kolmogorov atmospheric models.

  17. Nonlinear absorption properties of silicene nanosheets

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Wang, Mengxia; Wang, Zhengping; Han, Kezhen; Liu, Xiaojuan; Xu, Xinguang

    2018-06-01

    As the cousins of graphene, i.e. same group IVA element, the nonlinear absorption (NLA) properties of silicene nanosheets were rarely studied. In this paper, we successfully exfoliated the two-dimensional silicene nanosheets from bulk silicon crystal using liquid phase exfoliation method. The NLA properties of silicene nanosheets were systemically investigated for the first time, as we have known. Silicene performed exciting saturable absorption and two photon absorption (2PA) behavior. The lower saturable intensity and larger 2PA coefficient at 532 nm excitation indicates that silicene has potential application in ultrafast lasers and optical limiting devices, especially in visible waveband.

  18. RS CVn stars - Chromospheric phenomena

    NASA Technical Reports Server (NTRS)

    Bopp, B. W.

    1983-01-01

    The observational information regarding chromospheric emission features in surface-active RS CVn stars is reviewed. Three optical features are considered in detail: Ca II H and K, Balmer H-alpha and He I 10830 A. While the qualitative behavior of these lines is in accord with solar-analogy/rotation-activity ideas, the quantitative variation and scaling are very poorly understood. In many cases, the spectroscopic observations with sufficient SNR and resolution to decide these questions have simply not yet been made. The FK Com stars, in particular, present extreme examples of rotation that may well tax present understanding of surface activity to its limits.

  19. Key functions analysis of a novel nonlinear optical D-π-A bridge type (2E)-3-(4-Methylphenyl)-1-(3-nitrophenyl) prop-2-en-1-one chalcone: An experimental and theoretical approach

    NASA Astrophysics Data System (ADS)

    Patil, Parutagouda Shankaragouda; Shkir, Mohd; Maidur, Shivaraj R.; AlFaify, S.; Arora, M.; Rao, S. Venugopal; Abbas, Haider; Ganesh, V.

    2017-10-01

    In the current work a new third-order nonlinear optical organic single crystal of (2E)-3-(4-Methylphenyl)-1-(3-nitrophenyl) prop-2-en-1-one (ML3NC) has been grown with well-defined morphology using the slow evaporation solution growth technique. X-ray diffraction technique was used to confirm the crystal system. The presence of functional groups in the molecular structure was identified by robust FT-IR and FT-Raman spectra by experimental and theoretical analysis. The ultraviolet-visible-near infrared and photoluminescence studies shows that the grown crystals possess excellent transparency window and green emission band (∼560 nm) confirms their use in green OLEDs. The third-order nonlinear and optical limiting studies have been performed using femtosecond (fs) Z-scan technique. The third-order nonlinear optical susceptibility (χ(3)), second-order hyperpolarizability (γ), nonlinear refractive index (n2) and limiting threshold values are found to be 4.03 × 10-12 esu, 14.2 × 10-32 esu, -4.33 × 10-14 cm2/W and 2.41 mJ/cm2, respectively. Furthermore, the quantum chemical studies were carried out to achieve the ground state molecular geometry and correlate with experimental results. The experimental value of absorption wavelength (λabs = 328 nm) is found to be in excellent accord with the theoretical value (λabs = 328 nm) at TD-DFT/B3LYP/6-31G* level of theory. To understand the static and dynamic NLO behavior, the polarizability (α) and second hyperpolarizability (γ) values were determined using TD-HF method. The computed second hyperpolarizability γ(-3ω; ω,ω,ω) at 800 nm wavelength was found to be 0.499 × 10-32 esu which is in good agreement with experimental value at the same wavelength. These results confirms the applied nature of title molecule in optoelectronic and nonlinear optical devices.

  20. A developmental perspective on high power laser facility technology for ICF

    NASA Astrophysics Data System (ADS)

    Zhu, Jianqiang; Sun, Mingying; Liu, Chong; Guo, Yajing; Yang, Lin; Yang, Pengqian; Zhang, Yanli; Wang, Bingyan; Liu, Cheng; Li, Yangshuai; Ren, Zhiyuan; Liu, Dean; Liu, Zhigang; Jiao, Zhaoyang; Ren, Lei; Zhang, Guowen; Fan, Quantang; Feng, Tao; Lin, Zunqi

    2018-02-01

    The latest progress on high power laser facilities in NLHPLP was reported. Based on a high power laser prototype, damage behavior of 3ω optics was experimentally tested, and the key influencing factors contributed to laser-induced damage in optics were deeply analyzed. The latest experimental results of advanced precision measurement for optical quality applied in the high power laser facility were introduced. At last, based on the accumulated works of 3ω elements damage behavior status in our laboratory, beam expanding scheme was presented to increase the total maximum output 3ω energy properly and decrease the laser induced damage risking of ω optics simultaneously.

  1. Importance of perceptual representation in the visual control of action

    NASA Astrophysics Data System (ADS)

    Loomis, Jack M.; Beall, Andrew C.; Kelly, Jonathan W.; Macuga, Kristen L.

    2005-03-01

    In recent years, many experiments have demonstrated that optic flow is sufficient for visually controlled action, with the suggestion that perceptual representations of 3-D space are superfluous. In contrast, recent research in our lab indicates that some visually controlled actions, including some thought to be based on optic flow, are indeed mediated by perceptual representations. For example, we have demonstrated that people are able to perform complex spatial behaviors, like walking, driving, and object interception, in virtual environments which are rendered visible solely by cyclopean stimulation (random-dot cinematograms). In such situations, the absence of any retinal optic flow that is correlated with the objects and surfaces within the virtual environment means that people are using stereo-based perceptual representations to perform the behavior. The fact that people can perform such behaviors without training suggests that the perceptual representations are likely the same as those used when retinal optic flow is present. Other research indicates that optic flow, whether retinal or a more abstract property of the perceptual representation, is not the basis for postural control, because postural instability is related to perceived relative motion between self and the visual surroundings rather than to optic flow, even in the abstract sense.

  2. Performance Evaluation of 40 cm Ion Optics for the NEXT Ion Engine

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Haag, Thomas W.; Patterson, Michael J.

    2002-01-01

    The results of performance tests with two 40 cm ion optics sets are presented and compared to those of 30 cm ion optics with similar aperture geometries. The 40 cm ion optics utilized both NSTAR and TAG (Thick-Accelerator-Grid) aperture geometries. All 40 cm ion optics tests were conducted on a NEXT (NASA's Evolutionary Xenon Thruster) laboratory model ion engine. Ion optics performance tests were conducted over a beam current range of 1.20 to 3.52 A and an engine input power range of 1.1 to 6.9 kW. Measured ion optics' performance parameters included near-field radial beam current density profiles, impingement-limited total voltages, electron backstreaming limits, screen grid ion transparencies, beam divergence angles, and start-up transients. Impingement-limited total voltages for 40 cm ion optics with the NSTAR aperture geometry were 60 to 90 V lower than those with the TAG aperture geometry. This difference was speculated to be due to an incomplete burn-in of the TAG ion optics. Electron backstreaming limits for the 40 cm ion optics with the TAG aperture geometry were 8 to 19 V higher than those with the NSTAR aperture geometry due to the thicker accelerator grid of the TAG geometry. Because the NEXT ion engine provided beam flatness parameters that were 40 to 63 percent higher than those of the NSTAR ion engine, the 40 cm ion optics outperformed the 30 cm ion optics.

  3. Damage initiated self-healing in ionomer blends

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Arifur; Penco, Maurizio; Spagnoli, Gloria; Peroni, Isabella; Ramorino, Giorgio; Sartore, Luciana; Bignotti, Fabio; Landro, Luca Di

    2012-07-01

    The development and understanding of self-healing mechanisms have been investigated in blends of ionomers (Poly(ethyelene-co-methacrylic acid), sodium & zinc ions) (EMNa & EMZn) containing both elastomers (Epoxidized natural rubbers (ENR) and cis-1,4-Polyisoprene (PISP)) and crystalline component (Poly(vinly alcohol-co-ethylene) [PVAcE]) as secondary phases. All the blends were prepared by melt-blending and self-healing behavior was studied in ballistic puncture tests. Self-healing behavior of each material was evaluated by observing the impact zones under a stereo-optical microscope and the micrographic results were further supported by the fluid flow test in the punctured zones. Interestingly, ENR50 blends of sodium ion containing ionomers exhibited complete self-repairing behavior while zinc ion containing ionomer showed limited mending but EMNa/ENR25 and EMNa/PISP blends did not show any self-healing behavior following the damage. On the other hand, a composition dependent healing behavior was observed in the EMNa/PVAcE blends where healing was observed up to 30wt% PVAcE containing blends. The chemical structure studied by FTIR analysis showed that both ion content of ionomer and functionality of ENR have significant influence on the self-repairing behavior of blends. TEM analysis revealed that self-healing occurs in the blends when the dispersed phase has a dimension of 100 to 400 nm.

  4. Limits of optical transmission measurements with application to particle sizing techniques.

    PubMed

    Swanson, N L; Billard, B D; Gennaro, T L

    1999-09-20

    Considerable confusion exists regarding the applicability limits of the Bouguer-Lambert-Beer law of optical transmission. We review the derivation of the law and discuss its application to the optical thickness of the light-scattering medium. We demonstrate the range of applicability by presenting a method for determining particle size by measuring optical transmission at two wavelengths.

  5. In situ control of industrial processes using laser light scattering and optical rotation

    NASA Astrophysics Data System (ADS)

    Mendoza Sanchez, Patricia Judith; López Echevarria, Daniel; Huerta Ruelas, Jorge Adalberto

    2006-02-01

    We present results of optical measurements in products or processes usually found in industrial processes, which can be used to control them. Laser light scattering was employed during semiconductor epitaxial growth by molecular beam epitaxy. With this technique, it was possible to determine growth rate, roughness and critical temperatures related to substrate degradation. With the same scattering technique, oil degradation as function of temperature was monitored for different automotive lubricants. Clear differences can be studied between monograde and multigrade oils. Optical rotation measurements as function of temperature were performed in apple juice in a pasteurization process like. Average variations related to optical rotation dependence of sugars were measured and monitored during heating and cooling process, finding a reversible behavior. As opposite behavior, sugar-protein solution was measured in a similar heating and cooling process. Final result showed a non-reversible behavior related to protein denaturation. Potential applications are discussed for metal-mechanic, electronic, food, and pharmaceutical industry. Future improvements in optical systems to make them more portable and easily implemented under typical industry conditions are mentioned.

  6. Investigation of albumin-derived perfluorocarbon-based capsules by holographic optical trapping

    PubMed Central

    Köhler, Jannis; Ruschke, Jegor; Ferenz, Katja Bettina; Esen, Cemal; Kirsch, Michael; Ostendorf, Andreas

    2018-01-01

    Albumin-derived perfluorocarbon-based capsules are promising as artificial oxygen carriers with high solubility. However, these capsules have to be studied further to allow initial human clinical tests. The aim of this paper is to provide and characterize a holographic optical tweezer to enable contactless trapping and moving of individual capsules in an environment that mimics physiological (in vivo) conditions most effectively in order to learn more about the artificial oxygen carrier behavior in blood plasma without recourse to animal experiments. Therefore, the motion behavior of capsules in a ring shaped or vortex beam is analyzed and optimized on account of determination of the optical forces in radial and axial direction. In addition, due to the customization and generation of dynamic phase holograms, the optical tweezer is used for first investigations on the aggregation behavior of the capsules and a statistical evaluation of the bonding in dependency of different capsule sizes is performed. The results show that the optical tweezer is sufficient for studying individual perfluorocarbon-based capsules and provide information about the interaction of these capsules for future use as artificial oxygen carriers. PMID:29552409

  7. Optical shielding of nickel nanoparticle by a bubble: Optical limiting gets limited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Vijay; Jayabalan, J., E-mail: jjaya@rrcat.gov.in; Chari, Rama

    2016-06-13

    We have demonstrated that in a nickel nanoparticle colloid, the optical limiting action reduces if a vapor bubble forms around the nanoparticle. The energy-dependent transmission and z-scan measurements on nickel nanoparticles in toluene show the onset of an additional process. At high fluence excitation, the particle becomes less visible to the later part of the incoming pulse due to the heat generated bubble formed around it. We have proposed a simple “particle-in-bubble” model which fits the optical limiting and z-scan curves quite well. Using this model, we have also estimated that the bubble radius increases at a rate of 4.5 m/s.

  8. Adaptive optics and interferometry

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Ridgway, Stephen

    1991-01-01

    Adaptive optics and interferometry, two techniques that will improve the limiting resolution of optical and infrared observations by factors of tens or even thousands, are discussed. The real-time adjustment of optical surfaces to compensate for wavefront distortions will improve image quality and increase sensitivity. The phased operation of multiple telescopes separated by large distances will make it possible to achieve very high angular resolution and precise positional measurements. Infrared and optical interferometers that will manipulate light beams and measure interference directly are considered. Angular resolutions of single telescopes will be limited to around 10 milliarcseconds even using the adaptive optics techniques. Interferometry would surpass this limit by a factor of 100 or more. Future telescope arrays with 100-m baselines (resolution of 2.5 milliarcseconds at a 1-micron wavelength) are also discussed.

  9. Prompt Optical Observations of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Akerlof, Carl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Kehoe, Robert; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Szymanski, John; Wren, Jim

    2000-03-01

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure simultaneous and early afterglow optical emission from gamma-ray bursts (GRBs). A search for optical counterparts to six GRBs with localization errors of 1 deg2 or better produced no detections. The earliest limiting sensitivity is mROTSE>13.1 at 10.85 s (5 s exposure) after the gamma-ray rise, and the best limit is mROTSE>16.0 at 62 minutes (897 s exposure). These are the most stringent limits obtained for the GRB optical counterpart brightness in the first hour after the burst. Consideration of the gamma-ray fluence and peak flux for these bursts and for GRB 990123 indicates that there is not a strong positive correlation between optical flux and gamma-ray emission.

  10. Dual-balanced detection scheme with optical hard-limiters in an optical code division multiple access system

    NASA Astrophysics Data System (ADS)

    Liu, Maw-Yang; Hsu, Yi-Kai

    2017-03-01

    Three-arm dual-balanced detection scheme is studied in an optical code division multiple access system. As the MAI and beat noise are the main deleterious source of system performance, we utilize optical hard-limiters to alleviate such channel impairment. In addition, once the channel condition is improved effectively, the proposed two-dimensional error correction code can remarkably enhance the system performance. In our proposed scheme, the optimal thresholds of optical hard-limiters and decision circuitry are fixed, and they will not change with other system parameters. Our proposed scheme can accommodate a large number of users simultaneously and is suitable for burst traffic with asynchronous transmission. Therefore, it is highly recommended as the platform for broadband optical access network.

  11. Indium selenide monolayer: strain-enhanced optoelectronic response and dielectric environment-tunable 2D exciton features

    NASA Astrophysics Data System (ADS)

    Ben Amara, Imen; Hichri, Aida; Jaziri, Sihem

    2017-12-01

    Electronic and optical performances of the β-InSe monolayer (ML) are considerably boosted by tuning the corresponding band energies through lattice in-plane compressive strain engineering. First principles calculations show an indirect-direct gap transition with a large bandgap size. The crossover is due to different responses of the near-gap state energies with respect to strain. This is explained by the variation of In-Se bond length, the bond nature of near-band-edge electronic orbital and of the momentum angular contribution versus in-plane compressive strain. The effective masses of charge carriers are also found to be highly modulated and significantly light at the indirect-direct-gap transition. The tuned optical response of the resulting direct-gap ML β-InSe is evaluated versus applied energy to infer the allowed optical transitions, dielectric constants, semiconductor-metal behavior and refractive index. The environmental dielectric engineering of exciton behavior of the resulting direct-gap ML β-InSe is handled within the effective mass Wannier-Mott model and is expected to be important. Our results highlight the increase of binding energy and red-shifted exciton energy with decreasing screening substrates, resulting in a stable exciton at room temperature. The intensity and energy of the ground-state exciton emission are expected to be strongly influenced under substrate screening effect. According to our findings, the direct-gap ML β-InSe assures tremendous 2D optoelectronic and nanoelectronic merits that could overcome several limitations of unstrained ML β-InSe.

  12. Backscatter particle image velocimetry via optical time-of-flight sectioning

    DOE PAGES

    Paciaroni, Megan E.; Chen, Yi; Lynch, Kyle Patrick; ...

    2018-01-11

    Conventional particle image velocimetry (PIV) configurations require a minimum of two optical access ports, inherently restricting the technique to a limited class of flows. Here, the development and application of a novel method of backscattered time-gated PIV requiring a single-optical-access port is described along with preliminary results. The light backscattered from a seeded flow is imaged over a narrow optical depth selected by an optical Kerr effect (OKE) time gate. The picosecond duration of the OKE time gate essentially replicates the width of the laser sheet of conventional PIV by limiting detected photons to a narrow time-of-flight within the flow.more » Thus, scattering noise from outside the measurement volume is eliminated. In conclusion, this PIV via the optical time-of-flight sectioning technique can be useful in systems with limited optical access and in flows near walls or other scattering surfaces.« less

  13. Backscatter particle image velocimetry via optical time-of-flight sectioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paciaroni, Megan E.; Chen, Yi; Lynch, Kyle Patrick

    Conventional particle image velocimetry (PIV) configurations require a minimum of two optical access ports, inherently restricting the technique to a limited class of flows. Here, the development and application of a novel method of backscattered time-gated PIV requiring a single-optical-access port is described along with preliminary results. The light backscattered from a seeded flow is imaged over a narrow optical depth selected by an optical Kerr effect (OKE) time gate. The picosecond duration of the OKE time gate essentially replicates the width of the laser sheet of conventional PIV by limiting detected photons to a narrow time-of-flight within the flow.more » Thus, scattering noise from outside the measurement volume is eliminated. In conclusion, this PIV via the optical time-of-flight sectioning technique can be useful in systems with limited optical access and in flows near walls or other scattering surfaces.« less

  14. Studies on third-order optical nonlinearity and power limiting of conducting polymers using the z-scan technique for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Pramodini, S.; Sudhakar, Y. N.; SelvaKumar, M.; Poornesh, P.

    2014-04-01

    We present the synthesis and characterization of third-order optical nonlinearity and optical limiting of the conducting polymers poly (aniline-co-o-anisidine) and poly (aniline-co-pyrrole). Nonlinear optical studies were carried out by employing the z-scan technique using a He-Ne laser operating in continuous wave mode at 633 nm. The copolymers exhibited a reverse saturable absorption process and self-defocusing properties under the experimental conditions. The estimated values of βeff, n2 and χ(3) were found to be of the order of 10-2 cm W-1, 10-5 esu and 10-7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. The copolymers possess a lower limiting threshold and clamping level, which is essential to a great extent for power limiting devices. Therefore, copolymers of aniline emerge as a potential candidate for nonlinear optical device applications.

  15. Infrared reflectance spectroscopy of MgAl2O4 nanoparticles substituted by K+ ions

    NASA Astrophysics Data System (ADS)

    Ahmad, Javed; Qadeer Awan, M.; Yasmin, Roomana; Sabir, Maria; Anwar, Shafiq; Ehsan Mazhar, M.; Hamad Bukhari, Syed

    2018-03-01

    The infrared reflectivity spectra for potassium-doped polycrystalline magnesium aluminates Mg1-xKxAl2O4 (x=0, 0.25, 0.50, 0.75, 1) are measured in the frequency range between 10-15, 500 cm-1 using FTIR spectrometer at room-temperature. Four optical phonon modes are observed in measured spectra, which are fitted by Lorentz oscillator model for semiconducting behavior and Lorentz-Drude model for metallic behavior. Moreover, optical parameters are also determined for these modes which may attribute to spinel structure for samples Mg1-xKxAl2O4, their reflectivity spectra shows a typical semiconducting nature. To study ionicity and effect of polarization, Born and Szigeti effective charges are calculated from longitudinal optical and transverse optical (LO-TO) splitting of modes for all samples. Optical bandgap has been estimated through optical conductivity (σ(ω)) and found to be x dependent.

  16. Thin Hydrogel Films for Optical Biosensor Applications

    PubMed Central

    Mateescu, Anca; Wang, Yi; Dostalek, Jakub; Jonas, Ulrich

    2012-01-01

    Hydrogel materials consisting of water-swollen polymer networks exhibit a large number of specific properties highly attractive for a variety of optical biosensor applications. This properties profile embraces the aqueous swelling medium as the basis of biocompatibility, non-fouling behavior, and being not cell toxic, while providing high optical quality and transparency. The present review focuses on some of the most interesting aspects of surface-attached hydrogel films as active binding matrices in optical biosensors based on surface plasmon resonance and optical waveguide mode spectroscopy. In particular, the chemical nature, specific properties, and applications of such hydrogel surface architectures for highly sensitive affinity biosensors based on evanescent wave optics are discussed. The specific class of responsive hydrogel systems, which can change their physical state in response to externally applied stimuli, have found large interest as sophisticated materials that provide a complex behavior to hydrogel-based sensing devices. PMID:24957962

  17. Maximizing the optical network capacity

    PubMed Central

    Bayvel, Polina; Maher, Robert; Liga, Gabriele; Shevchenko, Nikita A.; Lavery, Domaniç; Killey, Robert I.

    2016-01-01

    Most of the digital data transmitted are carried by optical fibres, forming the great part of the national and international communication infrastructure. The information-carrying capacity of these networks has increased vastly over the past decades through the introduction of wavelength division multiplexing, advanced modulation formats, digital signal processing and improved optical fibre and amplifier technology. These developments sparked the communication revolution and the growth of the Internet, and have created an illusion of infinite capacity being available. But as the volume of data continues to increase, is there a limit to the capacity of an optical fibre communication channel? The optical fibre channel is nonlinear, and the intensity-dependent Kerr nonlinearity limit has been suggested as a fundamental limit to optical fibre capacity. Current research is focused on whether this is the case, and on linear and nonlinear techniques, both optical and electronic, to understand, unlock and maximize the capacity of optical communications in the nonlinear regime. This paper describes some of them and discusses future prospects for success in the quest for capacity. PMID:26809572

  18. Transceiver optics for interplanetary communications

    NASA Astrophysics Data System (ADS)

    Roberts, W. T.; Farr, W. H.; Rider, B.; Sampath, D.

    2017-11-01

    In-situ interplanetary science missions constantly push the spacecraft communications systems to support successively higher downlink rates. However, the highly restrictive mass and power constraints placed on interplanetary spacecraft significantly limit the desired bandwidth increases in going forward with current radio frequency (RF) technology. To overcome these limitations, we have evaluated the ability of free-space optical communications systems to make substantial gains in downlink bandwidth, while holding to the mass and power limits allocated to current state-of-the-art Ka-band communications systems. A primary component of such an optical communications system is the optical assembly, comprised of the optical support structure, optical elements, baffles and outer enclosure. We wish to estimate the total mass that such an optical assembly might require, and assess what form it might take. Finally, to ground this generalized study, we should produce a conceptual design, and use that to verify its ability to achieve the required downlink gain, estimate it's specific optical and opto-mechanical requirements, and evaluate the feasibility of producing the assembly.

  19. Highly selective optical fluoride ion sensor with submicromolar detection limit based on aluminum(III) octaethylporphyrin in thin polymeric film.

    PubMed

    Badr, Ibrahim H A; Meyerhoff, Mark E

    2005-04-20

    A highly selective, sensitive, and reversible fluoride optical sensing film based on aluminum(III)octaethylporphyrin as a fluoride ionophore and a lipophilic pH indicator as the optical transducer is described. The fluoride optical sensing films exhibit a submicromolar detection limit and high discrimination for fluoride over several lipophilic anions such as nitrate, perchlorate, and thiocyanate.

  20. Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses.

    PubMed

    Choi, Seung Tae; Son, Byeong Soo; Seo, Gye Won; Park, Si-Young; Lee, Kyung-Sick

    2014-03-10

    Nonlinear large deformation of a transparent elastomer membrane under hydraulic pressure was analyzed to investigate its optical performance for a variable-focus liquid-filled membrane microlens. In most membrane microlenses, actuators control the hydraulic pressure of optical fluid so that the elastomer membrane together with the internal optical fluid changes its shape, which alters the light path of the microlens to adapt its optical power. A fluid-structure interaction simulation was performed to estimate the transient behavior of the microlens under the operation of electroactive polymer actuators, demonstrating that the viscosity of the optical fluid successfully stabilizes the fluctuations within a fairly short period of time during dynamic operations. Axisymmetric nonlinear plate theory was used to calculate the deformation profile of the membrane under hydrostatic pressure, with which optical characteristics of the membrane microlens were estimated. The effects of gravitation and viscoelastic behavior of the elastomer membrane on the optical performance of the membrane microlens were also evaluated with finite element analysis.

  1. Applying UV cameras for SO2 detection to distant or optically thick volcanic plumes

    USGS Publications Warehouse

    Kern, Christoph; Werner, Cynthia; Elias, Tamar; Sutton, A. Jeff; Lübcke, Peter

    2013-01-01

    Ultraviolet (UV) camera systems represent an exciting new technology for measuring two dimensional sulfur dioxide (SO2) distributions in volcanic plumes. The high frame rate of the cameras allows the retrieval of SO2 emission rates at time scales of 1 Hz or higher, thus allowing the investigation of high-frequency signals and making integrated and comparative studies with other high-data-rate volcano monitoring techniques possible. One drawback of the technique, however, is the limited spectral information recorded by the imaging systems. Here, a framework for simulating the sensitivity of UV cameras to various SO2 distributions is introduced. Both the wavelength-dependent transmittance of the optical imaging system and the radiative transfer in the atmosphere are modeled. The framework is then applied to study the behavior of different optical setups and used to simulate the response of these instruments to volcanic plumes containing varying SO2 and aerosol abundances located at various distances from the sensor. Results show that UV radiative transfer in and around distant and/or optically thick plumes typically leads to a lower sensitivity to SO2 than expected when assuming a standard Beer–Lambert absorption model. Furthermore, camera response is often non-linear in SO2 and dependent on distance to the plume and plume aerosol optical thickness and single scatter albedo. The model results are compared with camera measurements made at Kilauea Volcano (Hawaii) and a method for integrating moderate resolution differential optical absorption spectroscopy data with UV imagery to retrieve improved SO2 column densities is discussed.

  2. Optical parameters and dispersion behavior of potassium magnesium chloride sulfate single crystals doped with Co+2 ions

    NASA Astrophysics Data System (ADS)

    Abu El-Fadl, A.; Abd-Elsalam, A. M.

    2018-05-01

    Single crystals of potassium magnesium chloride sulfate (KMCS) doped with cobalt ions were grown by slow cooling method. Powder XRD study confirmed the monoclinic structure of the grown crystals. The functional group vibrations were checked through FTIR spectroscopy measurements. In optical studies, the absorbance behavior of the crystals and their optical energy gap were established by Tauc plot. The refractive index, the extinction coefficient and other optical constants were calculated for the grown crystals. The normal dispersion of the refractive index was analyzed according to single oscillator Sellmeier's model. The Urbach's rule was applied to analyze the localized states density in the forbidden gap.

  3. Performance limitations of translationally symmetric nonimaging devices

    NASA Astrophysics Data System (ADS)

    Bortz, John C.; Shatz, Narkis E.; Winston, Roland

    2001-11-01

    The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quality, referred to herein as the translational skew invariant, is analogous to the conventional skew invariant, which is conserved in rotationally symmetric optical systems. The invariance of both of these quantities is a consequence of Noether's theorem. We show how performance limits for translationally symmetric nonimaging optical devices can be derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. Examples of computed performance limits are provided. In addition, we show that a numerically optimized non-tracking solar concentrator utilizing symmetry-breaking surface microstructure can overcome the performance limits associated with translational symmetry. The optimized design provides a 47.4% increase in efficiency and concentration relative to an ideal translationally symmetric concentrator.

  4. Limits on Optical Polarization during the Prompt Phase of GRB 140430A

    NASA Astrophysics Data System (ADS)

    Kopač, D.; Mundell, C. G.; Japelj, J.; Arnold, D. M.; Steele, I. A.; Guidorzi, C.; Dichiara, S.; Kobayashi, S.; Gomboc, A.; Harrison, R. M.; Lamb, G. P.; Melandri, A.; Smith, R. J.; Virgili, F. J.; Castro-Tirado, A. J.; Gorosabel, J.; Järvinen, A.; Sánchez-Ramírez, R.; Oates, S. R.; Jelínek, M.

    2015-11-01

    Gamma-ray burst GRB 140430A was detected by the Swift satellite and observed promptly with the imaging polarimeter RINGO3 mounted on the Liverpool Telescope, with observations beginning while the prompt γ-ray emission was still ongoing. In this paper, we present densely sampled (10-s temporal resolution) early optical light curves (LCs) in 3 optical bands and limits to the degree of optical polarization. We compare optical, X-ray, and gamma-ray properties and present an analysis of the optical emission during a period of high-energy flaring. The complex optical LC cannot be explained merely with a combination of forward and reverse shock emission from a standard external shock, implying additional contribution of emission from internal shock dissipation. We estimate an upper limit for time averaged optical polarization during the prompt phase to be as low as P < 12% (1σ). This suggests that the optical flares and early afterglow emission in this GRB are not highly polarized. Alternatively, time averaging could mask the presence of otherwise polarized components of distinct origin at different polarization position angles.

  5. Semiconductor Laser Low Frequency Noise Characterization

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Logan, Ronald T.

    1996-01-01

    This work summarizes the efforts in identifying the fundamental noise limit in semiconductor optical sources (lasers) to determine the source of 1/F noise and it's associated behavior. In addition, the study also addresses the effects of this 1/F noise on RF phased arrays. The study showed that the 1/F noise in semiconductor lasers has an ultimate physical limit based upon similar factors to fundamental noise generated in other semiconductor and solid state devices. The study also showed that both additive and multiplicative noise can be a significant detriment to the performance of RF phased arrays especially in regard to very low sidelobe performance and ultimate beam steering accuracy. The final result is that a noise power related term must be included in a complete analysis of the noise spectrum of any semiconductor device including semiconductor lasers.

  6. APPLIED OPTICS. Overcoming Kerr-induced capacity limit in optical fiber transmission.

    PubMed

    Temprana, E; Myslivets, E; Kuo, B P-P; Liu, L; Ataie, V; Alic, N; Radic, S

    2015-06-26

    Nonlinear optical response of silica imposes a fundamental limit on the information transfer capacity in optical fibers. Communication beyond this limit requires higher signal power and suppression of nonlinear distortions to prevent irreversible information loss. The nonlinear interaction in silica is a deterministic phenomenon that can, in principle, be completely reversed. However, attempts to remove the effects of nonlinear propagation have led to only modest improvements, and the precise physical mechanism preventing nonlinear cancellation remains unknown. We demonstrate that optical carrier stability plays a critical role in canceling Kerr-induced distortions and that nonlinear wave interaction in silica can be substantially reverted if optical carriers possess a sufficient degree of mutual coherence. These measurements indicate that fiber information capacity can be notably increased over previous estimates. Copyright © 2015, American Association for the Advancement of Science.

  7. On-chip RF-to-optical transducer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Simonsen, Anders; Tsaturyan, Yeghishe; Seis, Yannick; Schmid, Silvan; Schliesser, Albert; Polzik, Eugene S.

    2016-04-01

    Recent advances in the fabrication of nano- and micromechanical elements enable the realization of high-quality mechanical resonators with masses so small that the forces from optical photons can have a significant impact on their motion. This facilitates a strong interaction between mechanical motion and light, or phonons and photons. This interaction is the corner stone of the field of optomechanics and allows, for example, for ultrasensitive detection and manipulation of mechanical motion using laser light. Remarkably, today these techniques can be extended into the quantum regime, in which fundamental fluctuations of light and mechanics govern the system's behavior. Micromechanical elements can also interact strongly with other physical systems, which is the central aspect of many micro-electro-mechanical based sensors. Micromechanical elements can therefore act as a bridge between these diverse systems, plus technologies that utilize them, and the mature toolbox of optical techniques that routinely operates at the quantum limit. In a previous work [1], we demonstrated such a bridge by realizing simultaneous coupling between an electronic LC circuit and a quantum-noise limited optical interferometer. The coupling was mediated by a mechanical oscillator forming a mechanically compliant capacitor biased with a DC voltage. The latter enhances the electromechanical interaction all the way to the strong coupling regime. That scheme allowed optical detection of electronic signals with effective noise temperatures far below the actual temperature of the mechanical element. On-chip integration of the electrical, mechanical and optical elements is necessary for an implementation of the transduction scheme that is viable for commercial applications. Reliable assembly of a strongly coupled electromechanical device, and inclusion of an optical cavity for enhanced optical readout, are key features of the new platform. Both can be achieved with standard cleanroom fabrication techniques. We will furthermore present ongoing work to couple our transducer to an RF or microwave antenna, for low-noise detection of electromagnetic signals, including sensitive measurements of magnetic fields in an MRI detector. Suppression of thermomechanical noise is a key feature of electro-optomechanical transducers, and, more generally, hybrid systems involving mechanical degrees of freedom. We have shown that engineering of the phononic density of states allows improved isolation of the relevant mechanical modes from their thermal bath [2], enabling coherence times sufficient to realize quantum-coherent optomechanical coupling. This proves the potential of the employed platform for complex transducers all the way into the quantum regime. References: [1] Bagci et al, Nature 507, 81-85, (06 March 2014) [2] Tsaturyan, et al., Optics Express, Vol. 22, Issue 6, pp. 6810-6821 (2014)

  8. Sensitivity of corneal biomechanical and optical behavior to material parameters using design of experiments method.

    PubMed

    Xu, Mengchen; Lerner, Amy L; Funkenbusch, Paul D; Richhariya, Ashutosh; Yoon, Geunyoung

    2018-02-01

    The optical performance of the human cornea under intraocular pressure (IOP) is the result of complex material properties and their interactions. The measurement of the numerous material parameters that define this material behavior may be key in the refinement of patient-specific models. The goal of this study was to investigate the relative contribution of these parameters to the biomechanical and optical responses of human cornea predicted by a widely accepted anisotropic hyperelastic finite element model, with regional variations in the alignment of fibers. Design of experiments methods were used to quantify the relative importance of material properties including matrix stiffness, fiber stiffness, fiber nonlinearity and fiber dispersion under physiological IOP. Our sensitivity results showed that corneal apical displacement was influenced nearly evenly by matrix stiffness, fiber stiffness and nonlinearity. However, the variations in corneal optical aberrations (refractive power and spherical aberration) were primarily dependent on the value of the matrix stiffness. The optical aberrations predicted by variations in this material parameter were sufficiently large to predict clinically important changes in retinal image quality. Therefore, well-characterized individual variations in matrix stiffness could be critical in cornea modeling in order to reliably predict optical behavior under different IOPs or after corneal surgery.

  9. Optical and Photothermal Behaviors of Colloidal and Self-Assembled Magnetic-Plasmonic Nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Kai

    This dissertation is based on numerous efforts in exploring the capabilties of numerical simulation for investigating novel optical phenomena in different colloidal plasmonic systems. The dissertation includes five chapters. Chapter 1 contains a general introduction to the fundamentals of plasmonic behaviors in colloidal clusters and bottom-up self-assembly methods for manufacturing colloidal clusters which include magnetic based and DNA-assisted pathways. Chapter 2 presents a systematic comparison of optical and thermodynamic properties of near-infrared colloidal nanoparticles, including SiO2 Au core-shell, Au nanocage and Au nanorod, and an example of the nanobubble-based photothermal therapy application. In Chapter 3, a optical phenomenon named Fano resonance is demonstrated in a colloidal heptamer design which consists of seven Fe 3O4 Au core-shell nanoparticles. The incorporation of the magnetic core enables a magnetic-assisted self-assembly process which will be discussed after the photonic analysis. In Chapter 4, the optical behaviors in a 1D magnetic-plasmonic chain are explored. A demonstration of the magnetic-based self-assembly of this 1D chain is given. Chapter 5 is focused on the study of the chiral optical responses in a helical nanoscale system which follows a 3D helical arrangement of Fe3O4 Au core-shell nanoparticles.

  10. One-pot synthesis of silica-hybridized Ag{sub 2}S–CuS nanocomposites with tunable nonlinear optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann Mary, K.A.; Unnikrishnan, N.V., E-mail: nvu100@yahoo.com; Philip, Reji

    2015-10-15

    Highlights: • Silica modified QDs of CuS and Ag{sub 2}S is developed at room temperature. • Formation of Ag{sub 2}S/CuS nanocomposites is confirmed from XRD and FFT of HRTEM images. • The concentration dependent growth of silica modified QDs is discussed. • Nonlinear absorption observed in ns excitations is dominated by SA and ESA. • Tuning of optical limiting efficiency is achieved with relative Ag{sub 2}S content. - Abstract: In the present work we report a simple, facile route developed for preparing silica hybridized copper sulfide and silver sulfide quantum dots at room temperature. By adjusting the concentration of themore » precursors, Ag{sub 2}S can form Ag{sub 2}S–CuS nanocomposites which are self regulated in one pot. Their crystalline, structural and optical properties have been investigated in detail, and the optical limiting nature is studied from fluence-dependent transmittance measurements employing short (5 ns) laser pulses at 532 nm. Ag{sub 2}S nanoparticles are found to have large third order nonlinear optical coefficients with a relatively lower optical limiting threshold of 1.7 J cm{sup −2}, while the nonlinearity of the nanocomposites is found to lie in between that of Ag{sub 2}S and CuS nanoparticles. These results suggest pathways for designing good quality optical limiters with tunable optical limiting efficiencies by varying the constituent nanocrystal compositions.« less

  11. Tunable optical limiting optofluidic device filled with graphene oxide dispersion in ethanol

    PubMed Central

    Fang, Chaolong; Dai, Bo; Hong, Ruijin; Tao, Chunxian; Wang, Qi; Wang, Xu; Zhang, Dawei; Zhuang, Songlin

    2015-01-01

    An optofluidic device with tunable optical limiting property is proposed and demonstrated. The optofluidic device is designed for adjusting the concentration of graphene oxide (GO) in the ethanol solution and fabricated by photolithography technique. By controlling the flow rate ratio of the injection, the concentration of GO can be precisely adjusted so that the optical nonlinearity can be changed. The nonlinear optical properties and dynamic excitation relaxation of the GO/ethanol solution are investigated by using Z-scan and pump-probe measurements in the femtosecond regime within the 1.5 μm telecom band. The GO/ethanol solution presents ultrafast recovery time. Besides, the optical limiting property is in proportion to the concentration of the solution. Thus, the threshold power and the saturated power of the optical limiting property can be simply and efficiently manipulated by controlling the flow rate ratio of the injection. Furthermore, the amplitude regeneration is demonstrated by employing the proposed optofluidic device. The signal quality of intensity-impaired femtosecond pulse is significantly improved. The optofluidic device is compact and has long interaction length of optical field and nonlinear material. Heat can be dissipated in the solution and nonlinear material is isolated from other optical components, efficiently avoiding thermal damage and mechanical damage. PMID:26477662

  12. Modeling of a Single-Notch Microfiber Coupler for High-Sensitivity and Low Detection-Limit Refractive Index Sensing.

    PubMed

    Zhang, Jiali; Shi, Lei; Zhu, Song; Xu, Xinbiao; Zhang, Xinliang

    2016-05-11

    A highly sensitive refractive index sensor with low detection limit based on an asymmetric optical microfiber coupler is proposed. It is composed of a silica optical microfiber and an As₂Se₃ optical microfiber. Due to the asymmetry of the microfiber materials, a single-notch transmission spectrum is demonstrated by the large refractive index difference between the two optical microfibers. Compared with the symmetric coupler, the bandwidth of the asymmetric structure is over one order of magnitude narrower than that of the former. Therefore, the asymmetric optical microfiber coupler based sensor can reach over one order of magnitude smaller detection limit, which is defined as the minimal detectable refractive index change caused by the surrounding analyte. With the advantage of large evanescent field, the results also show that a sensitivity of up to 3212 nm per refractive index unit with a bandwidth of 12 nm is achieved with the asymmetric optical microfiber coupler. Furthermore, a maximum sensitivity of 4549 nm per refractive index unit can be reached while the radii of the silica optical microfiber and As₂Se₃ optical microfiber are 0.5 μm and a 0.128 μm, respectively. This sensor component may have important potential for low detection-limit physical and biochemical sensing applications.

