Sample records for optical link test

  1. Bit-error-rate testing of fiber optic data links for MMIC-based phased array antennas

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.

    1990-01-01

    The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.

  2. The FRD and transmission of the 270-m GRACES optical fiber link and a high numerical aperture fiber for astronomy

    NASA Astrophysics Data System (ADS)

    Pazder, John; Fournier, Paul; Pawluczyk, Rafal; van Kooten, Maaike

    2014-07-01

    We report results of the extensive development work done on the 270-m optical fiber link for the GRACES project and a preliminary investigations into a high numerical aperture fiber for astronomy. The Gemini Remote Access CFHT ESPaDOnS Spectrograph (GRACES) is an instrumentation experiment to link ESPaDOnS, a bench-mounted highresolution optical spectrograph at CFHT, to the Gemini-North telescope with an optical fiber link. A 270-m fiber link with less than 14% Focal Ratio Degradation (FRD) has been developed jointly by HIA and FiberTech Optica for the experiment. A preliminary study has been conducted by HIA into a high numerical aperture fiber (0.26 numerical aperture) with the intended application of wide field optical spectrographs fiber fed from the telescope prime focus. The Laboratory test results of FRD, transmission, and stability for the GRACES fiber link and preliminary FRD measurements of the high numerical aperture fiber tests are reported.

  3. Field Test on the Feasibility of Remoting HF Antenna with Fiber Optics

    DTIC Science & Technology

    2008-07-31

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5652--08-9137 Field Test on the Feasibility of Remoting HF Antenna with Fiber Optics July...NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Field Test on the Feasibility of Remoting HF Antenna...optic link was employed to remote a high-frequency ( HF , 2-30 MHz) direction-finding (DF) array. The test link comprised a seven-element “L” array

  4. Test of Special Relativity Using a Fiber Network of Optical Clocks.

    PubMed

    Delva, P; Lodewyck, J; Bilicki, S; Bookjans, E; Vallet, G; Le Targat, R; Pottie, P-E; Guerlin, C; Meynadier, F; Le Poncin-Lafitte, C; Lopez, O; Amy-Klein, A; Lee, W-K; Quintin, N; Lisdat, C; Al-Masoudi, A; Dörscher, S; Grebing, C; Grosche, G; Kuhl, A; Raupach, S; Sterr, U; Hill, I R; Hobson, R; Bowden, W; Kronjäger, J; Marra, G; Rolland, A; Baynes, F N; Margolis, H S; Gill, P

    2017-06-02

    Phase compensated optical fiber links enable high accuracy atomic clocks separated by thousands of kilometers to be compared with unprecedented statistical resolution. By searching for a daily variation of the frequency difference between four strontium optical lattice clocks in different locations throughout Europe connected by such links, we improve upon previous tests of time dilation predicted by special relativity. We obtain a constraint on the Robertson-Mansouri-Sexl parameter |α|≲1.1×10^{-8}, quantifying a violation of time dilation, thus improving by a factor of around 2 the best known constraint obtained with Ives-Stilwell type experiments, and by 2 orders of magnitude the best constraint obtained by comparing atomic clocks. This work is the first of a new generation of tests of fundamental physics using optical clocks and fiber links. As clocks improve, and as fiber links are routinely operated, we expect that the tests initiated in this Letter will improve by orders of magnitude in the near future.

  5. Implementing and testing a fiber-optic polarization-based intrusion detection system

    NASA Astrophysics Data System (ADS)

    Hajj, Rasha El; MacDonald, Gregory; Verma, Pramode; Huck, Robert

    2015-09-01

    We describe a layer-1-based intrusion detection system for fiber-optic-based networks. Layer-1-based intrusion detection represents a significant elevation in security as it prohibits an adversary from obtaining information in the first place (no cryptanalysis is possible). We describe the experimental setup of the intrusion detection system, which is based on monitoring the behavior of certain attributes of light both in unperturbed and perturbed optical fiber links. The system was tested with optical fiber links of various lengths and types, under different environmental conditions, and under changes in fiber geometry similar to what is experienced during tapping activity. Comparison of the results for perturbed and unperturbed links has shown that the state of polarization is more sensitive to intrusion activity than the degree of polarization or power of the received light. The testing was conducted in a simulated telecommunication network environment that included both underground and aerial links. The links were monitored for intrusion activity. Attempts to tap the link were easily detected with no apparent degradation in the visual quality of the real-time surveillance video.

  6. DFB laser - External modulator fiber optic delay line for radar applications

    NASA Astrophysics Data System (ADS)

    Newberg, I. L.; Gee, C. M.; Thurmond, G. D.; Yen, H. W.

    1989-09-01

    A new application of a long fiber-optic delay line as a radar repeater in a radar test set is described. The experimental 31.6-kilometer fiber-optic link includes an external modulator operating with a distributed-feedback laser and low-loss single-mode fiber matched to the laser wavelength to obtain low dispersion for achieving large bandwidth-length performance. The successful tests, in which pulse compression peak sidelobe measurements are used to confirm the link RF phase linearity and SNR performance, show that fiber-optic links can meet the stringent phase and noise requirements of modern radars at high microwave frequencies.

  7. Remote Transmission at High Speed

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Omni and NASA Test Operations at Stennis entered a Dual-Use Agreement to develop the FOTR-125, a 125 megabit-per-second fiber-optic transceiver that allows accurate digital recordings over a great distance. The transceiver s fiber-optic link can be as long as 25 kilometers. This makes it much longer than the standard coaxial link, which can be no longer than 50 meters.The FOTR-125 utilizes laser diode transmitter modules and integrated receivers for the optical interface. Two transmitters and two receivers are employed at each end of the link with automatic or manual switchover to maximize the reliability of the communications link. NASA uses the transceiver in Stennis High-Speed Data Acquisition System (HSDAS). The HSDAS consists of several identical systems installed on the Center s test stands to process all high-speed data related to its propulsion test programs. These transceivers allow the recorder and HSDAS controls to be located in the Test Control Center in a remote location while the digitizer is located on the test stand.

  8. VCSEL-based fiber optic link for avionics: implementation and performance analyses

    NASA Astrophysics Data System (ADS)

    Shi, Jieqin; Zhang, Chunxi; Duan, Jingyuan; Wen, Huaitao

    2006-11-01

    A Gb/s fiber optic link with built-in test capability (BIT) basing on vertical-cavity surface-emitting laser (VCSEL) sources for military avionics bus for next generation has been presented in this paper. To accurately predict link performance, statistical methods and Bit Error Rate (BER) measurements have been examined. The results show that the 1Gb/s fiber optic link meets the BER requirement and values for link margin can reach up to 13dB. Analysis shows that the suggested photonic network may provide high performance and low cost interconnections alternative for future military avionics.

  9. Solar Power Satellite (SPS) fiber optic link assessment

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A feasibility demonstration of a 980 MHz fiber optic link for the Solar Power Satellite (SPS) phase reference distribution system was accomplished. A dual fiber-optic link suitable for a phase distribution frequency of 980 MHz was built and tested. The major link components include single mode injection laser diodes, avalanche photodiodes, and multimode high bandwidth fibers. Signal throughput was demonstrated to be stable and of high quality in all cases. For a typical SPS link length of 200 meters, the transmitted phase at 980 MHz varies approximately 2.5 degrees for every deg C of fiber temperature change. This rate is acceptable because of the link length compensation feature of the phase control design.

  10. Results from the DOLCE (Deep Space Optical Link Communications Experiment) project

    NASA Astrophysics Data System (ADS)

    Baister, Guy; Kudielka, Klaus; Dreischer, Thomas; Tüchler, Michael

    2009-02-01

    Oerlikon Space AG has since 1995 been developing the OPTEL family of optical communications terminals. The optical terminals within the OPTEL family have been designed so as to be able to position Oerlikon Space for future opportunities open to this technology. These opportunities range from commercial optical satellite crosslinks between geostationary (GEO) satellites, deep space optical links between planetary probes and the Earth, as well as optical links between airborne platforms (either between the airborne platforms or between a platform and GEO satellite). The OPTEL terminal for deep space applications has been designed as an integrated RF-optical terminal for telemetry links between the science probe and Earth. The integrated architecture provides increased TM link capacities through the use of an optical link, while spacecraft navigation and telecommand are ensured by the classical RF link. The optical TM link employs pulsed laser communications operating at 1058nm to transmit data using PPM modulation to achieve a robust link to atmospheric degradation at the optical ground station. For deep space links from Lagrange (L1 / L2) data rates of 10 - 20 Mbps can be achieved for the same spacecraft budgets (mass and power) as an RF high gain antenna. Results of an inter-island test campaign to demonstrate the performance of the pulsed laser communications subsystem employing 32-PPM for links through the atmosphere over a distance of 142 km are presented. The transmitter of the communications subsystem is a master oscillator power amplifier (MOPA) employing a 1 W (average power) amplifier and the receiver a Si APD with a measured sensitivity of -70.9 dBm for 32-PPM modulation format at a user data rate of 10 Mbps and a bit error rate (BER) of 10-6.

  11. LOLA: a 40.000 km optical link between an aircraft and a geostationary satellite

    NASA Astrophysics Data System (ADS)

    Cazaubiel, Vincent; Planche, Gilles; Chorvalli, Vincent; Le Hors, Lénaïc.; Roy, Bernard; Giraud, Emmanuel; Vaillon, Ludovic; Carre, Francois; Decourbey, Eric

    2017-11-01

    The LOLA program aims at characterising a 40.000 km optical link through the atmosphere between a high altitude aircraft and a geostationary platform. It opens a new area in the field of optical communications with moving platforms. A complete new optical terminal has been designed and manufactured for this program. The optical terminal architecture includes a specific pointing subsystem to acquire and stabilize the line of sight despite the induced vibrations from the aircraft and the moving pattern from the received laser signal. The optical configuration features a silicon carbide telescope and optical bench to ensure a high thermoelastic angular stability between receive and transmit beams. The communications subsystem includes fibered laser diodes developed in Europe and high performance avalanche photo detectors. Specific encoding patterns are used to maintain the performance of the link despite potential strong fading of the signal. A specific optical link model through the atmosphere has been developed and has been validated thanks to the optical link measurements performed between ARTEMIS and the Optical Ground Station located in the Canarian islands. This model will be used during the flight tests campaign that is to start this summer.

  12. Demonstration of a High-Efficiency Free-Space Optical Communications Link

    NASA Technical Reports Server (NTRS)

    Birnbaum, Kevin; Farr, William; Gin, Jonathan; Moision, Bruce; Quirk, Kevin; Wright, Malcolm

    2009-01-01

    In this paper we discuss recent progress on the implementation of a hardware free-space optical communications test-bed. The test-bed implements an end-to-end communications system comprising a data encoder, modulator, laser-transmitter, telescope, detector, receiver and error-correction-code decoder. Implementation of each of the component systems is discussed, with an emphasis on 'real-world' system performance degradation and limitations. We have demonstrated real-time data rates of 44 Mbps and photon efficiencies of approximately 1.8 bits/photon over a 100m free-space optical link.

  13. Long microwave delay fiber-optic link for radar testing

    NASA Astrophysics Data System (ADS)

    Newberg, I. L.; Gee, C. M.; Thurmond, G. D.; Yen, H. W.

    1990-05-01

    A long fiberoptic delay line is used as a radar repeater to improve radar testing capabilities. The first known generation of 152 microsec delayed ideal target at X-band (10 GHz) frequencies having the phase stability and signal-to-noise ratio (SNR) needed for testing modern high-resolution Doppler radars is demonstrated with a 31.6-km experimental externally modulated fiberoptic link with a distributed-feedback (DFB) laser. The test application, link configuration, and link testing are discussed.

  14. Applications of Emerging Parallel Optical Link Technology to High Energy Physics Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chramowicz, J.; Kwan, S.; Prosser, A.

    2011-09-01

    Modern particle detectors depend upon optical fiber links to deliver event data to upstream trigger and data processing systems. Future detector systems can benefit from the development of dense arrangements of high speed optical links emerging from the telecommunications and storage area network market segments. These links support data transfers in each direction at rates up to 120 Gbps in packages that minimize or even eliminate edge connector requirements. Emerging products include a class of devices known as optical engines which permit assembly of the optical transceivers in close proximity to the electrical interfaces of ASICs and FPGAs which handlemore » the data in parallel electrical format. Such assemblies will reduce required printed circuit board area and minimize electromagnetic interference and susceptibility. We will present test results of some of these parallel components and report on the development of pluggable FPGA Mezzanine Cards equipped with optical engines to provide to collaborators on the Versatile Link Common Project for the HI-LHC at CERN.« less

  15. Research on target information optics communications transmission characteristic and performance in multi-screens testing system

    NASA Astrophysics Data System (ADS)

    Li, Hanshan

    2016-04-01

    To enhance the stability and reliability of multi-screens testing system, this paper studies multi-screens target optical information transmission link properties and performance in long-distance, sets up the discrete multi-tone modulation transmission model based on geometric model of laser multi-screens testing system and visible light information communication principle; analyzes the electro-optic and photoelectric conversion function of sender and receiver in target optical information communication system; researches target information transmission performance and transfer function of the generalized visible-light communication channel; found optical information communication transmission link light intensity space distribution model and distribution function; derives the SNR model of information transmission communication system. Through the calculation and experiment analysis, the results show that the transmission error rate increases with the increment of transmission rate in a certain channel modulation depth; when selecting the appropriate transmission rate, the bit error rate reach 0.01.

  16. Repair and maintenance of fiber optic data links on Navy aircraft

    NASA Astrophysics Data System (ADS)

    Fryland, Eric

    1992-02-01

    This paper will examine the problems and concerns of repairing fiber optic data links on carrier based Navy aircraft and will present the results of fiber optic splice testing that was performed aboard the USS Abraham Lincoln (CVN-72) in January 1991. Mechanical splicing of 50/125 micrometer fiber was performed at the various Navy maintenance levels in order to quantify the effects of the aircraft carrier environment on fiber optic splicing. Results, conclusions and recommendations will be given.

  17. Preliminary analysis of WL experiment number 701: Space environment effects on operating fiber optic systems

    NASA Technical Reports Server (NTRS)

    Taylor, E. W.; Padden, R. J.; Berry, J. N.; Sanchez, A. D.; Chapman, S. P.

    1991-01-01

    A brief overview of the analysis performed on WL Experiment number 701 is presented, highlighting the successful operation of the first know active fiber optic links orbited in space. Four operating fiber optic links were exposed to the space environment for a period exceeding five years, situated aboard and external to the Long Duration Exposure Facility (LDEF). Despite the prolonged space exposure to radiation, wide temperature extremums, atomic oxygen interactions, and micrometeorite and debris impacts, the optical data links performed well within specification limits. Early Phillips Laboratory tests and analyses performed on the experiment and its recovered magnetic tape data strongly indicate that fiber optic application in space will have a high success rate.

  18. X-linked juvenile retinoschisis in a consanguineous family: phenotypic variability and report of a homozygous female patient.

    PubMed

    Gliem, Martin; Holz, Frank G; Stöhr, Heidi; Weber, Bernhard H F; Charbel Issa, Peter

    2014-12-01

    To describe the phenotypic variability in a consanguineous family with genetically confirmed X-linked retinoschisis. Five patients, including one homozygous female, were characterized by clinical examination, optical coherence tomography, fundus autofluorescence, mapping of macular pigment optical density, electroretinography, and DNA testing. The 36-year-old male index patient showed a ring of enhanced autofluorescence and outer retinal atrophy on optical coherence tomography. Electroretinography testing revealed a reduced a/b ratio. His mother presented with a central atrophic retina with markedly reduced autofluorescence signal and a surrounding ring of enhanced autofluorescence. The 40-year-old brother of the index patient and his 2 sons showed characteristic signs for X-linked retinoschisis, including retinal schisis and a reduced a/b ratio. Genetic testing revealed a c.293C>A mutation in the RS1 gene in all affected family members while the mother of the index patient was homozygous for this mutation. X-linked retinoschisis can present with a wide phenotypic variability. Here, detailed family history and genetic testing established the diagnosis of X-linked retinoschisis despite striking differences in phenotypic presentation in affected subjects, homozygosity of one affected female, and seemingly dominant inheritance in three subsequent generations because of multiple consanguinity.

  19. Performance Characterization of Digital Optical Data Transfer Systems for Use in the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Reed, Robert A.; Ladbury, Ray L.; Day, John H. (Technical Monitor)

    2000-01-01

    Radiation effects in photonic and microelectronic components can impact the performance of high-speed digital optical data link in a variety of ways. This segment of the short course focuses on radiation effects in digital optical data links operating in the MHz to GHz regime. (Some of the information is applicable to frequencies above and below this regime) The three basic component level effects that should be considered are Total Ionizing Dose (TID), Displacement Damage Dose (DDD) and Single Event Effects (SEE). In some cases the system performance degradation can be quantified from component level tests, while in others a more holistic characterization approach must be taken. In Section 2.0 of this segment of the Short Course we will give a brief overview of the space radiation environment follow by a summary of the basic space radiation effects important for microelectronics and photonics listed above. The last part of this section will give an example of a typical mission radiation environment requirements. Section 3.0 gives an overview of intra-satellite digital optical data link systems. It contains a discussion of the digital optical data link and it's components. Also, we discuss some of the important system performance metrics that are impacted by radiation effects degradation of optical and optoelectronic component performance. Section 4.0 discusses radiation effects in optical and optoelectronic components. While each component effect will be discussed, the focus of this section is on degradation of passive optical components and SEE in photodiodes (other mechanisms are covered in segment II of this short course entitled "Photonic Devices with Complex and Multiple Failure Modes"). Section 5.0 will focus on optical data link system response to the space radiation environment. System level SEE ground testing will be discussed. Then we give a discussion of system level assessment of data link performance when operating in the space radiation environment.

  20. A family with X-linked optic atrophy linked to the OPA2 locus Xp11.4-Xp11.2.

    PubMed

    Katz, Bradley J; Zhao, Yu; Warner, Judith E A; Tong, Zongzhong; Yang, Zhenglin; Zhang, Kang

    2006-10-15

    Autosomal dominant optic atrophy (ADOA) is the most common inherited optic atrophy. Clinical features of ADOA include a slowly progressive bilateral loss of visual acuity, constriction of peripheral visual fields, central scotomas, and color vision abnormalities. Although ADOA is the most commonly inherited optic atrophy, autosomal recessive, X-linked, mitochondrial, and sporadic forms have also been reported. Four families with X-linked optic atrophy (XLOA) were previously described. One family was subsequently linked to Xp11.4-Xp11.2 (OPA2). This investigation studied one multi-generation family with an apparently X-linked form of optic atrophy and compared their clinical characteristics with those of the previously described families, and determined whether this family was linked to the same genetic locus. Fifteen individuals in a three-generation Idaho family underwent complete eye examination, color vision testing, automated perimetry, and fundus photography. Polymorphic markers were used to genotype each individual and to determine linkage. Visual acuities ranged from 20/30 to 20/100. All affected subjects had significant optic nerve pallor. Obligate female carriers were clinically unaffected. Preliminary linkage analysis (LOD score = 1.8) revealed that the disease gene localized to the OPA2 locus on Xp11.4-Xp11.2. Four forms of inherited optic neuropathy, ADOA, autosomal recessive optic atrophy (Costeff Syndrome), Leber hereditary optic neuropathy, and Charcot-Marie-Tooth disease with optic atrophy, are associated with mitochondrial dysfunction. Future identification of the XLOA gene will reveal whether this form of optic atrophy is also associated with a mitochondrial defect. Identification of the XLOA gene will advance our understanding of the inherited optic neuropathies and perhaps suggest treatments for these diseases. An improved understanding of inherited optic neuropathies may in turn advance our understanding of acquired optic nerve diseases, such as glaucoma and ischemic optic neuropathy. (c) 2006 Wiley-Liss, Inc.

  1. Aircraft lightning-induced voltage test technique developments

    NASA Technical Reports Server (NTRS)

    Crouch, K. E.

    1983-01-01

    High voltage safety, fuels safety, simulation, and response/measurement techniques are discussed. Travelling wave transit times, return circuit conductor configurations, LC ladder network generators, and repetitive pulse techniques are also discussed. Differential conductive coaxial cable, analog fiber optic link, repetitive pulse sampled data instrumentation system, flash A/D optic link system, and an FM telemetry system are considered.

  2. An Optical Receiver Post Processing System for the Integrated Radio and Optical Communications Software Defined Radio Test Bed

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer M.; Tokars, Roger P.; Wroblewski, Adam C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administrations (NASA) Glenn Research Center is investigating the feasibility of a hybrid radio frequency (RF) and optical communication system for future deep space missions. As a part of this investigation, a test bed for a radio frequency (RF) and optical software defined radio (SDR) has been built. Receivers and modems for the NASA deep space optical waveform are not commercially available so a custom ground optical receiver system has been built. This paper documents the ground optical receiver, which is used in order to test the RF and optical SDR in a free space optical communications link.

  3. An Optical Receiver Post-Processing System for the Integrated Radio and Optical Communications Software Defined Radio Test Bed

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer M.; Tokars, Roger P.; Wroblewski, Adam C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration's (NASA) Glenn Research Center is investigating the feasibility of a hybrid radio frequency (RF) and optical communication system for future deep space missions. As a part of this investigation, a test bed for a radio frequency (RF) and optical software defined radio (SDR) has been built. Receivers and modems for the NASA deep space optical waveform are not commercially available so a custom ground optical receiver system has been built. This paper documents the ground optical receiver, which is used in order to test the RF and optical SDR in a free space optical communications link.