  13. Prediction of the limit of detection of an optical resonant reflection biosensor.

    PubMed

    Hong, Jongcheol; Kim, Kyung-Hyun; Shin, Jae-Heon; Huh, Chul; Sung, Gun Yong

    2007-07-09

    A prediction of the limit of detection of an optical resonant reflection biosensor is presented. An optical resonant reflection biosensor using a guided-mode resonance filter is one of the most promising label-free optical immunosensors due to a sharp reflectance peak and a high sensitivity to the changes of optical path length. We have simulated this type of biosensor using rigorous coupled wave theory to calculate the limit of detection of the thickness of the target protein layer. Theoretically, our biosensor has an estimated ability to detect thickness change approximately the size of typical antigen proteins. We have also investigated the effects of the absorption and divergence of the incident light on the detection ability of the biosensor.

  14. Studies on dynamic behavior of rotating mirrors

    NASA Astrophysics Data System (ADS)

    Li, Jingzhen; Sun, Fengshan; Gong, Xiangdong; Huang, Hongbin; Tian, Jie

    2005-02-01

    A rotating mirror is a kernel unit in a Miller-type high speed camera, which is both as an imaging element in optical path and as an element to implement ultrahigh speed photography. According to Schardin"s Principle, information capacity of an ultrahigh speed camera with rotating mirror depends on primary wavelength of lighting used by the camera and limit linear velocity on edge of the rotating-mirror: the latter is related to material (including specifications in technology), cross-section shape and lateral structure of rotating mirror. In this manuscript dynamic behavior of high strength aluminium alloy rotating mirrors is studied, from which it is preliminarily shown that an aluminium alloy rotating mirror can be absolutely used as replacement for a steel rotating-mirror or a titanium alloy rotating-mirror in framing photographic systems, and it could be also used as a substitute for a beryllium rotating-mirror in streak photographic systems.

  15. Possible method for diagnosing waves in dusty plasmas with magnetized charged dust particulates

    NASA Astrophysics Data System (ADS)

    Rosenberg, M.; Shukla, P. K.

    2005-05-01

    We discuss theoretically a possible method for diagnosing some features of dust wave behavior in a magnetized plasma containing small (tens of nm) charged dust grains whose motion is magnetized. It is easier to magnetize a small dust particle because its charge-to-mass ratio increases as its size decreases. However, it is more difficult to use the backscattering of light from the dust as a diagnostic as the dust size decreases below the diffraction limit. The idea proposed here is to measure the reduction in transmitted UV or optical light intensity due to enhanced extinction by small metal dust particles that have surface plasmon resonances at those wavelengths. Such measurements could indicate the spatial location of the dust density compressions or rarefactions, which may yield information on the dust wave behavior, or perhaps even charged dust transport. Parameters that may be relevant to possible laboratory dusty plasma experiments are discussed.

  16. Electromechanical instability in soft materials: Theory, experiments and applications

    NASA Astrophysics Data System (ADS)

    Suo, Zhigang

    2013-03-01

    Subject to a voltage, a membrane of a dielectric elastomer reduces thickness and expands area, possibly straining over 100%. The phenomenon is being developed as transducers for broad applications, including soft robots, adaptive optics, Braille displays, and electric generators. The behavior of dielectric elastomers is closely tied to electromechanical instability. This instability may limit the performance of devices, and may also be used to achieve giant actuation strains. This talk reviews the theory of dielectric elastomers, coupling large deformation and electric potential. The theory is developed within the framework of continuum mechanics and thermodynamics. The theory attempts to answer commonly asked questions. How do mechanics and electrostatics work together to generate large deformation? How efficiently can a material convert energy from one form to another? How do molecular processes affect macroscopic behavior? The theory is used to describe electromechanical instability, and is related to recent experiments.

  17. Polymer stabilized liquid crystals: Topology-mediated electro-optical behavior and applications

    NASA Astrophysics Data System (ADS)

    Weng, Libo

    There has been a wide range of liquid crystal polymer composites that vary in polymer concentration from as little as 3 wt.% (polymer stabilized liquid crystal) to as high as 60 wt.% (polymer dispersed liquid crystals). In this dissertation, an approach of surface polymerization based on a low reactive monomer concentration about 1 wt.% is studied in various liquid crystal operation modes. The first part of dissertation describes the development of a vertical alignment (VA) mode with surface polymer stabilization, and the effects of structure-performance relationship of reactive monomers (RMs) and polymerization conditions on the electro-optical behaviors of the liquid crystal device has been explored. The polymer topography plays an important role in modifying and enhancing the electro-optical performance of stabilized liquid crystal alignment. The enabling surface-pinned polymer stabilized vertical alignment (PSVA) approach has led to the development of high-performance and fast-switching displays with controllable pretilt angle, increase in surface anchoring energy, high optical contrast and fast response time. The second part of the dissertation explores a PSVA mode with in-plane switching (IPS) and its application for high-efficiency and fast-switching phase gratings. The diffraction patterns and the electro-optical behaviors including diffraction efficiency and response time are characterized. The diffraction grating mechanism and performance have been validated by computer simulation. Finally, the advantages of surface polymerization approach such as good optical contrast and fast response time have been applied to the fringe-field switching (FFS) system. The concentration of reactive monomer on the electro-optical behavior of the FFS cells is optimized. The outstanding electro-optical results and mechanism of increase in surface anchoring strength are corroborated by the director field simulation. The density and topology of nanoscale polymer protrusions are analyzed and confirmed by morphological study. The developed high-performance polymer-stabilized fringe-field-switching (PS-FFS) could open new types of device applications.

  18. Impact of optical feedback on current-induced polarization behavior of 1550 nm vertical-cavity surface-emitting lasers.

    PubMed

    Deng, Tao; Wu, Zheng-Mao; Xie, Yi-Yuan; Wu, Jia-Gui; Tang, Xi; Fan, Li; Panajotov, Krassimir; Xia, Guang-Qiong

    2013-06-01

    Polarization switching (PS) between two orthogonal linearly polarized fundamental modes is experimentally observed in commercial free-running 1550 nm vertical-cavity surface-emitting lasers (VCSELs) (Raycan). The characteristics of this PS are strongly modified after introducing a polarization-preserved (PP) or polarization-orthogonal (PO) optical feedback. Under the case that the external cavity is approximately 30 cm, the PP optical feedback results in the PS point shifting toward a lower injection current, and the region within which the two polarization modes coexist is enlarged with the increase of the PP feedback strength. Under too-strong PP feedback levels, the PS disappears. The impact of PO optical feedback on VCSEL polarization behavior is quite similar to that of PP optical feedback, but larger feedback strength is needed to obtain similar results.

  19. Correlated Time-Variation of Asphalt Rheology and Bulk Microstructure

    NASA Astrophysics Data System (ADS)

    Ramm, Adam; Nazmus, Sakib; Bhasin, Amit; Downer, Michael

    We use noncontact optical microscopy and optical scattering in the visible and near-infrared spectrum on Performance Grade (PG) asphalt binder to confirm the existence of microstructures in the bulk. The number of visible microstructures increases linearly as penetration depth of the incident radiation increases, which verifies a uniform volume distribution of microstructures. We use dark field optical scatter in the near-infrared to measure the temperature dependent behavior of the bulk microstructures and compare this behavior with Dynamic Shear Rheometer (DSR) measurements of the bulk complex shear modulus | G* (T) | . The main findings are: (1) After reaching thermal equilibrium, both temperature dependent optical scatter intensity (I (T)) and bulk shear modulus (| G* (T) |) continue to change appreciably for times much greater than thermal equilibration times. (2) The hysteresis behavior during a complete temperature cycle seen in previous work derives from a larger time dependence in the cooling step compared with the heating step. (3) Different binder aging conditions show different thermal time-variations for both I (T) and | G* (T) | .

  20. Fast Electron Spectroscopy of Enhanced Plasmonic N anoantenna Resonances

    NASA Astrophysics Data System (ADS)

    Day, Jared K.

    Surface plasmons are elementary excitations of the collective and coherent oscillations of conductive band electrons coupled with photons at the surface of metals. Surface plasmons of metallic nanostructures can efficiently couple to light making them a new class of optical antennas that can confine and control light at nanometer scale dimensions. Nanoscale optical antennas can be used to enhance the energy transfer between nanoscale systems and freely-propagating radiation. Plasmonic nanoantennas have already been used to enhance single molecule detection, diagnosis and treat cancer, harvest solar energy, to create metamaterials with new optical properties and to enhance photo-chemical reactions. The applications for plasmonic nanoantennas are only limited by the fundamental understanding of their unique optical properties and the rational design of new coupled antenna systems. It is therefore necessary to interrogate and image the local electromagnetic response of nanoantenna systems to establish intuition between near-field coupling dynamics and far-field optical properties. This thesis focuses on the characterization and enhancement of the longitudinal multipolar plasmonic resonances of Au nanorod nanoantennas. To better understand these resonances fast electron spectroscopy is used to both visualize and probe the near- and far-field properties of multipolar resonances of individual nanorods and more complex nanorod systems through cathodoluminescence (CL). CL intensity maps show that coupled nanorod systems enhance and alter nanorod resonances away from ideal resonant behavior creating hybridized longitudinal modes that expand and relax at controllable locations along the nanorod. These measurements show that complex geometries can strengthen and alter the local density of optical states for nanoantenna designs with more functionality and better control of localized electromagnetic fields. Finally, the electron excitations are compared to plane wave optical stimulation both experimentally and through Finite Difference Time Domain simulations to begin to develop a qualitative picture of how the local density of optical states affects the far-field optical scattering properties of plasmonic nanoantennas.

  1. Influence of model order reduction methods on dynamical-optical simulations

    NASA Astrophysics Data System (ADS)

    Störkle, Johannes; Eberhard, Peter

    2017-04-01

    In this work, the influence of model order reduction (MOR) methods on optical aberrations is analyzed within a dynamical-optical simulation of a high precision optomechanical system. Therefore, an integrated modeling process and new methods have to be introduced for the computation and investigation of the overall dynamical-optical behavior. For instance, this optical system can be a telescope optic or a lithographic objective. In order to derive a simplified mechanical model for transient time simulations with low computational cost, the method of elastic multibody systems in combination with MOR methods can be used. For this, software tools and interfaces are defined and created. Furthermore, mechanical and optical simulation models are derived and implemented. With these, on the one hand, the mechanical sensitivity can be investigated for arbitrary external excitations and on the other hand, the related optical behavior can be predicted. In order to clarify these methods, academic examples are chosen and the influences of the MOR methods and simulation strategies are analyzed. Finally, the systems are investigated with respect to the mechanical-optical frequency responses, and in conclusion, some recommendations for the application of reduction methods are given.

  2. High bandwidth optical mount

    DOEpatents

    Bender, Donald A.; Kuklo, Thomas

    1994-01-01

    An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage.

  3. Broadband thermal optical limiter for the protection of eyes and sensors

    NASA Astrophysics Data System (ADS)

    Justus, Brian L.; Huston, Alan L.; Campillo, Anthony J.

    1994-05-01

    A broadband thermal optical limiter for protecting a light sensitive object from intense laser beams at all near ultraviolet, visible and near infrared wavelengths is disclosed. The broadband thermal optical limiter comprises: a sample cell containing a solution of broadband absorber material dissolved in a thermal solvent; and a first optical device for converging an incident laser beam into the sample cell. The sample cell is responsive to a converged incident laser beam below a predetermined intensity level for passing therethrough the converged incident laser beam below the predetermined intensity level. The sample cell is also responsive to a converged incident laser beam at or above a predetermined intensity level for thermally defocusing substantially all of the converged incident laser beam in different directions and passing therethrough only a remaining small portion of the converged incident laser beam at or above the predetermined intensity level. The broadband thermal optical limiter further includes a second optical device for focusing substantially all of the laser beam passing through the sample cell into the light sensitive object to be protected.

  4. Rayleigh scattering in few-mode optical fibers

    PubMed Central

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-01-01

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation. PMID:27775003

  5. Rayleigh scattering in few-mode optical fibers.

    PubMed

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-10-24

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.

  6. Using Light Scattering to Track, Characterize and Manipulate Colloids

    NASA Astrophysics Data System (ADS)

    van Oostrum, P. D. J.

    2011-03-01

    A new technique is developed to analyze in-line Digital Holographic Microscopy images, making it possible to characterize, and track colloidal particles in three dimensions at unprecedented accuracy. We took digital snapshots of the interference pattern between the light scattered by micrometer particles and the unaltered portion of a laser beam that was used to illuminate dilute colloidal dispersions on a light microscope in transmission mode. We numerically fit Mie-theory for the light-scattering by micrometer sized particles to these experimental in-line holograms. The fit values give the position in three dimensions with an accuracy of a few nanometers in the lateral directions and several tens of nanometers in the axial direction. The individual particles radii and refractive indices could be determined to within tens of nanometers and a few hundredths respectively. By using a fast CCD camera, we can track particles with millisecond resolution in time which allows us to study dynamical properties such as the hydrodynamic radius and the sedimentation coefficient. The scattering behavior of the particles that we use to track and characterize colloidal particles makes it possible to exert pico-Newton forces on them close to a diffraction limited focus. When these effects are used to confine colloids in space, this technique is called Optical Tweezers. Both by numerical calculations and by experiments, we explore the possibilities of optical tweezers in soft condensed matter research. Using optical tweezers we placed multiple particles in interesting configurations to measure the interaction forces between them. The interaction forces were Yukawa-like screened charge repulsions. Careful timing of the blinking of time-shared optical tweezers and of the recording of holographic snapshots, we were able to measure interaction forces with femto-Newton accuracy from an analysis of (driven) Brownian motion. Forces exerted by external fields such as electric fields and gravity were measured as well. We induced electric dipoles in colloidal particles by applying radio frequency electric fields. Dipole induced strings of particles were formed and made permanent by van der Waals attractions or thermal annealing. Such colloidal strings form colloidal analogues of charged and un-charged (bio-) polymers. The diffusion and bending behavior of such strings was probed using DHM and optical tweezers.

  7. Is the Young UY Auriga System a Triple?

    NASA Astrophysics Data System (ADS)

    Wittal, Matthew; Prato, Lisa A.; Schaefer, Gail; Ciardi, David R.; Thomas, Allen; Biddle, Lauren; Avilez, Ian; Muzzio, Ryan; Patience, Jennifer; Beichman, Charles

    2017-01-01

    In an effort to understand the nature of the young binary, UY Aur, we examined the variable behavior of the entire, unresolved 0.9 arcsecond system, as well as the behavior of the angularly resolved, individual A and B components. UY Aur is an approximately 2 Myr old, classical T Tauri in the Taurus-Auriga star forming region and is one of a handful of young systems to host a primordial circumbinary disk, as well as individual circumstellar disks. Using the the facility infrared, high-resolution NIRSPEC spectrograph behind the adaptive optics system at the 10-meter Keck II telescope, we observed a dramatic change in the spectra of UY Aur B between 2003 and 2010. We also identified flux variability in the individual components of 1—2 magnitudes, particularly in the secondary star, on the basis of historical photometry. Thermal dust and line emission observed with millimeter interferometry indicates complex dynamical behavior of the circumbinary and circumstellar dust and led Tang et al. (2014) to speculate that UY Aur B may itself be a binary. Our adaptive optics imaging with the Keck II telescope showed no evidence for a close companion to the B component, although the marked change in our spectra of this star suggest that it could be a spectroscopic binary. We are currently limited by the paucity of angularly resolved observations, both photometric and spectroscopic, hampering the interpretation of the data. High-cadence, angularly resolved spectroscopy and photometry will be required to confirm the potential higher-order multiplicity of this system. This research was supported in part by NSF grants AST-1461200 and AST-1313399.

  8. Optical-domain subsampling for data efficient depth ranging in Fourier-domain optical coherence tomography

    PubMed Central

    Siddiqui, Meena; Vakoc, Benjamin J.

    2012-01-01

    Recent advances in optical coherence tomography (OCT) have led to higher-speed sources that support imaging over longer depth ranges. Limitations in the bandwidth of state-of-the-art acquisition electronics, however, prevent adoption of these advances into the clinical applications. Here, we introduce optical-domain subsampling as a method for imaging at high-speeds and over extended depth ranges but with a lower acquisition bandwidth than that required using conventional approaches. Optically subsampled laser sources utilize a discrete set of wavelengths to alias fringe signals along an extended depth range into a bandwidth limited frequency window. By detecting the complex fringe signals and under the assumption of a depth-constrained signal, optical-domain subsampling enables recovery of the depth-resolved scattering signal without overlapping artifacts from this bandwidth-limited window. We highlight key principles behind optical-domain subsampled imaging, and demonstrate this principle experimentally using a polygon-filter based swept-source laser that includes an intra-cavity Fabry-Perot (FP) etalon. PMID:23038343

  9. Nonlinear-optical Christiansen filter as an optical power limiter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, G.L.; Boyd, R.W.; Moore, T.R.

    We have constructed an optical power limiter based on nonlinear induced scattering in a cell containing crushed glass and a mixture of acetone and carbon disulfide. For 30-ps-long laser pulses the transmitted energy saturates at a value of 6{mu}J. We also present the results of a theoretical modeling study that shows how the operating characteristics of such a device can be optimized. {copyright} {ital 1996 Optical Society of America.}

  10. Broadband noise limit in the photodetection of ultralow jitter optical pulses.

    PubMed

    Sun, Wenlu; Quinlan, Franklyn; Fortier, Tara M; Deschenes, Jean-Daniel; Fu, Yang; Diddams, Scott A; Campbell, Joe C

    2014-11-14

    Applications with optical atomic clocks and precision timing often require the transfer of optical frequency references to the electrical domain with extremely high fidelity. Here we examine the impact of photocarrier scattering and distributed absorption on the photocurrent noise of high-speed photodiodes when detecting ultralow jitter optical pulses. Despite its small contribution to the total photocurrent, this excess noise can determine the phase noise and timing jitter of microwave signals generated by detecting ultrashort optical pulses. A Monte Carlo simulation of the photodetection process is used to quantitatively estimate the excess noise. Simulated phase noise on the 10 GHz harmonic of a photodetected pulse train shows good agreement with previous experimental data, leading to the conclusion that the lowest phase noise photonically generated microwave signals are limited by photocarrier scattering well above the quantum limit of the optical pulse train.

  11. Origin of Non-Radiative Voltage Losses in Fullerene-Based Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Benduhn, Johannes; Tvingstedt, Kristofer; Piersimoni, Fortunato; Ullbrich, Sascha; Neher, Dieter; Spoltore, Donato; Vandewal, Koen

    The open-circuit voltage of organic solar cells (OSCs) is low as compared to the optical gap of the absorber molecules, indicating high energy losses per absorbed photon. These voltage losses arise only partly due to necessity of an electron transfer event to dissociate the excitons. A large part of these voltage losses is due to recombination of photo-generated charge carriers, including inevitable radiative recombination. In this work, we study the non-radiative recombination losses and we find that they increase when the energy difference between charge transfer (CT) state and ground state decreases. This behavior is in agreement with the \\x9Denergy gap law for non-radiative transition\\x9D, which implies that internal conversion from CT state to ground state is facilitated by skeletal molecular vibrations. This intrinsic loss mechanism, which until now has not been thoroughly considered for OSCs, is different in its nature as compared to the commonly considered inorganic photovoltaic loss mechanisms of defect, surface, and Auger recombination. As a consequence, the theoretical upper limit for the power conversion efficiency of a single junction OSC reduces by 25% as compared to the Shockley-Queisser limit for an optimal optical gap of the main absorber between (1.45-1.65) eV.

  12. Impact effects of gamma irradiation on the optical and FT infrared absorption spectra of some Nd3+-doped soda lime phosphate glasses

    NASA Astrophysics Data System (ADS)

    Marzouk, M. A.; Elkashef, I. M.; Elbatal, H. A.

    2018-04-01

    The main aim of the present work is to study by two collective optical and FTIR spectral measurements some prepared Nd2O3-doped soda lime phosphate glasses before and after gamma irradiation with dose (9 Mrad). The spectral data reveal two strong UV absorption peaks which are correlated with unavoidable trace iron impurities beside extended additional characteristic bands due to Nd3+ ions. Gamma irradiation on the undoped glass produces slight decrease of the intensity of the UV absorption and the generation of an induced visible band and these effects are controlled with two photochemical reduction of some Fe3+ ions to Fe2+ ions together with the formation of nonbridging oxygen hole center (NBOHC) or phosphorous oxygen hole center (POHC). The impact effect of gamma irradiation on the spectra of Nd2O3-doped glasses is limited due to suggested shielding behavior of neodymium ions. FT-infrared spectra show vibrational modes due to main Q2-Q3 phosphate groups and the response of gamma irradiation of the IR spectra is low and the limited variations are related to suggested changes in some bond angles and bond lengths which cause the observed decrease to the intensities of some IR bands.

  13. Study of thermal annealing effect on Bragg gratings photo-inscribed in step-index polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Hu, X.; Kinet, D.; Mégret, P.; Caucheteur, C.

    2016-04-01

    In this paper, both non-annealed and annealed trans-4-stilbenemethanol-doped step-index polymer optical fibers were photo-inscribed using a 325 nm HeCd laser with two different beam power densities reaching the fiber core. In the high density regime where 637 mW/mm2 are used, the grating reflectivity is stable over time after the photo-writing process but the reflected spectrum is of limited quality, as the grating physical length is limited to 1.2 mm. To produce longer gratings exhibiting more interesting spectral features, the beam is enlarged to 6 mm, decreasing the power density to 127 mW/mm2. In this second regime, the grating reflectivity is not stable after the inscription process but tends to decay for both kinds of fibers. A fortunate property in this case results from the possibility to fully recover the initial reflectivity using a post-inscription thermal annealing, where the gratings are annealed at 80 °C during 2 days. The observed evolutions for both regimes are attributed to the behavior of the excited intermediate states between the excited singlet and the ground singlet state of trans- and cis-isomers as well as the temperature-dependent glassy polymer matrix.

  14. Optical limiting materials

    DOEpatents

    McBranch, D.W.; Mattes, B.R.; Koskelo, A.C.; Heeger, A.J.; Robinson, J.M.; Smilowitz, L.B.; Klimov, V.I.; Cha, M.; Sariciftci, N.S.; Hummelen, J.C.

    1998-04-21

    Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO{sub 2}) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400--1,100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes. 5 figs.

  15. P1 Nonconforming Finite Element Method for the Solution of Radiation Transport Problems

    NASA Technical Reports Server (NTRS)

    Kang, Kab S.

    2002-01-01

    The simulation of radiation transport in the optically thick flux-limited diffusion regime has been identified as one of the most time-consuming tasks within large simulation codes. Due to multimaterial complex geometry, the radiation transport system must often be solved on unstructured grids. In this paper, we investigate the behavior and the benefits of the unstructured P(sub 1) nonconforming finite element method, which has proven to be flexible and effective on related transport problems, in solving unsteady implicit nonlinear radiation diffusion problems using Newton and Picard linearization methods. Key words. nonconforrning finite elements, radiation transport, inexact Newton linearization, multigrid preconditioning

  16. New scramblers for precision radial velocity: square and octagonal fibers

    NASA Astrophysics Data System (ADS)

    Chazelas, Bruno; Pepe, Francesco; Wildi, François; Bouchy, Francois; Perruchot, Sandrine; Avila, Gerardo

    2010-07-01

    One of the remaining limitation of the precise radial velocity instruments is the imperfect scrambling produced by the circular fibers. We present here experimental studies on new optical fibers aiming at an improvement of the scrambling they provide. New fibers shapes were tested: square and octagonal. Measurements have been performed of the scrambling performances of these fibers in the near field as well FRD measurements. These fibers show extremely promising performances in the near field scrambling: an improvement of a factor 5 to 10 compared to the circular fiber. They however show some strange behavior in the far field that need to be understood.

  17. Thermally ruggedized ITO transparent electrode films for high power optoelectronics.

    PubMed

    Yoo, Jae-Hyuck; Matthews, Manyalibo; Ramsey, Phil; Barrios, Antonio Correa; Carter, Austin; Lange, Andrew; Bude, Jeff; Elhadj, Selim

    2017-10-16

    We present two strategies to minimize laser damage in transparent conductive films. The first consists of improving heat dissipation by selection of substrates with high thermal diffusivity or by addition of capping layer heatsinks. The second is reduction of bulk energy absorption by lowering free carrier density and increasing mobility, while maintaining film conductance with thicker films. Multi-pulse laser damage tests were performed on tin-doped indium oxide (ITO) films configured to improve optical lifetime damage performance. Conditions where improvements were not observed are also described. When bulk heating is not the dominant damage process, discrete defect-induced damage limits damage behavior.

  18. Maximizing the optical network capacity.

    PubMed

    Bayvel, Polina; Maher, Robert; Xu, Tianhua; Liga, Gabriele; Shevchenko, Nikita A; Lavery, Domaniç; Alvarado, Alex; Killey, Robert I

    2016-03-06

    Most of the digital data transmitted are carried by optical fibres, forming the great part of the national and international communication infrastructure. The information-carrying capacity of these networks has increased vastly over the past decades through the introduction of wavelength division multiplexing, advanced modulation formats, digital signal processing and improved optical fibre and amplifier technology. These developments sparked the communication revolution and the growth of the Internet, and have created an illusion of infinite capacity being available. But as the volume of data continues to increase, is there a limit to the capacity of an optical fibre communication channel? The optical fibre channel is nonlinear, and the intensity-dependent Kerr nonlinearity limit has been suggested as a fundamental limit to optical fibre capacity. Current research is focused on whether this is the case, and on linear and nonlinear techniques, both optical and electronic, to understand, unlock and maximize the capacity of optical communications in the nonlinear regime. This paper describes some of them and discusses future prospects for success in the quest for capacity. © 2016 The Authors.

  19. Roadmap on neurophotonics

    NASA Astrophysics Data System (ADS)

    Cho, Yong Ku; Zheng, Guoan; Augustine, George J.; Hochbaum, Daniel; Cohen, Adam; Knöpfel, Thomas; Pisanello, Ferruccio; Pavone, Francesco S.; Vellekoop, Ivo M.; Booth, Martin J.; Hu, Song; Zhu, Jiang; Chen, Zhongping; Hoshi, Yoko

    2016-09-01

    Mechanistic understanding of how the brain gives rise to complex behavioral and cognitive functions is one of science’s grand challenges. The technical challenges that we face as we attempt to gain a systems-level understanding of the brain are manifold. The brain’s structural complexity requires us to push the limit of imaging resolution and depth, while being able to cover large areas, resulting in enormous data acquisition and processing needs. Furthermore, it is necessary to detect functional activities and ‘map’ them onto the structural features. The functional activity occurs at multiple levels, using electrical and chemical signals. Certain electrical signals are only decipherable with sub-millisecond timescale resolution, while other modes of signals occur in minutes to hours. For these reasons, there is a wide consensus that new tools are necessary to undertake this daunting task. Optical techniques, due to their versatile and scalable nature, have great potentials to answer these challenges. Optical microscopy can now image beyond the diffraction limit, record multiple types of brain activity, and trace structural features across large areas of tissue. Genetically encoded molecular tools opened doors to controlling and detecting neural activity using light in specific cell types within the intact brain. Novel sample preparation methods that reduce light scattering have been developed, allowing whole brain imaging in rodent models. Adaptive optical methods have the potential to resolve images from deep brain regions. In this roadmap article, we showcase a few major advances in this area, survey the current challenges, and identify potential future needs that may be used as a guideline for the next steps to be taken.

  20. Roadmap on neurophotonics

    PubMed Central

    Cho, Yong Ku; Zheng, Guoan; Augustine, George J; Hochbaum, Daniel; Cohen, Adam; Knöpfel, Thomas; Pisanello, Ferruccio; Pavone, Francesco S; Vellekoop, Ivo M; Booth, Martin J; Hu, Song; Zhu, Jiang; Chen, Zhongping; Hoshi, Yoko

    2017-01-01

    Mechanistic understanding of how the brain gives rise to complex behavioral and cognitive functions is one of science’s grand challenges. The technical challenges that we face as we attempt to gain a systems-level understanding of the brain are manifold. The brain’s structural complexity requires us to push the limit of imaging resolution and depth, while being able to cover large areas, resulting in enormous data acquisition and processing needs. Furthermore, it is necessary to detect functional activities and ‘map’ them onto the structural features. The functional activity occurs at multiple levels, using electrical and chemical signals. Certain electrical signals are only decipherable with sub-millisecond timescale resolution, while other modes of signals occur in minutes to hours. For these reasons, there is a wide consensus that new tools are necessary to undertake this daunting task. Optical techniques, due to their versatile and scalable nature, have great potentials to answer these challenges. Optical microscopy can now image beyond the diffraction limit, record multiple types of brain activity, and trace structural features across large areas of tissue. Genetically encoded molecular tools opened doors to controlling and detecting neural activity using light in specific cell types within the intact brain. Novel sample preparation methods that reduce light scattering have been developed, allowing whole brain imaging in rodent models. Adaptive optical methods have the potential to resolve images from deep brain regions. In this roadmap article, we showcase a few major advances in this area, survey the current challenges, and identify potential future needs that may be used as a guideline for the next steps to be taken. PMID:28386392

  1. Low Temperature Film Growth of the Oxides of Zinc, Aluminum, and Vanadium (and Related Systems, Oxides of Gold and Germanium, Nitrides of Aluminum and Tungsten) by Reactive Sputter Deposition.

    DTIC Science & Technology

    1988-02-01

    the optical behavior of the material in its preswitched, or A Perkin-Elmer Model 330 UV - Visible -IR double beam ,% spectrophotometer with a specular...S ~ * ." at.* U a * . a. *%~ ~9g 0 ~ --- a.. ’ a * ~ .r~vaa- *a,~ * ~ * ~****.,*a,* *** UV - Visible -IR Optical Behavior of Sputter Deposited Gee x...Films deposited in 0 to 60% Ar were nominally germania. However, transmission in the UV - visible , the strength of the 245nm defect center, the optical

  2. A Novel, Free-Space Optical Interconnect Employing Vertical-Cavity Surface Emitting Laser Diodes and InGaAs Metal-Semiconductor-Metal Photodetectors for Gbit/s RF/Microwave Systems

    NASA Technical Reports Server (NTRS)

    Savich, Gregory R.; Simons, Rainee N.

    2006-01-01

    Emerging technologies and continuing progress in vertical-cavity surface emitting laser (VCSEL) diode and metal-semiconductor-metal (MSM) photodetector research are making way for novel, high-speed forms of optical data transfer in communication systems. VCSEL diodes operating at 1550 nm have only recently become commercially available, while MSM photodetectors are pushing the limits of contact lithography with interdigitated electrode widths reaching sub micron levels. We propose a novel, free-space optical interconnect operating at about 1Gbit/s utilizing VCSEL diodes and MSM photodetectors. We report on development, progress, and current work, which are as follows: first, analysis of the divergent behavior of VCSEL diodes for coupling to MSM photodetectors with a 50 by 50 m active area and second, the normalized frequency response of the VCSEL diode as a function of the modulating frequency. Third, the calculated response of MSM photodetectors with varying electrode width and spacing on the order of 1 to 3 m as well as the fabrication and characterization of these devices. The work presented here will lead to the formation and characterization of a fully integrated 1Gbit/s free-space optical interconnect at 1550 nm and demonstrates both chip level and board level functionality for RF/microwave digital systems.

  3. Investigation on nonlinear optical properties of MoS2 nanoflakes grown on silicon and quartz substrates

    NASA Astrophysics Data System (ADS)

    Bayesteh, Samaneh; Zahra Mortazavi, Seyedeh; Reyhani, Ali

    2018-05-01

    In this study, MoS2 nanoflakes were directly grown on different substrates—Si/SiO2 and quartz—by one-step thermal chemical vapor deposition using MoO3 and sulfide powders as precursors. Scanning electron microscopy and x-ray diffraction patterns demonstrated the formation of MoS2 structures on both substrates. Moreover, UV-visible and photoluminescence analysis confirmed the formation of MoS2 few-layer structures. According to Raman spectroscopy, by assessment of the line width and frequency shift differences between the and A 1g, it was inferred that the MoS2 grown on the silicon substrate was monolayer and that grown on the quartz substrate was multilayer. In addition, open-aperture and close-aperture Z-scan techniques were employed to study the nonlinear optical properties including nonlinear absorption and nonlinear refraction of the grown MoS2. All experiments were performed using a diode laser with a wavelength of 532 nm as the light source. It is noticeable that both samples demonstrate obvious self-defocusing behavior. The monolayer MoS2 grown on the silicon substrate displayed considerable two-photon absorption while, the multilayer MoS2 synthesized on the quartz exhibited saturable absorption. In general, few-layered MoS2 would be useful for the development of nanophotonic devices like optical limiters, optical switchers, etc.

  4. Multiwavelength monitoring of the BL Lacertae object PKS 2155-304. 3: Ground-based observations in 1991 November

    NASA Technical Reports Server (NTRS)

    Courvoisier, T. J.-L.; Blecha, A.; Bouchet, P.; Bratschi, P.; Carini, M. T.; Donahue, M.; Edelson, R.; Feigelson, E. D.; Filippenko, A. V.; Glass, I. S.

    1995-01-01

    We present ground-based observations of the BL Lac object PKS 2155-304 during 1991 November. These data were obtained as part of a large international campaign of observations spanning the electro-magnetic spectrum from the radio waves to the X-rays. The data presented here include radio and UBVRI fluxes, as well as optical polarimetry. The U to I data show the same behavior in all bands and that only upper limits to any lag can be deduced from the cross-correlation of the light curves. The spectral slope in the U-I domain remained constant on all epochs but 2. There is no correlation between changes in the spectral slope and large variations in the total or polarized flux. The radio flux variations did not follow the same pattern of variability as the optical and infrared fluxes. The polarized flux varied by a larger factor than the total flux. The variations of the polarized flux are poorly correlated with those of the total flux in the optical (and hence UV domain; see the accompanying paper by Edelson et al.) nor with those of the soft X-rays. We conclude that the variability of PKS 2155-304 in the optical and near-infrared spectral domains are easier to understand in the context of variable geometry or bulk Lorentz factor than of variable electron acceleration and cooling rates.

  5. Electrical and Optical Characteristics of Undoped and Se-Doped Bi2S3 Transistors

    NASA Astrophysics Data System (ADS)

    Kilcoyne, Colin; Alsaqqa, Ali; Rahman, Ajara A.; Whittaker-Brooks, Luisa; Sambandamurthy, G.

    Semiconducting chalcogenides have been drawing increased attention due to their interesting physical properties, especially in low dimensional structures. Bi2S3 has demonstrated a high optical absorption coefficient, a large bulk mobility, small bandgap, high Seebeck coefficient, and low thermal conductivity. These properties make it a good candidate for optical, electric and thermoelectric applications. However, control over the electrical properties for enhanced thermoelectric performance and optical applications is desired. We present electrical transport and optical properties from individual nanowire and few-layer transistors of single crystalline undoped and Se-doped Bi2S3-xSex. All devices exhibit n-type semiconducting behavior and the ON/OFF ratio, mobility, and conductivity noise behavior are studied as functions of dopant concentration, temperature, and charge carrier density in different conduction regimes. The roles of dopant driven scattering mechanisms and mobility/carrier density fluctuations will be discussed. The potential for this series of materials as optical and electrical switches will be presented. NSF DMR.

  6. The eye limits the brain's learning potential

    PubMed Central

    Zhou, Jiawei; Zhang, Yudong; Dai, Yun; Zhao, Haoxin; Liu, Rong; Hou, Fang; Liang, Bo; Hess, Robert F.; Zhou, Yifeng

    2012-01-01

    The concept of a critical period for visual development early in life during which sensory experience is essential to normal neural development is now well established. However recent evidence suggests that a limited degree of plasticity remains after this period and well into adulthood. Here, we ask the question, "what limits the degree of plasticity in adulthood?" Although this limit has been assumed to be due to neural factors, we show that the optical quality of the retinal image ultimately limits the brain potential for change. We correct the high-order aberrations (HOAs) normally present in the eye's optics using adaptive optics, and reveal a greater degree of neuronal plasticity than previously appreciated. PMID:22509464

  7. Variable Refractive Index Effects on Radiation in Semitransparent Scattering Multilayered Regions

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1993-01-01

    A simple set of equations is derived for predicting the temperature distribution and radiative energy flow in a semitransparent layer consisting of an arbitrary number of laminated sublayers that absorb, emit, and scatter radiation. Each sublayer can have a different refractive index and optical thickness. The plane composite region is heated on each exterior side by a different amount of incident radiation. The results are for the limiting case where heat conduction within the layers is very small relative to radiative transfer, and is neglected. The interfaces are assumed diffuse, and all interface reflections are included in the analysis. The thermal behavior is readily calculated from the analytical expressions that are obtained. By using many sublayers, expressions provide the temperature distribution and heat flow for a diffusing medium with a continually varying refractive index, including internal reflection effects caused by refractive index gradients. Temperature and heat flux results are given to show the effect of variations in refractive index and optical thickness through the multilayer laminate.

  8. Fusion of SAR and Optical Imagery for Studying the Eco-Epidemiology of Vector-Borne Diseases in Tropical Countries

    NASA Astrophysics Data System (ADS)

    Catry, Thibault; Li, Zhichao; Roux, Emmanuel; Herreteau, Vincent; Revillion, Christophe; Dessay, Nadine

    2016-08-01

    Vector-borne diseases like malaria represent a major public health issue worldwide. Other mosquito-borne diseases affect more and more countries and people, with effects on health which are not all identified yet. Recent developments in the field of remote-sensing allow to consider overriding the existing limits of studying such diseases in tropical regions, where cloud and vegetation cover often prevent to identify and characterize environmental features.We highlight the potential of SAR-optical fusion for the mapping of land cover, the identification of wetlands, and the monitoring of environmental changes in different habitats related to vector-borne diseases in the French Guiana - Brazil cross-border area. This study is the foundation of a landscape-based model of malaria transmission risk. Environmental factors, together with epidemiological, socio-economic, behavioral, demographics, and entomological ones, contribute to assess risks related to such pathologies and support disease control and decision-making by local public health actors.

  9. Localization noise in deep subwavelength plasmonic devices

    NASA Astrophysics Data System (ADS)

    Ghoreyshi, Ali; Victora, R. H.

    2018-05-01

    The grain shape dependence of absorption has been investigated in metal-insulator thin films. We demonstrate that randomness in the size and shape of plasmonic particles can lead to Anderson localization of polarization modes in the deep subwavelength regime. These localized modes can contribute to significant variation in the local field. In the case of plasmonic nanodevices, the effects of the localized modes have been investigated by mapping an electrostatic Hamiltonian onto the Anderson Hamiltonian in the presence of a random vector potential. We show that local behavior of the optical beam can be understood in terms of the weighted local density of the localized modes of the depolarization field. Optical nanodevices that operate on a length scale with high variation in the density of states of localized modes will experience a previously unidentified localized noise. This localization noise contributes uncertainty to the output of plasmonic nanodevices and limits their scalability. In particular, the resulting impact on heat-assisted magnetic recording is discussed.

  10. A novel method to create high density stratification with matching refractive index for optical flow investigations

    NASA Astrophysics Data System (ADS)

    Krohn, Benedikt; Manera, Annalisa; Petrov, Victor

    2018-04-01

    Turbulent mixing in stratified environments represents a challenging task in experimental turbulence research, especially when large density gradients are desired. When optical measurement techniques like particle image velocimetry (PIV) are applied to stratified liquids, it is common practice to combine two aqueous solutions with different density but equal refractive index, to suppress particle image deflections. While refractive image matching (RIM) has been developed in the late 1970s, the achieved limit of 4% density ratio was not rivalled up to day. In the present work, we report a methodology, based on the behavior of excess properties and their change in a multicomponent system while mixing, that allows RIM for solutions with higher density differences. The methodology is then successfully demonstrated using a ternary combination of water, isopropanol and glycerol, for which RIM in presence of a density ratio of 8.6% has been achieved. Qualitative PIV results of a turbulent buoyant jet with 8.6% density ratio are shown.

  11. A Dynamic Bayesian Observer Model Reveals Origins of Bias in Visual Path Integration.

    PubMed

    Lakshminarasimhan, Kaushik J; Petsalis, Marina; Park, Hyeshin; DeAngelis, Gregory C; Pitkow, Xaq; Angelaki, Dora E

    2018-06-20

    Path integration is a strategy by which animals track their position by integrating their self-motion velocity. To identify the computational origins of bias in visual path integration, we asked human subjects to navigate in a virtual environment using optic flow and found that they generally traveled beyond the goal location. Such a behavior could stem from leaky integration of unbiased self-motion velocity estimates or from a prior expectation favoring slower speeds that causes velocity underestimation. Testing both alternatives using a probabilistic framework that maximizes expected reward, we found that subjects' biases were better explained by a slow-speed prior than imperfect integration. When subjects integrate paths over long periods, this framework intriguingly predicts a distance-dependent bias reversal due to buildup of uncertainty, which we also confirmed experimentally. These results suggest that visual path integration in noisy environments is limited largely by biases in processing optic flow rather than by leaky integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Single photon detection and signal analysis for high sensitivity dosimetry based on optically stimulated luminescence with beryllium oxide

    NASA Astrophysics Data System (ADS)

    Radtke, J.; Sponner, J.; Jakobi, C.; Schneider, J.; Sommer, M.; Teichmann, T.; Ullrich, W.; Henniger, J.; Kormoll, T.

    2018-01-01

    Single photon detection applied to optically stimulated luminescence (OSL) dosimetry is a promising approach due to the low level of luminescence light and the known statistical behavior of single photon events. Time resolved detection allows to apply a variety of different and independent data analysis methods. Furthermore, using amplitude modulated stimulation impresses time- and frequency information into the OSL light and therefore allows for additional means of analysis. Considering the impressed frequency information, data analysis by using Fourier transform algorithms or other digital filters can be used for separating the OSL signal from unwanted light or events generated by other phenomena. This potentially lowers the detection limits of low dose measurements and might improve the reproducibility and stability of obtained data. In this work, an OSL system based on a single photon detector, a fast and accurate stimulation unit and an FPGA is presented. Different analysis algorithms which are applied to the single photon data are discussed.

  13. All-sky monitor observations of the decay of A0620-00 (Nova monocerotis 1975)

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.; Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.

    1976-01-01

    The All-Sky X-ray Monitor onboard Ariel 5 has observed the 3-6 keV decline of the bright transient X-ray source A0620-00 on a virtually continuous basis during the period September 1975 - March 1976. The source behavior on timescales 100 minutes is characterized by smooth, exponential decays interrupted by substantial increases in October and February. The latter increase was an order-of-magnitude rise above the extrapolated exponential fall-off, and was followed by a final rapid decline. Upper limits of 2.5% and 10% were found for any periodicities in the range 0d.2 - 10d during the early and later decay phases, respectively. A probable correlation between the optical and 3-6 keV emission from A0620-00 was noted, effectively ruling out models involving traditional optical novae in favor of Roche-lobe overflow in a binary system. The existing data on the transient X-ray sources is consistent with two distinct luminosity-lifetime classes of these objects.

  14. Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities

    NASA Astrophysics Data System (ADS)

    Torre, Emanuele G. Dalla; Diehl, Sebastian; Lukin, Mikhail D.; Sachdev, Subir; Strack, Philipp

    2013-02-01

    We investigate nonequilibrium phase transitions for driven atomic ensembles interacting with a cavity mode and coupled to a Markovian dissipative bath. In the thermodynamic limit and at low frequencies, we show that the distribution function of the photonic mode is thermal, with an effective temperature set by the atom-photon interaction strength. This behavior characterizes the static and dynamic critical exponents of the associated superradiance transition. Motivated by these considerations, we develop a general Keldysh path-integral approach that allows us to study physically relevant nonlinearities beyond the idealized Dicke model. Using standard diagrammatic techniques, we take into account the leading-order corrections due to the finite number N of atoms. For finite N, the photon mode behaves as a damped classical nonlinear oscillator at finite temperature. For the atoms, we propose a Dicke action that can be solved for any N and correctly captures the atoms’ depolarization due to dissipative dephasing.

  15. Variable Refractive Index Effects on Radiation in Semitransparent Scattering Multilayered Regions

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1993-01-01

    A simple set of equations is derived for predicting the temperature distribution and radiative energy flow in a semitransparent layer consisting of an arbitrary number of laminated sublayers that absorb, emit, and scatter radiation. Each sublayer can have a different refractive index and optical thickness. The plane composite region is heated on each exterior side by a different amount of incident radiation. The results are for the limiting case where heat conduction within the layers is very small relative to radiative transfer, and is neglected. The interfaces are assumed diffuse, and all interface reflections are included in the analysis. The thermal behavior is readily calculated from the analytical expressions that are obtained. By using many sublayers, the analytical expressions provide the temperature distribution and heat flow for a diffusing medium with a continuously varying refractive index, including internal reflection effects caused by refractive index gradients. Temperature and heat flux results are given to show the effect of variations in refractive index and optical thickness through the multilayer laminate.

  16. Emissive and reflective properties of curved displays in relation to image quality

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique; Blanc, Pierre; Sandré-Chardonnal, Etienne

    2016-03-01

    Different aspects of the characterization of curved displays are presented. The limit of validity of viewing angle measurements without angular distortion on such displays using goniometer or Fourier optics viewing angle instrument is given. If the condition cannot be fulfilled the measurement can be corrected using a general angular distortion formula as demonstrated experimentally using a Samsung Galaxy S6 edge phone display. The reflective properties of the display are characterized by measuring the spectral BRDF using a multispectral Fourier optics viewing angle system. The surface of a curved OLED TV has been measured. The BDRF patterns show a mirror like behavior with and additional strong diffraction along the pixels lines and columns that affect the quality of the display when observed with parasitic lighting. These diffraction effects are very common on OLED surfaces. We finally introduce a commercial ray tracing software that can use directly the measured emissive and reflective properties of the display to make realistic simulation under any lighting environment.

  17. High bandwidth optical mount

    DOEpatents

    Bender, D.A.; Kuklo, T.

    1994-11-08

    An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage. 5 figs.

  18. Analysis of focusing error signals by differential astigmatic method under off-center tracking in the land-groove-type optical disk

    NASA Astrophysics Data System (ADS)

    Shinoda, Masahisa; Nakatani, Hidehiko

    2015-04-01

    We theoretically calculate the behavior of the focusing error signal in the land-groove-type optical disk when the objective lens traverses on out of the radius of the optical disk. The differential astigmatic method is employed instead of the conventional astigmatic method for generating the focusing error signals. The signal behaviors are compared and analyzed in terms of the gain difference of the slope sensitivity of the focusing error signals from the land and the groove. In our calculation, the format of digital versatile disc-random access memory (DVD-RAM) is adopted as the land-groove-type optical disk model, and advantageous conditions for suppressing the gain difference are investigated. The calculation method and results described in this paper will be reflected in the next generation land-groove-type optical disks.

  19. Parametric Amplification For Detecting Weak Optical Signals

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Chen, Chien; Chakravarthi, Prakash

    1996-01-01

    Optical-communication receivers of proposed type implement high-sensitivity scheme of optical parametric amplification followed by direct detection for reception of extremely weak signals. Incorporates both optical parametric amplification and direct detection into optimized design enhancing effective signal-to-noise ratios during reception in photon-starved (photon-counting) regime. Eliminates need for complexity of heterodyne detection scheme and partly overcomes limitations imposed on older direct-detection schemes by noise generated in receivers and by limits on quantum efficiencies of photodetectors.

  20. The optical design of 3D ICs for smartphone and optro-electronics sensing module

    NASA Astrophysics Data System (ADS)

    Huang, Jiun-Woei

    2018-03-01

    Smartphone require limit space for image system, current lens, used in smartphones are refractive type, the effective focal length is limited the thickness of phone physical size. Other, such as optro-electronics sensing chips, proximity optical sensors, and UV indexer chips are integrated into smart phone with limit space. Due to the requirement of multiple lens in smartphone, proximity optical sensors, UV indexer and other optro-electronics sensing chips in a limited space of CPU board in future smart phone, optro-electronics 3D IC's integrated with optical lens or components may be a key technology for 3 C products. A design for reflective lens is fitted to CMOS, proximity optical sensors, UV indexer and other optro-electronics sensing chips based on 3-D IC. The reflective lens can be threes times of effective focal lens, and be able to resolve small object. The system will be assembled and integrated in one 3-D IC more easily.

  1. Synthesis of phthalocyanine doped sol-gel materials

    NASA Technical Reports Server (NTRS)

    Dunn, Bruce

    1993-01-01

    The synthesis of sol-gel silica materials doped with three different types of metallophthalocyanines has been studied. Homogeneous materials of good optical quality were prepared and the first optical limiting measurements of dyes in sol-gel hosts were carried out. The properties of these solid state limiters are similar to limiters based on phthalocyanine (Pc) in solution. Sol-gel silica materials containing copper, tin and germanium phthalocyanines were investigated. The initial step in all cases was to prepare silica sols by the sonogel method using tetramethoxy silane (TMOS), HCl and distilled water. Thereafter, the synthesis depended upon the specific Pc and its solubility characteristics. Copper phthalocyanine tetrasulfonic acid tetra sodium salt (CuPc4S) is soluble in water and various doping levels (1 x 10 (exp -4) M to 1 x 10 (exp -5) M) were added to the sol. The group IV Pc's, SnPc(OSi(n-hexyl)3)2 and GePc(OSi(n-hexyl)3)2, are insoluble in water and the process was changed accordingly. In these cases, the compounds were dissolved in THF and then added to the sol. The Pc concentration in the sol was 2 x 10(exp -5)M. The samples were then aged and dried in the standard method of making xerogel monoliths. Comparative nanosecond optical limiting experiments were performed on silica xerogels that were doped with the different metallophthalocyanines. The ratio of the net excited state absorption cross section (sigma(sub e)) to the ground state cross section (sigma(sub g)) is an important figure of merit that is used to characterize these materials. By this standard the SnPc sample exhibits the best limiting for the Pc doped sol-gel materials. Its cross section ratio of 19 compares favorably with the value of 22 that was measured in toluene. The GePc materials appear to not be as useful as those containing SnPc. The GePc doped solids exhibit a higher onset energy (2.5 mj and lower cross section ratio, 7. The CuPc4S sol-gel material has a still lower cross section ratio, 4, however, the tetrasulfonate groups make the dye soluble in water which greatly facilitates its incorporation into the sol-gel matrix. The nonlinear transmission of CuPc4S in a pH 2 buffer solution and in a silica xerogel were compared. It is evident that the CuPc4S preserves its optical limiting behavior in the sol-gel matrix, indicating that the fundamental excited state absorption process is essentially the same for a molecule in solution or in the solid state. Although the spectroscopic details of energy level lifetimes are unknown, the significance is that passive optical limiting has been achieved in the solid state via incorporation of a dye into an inorganic host. The only compromise occurs at the extremely high energy regime where photobleaching is observed. This is a result of the limited mobility of the dye molecules in the solid silica host relative to a liquid host. The effects of photodegradation in the xerogel are additive, whereas the solution provides a supply of fresh molecules that are free to enter the active volume between pulses.

  2. Optical absorption and electrical properties of MPc (M =Fe, Cu, Zn)-TCNQ interfaces for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Sánchez Vergara, M. E.; Medrano Gallardo, D.; Vera Estrada, I. L.; Jiménez Sandoval, O.

    2018-04-01

    This research is related to the growth and characterization of doped molecular semiconductor metallophthalocyanine-tetracyanoquinodimethane (MPc-TCNQ) films, with M = Fe, Zn, Cu. FT-IR and Raman spectroscopies were employed to study the chemical interactions taking place in the MPc-TCNQ films. XRD was carried out to determine the crystalline structure present in the samples, due to the facility of the MPcs to be in alpha and/or beta phases. The thin films were analized by SEM and UV-vis spectroscopy in order to study their morphological and optical properties. The absorption spectra recorded in the UV-Vis region for the deposited samples showed two bands, namely the Q and Soret bands. The absorption coefficient (α) and photon energy (hν) were calculated from the UV-vis spectra, to in turn determine the optic activation energy in each film and its semiconductor behavior. The values obtained for direct transitions due to the crystallinity of the films were: 1.2, 1.4 and 2 eV for FePc-TCNQ (MMFe), ZnPc-TCNQ (MMZn) and CuPc-TCNQ (MMCu), respectively. Additionally, I-V characteristics have been obtained from fabricated glass/ITO/MM/Ag devices using ohmic contacts both after annealing. The electrical properties of the devices, e.g. carrier mobility and concentration of thermally generated holes, were extracted from the J-V characteristics. The results show that the conduction process is ohmic for the MMZn and MMCu devices, at low voltages, while at high voltages, a space-charge-limited conduction (SCLC) is present. The effect of temperature on conductivity was also measured in these samples and the lower thermal activation energy calculated was 0.37 eV for MMZn. Moreover, it was found that the temperature-dependent electric current is always higher for the MMZn device and suggests a semiconductor-like behavior with an important conductivity of the order of 103 S cm-1. Anyhow, in terms not only of electric properties, but also of optic behavior, the results suggest that all three devices manufactured, MMFe, MMCu and MMZn, are of potential use in optoelectronics. The doping effect of TCNQ favors the electronic transport, most likely due to the formation of conduction channels caused by the anisotropy induced by the dopant.

  3. DEEP NEAR-IR OBSERVATIONS OF THE GLOBULAR CLUSTER M4: HUNTING FOR BROWN DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieball, A.; Bedin, L. R.; Knigge, C.

    2016-01-20

    We present an analysis of deep Hubble Space Telescope (HST)/Wide Field Camera 3 near-IR (NIR) imaging data of the globular cluster (GC) M4. The best-photometry NIR color–magnitude diagram (CMD) clearly shows the main sequence extending toward the expected end of the hydrogen-burning limit and going beyond this point toward fainter sources. The white dwarf (WD) sequence can be identified. As such, this is the deepest NIR CMD of a GC to date. Archival HST optical data were used for proper-motion cleaning of the CMD and for distinguishing the WDs from brown dwarf (BD) candidates. Detection limits in the NIR aremore » around F110W ≈ 26.5 mag and F160W ≈ 27 mag, and in the optical around F775W ≈ 28 mag. Comparing our observed CMDs with theoretical models, we conclude that we have reached beyond the H-burning limit in our NIR CMD and are probably just above or around this limit in our optical–NIR CMDs. Thus, any faint NIR sources that have no optical counterpart are potential BD candidates, since the optical data are not deep enough to detect them. We visually inspected the positions of NIR sources that are fainter than the H-burning limit in F110W and for which the optical photometry did not return a counterpart. We found in total five sources for which we did not get an optical measurement. For four of these five sources, a faint optical counterpart could be visually identified, and an upper optical magnitude was estimated. Based on these upper optical magnitude limits, we conclude that one source is likely a WD, one source could be either a WD or BD candidate, and the remaining two sources agree with being BD candidates. No optical counterpart could be detected for just one source, which makes this source a good BD candidate. We conclude that we found in total four good BD candidates.« less

  4. Optoelectronic and magnetic properties of Mn-doped indium tin oxide: A first-principles study

    NASA Astrophysics Data System (ADS)

    Nath Tripathi, Madhvendra; Saeed Bahramy, Mohammad; Shida, Kazuhito; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2012-10-01

    The manganese doped indium tin oxide (ITO) has integrated magnetics, electronics, and optical properties for next generation multifunctional devices. Our first-principles density functional theory (DFT) calculations show that the manganese atom replaces b-site indium atom, located at the second coordination shell of the interstitial oxygen in ITO. It is also found that both anti-ferromagnetic and ferromagnetic behaviors are realizable. The calculated magnetic moment of 3.95μB/Mn as well as the high transmittance of ˜80% for a 150 nm thin film of Mn doped ITO is in good agreement with the experimental data. The inclusion of on-site Coulomb repulsion corrections via DFT + U methods turns out to improve the optical behavior of the system. The optical behaviors of this system reveal its suitability for the magneto-opto-electronic applications.

  5. Controllable optical bistability in a three-mode optomechanical system with atom-cavity-mirror couplings

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Wang, Xiao-Fang; Yan, Jia-Kai; Zhu, Xiao-Fei; Jiang, Cheng

    2018-01-01

    We theoretically investigate the optical bistable behavior in a three-mode optomechanical system with atom-cavity-mirror couplings. The effects of the cavity-pump detuning and the pump power on the bistable behavior are discussed detailedly, the impacts of the atom-pump detuning and the atom-cavity coupling strength on the bistability of the system are also explored, and the influences of the cavity-resonator coupling strength and the cavity decay rate are also taken into consideration. The numerical results demonstrate that by tuning these parameters the bistable behavior of the system can be freely switched on or off, and the threshold of the pump power for the bistability as well as the bistable region width can also be effectively controlled. These results can find potential applications in optical bistable switch in the quantum information processing.

  6. Simultaneous observation of cavitation bubbles generated in biological tissue by high-speed optical and acoustic imaging methods

    NASA Astrophysics Data System (ADS)

    Suzuki, Kai; Iwasaki, Ryosuke; Takagi, Ryo; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    Acoustic cavitation bubbles are useful for enhancing the heating effect in high-intensity focused ultrasound (HIFU) treatment. Many studies were conducted to investigate the behavior of such bubbles in tissue-mimicking materials, such as a transparent gel phantom; however, the detailed behavior in tissue was still unclear owing to the difficulty in optical observation. In this study, a new biological phantom was developed to observe cavitation bubbles generated in an optically shallow area of tissue. Two imaging methods, high-speed photography using light scattering and high-speed ultrasonic imaging, were used for detecting the behavior of the bubbles simultaneously. The results agreed well with each other for the area of bubble formation and the temporal change in the region of bubbles, suggesting that both methods are useful for visualizing the bubbles.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowperthwaite, P. S.

    We report the results of a Dark Energy Camera optical follow-up of the gravitational-wave (GW) event GW151226, discovered by the Advanced Laser Interferometer Gravitational-wave Observatory detectors. Our observations cover 28.8 deg(2) of the localization region in the i and z bands (containing 3% of the BAYESTAR localization probability), starting 10 hr after the event was announced and spanning four epochs at 2–24 days after the GW detection. We achievemore » $$5\\sigma $$ point-source limiting magnitudes of $$i\\approx 21.7$$ and $$z\\approx 21.5$$, with a scatter of 0.4 mag, in our difference images. Given the two-day delay, we search this area for a rapidly declining optical counterpart with $$\\gtrsim 3\\sigma $$ significance steady decline between the first and final observations. We recover four sources that pass our selection criteria, of which three are cataloged active galactic nuclei. The fourth source is offset by 5.8 arcsec from the center of a galaxy at a distance of 187 Mpc, exhibits a rapid decline by 0.5 mag over 4 days, and has a red color of $$i-z\\approx 0.3$$ mag. These properties could satisfy a set of cuts designed to identify kilonovae. However, this source was detected several times, starting 94 days prior to GW151226, in the Pan-STARRS Survey for Transients (dubbed as PS15cdi) and is therefore unrelated to the GW event. Given its long-term behavior, PS15cdi is likely a Type IIP supernova that transitioned out of its plateau phase during our observations, mimicking a kilonova-like behavior. We comment on the implications of this detection for contamination in future optical follow-up observations.« less

  8. Clean focus, dose and CD metrology for CD uniformity improvement

    NASA Astrophysics Data System (ADS)

    Lee, Honggoo; Han, Sangjun; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, DongYoung; Oh, Eungryong; Choi, Ahlin; Kim, Nakyoon; Robinson, John C.; Mengel, Markus; Pablo, Rovira; Yoo, Sungchul; Getin, Raphael; Choi, Dongsub; Jeon, Sanghuck

    2018-03-01

    Lithography process control solutions require more exacting capabilities as the semiconductor industry goes forward to the 1x nm node DRAM device manufacturing. In order to continue scaling down the device feature sizes, critical dimension (CD) uniformity requires continuous improvement to meet the required CD error budget. In this study we investigate using optical measurement technology to improve over CD-SEM methods in focus, dose, and CD. One of the key challenges is measuring scanner focus of device patterns. There are focus measurement methods based on specially designed marks on scribe-line, however, one issue of this approach is that it will report focus of scribe line which is potentially different from that of the real device pattern. In addition, scribe-line marks require additional design and troubleshooting steps that add complexity. In this study, we investigated focus measurement directly on the device pattern. Dose control is typically based on using the linear correlation behavior between dose and CD. The noise of CD measurement, based on CD-SEM for example, will not only impact the accuracy, but also will make it difficult to monitor dose signature on product wafers. In this study we will report the direct dose metrology result using an optical metrology system which especially enhances the DUV spectral coverage to improve the signal to noise ratio. CD-SEM is often used to measure CD after the lithography step. This measurement approach has the advantage of easy recipe setup as well as the flexibility to measure critical feature dimensions, however, we observe that CD-SEM metrology has limitations. In this study, we demonstrate within-field CD uniformity improvement through the extraction of clean scanner slit and scan CD behavior by using optical metrology.

  9. Servo control of an optical trap.

    PubMed

    Wulff, Kurt D; Cole, Daniel G; Clark, Robert L

    2007-08-01

    A versatile optical trap has been constructed to control the position of trapped objects and ultimately to apply specified forces using feedback control. While the design, development, and use of optical traps has been extensive and feedback control has played a critical role in pushing the state of the art, few comprehensive examinations of feedback control of optical traps have been undertaken. Furthermore, as the requirements are pushed to ever smaller distances and forces, the performance of optical traps reaches limits. It is well understood that feedback control can result in both positive and negative effects in controlled systems. We give an analysis of the trapping limits as well as introducing an optical trap with a feedback control scheme that dramatically improves an optical trap's sensitivity at low frequencies.

  10. Figuring large optics at the sub-nanometer level: compensation for coating and gravity distortions.

    PubMed

    Gensemer, Stephen; Gross, Mark

    2015-11-30

    Large, precision optics can now be manufactured with surface figures specified at the sub-nanometer level. However, coatings and gravity deform large optics, and there are limits to what can be corrected by clever compensation. Instead, deformations caused by stress from optical mounts and deposited coatings must be incorporated into the optical design. We demonstrate compensation of coating stress on a 370mm substrate to λ/200 by a process of coating and annealing. We also model the same process and identify the leading effects that must be anticipated in fabrication of optics for future gravitational wave detectors and other applications of large, precisely figured optics, and identify the limitations inherent in using coatings to compensate for these deformations.

  11. Development of New Electro-Optic and Acousto-Optic Materials.

    DTIC Science & Technology

    1983-11-01

    Improved materials are required for active optical devices, including electro - optic and acousto-optic modulators, switches and tunable filters, as...many microwave applications. In addition, electro - optic and acousto-optic devices are materials limited because the materials currently available are...these materials for applications involving the electro - optic effect, degenerate four-wave mixing and surface acoustic wave technology.

  12. Polarization modeling and predictions for DKIST part 3: focal ratio and thermal dependencies of spectral polarization fringes and optic retardance

    NASA Astrophysics Data System (ADS)

    Harrington, David M.; Sueoka, Stacey R.

    2018-01-01

    Data products from high spectral resolution astronomical polarimeters are often limited by fringes. Fringes can skew derived magnetic field properties from spectropolarimetric data. Fringe removal algorithms can also corrupt the data if the fringes and object signals are too similar. For some narrow-band imaging polarimeters, fringes change the calibration retarder properties and dominate the calibration errors. Systems-level engineering tools for polarimetric instrumentation require accurate predictions of fringe amplitudes, periods for transmission, diattenuation, and retardance. The relevant instabilities caused by environmental, thermal, and optical properties can be modeled and mitigation tools developed. We create spectral polarization fringe amplitude and temporal instability predictions by applying the Berreman calculus and simple interferometric calculations to optics in beams of varying F/ number. We then apply the formalism to superachromatic six-crystal retarders in converging beams under beam thermal loading in outdoor environmental conditions for two of the world's largest observatories: the 10-m Keck telescope and the Daniel K. Inouye Solar Telescope (DKIST). DKIST will produce a 300-W optical beam, which has imposed stringent requirements on the large diameter six-crystal retarders, dichroic beamsplitters, and internal optics. DKIST retarders are used in a converging beam with F/ ratios between 8 and 62. The fringe spectral periods, amplitudes, and thermal models of retarder behavior assisted DKIST optical designs and calibration plans with future application to many astronomical spectropolarimeters. The Low Resolution Imaging Spectrograph with polarimetry instrument at Keck also uses six-crystal retarders in a converging F / 13 beam in a Cassegrain focus exposed to summit environmental conditions providing observational verification of our predictions.

  13. Capabilities and challenges in transferring the wavefront-based alignment approach to small aperture multi-element optical systems

    NASA Astrophysics Data System (ADS)

    Krappig, Reik; Schmitt, Robert

    2017-02-01

    Present alignment methods already have an accuracy of some microns, allowing in general the fairly precise assembly of multi element optical systems. Nevertheless, they suffer decisive drawbacks, such as the necessity of an iterative process, stepping through all optical surfaces of the system when using autocollimation telescopes. In contrast to these limitations, the wavefront based alignment offers an elegant approach to potentially reach sub-µm accuracy in the alignment within a highly efficient process, that simultaneously acquires and evaluates the best optical solution possible. However, the practical use of these capabilities in corresponding alignment devices needs to take real sensor behavior into account. This publication will especially elaborate on the influence of the sensor properties in relation to the alignment process. The first dominant requirement is a highly stable measurement, since tiny perturbations in the optical system will have an also tiny influence on the wavefront. Secondly, the lateral sampling of the measured wavefront is supposed to be as high as possible, in order to be able to extract higher order Zernike coefficients reliable. The resulting necessity of using the largest sensor area possible conflicts with the requirement to allow a certain lateral displacement of the measured spot, indicating a perturbation. A movement of the sensor with suitable stages in turn leads to additional uncertainties connected to the actuators. Further factors include the SNR-ratio of the sensor as well as multiple measurements, in order to improve data repeatability. This publication will present a procedure of dealing with these relevant influence factors. Depending on the optical system and its properties the optimal adjustment of these parameters is derived.

  14. Light Source Matters--Students' Explanations about the Behavior of Light When Different Light Sources Are Used in Task Assignments of Optics

    ERIC Educational Resources Information Center

    Kesonen, Mikko Henri Petteri; Asikainen, Mervi Anita; Hirvonen, Pekka Emil

    2017-01-01

    In the present article, the context-dependency of student reasoning is studied in a context of optics. We investigated introductory students' explanations about the behavior of light when different light sources, namely a small light bulb and a laser, were used in otherwise identical task assignments. The data was gathered with the aid of pretest…

  15. The Need for Optical Means as an Alternative for Electronic Computing

    NASA Technical Reports Server (NTRS)

    Adbeldayem, Hossin; Frazier, Donald; Witherow, William; Paley, Steve; Penn, Benjamin; Bank, Curtis; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    An increasing demand for faster computers is rapidly growing to encounter the fast growing rate of Internet, space communication, and robotic industry. Unfortunately, the Very Large Scale Integration technology is approaching its fundamental limits beyond which the device will be unreliable. Optical interconnections and optical integrated circuits are strongly believed to provide the way out of the extreme limitations imposed on the growth of speed and complexity of nowadays computations by conventional electronics. This paper demonstrates two ultra-fast, all-optical logic gates and a high-density storage medium, which are essential components in building the future optical computer.

  16. 4D Printed Actuators with Soft-Robotic Functions.

    PubMed

    López-Valdeolivas, María; Liu, Danqing; Broer, Dick Jan; Sánchez-Somolinos, Carlos

    2018-03-01

    Soft matter elements undergoing programed, reversible shape change can contribute to fundamental advance in areas such as optics, medicine, microfluidics, and robotics. Crosslinked liquid crystalline polymers have demonstrated huge potential to implement soft responsive elements; however, the complexity and size of the actuators are limited by the current dominant thin-film geometry processing toolbox. Using 3D printing, stimuli-responsive liquid crystalline elastomeric structures are created here. The printing process prescribes a reversible shape-morphing behavior, offering a new paradigm for active polymer system preparation. The additive character of this technology also leads to unprecedented geometries, complex functions, and sizes beyond those of typical thin-films. The fundamental concepts and devices presented therefore overcome the current limitations of actuation energy available from thin-films, thereby narrowing the gap between materials and practical applications. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. How localized acceptors limit p-type conductivity in GaN

    NASA Astrophysics Data System (ADS)

    Lyons, John L.

    2013-03-01

    Despite the impressive development of GaN as an optoelectronic material, p-type conductivity is still limited. Only a single acceptor impurity, magnesium, is known to lead to p-type GaN. But Mg is far from a well-behaved acceptor. Hydrogen is known to passivate Mg, necessitating a post-growth anneal for acceptor activation. In addition, the ionization energy is quite large (~ 200 meV in GaN), meaning only a few percent of Mg acceptors are ionized at room temperature. Thus, hole conductivity is limited, and high concentrations of Mg are required to achieve moderately p-type GaN. Other acceptor impurities have not proven to be effective p-type dopants, for reasons that are still unresolved. Using advanced first-principles calculations based on a hybrid functional, we investigate the electrical and optical properties of the isolated Mg acceptor and its complexes with hydrogen in GaN, InN, and AlN.[2] We employ a technique that overcomes the band-gap-problem of traditional density functional theory, and allows for quantitative predictions of acceptor ionization energies and optical transition energies. Our results allow us to explain the deep or shallow nature of the Mg acceptor and its relation to the optical signals observed in Mg-doped GaN. We also revisit the properties of other group-II acceptors in GaN. We find that all cation-site acceptors show behavior similar to MgGa, and lead to highly localized holes. The ZnGa and BeGa acceptors have ionization energies that are even larger than that of Mg, making them ineffective dopants. All acceptors cause large lattice distortions in their neutral charge state, in turn leading to deep, broad luminescence signals that can serve as a means of experimentally verifying the deep nature of these acceptors. This work was performed in collaboration with Audrius Alkauskas, Anderson Janotti, and Chris G. Van de Walle. It was supported by the NSF and by the Solid State Lighting and Energy Center at UCSB.

  18. Determining thin film properties by fitting optical transmittance

    NASA Astrophysics Data System (ADS)

    Klein, J. D.; Yen, A.; Cogan, S. F.

    1990-08-01

    The optical transmission spectra of rf sputtered tungsten oxide films on glass substrates were modeled to determine absorption edge behavior, film thickness, and index of refraction. Removal of substrate reflection and absorption phenomena from the experimental spectra allowed direct examination of thin film optical characteristics. The interference fringe pattern allows determination of the film thickness and the dependence of the real index of refraction on wavelength. Knowledge of the interference fringe behavior in the vicinity of the absorption edge was found essential to unambiguous determination of the optical band gap. In particular, the apparently random deviations commonly observed in the extrapolation of as-acquired data are eliminated by explicitly considering interference fringe phenomena. The multivariable optimization fitting scheme employed allows air-film-substrate reflection losses to be compensated without making reflectance measurements.

  19. Decrease and enhancement of third-order optical nonlinearity in metal-dielectric composite films

    NASA Astrophysics Data System (ADS)

    Ning, Tingyin; Lu, Heng; Zhou, Yueliang; Man, Baoyuan

    2018-04-01

    We investigate third-order optical nonlinearity in gold nanoparticles embedded in CaCu3Ti4O12 (CCTO) films using the Z-scan method. We observe that the effective third-order nonlinear optical susceptibilities in such composite films can not only be enhanced, in line with the conventional behavior, but also be decreased, depending on the volume concentration of gold. In particular, the nonlinear absorption behavior can be changed from saturable absorption in pure CCTO films to reversed saturable absorption in composite films, and theoretically, even zero nonlinear absorption could be obtained. These results indicate that it should be possible to tune the third-order optical nonlinearity in Au:CCTO composite films by altering the gold concentration, thus making them suitable for applications in photonic devices.

  20. Polyurethane-Based Ionogels Exhibiting Durable Thermoresponsive Optical Behavior Under High-Temperature Conditions.

    PubMed

    Sato, Tomoya; England, Matt W; Wang, Liming; Urata, Chihiro; Kakiuchida, Hiroshi; Hozumi, Atsushi

    2018-01-01

    Polyurethane (PU)-based transparent and flexible ionogels, showing unusual thermo-responsive optical properties, were successfully prepared by mixing PU-precursor and a hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMIM-TFSI). Although the initial ionogels were transparent at room temperature, significant increases in opacity were observed with increasing temperature up to 120°C, because of macroscopic phase separation of the PU-matrix and hydrophobic EMIM-TFSI. In addition, the optical transition temperature could be arbitrarily controlled simply by varying the mixing ratio of EMIM-TFSI within the PU-matrix. As confirmed by UV-Vis spectra acquired at different temperatures, this thermo-responsive optical behavior was found to be reversible, repeatable and durable even after 30 cycles of a thermal-stress testing between 30 and 100°C.

  1. Development of theoretical oxygen saturation calibration curve based on optical density ratio and optical simulation approach

    NASA Astrophysics Data System (ADS)

    Jumadi, Nur Anida; Beng, Gan Kok; Ali, Mohd Alauddin Mohd; Zahedi, Edmond; Morsin, Marlia

    2017-09-01

    The implementation of surface-based Monte Carlo simulation technique for oxygen saturation (SaO2) calibration curve estimation is demonstrated in this paper. Generally, the calibration curve is estimated either from the empirical study using animals as the subject of experiment or is derived from mathematical equations. However, the determination of calibration curve using animal is time consuming and requires expertise to conduct the experiment. Alternatively, an optical simulation technique has been used widely in the biomedical optics field due to its capability to exhibit the real tissue behavior. The mathematical relationship between optical density (OD) and optical density ratios (ODR) associated with SaO2 during systole and diastole is used as the basis of obtaining the theoretical calibration curve. The optical properties correspond to systolic and diastolic behaviors were applied to the tissue model to mimic the optical properties of the tissues. Based on the absorbed ray flux at detectors, the OD and ODR were successfully calculated. The simulation results of optical density ratio occurred at every 20 % interval of SaO2 is presented with maximum error of 2.17 % when comparing it with previous numerical simulation technique (MC model). The findings reveal the potential of the proposed method to be used for extended calibration curve study using other wavelength pair.

  2. Development and Characterization of Liquid Crystal-Gold Nanoparticle Hybrid Materials for Optical Applications

    NASA Astrophysics Data System (ADS)

    Quint, Makiko T.

    Hybrid material, mixtures of two or more materials with new properties, represents an exciting class of new materials for a variety of potential applications such as displays, optoelectronics, and sensors due to their unique physical and optical properties. The scope of this dissertation is to produce two new plasmonic applications by combining liquid crystals with gold nanoparticles. The first application is gold nanoparticle coated liquid crystal thin film. Most liquid crystal (LC) thin films require external voltage to reorient LC molecules. Recent advances in optical controlling technology of LC molecule behavior, resulting in the reduction of energy consumption, have stimulated research and development of new LC thin films. In order to re-orient LC molecules by just using light, the common approach is to include either a photo-responsive LC host, one that require high power light and severely narrows the range of usable materials, or add photo-active dye or polymer layer, photodegradation over time. Our work designing an all-optical method for LC re-orientation that overcomes all the limitations mentioned above. We have successfully both in- and out-of-plane spatial orientation of nematic liquid crystal (LC) molecules by leveraging the highly localized electric fields produced in the near-field regime of a gold nanoparticle (AuNP) layer. This re-orientation of LC molecules in thin LC-AuNP film is all-optical, driven by a small resonance excitation power with the localized surface plasmon absorption of the AuNPs at room temperature. The second application is LC mediated nano-assembled gold microcapsules. This application has a potential in controlled-release cargo-style delivery system. Targeted delivery systems with controlled release mechanisms have been the subject of extensive research more than fifty years. One is to control the release process remotely by using optical excitation. Optical actuation of delivery capsules, which plasmonic nanoparticle such as gold, allows rapid release at specific locations and uses the photothermal effect to unload contents. Almost all gold-based delivery applications including Au coated nanocrystals or AuNPs with soft materials like gels and polymers are not suitable for control release applications in real life since these applications do not provide robust leakage-free containment lower than the American National Standards Institute (ANSI) maximum permissible light exposure limit. We have successfully managed the difficulties mentioned above and produced a new gold-based delivery application. The application is spherical capsules with a densely packed wall of AuNPs. The rigid capsule wall allows encapsulation of cargo that can be contained, virtually leakage-free, over several months. Further, by leveraging LSPR of AuNPs, we can rupture the microshells using optical excitation with ultralow power (< 2 mW), controllably and rapidly releasing the encapsulated contents in less than 5 seconds. Our results exhibiting the capture and optically regulated release of encapsulated substances are a novel platform that combines controlled-release cargo-style delivery and photothermal therapy in one versatile and multifunctional unit. Both our applications are overcoming current limitations and promising future research directions towards the next generation of LC-AuNPs hybrid material research and developments.