  4. Accurate frequency and time dissemination in the optical domain

    NASA Astrophysics Data System (ADS)

    Khabarova, K. Yu; Kalganova, E. S.; Kolachevsky, N. N.

    2018-02-01

    The development of the optical frequency comb technique has enabled a wide use of atomic optical clocks by allowing frequency conversion from the optical to the radio frequency range. Today, the fractional instability of such clocks has reached the record eighteen-digit level, two orders of magnitude better than for cesium fountains representing the primary frequency standard. This is paralleled by the development of techniques for transferring accurate time and optical frequency signals, including fiber links. With this technology, the fractional instability of transferred frequency can be lowered to below 10‑18 with an averaging time of 1000 s for a 1000 km optical link. At a distance of 500 km, a time signal uncertainty of 250 ps has been achieved. Optical links allow comparing optical clocks and creating a synchronized time and frequency standard network at a new level of precision. Prospects for solving new problems arise, including the determination of the gravitational potential, the measurement of the continental Sagnac effect, and precise tests of fundamental theories.

  5. In-field Raman amplification on coherent optical fiber links for frequency metrology.

    PubMed

    Clivati, C; Bolognini, G; Calonico, D; Faralli, S; Mura, A; Levi, F

    2015-04-20

    Distributed Raman amplification (DRA) is widely exploited for the transmission of broadband, modulated signals used in data links, but not yet in coherent optical links for frequency metrology, where the requirements are rather different. After preliminary tests on fiber spools, in this paper we deeper investigate Raman amplification on deployed in-field optical metrological links. We actually test a Doppler-stabilized optical link both on a 94 km-long metro-network implementation with multiplexed ITU data channels and on a 180 km-long dedicated fiber haul connecting two cities, where DRA is employed in combination with Erbium-doped fiber amplification (EDFA). The performance of DRA is detailed in both experiments, indicating that it does not introduce noticeable penalties for the metrological signal or for the ITU data channels. We hence show that Raman amplification of metrological signals can be compatible with a wavelength division multiplexing architecture and that it can be used as an alternative or in combination with dedicated bidirectional EDFAs. No deterioration is noticed in the coherence properties of the delivered signal, which attains frequency instability at the 10(-19) level in both cases. This study can be of interest also in view of the undergoing deployment of continental fiber networks for frequency metrology.

  6. MULTIMODAL IMAGING OF MOSAIC RETINOPATHY IN CARRIERS OF HEREDITARY X-LINKED RECESSIVE DISEASES.

    PubMed

    Wu, An-Lun; Wang, Jung-Pan; Tseng, Yun-Ju; Liu, Laura; Kang, Yu-Chuan; Chen, Kuan-Jen; Chao, An-Ning; Yeh, Lung-Kun; Chen, Tun-Lu; Hwang, Yih-Shiou; Wu, Wei-Chi; Lai, Chi-Chun; Wang, Nan-Kai

    2018-05-01

    To investigate the clinical features in carriers of X-linked retinitis pigmentosa, X-linked ocular albinism, and choroideremia (CHM) using multimodal imaging and to assess their diagnostic value in these three mosaic retinopathies. We prospectively examined 14 carriers of 3 X-linked recessive disorders (X-linked retinitis pigmentosa, X-linked ocular albinism, and CHM). Details of abnormalities of retinal morphology were evaluated using fundus photography, fundus autofluorescence (FAF) imaging, and spectral domain optical coherence tomography. In six X-linked retinitis pigmentosa carriers, fundus appearance varied from unremarkable to the presence of tapetal-like reflex and pigmentary changes. On FAF imaging, all carriers exhibited a bright radial reflex against a dark background. By spectral domain optical coherence tomography, loss of the ellipsoid zone in the macula was observed in 3 carriers (50%). Regarding the retinal laminar architecture, 4 carriers (66.7%) showed thinning of the outer nuclear layer and a dentate appearance of the outer plexiform layer. All five X-linked ocular albinism carriers showed a characteristic mud-splatter patterned fundus, dark radial streaks against a bright background on FAF imaging, and a normal-appearing retinal structure by spectral domain optical coherence tomography imaging. Two of the 3 CHM carriers (66.7%) showed a diffuse moth-eaten appearance of the fundus, and all 3 showed irregular hyper-FAF and hypo-FAF spots throughout the affected area. In the CHM carriers, the structural changes observed by spectral domain optical coherence tomography imaging were variable. Our findings in an Asian cohort suggest that FAF imaging is a practical diagnostic test for differentiating X-linked retinitis pigmentosa, X-linked ocular albinism, and CHM carriers. Wide-field FAF is an easy and helpful adjunct to testing for the correct diagnosis and identification of lyonization in carriers of these three mosaic retinopathies.

  7. Systems Issues In Terrestrial Fiber Optic Link Reliability

    NASA Astrophysics Data System (ADS)

    Spencer, James L.; Lewin, Barry R.; Lee, T. Frank S.

    1990-01-01

    This paper reviews fiber optic system reliability issues from three different viewpoints - availability, operating environment, and evolving technologies. Present availability objectives for interoffice links and for the distribution loop must be re-examined for applications such as the Synchronous Optical Network (SONET), Fiber-to-the-Home (FTTH), and analog services. The hostile operating environments of emerging applications (such as FTTH) must be carefully considered in system design as well as reliability assessments. Finally, evolving technologies might require the development of new reliability testing strategies.

  8. Optical analog data link with simple self-test feature

    DOEpatents

    Witkover, Richard L.

    1986-01-01

    A communications circuit for optically transmitting analog data signals free of excessive ripple, while having rapid response time. The invention is further characterized by being adapted to provide an immediate indication of the failure of the optical transmission link of the circuit. Commercially available voltage to frequency converter chips are used in conjunction with suitable wiring arrays and in combination with readily available indicator means for constructing the communication circuit of the invention. A V/F converter in the communications circuit is coupled to an offset adjustment means to cause the converter to continuously produce a string of output voltage pulses having a frequency of about 1 Khz responsive to the input analog signal to the converter being zero. The continuous presence of the 1 Khz frequency on the optical transmission link is monitored at the receiving end of the communication circuit and the indicator means is connected to immediately provide an easily detected indication of a failure of the optical transmission link to transmit the 1 Khz frequency pulses.

  9. Optical analog data link with simple self-test feature

    DOEpatents

    Witkover, R.L.

    1984-02-01

    A communications circuit for optically transmitting analog data signals free of excessive ripple, while having rapid response time. The invention is further characterized by being adapted to provide an immediate indication of the failure of the optical transmission link of the circuit. Commerically available voltage to frequency converter chips are used in conjunction with suitable wiring arrays and in combination with readily available indicator means for constructing the communication circuit of the invention. A V/F converter in the communications circuit is coupled to an offset adjustment means to cause the converter to continuously produce a string of output voltage pulses having a frequency of about 1Khz responsive to the input analog signal to the converter being zero. The continuous presence of the 1Khz frequency on the optical transmission link is monitored at the receiving end of the communication circuit and the indicator means is connected to immediately provide an easily detected indication of a failure of the optical transmission link to transmit the 1Khz frequency pulses.

  10. Impact of nonlinearity phenomenon FWM in DWDM optical link considering dispersive fiber

    NASA Astrophysics Data System (ADS)

    Puche, William S.; Amaya, Ferney O.; Sierra, Javier E.

    2013-12-01

    The increasing demand of network traffic requires new research centers; improve their communications networks, due to the excessive use of mobile and portable devices wanting to have greater access to the network by downloading interactive content quickly and effectively. For our case analyze optical network link through simulation results assuming a DWDM (Dense wavelength Division Multiplexing) optical link, considering the nonlinearity phenomenon FWM (Four Mixed Wavelength) in order to compare their performance, assuming transmission bit rates to 2.5 Gbps and 10 Gbps, using three primary wavelengths of 1450 nm, 1550 nm and 1650 nm for the transmission of information, whose separation is 100 GHz to generate 16 channels or user information. Tests were conducted to analyze optical amplifiers EDFAs link robustness at a maximum distance of 200 km and identify parameters OSNR, SNR and BER, for a robust and effective transmission

  11. Design of stabilized platforms for deep space optical communications (DSOC)

    NASA Astrophysics Data System (ADS)

    Jacka, N.; Walter, R.; Laughlin, D.; McNally, J.

    2017-02-01

    Numerous Deep Space Optical Communications (DSOC) demonstrations are planned by NASA to provide the basis for future implementation of optical communications links in planetary science missions and eventually manned missions to Mars. There is a need for a simple, robust precision optical stabilization concept for long-range free space optical communications applications suitable for optical apertures and masses larger than the current state of the art. We developed a stabilization concept by exploiting the ultra-low noise and wide bandwidth of ATA-proprietary Magnetohydrodynamic (MHD) angular rate sensors and building on prior practices of flexure-based isolation. We detail a stabilization approach tailored for deep space optical communications, and present an innovative prototype design and test results. Our prototype system provides sub-micro radian stabilization for a deep space optical link such as NASA's integrated Radio frequency and Optical Communications (iROC) and NASA's DSOC programs. Initial test results and simulations suggest that >40 dB broadband jitter rejection is possible without placing unrealistic expectations on the control loop bandwidth and flexure isolation frequency. This approach offers a simple, robust method for platform stabilization without requiring a gravity offload apparatus for ground testing or launch locks to survive a typical launch environment. This paper reviews alternative stabilization concepts, their advantages and disadvantages, as well as, their applicability to various optical communications applications. We present results from testing that subjected the prototype system to realistic spacecraft base motion and confirmed predicted sub-micro radian stabilization performance with a realistic 20-cm aperture.

  12. Simultaneous transfer of optical frequency and time over 306 km long-haul optical fibre link

    NASA Astrophysics Data System (ADS)

    Hucl, Vaclav; Cizek, Martin; Pravdova, Lenka; Rerucha, Simon; Hrabina, Jan; Mikel, Bretislav; Smotlacha, Vladimir; Vojtech, Josef; Lazar, Josef; Cip, Ondrej

    2016-12-01

    Optical fibre links for distributing optical frequencies and time stamps were researched and experimentally tested in the past fifteen years. They have been used mainly for stability comparison of experimental optical clocks. But recent development puts demands on a technology transfer from laboratory experiments to the real industry. The remote calibration of interrogators of Fibre Bragg Grating strain sensory networks is one of important examples. The first step of the adoption the time and frequency broadcasting should be the drop-out free long-term operation of this technology between research laboratories connected via long-haul fibre links. We present a 306 km long-haul optical fibre link between the cities of Prague and Brno in the Czech Republic where a coherent transfer of stable optical frequency and a stable time signal has been firstly demonstrated. The link between ISI CAS Brno and CESNET Prague uses an internet communication fibre where a window of 1540-1546 nm is dedicated for the coherent transfer and 1PPS signal. The link is equipped with 6 bidirectional EDFA amplifiers. The optical frequency standard based on the highly-coherent laser Koheras Adjustik working at 1540.5 nm and stabilized with a saturation absorption spectroscopy technique was used for the coherent wave transfer. The suppression of the Doppler shift induced by the optical fibre was based on an accoustooptical modulator with a servo-loop including a fast PID controller processing the beat-note frequency given by mixing of the Adjustik laser (Brno) and the reflected frequency of this laser from the far end of 306 km long-haul fibre link (Prague). We verified the Doppler shift suppression for the coherent wave with a measuring method analysing the transport delay of the 1PPS signal.

  13. Ultra-stable optical links for space and ground applications

    NASA Astrophysics Data System (ADS)

    Narbonneau, F.; Lours, M.; Daussy, C.; Lopez, O.; Clairon, A.; Santarelli, G.

    2017-11-01

    We have demonstrated the feasibility of a free-space ultra-stable optical link on a 3 meters test bench, operating at 100 MHz. With this type of link, it is possible to transfer a 100 MHz signal with a relative frequency stability of a few 10-14 at one second integration time, 10-16 at one day and a phase stability of a few picoseconds per day in presence of moderate mechanical vibrations and thermal fluctuations. The comparisons of modern clocks of distant (<100 km) Time and Frequency laboratories have a strong scientific interest. In this context we study a low noise frequency distribution via optical fibres. Some preliminary tests have been realized and the results are encouraging. We expect to transfer ultra stable oscillators with a relative frequency stability of a few 10-14 at one second integration time, 10-16 at one day.

  14. Fiber Optic System Test Results In A Tactical Military Aircraft

    NASA Astrophysics Data System (ADS)

    Uhlhorn, Roger W.; Greenwell, Roger A.

    1980-09-01

    The YAV-8B Electromagnetic Immunity and Flight-Test Program was established to evaluate the susceptibility of wire and optical fiber signal transmission lines to electromagnetic interference when these lines are installed in a graphite/epoxy composite wing and to demonstrate the flightworthiness of fiber optics interconnects in the vertical/ short takeoff and landing aircraft environment. In response, two fiber optic systems were designed, fabricated, and flight tested by McDonnell Aircraft Co. (MCAIR), a division of the McDonnell Douglas Corporation, on the two YAV-8B V/STOL flight test aircraft. The program successfully demonstrated that fiber optics are compatible with the attack aircraft environment. As a result, the full scale development AV-8B will incorporate fiber optics in a point-to-point data link. We describe here the fiber optic systems designs, test equipment development, cabling and connection requirements, fabrication and installation experience, and flight test program results.

  15. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place.

    PubMed

    Predehl, K; Grosche, G; Raupach, S M F; Droste, S; Terra, O; Alnis, J; Legero, Th; Hänsch, T W; Udem, Th; Holzwarth, R; Schnatz, H

    2012-04-27

    Optical clocks show unprecedented accuracy, surpassing that of previously available clock systems by more than one order of magnitude. Precise intercomparisons will enable a variety of experiments, including tests of fundamental quantum physics and cosmology and applications in geodesy and navigation. Well-established, satellite-based techniques for microwave dissemination are not adequate to compare optical clocks. Here, we present phase-stabilized distribution of an optical frequency over 920 kilometers of telecommunication fiber. We used two antiparallel fiber links to determine their fractional frequency instability (modified Allan deviation) to 5 × 10(-15) in a 1-second integration time, reaching 10(-18) in less than 1000 seconds. For long integration times τ, the deviation from the expected frequency value has been constrained to within 4 × 10(-19). The link may serve as part of a Europe-wide optical frequency dissemination network.

  16. Optical fiber reliability results from the Biarritz field trial

    NASA Astrophysics Data System (ADS)

    Gouronnec, Alain; Goarin, Rolland; Le Moigne, G.; Baptiste, M.

    1994-09-01

    The first experimental optical fiber network (fiber to the home CATV and video-phone) was installed in BIARRITZ, France) at the beginning or 1980. Some parts of the first optical links have now been removed. FRANCE TELECOM decided to stop field trial services, it appeared interesting to evaluate and expertise fiber reliability after more than 10 years of aging in a real adverse field environment. In this paper we give a short description of the layed down links, and indicate how we have carefully removed the individual fibers from the cables. After a first measurement of the mechanical parameters using normalized dynamic and static tests, we compared the results obtained with those of the equivalent tests used to evaluate these fibers before their installation on the field. The tests used are the same than those used in the 80 th. In conclusion, the paper gives the ageing results measured on the BIARRITZ optical fibers after more than 10 years of service in real environment and evaluate it by comparison with the results before installation.

  17. On Applications of Disruption Tolerant Networking to Optical Networking in Space

    NASA Technical Reports Server (NTRS)

    Hylton, Alan Guy; Raible, Daniel E.; Juergens, Jeffrey; Iannicca, Dennis

    2012-01-01

    The integration of optical communication links into space networks via Disruption Tolerant Networking (DTN) is a largely unexplored area of research. Building on successful foundational work accomplished at JPL, we discuss a multi-hop multi-path network featuring optical links. The experimental test bed is constructed at the NASA Glenn Research Center featuring multiple Ethernet-to-fiber converters coupled with free space optical (FSO) communication channels. The test bed architecture models communication paths from deployed Mars assets to the deep space network (DSN) and finally to the mission operations center (MOC). Reliable versus unreliable communication methods are investigated and discussed; including reliable transport protocols, custody transfer, and fragmentation. Potential commercial applications may include an optical communications infrastructure deployment to support developing nations and remote areas, which are unburdened with supporting an existing heritage means of telecommunications. Narrow laser beam widths and control of polarization states offer inherent physical layer security benefits with optical communications over RF solutions. This paper explores whether or not DTN is appropriate for space-based optical networks, optimal payload sizes, reliability, and a discussion on security.

  18. Optical testing using the transport-of-intensity equation.

    PubMed

    Dorrer, C; Zuegel, J D

    2007-06-11

    The transport-of-intensity equation links the intensity and phase of an optical source to the longitudinal variation of its intensity in the presence of Fresnel diffraction. This equation can be used to provide a simple, accurate spatial-phase measurement for optical testing of flat surfaces. The properties of this approach are derived. The experimental demonstration is performed by quantifying the surface variations induced by the magnetorheological finishing process on laser rods.

  19. Analysis of link performance for the FOENEX laser communications system

    NASA Astrophysics Data System (ADS)

    Juarez, Juan C.; Young, David W.; Venkat, Radha A.; Brown, David M.; Brown, Andrea M.; Oberc, Rachel L.; Sluz, Joseph E.; Pike, H. Alan; Stotts, Larry B.

    2012-06-01

    A series of experiments were conducted to validate the performance of the free-space optical communications (FSOC) subsystem under DARPA's FOENEX program. Over six days, bidirectional links at ranges of 10 and 17 km were characterized during different periods of the day to evaluate link performance. This paper will present the test configuration, evaluate performance of the FSOC subsystem against a variety of characterization approaches, and discuss the impact of the results, particularly with regards to the optical terminals. Finally, this paper will summarize the impact of turbulence conditions on the FSOC subsystem and present methods for estimating performance under different link distances and turbulence conditions.

  20. Optical links in the angle-data assembly of the 70-meter antennas

    NASA Technical Reports Server (NTRS)

    Nelson, M. D.; Schroeder, J. R.; Tubbs, E. F.

    1988-01-01

    In the precision-pointing mode the 70 meter antennas utilize an optical link provided by an autocollimator. In an effort to improve reliability and performance, commercial instruments were evaluated as replacement candidates, and upgraded versions of the existing instruments were designed and tested. The latter were selected for the Neptune encounter, but commercial instruments with digital output show promise of significant performance improvement for the post-encounter period.

  1. All-optical retro-modulation for free-space optical communication.

    PubMed

    Born, Brandon; Hristovski, Ilija R; Geoffroy-Gagnon, Simon; Holzman, Jonathan F

    2018-02-19

    This work presents device and system architectures for free-space optical and optical wireless communication at high data rates over multidirectional links. This is particularly important for all-optical networks, with high data rates, low latencies, and network protocol transparency, and for asymmetrical networks, with multidirectional links from one transceiver to multiple distributed transceivers. These two goals can be met by implementing a passive uplink via all-optical retro-modulation (AORM), which harnesses the optical power from an active downlink to form a passive uplink through retroreflection. The retroreflected optical power is modulated all-optically to ideally achieve terabit-per-second data rates. The proposed AORM architecture, for passive uplinks, uses high-refractive-index S-LAH79 hemispheres to realize effective retroreflection and an interior semiconductor thin film of CuO nanocrystals to realize ultrafast all-optical modulation on a timescale of approximately 770 fs. The AORM architecture is fabricated and tested, and ultimately shown to be capable of enabling multidirectional free-space optical communication with terabit-per-second aggregate data rates.

  2. Ultrastable optical frequency dissemination on a multi-access fibre network

    NASA Astrophysics Data System (ADS)

    Bercy, Anthony; Lopez, Olivier; Pottie, Paul-Eric; Amy-Klein, Anne

    2016-07-01

    We report a laboratory demonstration of the dissemination of an ultrastable optical frequency signal to two distant users simultaneously using a branching network. The ultrastable signal is extracted along a main fibre link; it is optically tracked by a narrow linewidth laser diode, which light is injected in a secondary link. The propagation noise of both links is actively compensated. We implement this scheme with two links of 50-km fibre spools, the extraction being set up at the mid-point of the main link. We show that the extracted signal at the end of the secondary link exhibits a fractional frequency instability of 1.4 × 10-15 at 1-s measurement time, almost equal to the 1.3 × 10-15 instability of the main link output end. The long-term instabilities are also very similar, at a level of 3-5 × 10-20 at 3 × 104-s integration time. We also show that the setting up of this extraction device, or of a simpler one, at the main link input, can test the proper functioning of the noise rejection on this main link. This work is a significant step towards a robust and flexible ultrastable network for multi-users dissemination.

  3. The phase 1 upgrade of the CMS Pixel Front-End Driver

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Pernicka, M.; Steininger, H.

    2010-12-01

    The pixel detector of the CMS experiment at the LHC is read out by analog optical links, sending the data to 9U VME Front-End Driver (FED) boards located in the electronics cavern. There are plans for the phase 1 upgrade of the pixel detector (2016) to add one more layer, while significantly cutting down the overall material budget. At the same time, the optical data transmission will be replaced by a serialized digital scheme. A plug-in board solution with a high-speed digital optical receiver has been developed for the Pixel-FED readout boards and will be presented along with first tests of the future optical link.

  4. Fiber optic reference frequency distribution to remote beam waveguide antennas

    NASA Technical Reports Server (NTRS)

    Calhoun, Malcolm; Kuhnle, Paul; Law, Julius

    1995-01-01

    In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.

  5. Fiber optic reference frequency distribution to remote beam waveguide antennas

    NASA Astrophysics Data System (ADS)

    Calhoun, Malcolm; Kuhnle, Paul; Law, Julius

    1995-05-01

    In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.