  3. Gamma ray interaction with vanadyl ions in barium metaphosphate glasses; spectroscopic and ESR studies

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; ElBatal, H. A.; EzzElDin, F. M.

    2017-11-01

    Optical, FTIR, ESR investigations of prepared undoped barium metaphosphate glass and other samples with the same basic composition containing varying V2O5 contents (0.5, 1, 2, 3%) were carried out before and after gamma irradiation. The undoped glass shows a strong UV optical absorption which is correlated with unavoidable contaminated trace iron impurities. The V2O5-doped samples reveal two additional strong broad visible bands centered at 450 and 680 nm. Such extra peculiar and strong two broad visible bands are related to both tetravalent and trivalent vanadium ions in measurable percent due to the reducing behavior of barium phosphate host glass. Gamma irradiation on the undoped glass results in the generation of collective induced UV and visible bands which are originating from positive hole and electron centers. Glasses containing V2O5 reveal upon gamma irradiation induced defects in the UV as the undoped sample together with distinct splitting within the first broad visible band while the second broad band remains unchanged. This behavior is related to limited photoionization upon the addition of V2O5 indicating specific shielding effect of the vanadium ions towards gamma irradiation. It was noticed that irradiation causes no distinct variations in the FTIR spectra due to the presence of 50% of heavy metal oxide (BaO) and some shielding effect of vanadium ions.

  4. Adaptive Optics for the Human Eye

    NASA Astrophysics Data System (ADS)

    Williams, D. R.

    2000-05-01

    Adaptive optics can extend not only the resolution of ground-based telescopes, but also the human eye. Both static and dynamic aberrations in the cornea and lens of the normal eye limit its optical quality. Though it is possible to correct defocus and astigmatism with spectacle lenses, higher order aberrations remain. These aberrations blur vision and prevent us from seeing at the fundamental limits set by the retina and brain. They also limit the resolution of cameras to image the living retina, cameras that are a critical for the diagnosis and treatment of retinal disease. I will describe an adaptive optics system that measures the wave aberration of the eye in real time and compensates for it with a deformable mirror, endowing the human eye with unprecedented optical quality. This instrument provides fresh insight into the ultimate limits on human visual acuity, reveals for the first time images of the retinal cone mosaic responsible for color vision, and points the way to contact lenses and laser surgical methods that could enhance vision beyond what is currently possible today. Supported by the NSF Science and Technology Center for Adaptive Optics, the National Eye Institute, and Bausch and Lomb, Inc.

  5. Limitations and Tolerances in Optical Devices

    NASA Astrophysics Data System (ADS)

    Jackman, Neil Allan

    The performance of optical systems is limited by the imperfections of their components. Many of the devices in optical systems including optical fiber amplifiers, multimode transmission lines and multilayered media such as mirrors, windows and filters, are modeled by coupled line equations. This investigation includes: (i) a study of the limitations imposed on a wavelength multiplexed unidirectional ring by the non-uniformities of the gain spectra of Erbium-doped optical fiber amplifiers. We find numerical solutions for non-linear coupled power differential equations and use these solutions to compare the signal -to-noise ratios and signal levels at different nodes. (ii) An analytical study of the tolerances of imperfect multimode media which support forward traveling modes. The complex mode amplitudes are related by linear coupled differential equations. We use analytical methods to derive extended equations for the expected mode powers and give heuristic limits for their regions of validity. These results compare favorably to exact solutions found for a special case. (iii) A study of the tolerances of multilayered media in the presence of optical thickness imperfections. We use analytical methods including Kronecker producers, to calculate the reflection and transmission statistics of the media. Monte Carlo simulations compare well to our analytical method.

  6. Structural, thermal, optical and nonlinear optical properties of ethylenediaminium picrate single crystals

    NASA Astrophysics Data System (ADS)

    Indumathi, C.; T. C., Sabari Girisun; Anitha, K.; Alfred Cecil Raj, S.

    2017-07-01

    A new organic optical limiting material, ethylenediaminium picrate (EDAPA) was synthesized through acid base reaction and grown as single crystals by solvent evaporation method. Single crystal XRD analysis showed that EDAPA crystallizes in orthorhombic system with Cmca as space group. The formation of charge transfer complex during the reaction of ethylenediamine and picric acid was strongly evident through the recorded Fourier Transform Infra Red (FTIR), Raman and Nuclear Magnetic Resonance (NMR) spectrum. Thermal (TG-DTA and DSC) curves indicated that the material possesses high thermal stability with decomposition temperature at 243 °C. Optical (UV-Visible-NIR) analysis showed that the grown crystal was found to be transparent in the entire visible and NIR region. Z-scan studies with intense short pulse (532 nm, 5 ns, 100 μJ) excitations, revealed that EDAPA exhibited two photon absorption behaviour and the nonlinear absorption coefficient was found to be two orders of magnitude higher than some of the known optical limiter like Cu nano glasses. EDAPA exhibited a strong optical limiting action with low limiting threshold which make them a potential candidate for eye and photosensitive component protection against intense short pulse lasers.

  7. A coordinated X-ray, optical, and microwave study of the flare star Proxima Centauri

    NASA Technical Reports Server (NTRS)

    Haisch, B. M.; Linsky, J. L.; Slee, O. B.; Hearn, D. R.; Walker, A. R.; Rydgren, A. E.; Nicolson, G. D.

    1978-01-01

    Results are reported for a three-day coordinated observing program to monitor the flare star Proxima Centauri in the X-ray, optical, and radio spectrum. During this interval 30 optical flares and 12 possible radio bursts were observed. The SAS 3 X-ray satellite made no X-ray detections. An upper limit of 0.08 on the X-ray/optical luminosity ratio is derived for the brightest optical flare. The most sensitive of the radio telescopes failed to detect 6-cm emission during one major and three minor optical flares, and on this basis an upper limit on the flare radio emission (1 hundred-thousandth of the optimal luminosity) is derived.

  8. Materials Development for Next Generation Optical Fiber

    PubMed Central

    Ballato, John; Dragic, Peter

    2014-01-01

    Optical fibers, the enablers of the Internet, are being used in an ever more diverse array of applications. Many of the rapidly growing deployments of fibers are in high-power and, particularly, high power-per-unit-bandwidth systems where well-known optical nonlinearities have historically not been especially consequential in limiting overall performance. Today, however, nominally weak effects, most notably stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) are among the principal phenomena restricting continued scaling to higher optical power levels. In order to address these limitations, the optical fiber community has focused dominantly on geometry-related solutions such as large mode area (LMA) designs. Since such scattering, and all other linear and nonlinear optical phenomena including higher order mode instability (HOMI), are fundamentally materials-based in origin, this paper unapologetically advocates material solutions to present and future performance limitations. As such, this paper represents a ‘call to arms’ for material scientists and engineers to engage in this opportunity to drive the future development of optical fibers that address many of the grand engineering challenges of our day. PMID:28788683

  9. Hand motion modeling for psychology analysis in job interview using optical flow-history motion image: OF-HMI

    NASA Astrophysics Data System (ADS)

    Khalifa, Intissar; Ejbali, Ridha; Zaied, Mourad

    2018-04-01

    To survive the competition, companies always think about having the best employees. The selection is depended on the answers to the questions of the interviewer and the behavior of the candidate during the interview session. The study of this behavior is always based on a psychological analysis of the movements accompanying the answers and discussions. Few techniques are proposed until today to analyze automatically candidate's non verbal behavior. This paper is a part of a work psychology recognition system; it concentrates in spontaneous hand gesture which is very significant in interviews according to psychologists. We propose motion history representation of hand based on an hybrid approach that merges optical flow and history motion images. The optical flow technique is used firstly to detect hand motions in each frame of a video sequence. Secondly, we use the history motion images (HMI) to accumulate the output of the optical flow in order to have finally a good representation of the hand`s local movement in a global temporal template.

  10. Effects of optical attenuation, heat diffusion, and acoustic coherence in photoacoustic signals produced by nanoparticles

    NASA Astrophysics Data System (ADS)

    Alba-Rosales, J. E.; Ramos-Ortiz, G.; Escamilla-Herrera, L. F.; Reyes-Ramírez, B.; Polo-Parada, L.; Gutiérrez-Juárez, G.

    2018-04-01

    The behavior of the photoacoustic signal produced by nanoparticles as a function of their concentration was studied in detail. As the concentration of nanoparticles is increased in a sample, the peak-to-peak photoacoustic amplitude increases linearly up to a certain value, after which an asymptotic saturated behavior is observed. To elucidate the mechanisms responsible for these observations, we evaluate the effects of nanoparticles concentration, the optical attenuation, and the effects of heat propagation from nano-sources to their surroundings. We found that the saturation effect of the photoacoustic signal as a function of the concentration of nanoparticles is explained by a combination of two different mechanisms. As has been suggested previously, but not modeled correctly, the most important mechanism is attributed to optical attenuation. The second mechanism is due to an interference destructive process attributed to the superimposition of the photoacoustic amplitudes generated for each nanoparticle, and this explanation is reinforced through our experimental and simulations results; based on this, it is found that the linear behavior of the photoacoustic amplitude could be restricted to optical densities ≤0.5.

  11. First-principles calculations of two cubic fluoropervskite compounds: RbFeF3 and RbNiF3

    NASA Astrophysics Data System (ADS)

    Mubarak, A. A.; Al-Omari, Saleh

    2015-05-01

    We present first-principles calculations of the structural, elastic, electronic, magnetic and optical properties for RbFeF3 and RbNiF3. The full-potential linear augmented plan wave (FP-LAPW) method within the density functional theory was utilized to perform the present calculations. We employed the generalized gradient approximation as exchange-correlation potential. It was found that the calculated analytical lattice parameters agree with previous studies. The analysis of elastic constants showed that the present compounds are elastically stable and anisotropic. Moreover, both compounds are classified as a ductile compound. The calculations of the band structure and density functional theory revealed that the RbFeF3 compound has a half-metallic behavior while the RbNiF3 compound has a semiconductor behavior with indirect (M-Γ) band gap. The ferromagnetic behavior was studied for both compounds. The optical properties were calculated for the radiation of up to 40 eV. A beneficial optics technology is predicted as revealed from the optical spectra.

  12. Theory of aberration fields for general optical systems with freeform surfaces.

    PubMed

    Fuerschbach, Kyle; Rolland, Jannick P; Thompson, Kevin P

    2014-11-03

    This paper utilizes the framework of nodal aberration theory to describe the aberration field behavior that emerges in optical systems with freeform optical surfaces, particularly φ-polynomial surfaces, including Zernike polynomial surfaces, that lie anywhere in the optical system. If the freeform surface is located at the stop or pupil, the net aberration contribution of the freeform surface is field constant. As the freeform optical surface is displaced longitudinally away from the stop or pupil of the optical system, the net aberration contribution becomes field dependent. It is demonstrated that there are no new aberration types when describing the aberration fields that arise with the introduction of freeform optical surfaces. Significantly it is shown that the aberration fields that emerge with the inclusion of freeform surfaces in an optical system are exactly those that have been described by nodal aberration theory for tilted and decentered optical systems. The key contribution here lies in establishing the field dependence and nodal behavior of each freeform term that is essential knowledge for effective application to optical system design. With this development, the nodes that are distributed throughout the field of view for each aberration type can be anticipated and targeted during optimization for the correction or control of the aberrations in an optical system with freeform surfaces. This work does not place any symmetry constraints on the optical system, which could be packaged in a fully three dimensional geometry, without fold mirrors.

  13. Physical Limitations in Lithography for Microelectronics.

    ERIC Educational Resources Information Center

    Flavin, P. G.

    1981-01-01

    Describes techniques being used in the production of microelectronics kits which have replaced traditional optical lithography, including contact and optical projection printing, and X-ray and electron beam lithography. Also includes limitations of each technique described. (SK)

  14. Local domains of motor cortical activity revealed by fiber-optic calcium recordings in behaving nonhuman primates.

    PubMed

    Adelsberger, Helmuth; Zainos, Antonio; Alvarez, Manuel; Romo, Ranulfo; Konnerth, Arthur

    2014-01-07

    Brain mapping experiments involving electrical microstimulation indicate that the primary motor cortex (M1) directly regulates muscle contraction and thereby controls specific movements. Possibly, M1 contains a small circuit "map" of the body that is formed by discrete local networks that code for specific movements. Alternatively, movements may be controlled by distributed, larger-scale overlapping circuits. Because of technical limitations, it remained unclear how movement-determining circuits are organized in M1. Here we introduce a method that allows the functional mapping of small local neuronal circuits in awake behaving nonhuman primates. For this purpose, we combined optic-fiber-based calcium recordings of neuronal activity and cortical microstimulation. The method requires targeted bulk loading of synthetic calcium indicators (e.g., OGB-1 AM) for the staining of neuronal microdomains. The tip of a thin (200 µm) optical fiber can detect the coherent activity of a small cluster of neurons, but is insensitive to the asynchronous activity of individual cells. By combining such optical recordings with microstimulation at two well-separated sites of M1, we demonstrate that local cortical activity was tightly associated with distinct and stereotypical simple movements. Increasing stimulation intensity increased both the amplitude of the movements and the level of neuronal activity. Importantly, the activity remained local, without invading the recording domain of the second optical fiber. Furthermore, there was clear response specificity at the two recording sites in a trained behavioral task. Thus, the results provide support for movement control in M1 by local neuronal clusters that are organized in discrete cortical domains.

  15. Printing colour at the optical diffraction limit.

    PubMed

    Kumar, Karthik; Duan, Huigao; Hegde, Ravi S; Koh, Samuel C W; Wei, Jennifer N; Yang, Joel K W

    2012-09-01

    The highest possible resolution for printed colour images is determined by the diffraction limit of visible light. To achieve this limit, individual colour elements (or pixels) with a pitch of 250 nm are required, translating into printed images at a resolution of ∼100,000 dots per inch (d.p.i.). However, methods for dispensing multiple colourants or fabricating structural colour through plasmonic structures have insufficient resolution and limited scalability. Here, we present a non-colourant method that achieves bright-field colour prints with resolutions up to the optical diffraction limit. Colour information is encoded in the dimensional parameters of metal nanostructures, so that tuning their plasmon resonance determines the colours of the individual pixels. Our colour-mapping strategy produces images with both sharp colour changes and fine tonal variations, is amenable to large-volume colour printing via nanoimprint lithography, and could be useful in making microimages for security, steganography, nanoscale optical filters and high-density spectrally encoded optical data storage.

  16. Magnetic and optical holonomic manipulation of colloids, structures and topological defects in liquid crystals for characterization of mesoscale self-assembly and dynamics

    NASA Astrophysics Data System (ADS)

    Varney, Michael C. M.

    Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena encountered in atomic crystals and glasses; topics of great interest for physicists exploring a broad range of scientific, industrial and biomedical fields. The ability to accurately control particles of mesoscale size in various liquid host media is usually accomplished through optical trapping methods, which suffer limitations intrinsic to trap laser intensity and force generation. Other limitations are due to colloid properties, such as optical absorptivity, and host properties, such as viscosity, opacity and structure. Therefore, alternative and/or novel methods of colloidal manipulation are of utmost importance in order to advance the state of the art in technical applications and fundamental science. In this thesis, I demonstrate a magnetic-optical holonomic control system to manipulate magnetic and optical colloids in liquid crystals and show that the elastic structure inherent to nematic and cholesteric liquid crystals may be used to assist in tweezing of particles in a manner impossible in other media. Furthermore, I demonstrate the utility of this manipulation in characterizing the structure and microrheology of liquid crystals, and elucidating the energetics and dynamics of colloids interacting with these structures. I also demonstrate the utility of liquid crystal systems as a table top model system to probe topological defects in a manner that may lead to insights into topologically related phenomena in other fields, such as early universe cosmology, sub-atomic and high energy systems, or Skrymionic structures. I explore the interaction of colloid surface anchoring with the structure inherent in cholesteric liquid crystals, and how this affects the periodic dynamics and localization metastability of spherical colloids undergoing a "falling" motion within the sample. These so called "metastable states" cause colloidal dynamics to deviate from Stokes-like behavior at very low Reynolds numbers and is understood by accounting for periodic landscapes of elastic interaction potential between the particle and cholesteric host medium due to surface anchoring. This work extends our understanding of how colloids interact with liquid crystals and topological defects, and introduces a powerful method of colloidal manipulation with many potential applications.

  17. A search for optical bursts from the repeating fast radio burst FRB 121102

    NASA Astrophysics Data System (ADS)

    Hardy, L. K.; Dhillon, V. S.; Spitler, L. G.; Littlefair, S. P.; Ashley, R. P.; De Cia, A.; Green, M. J.; Jaroenjittichai, P.; Keane, E. F.; Kerry, P.; Kramer, M.; Malesani, D.; Marsh, T. R.; Parsons, S. G.; Possenti, A.; Rattanasoon, S.; Sahman, D. I.

    2017-12-01

    We present a search for optical bursts from the repeating fast radio burst FRB 121102 using simultaneous observations with the high-speed optical camera ULTRASPEC on the 2.4-m Thai National Telescope and radio observations with the 100-m Effelsberg Radio Telescope. A total of 13 radio bursts were detected, but we found no evidence for corresponding optical bursts in our 70.7-ms frames. The 5σ upper limit to the optical flux density during our observations is 0.33 mJy at 767 nm. This gives an upper limit for the optical burst fluence of 0.046 Jy ms, which constrains the broad-band spectral index of the burst emission to α ≤ -0.2. Two of the radio pulses are separated by just 34 ms, which may represent an upper limit on a possible underlying periodicity (a rotation period typical of pulsars), or these pulses may have come from a single emission window that is a small fraction of a possible period.

  18. Z-scan and optical limiting properties of Hibiscus Sabdariffa dye

    NASA Astrophysics Data System (ADS)

    Diallo, A.; Zongo, S.; Mthunzi, P.; Rehman, S.; Alqaradawi, S. Y.; Soboyejo, W.; Maaza, M.

    2014-12-01

    The intensity-dependent refractive index n 2 and the nonlinear susceptibility χ (3) of Hibiscus Sabdariffa dye solutions in the nanosecond regime at 532 nm are reported. More presicely, the variation of n 2, β, and real and imaginary parts of χ (3) versus the natural dye extract concentration has been carried out by z-scan and optical limiting techniques. The third-order nonlinearity of the Hibiscus Sabdariffa dye solutions was found to be dominated by nonlinear refraction, which leads to strong optical limiting of laser.

  19. Bidirectional optical bistability in a dual-pumped erbium doped fiber ring laser.

    PubMed

    Lai, W J; Shum, P; Binh, L

    2004-11-15

    We investigate bidirectional optical wave propagations in a dual-pumped erbium doped fiber ring laser without isolator, and observe optical bistability behaviors. Consequently, we propose and construct a NOLM-NALM fiber ring laser to demonstrate and exploit this bidirectional optical bistability phenomenon in optical switching by introducing two tunable variable ratio couplers in the system. Numerical analyses based on the proposed laser structure have also been demonstrated corroborated with the experimental results.

  20. Intensive HST, RXTE, and ASCA Monitoring of NGC 3516: Evidence against Thermal Reprocessing

    NASA Technical Reports Server (NTRS)

    Edelson, Rick; Koratkar, Anuradha; Nandra, Kirpal; Goad, Michael; Peterson, Bradley M.; Collier, Stefan; Krolik, Julian; Malkan, Matthew; Maoz, Dan; OBrien, Paul

    2000-01-01

    During 1998 April 1316, the bright, strongly variable Seyfert 1 galaxy NGC 3516 was monitored almost continuously with HST for 10.3 hr at ultraviolet wavelengths and 2.8 days at optical wavelengths, and simultaneous RXTE and ASCA monitoring covered the same period. The X-ray fluxes were strongly variable with the soft (0.5-2 keV) X-rays showing stronger variations (approx. 65% peak to peak) than the hard (2-10 keV) X-rays (approx. 50% peak to peak). The optical continuum showed much smaller but still highly significant variations: a slow approx. 2.5% rise followed by a faster approx. 3.5% decline. The short ultraviolet observation did not show significant variability. The soft and hard X-ray light curves were strongly correlated, with no evidence for a significant interband lag. Likewise, the optical continuum bands (3590 and 5510 A) were also strongly correlated, with no measurable lag, to 3(sigma) limits of approx. less than 0.15 day. However, the optical and X-ray light curves showed very different behavior, and no significant correlation or simple relationship could be found. These results appear difficult to reconcile with previous reports of correlations between X-ray and optical variations and of measurable lags within the optical band for some other Seyfert 1 galaxies. These results also present serious problems for "reprocessing" models in which the X-ray source heats a stratified accretion disk, which then reemits in the optical/ultraviolet : the synchronous variations within the optical would suggest that the emitting region is approx. less than 0.3 It-day across, while the lack of correlation between X-ray and optical variations would indicate, in the context of this model, that any reprocessing region must be approx. greater than 1 It-day in size. It may be possible to resolve this conflict by invoking anisotropic emission or special geometry, but the most natural explanation appears to be that the bulk of the optical luminosity is generated by some mechanism other than reprocessing.

  1. SU-D-210-03: Limited-View Multi-Source Quantitative Photoacoustic Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, J; Gao, H

    2015-06-15

    Purpose: This work is to investigate a novel limited-view multi-source acquisition scheme for the direct and simultaneous reconstruction of optical coefficients in quantitative photoacoustic tomography (QPAT), which has potentially improved signal-to-noise ratio and reduced data acquisition time. Methods: Conventional QPAT is often considered in two steps: first to reconstruct the initial acoustic pressure from the full-view ultrasonic data after each optical illumination, and then to quantitatively reconstruct optical coefficients (e.g., absorption and scattering coefficients) from the initial acoustic pressure, using multi-source or multi-wavelength scheme.Based on a novel limited-view multi-source scheme here, We have to consider the direct reconstruction of opticalmore » coefficients from the ultrasonic data, since the initial acoustic pressure can no longer be reconstructed as an intermediate variable due to the incomplete acoustic data in the proposed limited-view scheme. In this work, based on a coupled photo-acoustic forward model combining diffusion approximation and wave equation, we develop a limited-memory Quasi-Newton method (LBFGS) for image reconstruction that utilizes the adjoint forward problem for fast computation of gradients. Furthermore, the tensor framelet sparsity is utilized to improve the image reconstruction which is solved by Alternative Direction Method of Multipliers (ADMM). Results: The simulation was performed on a modified Shepp-Logan phantom to validate the feasibility of the proposed limited-view scheme and its corresponding image reconstruction algorithms. Conclusion: A limited-view multi-source QPAT scheme is proposed, i.e., the partial-view acoustic data acquisition accompanying each optical illumination, and then the simultaneous rotations of both optical sources and ultrasonic detectors for next optical illumination. Moreover, LBFGS and ADMM algorithms are developed for the direct reconstruction of optical coefficients from the acoustic data. Jing Feng and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less

  2. Mathematical modelling of solar ultraviolet radiation induced optical degradation in anodized aluminum

    NASA Technical Reports Server (NTRS)

    Ruley, John D.

    1986-01-01

    In the design of spacecraft for proper thermal balance, accurate information on the long-term optical behavior of the spacecraft outer skin materials is necessary. A phenomenological model for such behavior is given. The underlying principles are explained and some examples are given of the model's fit to actual measurements under simulated Earth-orbit conditions. Comments are given on the applicability of the model to materials testing and thermal modelling.

  3. Scalar limitations of diffractive optical elements

    NASA Technical Reports Server (NTRS)

    Johnson, Eric G.; Hochmuth, Diane; Moharam, M. G.; Pommet, Drew

    1993-01-01

    In this paper, scalar limitations of diffractive optic components are investigated using coupled wave analyses. Results are presented for linear phase gratings and fanout devices. In addition, a parametric curve is given which correlates feature size with scalar performance.

  4. 15x optical zoom and extreme optical image stabilisation: diffraction limited integral field spectroscopy with the Oxford SWIFT spectrograph

    NASA Astrophysics Data System (ADS)

    Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Lynn, James; Freeman, David; Roberts, Jennifer; Dekany, Richard

    2012-09-01

    When commissioned in November 2008 at the Palomar 200 inch Hale Telescope, the Oxford SWIFT I and z band integral field spectrograph, fed by the adaptive optics system PALAO, provided a wide (3×) range of spatial resolutions: three plate scales of 235 mas, 160 mas, and 80 mas per spaxel over a contiguous field-of-view of 89×44 pixels. Depending on observing conditions and guide star brightness we can choose a seeing limited scale of 235 mas per spaxel, or 160 mas and 80 mas per spaxel for very bright guide star AO with substantial increase of enclosed energy. Over the last two years PALAO was upgraded to PALM-3000: an extreme, high-order adaptive optics system with two deformable mirrors with more than 3000 actuators, promising diffraction limited performance in SWIFT's wavelength range. In order to take advantage of this increased spatial resolution we upgraded SWIFT with new pre-optics allowing us to spatially Nyquist sample the diffraction limited PALM-3000 point spread function with 16 mas resolution, reducing the spaxel scale by another factor of 5×. We designed, manufactured, integrated and tested the new pre-optics in the first half of 2011 and commissioned it in December 2011. Here we present the opto-mechanical design and assembly of the new scale changing optics, as well as laboratory and on-sky commissioning results. In optimal observing conditions we achieve substantial Strehl ratios, delivering the near diffraction limited spatial resolution in the I and z bands.

  5. A versatile fibre optic sensor interrogation system for the Ariane Launcher based on an electro-optically tuneable laser diode

    NASA Astrophysics Data System (ADS)

    Plattner, M. P.; Hirth, F.; Müller, M. S.; Hoffmann, L.; Buck, T. C.; Koch, A. W.

    2017-11-01

    Availability of reliable flight sensor data and knowledge of the structural behaviour are essential for safe operation of the Ariane launcher. The Ariane launcher is currently monitored by hundreds of electric sensors during test and qualification. Fibre optic sensors are regarded as a potential technique to overcome limitations of recent monitoring systems for the Ariane launcher [1]. These limitations include cumbersome application of sensors and harness as well as a very limited degree of distributed sensing capability. But, in order to exploit the various advantages of fibre optic sensors (high degree of multiplexing, distributed sensing capability, lower mass impact, etc.) dedicated measurement systems have to be developed and investigated. State-of-the-art fibre optic measurement systems often use free beam setups making them bulky and sensitive to vibration impact. Therefore a new measurement system is developed as part of the ESAstudy [2].

  6. White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumbilavil, Sreekanth; Sankar, Pranitha; Priya Rose, T.

    Wavelength dispersion of optical power limiting is an important factor to be considered while designing potential optical limiters for laser safety applications. We report the observation of broadband, ultrafast optical limiting in reduced graphene oxide (rGO), measured by a single open aperture Z-scan using a white light continuum (WLC) source. WLC Z-scan is fast when the nonlinearity is to be measured over broad wavelength ranges, and it obviates the need for an ultrafast tunable laser making it cost-economic compared to conventional Z-scan. The nonlinearity arises from nondegenerate two-photon absorption, owing mostly to the crystallinity and extended π conjugation of rGO.

  7. Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation.

    PubMed

    Negres, Raluca A; Norton, Mary A; Cross, David A; Carr, Christopher W

    2010-09-13

    The growth behavior of laser-induced damage sites is affected by a large number of laser parameters as well as site morphology. Here we investigate the effects of pulse duration on the growth rate of damage sites located on the exit surface of fused silica optics. Results demonstrate a significant dependence of the growth parameters on laser pulse duration at 351 nm from 1 ns to 15 ns, including the observation of a dominant exponential versus linear, multiple-shot growth behavior for long and short pulses, respectively. These salient behaviors are tied to the damage morphology and suggest a shift in the fundamental growth mechanisms for pulses in the 1-5 ns range.

  8. Performance improvements of symmetry-breaking reflector structures in nonimaging devices

    DOEpatents

    Winston, Roland

    2004-01-13

    A structure and method for providing a broken symmetry reflector structure for a solar concentrator device. The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quantity, referred to as the translational skew invariant, is conserved in rotationally symmetric optical systems. Performance limits for translationally symmetric nonimaging optical devices are derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. A numerically optimized non-tracking solar concentrator utilizing symmetry-breaking reflector structures can overcome the performance limits associated with translational symmetry.

  9. Thermophysical and Optical Properties of Semiconducting Ga2Te3 Melt

    NASA Technical Reports Server (NTRS)

    Li, Chao; Su, Ching-Hua; Lehoczky, Sandor L.; Scripa, Rosalie N.; Ban, Heng

    2005-01-01

    The majority of bulk semiconductor single crystals are presently grown from their melts. The thermophysical and optical properties of the melts provide a fundamental understanding of the melt structure and can be used to optimize the growth conditions to obtain higher quality crystals. In this paper, we report several thermophysical and optical properties for Ga2Te3 melts, such as electrical conductivity, viscosity, and optical transmission for temperatures ranging from the melting point up to approximately 990 C. The conductivity and viscosity of the melts are determined using the transient torque technique. The optical transmission of the melts is measured between the wavelengths of 300 and 2000 nm by an dual beam reversed-optics spectrophotometer. The measured properties are in good agreement with the published data. The conductivities indicate that the Ga2Te3 melt is semiconductor-like. The anomalous behavior in the measured properties are used as an indication of a structural transformation in the Ga2Te3 melt and discussed in terms of Eyring's and Bachinskii's predicted behaviors for homogeneous melts.

  10. Optical Imaging of Nonuniform Ferroelectricity and Strain at the Diffraction Limit

    PubMed Central

    Vlasin, Ondrej; Casals, Blai; Dix, Nico; Gutiérrez, Diego; Sánchez, Florencio; Herranz, Gervasi

    2015-01-01

    We have imaged optically the spatial distributions of ferroelectricity and piezoelectricity at the diffraction limit. Contributions to the birefringence from electro-optics –linked to ferroelectricity– as well as strain –arising from converse piezoelectric effects– have been recorded simultaneously in a BaTiO3 thin film. The concurrent recording of electro-optic and piezo-optic mappings revealed that, far from the ideal uniformity, the ferroelectric and piezoelectric responses were strikingly inhomogeneous, exhibiting significant fluctuations over the scale of the micrometer. The optical methods here described are appropriate to study the variations of these properties simultaneously, which are of great relevance when ferroelectrics are downscaled to small sizes for applications in data storage and processing. PMID:26522345

  11. Thermo-optic characteristics and switching power limit of slow-light photonic crystal structures on a silicon-on-insulator platform.

    PubMed

    Chahal, Manjit; Celler, George K; Jaluria, Yogesh; Jiang, Wei

    2012-02-13

    Employing a semi-analytic approach, we study the influence of key structural and optical parameters on the thermo-optic characteristics of photonic crystal waveguide (PCW) structures on a silicon-on-insulator (SOI) platform. The power consumption and spatial temperature profile of such structures are given as explicit functions of various structural, thermal and optical parameters, offering physical insight not available in finite-element simulations. Agreement with finite-element simulations and experiments is demonstrated. Thermal enhancement of the air-bridge structure is analyzed. The practical limit of thermo-optic switching power in slow light PCWs is discussed, and the scaling with key parameters is analyzed. Optical switching with sub-milliwatt power is shown viable.

  12. Relaxation method of compensation in an optical correlator

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Daiuto, Brian J.

    1987-01-01

    An iterative method is proposed for the sharpening of programmable filters in a 4-f optical correlator. Continuously variable spatial light modulators (SLMs) permit the fine adjustment of optical processing filters so as to compensate for the departures from ideal behavior of a real optical system. Although motivated by the development of continuously variable phase-only SLMs, the proposed sharpening method is also applicable to amplitude modulators and, with appropriate adjustments, to binary modulators as well. A computer simulation is presented that illustrates the potential effectiveness of the method: an image is placed on the input to the correlator, and its corresponding phase-only filter is adjusted (allowed to relax) so as to produce a progressively brighter and more centralized peak in the correlation plane. The technique is highly robust against the form of the system's departure from ideal behavior.

  13. Optical phonon modes and polaron related parameters in GaxIn1-xP

    NASA Astrophysics Data System (ADS)

    Bouarissa, N.; Algarni, H.; Al-Hagan, O. A.; Khan, M. A.; Alhuwaymel, T. F.

    2018-02-01

    Based on a pseudopotential approach under the virtual crystal approximation that includes the effect of compositional disorder, the optical lattice vibration frequencies and polaron related parameters in zinc-blende GaxIn1-xP have been studied. Our findings showed generally reasonably good accord with data in the literature. Other case, our results are predictions. The composition dependence of longitudinal optical (LO) and transverse optical (TO) phonon modes, LO-TO splittings, Frӧhlich coupling parameter, Debye temperature of LO phonon frequency, and polaron effective mass has been analyzed and discussed. While a non-monotonic behavior has been noticed for the LO and TO phonon frequencies versus Ga concentration x, a monotonic behavior has been observed for the rest of the features of interest. The information derived from this investigation may be useful for optoelectronic technological applications.

  14. Optical Limiting Materials Based on Gold Nanoparticles

    DTIC Science & Technology

    2014-04-30

    of the electromagnetic spectrum. 2. Functionalization of the surface of the gold nanoparticles with selected organic and inorganic materials, with...F. A Review of Optical Limiting Mechanisms and Devices Using Organics, Fullerenes , Semiconductors and Other Materials. Prog. Quant. Electr. 1993

  15. Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO 2 nanoparticles

    DOE PAGES

    Schaeffer, Daniel A.; Polizos, Georgios; Smith, D. Barton; ...

    2015-01-09

    Optical surfaces such as mirrors and windows that are exposed to outdoor environmental conditions are susceptible to dust buildup and water condensation. The application of transparent superhydrophobic coatings on optical surfaces can improve outdoor performance via a self-cleaning effect similar to the Lotus effect. The contact angle (CA) of water droplets on a typical hydrophobic flat surface varies from 100° to 120°. Adding roughness or microtexture to a hydrophobic surface leads to an enhancement of hydrophobicity and the CA can be increased to a value in the range of 16≥0° to 175°. This result is remarkable because such behavior cannotmore » be explained using surface chemistry alone. When surface features are on the order of 100 nm or smaller, surfaces exhibit superhydrophobic behavior and maintain their optical transparency. In this work we discuss our results on transparent superhydrophobic coatings that can be applied across large surface areas. We have used functionalized silica nanoparticles to coat various optical elements and have measured the contact angle and optical transmission between 190 to 1100 nm on these elements. The functionalized silica nanoparticles were dissolved in a solution of the solvents isopropyl alcohol and 4-chlorobenzotrifluoride (PCBTF) and a proprietary ceramic binder (Cerakote ). Finally, this solution was spin-coated onto a variety of test glass substrates, and following a curing period of about 30 minutes, these coatings exhibited superhydrophobic behavior with a static CA ≥160°.« less

  16. Low-cost Large Aperture Telescopes for Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    2006-01-01

    Low-cost, large-aperture optical receivers are required to form an affordable optical ground receiver network for laser communications. Among the ground receiver station's multiple subsystems, here, we only discuss the ongoing research activities aimed at reducing the cost of the large-size optics on the receiver. Experimental results of two different approaches for fabricating low-cost mirrors of wavefront quality on the order of 100-200X the diffraction limit are described. Laboratory-level effort are underway to improve the surface figure to better than 20X the diffraction limit.

  17. Light-activated microbubbles around gold nanorods for photoacoustic microsurgery

    NASA Astrophysics Data System (ADS)

    Cavigli, Lucia; Centi, Sonia; Lai, Sarah; Borri, Claudia; Micheletti, Filippo; Tortoli, Paolo; Panettieri, Ilaria; Streit, Ingolf; Rossi, Francesca; Ratto, Fulvio; Pini, Roberto

    2018-02-01

    The increasing interest around imaging and microsurgery techniques based on the photoacoustic effect has boosted active research into the development of exogenous contrast agents that may enhance the potential of this innovative approach. In this context, plasmonic particles as gold nanorods are achieving resounding interest, owing to their efficiency of photothermal conversion, intense optical absorbance in the near infrared region, inertness in the body and convenience for conjugation with ligands of molecular targets. On the other hand, the photoinstability of plasmonic particles remains a remarkable obstacle. In particular, gold nanorods easily reshape into nanospheres and so lose their optical absorbance in the near infrared region, under exposure to few-ns-long laser pulses. This issue is attracting much attention and stimulating ad-hoc solutions, such as the addition of rigid shells and the optimization of multiple parameters. In this contribution, we focus on the influence of the shape of gold nanorods on their photothermal behavior and photostability. We describe the photothermal process in the gold nanorods by modeling their optical absorption and consequent temperature dynamics as a function of their aspect ratio (length / diameter). Our results suggest that increasing the aspect ratio does probably not limit the photostability of gold nanorods, while shifting the plasmonic peak towards wavelengths around 1100 nm, which hold more technological interest.

  18. Robust estimation of cerebral hemodynamics in neonates using multilayered diffusion model for normal and oblique incidences

    NASA Astrophysics Data System (ADS)

    Steinberg, Idan; Harbater, Osnat; Gannot, Israel

    2014-07-01

    The diffusion approximation is useful for many optical diagnostics modalities, such as near-infrared spectroscopy. However, the simple normal incidence, semi-infinite layer model may prove lacking in estimation of deep-tissue optical properties such as required for monitoring cerebral hemodynamics, especially in neonates. To answer this need, we present an analytical multilayered, oblique incidence diffusion model. Initially, the model equations are derived in vector-matrix form to facilitate fast and simple computation. Then, the spatiotemporal reflectance predicted by the model for a complex neonate head is compared with time-resolved Monte Carlo (TRMC) simulations under a wide range of physiologically feasible parameters. The high accuracy of the multilayer model is demonstrated in that the deviation from TRMC simulations is only a few percent even under the toughest conditions. We then turn to solve the inverse problem and estimate the oxygen saturation of deep brain tissues based on the temporal and spatial behaviors of the reflectance. Results indicate that temporal features of the reflectance are more sensitive to deep-layer optical parameters. The accuracy of estimation is shown to be more accurate and robust than the commonly used single-layer diffusion model. Finally, the limitations of such approaches are discussed thoroughly.