  6. High-speed laser communications in UAV scenarios

    NASA Astrophysics Data System (ADS)

    Griethe, Wolfgang; Gregory, Mark; Heine, Frank; Kämpfner, Hartmut

    2011-05-01

    Optical links, based on coherent homodyne detection and BPSK modulation with bidirectional data transmission of 5.6 Gbps over distances of about 5,000 km and BER of 10-8, have been sufficiently verified in space. The verification results show that this technology is suitable not only for space applications but also for applications in the troposphere. After a brief description of the Laser Communication Terminal (LCT) for space applications, the paper consequently discusses the future utilization of satellite-based optical data links for Beyond Line of Sight (BLOS) operations of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicles (UAV). It is shown that the use of optical frequencies is the only logical consequence of an ever-increasing demand for bandwidth. In terms of Network Centric Warfare it is highly recommended that Unmanned Aircraft Systems (UAS) of the future should incorporate that technology which allows almost unlimited bandwidth. The advantages of optical communications especially for Intelligence, Surveillance and Reconnaissance (ISR) are underlined. Moreover, the preliminary design concept of an airborne laser communication terminal is described. Since optical bi-directional links have been tested between a LCT in space and a TESAT Optical Ground Station (OGS), preliminary analysis on tracking and BER performance and the impact of atmospheric disturbances on coherent links will be presented.

  7. Preliminary analyses of WL experiment No. 701, space environment effects on operating fiber optic systems

    NASA Technical Reports Server (NTRS)

    Taylor, E. W.; Berry, J. N.; Sanchez, A. D.; Padden, R. J.; Chapman, S. P.

    1992-01-01

    A brief overview of the analyses performed to date on WL Experiment-701 is presented. Four active digital fiber optic links were directly exposed to the space environment for a period of 2114 days. The links were situated aboard the Long Duration Exposure Facility (LDEF) with the cabled, single fiber windings atop an experimental tray containing instrumentation for exercising the experiment in orbit. Despite the unplanned and prolonged exposure to trapped and galactic radiation, wide temperature extremes, atomic oxygen interactions, and micro-meteorite and debris impacts, in most instances the optical data links performed well within the experimental limits. Analysis of the recorded orbital data clearly indicates that fiber optic applications in space will meet with success. Ongoing tests and analysis of the experiment at the Phillips Laboratory's Optoelectronics Laboratory will expand this premise, and establish the first known and extensive database of active fiber optic link performance during prolonged space exposure. WL Exp-701 was designed as a feasibility demonstration for fiber optic technology in space applications, and to study the performance of operating fiber systems exposed to space environmental factors such as galactic radiation, and wide temperature cycling. WL Exp-701 is widely acknowledged as a benchmark accomplishment that clearly demonstrates, for the first time, that fiber optic technology can be successfully used in a variety of space applications.

  8. Composite embedded fiber optic data links in Standard Electronic Modules

    NASA Astrophysics Data System (ADS)

    Ehlers, S. L.; Jones, K. J.; Morgan, R. E.; Hixson, Jay

    1990-12-01

    The goal of this project is to fabricate a chassis/circuit card demonstration entirely 'wired' with embedded and interconnected optical fibers. Graphite/epoxy Standard Electronic Module E (SEM-E) configured panels have been successfully fabricated. Fiber-embedded SEM-E configured panels have been subjected to simultaneous signal transmission and vibration testing. Packaging constraints will require tapping composite-embedded optical fibers at right angles to the direction of optical transmission.

  9. Low-cost optical interconnect module for parallel optical data links

    NASA Astrophysics Data System (ADS)

    Noddings, Chad; Hirsch, Tom J.; Olla, M.; Spooner, C.; Yu, Jason J.

    1995-04-01

    We have designed, fabricated, and tested a prototype parallel ten-channel unidirectional optical data link. When scaled to production, we project that this technology will satisfy the following market penetration requirements: (1) up to 70 meters transmission distance, (2) at least 1 gigabyte/second data rate, and (3) 0.35 to 0.50 MByte/second volume selling price. These goals can be achieved by means of the assembly innovations described in this paper: a novel alignment method that is integrated with low-cost, few chip module packaging techniques, yielding high coupling and reducing the component count. Furthermore, high coupling efficiency increases projected reliability reducing the driver's power requirements.

  10. Preliminary Flight Results of the Microelectronics and Photonics Test Bed: NASA DR1773 Fiber Optic Data Bus Experiment

    NASA Technical Reports Server (NTRS)

    Jackson, George L.; LaBel, Kenneth A.; Marshall, Cheryl; Barth, Janet; Seidleck, Christina; Marshall, Paul

    1998-01-01

    NASA Goddard Spare Flight Center's (GSFC) Dual Rate 1773 (DR1773) Experiment on the Microelectronic and Photonic Test Bed (MPTB) has provided valuable information on the performance of the AS 1773 fiber optic data bus in the space radiation environment. Correlation of preliminary experiment data to ground based radiation test results show the AS 1773 bus is employable in future spacecraft applications requiring radiation tolerant communication links.

  11. Multi-rate DPSK optical transceivers for free-space applications

    NASA Astrophysics Data System (ADS)

    Caplan, D. O.; Carney, J. J.; Fitzgerald, J. J.; Gaschits, I.; Kaminsky, R.; Lund, G.; Hamilton, S. A.; Magliocco, R. J.; Murphy, R. J.; Rao, H. G.; Spellmeyer, N. W.; Wang, J. P.

    2014-03-01

    We describe a flexible high-sensitivity laser communication transceiver design that can significantly benefit performance and cost of NASA's satellite-based Laser Communications Relay Demonstration. Optical communications using differential phase shift keying, widely deployed for use in long-haul fiber-optic networks, is well known for its superior sensitivity and link performance over on-off keying, while maintaining a relatively straightforward design. However, unlike fiber-optic links, free-space applications often require operation over a wide dynamic range of power due to variations in link distance and channel conditions, which can include rapid kHz-class fading when operating through the turbulent atmosphere. Here we discuss the implementation of a robust, near-quantum-limited multi-rate DPSK transceiver, co-located transmitter and receiver subsystems that can operate efficiently over the highly-variable free-space channel. Key performance features will be presented on the master oscillator power amplifier (MOPA) based TX, including a wavelength-stabilized master laser, high-extinction-ratio burst-mode modulator, and 0.5 W single polarization power amplifier, as well as low-noise optically preamplified DSPK receiver and built-in test capabilities.

  12. Assessment of laser tracking and data transfer for underwater optical communications

    NASA Astrophysics Data System (ADS)

    Watson, Malcolm A.; Blanchard, Paul M.; Stace, Chris; Bhogul, Priya K.; White, Henry J.; Kelly, Anthony E.; Watson, Scott; Valyrakis, Manousos; Najda, Stephen P.; Marona, Lucja; Perlin, Piotr

    2014-10-01

    We report on an investigation into optical alignment and tracking for high bandwidth, laser-based underwater optical communication links. Link acquisition approaches (including scanning of narrow laser beams versus a wide-angle `beacon' approach) for different underwater laser-based communications scenarios are discussed. An underwater laserbased tracking system was tested in a large water flume facility using water whose scattering properties resembled that of a turbid coastal or harbour region. The lasers used were state-of-the-art, temperature-controlled, high modulation bandwidth gallium nitride (GaN) devices. These operate at blue wavelengths and can achieve powers up to ~100 mW. The tracking performance and characteristics of the system were studied as the light-scattering properties of the water were increased using commercial antacid (Maalox) solution, and the results are reported here. Optical tracking is expected to be possible even in high scattering water environments, assuming better components are developed commercially; in particular, more sensitive detector arrays. High speed data transmission using underwater optical links, based on blue light sources, is also reported.

  13. Manufacturing of embedded multimode waveguides by reactive lamination of cyclic olefin polymer and polymethylmethacrylate

    NASA Astrophysics Data System (ADS)

    Kelb, Christian; Rother, Raimund; Schuler, Anne-Katrin; Hinkelmann, Moritz; Rahlves, Maik; Prucker, Oswald; Müller, Claas; Rühe, Jürgen; Reithmeier, Eduard; Roth, Bernhard

    2016-03-01

    We demonstrate the manufacturing of embedded multimode optical waveguides through linking of polymethylmethacrylate (PMMA) foils and cyclic olefin polymer (COP) filaments based on a lamination process. Since the two polymeric materials cannot be fused together through interdiffusion of polymer chains, we utilize a reactive lamination agent based on PMMA copolymers containing photoreactive 2-acryloyloxyanthraquinone units, which allows the creation of monolithic PMMA-COP substrates through C-H insertion reactions across the interface between the two materials. We elucidate the lamination process and evaluate the chemical link between filament and foils by carrying out extraction tests with a custom-built tensile testing machine. We also show attenuation measurements of the manufactured waveguides for different manufacturing parameters. The lamination process is in particular suited for large-scale and low-cost fabrication of board-level devices with optical waveguides or other micro-optical structures, e.g., optofluidic devices.

  14. Results of Kirari optical communication demonstration experiments with NICT optical ground station (KODEN) aiming for future classical and quantum communications in space

    NASA Astrophysics Data System (ADS)

    Toyoshima, Morio; Takenaka, Hideki; Shoji, Yozo; Takayama, Yoshihisa; Koyama, Yoshisada; Kunimori, Hiroo

    2012-05-01

    Bi-directional ground-to-satellite laser communication experiments were successfully performed between the optical ground station developed by the National Institute of Information and Communications Technology (NICT), located in Koganei City in suburban Tokyo, and a low earth orbit (LEO) satellite, the "Kirari" Optical Inter-orbit Communications Engineering Test Satellite (OICETS). The experiments were conducted in cooperation with the Japan Aerospace Exploration Agency (JAXA), and called the Kirari Optical communication Demonstration Experiments with the NICT optical ground station (or KODEN). The ground-to-OICETS laser communication experiment was the first in-orbit demonstration involving the LEO satellite. The laser communication experiment was conducted since March 2006. The polarization characteristics of an artificial laser source in space, such as Stokes parameters, and the degree of polarization were measured through space-to-ground atmospheric transmission paths, which results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography on a global scale in the future. The Phase-5 experiment, international laser communications experiments were also successfully conducted with four optical ground stations located in the United States, Spain, Germany, and Japan from April 2009 to September 2009. The purpose of the Phase-5 experiment was to establish OICETS-to-ground laser communication links from the different optical ground stations and the statistical analyses such as the normalized power, scintillation index, probability density function, auto-covariance function, and power spectral density were performed. Thus the applicability of the satellite laser communications was demonstrated, aiming not only for geostationary earth orbit-LEO links but also for ground-to-LEO optical links. This paper presents the results of the KODEN experiments and mainly introduces the common analyses among the different optical ground stations.

  15. Design and flight test results of high speed optical bidirectional link between stratospheric platforms for aerospace applications

    NASA Astrophysics Data System (ADS)

    Briatore, S.; Akhtyamov, R.; Golkar, A.

    2017-08-01

    As small and nanosatellites become increasingly relevant in the aerospace industry1, 2, the need of efficient, lightweight and cost-effective networking solutions drives the need for the development of lightweight and low cost networking and communication terminals. In this paper we propose the design and prototype results of a hybrid optical and radio communication architecture developed to fit the coarse pointing capabilities of nanosatellites, tested through a proxy flight experiment on stratospheric balloons. This system takes advantage of the higher data-rate offered by optical communication channels while relying on the more mature and stable technology of conventional radio systems for link negotiation and low-speed data exchange. Such architecture allows the user to overcome the licensing requirements and scarce availability of high data-rate radio frequency channels in the commonly used bands. Outlined are the architecture, development and test of the mentioned terminal, with focus on the communication part and supporting technologies, including the navigation algorithm, the developed fail-safe approach, and the evolution of the pointing system continuing previous work done in 3. The system has been built with commercial-off-the-shelf components and demonstrated on a stratospheric balloon launch campaign. The paper outlines the results of an in-flight demonstration, where the two platforms successfully established an optical link at stratospheric altitudes. The results are then analyzed and contextualized in plans of future work for nanosatellite implementations.

  16. Eye vision system using programmable micro-optics and micro-electronics

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Amin, M. Junaid; Riza, Mehdi N.

    2014-02-01

    Proposed is a novel eye vision system that combines the use of advanced micro-optic and microelectronic technologies that includes programmable micro-optic devices, pico-projectors, Radio Frequency (RF) and optical wireless communication and control links, energy harvesting and storage devices and remote wireless energy transfer capabilities. This portable light weight system can measure eye refractive powers, optimize light conditions for the eye under test, conduct color-blindness tests, and implement eye strain relief and eye muscle exercises via time sequenced imaging. Described is the basic design of the proposed system and its first stage system experimental results for vision spherical lens refractive error correction.

  17. Gated high speed optical detector

    NASA Technical Reports Server (NTRS)

    Green, S. I.; Carson, L. M.; Neal, G. W.

    1973-01-01

    The design, fabrication, and test of two gated, high speed optical detectors for use in high speed digital laser communication links are discussed. The optical detectors used a dynamic crossed field photomultiplier and electronics including dc bias and RF drive circuits, automatic remote synchronization circuits, automatic gain control circuits, and threshold detection circuits. The equipment is used to detect binary encoded signals from a mode locked neodynium laser.

  18. Interchip link system using an optical wiring method.

    PubMed

    Cho, In-Kui; Ryu, Jin-Hwa; Jeong, Myung-Yung

    2008-08-15

    A chip-scale optical link system is presented with a transmitter/receiver and optical wire link. The interchip link system consists of a metal optical bench, a printed circuit board module, a driver/receiver integrated circuit, a vertical cavity surface-emitting laser/photodiode array, and an optical wire link composed of plastic optical fibers (POFs). We have developed a downsized POF and an optical wiring method that allows on-site installation with a simple annealing as optical wiring technologies for achieving high-density optical interchip interconnection within such devices. Successful data transfer measurements are presented.

  19. Analysis of InP-based QCLs designed for application in optical transmitter of free-space optics

    NASA Astrophysics Data System (ADS)

    Pierscinski, Kamil; Mikołajczyk, Janusz; Szabra, Dariusz; Pierścińska, Dorota; Gutowski, Piotr; Bielecki, Zbigniew; Bugajski, Maciej

    2017-10-01

    In this paper, the study of AlInAs/InGaAs/InP Quantum Cascade Lasers application in Free Space Optical data link is performed. Implementation of such FSO link operated in long-wavelength infrared (LWIR: 8-12 μm) will be unique for construction of so-called RF/FSO hybrid communication system. The range of longer wavelengths provides better data transfer performance in the case of severe weather conditions, especially, fog, low haze or air turbulence. In the frame of this work, series of QCLs for application in FSO system were examined. They are characterized by different geometries and constructions towards best performance in optical link systems operated in the wavelength range of 8-12 μm. The preliminary test of QCLs included electrical measurements of pulsed light-current-voltage characteristics and time-resolved spectra. The obtained results made it possible to determine operation point for FSO. Their modulation performances were tested using the laboratory laser drivers. Based on measurements, both power and time parameters of QCLs pulses were investigated. These results defined critical values for FSO system. The second part of the analysis concerned the spatial parameters of QCLs radiation. Knowledge of spatial characteristics of emission is vital for FSO optics construction. To characterize spatial properties of beams, far-field patterns of emission were registered. Finally, the obtained results made it possible to optimize the optical transmitter construction and further performance of FSO laboratory model. This research was supported by The Polish National Centre for Research and Development grant DOB-BIO8/01/01/2016.

  20. Fiber optic immunosensor for cross-linked fibrin concentration

    NASA Astrophysics Data System (ADS)

    Moskowitz, Samuel E.

    2000-08-01

    Working with calcium ions in the blood, platelets produce thromboplastin which transforms prothrombin into thrombin. Removing peptides, thrombin changes fibrinogen into fibrin. Cross-linked insoluble fibrin polymers are solubilized by enzyme plasmin found in blood plasma. Resulting D-dimers are elevated in patients with intravascular coagulation, deep venous thrombosis, pulmonary embolism, myocardial infarction, multiple trauma, cancer, impaired renal and liver functions, and sepsis. Consisting principally of a NIR 780 nm GaAlAs laser diode and a 800 nm avalanche photodiode (APD), the fiber-optic immunosensor can determined D-dimer concentration to levels <0.1 ng/ml. A capture monoclonal antibody to the antigen soluble cross-linked fibrin is employed. Immobilized at the tip of an optical fiber by avidin-biotin, the captured antigen is detected by a second antibody which is labeled with NN 382 fluorescent dye. An evanescent wave traveling on an excitation optical fiber excites the antibody-antigen fluorophore complex. Concentration of cross-linked fibrin is directly proportional to the APD measured intensity of fluorescence. NIR fluorescence has advantages of low background interference, short fluorescence lifetime, and large difference between excitation and emission peaks. Competitive ELISA test for D-dimer concentration requires trained personnel performing a time consuming operation.

  1. Mobile free-space optical communications: a feasibility study of various battlefield scenarios

    NASA Astrophysics Data System (ADS)

    Harris, Alan; Al-Akkoumi, Mouhammad K.; Sluss, James J., Jr.

    2012-06-01

    Free Space Optics (FSO) technology was originally envisioned to be a viable solution for the provision of high bandwidth optical connectivity in the last mile of today's telecommunications infrastructure. Due to atmospheric limitations inherent to FSO technology, FSO is now widely envisioned as a solution for the provision of high bandwidth, temporary mobile communications links. The need for FSO communications links will increase as mobility is introduced to this technology. In this paper, a theoretical solution for adding mobility to FSO communication links is introduced. Three-dimensional power estimation studies are presented to represent mobile FSO transmission under various weather conditions. Three wavelengths, 0.85, 1.55 and 10 um, are tested and compared to illustrate the pros and cons of each source wavelength used for transmission, depending on prevalent weather conditions and atmospheric turbulence conditions. A simulation analysis of the transmission properties of the source wavelengths used in the study is shown.

  2. Instrumentation and data acquisition for satellite testing in nuclear environments

    NASA Astrophysics Data System (ADS)

    Samyal, B.; Naumann, W.

    1982-06-01

    Electro-optic and magnetic-optic sensors for measurement of SGEMP-induced electromagnetic fields in and around a satellite in a UGT environment and a fiber optic data link suitable for relaying analog measurements inside the satellite to outside data collection devices are described. The electro-optic and magneto-optic sensors are based on the Pockels and Faraday Effects, respectively. The former has a sensitivity range of 10 to the second power - 10 to the 6th power v/m and the latter 1 x 10 to the minus 6th power - 34 x 10 to the minus 4th power Weber/meters square. Brief theoretical reviews and optical systems for the application of these sensors are presented. These sensors have several advantages over the conventional electrical sensors and they exhibit a great potential for measurement of electromagenetic fields. However, the effects of radiation on these sensors are uncertain and need to be assessed for any future development of these sensors. The fiber optic data link consists of several transmitter modules, located at the satellite, connected by optical fibers to the corresponding receiver modules located at a radiation safe alcove.

  3. Optical link by using optical wiring method for reducing EMI

    NASA Astrophysics Data System (ADS)

    Cho, In-Kui; Kwon, Jong-Hwa; Choi, Sung-Woong; Bondarik, Alexander; Yun, Je-Hoon; Kim, Chang-Joo; Ahn, Seung-Beom; Jeong, Myung-Yung; Park, Hyo Hoon

    2008-12-01

    A practical optical link system was prepared with a transmitter (Tx) and receiver (Rx) for reducing EMI (electromagnetic interference). The optical TRx module consisted of a metal optical bench, a module printed circuit board (PCB), a driver/receiver IC, a VCSEL/PD array, and an optical link block composed of plastic optical fiber (POF). For the optical interconnection between the light-sources and detectors, an optical wiring method has been proposed to enable easy assembly. The key benefit of fiber optic link is the absence of electromagnetic interference (EMI) noise creation and susceptibility. This paper provides a method for optical interconnection between an optical Tx and an optical Rx, comprising the following steps: (i) forming a light source device, an optical detection device, and an optical transmission unit on a substrate (metal optical bench (MOB)); (ii) preparing a flexible optical transmission-connection medium (optical wiring link) to optically connect the light source device formed on the substrate with the optical detection device; and (iii) directly connecting one end of the surface-finished optical transmission connection medium with the light source device and the other end with the optical detection device. Electronic interconnections have uniquely electronic problems such as EMI, shorting, and ground loops. Since these problems only arise during transduction (electronics-to-optics or opticsto- electronics), the purely optical part and optical link(interconnection) is free of these problems. 1 An optical link system constructed with TRx modules was fabricated and the optical characteristics about data links and EMI levels were measured. The results clearly demonstrate that the use of an optical wiring method can provide robust and cost-effective assembly for reducing EMI of inter-chip interconnect. We successfully achieved a 4.5 Gb/s data transmission rate without EMI problems.

  4. Enabling Optical Network Test Bed for 5G Tests

    NASA Astrophysics Data System (ADS)

    Giuntini, Marco; Grazioso, Paolo; Matera, Francesco; Valenti, Alessandro; Attanasio, Vincenzo; Di Bartolo, Silvia; Nastri, Emanuele

    2017-03-01

    In this work, we show some experimental approaches concerning optical network design dedicated to 5G infrastructures. In particular, we show some implementations of network slicing based on Carrier Ethernet forwarding, which will be very suitable in the context of 5G heterogeneous networks, especially looking at services for vertical enterprises. We also show how to adopt a central unit (orchestrator) to automatically manage such logical paths according to quality-of-service requirements, which can be monitored at the user location. We also illustrate how novel all-optical processes, such as the ones based on all-optical wavelength conversion, can be used for multicasting, enabling development of TV broadcasting based on 4G-5G terminals. These managing and forwarding techniques, operating on optical links, are tested in a wireless environment on Wi-Fi cells and emulating LTE and WiMAX systems by means of the NS-3 code.

  5. Fiber-Optic Communication Links Suitable for On-Board Use in Modern Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung; Ngo, Duc; Alam, Mohammad F.; Atiquzzaman, Mohammed; Sluse, James; Slaveski, Filip

    2004-01-01

    The role of the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Centers has been focused mainly on the improvement of air transportation safety, with particular emphasis on air transportation communication systems in on-board aircraft. The conventional solutions for digital optical communications systems specifically designed for local/metro area networks are, unfortunately, not capable of transporting the microwave and millimeter RF signals used in avionics systems. Optical networks capable of transporting RF signals are substantially different from the standard digital optical communications systems. The objective of this paper is to identify a number of different communication link architectures for RF/fiber optic transmission using a single backbone fiber for carrying VHF and UHF RF signals in the aircraft. To support these architectures, two approaches derived from both hybrid RF-optical and all-optical processing methodologies are discussed with single and multiple antennas for explicitly transporting VHF and UHF signals, while the relative merits and demerits of each architecture are also addressed. Furthermore, the experimental results of wavelength division multiplexing (WDM) link architecture from our test-bed platform, configured for aircraft environment to support simultaneous transmission of multiple RF signals over a single optical fiber, exhibit no appreciable signal degradation at wavelengths of both 1330 and 1550 nm, respectively. Our measurements of signal to noise ratio carried out for the transmission of FM and AM analog modulated signals at these wavelengths indicate that WDM is a fiber optic technology which is potentially suitable for avionics applications.

  6. Studies of pointing, acquisition, and tracking of agile optical wireless transceivers for free-space optical communication networks

    NASA Astrophysics Data System (ADS)

    Ho, Tzung-Hsien; Trisno, Sugianto; Smolyaninov, Igor I.; Milner, Stuart D.; Davis, Christopher C.

    2004-02-01

    Free space, dynamic, optical wireless communications will require topology control for optimization of network performance. Such networks may need to be configured for bi- or multiple-connectedness, reliability and quality-of-service. Topology control involves the introduction of new links and/or nodes into the network to achieve such performance objectives through autonomous reconfiguration as well as precise pointing, acquisition, tracking, and steering of laser beams. Reconfiguration may be required because of link degradation resulting from obscuration or node loss. As a result, the optical transceivers may need to be re-directed to new or existing nodes within the network and tracked on moving nodes. The redirection of transceivers may require operation over a whole sphere, so that small-angle beam steering techniques cannot be applied. In this context, we are studying the performance of optical wireless links using lightweight, bi-static transceivers mounted on high-performance stepping motor driven stages. These motors provide an angular resolution of 0.00072 degree at up to 80,000 steps per second. This paper focuses on the performance characteristics of these agile transceivers for pointing, acquisition, and tracking (PAT), including the influence of acceleration/deceleration time, motor angular speed, and angular re-adjustment, on latency and packet loss in small free space optical (FSO) wireless test networks.

  7. Optical Links and RF Distribution for Antenna Arrays

    NASA Technical Reports Server (NTRS)

    Huang, Shouhua; Calhoun, Malcolm; Tjoelker, Robert

    2006-01-01

    An array of three antennas has recently been developed at the NASA Jet Propulsion Laboratory capable of detecting signals at X and Ka band. The array requires a common frequency reference and high precision phase alignment to correlate received signals. Frequency and timing references are presently provided from a remotely located hydrogen maser and clock through a combination of commercially and custom developed optical links. The selected laser, photodetector, and fiber components have been tested under anticipated thermal and simulated antenna rotation conditions. The resulting stability limitations due to thermal perturbations or induced stress on the optical fiber have been characterized. Distribution of the X band local oscillator includes a loop back and precision phase monitor to enable correlation of signals received from each antenna.

  8. Infrared Free Space Communication - The Autonomous Testing of Free Space Infrared Communication

    NASA Technical Reports Server (NTRS)

    Heldman, Christopher

    2017-01-01

    Fiber optics has been a winning player in the game of high-speed communication and data transfer in cable connections. Yet, in free space RF has been the repeated choice of communication medium of the space industry. Investigating the benefits of free space optical communication over radio frequency is worthwhile. An increase in science data rate return capabilities could occur if optical communication is implemented. Optical communication systems also provide efficiencies in power, mass, and volume over RF systems1. Optical communication systems have been demonstrated from a satellite in orbit with the moon to earth, and resulted in the highest data rates ever seen through space (622Mbps)2. Because of these benefits, optical communication is far superior to RF. The HiDRA (High Data Rate Architecture) project is researching Passive Misalignment Mitigation of Dynamic Free Apace Optical Communication Links. The goal of this effort is to enable gigabit per second transmission of data in short range dynamic links (less than 100 meters). In practice this would enhance data rates between sites on the International Space Station with minimal size, weight, and power requirements. This paper will focus on an autonomous code and a hardware setup that will be used to fulfill the next step in the research being conducted. The free space optical communications pointing downfalls will be investigated. This was achieved by creating 5 python programs and a top-level code to automate this test.

  9. Quality of Service Control Based on Virtual Private Network Services in a Wide Area Gigabit Ethernet Optical Test Bed

    NASA Astrophysics Data System (ADS)

    Rea, Luca; Pompei, Sergio; Valenti, Alessandro; Matera, Francesco; Zema, Cristiano; Settembre, Marina

    We report an experimental investigation about the Virtual Private LAN Service technique to guarantee the quality of service in the metro/core network and also in the presence of access bandwidth bottleneck. We also show how the virtual private network can be set up for answering to a user request in a very fast way. The tests were performed in a GMPLS test bed with GbE core routers linked with long (tens of kilometers) GbE G.652 fiber links.

  10. Chip-to-chip optical link by using optical wiring method

    NASA Astrophysics Data System (ADS)

    Cho, In-Kui; Ahn, Seoung Ho; Jeong, Myung-Yung; Rho, Byung Sup; Park, Hyo Hoon

    2008-01-01

    A practical optical link system was prepared with a transmitter (Tx) and receiver (Rx). The optical TRx module consisted of a metal optical bench, a module printed circuit board (PCB), a driver/receiver IC, a VCSEL/PD array, and an optical link block composed of plastic optical fiber (POF). For the optical interconnection between the light-sources and detectors, an optical wiring method has been proposed to enable easy assembly. This paper provides a method for optical interconnection between an optical Tx and an optical Rx, comprising the following steps: (a) forming a light source device, an optical detection device, and an optical transmission unit on a substrate (metal optical bench (MOB)); (b) preparing a flexible optical transmission-connection medium (optical wiring link) to optically connect the light source device formed on the substrate with the optical detection device; and (c) directly connecting one end of the surface-finished optical transmission connection medium with the light source device and the other end with the optical detection device. A chip-to-chip optical link system constructed with TRx modules was fabricated and the optical characteristics were measured. The results clearly demonstrate that the use of an optical wiring method can provide robust and cost-effective assembly for vertical-cavity surface-emitting lasers (VCSELs) and photodiodes (PDs). We successfully achieved a 5 Gb/s data transmission rate with this optical link.

  11. A 4-channel coil array interconnection by analog direct modulation optical link for 1.5-T MRI.

    PubMed

    Yuan, Jing; Wei, Juan; Shen, Gary X

    2008-10-01

    Optical glass fiber shows great advantages over coaxial cables in terms of electromagnetic interference, thus, it should be considered a potential alternative for magnetic resonance imaging (MRI) receive coil interconnection, especially for a large number coil array at high field. In this paper, we propose a 4-channel analog direct modulation optical link for a 1.5-T MRI coil array interconnection. First, a general direct modulated optical link is compared to an external modulated optical link. And then the link performances of the proposed direct modulated optical link, including power gain, frequency response, and dynamic range, are analyzed and measured. Phantom and in vivo head images obtained using this optical link are demonstrated for comparison with those obtained by cable connections. The signal-to-noise (SNR) analysis shows that the optical link achieves 6%-8% SNR a improvement over coaxial cables by elimination of electrical interference between cables during MR signal transmission.

  12. Stable fiber-optic time transfer by active radio frequency phase locking.

    PubMed

    Yin, Feifei; Wu, Zhongle; Dai, Yitang; Ren, Tianpeng; Xu, Kun; Lin, Jintong; Tang, Geshi

    2014-05-15

    In this Letter we demonstrate a fiber link capable of stable time signal transfer utilizing our active long-distance radio frequency (RF) stabilization technology. Taking advantage of the chromatic dispersion in optical fiber, our scheme compensates dynamically the link delay variation by tuning the optical carrier wavelength to phase lock a round-trip RF reference. Since the time signal and the RF reference are carried by the same optical carrier, a highly stable time transfer is achieved at the same time. Experimentally, we demonstrate a stability of the time signal transfer over 50-km fiber with a time deviation of 40 ps at 1-s average and 2.3 ps at 1000-s average. The performance of the RF reference delivery is also tested, with an Allan deviation of 2×10(-15) at 1000-s average. According to our proposal, a simultaneous stable time and frequency transfer is expected.

  13. Wideband fiber optic communications link

    NASA Astrophysics Data System (ADS)

    Bray, J. R.

    1984-12-01

    This thesis examined the feasibility of upgrading a nine port fiber optic bundle telecommunications system to a single strand fiber optic system. Usable pieces of equipment were identified and new Light Emitting Diodes (LED), Photodetectors and single strand SMA styled fiber optic connectors were ordered. Background research was conducted in the area of fiber optic power launching, fiber losses, connector losses and efficiencies. A new modulation/demodulation circuit was designed and constructed using parts from unused equipment. A new front panel was constructed to house the components, switches and connectors. A 2-m piece of optical fiber was terminated with the new connectors and tested for connector loss, numeric aperture and attenuation. The new LED was characterized by its emission radiation pattern and the entire system was tested for functional operation, frequency response and bandwidth of operation. An operations manual was prepared to ensure proper use in the future. The result was a two piece, single strand, fiber optic communications systems fully TTL compatible, capable of transmitting digital signals from 80 Kbit/sec to 20 Mbit/sec. The system was tested in a half duplex mode using both baseband and carrier modulated signals.

  14. Wide-band analog frequency modulation of optic signals using indirect techniques

    NASA Technical Reports Server (NTRS)

    Fitzmartin, D. J.; Balboni, E. J.; Gels, R. G.

    1991-01-01

    The wideband frequency modulation (FM) of an optical carrier by a radio frequency (RF) or microwave signal can be accomplished independent of laser type when indirect modulation is employed. Indirect modulators exploit the integral relation of phase to frequency so that phase modulators can be used to impress frequency modulation on an optical carrier. The use of integrated optics phase modulators, which are highly linear, enables the generation of optical wideband FM signals with very low intermodulation distortion. This modulator can be used as part of an optical wideband FM link for RF and microwave signals. Experimental results from the test of an indirect frequency modulator for an optical carrier are discussed.

  15. Compensated Fiber-Optic Frequency Distribution Equipment

    DTIC Science & Technology

    2010-11-01

    fiber optic links have been developed and deployed, providing stability sufficient to transfer hydrogen maser-derived frequency references in intra...effectively compensate for the added noise and instability of an inter-facility fiber - optic frequency distribution link , it is important to understand the...dispersion (the variation in group velocity as a function of optical wavelength) may also affect the performance of the fiber optic link , when link

  16. Design and construction of a telescope simulator for LISA optical bench testing

    NASA Astrophysics Data System (ADS)

    Bogenstahl, J.; Tröbs, M.; d'Arcio, L.; Diekmann, C.; Fitzsimons, E. D.; Hennig, J. S.; Hey, F. G.; Killow, C. J.; Lieser, M.; Lucarelli, S.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Taylor, A.; Ward, H.; Weise, D.; Heinzel, G.; Danzmann, K.

    2017-11-01

    LISA (Laser Interferometer Space Antenna) is a proposed space-based instrument for astrophysical observations via the measurement of gravitational waves at mHz frequencies. The triangular constellation of the three LISA satellites will allow interferometric measurement of the changes in distance along the arms. On board each LISA satellite there will be two optical benches, one for each testmass, that measure the distance to the local test mass and to the remote optical bench on the distant satellite. For technology development, an Optical Bench Elegant Bread Board (OB EBB) is currently under construction. To verify the performance of the EBB, another optical bench - the so-called telescope simulator bench - will be constructed to simulate the beam coming from the far spacecraft. The optical beam from the telescope simulator will be superimposed with the light on the LISA OB, in order to simulate the link between two LISA satellites. Similarly in reverse, the optical beam from the LISA OB will be picked up and measured on the telescope simulator bench. Furthermore, the telescope simulator houses a test mass simulator. A gold coated mirror which can be manipulated by an actuator simulates the test mass movements. This paper presents the layout and design of the bench for the telescope simulator and test mass simulator.

  17. Enhanced correlation of received power-signal fluctuations in bidirectional optical links

    NASA Astrophysics Data System (ADS)

    Minet, Jean; Vorontsov, Mikhail A.; Polnau, Ernst; Dolfi, Daniel

    2013-02-01

    A study of the correlation between the power signals received at both ends of bidirectional free-space optical links is presented. By use of the quasi-optical approximation, we show that an ideal (theoretically 100%) power-signal correlation can be achieved in optical links with specially designed monostatic transceivers based on single-mode fiber collimators. The theoretical prediction of enhanced correlation is supported both by experiments conducted over a 7 km atmospheric path and wave optics numerical analysis of the corresponding bidirectional optical link. In the numerical simulations, we also compare correlation properties of received power signals for different atmospheric conditions and for optical links with monostatic and bistatic geometries based on single-mode fiber collimator and on power-in-the-bucket transceiver types. Applications of the observed phenomena for signal fading mitigation and turbulence-enhanced communication link security in free-space laser communication links are discussed.

  18. Distributed Acoustic Sensing (DAS) for Periodic Hydraulic Tests: Laboratory Data

    DOE Data Explorer

    Coleman, Thomas

    2015-02-27

    These data were collected in the laboratory located at California State University Long Beach. They consist of DAS data collected from a fiber optic cable placed in a tank of water, subjected to oscillating head. These tests are described in the article linked below.

  19. A direct modulated optical link for MRI RF receive coil interconnection.

    PubMed

    Yuan, Jing; Wei, Juan; Shen, G X

    2007-11-01

    Optical glass fiber is a promising alternative to traditional coaxial cables for MRI RF receive coil interconnection to avoid any crosstalk and electromagnetic interference between multiple channels. A direct modulated optical link is proposed for MRI coil interconnection in this paper. The link performances of power gain, frequency response and dynamic range are measured. Phantom and in vivo human head images have been demonstrated by the connection of this direct modulated optical link to a head coil on a 0.3T MRI scanner for the first time. Comparable image qualities to coaxial cable link verify the feasibility of using the optical link for imaging with minor modification on the existing scanners. This optical link could also be easily extended for multi-channel array interconnections at high field of 1.5 T.

  20. Simulating the performance of adaptive optics techniques on FSO communications through the atmosphere

    NASA Astrophysics Data System (ADS)

    Martínez, Noelia; Rodríguez Ramos, Luis Fernando; Sodnik, Zoran

    2017-08-01

    The Optical Ground Station (OGS), installed in the Teide Observatory since 1995, was built as part of ESA efforts in the research field of satellite optical communications to test laser telecommunication terminals on board of satellites in Low Earth Orbit and Geostationary Orbit. As far as one side of the link is settled on the Earth, the laser beam (either on the uplink or on the downlink) has to bear with the atmospheric turbulence. Within the framework of designing an Adaptive Optics system to improve the performance of the Free-Space Optical Communications at the OGS, turbulence conditions regarding uplink and downlink have been simulated within the OOMAO (Object-Oriented Matlab Adaptive Optics) Toolbox as well as the possible utilization of a Laser Guide Star to measure the wavefront in this context. Simulations have been carried out by reducing available atmospheric profiles regarding both night-time and day-time measurements and by having into account possible seasonal changes. An AO proposal to reduce atmospheric aberrations and, therefore, ameliorate FSO links performance is presented and analysed in this paper

  1. Distributed intrusion monitoring system with fiber link backup and on-line fault diagnosis functions

    NASA Astrophysics Data System (ADS)

    Xu, Jiwei; Wu, Huijuan; Xiao, Shunkun

    2014-12-01

    A novel multi-channel distributed optical fiber intrusion monitoring system with smart fiber link backup and on-line fault diagnosis functions was proposed. A 1× N optical switch was intelligently controlled by a peripheral interface controller (PIC) to expand the fiber link from one channel to several ones to lower the cost of the long or ultra-long distance intrusion monitoring system and also to strengthen the intelligent monitoring link backup function. At the same time, a sliding window auto-correlation method was presented to identify and locate the broken or fault point of the cable. The experimental results showed that the proposed multi-channel system performed well especially whenever any a broken cable was detected. It could locate the broken or fault point by itself accurately and switch to its backup sensing link immediately to ensure the security system to operate stably without a minute idling. And it was successfully applied in a field test for security monitoring of the 220-km-length national borderline in China.

  2. Design of an optical PPM communication link in the presence of component tolerances

    NASA Technical Reports Server (NTRS)

    Chen, C.-C.

    1988-01-01

    A systematic approach is described for estimating the performance of an optical direct detection pulse position modulation (PPM) communication link in the presence of parameter tolerances. This approach was incorporated into the JPL optical link analysis program to provide a useful tool for optical link design. Given a set of system parameters and their tolerance specifications, the program will calculate the nominal performance margin and its standard deviation. Through use of these values, the optical link can be designed to perform adequately even under adverse operating conditions.

  3. The Laser Communications Relay Demonstration Experiment Program

    NASA Technical Reports Server (NTRS)

    Israel, Dave

    2017-01-01

    This paper elaborates on the Laser Communications Relay Demonstration (LCRD) Experiment Program, which will engage in a number of pre-determined experiments and also call upon a wide variety of experimenters to test new laser communications technology and techniques, and to gather valuable data. LCRD is a joint project between NASAs Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will test the functionality in various settings and scenarios of optical communications links from a GEO payload to ground stations in Southern California and Hawaii over a two-year period following launch in 2019. The LCRD investigator team will execute numerous experiments to test critical aspects of laser communications activities over real links and systems, collecting data on the effects of atmospheric turbulence and weather on performance and communications availability. LCRD will also incorporate emulations of target scenarios, including direct-to-Earth (DTE) links from user spacecraft and optical relay providers supporting user spacecraft. To supplement and expand upon the results of these experiments, the project also includes a Guest Experimenters Program, which encourages individuals and groups from government agencies, academia and industry to propose diverse experiment ideas.

  4. The Laser Communications Relay Demonstration Experiment Program

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Edwards, Bernard L.; Moores, John D.; Piazzolla, Sabino; Merritt, Scott

    2017-01-01

    This paper elaborates on the Laser Communications Relay Demonstration (LCRD) Experiment Program, which will engage in a number of pre-determined experiments and also call upon a wide variety of experimenters to test new laser communications technology and techniques, and to gather valuable data. LCRD is a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will test the functionality in various settings and scenarios of optical communications links from a GEO (Geosynchronous Earth Orbit) payload to ground stations in Southern California and Hawaii over a two-year period following launch in 2019. The LCRD investigator team will execute numerous experiments to test critical aspects of laser communications activities over real links and systems, collecting data on the effects of atmospheric turbulence and weather on performance and communications availability. LCRD will also incorporate emulations of target scenarios, including direct-to-Earth (DTE) links from user spacecraft and optical relay providers supporting user spacecraft. To supplement and expand upon the results of these experiments, the project also includes a Guest Experimenters Program, which encourages individuals and groups from government agencies, academia and industry to propose diverse experiment ideas.

  5. Impact of Various Parameters on the Performance of Inter-aircraft Optical Wireless Communication Link

    NASA Astrophysics Data System (ADS)

    Singh, Mehtab

    2017-12-01

    Optical wireless communication (OWC) systems also known as Free space optics (FSO) are capable of providing high channel bandwidth, high data transmission rates, low power consumption, and high security. OWC links are being considered in different applications such as inter-satellite links, terrestrial links, and inter-aircraft communication links. This paper investigates the impact of different system parameters such as transmission power level, operating wavelength, transmitter pointing error angle, bit transmission rate, atmospheric attenuation, antenna aperture diameter, geometric losses, the responsivity of the photodetector, and link range on the performance of inter-aircraft optical wireless communication link.

  6. Indoor communications networks realized through hybrid free-space optical and Wi-Fi links

    NASA Astrophysics Data System (ADS)

    Liverman, Spencer; Wang, Qiwei; Chu, Yu-Chung; Borah, Anindita; Wang, Songtao; Natarajan, Arun; Nguyen, Thinh; Wang, Alan X.

    2018-01-01

    Recently, free-space optical (FSO) networks have been investigated as a potential replacement for traditional WiFi networks due to their large bandwidth potentials. However, FSO networks often suffer from a lack of mobility. We present a hybrid free-space optical and radio frequency (RF) system that we have named WiFO, which seamlessly integrates free-space optical links with pre-existing WiFi networks. The free-space optical link in this system utilizes infrared LEDs operating at a wavelength of 850nm and is capable of transmitting 50Mbps over a three-meter distance. In this hybrid system, optical transmitters are embedded periodically throughout the ceiling of a workspace. Each transmitter directs an optical signal downward in a diffuse light cone, establishing a line of sight optical link. Line of sight communications links have an intrinsic physical layer of security due to the fact that a user must be directly in the path of transmission to access the link; however, this feature also poses a challenge for mobility. In our system, if the free-space optical link is interrupted, a control algorithm redirects traffic over a pre-existing WiFi link ensuring uninterrupted transmissions. After data packets are received, acknowledgments are sent back to a central access point via a WiFi link. As the demand for wireless bandwidth continues to increase exponentially, utilizing the unregulated bandwidth contained within optical spectrum will become necessary. Our fully functional hybrid free-space optical and WiFi prototype system takes full advantage of the untapped bandwidth potential in the optical spectrum, while also maintaining the mobility inherent in WiFi networks.