  19. Persistent Luminescence Nanophosphor Involved Near-Infrared Optical Bioimaging for Investigation of Foodborne Probiotics Biodistribution in Vivo: A Proof-of-Concept Study.

    PubMed

    Liu, Yaoyao; Liu, Jing-Min; Zhang, Dongdong; Ge, Kun; Wang, Peihua; Liu, Huilin; Fang, Guozhen; Wang, Shuo

    2017-09-20

    Probiotics has attracted great attention in food nutrition and safety research field, but thus far there are limited analytical techniques for visualized and real-time monitoring of the probiotics when they are ingested in vivo. Herein, the optical bioimaging technique has been introduced for investigation of foodborne probiotics biodistribution in vivo, employing the near-infrared (NIR) emitting persistent luminescence nanophosphors (PLNPs) of Cr 3+ -doped zinc gallogermanate (ZGGO) as the contrast nanoprobes. The ultrabrightness, super long afterglow, polydispersed size, low toxicity, and excellent photostability and biocompatibility of PLNPs were demonstrated to be qualified as a tracer for labeling probiotics via antibody (anti-Gram positive bacteria LTA antibody) recognition as well as contrast agent for long-term bioimaging the probiotics. In vivo optical bioimaging assay showed that the LTA antibody functionalized ZGGO nanoprobes that could be efficiently tagged to the probiobics were successfully applied for real-time monitoring and nondamaged probing of the biodistribution of probiotics inside the living body after oral administration. This work presents a proof-of-concept that exploited the bioimaging methodology for real-time and nondamaged researching the foodborne probiotics behaviors in vivo, which would open up a novel way of food safety detection and nutrition investigation.

  20. Performance evaluation of electro-optic effect based graphene transistors

    NASA Astrophysics Data System (ADS)

    Gupta, Gaurav; Abdul Jalil, Mansoor Bin; Yu, Bin; Liang, Gengchiau

    2012-09-01

    Despite the advantages afforded by the unique electronic properties of graphene, the absence of a bandgap has limited its applicability in logic devices. This has led to a study on electro-optic behavior in graphene for novel device operations, beyond the conventional field effect, to meet the requirements of ultra-low power and high-speed logic transistors. Recently, two potential designs have been proposed to leverage on this effect and open a virtual bandgap for ballistic transport in the graphene channel. The first one implements a barrier in the centre of the channel, whereas the second incorporates a tilted gate junction. In this paper, we computationally evaluate the relative device performance of these two designs, in terms of subthreshold slope (SS) and ION/IOFF ratio under different temperature and voltage bias, for a defect-free graphene channel. Our calculations employ pure optical modeling for low field electron transport under the constraints of device anatomy. The calculated results show that the two designs are functionally similar and are able to provide SS smaller than 60 mV per decade. Both designs show similar device performance but marginally top one another under different operating constraints. Our results could serve as a guide to circuit designers in selecting an appropriate design as per their system specifications and requirements.

  1. Models for electromagnetic scattering from the sea at extremely low grazing angles

    NASA Astrophysics Data System (ADS)

    Wetzel, Lewis B.

    1987-12-01

    The present state of understanding in the field of low-grazing-angle sea scatter is reviewed and extended. The important concept of shadowing is approached from the point of view of diffraction theory, and limits in wind speed and radar frequency are found for the application of shadowing theories based on geometrical optics. The implications of shadowing function based on illumination thresholding are shown to compare favorably with a variety of experimental results. Scattering from the exposed surface peaks is treated by a composite-surface Bragg model, and by wedge models using both physical optics and the method of equivalent currents. Curiously, the scattering levels predicted by these widely different approximations are all in fairly good agreement with experimental values for moderately low grazing angles (about 5 deg), with the physical optics wedge model being superior at 1 deg. A new scattering feature, the slosh, is introduced, with scattering behavior that resembles the temporal and polarization dependence of observed low angle returns from calm water. The plume model of scattering from breaking waves (from earlier work) is discussed as a source of high-intensity Sea Spikes. It is emphasized that the prediction of low angle scattering from the sea will require considerably more information about the shape, size, and distribution of the actual scattering features.

  2. van der Waals torque and force between dielectrically anisotropic layered media.

    PubMed

    Lu, Bing-Sui; Podgornik, Rudolf

    2016-07-28

    We analyse van der Waals interactions between a pair of dielectrically anisotropic plane-layered media interacting across a dielectrically isotropic solvent medium. We develop a general formalism based on transfer matrices to investigate the van der Waals torque and force in the limit of weak birefringence and dielectric matching between the ordinary axes of the anisotropic layers and the solvent. We apply this formalism to study the following systems: (i) a pair of single anisotropic layers, (ii) a single anisotropic layer interacting with a multilayered slab consisting of alternating anisotropic and isotropic layers, and (iii) a pair of multilayered slabs each consisting of alternating anisotropic and isotropic layers, looking at the cases where the optic axes lie parallel and/or perpendicular to the plane of the layers. For the first case, the optic axes of the oppositely facing anisotropic layers of the two interacting slabs generally possess an angular mismatch, and within each multilayered slab the optic axes may either be the same or undergo constant angular increments across the anisotropic layers. In particular, we examine how the behaviors of the van der Waals torque and force can be "tuned" by adjusting the layer thicknesses, the relative angular increment within each slab, and the angular mismatch between the slabs.

  3. Performance evaluation of electro-optic effect based graphene transistors.

    PubMed

    Gupta, Gaurav; Jalil, Mansoor Bin Abdul; Yu, Bin; Liang, Gengchiau

    2012-10-21

    Despite the advantages afforded by the unique electronic properties of graphene, the absence of a bandgap has limited its applicability in logic devices. This has led to a study on electro-optic behavior in graphene for novel device operations, beyond the conventional field effect, to meet the requirements of ultra-low power and high-speed logic transistors. Recently, two potential designs have been proposed to leverage on this effect and open a virtual bandgap for ballistic transport in the graphene channel. The first one implements a barrier in the centre of the channel, whereas the second incorporates a tilted gate junction. In this paper, we computationally evaluate the relative device performance of these two designs, in terms of subthreshold slope (SS) and I(ON)/I(OFF) ratio under different temperature and voltage bias, for a defect-free graphene channel. Our calculations employ pure optical modeling for low field electron transport under the constraints of device anatomy. The calculated results show that the two designs are functionally similar and are able to provide SS smaller than 60 mV per decade. Both designs show similar device performance but marginally top one another under different operating constraints. Our results could serve as a guide to circuit designers in selecting an appropriate design as per their system specifications and requirements.

  4. Circadian Behavioral Responses to Light and Optic Chiasm-Evoked Glutamatergic EPSCs in the Suprachiasmatic Nucleus of ipRGC Conditional vGlut2 Knock-Out Mice

    PubMed Central

    2018-01-01

    Abstract Intrinsically photosensitive retinal ganglion cells (ipRGCs) innervate the hypothalamic suprachiasmatic nucleus (SCN), a circadian oscillator that functions as a biological clock. ipRGCs use vesicular glutamate transporter 2 (vGlut2) to package glutamate into synaptic vesicles and light-evoked resetting of the SCN circadian clock is widely attributed to ipRGC glutamatergic neurotransmission. Pituitary adenylate cyclase-activating polypeptide (PACAP) is also packaged into vesicles in ipRGCs and PACAP may be coreleased with glutamate in the SCN. vGlut2 has been conditionally deleted in ipRGCs in mice [conditional knock-outs (cKOs)] and their aberrant photoentrainment and residual attenuated light responses have been ascribed to ipRGC PACAP release. However, there is no direct evidence that all ipRGC glutamatergic neurotransmission is eliminated in vGlut2 cKOs. Here, we examined two lines of ipRGC vGlut2 cKO mice for SCN-mediated behavioral responses under several lighting conditions and for ipRGC glutamatergic neurotransmission in the SCN. Circadian behavioral responses varied from a very limited response to light to near normal photoentrainment. After collecting behavioral data, hypothalamic slices were prepared and evoked EPSCs (eEPSCs) were recorded from SCN neurons by stimulating the optic chiasm. In cKOs, glutamatergic eEPSCs were recorded and all eEPSC parameters examined (stimulus threshold, amplitude, rise time or time-to-peak and stimulus strength to evoke a maximal response) were similar to controls. We conclude that a variable number but functionally significant percentage of ipRGCs in two vGlut2 cKO mouse lines continue to release glutamate. Thus, the residual SCN-mediated light responses in these cKO mouse lines cannot be attributed solely to ipRGC PACAP release. PMID:29756029

  5. Refractive Index Effects on Radiation in an Absorbing, Emitting, and Scattering Laminated Layer

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1993-01-01

    A simple set of equations is derived for predicting temperature radiative energy flow in a two-region semitransparent laminated layer in the limit of zero heat conduction. The composite is heated on its two sides by unequal amounts of incident radiation. The two layers of the composite have different refractive indices, and each material absorbs, emits, and isotropically scatters radiation. The interfaces are diffuse, and all interface reflections are included. To illustrate the thermal behavior that is readily calculated from the equations, typical results an given for various optical thicknesses and refractive indices of the layers. Internal reflections have a substantial effect on the temperature distribution and radiative heat flow.

  6. Fixational eye movement: a negligible source of dynamic aberration.

    PubMed

    Mecê, Pedro; Jarosz, Jessica; Conan, Jean-Marc; Petit, Cyril; Grieve, Kate; Paques, Michel; Meimon, Serge

    2018-02-01

    To evaluate the contribution of fixational eye movements to dynamic aberration, 50 healthy eyes were examined with an original custom-built Shack-Hartmann aberrometer, running at a temporal frequency of 236Hz, with 22 lenslets across a 5mm pupil, synchronized with a 236Hz pupil tracker. A comparison of the dynamic behavior of the first 21 Zernike modes (starting from defocus) with and without digital pupil stabilization, on a 3.4s sequence between blinks, showed that the contribution of fixational eye movements to dynamic aberration is negligible. Therefore we highlighted the fact that a pupil tracker coupled to an Adaptive Optics Ophthalmoscope is not essential to achieve diffraction-limited resolution.

  7. Strong nonlinear photonic responses from microbiologically synthesized tellurium nanocomposites

    USGS Publications Warehouse

    Liao, K.-S.; Wang, Jingyuan; Dias, S.; Dewald, J.; Alley, N.J.; Baesman, S.M.; Oremland, R.S.; Blau, W.J.; Curran, S.A.

    2010-01-01

    A new class of nanomaterials, namely microbiologically-formed nanorods composed of elemental tellurium [Te(0)] that forms unusual nanocomposites when combined with poly(m-phenylenevinylene-co-2,5-dioctoxy-phenylenevinylene) (PmPV) is described. These bio-nanocomposites exhibit excellent broadband optical limiting at 532 and 1064 nm. Nonlinear scattering, originating from the laser induced solvent bubbles and microplasmas, is responsible for this nonlinear behavior. The use of bacterially-formed Te(0) when combined with an organic chemical host (e.g., PmPV) is a new green method of nanoparticle syntheses. This opens the possibilities of using unique, biologically synthesized materials to advance future nanoelectronic and nanophotonic applications. ?? 2009 Elsevier B.V. All rights reserved.

  8. Effect of hockey-stick-shaped molecules on the critical behavior at the nematic to isotropic and smectic-A to nematic phase transitions in octylcyanobiphenyl

    NASA Astrophysics Data System (ADS)

    Chakraborty, Anish; Chakraborty, Susanta; Das, Malay Kumar

    2015-03-01

    In the field of soft matter research, the characteristic behavior of both nematic-isotropic (N -I ) and smectic-A nematic (Sm -A N ) phase transitions has gained considerable attention due to their several attractive features. In this work, a high-resolution measurement of optical birefringence (Δ n ) has been performed to probe the critical behavior at the N -I and Sm -A N phase transitions in a binary system comprising the rodlike octylcyanobiphenyl and a laterally methyl substituted hockey-stick-shaped mesogen, 4-(3-n -decyloxy-2-methyl-phenyliminomethyl)phenyl 4-n -dodecyloxycinnamate. For the investigated mixtures, the critical exponent β related to the limiting behavior of the nematic order parameter close to the N -I phase transition has come out to be in good conformity with the tricritical hypothesis. Moreover, the yielded effective critical exponents (α', β', γ') characterizing the critical fluctuation near the Sm -A N phase transition have appeared to be nonuniversal in nature. With increasing hockey-stick-shaped dopant concentration, the Sm -A N phase transition demonstrates a strong tendency to be driven towards a first-order nature. Such a behavior has been accounted for by considering a modification of the effective intermolecular interactions and hence the related coupling between the nematic and smectic order parameters, caused by the introduction of the angular mesogenic molecules.

  9. An Empirical Study of Contamination in Deep, Rapid, and Wide-field Optical Follow-up of Gravitational Wave Events

    NASA Astrophysics Data System (ADS)

    Cowperthwaite, P. S.; Berger, E.; Rest, A.; Chornock, R.; Scolnic, D. M.; Williams, P. K. G.; Fong, W.; Drout, M. R.; Foley, R. J.; Margutti, R.; Lunnan, R.; Metzger, B. D.; Quataert, E.

    2018-05-01

    We present an empirical study of contamination in wide-field optical follow-up searches of gravitational wave sources from Advanced LIGO/Virgo using dedicated observations with the Dark Energy Camera. Our search covered ∼56 deg2, with two visits per night, in the i and z bands, followed by an additional set of griz images three weeks later to serve as reference images for subtraction. We achieve 5σ point-source limiting magnitudes of i ≈ 23.5 and z ≈ 22.4 mag in the coadded single-epoch images. We conduct a search for transient objects that mimic the i ‑ z color behavior of both red (i‑z > 0.5 mag) and blue (i‑z < 0 mag) kilonova emission, finding 11 and 10 contaminants, respectively. Independent of color, we identify 48 transients of interest. Additionally, we leverage the rapid cadence of our observations to search for sources with characteristic timescales of ≈1 day and ≈3 hr, finding no potential contaminants. We assess the efficiency of our search with injected point sources, finding that we are 90% (60%) efficient when searching for red (blue) kilonova-like sources to a limiting magnitude of i ≲ 22.5 mag. Using our efficiencies, we derive sky rates for kilonova contaminants of {{ \\mathcal R }}red} ≈ 0.16 deg‑2 and {{ \\mathcal R }}blue}≈ 0.80 deg‑2. The total contamination rate is {{ \\mathcal R }}all}≈ 1.79 deg‑2. We compare our results to previous optical follow-up efforts and comment on the outlook for gravitational wave follow-up searches as additional detectors (e.g., KAGRA, LIGO India) come online in the next decade.

  10. Optically triggering spatiotemporally confined GPCR activity in a cell and programming neurite initiation and extension

    PubMed Central

    Karunarathne, W. K. Ajith; Giri, Lopamudra; Kalyanaraman, Vani; Gautam, N.

    2013-01-01

    G-protein–coupled receptor (GPCR) activity gradients evoke important cell behavior but there is a dearth of methods to induce such asymmetric signaling in a cell. Here we achieved reversible, rapidly switchable patterns of spatiotemporally restricted GPCR activity in a single cell. We recruited properties of nonrhodopsin opsins—rapid deactivation, distinct spectral tuning, and resistance to bleaching—to activate native Gi, Gq, or Gs signaling in selected regions of a cell. Optical inputs were designed to spatiotemporally control levels of second messengers, IP3, phosphatidylinositol (3,4,5)-triphosphate, and cAMP in a cell. Spectrally selective imaging was accomplished to simultaneously monitor optically evoked molecular and cellular response dynamics. We show that localized optical activation of an opsin-based trigger can induce neurite initiation, phosphatidylinositol (3,4,5)-triphosphate increase, and actin remodeling. Serial optical inputs to neurite tips can refashion early neuron differentiation. Methods here can be widely applied to program GPCR-mediated cell behaviors. PMID:23479634

  11. An organic dye-polymer (phenol red-poly (vinyl alcohol)) composite architecture towards tunable -optical and -saturable absorption characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreedhar, Sreeja, E-mail: sreejasreedhar83@gmail.com; Muneera, C. I., E-mail: drcimuneera@hotmail.com; Illyaskutty, Navas

    2016-05-21

    Herein, we demonstrate that blending an organic dye (guest/filler), with a vinyl polymer (host template), is an inexpensive and simple approach for the fabrication of multifunctional photonic materials which could display an enhancement in the desirable properties of the constituent materials and, at the same time provide novel synergistic properties for the guest-host system. A new guest-host nanocomposite system comprising Phenol Red dye and poly (vinyl alcohol) as guest and host template, respectively, which exhibits tunable optical characteristics and saturable absorption behavior, is introduced. The dependence of local electronic environment provided by the polymer template and the interactions of themore » polymer molecules with the encapsulated guest molecules on the observed optical/nonlinear absorption behavior is discussed. An understanding of the tunability of the optical/ photophysical processes, with respect to the filler content, as discussed herein could help in the design of improved optical materials for several photonic device applications like organic light emitting diodes and saturable absorbers.« less

  12. Near-infrared optical-absorption behavior in high-beta nonlinear optical chromophore-polymer guest-host materials. II. Dye spacer length effects in an amorphous polycarbonate copolymer host

    NASA Astrophysics Data System (ADS)

    Barto, Richard R.; Frank, Curtis W.; Bedworth, Peter V.; Ermer, Susan; Taylor, Rebecca E.

    2005-06-01

    In the second of a three-part series, spectral absorption behavior of nonlinear optical (NLO) dyes incorporated into amorphous polycarbonate, comprised of a homologous series of dialkyl spacer groups extending from the midsection of the dye molecule, is characterized by UV-Vis and photothermal deflection spectroscopy. The dyes are structural analogs of the NLO dye FTC [2-(3-cyano-4-{2-[5-(2-{4-[ethyl-(2-methoxyethyl)amino]phenyl}vinyl)-3,4-diethylthiophen-2-yl]vinyl}-5,5-dimethyl-5H-furan-2-ylidene)malononitrile]. Previous Monte Carlo calculations [B. H. Robinson and L. R. Dalton, J. Phys. Chem. A 104, 4785 (2000)] predict a strong dependence of the macroscopic nonlinear optical susceptibility on the chromophore waist: length aspect ratio in electric-field-poled films arising from interactions between chromophores. It is expected that these interactions will play a role in the absorption characteristics of unpoled films, as well. The spacer groups range in length from diethyl to dihexyl, and each dye is studied over a wide range of concentrations. Among the four dyes studied, a universal dependence of near-IR loss on inhomogeneous broadening of the dye main absorption peak is found. The inhomogeneous width and its concentration dependence are seen to vary with spacer length in a manner characteristic of the near-IR loss-concentration slope at transmission wavelengths of 1.06 and 1.3μm, but not at 1.55μm. The lower wavelength loss behavior is assigned to purely Gaussian broadening, and is described by classical mixing thermodynamic quantities based on the Marcus theory of inhomogeneous broadening [R. A. Marcus, J. Chem. Phys. 43, 1261 (1965)], modeled as a convolution of dye-dye dipole broadening and dye-polymer van der Waals broadening. The Gaussian dipole interactions follow a Loring dipole-broadening description [R. F. Loring, J. Phys. Chem. 94, 513 (1990)] dominated by the excited-state dipole moment, and have a correlated homogeneous broadening contribution. The long-wavelength loss behavior has a non-Gaussian dye-dye dipole contribution which follows Kador's broadening analysis [L. Kador, J. Chem. Phys. 95, 5574 (1991)], with a net broadening described by a convolution of this term with a Gaussian van der Waals interaction given by Obata et al. [M. Obata, S. Machida, and K. Horie, J. Polym. Sci. B 37, 2173 (1999)], with each term governed by the dye spacer length. A minimum in broadening and loss-concentration slope at a spacer length of four carbons per alkyl at all wavelengths has important consequences for practical waveguide devices, and is of higher aspect ratio than the spherical limit shown by Robinson and Dalton to minimize dipole interactions under a poling field.

  13. Nano-optical information storage induced by the nonlinear saturable absorption effect

    NASA Astrophysics Data System (ADS)

    Wei, Jingsong; Liu, Shuang; Geng, Yongyou; Wang, Yang; Li, Xiaoyi; Wu, Yiqun; Dun, Aihuan

    2011-08-01

    Nano-optical information storage is very important in meeting information technology requirements. However, obtaining nanometric optical information recording marks by the traditional optical method is difficult due to diffraction limit restrictions. In the current work, the nonlinear saturable absorption effect is used to generate a subwavelength optical spot and to induce nano-optical information recording and readout. Experimental results indicate that information marks below 100 nm are successfully recorded and read out by a high-density digital versatile disk dynamic testing system with a laser wavelength of 405 nm and a numerical aperture of 0.65. The minimum marks of 60 nm are realized, which is only about 1/12 of the diffraction-limited theoretical focusing spot. This physical scheme is very useful in promoting the development of optical information storage in the nanoscale field.

  14. Structure-preserving interpolation of temporal and spatial image sequences using an optical flow-based method.

    PubMed

    Ehrhardt, J; Säring, D; Handels, H

    2007-01-01

    Modern tomographic imaging devices enable the acquisition of spatial and temporal image sequences. But, the spatial and temporal resolution of such devices is limited and therefore image interpolation techniques are needed to represent images at a desired level of discretization. This paper presents a method for structure-preserving interpolation between neighboring slices in temporal or spatial image sequences. In a first step, the spatiotemporal velocity field between image slices is determined using an optical flow-based registration method in order to establish spatial correspondence between adjacent slices. An iterative algorithm is applied using the spatial and temporal image derivatives and a spatiotemporal smoothing step. Afterwards, the calculated velocity field is used to generate an interpolated image at the desired time by averaging intensities between corresponding points. Three quantitative measures are defined to evaluate the performance of the interpolation method. The behavior and capability of the algorithm is demonstrated by synthetic images. A population of 17 temporal and spatial image sequences are utilized to compare the optical flow-based interpolation method to linear and shape-based interpolation. The quantitative results show that the optical flow-based method outperforms the linear and shape-based interpolation statistically significantly. The interpolation method presented is able to generate image sequences with appropriate spatial or temporal resolution needed for image comparison, analysis or visualization tasks. Quantitative and qualitative measures extracted from synthetic phantoms and medical image data show that the new method definitely has advantages over linear and shape-based interpolation.

  15. Determination of Henry`s law constants by equilibrium partitioning in a closed system using a new in situ optical absorbance method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, J.M.; Balcavage, W.X.; Ramachandran, B.R.

    Currently, a great deal of interest exists in developing quantitative descriptions of the transport behavior for organic chemical compounds in the environment. Transport between water and air is of particular significance in this regard. A new method for measurement of thermodynamic Henry`s law constants (H) is reported. In this method, the optical absorbance of a dilute aqueous solution containing an organic compound is followed with time as the compound partitions into the air above the solution in a sealed vessel. The change in optical absorbance and the vapor to liquid volume ratio of the vessel are then used to calculatemore » the value for H. The concentration of the organic compound in the aqueous and vapor phases need not be known. This method allows the approach to equilibrium to be observed in real time so that attainment of equilibrium is readily apparent. This method works particularly well for water-soluble compounds having low vapor pressures. The applicability of this method is limited to compounds that exhibit significant optical absorbance in the ultraviolet and visible regions of the electromagnetic spectrum. Values for H and their temperature dependencies measured using this new method are reported for methacrolein, methyl vinyl ketone, benzaldehyde, and acetophenone. Values for H are also reported for benzene, toluene, and ethylbenzene at 298 K. All reported H data are compared with previously reported values.« less

  16. Linear Spectral Analysis of Plume Emissions Using an Optical Matrix Processor

    NASA Technical Reports Server (NTRS)

    Gary, C. K.

    1992-01-01

    Plume spectrometry provides a means to monitor the health of a burning rocket engine, and optical matrix processors provide a means to analyze the plume spectra in real time. By observing the spectrum of the exhaust plume of a rocket engine, researchers have detected anomalous behavior of the engine and have even determined the failure of some equipment before it would normally have been noticed. The spectrum of the plume is analyzed by isolating information in the spectrum about the various materials present to estimate what materials are being burned in the engine. Scientists at the Marshall Space Flight Center (MSFC) have implemented a high resolution spectrometer to discriminate the spectral peaks of the many species present in the plume. Researchers at the Stennis Space Center Demonstration Testbed Facility (DTF) have implemented a high resolution spectrometer observing a 1200-lb. thrust engine. At this facility, known concentrations of contaminants can be introduced into the burn, allowing for the confirmation of diagnostic algorithms. While the high resolution of the measured spectra has allowed greatly increased insight into the functioning of the engine, the large data flows generated limit the ability to perform real-time processing. The use of an optical matrix processor and the linear analysis technique described below may allow for the detailed real-time analysis of the engine's health. A small optical matrix processor can perform the required mathematical analysis both quicker and with less energy than a large electronic computer dedicated to the same spectral analysis routine.

  17. A geometrical optics approach for modeling aperture averaging in free space optical communication applications

    NASA Astrophysics Data System (ADS)

    Yuksel, Heba; Davis, Christopher C.

    2006-09-01

    Intensity fluctuations at the receiver in free space optical (FSO) communication links lead to a received power variance that depends on the size of the receiver aperture. Increasing the size of the receiver aperture reduces the power variance. This effect of the receiver size on power variance is called aperture averaging. If there were no aperture size limitation at the receiver, then there would be no turbulence-induced scintillation. In practice, there is always a tradeoff between aperture size, transceiver weight, and potential transceiver agility for pointing, acquisition and tracking (PAT) of FSO communication links. We have developed a geometrical simulation model to predict the aperture averaging factor. This model is used to simulate the aperture averaging effect at given range by using a large number of rays, Gaussian as well as uniformly distributed, propagating through simulated turbulence into a circular receiver of varying aperture size. Turbulence is simulated by filling the propagation path with spherical bubbles of varying sizes and refractive index discontinuities statistically distributed according to various models. For each statistical representation of the atmosphere, the three-dimensional trajectory of each ray is analyzed using geometrical optics. These Monte Carlo techniques have proved capable of assessing the aperture averaging effect, in particular, the quantitative expected reduction in intensity fluctuations with increasing aperture diameter. In addition, beam wander results have demonstrated the range-cubed dependence of mean-squared beam wander. An effective turbulence parameter can also be determined by correlating beam wander behavior with the path length.

  18. In-process, non-destructive multimodal dynamic testing of high-speed composite rotors

    NASA Astrophysics Data System (ADS)

    Kuschmierz, Robert; Filippatos, Angelos; Langkamp, Albert; Hufenbach, Werner; Czarske, Jürgern W.; Fischer, Andreas

    2014-03-01

    Fibre reinforced plastic (FRP) rotors are lightweight and offer great perspectives in high-speed applications such as turbo machinery. Currently, novel rotor structures and materials are investigated for the purpose of increasing machine efficiency, lifetime and loading limits. Due to complex rotor structures, high anisotropy and non-linear behavior of FRP under dynamic loads, an in-process measurement system is necessary to monitor and to investigate the evolution of damages under real operation conditions. A non-invasive, optical laser Doppler distance sensor measurement system is applied to determine the biaxial deformation of a bladed FRP rotor with micron uncertainty as well as the tangential blade vibrations at surface speeds above 300 m/s. The laser Doppler distance sensor is applicable under vacuum conditions. Measurements at varying loading conditions are used to determine elastic and plastic deformations. Furthermore they allow to determine hysteresis, fatigue, Eigenfrequency shifts and loading limits. The deformation measurements show a highly anisotropic and nonlinear behavior and offer a deeper understanding of the damage evolution in FRP rotors. The experimental results are used to validate and to calibrate a simulation model of the deformation. The simulation combines finite element analysis and a damage mechanics model. The combination of simulation and measurement system enables the monitoring and prediction of damage evolutions of FRP rotors in process.

  19. Chemical Vapor Deposition Synthesis of Graphene-Based Materials and Chemical Modulation of Graphene Electronics

    NASA Astrophysics Data System (ADS)

    Yan, Zheng

    Graphene, a two-dimensional sp2-bonded carbon material, has attracted enormous attention due to its excellent electrical, optical and mechanical properties. Recently developed chemical vapor deposition (CVD) methods could produce large-size and uniform polycrystalline graphene films, limited to gas carbon sources, metal catalyst substrates and degraded properties induced by grain boundaries. Meanwhile, pristine monolayer graphene exhibits a standard ambipolar behavior with a zero neutrality point in field-effect transistors (FETs), limiting its future electronic applications. This thesis starts with the investigation of CVD synthesis of pristine and N-doped graphene with controlled thickness using solid carbon sources on metal catalyst substrates (chapter 1), and then discusses the direct growth of bilayer graphene on insulating substrates, including SiO2, h-BN, Si3N4 and Al2O3, without needing further transfer-process (chapter 2). Chapter 3 discusses the synthesis of high-quality graphene single crystals and hexagonal onion-ring-like graphene domains, and also explores the basic growth mechanism of graphene on Cu substrates. To extend graphene's potential applications, both vertical and planar graphene-carbon nanotube hybrids are fabricated using CVD method and their interesting properties are investigated (chapter 4). Chapter 5 discusses how to use chemical methods to modulate graphene's electronic behaviors.

  20. Quantum Measurement Backaction and Upconverting Microwave Signals with Mechanical Resonators

    NASA Astrophysics Data System (ADS)

    Peterson, R. W.

    The limits of optical measurement and control of mechanical motion are set by the quantum nature of light. The familiar shot noise limit can be avoided by increasing the optical power, but at high enough powers, the backaction of the randomly-arriving photons' radiation pressure can grow to become the dominant force on the system. This thesis will describe an experiment showing how backaction limits the laser cooling of macroscopic drumhead membranes, as well as work on how these membranes can be used to upconvert microwave signals to optical frequencies, potentially preserving the fragile quantum state of the upconverted signal.

  1. [Glaucoma and optic nerve drusen: Limitations of optic nerve head OCT].

    PubMed

    Poli, M; Colange, J; Goutagny, B; Sellem, E

    2017-09-01

    Optic nerve head drusen are congenital calcium deposits located in the prelaminar section of the optic nerve head. Their association with visual field defects has been classically described, but the diagnosis of glaucoma is not easy in these cases of altered optic nerve head anatomy. We describe the case of a 67-year-old man with optic nerve head drusen complicated by glaucoma, which was confirmed by visual field and OCT examination of the peripapillary retinal nerve fiber layer (RNFL), but the measurement of the minimum distance between the Bruch membrane opening and the internal limiting membrane (minimum rim width, BMO-MRW) by OCT was normal. OCT of the BMO-MRW is a new diagnostic tool for glaucoma. Superficial optic nerve head drusen, which are found between the internal limiting membrane and the Bruch's membrane opening, overestimate the value of this parameter. BMO-MRW measurement is not adapted to cases of optic nerve head drusen and can cause false-negative results for this parameter, and the diagnosis of glaucoma in this case should be based on other parameters such as the presence of a fascicular defect in the retinal nerve fibers, RNFL or macular ganglion cell complex thinning, as well as visual field data. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Structure, Electronic Properties, and Electrochemical Behavior of a Boron-Doped Diamond/Quartz Optically Transparent Electrode.

    PubMed

    Wächter, Naihara; Munson, Catherine; Jarošová, Romana; Berkun, Isil; Hogan, Timothy; Rocha-Filho, Romeu C; Swain, Greg M

    2016-10-26

    The morphology, microstructure, chemistry, electronic properties, and electrochemical behavior of a boron-doped nanocrystalline diamond (BDD) thin film grown on quartz were evaluated. Diamond optically transparent electrodes (OTEs) are useful for transmission spectroelectrochemical measurements, offering excellent stability during anodic and cathodic polarization and exposure to a variety of chemical environments. We report on the characterization of a BDD OTE by atomic force microscopy, optical spectroscopy, Raman spectroscopic mapping, alternating-current Hall effect measurements, X-ray photoelectron spectroscopy, and electrochemical methods. The results reported herein provide the first comprehensive study of the relationship between the physical and chemical structure and electronic properties of a diamond OTE and the electrode's electrochemical activity.

  3. The tug-of-war behavior of a Brownian particle in an asymmetric double optical trap with stochastic fluctuations

    NASA Astrophysics Data System (ADS)

    Long, Fei; Zhu, Jia-Pei

    2018-07-01

    A Brownian particle optically trapped in an asymmetric double potential surrounded by a thermal bath was simulated. Under the cooperative action of the resultant deterministic optical force and the stochastic fluctuations of the thermal bath, the confined particle undergoes Kramers transition, and oscillates between the two traps with a probability of trap occupancy that is asymmetrically distributed about the midpoint. The simulation results obtained at different temperatures indicate that the oscillation behavior of the particle can be treated as the result of a tug-of-war game played between the resultant deterministic force and the random force. We also employ a bistable model to explain the observed phenomena.

  4. Probability of growth of small damage sites on the exit surface of fused silica optics.

    PubMed

    Negres, Raluca A; Abdulla, Ghaleb M; Cross, David A; Liao, Zhi M; Carr, Christopher W

    2012-06-04

    Growth of laser damage on fused silica optical components depends on several key parameters including laser fluence, wavelength, pulse duration, and site size. Here we investigate the growth behavior of small damage sites on the exit surface of SiO₂ optics under exposure to tightly controlled laser pulses. Results demonstrate that the onset of damage growth is not governed by a threshold, but is probabilistic in nature and depends both on the current size of a damage site and the laser fluence to which it is exposed. We also develop models for use in growth prediction. In addition, we show that laser exposure history also influences the behavior of individual sites.

  5. Topological phenomena in classical optical networks

    PubMed Central

    Shi, T.; Kimble, H. J.; Cirac, J. I.

    2017-01-01

    We propose a scheme to realize a topological insulator with optical-passive elements and analyze the effects of Kerr nonlinearities in its topological behavior. In the linear regime, our design gives rise to an optical spectrum with topological features and where the bandwidths and bandgaps are dramatically broadened. The resulting edge modes cover a very wide frequency range. We relate this behavior to the fact that the effective Hamiltonian describing the system’s amplitudes is long range. We also develop a method to analyze the scheme in the presence of a Kerr medium. We assess robustness and stability of the topological features and predict the presence of chiral squeezed fluctuations at the edges in some parameter regimes. PMID:29073093

  6. A high-accuracy optical linear algebra processor for finite element applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  7. Prompt optical emission from gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Kehoe, Robert; Akerlof, Karl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Priedhorsky, Bill; Szymanski, John; Wren, Jim

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure contemporaneous and early afterglow optical emission from gamma-ray bursts (GRBs). The ROTSE-I telescope array has been fully automated and responding to burst alerts from the GRB Coordinates Network since March 1998, taking prompt optical data for 30 bursts in its first year. We will briefly review observations of GRB990123 which revealed the first detection of an optical burst occurring during the gamma-ray emission, reaching 9th magnitude at its peak. In addition, we present here preliminary optical results for seven other gamma-ray bursts. No other optical counterparts were seen in this analysis, and the best limiting senisitivities are mV > 13.0 at 14.7 seconds after the gamma-ray rise, and mmV > 16.4 at 62 minutes. These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. This analysis suggests that there is not a strong correlation between optical flux and gamma-ray emission.

  8. Impressive nonlinear optical response exhibited by Poly(vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite films

    NASA Astrophysics Data System (ADS)

    Sabira, K.; Saheeda, P.; Divyasree, M. C.; Jayalekshmi, S.

    2017-12-01

    In the present work, the nonlinear optical properties of free-standing films of Poly(vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite are investigated to assess their suitability as efficient optical limiters. The PVDF/RGO nanocomposite films are generated by mixing different concentrations of RGO as the filler, with PVDF, using solution casting method. The XRD and FTIR data of these nanocomposite films confirm the enhancement in the β phase of PVDF when RGO is added to PVDF, which is one of the prime factors, enhancing the nonlinear response of the nanocomposite. The open aperture and closed aperture Z-scan technique under nanosecond excitation (532 nm, 7 ns) is used to investigate the nonlinear optical characteristics of the PVDF/RGO nanocomposite films. These films are found to exhibit two photon absorption assisted optical non linearity in the nanosecond regime. The highlight of the present work is the observation of quite low values of the normalized transmittance and low optical limiting threshold power in free standing films of PVDF/RGO nanocomposite. These flexible, free-standing and stable nanocomposite films offer high application prospects in the design of efficient optical limiting devices of any desired size or shape.

  9. Routing and wavelength assignment based on normalized resource and constraints for all-optical network

    NASA Astrophysics Data System (ADS)

    Joo, Seong-Soon; Nam, Hyun-Soon; Lim, Chang-Kyu

    2003-08-01

    With the rapid growth of the Optical Internet, high capacity pipes is finally destined to support end-to-end IP on the WDM optical network. Newly launched 2D MEMS optical switching module in the market supports that expectations of upcoming a transparent optical cross-connect in the network have encouraged the field applicable research on establishing real all-optical transparent network. To open up a customer-driven bandwidth services, design of the optical transport network becomes more challenging task in terms of optimal network resource usage. This paper presents a practical approach to finding a route and wavelength assignment for wavelength routed all-optical network, which has λ-plane OXC switches and wavelength converters, and supports that optical paths are randomly set up and released by dynamic wavelength provisioning to create bandwidth between end users with timescales on the order of seconds or milliseconds. We suggest three constraints to make the RWA problem become more practical one on deployment for wavelength routed all-optical network in network view: limitation on maximum hop of a route within bearable optical network impairments, limitation on minimum hops to travel before converting a wavelength, and limitation on calculation time to find all routes for connections requested at once. We design the NRCD (Normalized Resource and Constraints for All-Optical Network RWA Design) algorithm for the Tera OXC: network resource for a route is calculated by the number of internal switching paths established in each OXC nodes on the route, and is normalized by ratio of number of paths established and number of paths equipped in a node. We show that it fits for the RWA algorithm of the wavelength routed all-optical network through real experiments on the distributed objects platform.