  7. Optical injection locking-based amplification in phase-coherent transfer of optical frequencies.

    PubMed

    Kim, Joonyoung; Schnatz, Harald; Wu, David S; Marra, Giuseppe; Richardson, David J; Slavík, Radan

    2015-09-15

    We demonstrate the use of an optical injection phase locked loop (OIPLL) as a regenerative amplifier for optical frequency transfer applications. The optical injection locking provides high gain within a narrow bandwidth (<100  MHz) and is capable of preserving the fractional frequency stability of the incoming carrier to better than 10(-18) at 1000 s. The OIPLL was tested in the field as a mid-span amplifier for the transfer of an ultrastable optical carrier, stabilized to an optical frequency standard, over a 292 km long installed dark fiber link. The transferred frequency at the remote end reached a fractional frequency instability of less than 1×10(-19) at averaging time of 3200 s.

  8. An integrated optical/acoustic communication system for seafloor observatories: A field test of high data rate communications at CORK 857D

    NASA Astrophysics Data System (ADS)

    Tivey, M.; Farr, N.; Ware, J.; Pontbriand, C.

    2010-12-01

    We report the successful deployment and testing of an underwater optical communication system that provides high data rate communications over a range of 100 meters from a deep sea borehole observatory located in the northeast Pacific. Optical underwater communications offers many advantages over acoustic or underwater wet mateable connections (UWMC). UMWCs requires periodic visits from a submersible or ROV to plug in and download data. Typically, these vehicles cannot perform any other tasks during these download periods - their time on station is limited, restricting the amount of data that can be downloaded. To eliminate the need for UWMCs requires the use of remote communication techniques such as acoustics or optical communications. Optical communications is capable of high data rates up to 10 mega bits per sec (Mbps) compared to acoustic data rates of 57 Kbps. We have developed an integrated optical/acoustic telemetry system (OTS) that uses an acoustic command system to control a high bandwidth, low latency optical communication system. In July 2010, we used the deep submersible ALVIN to install the Optical Telemetry System (OTS) at CORK 857D. The CORK is instrumented with a thermistor string and pressure sensors that record downhole formation pressures and temperatures within oceanic basement that is pressure sealed from the overlying water column. The seafloor OTS was plugged into the CORK’s existing UWMC to provide an optical and acoustic communication interface and additional data storage and battery power for the CORK to sample at 1 Hz data-rate, an increase over the normal 15 sec data sample rate. Using a CTD-mounted OTS lowered by wire from a surface ship, we established an optical communication link at 100 meters range at rates of 1, 5 and 10 Mbps with no bit errors. Tests were also done to establish the optical range of various data rates and the optical power of the system. After a week, we repeated the CTD-OTS experiment and downloaded 20 Mbytes of data over a 5 Mbps link at a range of 80 m. The OTS will remain installed at CORK 857D for a year. Our OTS enables faster data rates to be employed for in situ measurements that were previously limited by data download times from a submersible. The OTS also permits non submersible-equipped vessels to interrogate the CORK borehole observatory on a more frequent basis using a receiver lowered by wire from a ship of opportunity. In the future, autonomous vehicles could interrogate such seafloor observatories in a “data-mule” configuration and then dock at a seafloor cabled node to download data. While borehole observatories may ultimately be linked into undersea cables relaying real-time data back to shore they represent a superb opportunity to test free water optical communication methods. The lessons learned from our CORK development efforts will go a long way towards establishing the viability of underwater optical communications for a host of autonomous seafloor sensor systems in the future.

  9. Digital optical feeder links system for broadband geostationary satellite

    NASA Astrophysics Data System (ADS)

    Poulenard, Sylvain; Mège, Alexandre; Fuchs, Christian; Perlot, Nicolas; Riedi, Jerome; Perdigues, Josep

    2017-02-01

    An optical link based on a multiplex of wavelengths at 1.55μm is foreseen to be a valuable solution for the feeder link of the next generation of high-throughput geostationary satellite. The main satellite operator specifications for such link are an availability of 99.9% over the year, a capacity around 500Gbit/s and to be bent-pipe. Optical ground station networks connected to Terabit/s terrestrial fibers are proposed. The availability of the optical feeder link is simulated over 5 years based on a state-of-the-art cloud mask data bank and an atmospheric turbulence strength model. Yearly and seasonal optical feeder link availabilities are derived and discussed. On-ground and on-board terminals are designed to be compliant with 10Gbit/s per optical channel data rate taking into account adaptive optic systems to mitigate the impact of atmospheric turbulences on single-mode optical fiber receivers. The forward and return transmission chains, concept and implementation, are described. These are based on a digital transparent on-off keying optical link with digitalization of the DVB-S2 and DVB-RCS signals prior to the transmission, and a forward error correcting code. In addition, the satellite architecture is described taking into account optical and radiofrequency payloads as well as their interfaces.

  10. Towards the LISA backlink: experiment design for comparing optical phase reference distribution systems

    NASA Astrophysics Data System (ADS)

    Isleif, Katharina-Sophie; Bischof, Lea; Ast, Stefan; Penkert, Daniel; Schwarze, Thomas S.; Fernández Barranco, Germán; Zwetz, Max; Veith, Sonja; Hennig, Jan-Simon; Tröbs, Michael; Reiche, Jens; Gerberding, Oliver; Danzmann, Karsten; Heinzel, Gerhard

    2018-04-01

    LISA is a proposed space-based laser interferometer detecting gravitational waves by measuring distances between free-floating test masses housed in three satellites in a triangular constellation with laser links in-between. Each satellite contains two optical benches that are articulated by moving optical subassemblies for compensating the breathing angle in the constellation. The phase reference distribution system, also known as backlink, forms an optical bi-directional path between the intra-satellite benches. In this work we discuss phase reference implementations with a target non-reciprocity of at most 2π μrad \\sqrtHz-1 , equivalent to 1 pm \\sqrtHz-1 for a wavelength of 1064 nm in the frequency band from 0.1 mHz to 1 Hz. One phase reference uses a steered free beam connection, the other one a fiber together with additional laser frequencies. The noise characteristics of these implementations will be compared in a single interferometric set-up with a previously successfully tested direct fiber connection. We show the design of this interferometer created by optical simulations including ghost beam analysis, component alignment and noise estimation. First experimental results of a free beam laser link between two optical set-ups that are co-rotating by  ±1° are presented. This experiment demonstrates sufficient thermal stability during rotation of less than 10‑4 K \\sqrtHz-1 at 1 mHz and operation of the free beam steering mirror control over more than 1 week.

  11. Coherent optical modulation for antenna remoting

    NASA Technical Reports Server (NTRS)

    Fitzmartin, D. J.; Gels, R. G.; Balboni, E. J.

    1991-01-01

    A coherent fiber optic link employing wideband frequency modulation (FM) of the optical carrier is used to transfer radio frequency (RF) or microwave signals. This system is used to link a remotely located antenna to a conveniently located electronics processing site. The advantages of coherent analog fiber optic systems over non-coherent intensity modulated fiber optic analog transmission systems are described. An optical FM link employing an indirect transmitter to frequency modulate the optical carrier and a microwave delay line discriminator receiver is described. Measured performance data for a video signal centered at 60 MHz is presented showing the use of wideband FM in the link.

  12. A Measurement Plane for Optical Networks to Manage Emergency Events

    NASA Astrophysics Data System (ADS)

    Tego, E.; Carciofi, C.; Grazioso, P.; Petrini, V.; Pompei, S.; Matera, F.; Attanasio, V.; Nastri, E.; Restuccia, E.

    2017-11-01

    In this work, we show a wide geographical area optical network test bed, adopting the mPlane measurement plane for monitoring its performance and to manage software defined network approaches, with some specific tests and procedures dedicated to respond to disaster events and to support emergency networks. Such a test bed includes FTTX accesses, and it is currently implemented to support future 5G wireless services with slicing procedures based on Carrier Ethernet. The characteristics of this platform have been experimentally tested in the case of a damage-causing link failure and traffic congestion, showing a fast reactions to these disastrous events, allowing the user to recharge the initial QoS parameters.

  13. Initial Characterization of Optical Communications with Disruption-Tolerant Network Protocols

    NASA Technical Reports Server (NTRS)

    Schoolcraft, Joshua; Wilson, Keith

    2011-01-01

    Disruption-tolerant networks (DTNs) are groups of network assets connected with a suite of communication protocol technologies designed to mitigate the effects of link delay and disruption. Application of DTN protocols to diverse groups of network resources in multiple sub-networks results in an overlay network-of-networks with autonomous data routing capability. In space environments where delay or disruption is expected, performance of this type of architecture (such as an interplanetary internet) can increase with the inclusion of new communications mediums and techniques. Space-based optical communication links are therefore an excellent building block of space DTN architectures. When compared to traditional radio frequency (RF) communications, optical systems can provide extremely power-efficient and high bandwidth links bridging sub-networks. Because optical links are more susceptible to link disruption and experience the same light-speed delays as RF, optical-enabled DTN architectures can lessen potential drawbacks and maintain the benefits of autonomous optical communications over deep space distances. These environment-driven expectations - link delay and interruption, along with asymmetric data rates - are the purpose of the proof-of-concept experiment outlined herein. In recognizing the potential of these two technologies, we report an initial experiment and characterization of the performance of a DTN-enabled space optical link. The experiment design employs a point-to-point free-space optical link configured to have asymmetric bandwidth. This link connects two networked systems running a DTN protocol implementation designed and written at JPL for use on spacecraft, and further configured for higher bandwidth performance. Comparing baseline data transmission metrics with and without periodic optical link interruptions, the experiment confirmed the DTN protocols' ability to handle real-world unexpected link outages while maintaining capability of reliably delivering data at relatively high rates. Finally, performance characterizations from this data suggest performance optimizations to configuration and protocols for future optical-specific DTN space link scenarios.

  14. Cascaded multiplexed optical link on a telecommunication network for frequency dissemination.

    PubMed

    Lopez, Olivier; Haboucha, Adil; Kéfélian, Fabien; Jiang, Haifeng; Chanteau, Bruno; Roncin, Vincent; Chardonnet, Christian; Amy-Klein, Anne; Santarelli, Giorgio

    2010-08-02

    We demonstrate a cascaded optical link for ultrastable frequency dissemination comprised of two compensated links of 150 km and a repeater station. Each link includes 114 km of Internet fiber simultaneously carrying data traffic through a dense wavelength division multiplexing technology, and passes through two routing centers of the telecommunication network. The optical reference signal is inserted in and extracted from the communication network using bidirectional optical add-drop multiplexers. The repeater station operates autonomously ensuring noise compensation on the two links and the ultra-stable signal optical regeneration. The compensated link shows a fractional frequency instability of 3 x 10(-15) at one second measurement time and 5 x 10(-20) at 20 hours. This work paves the way to a wide dissemination of ultra-stable optical clock signals between distant laboratories via the Internet network.

  15. A note on deep space optical communication link parameters

    NASA Technical Reports Server (NTRS)

    Dolinar, S. J.; Yuen, J. H.

    1982-01-01

    Topical communication in the context of a deep space communication link. Communication link analysis at the optical frequencies differs significantly from that at microwave frequencies such as the traditional S and X-bands used in deep space applications, due to the different technology of transmitter, antenna, modulators, and receivers. In addition, the important role of quantum noise in limiting system performance is quite different than that of thermal noise. The optical link design is put in a design control table format similar to a microwave telecom link design. Key considerations unique to the optical link are discussed.

  16. Cascaded optical fiber link using the internet network for remote clocks comparison.

    PubMed

    Chiodo, Nicola; Quintin, Nicolas; Stefani, Fabio; Wiotte, Fabrice; Camisard, Emilie; Chardonnet, Christian; Santarelli, Giorgio; Amy-Klein, Anne; Pottie, Paul-Eric; Lopez, Olivier

    2015-12-28

    We report a cascaded optical link of 1100 km for ultra-stable frequency distribution over an Internet fiber network. The link is composed of four spans for which the propagation noise is actively compensated. The robustness and the performance of the link are ensured by five fully automated optoelectronic stations, two of them at the link ends, and three deployed on the field and connecting the spans. This device coherently regenerates the optical signal with the heterodyne optical phase locking of a low-noise laser diode. Optical detection of the beat-note signals for the laser lock and the link noise compensation are obtained with stable and low-noise fibered optical interferometer. We show 3.5 days of continuous operation of the noise-compensated 4-span cascaded link leading to fractional frequency instability of 4x10(-16) at 1-s measurement time and 1x10(-19) at 2000 s. This cascaded link was extended to 1480-km with the same performance. This work is a significant step towards a sustainable wide area ultra-stable optical frequency distribution and comparison network at a very high level of performance.

  17. Embedded calibration system for the DIII-D Langmuir probe analog fiber optic links

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, J. G.; Rajpal, R.; Mandaliya, H.

    2012-10-15

    This paper describes a generally applicable technique for simultaneously measuring offset and gain of 64 analog fiber optic data links used for the DIII-D fixed Langmuir probes by embedding a reference voltage waveform in the optical transmitted signal before every tokamak shot. The calibrated data channels allow calibration of the power supply control fiber optic links as well. The array of fiber optic links and the embedded calibration system described here makes possible the use of superior modern data acquisition electronics in the control room.

  18. CARMENES in SPIE 2014. Building a fibre link for CARMENES

    NASA Astrophysics Data System (ADS)

    Stürmer, J.; Stahl, O.; Schwab, C.; Seifert, W.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Caballero, J. A.

    2014-07-01

    Optical fibres have successfully been used to couple high-resolution spectrographs to telescopes for many years. As they allow the instrument to be placed in a stable and isolated location, they decouple the spectrograph from environmental influences. Fibres also provide a substantial increase in stability of the input illumination of the spectrograph, which makes them a key optical element of the two high-resolution spectrographs of CARMENES. The optical properties of appropriate fibres are investigated, especially their scrambling and focal ratio degradation (FRD) behaviour. In the laboratory the output illumination of various fibres is characterized and different methods to increase the scrambling of the fibre link are tested and compared. In particular, a combination of fibres with different core shapes shows a very good scrambling performance. The near-field (NF) shows an extremely low sensitivity to the exact coupling conditions of the fibre. However, small changes in the far-field (FF) can still be seen. Related optical simulations of the stability performance of the two spectrographs are presented. The simulations focus on the influence of the non-perfect illumination stabilization in the far-field of the fibre on the radial velocity stability of the spectrographs. We use ZEMAX models of the spectrographs to simulate how the barycentres of the spots move depending on the FF illumination pattern and therefore how the radial velocity is affected by a variation of the spectrograph illumination. This method allows to establish a quantitative link between the results of the measurements of the optical properties of fibres on the one hand and the radial velocity precision on the other. The results provide a strong indication that 1ms?1 precision can be reached using a circular-octagonal fibre link even without the use of an optical double scrambler, which has successfully been used in other high-resolution spectrographs. Given the typical throughput of an optical double scrambler of about 75% to 85 %, our solution allows for a substantially higher throughput of the system.

  19. Radio Science from an Optical Communications Signal

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Asmar, Sami; Oudrhiri, Kamal

    2013-01-01

    NASA is currently developing the capability to deploy deep space optical communications links. This creates the opportunity to utilize the optical link to obtain range, doppler, and signal intensity estimates. These may, in turn, be used to complement or extend the capabilities of current radio science. In this paper we illustrate the achievable precision in estimating range, doppler, and received signal intensity of an non-coherent optical link (the current state-of-the-art for a deep-space link). We provide a joint estimation algorithm with performance close to the bound. We draw comparisons to estimates based on a coherent radio frequency signal, illustrating that large gains in either precision or observation time are possible with an optical link.

  20. Ultrafast all-optical technologies for bidirectional optical wireless communications.

    PubMed

    Jin, Xian; Hristovski, Blago A; Collier, Christopher M; Geoffroy-Gagnon, Simon; Born, Brandon; Holzman, Jonathan F

    2015-04-01

    In this Letter, a spherical retro-modulator architecture is introduced for operation as a bidirectional transceiver in passive optical wireless communication links. The architecture uses spherical retroreflection to enable retroreflection with broad directionality (2π steradians), and it uses all-optical beam interaction to enable modulation on ultrafast timescales (120 fs duration). The spherical retro-modulator is investigated from a theoretical standpoint and is fabricated for testing with three glasses, N-BK7, N-LASF9, and S-LAH79. It is found that the S-LAH79 structure provides the optimal refraction and nonlinearity for the desired retroreflection and modulation capabilities.

  1. Fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique.

    PubMed

    Zhang, Junwen; Wang, Jing; Xu, Yuming; Xu, Mu; Lu, Feng; Cheng, Lin; Yu, Jianjun; Chang, Gee-Kung

    2016-05-01

    We propose and experimentally demonstrate a novel fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave (MMW) and free-space-optics (FSO) architecture using an adaptive combining technique. Both 60 GHz MMW and FSO links are demonstrated and fully integrated with optical fibers in a scalable and cost-effective backhaul system setup. Joint signal processing with an adaptive diversity combining technique (ADCT) is utilized at the receiver side based on a maximum ratio combining algorithm. Mobile backhaul transportation of 4-Gb/s 16 quadrature amplitude modulation frequency-division multiplexing (QAM-OFDM) data is experimentally demonstrated and tested under various weather conditions synthesized in the lab. Performance improvement in terms of reduced error vector magnitude (EVM) and enhanced link reliability are validated under fog, rain, and turbulence conditions.

  2. State-of-the-art fiber optics for short distance frequency reference distribution

    NASA Astrophysics Data System (ADS)

    Lutes, G. F.; Primas, L. E.

    1989-05-01

    A number of recently developed fiber-optic components that hold the promise of unprecedented stability for passively stabilized frequency distribution links are characterized. These components include a fiber-optic transmitter, an optical isolator, and a new type of fiber-optic cable. A novel laser transmitter exhibits extremely low sensitivity to intensity and polarization changes of reflected light due to cable flexure. This virtually eliminates one of the shortcomings in previous laser transmitters. A high-isolation, low-loss optical isolator has been developed which also virtually eliminates laser sensitivity to changes in intensity and polarization of reflected light. A newly developed fiber has been tested. This fiber has a thermal coefficient of delay of less than 0.5 parts per million per deg C, nearly 20 times lower than the best coaxial hardline cable and 10 times lower than any previous fiber-optic cable. These components are highly suitable for distribution systems with short extent, such as within a Deep Space Communications Complex. Here, these new components are described and the test results presented.

  3. State-of-the-art fiber optics for short distance frequency reference distribution

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.; Primas, L. E.

    1989-01-01

    A number of recently developed fiber-optic components that hold the promise of unprecedented stability for passively stabilized frequency distribution links are characterized. These components include a fiber-optic transmitter, an optical isolator, and a new type of fiber-optic cable. A novel laser transmitter exhibits extremely low sensitivity to intensity and polarization changes of reflected light due to cable flexure. This virtually eliminates one of the shortcomings in previous laser transmitters. A high-isolation, low-loss optical isolator has been developed which also virtually eliminates laser sensitivity to changes in intensity and polarization of reflected light. A newly developed fiber has been tested. This fiber has a thermal coefficient of delay of less than 0.5 parts per million per deg C, nearly 20 times lower than the best coaxial hardline cable and 10 times lower than any previous fiber-optic cable. These components are highly suitable for distribution systems with short extent, such as within a Deep Space Communications Complex. Here, these new components are described and the test results presented.

  4. Frequency comb-based multiple-access ultrastable frequency dissemination with 7 × 10(-17) instability.

    PubMed

    Zhang, Shuangyou; Zhao, Jianye

    2015-01-01

    In this letter, we demonstrate frequency-comb-based multiple-access ultrastable frequency dissemination over a 10-km single-mode fiber link. First, we synchronize optical pulse trains from an Er-fiber frequency comb to the remote site by using a simple and robust phase-conjugate stabilization method. The fractional frequency-transfer instability at the remote site is 2.6×10(-14) and 4.9×10(-17) for averaging times of 1 and 10,000 s, respectively. Then, we reproduce the harmonic of the repetition rate from the disseminated optical pulse trains at an arbitrary point along the fiber link to test comb-based multiple-access performance, and demonstrate frequency instability of 4×10(-14) and 7×10(-17) at 1 and 10,000 s averaging time, respectively. The proposed comb-based multiple-access frequency dissemination can easily achieve highly stable wideband microwave extraction along the whole link.

  5. New trends in laser satellite communications: design and limitations

    NASA Astrophysics Data System (ADS)

    Císar, J.; Wilfert, O.; Fanjul-Vélez, F.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2008-11-01

    Optical communications offer a capable alternative to radio frequency (RF) communications for applications where high data-rate is required. This technology is particularly promising and challenging in the field of future inter-satellite communications. The term laser satellite communications (LSC) stands for optical links between satellites and/or high altitude platforms (HAPs). However, optical links between an earth station and a satellite or HAPs can be also involved. This work gives an overview of nowadays laser satellite communications. Particularly, it is focused on the factors causing degradation of the optical beam in the atmosphere. If an optical link passes through the atmosphere, it suffers from various influences such as attenuation due to absorption and scattering, intensity fluctuations due to atmospheric turbulence and background radiation. Furthermore, platform vibrations cause mispointing and following tracking losses. Suitable devices and used pointing and tracking system for laser satellite communications are discussed. At the end, various scenarios of the optical links and calculations of their power link budgets and limitations are designed. Implemented software is used for calculation of optical links. This work proves that the Free Space Optics (FSO) systems on mobile platforms, like satellites and HAPs are a promising solution for future communication networks.

  6. Cost and Performance Comparison of an Earth-Orbiting Optical Communication Relay Transceiver and a Ground-Based Optical Receiver Subnet

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Wright, M.; Cesarone, R.; Ceniceros, J.; Shea, K.

    2003-01-01

    Optical communications can provide high-data-rate telemetry from deep-space probes with subsystems that have lower mass, consume less power, and are smaller than their radio frequency (RF) counterparts. However, because optical communication is more a.ected by weather than is RF communication, it requires groundstation site diversity to mitigate the adverse e.ects of inclement weather on the link. An optical relay satellite is not a.ected by weather and can provide 24-hour coverage of deep-space probes. Using such a relay satellite for the deep-space link and an 8.4-GHz (X-band) link to a ground station would support high-data-rate links from small deep-space probes with very little link loss due to inclement weather. We have reviewed past JPL-funded work on RF and optical relay satellites, and on proposed clustered and linearly dispersed optical subnets. Cost comparisons show that the life cycle costs of a 7-m optical relay station based on the heritage of the Next Generation Space Telescope is comparable to that of an 8-station subnet of 10- m optical ground stations. This makes the relay link an attractive option vis- a-vis a ground-station network.

  7. Innovative on board payload optical architecture for high throughput satellites

    NASA Astrophysics Data System (ADS)

    Baudet, D.; Braux, B.; Prieur, O.; Hughes, R.; Wilkinson, M.; Latunde-Dada, K.; Jahns, J.; Lohmann, U.; Fey, D.; Karafolas, N.

    2017-11-01

    For the next generation of HighThroughPut (HTP) Telecommunications Satellites, space end users' needs will result in higher link speeds and an increase in the number of channels; up to 512 channels running at 10Gbits/s. By keeping electrical interconnections based on copper, the constraints in term of power dissipation, number of electrical wires and signal integrity will become too demanding. The replacement of the electrical links by optical links is the most adapted solution as it provides high speed links with low power consumption and no EMC/EMI. But replacing all electrical links by optical links of an On Board Payload (OBP) is challenging. It is not simply a matter of replacing electrical components with optical but rather the whole concept and architecture have to be rethought to achieve a high reliability and high performance optical solution. In this context, this paper will present the concept of an Innovative OBP Optical Architecture. The optical architecture was defined to meet the critical requirements of the application: signal speed, number of channels, space reliability, power dissipation, optical signals crossing and components availability. The resulting architecture is challenging and the need for new developments is highlighted. But this innovative optically interconnected architecture will substantially outperform standard electrical ones.

  8. Cost and Performance Comparison of an Earth-Orbiting Optical Communication Relay Transceiver and a Ground-Based Optical Receiver Subnet

    NASA Astrophysics Data System (ADS)

    Wilson, K. E.; Wright, M.; Cesarone, R.; Ceniceros, J.; Shea, K.

    2003-01-01

    Optical communications can provide high-data-rate telemetry from deep-space probes with subsystems that have lower mass, consume less power, and are smaller than their radio frequency (RF) counterparts. However, because optical communication is more affected by weather than is RF communication, it requires ground station site diversity to mitigate the adverse effects of inclement weather on the link. An optical relay satellite is not affected by weather and can provide 24-hour coverage of deep-space probes. Using such a relay satellite for the deep-space link and an 8.4-GHz (X-band) link to a ground station would support high-data-rate links from small deep-space probes with very little link loss due to inclement weather. We have reviewed past JPL-funded work on RF and optical relay satellites, and on proposed clustered and linearly dispersed optical subnets. Cost comparisons show that the life cycle costs of a 7-m optical relay station based on the heritage of the Next Generation Space Telescope is comparable to that of an 8-station subnet of 10-m optical ground stations. This makes the relay link an attractive option vis-a-vis a ground station network.

  9. FireFly: reconfigurable optical wireless networking data centers

    NASA Astrophysics Data System (ADS)

    Kavehrad, Mohsen; Deng, Peng; Gupta, H.; Longtin, J.; Das, S. R.; Sekar, V.

    2017-01-01

    We explore a novel, free-space optics based approach for building data center interconnects. Data centers (DCs) are a critical piece of today's networked applications in both private and public sectors. The key factors that have driven this trend are economies of scale, reduced management costs, better utilization of hardware via statistical multiplexing, and the ability to elastically scale applications in response to changing workload patterns. A robust DC network fabric is fundamental to the success of DCs and to ensure that the network does not become a bottleneck for high-performance applications. In this context, DC network design must satisfy several goals: high performance (e.g., high throughput and low latency), low equipment and management cost, robustness to dynamic traffic patterns, incremental expandability to add new servers or racks, and other practical concerns such as cabling complexity, and power and cooling costs. Current DC network architectures do not seem to provide a satisfactory solution, with respect to the above requirements. In particular, traditional static (wired) networks are either overprovisioned or oversubscribed. Recent works have tried to overcome the above limitations by augmenting a static (wired) "core" with some flexible links (RF-wireless or optical). These augmented architectures show promise, but offer only incremental improvement in performance. Specifically, RFwireless based augmented solutions also offer only limited performance improvement, due to inherent interference and range constraints of RF links. This paper explores an alternative design point—a fully flexible and all-wireless DC interrack network based on free-space optical (FSO) links. We call this FireFly as in; Free-space optical Inter-Rack nEtwork with high FLexibilitY. We will present our designs and tests using various configurations that can help the performance and reliability of the FSO links.

  10. Optical fibres in the radiation environment of CERN

    NASA Astrophysics Data System (ADS)

    Guillermain, E.

    2017-11-01

    CERN, the European Organization for Nuclear Research (in Geneva, Switzerland), is home to a complex scientific instrument: the 27-kilometre Large Hadron Collider (LHC) collides beams of high-energy particles at close to the speed of light. Optical fibres are widely used at CERN, both in surface areas (e.g. for inter-building IT networks) and in the accelerator complex underground (e.g. for cryogenics, vacuum, safety systems). Optical fibres in the accelerator are exposed to mixed radiation fields (mainly composed of protons, pions, neutrons and other hadrons, gamma rays and electrons), with dose rates depending on the particular installation zone, and with radiation levels often significantly higher than those encountered in space. In the LHC and its injector chain radiation levels range from relatively low annual doses of a few Gy up to hundreds of kGy. Optical fibres suffer from Radiation Induced Attenuation (RIA, expressed in dB per unit length) that affect light transmission and which depends on the irradiation conditions (e.g. dose rate, total dose, temperature). In the CERN accelerator complex, the failure of an optical link can affect the proper functionality of control or monitoring systems and induce the interruption of the accelerator operation. The qualification of optical fibres for installation in critical radiation areas is therefore crucial. Thus, all optical fibre types installed in radiation areas at CERN are subject to laboratory irradiation tests, in order to evaluate their RIA at different total dose and dose rates. This allows the selection of the appropriate optical fibre type (conventional or radiation resistant) compliant with the requirements of each installation. Irradiation tests are performed in collaboration with Fraunhofer INT (irradiation facilities and expert team in Euskirchen, Germany). Conventional off-the-shelf optical fibres can be installed for optical links exposed to low radiation levels (i.e. annual dose typically below few kGy). Nevertheless, the conventional optical fibres must be carefully qualified as a spread in RIA of factor 10 is observed among optical fibres of different types and dopants. In higher radiation areas, special radiation resistant optical fibres are installed. For total dose above 1 kGy, the RIA of these special optical fibres is at least 10 times lower than the conventional optical fibres RIA at same irradiation conditions. 2400 km of these special radiation resistant optical fibres were recently procured at CERN. As part of this procurement process, a quality assurance plan including the irradiation testing of all 65 produced batches was set up. This presentation will review the selection process of the appropriate optical fibre types to be installed in the radiation environment of CERN. The methodology for choosing the irradiation parameters for the laboratory tests will be discussed together with an overview of the RIA of different optical fibre types under several irradiation conditions.

  11. A COTS RF/Optical Software Defined Radio for the Integrated Radio and Optical Communications Test Bed

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer M.; Zeleznikar, Daniel J.; Wroblewski, Adam C.; Tokars, Roger P.; Schoenholz, Bryan L.; Lantz, Nicholas C.

    2017-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration (NASA) is investigating the merits of a hybrid radio frequency (RF) and optical communication system for deep space missions. In an effort to demonstrate the feasibility and advantages of a hybrid RF/Optical software defined radio (SDR), a laboratory prototype was assembled from primarily commercial-off-the-shelf (COTS) hardware components. This COTS platform has been used to demonstrate simultaneous transmission of the radio and optical communications waveforms through to the physical layer (telescope and antenna). This paper details the hardware and software used in the platform and various measures of its performance. A laboratory optical receiver platform has also been assembled in order to demonstrate hybrid free space links in combination with the transmitter.

  12. Influence of laser beam profiles on received power fluctuation

    NASA Astrophysics Data System (ADS)

    Dordova, Lucie; Diblik, Jan

    2011-09-01

    Gaussian beam is very often used for the transmission of information in optical wireless links. The usage of this optical beam has its advantages and, of course, disadvantages. This work focuses on possibilities of using laser beams with different distribution of optical intensity - Top Hat beam. Creation of the optical beam with selected optical intensity profile will be briefly described. Optical beams will propagate through the "clear" and stationary atmosphere in the experimental part of this work. These results will be compared with the data obtained after a laser beam is passed through the turbulent and attenuated atmosphere. We will use an ultrasound fog generator for laser beam attenuation testing. To create the turbulence, infra radiators will be applied. Particular results obtained from different atmospheric conditions will be compared and using different types of optical beams will be assessed.

  13. Development and characterisation of FPGA modems using forward error correction for FSOC

    NASA Astrophysics Data System (ADS)

    Mudge, Kerry A.; Grant, Kenneth J.; Clare, Bradley A.; Biggs, Colin L.; Cowley, William G.; Manning, Sean; Lechner, Gottfried

    2016-05-01

    In this paper we report on the performance of a free-space optical communications (FSOC) modem implemented in FPGA, with data rate variable up to 60 Mbps. To combat the effects of atmospheric scintillation, a 7/8 rate low density parity check (LDPC) forward error correction is implemented along with custom bit and frame synchronisation and a variable length interleaver. We report on the systematic performance evaluation of an optical communications link employing the FPGA modems using a laboratory test-bed to simulate the effects of atmospheric turbulence. Log-normal fading is imposed onto the transmitted free-space beam using a custom LabVIEW program and an acoustic-optic modulator. The scintillation index, transmitted optical power and the scintillation bandwidth can all be independently varied allowing testing over a wide range of optical channel conditions. In particular, bit-error-ratio (BER) performance for different interleaver lengths is investigated as a function of the scintillation bandwidth. The laboratory results are compared to field measurements over 1.5km.

  14. 2 Gbit/s 0.5 μm complementary metal-oxide semiconductor optical transceiver with event-driven dynamic power-on capability

    NASA Astrophysics Data System (ADS)

    Wang, Xingle; Kiamilev, Fouad; Gui, Ping; Wang, Xiaoqing; Ekman, Jeremy; Zuo, Yongrong; Blankenberg, Jason; Haney, Michael

    2006-06-01

    A 2 Gb/s0.5 μm complementary metal-oxide semiconductor optical transceiver designed for board- or backplane level power-efficient interconnections is presented. The transceiver supports optical wake-on-link (OWL), an event-driven dynamic power-on technique. Depending on external events, the transceiver resides in either the active mode or the sleep mode and switches accordingly. The active-to-sleep transition shuts off the normal, gigabit link and turns on dedicated circuits to establish a low-power (~1.8 mW), low data rate (less than 100 Mbits/s) link. In contrast the normal, gigabit link consumes over 100 mW. Similarly the sleep-to-active transition shuts off the low-power link and turns on the normal, gigabit link. The low-power link, sharing the same optical channel with the normal, gigabit link, is used to achieve transmitter/receiver pair power-on synchronization and greatly reduces the power consumption of the transceiver. A free-space optical platform was built to evaluate the transceiver performance. The experiment successfully demonstrated the event-driven dynamic power-on operation. To our knowledge, this is the first time a dynamic power-on scheme has been implemented for optical interconnects. The areas of the circuits that implement the low-power link are approximately one-tenth of the areas of the gigabit link circuits.

  15. Optical ground station site diversity for Deep Space Optical Communications the Mars Telecom Orbiter optical link

    NASA Technical Reports Server (NTRS)

    Wilson, K.; Parvin, B.; Fugate, R.; Kervin, P.; Zingales, S.

    2003-01-01

    Future NASA deep space missions will fly advanced high resolution imaging instruments that will require high bandwidth links to return the huge data volumes generated by these instruments. Optical communications is a key technology for returning these large data volumes from deep space probes. Yet to cost effectively realize the high bandwidth potential of the optical link will require deployment of ground receivers in diverse locations to provide high link availability. A recent analysis of GOES weather satellite data showed that a network of ground stations located in Hawaii and the Southwest continental US can provide an average of 90% availability for the deep space optical link. JPL and AFRL are exploring the use of large telescopes in Hawaii, California, and Albuquerque to support the Mars Telesat laser communications demonstration. Designed to demonstrate multi-Mbps communications from Mars, the mission will investigate key operational strategies of future deep space optical communications network.

  16. Adaptive and reliably acknowledged FSO communications

    NASA Astrophysics Data System (ADS)

    Fitz, Michael P.; Halford, Thomas R.; Kose, Cenk; Cromwell, Jonathan; Gordon, Steven

    2015-05-01

    Atmospheric turbulence causes the receive signal intensity on free space optical (FSO) communication links to vary over time. Scintillation fades can stymie connectivity for milliseconds at a time. To approach the information-theoretic limits of communication in such time-varying channels, it necessary to either code across extremely long blocks of data - thereby inducing unacceptable delays - or to vary the code rate according to the instantaneous channel conditions. We describe the design, laboratory testing, and over-the-air testing of an FSO modem that employs a protocol with adaptive coded modulation (ACM) and hybrid automatic repeat request. For links with fixed throughput, this protocol provides a 10dB reduction in the required received signal-to-noise ratio (SNR); for links with fixed range, this protocol provides the greater than a 3x increase in throughput. Independent U.S. Government tests demonstrate that our protocol effectively adapts the code rate to match the instantaneous channel conditions. The modem is able to provide throughputs in excess of 850 Mbps on links with ranges greater than 15 kilometers.

  17. Development and Testing of an Innovative Two-Arm Focal-Plane Thermal Strap (TAFTS)

    NASA Technical Reports Server (NTRS)

    Urquiza, E.; Vasquez, C.; Rodriguez, J.; Van Gorp, B.

    2011-01-01

    Maintaining temperature stability in optical focal planes comes with the intrinsic challenge of creating a pathway that is both extremely flexible mechanically and highly conductive thermally. The task is further complicated because science-caliber optical focal planes are extremely delicate, yet their mechanical resiliency is rarely tested and documented. The mechanical engineer tasked with the thermo-mechanical design must then create a highly conductive thermal link that minimizes the tensile and shear stresses transmitted to the focal plane without design parameters on an acceptable stiffness. This paper will describe the development and testing of the thermal link developed for the Portable Remote Imaging Spectrometer (PRISM) instrument. It will provide experimentally determined mechanical stiffness plots in the three axes of interest. Analytical and experimental thermal conductance results for the two-arm focal-plane thermal strap (TAFTS), from cryogenic to room temperatures, are also presented. The paper also briefly describes some elements of the fabrication process followed in developing a novel design solution, which provides high conductance and symmetrical mechanical loading, while providing enhanced flexibility in all three degrees of freedom.

  18. Monitoring Spacecraft Telemetry Via Optical or RF Link

    NASA Technical Reports Server (NTRS)

    Fielhauer, K. B.; Boone, B. G.

    2011-01-01

    A patent disclosure document discusses a photonic method for connecting a spacecraft with a launch vehicle upper-stage telemetry system as a means for monitoring a spacecraft fs health and status during and right after separation and deployment. This method also provides an efficient opto-coupled capability for prelaunch built-in-test (BIT) on the ground to enable more efficient and timely integration, preflight checkout, and a means to obviate any local EMI (electromagnetic interference) during integration and test. Additional utility can be envisioned for BIT on other platforms, such as the International Space Station (ISS). The photonic telemetry system implements an optical free-space link with a divergent laser transmitter beam spoiled over a significant cone angle to accommodate changes in spacecraft position without having to angle track it during deployment. Since the spacecraft may lose attitude control and tumble during deployment, the transmitted laser beam interrogates any one of several low-profile meso-scale retro-reflective spatial light modulators (SLMs) deployed over the surface of the spacecraft. The return signal beam, modulated by the SLMs, contains health, status, and attitude information received back at the launch vehicle. Very compact low-power opto-coupler technology already exists for the received signal (requiring relatively low bandwidths, e.g., .200 kbps) to enable transfer to a forward pass RF relay from the launch vehicle to TDRSS (Tracking and Data Relay Satellite System) or another recipient. The link would be active during separation and post-separation to monitor spacecraft health, status, attitude, or other data inventories until attitude recovery and ground control can be re-established. An optical link would not interfere with the existing upper stage telemetry and beacon systems, thus meeting launch vehicle EMI environmental constraints.

  19. Nonlinear optical collagen cross-linking and mechanical stiffening: a possible photodynamic therapeutic approach to treating corneal ectasia

    PubMed Central

    Chai, Dongyul; Juhasz, Tibor; Brown, Donald J.

    2013-01-01

    Abstract. In this study we test the hypothesis that nonlinear optical (NLO) multiphoton photoactivation of riboflavin using a focused femtosecond (FS) laser light can be used to induce cross-linking (CXL) and mechanically stiffen collagen as a potential clinical therapy for the treatment of keratoconus and corneal ectasia. Riboflavin-soaked, compressed collagen hydrogels are cross-linked using a FS laser tuned to 760 nm and set to either 100 mW (NLO CXL I) or 150 mW (NLO CXL II) of laser power. FS pulses are focused into the hydrogel using a 0.75 NA objective lens, and the hydrogel is three-dimensionally scanned. Measurement of hydrogel stiffness by indentation testing show that the calculated elastic modulus (E) values are significantly increased over twofold following NLO CXL I and II compared with baseline values (P<0.05). Additionally, no significant differences are detected between NLO CXL and single photon, UVA CXL (P>0.05). This data suggests that NLO CXL has a comparable effect to conventional UVA CXL in mechanically stiffening collagen and may provide a safe and effective approach to localize CXL at different regions and depths within the cornea. PMID:23515869

  20. Navy Budget (1992): Potential Reductions in Research, Development, Test, and Evaluation Programs

    DTIC Science & Technology

    1991-09-01

    Army’s fiber optic guided missile employs a video camera and single spool fiber payout system to provide a contin- uous data link to a ground station for...January 1991 the Navy’s technical design agent for the MK-48 tor- pedo has been directing a major research and testing effort. The results of these

  1. Laser Safety Method For Duplex Open Loop Parallel Optical Link

    DOEpatents

    Baumgartner, Steven John; Hedin, Daniel Scott; Paschal, Matthew James

    2003-12-02

    A method and apparatus are provided to ensure that laser optical power does not exceed a "safe" level in an open loop parallel optical link in the event that a fiber optic ribbon cable is broken or otherwise severed. A duplex parallel optical link includes a transmitter and receiver pair and a fiber optic ribbon that includes a designated number of channels that cannot be split. The duplex transceiver includes a corresponding transmitter and receiver that are physically attached to each other and cannot be detached therefrom, so as to ensure safe, laser optical power in the event that the fiber optic ribbon cable is broken or severed. Safe optical power is ensured by redundant current and voltage safety checks.

  2. Multilevel microvibration test for performance predictions of a space optical load platform

    NASA Astrophysics Data System (ADS)

    Li, Shiqi; Zhang, Heng; Liu, Shiping; Wang, Yue

    2018-05-01

    This paper presents a framework for the multilevel microvibration analysis and test of a space optical load platform. The test framework is conducted on three levels, including instrument, subsystem, and system level. Disturbance source experimental investigations are performed to evaluate the vibration amplitude and study vibration mechanism. Transfer characteristics of space camera are validated by a subsystem test, which allows the calculation of transfer functions from various disturbance sources to optical performance outputs. In order to identify the influence of the source on the spacecraft performance, a system level microvibration measurement test has been performed on the ground. From the time domain analysis and spectrum analysis of multilevel microvibration tests, we concluded that the disturbance source has a significant effect on its installation position. After transmitted through mechanical links, the residual vibration reduces to a background noise level. In addition, the angular microvibration of the platform jitter is mainly concentrated in the rotation of y-axes. This work is applied to a real practical application involving the high resolution satellite camera system.

  3. Feasibility assessment of optical technologies for reliable high capacity feeder links

    NASA Astrophysics Data System (ADS)

    Witternigg, Norbert; Schönhuber, Michael; Leitgeb, Erich; Plank, Thomas

    2013-08-01

    Space telecom scenarios like data relay satellite and broadband/broadcast service providers require reliable feeder links with high bandwidth/data rate for the communication between ground station and satellite. Free space optical communication (FSOC) is an attractive alternative to microwave links, improving performance by offering abundant bandwidth at small apertures of the optical terminals. At the same time Near-Earth communication by FSOC avoids interference with other services and is free of regulatory issues. The drawback however is the impairment by the laser propagation through the atmosphere at optical wavelengths. Also to be considered are questions of eye safety for ground personnel and aviation. In this paper we assess the user requirements for typical space telecom scenarios and compare these requirements with solutions using optical data links through the atmosphere. We suggest a site diversity scheme with a number of ground stations and a switching scheme using two optical terminals on-board the satellite. Considering the technology trade-offs between four different optical wavelengths we recommend the future use of 1.5 μm laser technology and calculate a link budget for an atmospheric condition of light haze on the optical path. By comparing link budgets we show an outlook to the future potential use of 10 μm laser technology.