  10. Fluorescent single-walled carbon nanotube aerogels in surfactant-free environments.

    PubMed

    Duque, Juan G; Hamilton, Christopher E; Gupta, Gautam; Crooker, Scott A; Crochet, Jared J; Mohite, Aditya; Htoon, Han; Obrey, Kimberly A DeFriend; Dattelbaum, Andrew M; Doorn, Stephen K

    2011-08-23

    A general challenge in generating functional materials from nanoscale components is integrating them into useful composites that retain or enhance their properties of interest. Development of single walled carbon nanotube (SWNT) materials for optoelectronics and sensing has been especially challenging in that SWNT optical and electronic properties are highly sensitive to environmental interactions, which can be particularly severe in composite matrices. Percolation of SWNTs into aqueous silica gels shows promise as an important route for exploiting their properties, but retention of the aqueous and surfactant environment still impacts and limits optical response, while also limiting the range of conditions in which these materials may be applied. Here, we present for the first time an innovative approach to obtain highly fluorescent solution-free SWNT-silica aerogels, which provides access to novel photophysical properties. Strongly blue-shifted spectral features, revelation of new diameter-dependent gas-phase adsorption phenomena, and significant increase (approximately three times that at room temperature) in photoluminescence intensities at cryogenic temperatures all indicate greatly reduced SWNT-matrix interactions consistent with the SWNTs experiencing a surfactant-free environment. The results demonstrate that this solid-state nanomaterial will play an important role in further revealing the true intrinsic SWNT chemical and photophysical behaviors and represent for the first time a promising new solution- and surfactant-free material for advancing SWNT applications in sensing, photonics, and optoelectronics. © 2011 American Chemical Society

  11. Intramolecular aggregation and optical limiting properties of triazine-linked mono-, bis- and tris-phthalocyanines.

    PubMed

    Chen, Jun; Zhang, Tao; Wang, Shuangqing; Hu, Rui; Li, Shayu; Ma, Jin Shi; Yang, Guoqiang

    2015-10-05

    A series of triazine-linked mono-, bis- and tris-phthalocyanines are synthesized, intramolecular aggregation is found in bis- and tris-phthalocyanines via π-π stacking interaction. Theoretical and experimental studies reveal the formation of the intramolecular aggregation. The spectrographic, photophysical and nonlinear optical properties of these compounds are adjusted for the formation of the intramolecular aggregation. The bis-phthalocyanine dimer presents smaller fluorescence quantum yield, lower triplet formation yield and the triplet-minus-ground state extinction coefficient, which causes poorer optical limiting performance. It is interesting that the tris-phthalocyanine is composed of a mono-phthalocyanine part and a bis-phthalocyanine part, the optical limiting property of the tris-phthalocyanine is similar to that of mono-phthalocyanine. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Microsphere-aided optical microscopy and its applications for super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Upputuri, Paul Kumar; Pramanik, Manojit

    2017-12-01

    The spatial resolution of a standard optical microscope (SOM) is limited by diffraction. In visible spectrum, SOM can provide ∼ 200 nm resolution. To break the diffraction limit several approaches were developed including scanning near field microscopy, metamaterial super-lenses, nanoscale solid immersion lenses, super-oscillatory lenses, confocal fluorescence microscopy, techniques that exploit non-linear response of fluorophores like stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, etc. Recently, photonic nanojet generated by a dielectric microsphere was used to break the diffraction limit. The microsphere-approach is simple, cost-effective and can be implemented under a standard microscope, hence it has gained enormous attention for super-resolution imaging. In this article, we briefly review the microsphere approach and its applications for super-resolution imaging in various optical imaging modalities.

  13. The optical design concept of SPICA-SAFARI

    NASA Astrophysics Data System (ADS)

    Jellema, Willem; Kruizinga, Bob; Visser, Huib; van den Dool, Teun; Pastor Santos, Carmen; Torres Redondo, Josefina; Eggens, Martin; Ferlet, Marc; Swinyard, Bruce; Dohlen, Kjetil; Griffin, Doug; Gonzalez Fernandez, Luis Miguel; Belenguer, Tomas; Matsuhara, Hideo; Kawada, Mitsunobu; Doi, Yasuo

    2012-09-01

    The Safari instrument on the Japanese SPICA mission is a zodiacal background limited imaging spectrometer offering a photometric imaging (R ≍ 2), and a low (R = 100) and medium spectral resolution (R = 2000 at 100 μm) spectroscopy mode in three photometric bands covering the 34-210 μm wavelength range. The instrument utilizes Nyquist sampled filled arrays of very sensitive TES detectors providing a 2’x2’ instantaneous field of view. The all-reflective optical system of Safari is highly modular and consists of an input optics module containing the entrance shutter, a calibration source and a pair of filter wheels, followed by an interferometer and finally the camera bay optics accommodating the focal-plane arrays. The optical design is largely driven and constrained by volume inviting for a compact three-dimensional arrangement of the interferometer and camera bay optics without compromising the optical performance requirements associated with a diffraction- and background-limited spectroscopic imaging instrument. Central to the optics we present a flexible and compact non-polarizing Mach-Zehnder interferometer layout, with dual input and output ports, employing a novel FTS scan mechanism based on magnetic bearings and a linear motor. In this paper we discuss the conceptual design of the focal-plane optics and describe how we implement the optical instrument functions, define the photometric bands, deal with straylight control, diffraction and thermal emission in the long-wavelength limit and interface to the large-format FPA arrays at one end and the SPICA telescope assembly at the other end.

  14. Improvement of SPM nonlinear limit by chirped duobinary PolSK transmission

    NASA Astrophysics Data System (ADS)

    Yang, Lixiu; Fan, Jiayu; Wang, Lutang; Huang, Zhaoming

    2005-02-01

    In today's terrestrial long-haul optical fiber communication systems, high channel powers are required to obtain a large transmission distance with reasonable optical amplifier spacing. In such systems, however, the presence of nonlinear effects such as the self-phase modulation (SPM) and the fiber dispersion as well as their combined effects, called SPM-induced nonlinear limitation or SPM limit, will seriously degrade the system performances in respect of the effective transmission distance and ultimately become a limiting factor in high-speed, long-haul optical fiber transmission.In this paper, a new transmission format: chirped duobinary PolSK transmission, has been proposed to generate a pre-chirped duobianry signal with fixed polarity (either positive or negative), which is modulated by a PolSK modulator. This format is based on a transmitter setup consisting of a duobinary PolSK Modulation transmitter followed by an additional phase modulator. The chirped duobinary PolSK transmission reduces the signal degradation and spectral broadening in the nonlinear regime significantly. Thus it shifts this SPM nonlinear limit to enable more relaxed dispersion compensation at high optical power compared to the conventional duobinary schemes.The simulation results show chirped duobinary PolSK transmission enlarges the dispersion limited transmission distance, increases the dispersion tolerance and overcome the SPM nonlinear limit.

  15. Variable Magnification With Kirkpatrick-Baez Optics for Synchrotron X-Ray Microscopy

    PubMed Central

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; Pedulla, Joseph; Macrander, Albert

    2006-01-01

    We describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Köhler illumination). We demonstrate the distinction with a Kirkpatrick-Baez microscope consisting of short focal length multilayer mirrors operating at an energy of 8 keV. In addition to realizing improvements in the resolution of the optics, the synchrotron radiation microscope is not limited to the usual single magnification at a fixed image plane. Higher magnification images are produced by projection in the limit of geometrical optics with a collimated beam. However, in distinction to the common method of placing the sample behind the optical source of a diverging beam, we describe the situation in which the sample is located in the collimated beam before the optical element. The ultimate limits of this magnification result from diffraction by the specimen and are determined by the sample position relative to the focal point of the optic. We present criteria by which the diffraction is minimized. PMID:27274930

  16. Optical studies of dynamical processes in disordered materials

    NASA Astrophysics Data System (ADS)

    Yen, William M.

    1990-12-01

    The research continues to focus on the study of the structure and the dynamic behavior of insulating solids which can be activated optically. The physical processes which produce relaxation and energy transfer in the optical excited states were of particular interest. The studies were based principally on optical laser spectroscopic techniques which reveal a more detailed view of the materials of interest and which will ultimately lead to the development of more efficient optoelectronic materials.

  17. Anomalous Faraday effect of a system with extraordinary optical transmittance.

    PubMed

    Khanikaev, Alexander B; Baryshev, Alexander V; Fedyanin, Andrey A; Granovsky, Alexander B; Inoue, Mitsuteru

    2007-05-28

    It is shown theoretically that the Faraday rotation becomes anomalously large and exhibits extraordinary behavior near the frequencies of the extraordinary optical transmittance through optically thick perforated metal film with holes filled with a magneto-optically active material. This phenomenon is explained as result of strong confinement of the evanescent electromagnetic field within magnetic material, which occurs due to excitation of the coupled plasmon-polaritons on the opposite surfaces of the film.

  18. Nanohole Array-directed Trapping of Mammalian Mitochondria Enabling Single Organelle Analysis

    PubMed Central

    Kumar, Shailabh; Wolken, Gregory G.; Wittenberg, Nathan J.; Arriaga, Edgar A.; Oh, Sang-Hyun

    2016-01-01

    We present periodic nanohole arrays fabricated in free-standing metal-coated nitride films as a platform for trapping and analyzing single organelles. When a microliter-scale droplet containing mitochondria is dispensed above the nanohole array, the combination of evaporation and capillary flow directs individual mitochondria to the nanoholes. Mammalian mitochondria arrays were rapidly formed on chip using this technique without any surface modification steps, microfluidic interconnects or external power sources. The trapped mitochondria were depolarized on chip using an ionophore with results showing that the organelle viability and behavior were preserved during the on-chip assembly process. Fluorescence signal related to mitochondrial membrane potential was obtained from single mitochondria trapped in individual nanoholes revealing statistical differences between the behavior of polarized vs. depolarized mammalian mitochondria. This technique provides a fast and stable route for droplet-based directed localization of organelles-on-a-chip with minimal limitations and complexity, as well as promotes integration with other optical or electrochemical detection techniques. PMID:26593329

  19. Arsenic species separation by IELC-ICP/OES: Arsenocholine behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubio, R.; Peralta, I.; Alberti, J.

    1993-01-01

    In the literature an increasing interest is observed in developing methods to determine arsenobetaine, arsenocholine and related compounds in sea food and in reference materials. The separation conditions and quantification of As(III), As(V), monomethylarsenate (MMA), dimethylarsinate (DMA), arsenobetaine (AsBet) and arsenocholine (AsChol) are studied by Liquid Chromatography (LC) coupled directly to an Inductively Coupled Plasma Optical Emission Spectroscopy (ICP/OES) system. The separation conditions are optimized to improve the resolution of the six arsenic species. Arsenocholine shows a particular pattern of behavior when phosphate is used as eluent: two peaks are observed in the chromatogram, thus a systematic study assaying differentmore » pH and concentration of phosphate is carried out to improve resolution and analysis time when the six arsenic compounds are analyzed in a mixture. Boric acid as mobile phase avoids the splitting of the arsenocholine peak and leads to a good separation of the six arsenic compounds. Detection limits are established for the six arsenic species.« less

  20. Improving the Total Impulse Capability of the NSTAR Ion Thruster With Thick-Accelerator-Grid Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    The results of performance tests with thick-accelerator-grid (TAG) ion optics are presented. TAG ion optics utilize a 50 percent thicker accelerator grid to double ion optics' service life. NSTAR ion optics were also tested to provide a baseline performance for comparison. Impingement-limited total voltages for the TAG ion optics were only 0 to 15 V higher than those of the NSTAR ion optics. Electron backstreaming limits for the TAG ion optics were 3 to 9 V higher than those for the NSTAR optics due to the increased accelerator grid thickness for the TAG ion optics. Screen grid ion transparencies for the TAG ion optics were only about 2 percent lower than those for the NSTAR optics, reflecting the lower physical screen grid open area fraction of the TAG ion optics. Accelerator currents for the TAG ion optics were 19 to 43 percent greater than those for the NSTAR ion optics due, in part, to a sudden increase in accelerator current during TAG ion optics' performance tests for unknown reasons and to the lower-than-nominal accelerator aperture diameters. Beam divergence half-angles that enclosed 95 percent of the total beam current and beam divergence thrust correction factors for the TAG ion optics were within 2 degrees and 1 percent, respectively, of those for the NSTAR ion optics.

  1. Fabrication method of two-photon luminescent organic nano-architectures using electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Kamura, Yoshio; Imura, Kohei

    2018-06-01

    Optical recording on organic thin films with a high spatial resolution is promising for high-density optical memories, optical computing, and security systems. The spatial resolution of the optical recording is limited by the diffraction of light. Electrons can be focused to a nanometer-sized spot, providing the potential for achieving better resolution. In conventional electron-beam lithography, however, optical tuning of the fabricated structures is limited mostly to metals and semiconductors rather than organic materials. In this article, we report a fabrication method of luminescent organic architectures using a focused electron beam. We optimized the fabrication conditions of the electron beam to generate chemical species showing visible photoluminescence via two-photon near-infrared excitations. We utilized this fabrication method to draw nanoscale optical architectures on a polystyrene thin film.

  2. Visuomotor Transformations Underlying Hunting Behavior in Zebrafish

    PubMed Central

    Bianco, Isaac H.; Engert, Florian

    2015-01-01

    Summary Visuomotor circuits filter visual information and determine whether or not to engage downstream motor modules to produce behavioral outputs. However, the circuit mechanisms that mediate and link perception of salient stimuli to execution of an adaptive response are poorly understood. We combined a virtual hunting assay for tethered larval zebrafish with two-photon functional calcium imaging to simultaneously monitor neuronal activity in the optic tectum during naturalistic behavior. Hunting responses showed mixed selectivity for combinations of visual features, specifically stimulus size, speed, and contrast polarity. We identified a subset of tectal neurons with similar highly selective tuning, which show non-linear mixed selectivity for visual features and are likely to mediate the perceptual recognition of prey. By comparing neural dynamics in the optic tectum during response versus non-response trials, we discovered premotor population activity that specifically preceded initiation of hunting behavior and exhibited anatomical localization that correlated with motor variables. In summary, the optic tectum contains non-linear mixed selectivity neurons that are likely to mediate reliable detection of ethologically relevant sensory stimuli. Recruitment of small tectal assemblies appears to link perception to action by providing the premotor commands that release hunting responses. These findings allow us to propose a model circuit for the visuomotor transformations underlying a natural behavior. PMID:25754638

  3. Visuomotor transformations underlying hunting behavior in zebrafish.

    PubMed

    Bianco, Isaac H; Engert, Florian

    2015-03-30

    Visuomotor circuits filter visual information and determine whether or not to engage downstream motor modules to produce behavioral outputs. However, the circuit mechanisms that mediate and link perception of salient stimuli to execution of an adaptive response are poorly understood. We combined a virtual hunting assay for tethered larval zebrafish with two-photon functional calcium imaging to simultaneously monitor neuronal activity in the optic tectum during naturalistic behavior. Hunting responses showed mixed selectivity for combinations of visual features, specifically stimulus size, speed, and contrast polarity. We identified a subset of tectal neurons with similar highly selective tuning, which show non-linear mixed selectivity for visual features and are likely to mediate the perceptual recognition of prey. By comparing neural dynamics in the optic tectum during response versus non-response trials, we discovered premotor population activity that specifically preceded initiation of hunting behavior and exhibited anatomical localization that correlated with motor variables. In summary, the optic tectum contains non-linear mixed selectivity neurons that are likely to mediate reliable detection of ethologically relevant sensory stimuli. Recruitment of small tectal assemblies appears to link perception to action by providing the premotor commands that release hunting responses. These findings allow us to propose a model circuit for the visuomotor transformations underlying a natural behavior. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Probing the Ultimate Limits of Plasmonic Enhancement

    PubMed Central

    Ciracì, C.; Hill, R. T.; Mock, J. J.; Urzhumov, Y.; Fernández-Domínguez, A. I.; Maier, S. A.; Pendry, J. B.; Chilkoti, A.; Smith, D. R.

    2013-01-01

    Metals support surface plasmons at optical wavelengths and have the ability to localize light to sub-wavelength regions. The field enhancements that occur in these regions set the ultimate limitations on a wide range of nonlinear and quantum optical phenomena. Here we show that the dominant limiting factor is not the resistive loss of the metal, but the intrinsic nonlocality of its dielectric response. A semi-classical model of the electronic response of a metal places strict bounds on the ultimate field enhancement. We demonstrate the accuracy of this model by studying the optical scattering from gold nanoparticles spaced a few angstroms from a gold film. The bounds derived from the models and experiments impose limitations on all nanophotonic systems. PMID:22936772

  5. Tailoring density and optical and thermal behavior of gold surfaces and nanoparticles exploiting aromatic dithiols.

    PubMed

    Bruno, Giovanni; Babudri, Francesco; Operamolla, Alessandra; Bianco, Giuseppe V; Losurdo, Maria; Giangregorio, Maria M; Hassan Omar, Omar; Mavelli, Fabio; Farinola, Gianluca M; Capezzuto, Pio; Naso, Francesco

    2010-06-01

    Self-assembled monolayers (SAMs) derived of 4-methoxy-terphenyl-3'',5''-dimethanethiol (TPDMT) and 4-methoxyterphenyl-4''-methanethiol (TPMT) have been prepared by chemisorption from solution onto gold thin films and nanoparticles. The SAMs have been characterized by spectroscopic ellipsometry, Raman spectroscopy and atomic force microscopy to determine their optical properties, namely the refractive index and extinction coefficient, in an extended spectral range of 0.75-6.5 eV. From the analysis of the optical data, information on SAMs structural organization has been inferred. Comparison of SAMs generated from the above aromatic thiols to well-known SAMs generated from the alkanethiol dodecanethiol revealed that the former aromatic SAMs are densely packed and highly vertically oriented, with a slightly higher packing density and a absence of molecular inclination in TPMT/Au. The thermal behavior of SAMs has also been monitored using ellipsometry in the temperature range 25-500 degrees C. Gold nanoparticles functionalized by the same aromatic thiols have also been discussed for surface enhanced Raman spectroscopy applications. This study represents a step forward tailoring the optical and thermal behavior of surfaces as well as nanoparticles.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeffer, Daniel A.; Polizos, Georgios; Smith, D. Barton

    Optical surfaces such as mirrors and windows that are exposed to outdoor environmental conditions are susceptible to dust buildup and water condensation. The application of transparent superhydrophobic coatings on optical surfaces can improve outdoor performance via a self-cleaning effect similar to the Lotus effect. The contact angle (CA) of water droplets on a typical hydrophobic flat surface varies from 100° to 120°. Adding roughness or microtexture to a hydrophobic surface leads to an enhancement of hydrophobicity and the CA can be increased to a value in the range of 16≥0° to 175°. This result is remarkable because such behavior cannotmore » be explained using surface chemistry alone. When surface features are on the order of 100 nm or smaller, surfaces exhibit superhydrophobic behavior and maintain their optical transparency. In this work we discuss our results on transparent superhydrophobic coatings that can be applied across large surface areas. We have used functionalized silica nanoparticles to coat various optical elements and have measured the contact angle and optical transmission between 190 to 1100 nm on these elements. The functionalized silica nanoparticles were dissolved in a solution of the solvents isopropyl alcohol and 4-chlorobenzotrifluoride (PCBTF) and a proprietary ceramic binder (Cerakote ). Finally, this solution was spin-coated onto a variety of test glass substrates, and following a curing period of about 30 minutes, these coatings exhibited superhydrophobic behavior with a static CA ≥160°.« less

  7. Optical limiting and bleaching effects in a suspension of onion-like carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikheev, Gen M; Bulatov, D L; Mogileva, T N

    We have studied the effect of nanosecond laser pulses ({lambda} = 1064 nm) on the optical properties of onion-like carbon (OLC) prepared by high-temperature vacuum annealing of detonation nanodiamond and dispersed in N,N-dimethylformamide (DMF). The results demonstrate that, under low-intensity irradiation, the OLC suspension displays optical limiting behaviour. Increasing the incident intensity leads to bleaching of the suspension in the visible and near-IR spectral regions. (nanostructures)

  8. Common Aperture Techniques for Imaging Electro-Optical Sensors (CATIES).

    DTIC Science & Technology

    1980-02-01

    milliradians ) at the 5.33:1 zoom point. The zoom optics contain five elements with two moveable air -spaced doublets for accomplishing the zoom function...included in the electrical and optical design but due to funding limitations, system safety requirements during the testing phase and lack of long-term...determined during the system testing phase to be conducted by the Air Force. Limited electronic signal processing (split screen and video mix) was

  9. Sub-natural width resonances in Cs vapor confined in micrometric thickness optical cell

    NASA Astrophysics Data System (ADS)

    Cartaleva, S.; Krasteva, A.; Sargsyan, A.; Sarkisyan, D.; Slavov, D.; Vartanyan, T.

    2013-03-01

    We present here the behavior of Electromagnetically Induced Transparency (EIT), Velocity Selective Optical Pumping (VSOP) resonances and Velocity Selective Excitation (VSE) resonances observed in Cs vapor confined in а micrometric optical cell (MC) with thickness L = 6λ, λ = 852nm. For comparison of behavior of VSE resonance another conventional optical cell with thickness L=2.5 cm is used. Cells are irradiated in orthogonal to their windows directions by probe beam scanned on the Fg = 4 → Fe= 3, 4, 5 set of transitions and pump beam fixed at the Fg = 3 → Fe = 4 transition, on the D2 line of Cs. The enhanced absorption (fluorescence) narrow VSOP resonance at the closed transition transforms into reduced absorption (fluorescence) one with small increase of atomic concentration or light intensity. A striking difference appears between the VSE resonance broadening in L = 6λ and conventional L = 2.5cm cells.

  10. Three-dimensional modeling of light rays on the surface of a slanted lenticular array for autostereoscopic displays.

    PubMed

    Jung, Sung-Min; Kang, In-Byeong

    2013-08-10

    In this paper, we developed an optical model describing the behavior of light at the surface of a slanted lenticular array for autostereoscopic displays in three dimensions and simulated the optical characteristics of autostereoscopic displays using the Monte Carlo method under actual design conditions. The behavior of light is analyzed by light rays for selected inclination and azimuthal angles; numerical aberrations and conditions of total internal reflection for the lenticular array were found. The intensity and the three-dimensional crosstalk distributions calculated from our model coincide very well with those from conventional design software, and our model shows highly enhanced calculation speed that is 67 times faster than that of the conventional software. From the results, we think that the optical model is very useful for predicting the optical characteristics of autostereoscopic displays with enhanced calculation speed.

  11. Novel tunable dynamic tweezers using dark-bright soliton collision control in an optical add/drop filter.

    PubMed

    Teeka, Chat; Jalil, Muhammad Arif; Yupapin, Preecha P; Ali, Jalil

    2010-12-01

    We propose a novel system of the dynamic optical tweezers generated by a dark soliton in the fiber optic loop. A dark soliton known as an optical tweezer is amplified and tuned within the microring resonator system. The required tunable tweezers with different widths and powers can be controlled. The analysis of dark-bright soliton conversion using a dark soliton pulse propagating within a microring resonator system is analyzed. The dynamic behaviors of soliton conversion in add/drop filter is also analyzed. The control dark soliton is input into the system via the add port of the add/drop filter. The dynamic behavior of the dark-bright soliton conversion is observed. The required stable signal is obtained via a drop and throughput ports of the add/drop filter with some suitable parameters. In application, the trapped light/atom and transportation can be realized by using the proposed system.

  12. Scattering attributes of one-dimensional semiconducting oxide nanomaterials individually probed for varying light-matter interaction angles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Daniel S.; Singh, Manpreet; Zhou, Hebing

    2015-10-12

    We report the characteristic optical responses of one-dimensional semiconducting oxide nanomaterials by examining the individual nanorods (NRs) of ZnO, SnO{sub 2}, indium tin oxide, and zinc tin oxide under precisely controlled, light-matter interaction geometry. Scattering signals from a large set of NRs of the different types are evaluated spatially along the NR length while varying the NR tilt angle, incident light polarization, and analyzer rotation. Subsequently, we identify material-indiscriminate, NR tilt angle- and incident polarization-dependent scattering behaviors exhibiting continuous, intermittent, and discrete responses. The insight gained from this study can advance our fundamental understanding of the optical behaviors of themore » technologically useful nanomaterials and, at the same time, promote the development of highly miniaturized, photonic and bio-optical devices utilizing the spatially controllable, optical responses of the individual semiconducting oxide NRs.« less

  13. Focusing behavior of the fractal vector optical fields designed by fractal lattice growth model.

    PubMed

    Gao, Xu-Zhen; Pan, Yue; Zhao, Meng-Dan; Zhang, Guan-Lin; Zhang, Yu; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2018-01-22

    We introduce a general fractal lattice growth model, significantly expanding the application scope of the fractal in the realm of optics. This model can be applied to construct various kinds of fractal "lattices" and then to achieve the design of a great diversity of fractal vector optical fields (F-VOFs) combinating with various "bases". We also experimentally generate the F-VOFs and explore their universal focusing behaviors. Multiple focal spots can be flexibly enginnered, and the optical tweezers experiment validates the simulated tight focusing fields, which means that this model allows the diversity of the focal patterns to flexibly trap and manipulate micrometer-sized particles. Furthermore, the recovery performance of the F-VOFs is also studied when the input fields and spatial frequency spectrum are obstructed, and the results confirm the robustness of the F-VOFs in both focusing and imaging processes, which is very useful in information transmission.

  14. Three-dimensional image and spatial spectrum analysis of behavior of small animal erythrocytes in optical tweezers

    NASA Astrophysics Data System (ADS)

    Chen, Hui Chi; Shen, Wen-Tai; Kong, Yu-Han; Chuang, Chun-Hao

    2008-02-01

    Because of the softness of membrane, erythrocytes (red blood cell, RBC) have different shapes while being immersed in buffer with different osmotic pressure. While affecting by different viruses and illnesses, RBC may change its shape, or its membrane may become rigid. Moreover, RBC will ford and stretch when it is trapped by optical tweezers. Therefore, the behaviors of RBC in optical tweezers raise more discussion. In this report, we set up an optical tweezers to trap RBC of small animals like feline and canine. By adding a long working distance objective to collect the side-viewing image, a 3-D image system was constructed to detect the motion of trapped RBC. To improve the image quality for side-view, an aperture and narrow glass plate were used. From the video of these images and their spatial spectrum, the shape of trapped RBC was studied.

  15. Estimating normative limits of Heidelberg Retina Tomograph optic disc rim area with quantile regression.

    PubMed

    Artes, Paul H; Crabb, David P

    2010-01-01

    To investigate why the specificity of the Moorfields Regression Analysis (MRA) of the Heidelberg Retina Tomograph (HRT) varies with disc size, and to derive accurate normative limits for neuroretinal rim area to address this problem. Two datasets from healthy subjects (Manchester, UK, n = 88; Halifax, Nova Scotia, Canada, n = 75) were used to investigate the physiological relationship between the optic disc and neuroretinal rim area. Normative limits for rim area were derived by quantile regression (QR) and compared with those of the MRA (derived by linear regression). Logistic regression analyses were performed to quantify the association between disc size and positive classifications with the MRA, as well as with the QR-derived normative limits. In both datasets, the specificity of the MRA depended on optic disc size. The odds of observing a borderline or outside-normal-limits classification increased by approximately 10% for each 0.1 mm(2) increase in disc area (P < 0.1). The lower specificity of the MRA with large optic discs could be explained by the failure of linear regression to model the extremes of the rim area distribution (observations far from the mean). In comparison, the normative limits predicted by QR were larger for smaller discs (less specific, more sensitive), and smaller for larger discs, such that false-positive rates became independent of optic disc size. Normative limits derived by quantile regression appear to remove the size-dependence of specificity with the MRA. Because quantile regression does not rely on the restrictive assumptions of standard linear regression, it may be a more appropriate method for establishing normative limits in other clinical applications where the underlying distributions are nonnormal or have nonconstant variance.

  16. Protective broadband window coatings

    NASA Astrophysics Data System (ADS)

    Askinazi, Joel; Narayanan, Authi A.

    1997-06-01

    Optical windows employed in current and future airborne and ground based optical sensor systems are required to provide long service life under extreme environmental conditions including blowing sand and high speed rain. State of the art sensor systems are employing common aperture windows which must provide optical bandpasses from the TV to the LWIR. Operation Desert Storm experience indicates that current optical coatings provide limited environmental protection which adversely affects window life cycle cost. Most of these production coatings also have limited optical bandpasses (LWIR, MWIR, or TV-NIR). A family of optical coatings has been developed which provide a significant increase in rain and sand impact protection to current optical window materials. These coatings can also be tailored to provide either narrow optical bandwidth (e.g., LWIR) or broadband transmittance (TV- LWIR). They have been applied to a number of standard optical window materials. These coating have successfully completed airborne rain and sand abrasion test with minimal impact on optical window performance. Test results are presented. Low cost service life is anticipated as well as the ability to operate windows in even more taxing environments than currently feasible.

  17. Predicting scattering scanning near-field optical microscopy of mass-produced plasmonic devices

    NASA Astrophysics Data System (ADS)

    Otto, Lauren M.; Burgos, Stanley P.; Staffaroni, Matteo; Ren, Shen; Süzer, Özgün; Stipe, Barry C.; Ashby, Paul D.; Hammack, Aeron T.

    2018-05-01

    Scattering scanning near-field optical microscopy enables optical imaging and characterization of plasmonic devices with nanometer-scale resolution well below the diffraction limit. This technique enables developers to probe and understand the waveguide-coupled plasmonic antenna in as-fabricated heat-assisted magnetic recording heads. In order to validate and predict results and to extract information from experimental measurements that is physically comparable to simulations, a model was developed to translate the simulated electric field into expected near-field measurements using physical parameters specific to scattering scanning near-field optical microscopy physics. The methods used in this paper prove that scattering scanning near-field optical microscopy can be used to determine critical sub-diffraction-limited dimensions of optical field confinement, which is a crucial metrology requirement for the future of nano-optics, semiconductor photonic devices, and biological sensing where the near-field character of light is fundamental to device operation.

  18. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics

    NASA Astrophysics Data System (ADS)

    Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal

    2016-08-01

    The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics.

  19. Investigation of Non-Linear Optical Behavior of Semiconductors for Optical Switching. Volume 1.

    DTIC Science & Technology

    1987-09-30

    a ’ 0.001 0.0014 0.0018 0.00 2 0.0026 0.003 0.0034. Figure 36 Plot of average grain size versus heat treatment temperature . i .1...linearity. This NLO behavior. switches on and off in sub-picosecond times. However, the switching time, the NLO coefficient and the operating temperature are...in sub-picosecond times. However, the switching time, the . 9NLO coefficient and the operating temperature are affected by the microstruc- ture of the

  20. Effect of laser frequency noise on fiber-optic frequency reference distribution

    NASA Technical Reports Server (NTRS)

    Logan, R. T., Jr.; Lutes, G. F.; Maleki, L.

    1989-01-01

    The effect of the linewidth of a single longitude-mode laser on the frequency stability of a frequency reference transmitted over a single-mode optical fiber is analyzed. The interaction of the random laser frequency deviations with the dispersion of the optical fiber is considered to determine theoretically the effect on the Allan deviation (square root of the Allan variance) of the transmitted frequency reference. It is shown that the magnitude of this effect may determine the limit of the ultimate stability possible for frequency reference transmission on optical fiber, but is not a serious limitation to present system performance.

  1. 75 FR 36358 - University of Maine System, et al.; Notice of Consolidated Decision on Applications for Duty-Free...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    .... Manufacturer: Japanese Electron-Optics, Limited (JEOL), Japan. Intended Use: See notice at 75 FR 29974, May 28...: Japanese Electron-Optics, Limited, (JEOL), Japan. Intended Use: See notice at 75 FR 29974, May 28, 2010...

  2. High-Efficiency, Near-Diffraction Limited, Dielectric Metasurface Lenses Based on Crystalline Titanium Dioxide at Visible Wavelengths.

    PubMed

    Liang, Yaoyao; Liu, Hongzhan; Wang, Faqiang; Meng, Hongyun; Guo, Jianping; Li, Jinfeng; Wei, Zhongchao

    2018-04-28

    Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Previous metasurfaces have been limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Here we report a polarization-insensitive, high-contrast transmissive metasurface composed of crystalline titanium dioxide pillars in the form of metalens at the wavelength of 633 nm. The focal spots are as small as 0.54 λ d , which is very close to the optical diffraction limit of 0.5 λ d . The simulation focusing efficiency is up to 88.5%. A rigorous method for metalens design, the phase realization mechanism and the trade-off between high efficiency and small spot size (or large numerical aperture) are discussed. Besides, the metalenses can work well with an imaging point source up to ±15° off axis. The proposed design is relatively systematic and can be applied to various applications such as visible imaging, ranging and sensing systems.

  3. Design considerations for near-infrared filter photometry: effects of noise sources and selectivity.

    PubMed

    Tarumi, Toshiyasu; Amerov, Airat K; Arnold, Mark A; Small, Gary W

    2009-06-01

    Optimal filter design of two-channel near-infrared filter photometers is investigated for simulated two-component systems consisting of an analyte and a spectrally overlapping interferent. The degree of overlap between the analyte and interferent bands is varied over three levels. The optimal design is obtained for three cases: a source or background flicker noise limited case, a shot noise limited case, and a detector noise limited case. Conventional photometers consist of narrow-band optical filters with their bands located at discrete wavelengths. However, the use of broadband optical filters with overlapping responses has been proposed to obtain as much signal as possible from a weak and broad analyte band typical of near-infrared absorptions. One question regarding the use of broadband optical filters with overlapping responses is the selectivity achieved by such filters. The selectivity of two-channel photometers is evaluated on the basis of the angle between the analyte and interferent vectors in the space spanned by the relative change recorded for each of the two detector channels. This study shows that for the shot noise limited or detector noise limited cases, the slight decrease in selectivity with the use of broadband optical filters can be compensated by the higher signal-to-noise ratio afforded by the use of such filters. For the source noise limited case, the best quantitative results are obtained with the use of narrow-band non-overlapping optical filters.

  4. The marmoset monkey as a model for visual neuroscience

    PubMed Central

    Mitchell, Jude F.; Leopold, David A.

    2015-01-01

    The common marmoset (Callithrix jacchus) has been valuable as a primate model in biomedical research. Interest in this species has grown recently, in part due to the successful demonstration of transgenic marmosets. Here we examine the prospects of the marmoset model for visual neuroscience research, adopting a comparative framework to place the marmoset within a broader evolutionary context. The marmoset’s small brain bears most of the organizational features of other primates, and its smooth surface offers practical advantages over the macaque for areal mapping, laminar electrode penetration, and two-photon and optical imaging. Behaviorally, marmosets are more limited at performing regimented psychophysical tasks, but do readily accept the head restraint that is necessary for accurate eye tracking and neurophysiology, and can perform simple discriminations. Their natural gaze behavior closely resembles that of other primates, with a tendency to focus on objects of social interest including faces. Their immaturity at birth and routine twinning also makes them ideal for the study of postnatal visual development. These experimental factors, together with the theoretical advantages inherent in comparing anatomy, physiology, and behavior across related species, make the marmoset an excellent model for visual neuroscience. PMID:25683292

  5. Refraction limit of miniaturized optical systems: a ball-lens example.

    PubMed

    Kim, Myun-Sik; Scharf, Toralf; Mühlig, Stefan; Fruhnert, Martin; Rockstuhl, Carsten; Bitterli, Roland; Noell, Wilfried; Voelkel, Reinhard; Herzig, Hans Peter

    2016-04-04

    We study experimentally and theoretically the electromagnetic field in amplitude and phase behind ball-lenses across a wide range of diameters, ranging from a millimeter scale down to a micrometer. Based on the observation, we study the transition between the refraction and diffraction regime. The former regime is dominated by observables for which it is sufficient to use a ray-optical picture for an explanation, e.g., a cusp catastrophe and caustics. A wave-optical picture, i.e. Mie theory, is required to explain the features, e.g., photonic nanojets, in the latter regime. The vanishing of the cusp catastrophe and the emergence of the photonic nanojet is here understood as the refraction limit. Three different criteria are used to identify the limit: focal length, spot size, and amount of cross-polarization generated in the scattering process. We identify at a wavelength of 642 nm and while considering ordinary glass as the ball-lens material, a diameter of approximately 10 µm as the refraction limit. With our study, we shed new light on the means necessary to describe micro-optical system. This is useful when designing optical devices for imaging or illumination.

  6. The 2015 super-resolution microscopy roadmap

    NASA Astrophysics Data System (ADS)

    Hell, Stefan W.; Sahl, Steffen J.; Bates, Mark; Zhuang, Xiaowei; Heintzmann, Rainer; Booth, Martin J.; Bewersdorf, Joerg; Shtengel, Gleb; Hess, Harald; Tinnefeld, Philip; Honigmann, Alf; Jakobs, Stefan; Testa, Ilaria; Cognet, Laurent; Lounis, Brahim; Ewers, Helge; Davis, Simon J.; Eggeling, Christian; Klenerman, David; Willig, Katrin I.; Vicidomini, Giuseppe; Castello, Marco; Diaspro, Alberto; Cordes, Thorben

    2015-11-01

    Far-field optical microscopy using focused light is an important tool in a number of scientific disciplines including chemical, (bio)physical and biomedical research, particularly with respect to the study of living cells and organisms. Unfortunately, the applicability of the optical microscope is limited, since the diffraction of light imposes limitations on the spatial resolution of the image. Consequently the details of, for example, cellular protein distributions, can be visualized only to a certain extent. Fortunately, recent years have witnessed the development of ‘super-resolution’ far-field optical microscopy (nanoscopy) techniques such as stimulated emission depletion (STED), ground state depletion (GSD), reversible saturated optical (fluorescence) transitions (RESOLFT), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) or saturated structured illumination microscopy (SSIM), all in one way or another addressing the problem of the limited spatial resolution of far-field optical microscopy. While SIM achieves a two-fold improvement in spatial resolution compared to conventional optical microscopy, STED, RESOLFT, PALM/STORM, or SSIM have all gone beyond, pushing the limits of optical image resolution to the nanometer scale. Consequently, all super-resolution techniques open new avenues of biomedical research. Because the field is so young, the potential capabilities of different super-resolution microscopy approaches have yet to be fully explored, and uncertainties remain when considering the best choice of methodology. Thus, even for experts, the road to the future is sometimes shrouded in mist. The super-resolution optical microscopy roadmap of Journal of Physics D: Applied Physics addresses this need for clarity. It provides guidance to the outstanding questions through a collection of short review articles from experts in the field, giving a thorough discussion on the concepts underlying super-resolution optical microscopy, the potential of different approaches, the importance of label optimization (such as reversible photoswitchable proteins) and applications in which these methods will have a significant impact. Mark Bates, Christian Eggeling

  7. Long-baseline optical intensity interferometry. Laboratory demonstration of diffraction-limited imaging

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.