  4. Discovery deep space optical communications (DSOC) transceiver

    NASA Astrophysics Data System (ADS)

    Roberts, W. Thomas

    2017-02-01

    NASA's 22 cm diameter Deep Space Optical Communications (DSOC) Transceiver is designed to provide a bidirectional optical link between a spacecraft in the inner solar system and an Earth-based optical ground station. This design, optimized for operation across a wide range of illumination conditions, is focused on minimizing blinding from stray light, and providing reliable, accurate attitude information to point its narrow communication beam accurately to the future location of the ground terminal. Though our transceiver will transmit in the 1550 nm waveband and receive in the 1064 nm waveband, the system design relies heavily on reflective optical elements, extending flexibility to be modified for use at different wavebands. The design makes use of common path propagation among transmit, receive and pointing verification optical channels to maintain precise alignment among its components, and to naturally correct for element misalignment resulting from launch or thermal element perturbations. This paper presents the results of trade studies showing the evolution of the design, unique operational characteristics of the design, elements that help to maintain minimal stray light contamination, and preliminary results from development and initial testing of a functional aluminum test model.

  5. High-speed optical feeder-link system using adaptive optics

    NASA Astrophysics Data System (ADS)

    Arimoto, Yoshinori; Hayano, Yutaka; Klaus, Werner

    1997-05-01

    We propose a satellite laser communication system between a ground station and a geostationary satellite, named high- speed optical feeder link system. It is based on the application of (a) high-speed optical devices, which have been developed for ground-based high-speed fiber-optic communications, and (b) the adaptive optics which compensates wavefront distortions due to atmospheric turbulences using a real time feedback control. A link budget study shows that a system with 10-Gbps bit-rate are available assuming the state-of-the-art device performance of the Er-doped fiber amplifier. We further discuss preliminary measurement results of the atmospheric turbulence at the telescope site in Tokyo, and present current study on the design of the key components for the feeder-link laser transceiver.

  6. Marine optical characterizations

    NASA Technical Reports Server (NTRS)

    Clark, Dennis K.; Ge, Yuntao; Hovey, Phil; King, ED; Stengel, Eric; Yuen, Marilyn; Koval, Larisa

    1995-01-01

    During the past three months, the MOCE Team conducted two field experiments in Mill Creek,Chesapeake Bay, from July 24 to August 4, and at the MOBY operations site at Snug Harbor, Honolulu, Hawaii, from August 15-30, prepared two technical memoranda, and continued MOCE-2 and MOCE-3 data reduction. The primary purposes of the experiments were to test the SeaWiFS 'remote sensing reflectance' protocol, obtain turbid water data for ocean color satellite algorithm development, perform calibration for both Near Infrared (NIR) and Visible Rainbow Spectrometer system, continue assembling the operational Marine Optical Buoy, and to test the MOBY cellular phone communications link at the Lanai mooring site.

  7. High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link

    NASA Technical Reports Server (NTRS)

    Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli

    2016-01-01

    We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.

  8. Optical and mechanical behaviors of glassy silicone networks derived from linear siloxane precursors

    NASA Astrophysics Data System (ADS)

    Jang, Heejun; Seo, Wooram; Kim, Hyungsun; Lee, Yoonjoo; Kim, Younghee

    2016-01-01

    Silicon-based inorganic polymers are promising materials as matrix materials for glass fiber composites because of their good process ability, transparency, and thermal property. In this study, for utilization as a matrix precursor for a glass-fiber-reinforced composite, glassy silicone networks were prepared via hydrosilylation of linear/pendant Si-H polysiloxanes and the C=C bonds of viny-lterminated linear/cyclic polysiloxanes. 13C nuclear magnetic resonance spectroscopy was used to determine the structure of the cross-linked states, and a thermal analysis was performed. To assess the mechanical properties of the glassy silicone networks, we performed nanoindentation and 4-point bending tests. Cross-linked networks derived from siloxane polymers are thermally and optically more stable at high temperatures. Different cross-linking agents led to final networks with different properties due to differences in the molecular weights and structures. After stepped postcuring, the Young's modulus and the hardness of the glassy silicone networks increased; however, the brittleness also increased. The characteristics of the cross-linking agent played an important role in the functional glassy silicone networks.

  9. Optical deep space communication via relay satellite

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.; Vilnrotter, V. A.; Dolinar, S. J., Jr.

    1981-01-01

    The possible use of an optical for high rate data transmission from a deep space vehicle to an Earth-orbiting relay satellite while RF links are envisioned for the relay to Earth link was studied. A preliminary link analysis is presented for initial sizing of optical components and power levels, in terms of achievable data rates and feasible range distances. Modulation formats are restricted to pulsed laser operation, involving bot coded and uncoded schemes. The advantage of an optical link over present RF deep space link capabilities is shown. The problems of acquisition, pointing and tracking with narrow optical beams are presented and discussed. Mathematical models of beam trackers are derived, aiding in the design of such systems for minimizing beam pointing errors. The expected orbital geometry between spacecraft and relay satellite, and its impact on beam pointing dynamics are discussed.

  10. A COTS RF Optical Software Defined Radio for the Integrated Radio and Optical Communications Test Bed

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer M.; Zeleznikar, Daniel J.; Wroblewski, Adam C.; Tokars, Roger P.; Schoenholz, Bryan L.; Lantz, Nicholas C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration (NASA) is investigating the merits of a hybrid radio frequency (RF) and optical communication system for deep space missions. In an effort to demonstrate the feasibility and advantages of a hybrid RFOptical software defined radio (SDR), a laboratory prototype was assembled from primarily commercial-off-the-shelf (COTS) hardware components. This COTS platform has been used to demonstrate simultaneous transmission of the radio and optical communications waveforms through to the physical layer (telescope and antenna). This paper details the hardware and software used in the platform and various measures of its performance. A laboratory optical receiver platform has also been assembled in order to demonstrate hybrid free space links in combination with the transmitter.

  11. Realization of 10 GHz minus 30dB on-chip micro-optical links with Si-Ge RF bi-polar technology

    NASA Astrophysics Data System (ADS)

    Ogudo, Kingsley A.; Snyman, Lukas W.; Polleux, Jean-Luc; Viana, Carlos; Tegegne, Zerihun

    2014-06-01

    Si Avalanche based LEDs technology has been developed in the 650 -850nm wavelength regime [1, 2]. Correspondingly, small micro-dimensioned detectors with pW/μm2 sensitivity have been developed for the same wavelength range utilizing Si-Ge detector technology with detection efficiencies of up to 0.85, and with a transition frequencies of up to 80 GHz [3] A series of on-chip optical links of 50 micron length, utilizing 650 - 850 nm propagation wavelength have been designed and realized, utilizing a Si Ge radio frequency bipolar process. Micron dimensioned optical sources, waveguides and detectors were all integrated on the same chip to form a complete optical link on-chip. Avalanche based Si LEDs (Si Av LEDs), Schottky contacting, TEOS densification strategies, silicon nitride based waveguides, and state of the art Si-Ge bipolar detector technologies were used as key design strategies. Best performances show optical coupling from source to detector of up to 10GHz and - 40dBm total optical link budget loss with a potential transition frequency coupling of up to 40GHz utilizing Si Ge based LEDs. The technology is particularly suitable for application as on-chip optical links, optical MEMS and MOEMS, as well as for optical interconnects utilizing low loss, side surface, waveguide- to-optical fiber coupling. Most particularly is one of our designed waveguide which have a good core axis alignment with the optical source and yield 10GHz -30dB on-chip micro-optical links as shown in Fig 9 (c). The technology as developed has been appropriately IP protected.

  12. Design of MOEMS adjustable optical delay line to reduce link set-up time in a tera-bit/s optical interconnection network.

    PubMed

    Jing, Wencai; Zhang, Yimo; Zhou, Ge

    2002-07-15

    A new structure for bit synchronization in a tera-bit/s optical interconnection network has been designed using micro-electro-mechanical system (MEMS) technique. Link multiplexing has been adopted to reduce data packet communication latency. To eliminate link set-up time, adjustable optical delay lines (AODLs) have been adopted to shift the phases of the distributed optical clock signals for bit synchronization. By changing the optical path distance of the optical clock signal, the phase of the clock signal can be shifted at a very high resolution. A phase-shift resolution of 0.1 ps can be easily achieved with 30-microm alternation of the optical path length in vacuum.

  13. Considerations for an Earth Relay Satellite with RF and Optical Trunklines

    NASA Technical Reports Server (NTRS)

    Israel, David J.

    2016-01-01

    Support for user platforms through the use of optical links to geosynchronous relay spacecraft are expected to be part of the future space communications architecture. The European Data Relay Satellite System (EDRS) has its first node, EDRS-A, in orbit. The EDRS architecture includes space-to-space optical links with a Ka-Band feeder link or trunkline. NASA's Laser Communications Relay Demonstration (LCRD) mission, originally baselined to support a space-to-space optical link relayed with an optical trunkline, has added an Radio Frequency (RF) trunkline. The use of an RF trunkline avoids the outages suffered by an optical trunkline due to clouds, but an RF trunkline will be bandwidth limited. A space relay architecture with both RF and optical trunklines could relay critical realtime data, while also providing a high data volume capacity. This paper considers the relay user scenarios that could be supported, and the implications to the space relay system and operations. System trades such as the amount of onboard processing and storage required, the use of link layer switching vs. network layer routing, and the use of Delay/Disruption Tolerant Networking (DTN) are discussed.

  14. Experiments of 10 Gbit/sec quantum stream cipher applicable to optical Ethernet and optical satellite link

    NASA Astrophysics Data System (ADS)

    Hirota, Osamu; Ohhata, Kenichi; Honda, Makoto; Akutsu, Shigeto; Doi, Yoshifumi; Harasawa, Katsuyoshi; Yamashita, Kiichi

    2009-08-01

    The security issue for the next generation optical network which realizes Cloud Computing System Service with data center" is urgent problem. In such a network, the encryption by physical layer which provide super security and small delay should be employed. It must provide, however, very high speed encryption because the basic link is operated at 2.5 Gbit/sec or 10 Gbit/sec. The quantum stream cipher by Yuen-2000 protocol (Y-00) is a completely new type random cipher so called Gauss-Yuen random cipher, which can break the Shannon limit for the symmetric key cipher. We develop such a cipher which has good balance of the security, speed and cost performance. In SPIE conference on quantum communication and quantum imaging V, we reported a demonstration of 2.5 Gbit/sec system for the commercial link and proposed how to improve it to 10 Gbit/sec. This paper reports a demonstration of the Y-00 cipher system which works at 10 Gbit/sec. A transmission test in a laboratory is tried to get the basic data on what parameters are important to operate in the real commercial networks. In addition, we give some theoretical results on the security. It is clarified that the necessary condition to break the Shannon limit requires indeed the quantum phenomenon, and that the full information theoretically secure system is available in the satellite link application.

  15. Fabrication of a novel gigabit/second free-space optical interconnect - photodetector characterization and testing and system development

    NASA Technical Reports Server (NTRS)

    Savich, Gregory R.

    2004-01-01

    The time when computing power is limited by the copper wire inherent in the computer system and not the speed of the microprocessor is rapidly approaching. With constant advances in computer technology, many researchers believe that in only a few years, optical interconnects will begin to replace copper wires in your Central Processing Unit (CPU). On a more macroscopic scale, the telecommunications industry has already made the switch to optical data transmission as, to date, fiber optic technology is the only reasonable method of reliable, long range data transmission. Within the span of a decade, we will see optical technologies move from the macroscopic world of the telecommunications industry to the microscopic world of the computer chip. Already, the communications industry is marketing commercially available optical links to connect two personal computers, thereby eliminating the need for standard and comparatively slow wired and wireless Ethernet transfers and greatly increasing the distance the computers can be separated. As processing demands continue to increase, the realm of optical communications will continue to move closer to the microprocessor and quite possibly onto the microprocessor itself. A day may come when copper connections are used only to supply power, not transfer data. This summer s work marks some of the beginning stages of a 5 to 10 year, long-term research project to create and study a free-space, 1 Gigabit/sec optical interconnect. The research will result in a novel fabricated, chip-to-chip interconnect consisting of a Vertical Cavity Surface Emitting Laser (VCSEL) Diode linked through free space to a Metal- Semiconductor-Metal (MSM) Photodetector with the possible integration of microlenses for signal focusing and Micro-Electromechanical Systems (MEMS) devices for optical signal steering. The advantages, disadvantages, and practicality of incorporating flip-chip mounting technologies will also be addressed. My work began with the design and construction of a test setup for the experiment and then appropriate characterization of the test system. Specifically, I am involved in the characterization of a commercially available 1550nm wavelength, 5mW diode laser and a study of its modulation bandwidth. Commercially produced photodetectors as well as the incorporation of microwave technology, in the form of RF input and output, are used in the characterization procedure. The next stage involves the use of a probe station and network analyzer to characterize and test a series of photodetectors fabricated on a 2 inch, Indium Gallium Arsenide (InGaAs) wafer in the Branch s microlithography lab. Other project responsibilities include, but are not limited to the incorporation of a transimpedance amplifier to the photodetector circuit; a study of VCSEL technology; bit error rate analysis of an optical interconnect system; and analysis of free space divergence of the VCSEL, optical path length of the interconnect; and any other pertinent optical properties of the one gigabit per second interconnect for fabrication and testing.

  16. Ultra-stable long distance optical frequency distribution using the Internet fiber network.

    PubMed

    Lopez, Olivier; Haboucha, Adil; Chanteau, Bruno; Chardonnet, Christian; Amy-Klein, Anne; Santarelli, Giorgio

    2012-10-08

    We report an optical link of 540 km for ultrastable frequency distribution over the Internet fiber network. The stable frequency optical signal is processed enabling uninterrupted propagation on both directions. The robustness and the performance of the link are enhanced by a cost effective fully automated optoelectronic station. This device is able to coherently regenerate the return optical signal with a heterodyne optical phase locking of a low noise laser diode. Moreover the incoming signal polarization variation are tracked and processed in order to maintain beat note amplitudes within the operation range. Stable fibered optical interferometer enables optical detection of the link round trip phase signal. The phase-noise compensated link shows a fractional frequency instability in 10 Hz bandwidth of 5 × 10(-15) at one second measurement time and 2 × 10(-19) at 30,000 s. This work is a significant step towards a sustainable wide area ultrastable optical frequency distribution and comparison network.

  17. Enzyme-linked immunosorbent assay compared with neutralization tests for evaluation of live mumps vaccines.

    PubMed Central

    Sakata, H; Hishiyama, M; Sugiura, A

    1984-01-01

    Mumps-specific antibody levels before and after vaccination with live mumps vaccines were determined by enzyme-linked immunosorbent assay (ELISA) and neutralization tests. A correlation was found between neutralization titers and optical density in ELISA. However, postvaccination sera from some vaccinees who failed to seroconvert by neutralization contained significant levels of mumps-specific antibody detectable by ELISA. In some of these serum specimens, the antibody directed to the F polypeptide of mumps virus was predominant. Most sera positive in ELISA neutralized mumps virus upon the addition of fresh guinea pig serum to the virus-serum mixture. Images PMID:6361060

  18. Transmission system for distribution of video over long-haul optical point-to-point links using a microwave photonic filter in the frequency range of 0.01-10 GHz

    NASA Astrophysics Data System (ADS)

    Zaldívar Huerta, Ignacio E.; Pérez Montaña, Diego F.; Nava, Pablo Hernández; Juárez, Alejandro García; Asomoza, Jorge Rodríguez; Leal Cruz, Ana L.

    2013-12-01

    We experimentally demonstrate the use of an electro-optical transmission system for distribution of video over long-haul optical point-to-point links using a microwave photonic filter in the frequency range of 0.01-10 GHz. The frequency response of the microwave photonic filter consists of four band-pass windows centered at frequencies that can be tailored to the function of the spectral free range of the optical source, the chromatic dispersion parameter of the optical fiber used, as well as the length of the optical link. In particular, filtering effect is obtained by the interaction of an externally modulated multimode laser diode emitting at 1.5 μm associated to the length of a dispersive optical fiber. Filtered microwave signals are used as electrical carriers to transmit TV-signal over long-haul optical links point-to-point. Transmission of TV-signal coded on the microwave band-pass windows located at 4.62, 6.86, 4.0 and 6.0 GHz are achieved over optical links of 25.25 km and 28.25 km, respectively. Practical applications for this approach lie in the field of the FTTH access network for distribution of services as video, voice, and data.

  19. MEMS tracking mirror system for a bidirectional free-space optical link.

    PubMed

    Jeon, Sungho; Toshiyoshi, Hiroshi

    2017-08-20

    We report on a bidirectional free-space optical system that is capable of automatic connection and tracking of an optical link between two nodes. A piezoelectric micro-electro-mechanical systems (MEMS) optical scanner is used to steer a laser beam of two wavelengths superposed to visually present a communication zone, to search for the position of the remote node by means of the retro-reflector optics, and to transmit the data between the nodes. A feedback system is developed to control the MEMS scanner to dynamically establish the optical link within a 10-ms transition time and to keep track of the moving node.

  20. Full-duplex radio over fiber link with colorless source-free base station based on single sideband optical mm-wave signal with polarization rotated optical carrier

    NASA Astrophysics Data System (ADS)

    Ma, Jianxin

    2016-07-01

    A full-duplex radio-over fiber (RoF) link scheme based on single sideband (SSB) optical millimeter (mm)-wave signal with polarization-rotated optical carrier is proposed to realize the source-free colorless base station (BS), in which a polarization beam splitter (PBS) is used to abstract part of the optical carrier for conveying the uplink data. Since the optical carrier for the uplink does not bear the downlink signal, no cross-talk from the downlink contaminates the uplink signal. The simulation results demonstrate that both down- and up-links maintain good performance. The mm-wave signal distribution network based on the proposed full duplex fiber link scheme can use the uniform source-free colorless BSs, which makes the access system very simpler.

  1. Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser.

    PubMed

    Moscoso-Mártir, Alvaro; Müller, Juliana; Hauck, Johannes; Chimot, Nicolas; Setter, Rony; Badihi, Avner; Rasmussen, Daniel E; Garreau, Alexandre; Nielsen, Mads; Islamova, Elmira; Romero-García, Sebastián; Shen, Bin; Sandomirsky, Anna; Rockman, Sylvie; Li, Chao; Sharif Azadeh, Saeed; Lo, Guo-Qiang; Mentovich, Elad; Merget, Florian; Lelarge, François; Witzens, Jeremy

    2017-10-24

    We experimentally investigate an optical link relying on silicon photonics transmitter and receiver components as well as a single section semiconductor mode-locked laser as a light source and a semiconductor optical amplifier for signal amplification. A transmitter based on a silicon photonics resonant ring modulator, an external single section mode-locked laser and an external semiconductor optical amplifier operated together with a standard receiver reliably supports 14 Gbps on-off keying signaling with a signal quality factor better than 7 for 8 consecutive comb lines, as well as 25 Gbps signaling with a signal quality factor better than 7 for one isolated comb line, both without forward error correction. Resonant ring modulators and Germanium waveguide photodetectors are further hybridly integrated with chip scale driver and receiver electronics, and their co-operability tested. These experiments will serve as the basis for assessing the feasibility of a silicon photonics wavelength division multiplexed link relying on a single section mode-locked laser as a multi-carrier light source.

  2. Fiber-Coupled Wide Field of View Optical Receiver for High Speed Space Communication

    NASA Astrophysics Data System (ADS)

    Suddath, Shannon N.

    Research groups at NASA Glenn Research Center are interested in improving data rates on the International Space Station (ISS) using a free-space optical (FSO) link. However, known flexure of the ISS structure is expected to cause misalignment of the FSO link. Passive-control designs for mitigating misalignment are under investigation, including using a fiber-bundle for improved field of view. The designs must overcome the obstacle of coupling directly to fiber, rather than a photodetector, as NASA will maintain the use of small form-factor pluggable optical transceivers (SFPs) in the ISS network. In this thesis, a bundle-based receiver capable of coupling directly to fiber is designed, simulated, and tested in lab. Two 3-lens systems were evaluated for power performance in the lab, one with a 20 mm focal length aspheric lens and the other with a 50 mm focal length aspheric lens. The maximum output power achieved was 8 muW.

  3. Link Performance Analysis of a Ship-to-Ship Laser Communication System

    DTIC Science & Technology

    2012-03-01

    the optical output by a modulating signal. Direct detection requires only the intensity, and not the phase information, of the input signal to...links have a higher signal-to-noise ratio ( ) as compared to RF link. However, at approximately 108 km, the SNR for the optical links is much... optical signal received is mixed with a light signal generated from a local oscillator laser (LO-laser). The combined signals are then impinged onto the

  4. Advanced optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Kazovsky, Leonid G.

    1994-03-01

    Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.

  5. Methodology for the Evaluation of the Algorithms for Text Line Segmentation Based on Extended Binary Classification

    NASA Astrophysics Data System (ADS)

    Brodic, D.