    2015-08-01

    Context. A long-held vision has been to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, and reveal interacting gas flows in binary systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electronically connected and also used for intensity interferometry. Second-order spatial coherence of light is obtained by cross correlating intensity fluctuations measured in different pairs of telescopes. With no optical links between them, the error budget is set by the electronic time resolution of a few nanoseconds. Corresponding light-travel distances are approximately one meter, making the method practically immune to atmospheric turbulence or optical imperfections, permitting both very long baselines and observing at short optical wavelengths. Aims: Previous theoretical modeling has shown that full images should be possible to retrieve from observations with such telescope arrays. This project aims at verifying diffraction-limited imaging experimentally with groups of detached and independent optical telescopes. Methods: In a large optics laboratory, artificial stars (single and double, round and elliptic) were observed by an array of small telescopes. Using high-speed photon-counting solid-state detectors and real-time electronics, intensity fluctuations were cross-correlated over up to 180 baselines between pairs of telescopes, producing coherence maps across the interferometric Fourier-transform plane. Results: These interferometric measurements were used to extract parameters about the simulated stars, and to reconstruct their two-dimensional images. As far as we are aware, these are the first diffraction-limited images obtained from an optical array only linked by electronic software, with no optical connections between the telescopes. Conclusions: These experiments serve to verify the concepts for long-baseline aperture synthesis in the optical, somewhat analogous to radio interferometry.

  8. Optical Nonlinearities in Semiconductors for Limiting.

    NASA Astrophysics Data System (ADS)

    Wu, Yuan-Yen

    I have conducted detailed experimental and theoretical studies of the nonlinear optical properties of semiconductor materials useful for optical limiting. I have constructed optical limiters utilizing two-photon absorption along with photogenerated carrier defocusing as well as the bound electronic nonlinearity using the semiconducting material ZnSe. I have optimized the focusing geometry to achieve a large dynamic range while maintaining a low limiting energy for the device. The ZnSe monolithic optical limiter has achieved a limiting energy as low as 13 nJ (corresponding to 300W peak power) and a dynamic range as large as 10 ^5 at 532 nm using psec pulses. Theoretical analysis showed that the ZnSe device has a broad-band response covering the wavelength range from 550 nm to 800 nm. Moreover, I found that existing theoretical models (e.g. the Auston model and the band-resonant model using Boltzmann statistics) adequately describe the photo-generated carriers refractive nonlinearity in ZnSe. Material nonlinear optical parameters, such as the two-photon absorption coefficient beta _2 = 5.5 cm/GW, the refraction per unit carrier density sigma_{rm n} = -0.8cdot 10^ {-21}cm^3 and the bound electronic refraction n_2 = -4cdot 10^{ -11}esu, have been measured via time-integrated beam distortion experiments in the near field. A numerical code has been written to simulate the beam distortion in order to extract the previously mentioned material parameters. In addition, I have performed time-resolved distortion measurements that provide an intuitive picture of the carrier generation process via two-photon absorption. I also characterized the optical nonlinearities in a ZnSe Fabry-Perot thin film structure (an interference filter). I concluded that the nonlinear absorption alone in the thin film is insufficient to build an effective optical limiter, as it did not show a net change in refraction using psec pulses. An innovative numerical program was developed to simulate the nonlinear beam propagation inside the Fabry-Perot structure. For comparison, pump-probe experiments were performed using both thin film and bulk ZnSe. The results showed relatively long carrier lifetimes (>300 psec) in both samples. A numerical code was written to fit the pump-probe experimental results. The fitting yielded that carrier lifetimes (recombination through traps), radiative decay rate, two-photon absorption coefficient as well as the free carrier absorption coefficient for ZnSe bulk material.

  9. Structural characterizations, Hirshfeld surface analyses, and third-order nonlinear optical properties of two novel chalcone derivatives

    NASA Astrophysics Data System (ADS)

    Maidur, Shivaraj R.; Jahagirdar, Jitendra R.; Patil, Parutagouda Shankaragouda; Chia, Tze Shyang; Quah, Ching Kheng

    2018-01-01

    We report synthesis, characterizations, structure-property relationships, and third-order nonlinear optical studies for two new chalcone derivatives, (2E)-1-(anthracen-9-yl)-3-(4-bromophenyl)prop-2-en-1-one (Br-ANC) and (2E)-1-(anthracen-9-yl)-3-(4-chlorophenyl)prop-2-en-1-one (Cl-ANC). These derivatives were crystallized in the centrosymmetric monoclinic P21/c crystal structure. The intermolecular interactions of both the crystals were visualized by Hirshfeld surface analyses (HSA). The crystals are thermally stable up to their melting points (180.82 and 191.16 °C for Cl-ANC and Br-ANC, respectively). The geometry optimizations, FT-IR spectra, 1H and 13C NMR spectra, electronic absorption spectra, electronic transitions, and HOMO-LUMO energy gaps were studied by Density Functional Theory (DFT) at B3LYP/6-311+G(d, p) level. The theoretical results provide excellent agreement with experimental findings. The electric dipole moments, static polarizabilities, molecular electrostatic potentials (MEP) and global chemical reactivity descriptors (GCRD) were also theoretically computed. The materials exhibited good nonlinear absorption (NLA), nonlinear refraction (NLR) and optical limiting (OL) behavior under diode-pumped solid-state (DPSS) continuous wave (CW) laser excitation (532 nm and 200 mW). The NLO parameters such as NLA coefficient (β∼10-5 cmW-1), NLR index (n2∼10-10 cm2 W-1) and third-order NLO susceptibilities (χ(3) ∼10-7 esu) were measured. Further, we estimated one-photon and two-photon figures of merit, which satisfy the demands (W > 1 and T < 1) for all-optical switching. Thus, the present chalcone derivatives with anthracene moiety are potential materials for OL and optical switching applications.

  10. Mathematical model of the two-point bending test for strength measurement of optical fibers

    NASA Astrophysics Data System (ADS)

    Srubshchik, Leonid S.

    1999-12-01

    The mathematical and numerical analysis of two nonlinear problems of solid mechanics related to the breaking strength of coated optical glass fibers are presented. Both of these problems are concerned with the two-point bending technique which measures the strength of optical fibers by straining them in a bending mode between two parallel plates. The plates are squeezed together until the fiber fractures. The process gives a measurement of fiber strength. The present theory of this test is based on the elastica theory of an unshearable and inextensible rod. However, within the limits of the elastics theory the tensile and shear stresses cannot be determined. In this paper we study the behavior of optical glass fiber on the base of a geometrically exact nonlinear Cosserat theory in which a rod can suffer flexure, extension, and shear. We adopt the specific nonlinear stress-strain relations in silica and titania-doped silica glass fibers and show that it does not yield essential changes in the results as compared with the results for the linear stress-strain relations. We obtain the governing equations of the motion of the fiber in the two-point bending test taking into account the friction between the test fiber and the rigid plates. We develop the computational methods to solve the initial and equilibrium free-boundary nonlinear planar problems. We derive formulas for tensile and shear stresses which allow us to calculate tension in the fiber. The numerical results show that frictional forces play an important role. The interaction of optical fiber and rigid plates is treated by means of the classical contact theory.

  11. CFO compensation method using optical feedback path for coherent optical OFDM system

    NASA Astrophysics Data System (ADS)

    Moon, Sang-Rok; Hwang, In-Ki; Kang, Hun-Sik; Chang, Sun Hyok; Lee, Seung-Woo; Lee, Joon Ki

    2017-07-01

    We investigate feasibility of carrier frequency offset (CFO) compensation method using optical feedback path for coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. Recently proposed CFO compensation algorithms provide wide CFO estimation range in electrical domain. However, their practical compensation range is limited by sampling rate of an analog-to-digital converter (ADC). This limitation has not drawn attention, since the ADC sampling rate was high enough comparing to the data bandwidth and CFO in the wireless OFDM system. For CO-OFDM, the limitation is becoming visible because of increased data bandwidth, laser instability (i.e. large CFO) and insufficient ADC sampling rate owing to high cost. To solve the problem and extend practical CFO compensation range, we propose a CFO compensation method having optical feedback path. By adding simple wavelength control for local oscillator, the practical CFO compensation range can be extended to the sampling frequency range. The feasibility of the proposed method is experimentally investigated.

  12. 3D printing of tissue-simulating phantoms for calibration of biomedical optical devices

    NASA Astrophysics Data System (ADS)

    Zhao, Zuhua; Zhou, Ximing; Shen, Shuwei; Liu, Guangli; Yuan, Li; Meng, Yuquan; Lv, Xiang; Shao, Pengfei; Dong, Erbao; Xu, Ronald X.

    2016-10-01

    Clinical utility of many biomedical optical devices is limited by the lack of effective and traceable calibration methods. Optical phantoms that simulate biological tissues used for optical device calibration have been explored. However, these phantoms can hardly simulate both structural and optical properties of multi-layered biological tissue. To address this limitation, we develop a 3D printing production line that integrates spin coating, light-cured 3D printing and Fused Deposition Modeling (FDM) for freeform fabrication of optical phantoms with mechanical and optical heterogeneities. With the gel wax Polydimethylsiloxane (PDMS), and colorless light-curable ink as matrix materials, titanium dioxide (TiO2) powder as the scattering ingredient, graphite powder and black carbon as the absorption ingredient, a multilayer phantom with high-precision is fabricated. The absorption and scattering coefficients of each layer are measured by a double integrating sphere system. The results demonstrate that the system has the potential to fabricate reliable tissue-simulating phantoms to calibrate optical imaging devices.

  13. Lattice damage assessment and optical waveguide properties in LaAlO3 single crystal irradiated with swift Si ions

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Crespillo, M. L.; Huang, Q.; Wang, T. J.; Liu, P.; Wang, X. L.

    2017-02-01

    As one of the representative ABO3 perovskite-structured oxides, lanthanum aluminate (LaAlO3) crystal has emerged as one of the most valuable functional-materials, and has attracted plenty of fundamental research and promising applications in recent years. Electronic, magnetic, optical and other properties of LaAlO3 strongly depend on its crystal structure, which could be strongly modified owing to the nuclear or electronic energy loss deposited in an ion irradiation environment and, therefore, significantly affecting the performance of LaAlO3-based devices. In this work, utilizing swift (tens of MeV) Si-ion irradiation, the damage behavior of LaAlO3 crystal induced by nuclear or electronic energy loss has been studied in detail utilizing complementary characterization techniques. Differing from other perovskite-structured crystals in which the electronic energy loss could lead to the formation of an amorphous region based on the thermal spike mechanism, in this case, intense electronic energy loss in LaAlO3 will not induce any obvious structural damage. The effects of ion irradiation on the mechanical properties, including hardness increase and elastic modulus decrease, have been confirmed. On the other hand, considering the potential applications of LaAlO3 in the field of integrated optoelectronics, the optical-waveguide properties of the irradiation region have been studied. The significant correspondence (symmetrical inversion) between the iWKB-reconstructed refractive-index profile and SRIM-simulated dpa profile further proves the effects (irradiation-damage production and refractive-index decrease) of nuclear energy loss during the swift-ion penetration process in LaAlO3 crystal. In the case of the rather-thick damage layer produced by swift-ion irradiation, obtaining a damage profile will be constrained owing to the analysis-depth limitation of the characterization techniques (RBS/channeling), and our analysis process (optical guided-mode measurement and subsequent refractive-index-profile reconstruction) also provides a new approach to study the damage behavior (damage profile) once the functional relationship between the refractive index and lattice disorder for the specific material could be determined.

  14. Combination of optical spectroscopy and electrical impedancemetry for nutrition behavior characterizations

    NASA Astrophysics Data System (ADS)

    Perchik, Alexey; Pavlov, Konstantin; Vilenskii, Maksim; Popov, Mikhail

    2017-07-01

    Unhealthy nutrition trends determination technique is described. Combination of optical spectroscopy and electrical impedancemetry will lead to development of a healthcare device that will predict unhealthy eating habits and decrease risk factors of diseases development.

  15. Industrial 30-kW CO2 laser with fast axial gas flow and rf excitation

    NASA Astrophysics Data System (ADS)

    Habich, Uwe; Loosen, Peter; Hertzler, Christoph; Wollermann-Windgasse, Reinhard

    1996-03-01

    A CO2 laser with fast axial gas flow was set up and operated with a maximum cw output power above 30 kW. The laser makes use of 8 rf-excited discharges which were optimized regarding to the gas-flow, to the discharge homogeneity and to the optical properties of the gain medium. Results of experimental investigation of these topics are described as well as performance characteristics of the laser system equipped with a stable and an unstable resonator, respectively. With an unstable resonator and an aerodynamic window for the extraction of the beam the laser system gives a beam quality which is close to the diffraction limit for this type of resonator. Disregarding the difficulties which are related to the definition and measurement of beam quality for unstable resonators, the beam quality could be described as M2 equals 3. Measured far field intensity profiles in the focal plane of a focusing optics are presented as well as the beam propagation behavior near focus. First results of applications in materials processing are discussed.

  16. Manufacturing issues and optical properties of rare-earth (Y, Lu, Sc, Nd) aluminate garnets composite transparent ceramics

    NASA Astrophysics Data System (ADS)

    Bonnet, Loïck; Boulesteix, Rémy; Maître, Alexandre; Sallé, Christian; Couderc, Vincent; Brenier, Alain

    2015-12-01

    In this work, a comparative study of reactive sintering and optical properties of three laser composite transparent ceramics doped with neodymium: Nd:YAG/Nd:YS1AG, Nd:YAG/Nd:LuAG and Nd:YS1AG/Nd:LuAG has been achieved. Samples were manufactured thanks to pressureless co-sintering under vacuum of bilayer powder compacts. The reaction sequence from primary oxides to final garnet phases has been investigated. Similar dilatometric behavior was observed during reactive-sintering for each composition. Differential shrinkage can be thus accommodated to some extent. Second, this work has shown that the intermediate zone at composites interface is composed of single-phased garnet solid-solution with continuous evolution from one side to the other. The thickness of the interdiffusion zone was found to be limited to about 100 μm in all cases and appeared to be well described by classical diffusion laws of Fick and Whipple-Le Claire. The analyses of spectroscopic properties of transparent ceramics composites have finally shown that composite ceramics should be suitable to produce dual wavelength emission for terahertz generation.

  17. Infrared dielectric functions and optical phonons of wurtzite Y x Al1-x N (0  ⩽  x  ⩽  0.22)

    NASA Astrophysics Data System (ADS)

    Ben Sedrine, N.; Zukauskaite, A.; Birch, J.; Jensen, J.; Hultman, L.; Schöche, S.; Schubert, M.; Darakchieva, V.

    2015-10-01

    YAlN is a new member of the group-III nitride family with potential for applications in next generation piezoelectric and light emitting devices. We report the infrared dielectric functions and optical phonons of wurtzite (0001) Y x Al1-x N epitaxial films with 0  ⩽  x  ⩽  0.22. The films are grown by magnetron sputtering epitaxy on c-plane Al2O3 and their phonon properties are investigated using infrared spectroscopic ellipsometry and Raman scattering spectroscopy. The infrared-active E 1(TO) and LO, and the Raman active E 2 phonons are found to exhibit one-mode behavior, which is discussed in the framework of the MREI model. The compositional dependencies of the E 1(TO), E 2 and LO phonon frequencies, the high-frequency limit of the dielectric constant, {{\\varepsilon}∞} , the static dielectric constant, {{\\varepsilon}0} , and the Born effective charge Z B are established and discussed.

  18. Classical emergence of intrinsic spin-orbit interaction of light at the nanoscale

    NASA Astrophysics Data System (ADS)

    Vázquez-Lozano, J. Enrique; Martínez, Alejandro

    2018-03-01

    Traditionally, in macroscopic geometrical optics intrinsic polarization and spatial degrees of freedom of light can be treated independently. However, at the subwavelength scale these properties appear to be coupled together, giving rise to the spin-orbit interaction (SOI) of light. In this work we address theoretically the classical emergence of the optical SOI at the nanoscale. By means of a full-vector analysis involving spherical vector waves we show that the spin-orbit factorizability condition, accounting for the mutual influence between the amplitude (spin) and phase (orbit), is fulfilled only in the far-field limit. On the other side, in the near-field region, an additional relative phase introduces an extra term that hinders the factorization and reveals an intricate dynamical behavior according to the SOI regime. As a result, we find a suitable theoretical framework able to capture analytically the main features of intrinsic SOI of light. Besides allowing for a better understanding into the mechanism leading to its classical emergence at the nanoscale, our approach may be useful to design experimental setups that enhance the response of SOI-based effects.

  19. A reagentless enzymatic fluorescent biosensor for glucose based on upconverting glasses, as excitation source, and chemically modified glucose oxidase.

    PubMed

    Del Barrio, Melisa; Cases, Rafael; Cebolla, Vicente; Hirsch, Thomas; de Marcos, Susana; Wilhelm, Stefan; Galbán, Javier

    2016-11-01

    Upon near-infrared excitation Tm(3+)+Yb(3+) doped fluorohafnate glasses present upconversion properties and emit visible light. This property permits to use these glasses (UCG) as excitation sources for fluorescent optical biosensors. Taking this into account, in this work a fluorescent biosensor for glucose determination is designed and evaluated. The biosensor combines the UCG and the fluorescence of the enzyme glucose oxidase chemically modified with a fluorescein derivative (GOx-FS), whose intensity is modified during the enzymatic reaction with glucose. Optical parameters have been optimized and a mathematical model describing the behavior of the analytical signal is suggested. Working in FIA mode, the biosensor responds to glucose concentrations up to, at least, 15mM with a limit of detection of 1.9mM. The biosensor has a minimum lifetime of 9 days and has been applied to glucose determination in drinks. The applicability of the sensor was tested by glucose determination in two fruit juices. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Ring modulator small-signal response analysis based on pole-zero representation.

    PubMed

    Karimelahi, Samira; Sheikholeslami, Ali

    2016-04-04

    We present a closed-form expression for the small-signal response of a depletion-mode ring modulator and verify it by measurement results. Both electrical and optical behavior of micro-ring modulator as well as the loss variation due to the index modulation is considered in the derivation. This expression suggests that a ring modulator is a third-order system with one real pole, one zero and a pair of complex-conjugate poles. The exact positions of the poles/zero are given and shown to be dependent upon parameters such as electrical bandwidth, coupling condition, optical loss, and sign/value of laser detunings. We show that the location of zero is different for positive and negative detuning, and therefore, the ring modulator frequency response is asymmetric. We use the gain-bandwidth product as a figure of merit and calculate it for various pole/zero locations. We show that gain-bandwidth for the over-coupled ring modulator is superior compared to other coupling conditions. Also, we show that the gain-bandwidth product can be increased to a limit by increasing the electrical bandwidth.

  1. Usaf Space Sensing Cryogenic Considerations

    NASA Astrophysics Data System (ADS)

    Roush, F.

    2010-04-01

    Infrared (IR) space sensing missions of the future depend upon low mass components and highly capable imaging technologies. Limitations in visible imaging due to the earth's shadow drive the use of IR surveillance methods for a wide variety of applications for Intelligence, Surveillance, and Reconnaissance (ISR), Ballistic Missile Defense (BMD) applications, and almost certainly in Space Situational Awareness (SSA) and Operationally Responsive Space (ORS) missions. Utilization of IR sensors greatly expands and improves mission capabilities including target and target behavioral discrimination. Background IR emissions and electronic noise that is inherently present in Focal Plane Arrays (FPAs) and surveillance optics bench designs prevents their use unless they are cooled to cryogenic temperatures. This paper describes the role of cryogenic coolers as an enabling technology for generic ISR and BMD missions and provides ISR and BMD mission and requirement planners with a brief glimpse of this critical technology implementation potential. The interaction between cryogenic refrigeration component performance and the IR sensor optics and FPA can be seen as not only mission enabling but also as mission performance enhancing when the refrigeration system is considered as part of an overall optimization problem.

  2. Fiber-optic microsensor for high resolution pCO2 sensing in marine environment.

    PubMed

    Neurauter, G; Klimant, I; Wolfbeis, O S

    2000-03-01

    A fast responding fiber-optic microsensor for sensing pCO2 in marine sediments with high spatial resolution is presented. The tip diameter varies typically between 20 and 50 microm. In order to make the pH-indicator 8-hydroxypyrene-1,3,6-trisulfonate soluble in the ethyl cellulose matrix, it was lipophilized with tetraoctylammonium as the counterion [HPTS-(TOA)4]. The microsensor was tuned to sense very low levels of dissolved carbon dioxide which are typically present in marine systems. The detection limit is 0.04 hPa pCO2 which corresponds to 60 ppb CO2 of dissolved carbon dioxide. A soluble Teflon derivative with an extraordinarily high gas permeability was chosen as a protective coating to eliminate interferences by ionic species like chloride or pH. Response times of less than 1 min were observed. The performance of the new microsensor is described with respect to reproducibility of the calibration curves, dynamic range, temperature behavior, long term stability and storage stability. The effect of hydrogen sulfide as an interferent, which is frequently present in anaerobic sediment layers, was studied in detail.

  3. Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue

    PubMed Central

    Spühler, Isabelle A.; Conley, Gaurasundar M.; Scheffold, Frank; Sprecher, Simon G.

    2016-01-01

    Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labeled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation. PMID:27303270

  4. Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue.

    PubMed

    Spühler, Isabelle A; Conley, Gaurasundar M; Scheffold, Frank; Sprecher, Simon G

    2016-01-01

    Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labeled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation.

  5. Three-dimensional optical reconstruction of vocal fold kinematics using high-speed video with a laser projection system

    PubMed Central

    Luegmair, Georg; Mehta, Daryush D.; Kobler, James B.; Döllinger, Michael

    2015-01-01

    Vocal fold kinematics and its interaction with aerodynamic characteristics play a primary role in acoustic sound production of the human voice. Investigating the temporal details of these kinematics using high-speed videoendoscopic imaging techniques has proven challenging in part due to the limitations of quantifying complex vocal fold vibratory behavior using only two spatial dimensions. Thus, we propose an optical method of reconstructing the superior vocal fold surface in three spatial dimensions using a high-speed video camera and laser projection system. Using stereo-triangulation principles, we extend the camera-laser projector method and present an efficient image processing workflow to generate the three-dimensional vocal fold surfaces during phonation captured at 4000 frames per second. Initial results are provided for airflow-driven vibration of an ex vivo vocal fold model in which at least 75% of visible laser points contributed to the reconstructed surface. The method captures the vertical motion of the vocal folds at a high accuracy to allow for the computation of three-dimensional mucosal wave features such as vibratory amplitude, velocity, and asymmetry. PMID:26087485

  6. Design of space-borne imager with wide field of view based on freeform aberration theory

    NASA Astrophysics Data System (ADS)

    Shi, Haodong; Zhang, Jizhen; Wang, Lingjie; Zhang, Xin; Jiang, Huilin

    2016-10-01

    Freeform surfaces have advantages on balancing asymmetric aberration of the unobscured push-broom imager. However, since the conventional paraxial aberration theory is no longer appropriate for the freeform system design, designers are lack of insights on the imaging quality from the freeform aberration distribution. In order to design the freeform optical system efficiently, the contribution and nodal behavior of coma and astigmatism introduced by Standard Zernike polynomial surface are discussed in detail. An unobscured three-mirror optical system with 850 mm effective focal length, 20°× 2° field of view (FOV) is designed. The coma and astigmatism nodal positions are moved into the real-FOV by selecting and optimizing the Zernike terms pointedly, which has balanced the off-axis asymmetric aberration. The results show that the modulation transfer function (MTF) is close to diffraction limit, and the distortion throughout full-FOV is less than 0.25%. At last, a computer-generated hologram (CGH) for freeform surface testing is designed. The CGH design error RMS is lower than λ/1000 at 632.8 nm, which meets the requirements for measurement.

  7. Microbial Contamination Detection in Water Resources: Interest of Current Optical Methods, Trends and Needs in the Context of Climate Change

    PubMed Central

    Jung, Aude-Valérie; Le Cann, Pierre; Roig, Benoit; Thomas, Olivier; Baurès, Estelle; Thomas, Marie-Florence

    2014-01-01

    Microbial pollution in aquatic environments is one of the crucial issues with regard to the sanitary state of water bodies used for drinking water supply, recreational activities and harvesting seafood due to a potential contamination by pathogenic bacteria, protozoa or viruses. To address this risk, microbial contamination monitoring is usually assessed by turbidity measurements performed at drinking water plants. Some recent studies have shown significant correlations of microbial contamination with the risk of endemic gastroenteresis. However the relevance of turbidimetry may be limited since the presence of colloids in water creates interferences with the nephelometric response. Thus there is a need for a more relevant, simple and fast indicator for microbial contamination detection in water, especially in the perspective of climate change with the increase of heavy rainfall events. This review focuses on the one hand on sources, fate and behavior of microorganisms in water and factors influencing pathogens’ presence, transportation and mobilization, and on the second hand, on the existing optical methods used for monitoring microbiological risks. Finally, this paper proposes new ways of research. PMID:24747537

  8. The anomalous C 4 intensity ratio in symbiotic stars

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Kafatos, M.; Fahey, R. P.

    1988-01-01

    The C IV lambda lambda 1548.2,1550.8 resonance doublet in a symbiotic stars was shown to exhibit anomalous line intensity ratios in which I (lambda 1548.2)/I(lambda 1550.8) less than 1, or less than the optically-thick limit of unity. The R Aquarii-central HII region and RX Puppis exhibit this phenomena. The I(lambda 1548.2)/I(lambda 1550.8) ratio in RX Puppis is found to vary inversely with the total C IV line intensity, and with the FES-visual light, as the object declined over a 5 yr period following a brightening in UV and optical emission which peaked in 1982. This doublet intensity behavior could be explained by a wind which has a narrow velocity range of 600 approx. less than sup v wind approx. less than 1000 km/sec, or by the pumping of the Fe II (mul. 45.01) transition a sup 4 F sub 9/2 - y sup 4 H(o) sub 11/2 by C IV lambda 1548.2, which effectively scatters C IV photons into the Fe II spectrum in these objects.

  9. Computational high-resolution optical imaging of the living human retina

    NASA Astrophysics Data System (ADS)

    Shemonski, Nathan D.; South, Fredrick A.; Liu, Yuan-Zhi; Adie, Steven G.; Scott Carney, P.; Boppart, Stephen A.

    2015-07-01

    High-resolution in vivo imaging is of great importance for the fields of biology and medicine. The introduction of hardware-based adaptive optics (HAO) has pushed the limits of optical imaging, enabling high-resolution near diffraction-limited imaging of previously unresolvable structures. In ophthalmology, when combined with optical coherence tomography, HAO has enabled a detailed three-dimensional visualization of photoreceptor distributions and individual nerve fibre bundles in the living human retina. However, the introduction of HAO hardware and supporting software adds considerable complexity and cost to an imaging system, limiting the number of researchers and medical professionals who could benefit from the technology. Here we demonstrate a fully automated computational approach that enables high-resolution in vivo ophthalmic imaging without the need for HAO. The results demonstrate that computational methods in coherent microscopy are applicable in highly dynamic living systems.

  10. Modified Linnik microscopic interferometry for quantitative depth evaluation of diffraction-limited microgroove

    NASA Astrophysics Data System (ADS)

    Ye, Shiwei; Takahashi, Satoru; Michihata, Masaki; Takamasu, Kiyoshi

    2018-05-01

    The quality control of microgrooves is extremely crucial to ensure the performance and stability of microstructures and improve their fabrication efficiency. This paper introduces a novel optical inspection method and a modified Linnik microscopic interferometer measurement system to detect the depth of microgrooves with a width less than the diffraction limit. Using this optical method, the depth of diffraction-limited microgrooves can be related to the near-field optical phase difference, which cannot be practically observed but can be computed from practical far-field observations. Thus, a modified Linnik microscopic interferometer system based on three identical objective lenses and an optical path reversibility principle were developed. In addition, experiments for standard grating microgrooves on the silicon surface were carried out to demonstrate the feasibility and repeatability of the proposed method and developed measurement system.

  11. Effect of gamma irradiation on the structural, mechanical and optical properties of polytetrafluoroethylene sheet

    NASA Astrophysics Data System (ADS)

    Mohammadian-Kohol, M.; Asgari, M.; Shakur, H. R.

    2018-04-01

    In this study, the effects of gamma radiation on the chemical structure, mechanical and optical properties of polytetrafluoroethylene (PTFE) sheet were investigated with various doses up to 12 kGy. The chemical changes in the structure were studied by FTIR spectroscopy. Also, effects of radiation on the different mechanical parameters such as Young's modulus, toughness, strain, and stress were studied at the maximum tolerable force and the fracture points. Furthermore, changing the various optical parameters such as absorption coefficient, Urbach energy, optical band gaps, refractive index, optical dispersion parameters and plasma resonance frequency were studied by UV-visible spectroscopy. Formation of a band at 1594 cm-1, which was belonged to double carbon bonds, indicated that chain-scission was occurred at 12 kGy gamma irradiation dose. As well, the mechanical results showed an increase in the elastic behavior of PTFE sheets and a decrease in the plastic behavior of it with absorbed dose increasing. Moreover, the results showed that gamma irradiation can effectively change the various optical properties of PTFE sheets due to different phenomena such as degradation of the main chains, occurring chain-scission, formation of free radicals and cross-linking in the polymer structure.

  12. Spectral Behavior of Weakly Compressible Aero-Optical Distortions

    NASA Astrophysics Data System (ADS)

    Mathews, Edwin; Wang, Kan; Wang, Meng; Jumper, Eric

    2016-11-01

    In classical theories of optical distortions by atmospheric turbulence, an appropriate and key assumption is that index-of-refraction variations are dominated by fluctuations in temperature and the effects of turbulent pressure fluctuations are negligible. This assumption is, however, not generally valid for aero-optical distortions caused by turbulent flow over an optical aperture, where both temperature and pressures fluctuations may contribute significantly to the index-of-refraction fluctuations. A general expression for weak fluctuations in refractive index is derived using the ideal gas law and Gladstone-Dale relation and applied to describe the spectral behavior of aero-optical distortions. Large-eddy simulations of weakly compressible, temporally evolving shear layers are then used to verify the theoretical results. Computational results support theoretical findings and confirm that if the log slope of the 1-D density spectrum in the inertial range is -mρ , the optical phase distortion spectral slope is given by - (mρ + 1) . The value of mρ is then shown to be dependent on the ratio of shear-layer free-stream densities and bounded by the spectral slopes of temperature and pressure fluctuations. Supported by HEL-JTO through AFOSR Grant FA9550-13-1-0001 and Blue Waters Graduate Fellowship Program.

  13. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Polar Mixing Optical Phonon Spectra in Wurtzite GaN Cylindrical Quantum Dots: Quantum Size and Dielectric Effects

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Liao, Jian-Shang

    2010-05-01

    The interface-optical-propagating (IO-PR) mixing phonon modes of a quasi-zero-dimensional (QoD) wurtzite cylindrical quantum dot (QD) structure are derived and studied by employing the macroscopic dielectric continuum model. The analytical phonon states of IO-PR mixing modes are given. It is found that there are two types of IO-PR mixing phonon modes, i.e. ρ-IO/z-PR mixing modes and the z-IO/ρ-PR mixing modes existing in QoD wurtzite QDs. And each IO-PR mixing modes also have symmetrical and antisymmetrical forms. Via a standard procedure of field quantization, the Fröhlich Hamiltonians of electron-(IO-PR) mixing phonons interaction are obtained. Numerical calculations on a wurtzite GaN cylindrical QD are performed. The results reveal that both the radial-direction size and the axial-direction size as well as the dielectric matrix have great influence on the dispersive frequencies of the IO-PR mixing phonon modes. The limiting features of dispersive curves of these phonon modes are discussed in depth. The phonon modes “reducing" behavior of wurtzite quantum confined systems has been observed obviously in the structures. Moreover, the degenerating behaviors of the IO-PR mixing phonon modes in wurtzite QoD QDs to the IO modes and PR modes in wurtzite Q2D QW and Q1D QWR systems are analyzed deeply from both of the viewpoints of physics and mathematics.

  14. Testing ultrafast mode-locking at microhertz relative optical linewidth.

    PubMed

    Martin, Michael J; Foreman, Seth M; Schibli, T R; Ye, Jun

    2009-01-19

    We report new limits on the phase coherence of the ultrafast mode-locking process in an octave-spanning Ti:sapphire comb.We find that the mode-locking mechanism correlates optical phase across a full optical octave with less than 2.5 microHZ relative linewidth. This result is at least two orders of magnitude below recent predictions for quantum-limited individual comb-mode linewidths, verifying that the mode-locking mechanism strongly correlates quantum noise across the comb spectrum.

  15. A Blind Test of Hapke's Photometric Model

    NASA Technical Reports Server (NTRS)

    Helfenstein, P.; Shepard, M. K.

    2003-01-01

    Hapke's bidirectional reflectance equation is a versatile analytical tool for predicting (i.e. forward modeling) the photometric behavior of a particulate surface from the observed optical and structural properties of its constituents. Remote sensing applications of Hapke s model, however, generally seek to predict the optical and structural properties of particulate soil constituents from the observed photometric behavior of a planetary surface (i.e. inverse-modeling). Our confidence in the latter approach can be established only if we ruthlessly test and optimize it. Here, we summarize preliminary results from a blind-test of the Hapke model using laboratory measurements obtained with the Bloomsburg University Goniometer (B.U.G.). The first author selected eleven well-characterized powder samples and measured the spectrophotometric behavior of each. A subset of twenty undisclosed examples of the photometric measurement sets were sent to the second author who fit the data using the Hapke model and attempted to interpret their optical and mechanical properties from photometry alone.

  16. Large Volume, Behaviorally-relevant Illumination for Optogenetics in Non-human Primates.

    PubMed

    Acker, Leah C; Pino, Erica N; Boyden, Edward S; Desimone, Robert

    2017-10-03

    This protocol describes a large-volume illuminator, which was developed for optogenetic manipulations in the non-human primate brain. The illuminator is a modified plastic optical fiber with etched tip, such that the light emitting surface area is > 100x that of a conventional fiber. In addition to describing the construction of the large-volume illuminator, this protocol details the quality-control calibration used to ensure even light distribution. Further, this protocol describes techniques for inserting and removing the large volume illuminator. Both superficial and deep structures may be illuminated. This large volume illuminator does not need to be physically coupled to an electrode, and because the illuminator is made of plastic, not glass, it will simply bend in circumstances when traditional optical fibers would shatter. Because this illuminator delivers light over behaviorally-relevant tissue volumes (≈ 10 mm 3 ) with no greater penetration damage than a conventional optical fiber, it facilitates behavioral studies using optogenetics in non-human primates.

  17. Optical manipulation for optogenetics: otoliths manipulation in zebrafish (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Favre-Bulle, Itia A.; Scott, Ethan; Rubinsztein-Dunlop, Halina

    2016-03-01

    Otoliths play an important role in Zebrafish in terms of hearing and sense of balance. Many studies have been conducted to understand its structure and function, however the encoding of its movement in the brain remains unknown. Here we developed a noninvasive system capable of manipulating the otolith using optical trapping while we image its behavioral response and brain activity. We'll also present our tools for behavioral response detection and brain activity mapping. Acceleration is sensed through movements of the otoliths in the inner ear. Because experimental manipulations involve movements, electrophysiology and fluorescence microscopy are difficult. As a result, the neural codes underlying acceleration sensation are poorly understood. We have developed a technique for optically trapping otoliths, allowing us to simulate acceleration in stationary larval zebrafish. By applying forces to the otoliths, we can elicit behavioral responses consistent with compensation for perceived acceleration. Since the animal is stationary, we can use calcium imaging in these animals' brains to identify the functional circuits responsible for mediating responses to acceleration in natural settings.

  18. Estradiol or fluoxetine alters depressive behavior and tryptophan hydroxylase in rat raphe.

    PubMed

    Yang, Fu-Zhong; Wu, Yan; Zhang, Wei-Guo; Cai, Yi-Yun; Shi, Shen-Xun

    2010-03-10

    The effects of 17beta-estradiol and fluoxetine on behavior of ovariectomized rats subjected to the forced swimming test and the expression of tryptophan hydroxylase (TPH) in dorsal and median raphe were investigated, respectively through time sampling technique of behavior scoring and immunohistochemistry. Both estradiol and fluoxetine increased swimming and decreased immobility in the forced swimming test. The forced swimming stress decreased integrated optical density of TPH-positive regions in dorsal and median raphe. Both estradiol and fluoxetine administration prevented integrated optical density of TPH-positive regions from being decreased by forced swimming stress. These observations suggest that both estradiol and fluoxetine have protective bearing on ovariectomized rats enduring forced swimming stress.

  19. Potential of e-beam writing for diffractive optics

    NASA Astrophysics Data System (ADS)

    Kley, Ernst-Bernhard; Wyrowski, Frank

    1997-05-01

    E-beam lithography (EBL) is a powerful tool in optics. Optician can use the progress in EBL to fabricate optical components and systems with novel functions. However, EBL is dominated by microelectronics. Therefore the demands of optics are not always met by the exiting EBL technology. Some possibilities as well as limits of EBL in optics are discussed at the example of diffractive optics.

  20. A facile synthesis of metal nanoparticle - graphene composites for better absorption of solar radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bindu; Mulla, Rafiq; Rabinal, M. K., E-mail: mkrabinal@yahoo.com

    2015-06-24

    Herein, a facile chemical approach has been adopted to prepare silver nanoparticles (AgNPs)- graphene (G) composite to study photothermal effect. Sodium borohydride (SBH), a strong reducing agent has been selected for this work. Effect of SBH concentrations on optical behavior of AgNPs-G composite was also investigated. Resultant materials were characterized by various techniques including X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), optical absorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM micrographs confirm wrapping of AgNPs into graphene whereas XRD analysis reveals their particle size variation between 47 nm to 69 nm. Optical studies throw a light on theirmore » strong absorption behavior towards solar radiation.« less

  1. Target detection in insects: optical, neural and behavioral optimizations.

    PubMed

    Gonzalez-Bellido, Paloma T; Fabian, Samuel T; Nordström, Karin

    2016-12-01

    Motion vision provides important cues for many tasks. Flying insects, for example, may pursue small, fast moving targets for mating or feeding purposes, even when these are detected against self-generated optic flow. Since insects are small, with size-constrained eyes and brains, they have evolved to optimize their optical, neural and behavioral target visualization solutions. Indeed, even if evolutionarily distant insects display different pursuit strategies, target neuron physiology is strikingly similar. Furthermore, the coarse spatial resolution of the insect compound eye might actually be beneficial when it comes to detection of moving targets. In conclusion, tiny insects show higher than expected performance in target visualization tasks. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. MO detector (MOD): a dual-function optical modulator-detector for on-chip communication

    NASA Astrophysics Data System (ADS)

    Sun, Shuai; Zhang, Ruoyu; Peng, Jiaxin; Narayana, Vikram K.; Dalir, Hamed; El-Ghazawi, Tarek; Sorger, Volker J.

    2018-04-01

    Physical challenges at the device and interconnect level limit both network and computing energy efficiency. While photonics is being considered to address interconnect bottlenecks, optical routing is still limited by electronic circuitry, requiring substantial overhead for optical-electrical-optical conversion. Here we show a novel design of an integrated broadband photonic-plasmonic hybrid device termed MODetector featuring dual light modulation and detection function to act as an optical transceiver in the photonic network-on-chip. With over 10 dB extinction ratio and 0.8 dB insertion loss at the modulation state, this MODetector provides 0.7 W/A responsivity in the detection state with 36 ps response time. This multi-functional device: (i) eliminates OEO conversion, (ii) reduces optical losses from photodetectors when not needed, and (iii) enables cognitive routing strategies for network-on-chips.

  3. Limits of agreement between the optical pachymeter and a noncontact specular microscope.

    PubMed

    Ogbuehi, Kelechi C; Almubrad, Turki M

    2005-07-01

    To determine the limits of agreement between central corneal thickness (CCT) measurements made with the slit lamp-attached optical pachymeter and the SP2000P noncontact specular microscope. Triplicate readings for CCT were obtained for each of 130 (right) eyes of 130 patients, using the slit lamp-attached optical pachymeter and then the SP2000P noncontact specular microscope. The average CCT measured by each method was compared. Subsequently, the mean difference between both sets of measurements was assessed, and the 95% confidence interval (limits of agreement) between both techniques was determined. The mean +/- SD CCT measured by the optical pachymeter was 543 +/- 34 microm and 532 +/- 34 microm for the specular microscope. We found a statistically significant (P < 0.001) mean bias of 10 mum between CCT values measured with both types of equipment, with the optical pachymeter returning the higher values. The coefficient of variation was 6.3% for the optical pachymeter and 6.4% for the specular microscope. The right eye CCT measurements made by the optical pachymeter are, on average, 10 mum thicker than those made with the SP2000P specular microscope, which suggests that both pieces of equipment cannot be used interchangeably to monitor CCT changes in patients. Excluding left eye measurements, the reliability of the optical pachymeter is identical to that of the noncontact specular microscope.

  4. Self-regulated transport in photonic crystals with phase-changing defects

    NASA Astrophysics Data System (ADS)

    Thomas, Roney; Ellis, Fred M.; Vitebskiy, Ilya; Kottos, Tsampikos

    2018-01-01

    Phase-changing materials (PCMs) are widely used for optical data recording, sensing, all-optical switching, and optical limiting. Our focus here is on the case when the change in transmission characteristics of the optical material is caused by the input light itself. Specifically, the light-induced heating triggers the phase transition in the PCM. In this paper, using a numerical example, we demonstrate that the incorporation of the PCM in a photonic structure can lead to a dramatic modification of the effects of light-induced phase transition, as compared to a stand-alone sample of the same PCM. Our focus is on short pulses. We discuss some possible applications of such phase-changing photonic structures for optical sensing and limiting.

  5. Perfect X-ray focusing via fitting corrective glasses to aberrated optics.

    PubMed

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G

    2017-03-01

    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.

  6. Deep brain optical measurements of cell type-specific neural activity in behaving mice.

    PubMed

    Cui, Guohong; Jun, Sang Beom; Jin, Xin; Luo, Guoxiang; Pham, Michael D; Lovinger, David M; Vogel, Steven S; Costa, Rui M

    2014-01-01

    Recent advances in genetically encoded fluorescent sensors enable the monitoring of cellular events from genetically defined groups of neurons in vivo. In this protocol, we describe how to use a time-correlated single-photon counting (TCSPC)-based fiber optics system to measure the intensity, emission spectra and lifetime of fluorescent biosensors expressed in deep brain structures in freely moving mice. When combined with Cre-dependent selective expression of genetically encoded Ca(2+) indicators (GECIs), this system can be used to measure the average neural activity from a specific population of cells in mice performing complex behavioral tasks. As an example, we used viral expression of GCaMPs in striatal projection neurons (SPNs) and recorded the fluorescence changes associated with calcium spikes from mice performing a lever-pressing operant task. The whole procedure, consisting of virus injection, behavior training and optical recording, takes 3-4 weeks to complete. With minor adaptations, this protocol can also be applied to recording cellular events from other cell types in deep brain regions, such as dopaminergic neurons in the ventral tegmental area. The simultaneously recorded fluorescence signals and behavior events can be used to explore the relationship between the neural activity of specific brain circuits and behavior.

  7. Measuring electrically charged particle fluxes in space using a fiber optic loop sensor

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of this program was to demonstrate the potential of a fiber optic loop sensor for the measurement of electrically charged particle fluxes in space. The key elements of the sensor are a multiple turn loop of low birefringence, single mode fiber, with a laser diode light source, and a low noise optical receiver. The optical receiver is designed to be shot noise limited, with this being the limiting sensitivity factor for the sensor. The sensing element is the fiber optic loop. Under a magnetic field from an electric current flowing along the axis of the loop, there is a non-vanishing line integral along the fiber optic loop. This causes a net birefringence producing two states of polarization whose phase difference is correlated to magnetic field strength and thus, current in the optical receiver electronic processing. The objectives in this program were to develop a prototype laser diode powered fiber optic sensor. The performance specification of a minimum detectable current density of 1 (mu)amp/sq m-(radical)Hz, should be at the shot noise limit of the detection electronics. OPTRA has successfully built and tested a 3.2 m diameter loop with 137 turns of low birefringence optical fiber and achieved a minimum detectable current density of 5.4 x 10(exp-5) amps/(radical)Hz. If laboratory space considerations were not an issue, with the length of optical fiber available to us, we would have achieved a minimum detectable current density of 4 x 10(exp -7) amps/(radical)Hz.

  8. Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time.

    PubMed

    Martín-Mateos, Pedro; Jerez, Borja; Largo-Izquierdo, Pedro; Acedo, Pablo

    2018-04-16

    Electro-optic dual-comb spectrometers have proved to be a promising technology for sensitive, high-resolution and rapid spectral measurements. Electro-optic combs possess very attractive features like simplicity, reliability, bright optical teeth, and typically moderate but quickly tunable optical spans. Furthermore, in a dual-comb arrangement, narrowband electro-optic combs are generated with a level of mutual coherence that is sufficiently high to enable optical multiheterodyning without inter-comb stabilization or signal processing systems. However, this valuable tool still presents several limitations; for instance, on most systems, absolute frequency accuracy and long-term stability cannot be guaranteed; likewise, interferometer-induced phase noise restricts coherence time and limits the attainable signal-to-noise ratio. In this paper, we address these drawbacks and demonstrate a cost-efficient absolute electro-optic dual-comb instrument based on a frequency stabilization mechanism and a novel adaptive interferogram acquisition approach devised for electro-optic dual-combs capable of operating in real-time. The spectrometer, completely built from commercial components, provides sub-ppm frequency uncertainties and enables a signal-to-noise ratio of 10000 (intensity noise) in 30 seconds of integration time.

  9. A chip-integrated coherent photonic-phononic memory.

    PubMed

    Merklein, Moritz; Stiller, Birgit; Vu, Khu; Madden, Stephen J; Eggleton, Benjamin J

    2017-09-18

    Controlling and manipulating quanta of coherent acoustic vibrations-phonons-in integrated circuits has recently drawn a lot of attention, since phonons can function as unique links between radiofrequency and optical signals, allow access to quantum regimes and offer advanced signal processing capabilities. Recent approaches based on optomechanical resonators have achieved impressive quality factors allowing for storage of optical signals. However, so far these techniques have been limited in bandwidth and are incompatible with multi-wavelength operation. In this work, we experimentally demonstrate a coherent buffer in an integrated planar optical waveguide by transferring the optical information coherently to an acoustic hypersound wave. Optical information is extracted using the reverse process. These hypersound phonons have similar wavelengths as the optical photons but travel at five orders of magnitude lower velocity. We demonstrate the storage of phase and amplitude of optical information with gigahertz bandwidth and show operation at separate wavelengths with negligible cross-talk.Optical storage implementations based on optomechanical resonator are limited to one wavelength. Here, exploiting stimulated Brillouin scattering, the authors demonstrate a coherent optical memory based on a planar integrated waveguide, which can operate at different wavelengths without cross-talk.

  10. Preferential polymerization and adsorption of L-optical isomers of amino acids relative to D-optical isomers on kaolinite templates.

    NASA Technical Reports Server (NTRS)

    Jackson, T. A.

    1971-01-01

    Experiments on the polymerization of the L- and D-optical isomers of aspartic acid and serine using kaolinite as a catalyst showed that the L-optical isomers were polymerized at a much higher rate than the D-optical isomers; racemic (DL-) mixtures were polymerized at an intermediate rate. The peptides formed from the L-monomers were preferentially adsorbed by the clay. In the absence of kaolinite, no significant or consistent difference in the behavior of the L- and D-optical isomers was observed. In experiments on the adsorption of L- and D-phenylalanine by kaolinite, the L-optical isomer was preferentially adsorbed.

  11. Nodal aberration theory applied to freeform surfaces

    NASA Astrophysics Data System (ADS)

    Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.

    2014-12-01

    When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.

  12. Optical properties of graphene superlattices.

    PubMed

    Le, H Anh; Ho, S Ta; Nguyen, D Chien; Do, V Nam

    2014-10-08

    In this work, the optical responses of graphene superlattices, i.e. graphene subjected to a periodic scalar potential, are theoretically reported. The optical properties were studied by investigating the optical conductivity, which was calculated using the Kubo formalism. It was found that the optical conductivity becomes dependent on the photon polarization and is suppressed in the photon energy range of (0, Ub), where Ub is the potential barrier height. In the higher photon energy range, i.e. Ω > Ub, the optical conductivity is, however, almost identical to that of pristine graphene. Such behaviors of the optical conductivity are explained microscopically through the analysis of the elements of optical matrices and effectively through a simple model, which is based on the Pauli blocking mechanism.

  13. Neural Organization of the Optic Lobe Changes Steadily from Late Embryonic Stage to Adulthood in Cuttlefish Sepia pharaonis

    PubMed Central

    Liu, Yung-Chieh; Liu, Tsung-Han; Su, Chia-Hao; Chiao, Chuan-Chin

    2017-01-01

    The optic lobe is the largest structure in the cuttlefish brain. While the general morphology of the optic lobe in adult cuttlefish has been well described, the 3D structure and ontogenetic development of its neural organization have not been characterized. To correlate observed behavioral changes within the brain structure along the development of this animal, optic lobes from the late embryonic stage to adulthood were examined systematically in the present study. The MRI scan revealed that the so called “cell islands” in the medulla of the cephalopod's optic lobe (Young, 1962, 1974) are in fact a contiguous tree-like structure. Quantification of the neural organizational development of optic lobes showed that structural features of the cortex and radial column zone were established earlier than those of the tangential zone during embryonic and post-hatching stages. Within the cell islands, the density of nuclei was decreased while the size of nuclei was increased during the development. Furthermore, the visual processing area in the optic lobe showed a significant variation in lateralization during embryonic and juvenile stages. Our observation of a continuous increase in neural fibers and nucleus size in the tangential zone of the optic lobe from late embryonic stage to adulthood indicates that the neural organization of the optic lobe is modified along the development of cuttlefish. These findings thus support that the ontogenetic change of the optic lobe is responsible for their continuously increased complexity in body patterning and visuomotor behaviors. PMID:28798695

  14. Composites comprising biologically-synthesized nanomaterials

    DOEpatents

    Curran, Seamus; Dias, Sampath; Blau, Werner; Wang, Jun; Oremland, Ronald S; Baesman, Shaun

    2013-04-30

    The present disclosure describes composite materials containing a polymer material and a nanoscale material dispersed in the polymer material. The nanoscale materials may be biologically synthesized, such as tellurium nanorods synthesized by Bacillus selenitireducens. Composite materials of the present disclosure may have optical limiting properties and find use in optical limiting devices.

  15. Ellipsometric and optical study of some uncommon insulator films on 3-5 semiconductors

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Warner, J. D.; Liu, D. C.; Pouch, J. J.

    1985-01-01

    Optical properties of three types of insulating films that show promise in potential applications in the 3-4 semiconductor technology were evaluated, namely a-C:H, BN and CaF2. The plasma deposited a-C:H shows an amorphous behavior with optical energy gaps of approximately 2 to 2.4 eV. These a-C:H films have higher density and/or hardness, higher refractive index and lower optical energy gaps with increasing energy of the particles in the plasma, while the density of states remains unchanged. These results are in agreement, and give a fine-tuned positive confirmation to an existing conjecture on the nature of a-C:H films (1). Ion beam deposited BN films show amorphous behavior with energy gap of 5 eV. These films are nonstoichiometric (B/N approximately 2) and have refractive index, density and/or hardness which are dependent on the deposition conditions. The epitaxially grown CaF2 on GaAs films have optical parameters equal to bulk, but evidence of damage was found in the GaAs at the interface.

  16. Optical and structural behaviors of crosslinked polyvinyl alcohol thin films

    NASA Astrophysics Data System (ADS)

    Pandit, Subhankar; Kundu, Sarathi

    2018-04-01

    Polyvinyl Alcohol (PVA) has excellent properties like uniaxial tensile stress, chemical resistance, biocompatibility, etc. The properties of PVA further can be tuned by crosslinking process. In this work, a simple heat treatment method is used to find out the optimum crosslinking of PVA and the corresponding structural and optical responses are explored. The PVA crosslinking is done by exposing the films at different temperatures and time intervals. The optical property of pure and heat treated PVA films are investigated by UV-Vis absorption and photoluminescence emission spectroscopy and structural modifications are studied by Fourier Transform Infrared Spectroscopy (FTIR). The absorption peaks of pure PVA are observed at ≈ 280 and 335 nm and the corresponding emission is observed at ≈ 424 nm. The pure PVA showed modified optical behaviors after the heat treatment. In addition, dipping the PVA films in hot water (85°C) for nearly 20 minutes also show impact on both structural and optical properties. From FTIR spectroscopy, the changes in vibrational band positions confirm the structural modifications of PVA films.

  17. Effects of gold nanoparticles on the electro-optical properties of a polymer dispersed liquid crystal

    NASA Astrophysics Data System (ADS)

    Hinojosa, A.; Shive, C.; Sharma, Suresh

    2010-03-01

    We have studied the electro-optical properties of a polymer-dispersed liquid crystal (PDLC) as functions of relative concentrations of gold nanoparticles. PDLC samples were synthesized between indium-tin-oxide (ITO) coated glass slides, separated by SiO2 spacers, by using liquid crystal E44, a monofunctional acrylic oligomer (CN135), and a tetrafunctional crosslinker (SR295). A UV photoinitiator (SR1124) was used to facilitate the curing of the monomer exposed to UV radiation from a Hg spectral lamp. A He-Ne laser was used to measure optical transmission through the PDLC as a function of applied ac electric field (1 kHz). The PDLC without gold nanoparticles shows the expected behavior; transmission through the PDLC increases from a minimum (opaque) to a maximum (transparent) with increasing electric field. The electro-optical behavior of the PDLC is altered significantly (e. g., relatively low switching field) upon addition of relatively low concentrations of gold nanoparticles into the starting PDLC syrup. We present electro-optical data as functions of gold nanoparticle concentration and discuss possible mechanism to understand our results.

  18. Analysis of the optical properties of bile

    NASA Astrophysics Data System (ADS)

    Baldini, Francesco; Bechi, Paolo; Cianchi, Fabio; Falai, Alida; Fiorillo, Claudia; Nassi, Paolo

    2000-07-01

    Invasive bile determination is very useful in the diagnosis of many gastric pathologies. At the moment, this measurement is performed with Bilitec 2000, an optical fiber sensor, that is based on absorption by bilirubin. Nevertheless, erroneous evaluations are possible, due to the different configurations which the bilirubin molecule can adopt. The optical behavior of human samples of pure bile and bile+gastric juice has been examined using an optical fiber spectrophotometer and two suitable modified Bilitec 2000 units. A protocol has been established for the treatment of biological fluids, in order to make it possible to study the behavior of their optical properties as a function of pH and concentration without causing any alteration in the samples. The analysis of pH dependence evidenced the presence of different calibration curves at different pH values: the self-aggregation of the bilirubin molecules observed in pure bile samples was almost totally absent in the gastric samples. Measurements carried out on Bilitec 2000 showed that the most appropriate wavelength for bilirubin detection in the stomach should be 470 nm.

  19. Optical and electro-optic anisotropy of epitaxial PZT thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Minmin; Du, Zehui; Jing, Lin; Yoong Tok, Alfred Iing; Tong Teo, Edwin Hang

    2015-07-01

    Strong optical and electro-optic (EO) anisotropy has been investigated in ferroelectric Pb(Zr0.48Ti0.52)O3 thin films epitaxially grown on Nb-SrTiO3 (001), (011), and (111) substrates using magnetron sputtering. The refractive index, electro-optic, and ferroelectric properties of the samples demonstrate the significant dependence on the growth orientation. The linear electro-optic coefficients of the (001), (011), and (111)-oriented PZT thin films were 270.8, 198.8, and 125.7 pm/V, respectively. Such remarkable anisotropic EO behaviors have been explained according to the structure correlation between the orientation dependent distribution, spontaneous polarization, epitaxial strain, and domain pattern.

  20. Fiber-optical analog of the event horizon.

    PubMed

    Philbin, Thomas G; Kuklewicz, Chris; Robertson, Scott; Hill, Stephen; König, Friedrich; Leonhardt, Ulf

    2008-03-07

    The physics at the event horizon resembles the behavior of waves in moving media. Horizons are formed where the local speed of the medium exceeds the wave velocity. We used ultrashort pulses in microstructured optical fibers to demonstrate the formation of an artificial event horizon in optics. We observed a classical optical effect: the blue-shifting of light at a white-hole horizon. We also showed by theoretical calculations that such a system is capable of probing the quantum effects of horizons, in particular Hawking radiation.

  1. Multispectral optical tweezers for molecular diagnostics of single biological cells

    NASA Astrophysics Data System (ADS)

    Butler, Corey; Fardad, Shima; Sincore, Alex; Vangheluwe, Marie; Baudelet, Matthieu; Richardson, Martin

    2012-03-01

    Optical trapping of single biological cells has become an established technique for controlling and studying fundamental behavior of single cells with their environment without having "many-body" interference. The development of such an instrument for optical diagnostics (including Raman and fluorescence for molecular diagnostics) via laser spectroscopy with either the "trapping" beam or secondary beams is still in progress. This paper shows the development of modular multi-spectral imaging optical tweezers combining Raman and Fluorescence diagnostics of biological cells.

  2. Coherent perfect rotation

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Dawson, Nathan J.; Andrews, James H.

    2012-09-01

    Two classes of conservative, linear, optical rotary effects (optical activity and Faraday rotation) are distinguished by their behavior under time reversal. Faraday rotation, but not optical activity, is capable of coherent perfect rotation, by which we mean the complete transfer of counterpropagating coherent light fields into their orthogonal polarization. Unlike coherent perfect absorption, however, this process is explicitly energy conserving and reversible. Our study highlights the necessity of time-reversal-odd processes (not just absorption) and coherence in perfect mode conversion and thus informs the optimization of active multiport optical devices.

  3. Anomalous nonlinear absorption in epsilon-near-zero materials: optical limiting and all-optical control.

    PubMed

    Vincenti, M A; de Ceglia, D; Scalora, Michael

    2016-08-01

    We investigate nonlinear absorption in films of epsilon-near-zero materials. The combination of large local electric fields at the fundamental frequency and material losses at the harmonic frequencies induce unusual intensity-dependent phenomena. We predict that the second-order nonlinearity of a low-damping, epsilon-near-zero slab produces an optical limiting effect that mimics a two-photon absorption process. Anomalous absorption profiles that depend on low permittivity values at the pump frequency are also predicted for third-order nonlinearities. These findings suggest new opportunities for all-optical light control and novel ways to design reconfigurable and tunable nonlinear devices.

  4. Feasibility of infrared Earth tracking for deep-space optical communications.

    PubMed

    Chen, Yijiang; Hemmati, Hamid; Ortiz, Gerry G

    2012-01-01

    Infrared (IR) Earth thermal tracking is a viable option for optical communications to distant planet and outer-planetary missions. However, blurring due to finite receiver aperture size distorts IR Earth images in the presence of Earth's nonuniform thermal emission and limits its applicability. We demonstrate a deconvolution algorithm that can overcome this limitation and reduce the error from blurring to a negligible level. The algorithm is applied successfully to Earth thermal images taken by the Mars Odyssey spacecraft. With the solution to this critical issue, IR Earth tracking is established as a viable means for distant planet and outer-planetary optical communications. © 2012 Optical Society of America

  5. A Search for Early Optical Emission at Gamma-Ray Burst Locations by the Solar Mass Ejection Imager (SMEI)

    NASA Technical Reports Server (NTRS)

    Band, David L.; Buffington, Andrew; Jackson, Bernard V.; Hick, P. Paul; Smith, Aaron C.

    2005-01-01

    The Solar Mass Ejection Imager (SMEI) views nearly every point on the sky once every 102 minutes and can detect point sources as faint as R approx. 10th magnitude. Therefore, SMEI can detect or provide upper limits for the optical afterglow from gamma-ray bursts in the tens of minutes after the burst when different shocked regions may emit optically. Here we provide upper limits for 58 bursts between 2003 February and 2005 April.

  6. High Power Dye Lasers

    DTIC Science & Technology

    1975-09-30

    sphere is greatly reduced when compared to the axial flow dye cell. This is because the focusing optics can only direct light from a limited angle into...Distribution in Flashlamp . . . „ [ [ TTIH Flashlamp Cooling and Thermal Limits [ [ [ ii~ik Optical Characteristics ’,,: •*••••••••••• il-ib...Tracing Program e Dye Pumping System Laser Tests ! 1 i * * TTT’I Laser Output Fall Off !!!.’!!!" ’ TTT’H Single Shot Optical Distortion TTT’I

  7. Fundamental limits of measurement in telecommunications: Experimental and modeling studies in a test optical network on proposal for the reform of telecommunication quantitations

    NASA Astrophysics Data System (ADS)

    Egan, James; McMillan, Normal; Denieffe, David

    2011-08-01

    Proposals for a review of the limits of measurement for telecommunications are made. The measures are based on adapting work from the area of chemical metrology for the field of telecommunications. Currie has introduced recommendations for defining the limits of measurement in chemical metrology and has identified three key fundamental limits of measurement. These are the critical level, the detection limit and the determination limit. Measurements on an optical system are used to illustrate the utility of these measures and discussion is given into the advantages of using these fundamental quantitations over existing methods.

  8. Energy exchange properties during second-harmonic generation in finite one-dimensional photonic band-gap structures with deep gratings.

    PubMed

    D'Aguanno, Giuseppe; Centini, Marco; Scalora, Michael; Sibilia, Concita; Bertolotti, Mario; Bloemer, Mark J; Bowden, Charles M

    2003-01-01

    We study second-harmonic generation in finite, one-dimensional, photonic band-gap structures with large index contrast in the regime of pump depletion and global phase-matching conditions. We report a number of surprising results: above a certain input intensity, field dynamics resemble a multiwave mixing process, where backward and forward components compete for the available energy; the pump field is mostly reflected, revealing a type of optical limiting behavior; and second-harmonic generation becomes balanced in both directions, showing unusual saturation effects with increasing pump intensity. This dynamics was unexpected, and it is bound to influence the way one goes about thinking and designing nonlinear frequency conversion devices in a practical way.

  9. Localization control of few-photon states in parity-symmetric ‘photonic molecules’ under balanced pumping

    NASA Astrophysics Data System (ADS)

    Bentley, C. D. B.; Celestino, A.; Yacomotti, A. M.; El-Ganainy, R.; Eisfeld, A.

    2018-06-01

    We theoretically investigate the problem of localization control of few-photon states in driven-dissipative parity-symmetric photonic molecules. Photonic molecules are multi-cavity photonic systems. We show that a quantum feedback loop can utilize the information of the spontaneously-emitted photons from each cavity to induce asymmetric photon population in the cavities, while maintaining a balanced pump that respects parity symmetry. To better understand the system’s behavior, we characterize the degree of asymmetry as a function of the coupling between the two optical cavities. Contrary to intuitive expectations, we find that in some regimes the coupling can enhance the population asymmetry. We also show that these results are robust against experimental imperfections and limitations such as detection efficiency.

  10. Black Hole Binaries in Quiescence

    NASA Astrophysics Data System (ADS)

    Bailyn, Charles D.

    I discuss some of what is known and unknown about the behavior of black hole binary systems in the quiescent accretion state. Quiescence is important for several reasons: 1) the dominance of the companion star in optical and IR wavelengths allows the binary parameters to be robustly determined - as an example, we argue that the longer proposed distance to the X-ray source GRO J1655-40 is correct; 2) quiescence represents the limiting case of an extremely low accretion rate, in which both accretion and jets can be observed; 3) understanding the evolution and duration of the quiescent state is a key factor in determining the overall demographics of X-ray binaries, which has taken on a new importance in the era of gravitational wave astronomy.

  11. Successful Completion of the JWST OGSE2 Cryogenic Test at JSC Chamber-A While Managing Numerous Challenges

    NASA Technical Reports Server (NTRS)

    Park, Sang C.; Brinckerhoff, Pamela; Franck, Randy; Schweickart, Rusty; Thomson, Shaun; Burt, Bill; Ousley, Wes

    2016-01-01

    The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) assembly is the largest optically stable infrared-optimized telescope currently being manufactured and assembled, and scheduled for launch in 2018. The JWST OTE, including the primary mirrors, secondary mirror, and the Aft Optics Subsystems (AOS) are designed to be passively cooled and operate at near 45 degrees Kelvin. Due to the size of its large sunshield in relation to existing test facilities, JWST cannot be optically or thermally tested as a complete observatory-level system at flight temperatures. As a result, the telescope portion along with its instrument complement will be tested as a single unit very late in the program, and on the program schedule critical path. To mitigate schedule risks, a set of 'pathfinder' cryogenic tests will be performed to reduce program risks by demonstrating the optical testing capabilities of the facility, characterizing telescope thermal performance, and allowing project personnel to learn valuable testing lessons off-line. This paper describes the 'pathfinder' cryogenic test program, focusing on the recently completed second test in the series called the Optical Ground Support Equipment 2 (OGSE2) test. The JWST OGSE2 was successfully completed within the allocated project schedule while faced with numerous conflicting thermal requirements during cool-down to the final cryogenic operational temperatures, and during warm-up after the cryo-stable optical tests. The challenges include developing a pre-test cool-down and warm-up profiles without a reliable method to predict the thermal behaviors in a rarified helium environment, and managing the test article hardware safety driven by the project Limits and Constraints (L&C's). Furthermore, OGSE2 test included the time critical Aft Optics Subsystem (AOS), a part of the flight Optical Telescope Element that would need to be placed back in the overall telescope assembly integrations. The OGSE2 test requirements included the strict adherence of the project contamination controls due to the presence of the contamination sensitive flight optical elements. The test operations required close coordination of numerous personnel while they being exposed and trained for the 'final' combined OTE and instrument cryo-test in 2017. This paper will also encompass the OGSE2 thermal data look-back review.

  12. Effects of Optical-density and Phase Dispersion of an Imperfect Band-limited Occulting Mask on the Broadband Performance of a TPF Coronagraph

    NASA Technical Reports Server (NTRS)

    Sidiek, Erkin; Balasubramanian, Kunjithapatham

    2007-01-01

    Practical image-plane occulting masks required by high-contrast imaging systems such as the TPF-Coronagraph introduce phase errors into the transmitting beam., or, equivalently, diffracts the residual starlight into the area of the final image plane used for detecting exo-planets. Our group at JPL has recently proposed spatially Profiled metal masks that can be designed to have zero parasitic phase at the center wavelength of the incoming broadband light with small amounts of' 00 and phase dispersions at other wavelengths. Work is currently underway to design. fabricate and characterize such image-plane masks. In order to gain some understanding on the behaviors of these new imperfect band-limited occulting masks and clarify how such masks utilizing different metals or alloys compare with each other, we carried out some modeling and simulations on the contrast performance of the high-contrast imaging testbed (HCIT) at .JPL. In this paper we describe the details of our simulations and present our results.

  13. High rectification in organic diodes based on liquid crystalline phthalocyanines.

    PubMed

    Apostol, Petru; Eccher, Juliana; Dotto, Marta Elisa Rosso; Costa, Cassiano Batesttin; Cazati, Thiago; Hillard, Elizabeth A; Bock, Harald; Bechtold, Ivan H

    2015-12-28

    The optical and electrical properties of mesogenic metal-free and metalated phthalocyanines (PCs) with a moderately sized and regioregular alkyl periphery were investigated. In solution, the individualized molecules show fluorescence lifetimes of 4-6 ns in THF. When deposited as solid thin films the materials exhibit significantly shorter fluorescence lifetimes with bi-exponential decay (1.4-1.8 ns; 0.2-0.4 ns) that testify to the formation of aggregates viaπ-π intermolecular interactions. In diode structures, their pronounced columnar order outbalances the unfavorable planar alignment and leads to excellent rectification behavior. Field-dependent charge carrier mobilities are obtained from the J-V curves in the trap-limited space-charge-limited current regime and demonstrate that the metalated PCs display an improved electrical response with respect to the metal-free homologue. The excited-state lifetime characterization suggest that the π-π intermolecular interactions are stronger for the metal-free PC, confirming that the metallic centre plays an important role in the charge transport inside these materials.

  14. Measurement of fracture stress for 6000-series extruded aluminum alloy tube using multiaxial tube expansion testing method

    NASA Astrophysics Data System (ADS)

    Nagai, Keisuke; Kuwabara, Toshihiko; Ilinich, Andrey; Luckey, George

    2018-05-01

    A servo-controlled tension-internal pressure testing machine with an optical 3D digital image correlation system (DIC) is used to measure the multiaxial deformation behavior of an extruded aluminum alloy tube for a strain range from initial yield to fracture. The outer diameter of the test sample is 50.8 mm and wall thickness 2.8 mm. Nine linear stress paths are applied to the specimens: σɸ (axial true stress component) : σθ (circumferential true stress component) = 1:0, 4:1, 2:1, 4:3, 1:1, 3:4, 1:2, 1:4, and 0:1. The equivalent strain rate is approximately 5 × 10-4 s-1 constant. The forming limit curve (FLC) and forming limit stress curve (FLSC) are also measured. Moreover, the average true stress components inside a localized necking area are determined for each specimen from the thickness strain data for the localized necking area and the geometry of the fracture surface.

  15. The influence of point defects on the thermal conductivity of AlN crystals

    NASA Astrophysics Data System (ADS)

    Rounds, Robert; Sarkar, Biplab; Alden, Dorian; Guo, Qiang; Klump, Andrew; Hartmann, Carsten; Nagashima, Toru; Kirste, Ronny; Franke, Alexander; Bickermann, Matthias; Kumagai, Yoshinao; Sitar, Zlatko; Collazo, Ramón

    2018-05-01

    The average bulk thermal conductivity of free-standing physical vapor transport and hydride vapor phase epitaxy single crystal AlN samples with different impurity concentrations is analyzed using the 3ω method in the temperature range of 30-325 K. AlN wafers grown by physical vapor transport show significant variation in thermal conductivity at room temperature with values ranging between 268 W/m K and 339 W/m K. AlN crystals grown by hydride vapor phase epitaxy yield values between 298 W/m K and 341 W/m K at room temperature, suggesting that the same fundamental mechanisms limit the thermal conductivity of AlN grown by both techniques. All samples in this work show phonon resonance behavior resulting from incorporated point defects. Samples shown by optical analysis to contain carbon-silicon complexes exhibit higher thermal conductivity above 100 K. Phonon scattering by point defects is determined to be the main limiting factor for thermal conductivity of AlN within the investigated temperature range.

  16. Virtual rigid body: a new optical tracking paradigm in image-guided interventions

    NASA Astrophysics Data System (ADS)

    Cheng, Alexis; Lee, David S.; Deshmukh, Nishikant; Boctor, Emad M.

    2015-03-01

    Tracking technology is often necessary for image-guided surgical interventions. Optical tracking is one the options, but it suffers from line of sight and workspace limitations. Optical tracking is accomplished by attaching a rigid body marker, having a pattern for pose detection, onto a tool or device. A larger rigid body results in more accurate tracking, but at the same time large size limits its usage in a crowded surgical workspace. This work presents a prototype of a novel optical tracking method using a virtual rigid body (VRB). We define the VRB as a 3D rigid body marker in the form of pattern on a surface generated from a light source. Its pose can be recovered by observing the projected pattern with a stereo-camera system. The rigid body's size is no longer physically limited as we can manufacture small size light sources. Conventional optical tracking also requires line of sight to the rigid body. VRB overcomes these limitations by detecting a pattern projected onto the surface. We can project the pattern onto a region of interest, allowing the pattern to always be in the view of the optical tracker. This helps to decrease the occurrence of occlusions. This manuscript describes the method and results compared with conventional optical tracking in an experiment setup using known motions. The experiments are done using an optical tracker and a linear-stage, resulting in targeting errors of 0.38mm+/-0.28mm with our method compared to 0.23mm+/-0.22mm with conventional optical markers. Another experiment that replaced the linear stage with a robot arm resulted in rotational errors of 0.50+/-0.31° and 2.68+/-2.20° and the translation errors of 0.18+/-0.10 mm and 0.03+/-0.02 mm respectively.

  17. Uni-directional optical pulses, temporal propagation, and spatial and temporal dispersion

    NASA Astrophysics Data System (ADS)

    Kinsler, P.

    2018-02-01

    I derive a temporally propagated uni-directional optical pulse equation valid in the few cycle limit. Temporal propagation is advantageous because it naturally preserves causality, unlike the competing spatially propagated models. The exact coupled bi-directional equations that this approach generates can be efficiently approximated down to a uni-directional form in cases where an optical pulse changes little over one optical cycle. They also permit a direct term-to-term comparison of the exact bi-directional theory with its corresponding approximate uni-directional theory. Notably, temporal propagation handles dispersion in a different way, and this difference serves to highlight existing approximations inherent in spatially propagated treatments of dispersion. Accordingly, I emphasise the need for future work in clarifying the limitations of the dispersion conversion required by these types of approaches; since the only alternative in the few cycle limit may be to resort to the much more computationally intensive full Maxwell equation solvers.

  18. Design of near-infrared dyes for nonlinear optics: toward optical limiting applications at telecommunication wavelengths

    NASA Astrophysics Data System (ADS)

    Bellier, Quentin; Bouit, Pierre-Antoine; Kamada, Kenji; Feneyrou, Patrick; Malmström, E.; Maury, Olivier; Andraud, Chantal

    2009-09-01

    The rapid development of frequency-tunable pulsed lasers up to telecommunication wavelengths (1400-1600 nm) led to the design of new materials for nonlinear absorption in this spectral range. In this context, two families of near infra-red (NIR) chromophores, namely heptamethine cyanine and aza-borondipyrromethene (aza-bodipy) dyes were studied. In both cases, they show significant two-photon absorption (TPA) cross-sections in the 1400-1600 nm spectral range and display good optical power limiting (OPL) properties. OPL curves were interpreted on the basis of TPA followed by excited state absorption (ESA) phenomena. Finally these systems have several relevant properties like nonlinear absorption properties, gram scale synthesis and high solubility. In addition, they could be functionalized on several sites which open the way to numerous practical applications in biology, solid-state optical limiting and signal processing.

  19. Perturbations of the optical properties of mineral dust particles by mixing with black carbon: a numerical simulation study

    DOE PAGES

    Scarnato, B. V.; China, S.; Nielsen, K.; ...

    2015-06-25

    Field observations show that individual aerosol particles are a complex mixture of a wide variety of species, reflecting different sources and physico-chemical transformations. The impacts of individual aerosol morphology and mixing characteristics on the Earth system are not yet fully understood. Here we present a sensitivity study on climate-relevant aerosols optical properties to various approximations. Based on aerosol samples collected in various geographical locations, we have observationally constrained size, morphology and mixing, and accordingly simulated, using the discrete dipole approximation model (DDSCAT), optical properties of three aerosols types: (1) bare black carbon (BC) aggregates, (2) bare mineral dust, and (3)more » an internal mixture of a BC aggregate laying on top of a mineral dust particle, also referred to as polluted dust. DDSCAT predicts optical properties and their spectral dependence consistently with observations for all the studied cases. Predicted values of mass absorption, scattering and extinction coefficients (MAC, MSC, MEC) for bare BC show a weak dependence on the BC aggregate size, while the asymmetry parameter ( g) shows the opposite behavior. The simulated optical properties of bare mineral dust present a large variability depending on the modeled dust shape, confirming the limited range of applicability of spheroids over different types and size of mineral dust aerosols, in agreement with previous modeling studies. The polluted dust cases show a strong decrease in MAC values with the increase in dust particle size (for the same BC size) and an increase of the single scattering albedo (SSA). Furthermore, particles with a radius between 180 and 300 nm are characterized by a decrease in SSA values compared to bare dust, in agreement with field observations.This paper demonstrates that observationally constrained DDSCAT simulations allow one to better understand the variability of the measured aerosol optical properties in ambient air and to define benchmark biases due to different approximations in aerosol parametrization.« less

  20. Optical Rotatory Dispersion: New Twists on AN Old Topic

    NASA Astrophysics Data System (ADS)

    Vaccaro, Patrick

    2017-06-01

    Among the many physicochemical properties used to distinguish chiral molecules, perhaps none has had as profound and sustained an impact in the realm of chemistry as the characteristic interactions that take place with polarized light. Of special note is the dispersive (non-resonant) phenomenon of circular birefringence (CB), the manifestation of which first was reported over two centuries ago and which still is employed routinely - in the more familiar guise of specific optical rotation - to gauge the enantiomeric purity of the products emerging from asymmetric syntheses. Concerted experimental and theoretical efforts designed to probe such electronic optical activity in isolated chiral molecules will be presented, with special emphasis directed towards the marked influence that intramolecular (vibrational and conformational) dynamics and intermolecular (environmental) perturbations can exert upon the intrinsic chiroptical response. Requisite isolated-molecule measurements have been made possible by our continuing development of cavity ring-down polarimetry (CRDP), an ultrasensitive polarimetric scheme that has permitted the first quantitative analyses of optical rotatory dispersion (ORD or wavelength-resolved CB) to be performed in rarefied (gaseous) media. Various technical aspects of CRDP will be discussed to illustrate the unique capabilities and practical limitations afforded by this novel methodology. Comparison of specific rotation values acquired for a broad spectrum of rigid and flexible chiral species under complementary isolated and solvated conditions will highlight the intimate coupling that exists among electronic and nuclear degrees of freedom as well as the pronounced, yet oftentimes counterintuitive, effects incurred by subtle solute-solvent interactions. The disparate nature of optical activity extracted from different surroundings will be demonstrated, with quantum-chemical calculations serving to elucidate the structural, electronic, and environmental provenance of observed behavior. In addition to unraveling basic processes that mediate chiroptical response in condensed media, the vapor-phase ORD benchmarks resulting from these studies afford a critical assessment for computational predictions of dispersive optical activity and for their burgeoning ability to assist in the assignment of absolute stereochemical configuration.

Top