    2011-01-01

    Text line segmentation represents the key element in the optical character recognition process. Hence, testing of text line segmentation algorithms has substantial relevance. All previously proposed testing methods deal mainly with text database as a template. They are used for testing as well as for the evaluation of the text segmentation algorithm. In this manuscript, methodology for the evaluation of the algorithm for text segmentation based on extended binary classification is proposed. It is established on the various multiline text samples linked with text segmentation. Their results are distributed according to binary classification. Final result is obtained by comparative analysis of cross linked data. At the end, its suitability for different types of scripts represents its main advantage.

  6. Toxocara optic neuropathy: clinical features and ocular findings.

    PubMed

    Choi, Kwang-Dong; Choi, Jae-Hwan; Choi, Seo-Young; Jung, Jae Ho

    2018-01-01

    We evaluated thirteen eyes of twelve patients diagnosed clinically and serologically with Toxocara optic neuropathy. Eleven patients had unilateral involvement and one patient had bilateral optic neuropathy. Eight patients (66.7%) had a possible infection source to Toxocara. Six patients (50%) had painless acute optic neuropathy. Ten eyes had asymmetric, sectorial optic disc edema with peripapillary infiltration and three eyes had diffuse optic disc edema. Eosinophilia was noted in five patients (41.7%) and optic nerve enhancement was observed in eight of eleven eyes (72.7%) with available orbit magnetic resonance imaging (MRI). Mean visual acuity significantly improved following treatment [mean logarithmic of the minimum angle of resolution (logMAR) 0.94±0.56 at baseline and 0.47±0.59 at the final ( P =0.02)]. Asymmetric optic disc edema with a peripapillary lesion and a history of raw meat ingestion were important clues for diagnosing Toxocara optic neuropathy. Additionally, Toxocara IgG enzyme-linked immunosorbent assay (ELISA) test and evaluating eosinophil may be helpful for diagnosis.

  7. Toxocara optic neuropathy: clinical features and ocular findings

    PubMed Central

    Choi, Kwang-Dong; Choi, Jae-Hwan; Choi, Seo-Young; Jung, Jae Ho

    2018-01-01

    We evaluated thirteen eyes of twelve patients diagnosed clinically and serologically with Toxocara optic neuropathy. Eleven patients had unilateral involvement and one patient had bilateral optic neuropathy. Eight patients (66.7%) had a possible infection source to Toxocara. Six patients (50%) had painless acute optic neuropathy. Ten eyes had asymmetric, sectorial optic disc edema with peripapillary infiltration and three eyes had diffuse optic disc edema. Eosinophilia was noted in five patients (41.7%) and optic nerve enhancement was observed in eight of eleven eyes (72.7%) with available orbit magnetic resonance imaging (MRI). Mean visual acuity significantly improved following treatment [mean logarithmic of the minimum angle of resolution (logMAR) 0.94±0.56 at baseline and 0.47±0.59 at the final (P=0.02)]. Asymmetric optic disc edema with a peripapillary lesion and a history of raw meat ingestion were important clues for diagnosing Toxocara optic neuropathy. Additionally, Toxocara IgG enzyme-linked immunosorbent assay (ELISA) test and evaluating eosinophil may be helpful for diagnosis. PMID:29600190

  8. Full duplex fiber link for alternative wired and wireless access based on SSB optical millimeter-wave with 4-PAM signal

    NASA Astrophysics Data System (ADS)

    Ma, Jianxin; Zhang, Junjie

    2015-03-01

    A novel full-duplex fiber-wireless link based on single sideband (SSB) optical millimeter (mm)-wave with 10 Gbit/s 4-pulse amplitude modulation (PAM) signal is proposed to provide alternative wired and 40 GHz wireless accesses for the user terminals. The SSB optical mm-wave with 4-PAM signal consists of two tones: one bears the 4-PAM signal and the other is unmodulated with high power. After transmission over the fiber to the hybrid optical network unit (HONU), the SSB optical mm-wave signal can be decomposed by fiber Bragg gratings (FBGs) as the SSB optical mm-wave signal with reduced carrier-to-sideband ratio (the baseband 4-PAM optical signal) and the uplink optical carrier for the wireless (wired) access. This makes the HONU free from the laser source. For the uplink, since the wireless access signal is converted to the baseband by power detection, both the transmitter in the HONU and the receiver in optical line terminal (OLT) are co-shared for both wireless and wired accesses, which makes the full duplex link much simpler. In our scheme, the optical electrical field of the square-root increment level 4-PAM signal assures an equal level spacing receiving for both the downlink wired and wireless accesses. Since the downlink wireless signal is down-converted to the baseband by power detection, RF local oscillator is unnecessary. To confirm the feasibility of our proposed scheme, a simulation full duplex link with 40 GHz SSB optical mm-wave with 10 Gbit/s 4-PAM signal is built. The simulation results show that both down- and up-links for either wired or wireless access can keep good performance even if the link length of the SSMF is extended to 40 km.

  9. The Fiber Optic Subsystem Components on Express Logistics Carrier for International Space Station

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Switzer, Robert; Thomes, William Joe; Chuska, Richard; LaRocca, Frank; Day, Lance

    2009-01-01

    ISS SSP 50184 HRDL optical fiber communication subsystem, has system level requirements that were changed to accommodate large loss optical fiber links previously installed. SSQ22680 design is difficult to implement, no metal shell over socket/pin combination to protect the weak part of the pin. Additions to ISS are planned for the future. AVIM still used for interconnection in space flight applications without incident. Thermal cycling resulted in less than 0.25 dB max change in Insertion Loss for all types during cycling, nominal as compared to the AVIM. Vibration testing results conclusion; no significant changes, nominal as compared to AVIM.

  10. SITHON: A Wireless Network of in Situ Optical Cameras Applied to the Early Detection-Notification-Monitoring of Forest Fires

    PubMed Central

    Tsiourlis, Georgios; Andreadakis, Stamatis; Konstantinidis, Pavlos

    2009-01-01

    The SITHON system, a fully wireless optical imaging system, integrating a network of in-situ optical cameras linking to a multi-layer GIS database operated by Control Operating Centres, has been developed in response to the need for early detection, notification and monitoring of forest fires. This article presents in detail the architecture and the components of SITHON, and demonstrates the first encouraging results of an experimental test with small controlled fires over Sithonia Peninsula in Northern Greece. The system has already been scheduled to be installed in some fire prone areas of Greece. PMID:22408536

  11. The Italian Optical Telecommunications Payload: Breadboard Results

    NASA Astrophysics Data System (ADS)

    Bonino, L.; Caramia, M.; Catalano, V.; Ferrero, V.; Mata Calvo, R.

    2008-08-01

    The interest in satellite optical communication link has grown in the last years driven by the increasing demand in data downlink for scientific, planetary exploration and earth observation missions; in addition particular interest is also demonstrated by military market. In this context, the Italian Space Agency (ASI) is developing a program for feasibility demonstration of optical communication system with the goal of a prototype flight mission in the next future. The Paper intends to present the overall program plan and it is particularly focused on the activities performed during the Phase A2, relevant to stratospheric mission design and test campaign with an open field demonstrator of free space communications.

  12. Undersea Laser Communication with Narrow Beams

    DTIC Science & Technology

    2015-09-29

    Abstract Laser sources enable highly efficient optical communications links due to their ability to be focused into very directive beam profiles...Recent atmospheric and space optical links have demonstrated robust laser communications links at high rate with techniques that are applicable to the...undersea environment. These techniques contrast to the broad-angle beams utilized in most reported demonstrations of undersea optical communications

  13. Moving the boundary between wavelength resources in optical packet and circuit integrated ring network.

    PubMed

    Furukawa, Hideaki; Miyazawa, Takaya; Wada, Naoya; Harai, Hiroaki

    2014-01-13

    Optical packet and circuit integrated (OPCI) networks provide both optical packet switching (OPS) and optical circuit switching (OCS) links on the same physical infrastructure using a wavelength multiplexing technique in order to deal with best-effort services and quality-guaranteed services. To immediately respond to changes in user demand for OPS and OCS links, OPCI networks should dynamically adjust the amount of wavelength resources for each link. We propose a resource-adjustable hybrid optical packet/circuit switch and transponder. We also verify that distributed control of resource adjustments can be applied to the OPCI ring network testbed we developed. In cooperation with the resource adjustment mechanism and the hybrid switch and transponder, we demonstrate that automatically allocating a shared resource and moving the wavelength resource boundary between OPS and OCS links can be successfully executed, depending on the number of optical paths in use.

  14. Development and Characterization of a Small Spacecraft Electro-Optic Scanner for Free-Space Laser Communications

    NASA Technical Reports Server (NTRS)

    Davis, Scott; Lichter, Michael; Raible, Daniel

    2016-01-01

    Emergent data-intensive missions coupled with dramatic reductions in spacecraft size plus an increasing number of space-based missions necessitates new high performance, compact and low cost communications technology. Free space optical communications offer advantages including orders of magnitude increase for data rate performance, increased security, immunity to jamming and lack of frequency allocation requirements when compared with conventional radio frequency (RF) means. The spatial coherence and low divergence associated with the optical frequencies of laser communications lends themselves to superior performance, but this increased directionality also creates one of the primary technical challenges in establishing a laser communications link by repeatedly and reliably pointing the beam onto the receive aperture. Several solutions have emerged from wide angle (slow) mechanical articulation systems, fine (fast) steering mirrors and rotating prisms, inertial compensation gyros and vibration isolation cancellation systems, but each requires moving components and imparts a measured amount of burden on the host platform. The complexity, cost and size of current mechanically scanned solutions limits their platform applicability, and restricts the feasibility of deploying optical communications payloads on very compact spacecraft employing critical systems. A high speed, wide angle, non-mechanical solution is therefore desirable. The purpose of this work is to share the development, testing, and demonstration of a breadboard prototype electro-optic (EO) scanned laser-communication link (see Figure 1). This demonstration is a step toward realizing ultra-low Size, Weight and Power (SWaP) SmallSat/MicroSat EO non-mechanical laser beam steering modules for high bandwidth ( greater than Gbps) free-space data links operating in the 1550 nm wavelength bands. The elimination of all moving parts will dramatically reduce SWaP and cost, increase component lifetime and reliability, and simplify the system design of laser communication modules. This paper describes the target mission architectures and requirements (few cubic centimeters of volume, 10's of grams of weight with milliwatts of power) and design of the beam steering module. Laboratory metrology is used to determine the component performance including horizontal and vertical resolution (20urad) as a function of control voltage (see Figure 2), transition time (0.1-1ms), pointing repeatability and optic insertion loss. A test bed system demonstration, including a full laser communications link, is conducted. The capabilities of this new EO beam steerer provide an opportunity to dramatically improve space communications through increased utilization of laser technology on smaller platforms than were previously attainable.

  15. Line of sight pointing technology for laser communication system between aircrafts

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Liu, Yunqing; Song, Yansong

    2017-12-01

    In space optical communications, it is important to obtain the most efficient performance of line of sight (LOS) pointing system. The errors of position (latitude, longitude, and altitude), attitude angles (pitch, yaw, and roll), and installation angle among a different coordinates system are usually ineluctable when assembling and running an aircraft optical communication terminal. These errors would lead to pointing errors and make it difficult for the LOS system to point to its terminal to establish a communication link. The LOS pointing technology of an aircraft optical communication system has been researched using a transformation matrix between the coordinate systems of two aircraft terminals. A method of LOS calibration has been proposed to reduce the pointing error. In a flight test, a successful 144-km link was established between two aircrafts. The position and attitude angles of the aircraft have been obtained to calculate the pointing angle in azimuth and elevation provided by using a double-antenna GPS/INS system. The size of the field of uncertainty (FOU) and the pointing accuracy are analyzed based on error theory, and it has been also measured using an observation camera installed next to the optical LOS. Our results show that the FOU of aircraft optical communications is 10 mrad without a filter, which is the foundation to acquisition strategy and scanning time.

  16. Astronomical Verification of a Stabilized Frequency Reference Transfer System for the Square Kilometer Array

    NASA Astrophysics Data System (ADS)

    Gozzard, David R.; Schediwy, Sascha W.; Dodson, Richard; Rioja, María J.; Hill, Mike; Lennon, Brett; McFee, Jock; Mirtschin, Peter; Stevens, Jamie; Grainge, Keith

    2017-07-01

    In order to meet its cutting-edge scientific objectives, the Square Kilometre Array (SKA) telescope requires high-precision frequency references to be distributed to each of its antennas. The frequency references are distributed via fiber-optic links and must be actively stabilized to compensate for phase noise imposed on the signals by environmental perturbations on the links. SKA engineering requirements demand that any proposed frequency reference distribution system be proved in “astronomical verification” tests. We present results of the astronomical verification of a stabilized frequency reference transfer system proposed for SKA-mid. The dual-receiver architecture of the Australia Telescope Compact Array was exploited to subtract the phase noise of the sky signal from the data, allowing the phase noise of observations performed using a standard frequency reference, as well as the stabilized frequency reference transfer system transmitting over 77 km of fiber-optic cable, to be directly compared. Results are presented for the fractional frequency stability and phase drift of the stabilized frequency reference transfer system for celestial calibrator observations at 5 and 25 GHz. These observations plus additional laboratory results for the transferred signal stability over a 166 km metropolitan fiber-optic link are used to show that the stabilized transfer system under test exceeds all SKA phase-stability requirements within a broad range of observing conditions. Furthermore, we have shown that alternative reference dissemination systems that use multiple synthesizers to supply reference signals to sub-sections of an array may limit the imaging capability of the telescope.

  17. Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today's crowded marketplace

    NASA Astrophysics Data System (ADS)

    Carbonneau, Theresa H.; Wisely, David R.

    1998-01-01

    Never before has the opportunity for terrestrial optical wireless communications links been so great. The high data rates attainable, up to OC-24, make it a very attractive and cost effective alternative to traditional fiber optic and microwave links. With today's demand for interactive multimedia-based applications, such as video conferencing and telemedicine, optical wireless products are the only ones that can provide the needed bandwidth in situations when it is too costly or impossible to install fiber optic cable. Recent developments in laser and optics technologies, in addition to auto beam tracking, permit transmission units to achieve excellent performance rates in all weather conditions.

  18. Airborne Optical Communications Demonstrator Design And Preflight Test Results

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit; Page, N.; Neal, J.; Zhu, D.; Wright, M.; Ovtiz, G.; Farr, W. H.; Hernnzati, H.

    2005-01-01

    A second generation optical communications demonstrator (OCD-2) intended for airborne applications like air-to-ground and air-to-air optical links is under development at JPL. This development provides the capability for unidirectional high data rate (2.5-Gbps) transmission at 1550-nm, with the ability to receive an 810-nm beacon to aid acquisition pointing and tracking. The transmitted beam width is nominally 200-(micro)rad. A 3x3 degree coarse field-of-view (FOV) acquisition sensor with a much smaller 3-mrad FOV tracking sensor is incorporated. The OCD-2 optical head will be integrated to a high performance gimbal turret assembly capable of providing pointing stability of 5- microradians from an airborne platform. Other parts of OCD-2 include a cable harness, connecting the optical head in the gimbal turret assembly to a rugged electronics box. The electronics box will house: command and control processors, laser transmitter, data-generation-electronics, power conversion/distribution hardware and state-of-health monitors. The entire assembly will be integrated and laboratory tested prior to a planned flight demonstrations.

  19. Development of the Optical Communications Telescope Laboratory: A Laser Communications Relay Demonstration Ground Station

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Antsos, D.; Roberts, L. C. Jr.,; Piazzolla, S.; Clare, L. P.; Croonquist, A. P.

    2012-01-01

    The Laser Communications Relay Demonstration (LCRD) project will demonstrate high bandwidth space to ground bi-directional optical communications links between a geosynchronous satellite and two LCRD optical ground stations located in the southwestern United States. The project plans to operate for two years with a possible extension to five. Objectives of the demonstration include the development of operational strategies to prototype optical link and relay services for the next generation tracking and data relay satellites. Key technologies to be demonstrated include adaptive optics to correct for clear air turbulence-induced wave front aberrations on the downlink, and advanced networking concepts for assured and automated data delivery. Expanded link availability will be demonstrated by supporting operations at small sun-Earth-probe angles. Planned optical modulation formats support future concepts of near-Earth satellite user services to a maximum of 1.244 Gb/s differential phase shift keying modulation and pulse position modulations formats for deep space links at data rates up to 311 Mb/s. Atmospheric monitoring instruments that will characterize the optical channel during the link include a sun photometer to measure atmospheric transmittance, a solar scintillometer, and a cloud camera to measure the line of sight cloud cover. This paper describes the planned development of the JPL optical ground station.

  20. High-performance parallel interface to synchronous optical network gateway

    DOEpatents

    St. John, Wallace B.; DuBois, David H.

    1996-01-01

    A system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway.

  1. Impact of atmospheric anisoplanaticity on earth-to-satellite time transfer over laser communication links

    NASA Astrophysics Data System (ADS)

    Belmonte, Aniceto; Taylor, Michael T.; Hollberg, Leo; Kahn, Joseph M.

    2017-02-01

    The need for an accurate time and position reference on orbiting platforms motivates the study of time transfer over satellite optical communication links. The transfer of precise optical clock signals to space would benefit many fields in fundamental science and applications. However, the precise role of atmospheric turbulence during the optical time transfer process is not well-known and documented. In free-space optical links, atmospheric turbulence represents a major impairment, since it causes degradation of the spatial and temporal coherence of the optical signals. We present possible link scenarios in which the atmospheric channel behavior for time transfer between ground and space can be investigated, and have identified the major challenges to be overcome. We found in our analysis that, despite the limited reciprocity in uplink and downlink propagation, partial two-way cancellation of atmospheric effects still occurs. We established that laser communication links make possible high-quality time transfer in most practical propagation scenarios and over a single satellite visibility period. Our results demonstrate that sharing of optical communication resources for optical time transfer and range determination is an effective and relevant scheme for space clock developments and enabling for future space missions.

  2. Radio-over-fiber using an optical antenna based on Rydberg states of atoms

    NASA Astrophysics Data System (ADS)

    Deb, A. B.; Kjærgaard, N.

    2018-05-01

    We provide an experimental demonstration of a direct fiber-optic link for RF transmission ("radio-over-fiber") using a sensitive optical antenna based on a rubidium vapor cell. The scheme relies on measuring the transmission of laser light at an electromagnetically induced transparency resonance that involves highly excited Rydberg states. By dressing pairs of Rydberg states using microwave fields that act as local oscillators, we encoded RF signals in the optical frequency domain. The light carrying the information is linked via a virtually lossless optical fiber to a photodetector where the signal is retrieved. We demonstrate a signal bandwidth in excess of 1 MHz limited by the available coupling laser power and atomic optical density. Our sensitive, non-metallic and readily scalable optical antenna for microwaves allows extremely low-levels of optical power (˜1 μW) throughput in the fiber-optic link. It offers a promising future platform for emerging wireless network infrastructures.

  3. Effect of soil temperature on optical frequency transfer through unidirectional dense-wavelength-division-multiplexing fiber-optic links.

    PubMed

    Pinkert, T J; Böll, O; Willmann, L; Jansen, G S M; Dijck, E A; Groeneveld, B G H M; Smets, R; Bosveld, F C; Ubachs, W; Jungmann, K; Eikema, K S E; Koelemeij, J C J

    2015-02-01

    Results of optical frequency transfer over a carrier-grade dense-wavelength-division-multiplexing (DWDM) optical fiber network are presented. The relation between soil temperature changes on a buried optical fiber and frequency changes of an optical carrier through the fiber is modeled. Soil temperatures, measured at various depths by the Royal Netherlands Meteorology Institute (KNMI) are compared with observed frequency variations through this model. A comparison of a nine-day record of optical frequency measurements through the 2×298  km fiber link with soil temperature data shows qualitative agreement. A soil temperature model is used to predict the link stability over longer periods (days-months-years). We show that optical frequency dissemination is sufficiently stable to distribute and compare, e.g., rubidium frequency standards over standard DWDM optical fiber networks using unidirectional fibers.

  4. Apparatus and Method for Effecting Data Transfer Between Data Systems

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Joey V. (Inventor); Grosz, Francis B., Jr. (Inventor); Lannes, Kenny (Inventor); Maniscalco, David G. (Inventor)

    2001-01-01

    An apparatus for effecting data transfer between data systems comprising a first transceiver and a second transceiver. The first transceiver has an input for receiving digital data from one of the data systems, an output for serially outputting digital data to one of the data systems, at least one transmitter for converting digital data received at the input into optical signals, and at least one receiver for receiving optical signals and serially converting the received optical signals to digital data for output to the data output. The second transceiver has an input for receiving digital data from another one of the data systems, an output for serially outputting digital data to the another one of the data systems, at least one transmitter for serially converting digital data received at the input of the second transceiver into optical signals, and at least one receiver for receiving optical signals and serially converting the received optical signals to digital data for output to the output of the second transceiver. The apparatus further comprises an optical link connecting the first and second transceivers. The optical link comprising a pair of optical fibers. One of the optical fibers optically links the transmitter of the first transceiver to the receiver of the second transceiver. The other optical fiber optically links the receiver of the first transceiver to the transmitter of the second transceiver.

  5. Optical fiber immunosensor based on a poly(pyrrole-benzophenone) film for the detection of antibodies to viral antigen.

    PubMed

    Konry, T; Novoa, A; Shemer-Avni, Y; Hanuka, N; Cosnier, S; Lepellec, Arielle; Marks, R S

    2005-03-15

    We describe herein a newly developed optical microbiosensor for the diagnosis of hepatitis C virus (HCV) by using a novel photoimmobilization methodology based on a photoactivable electrogenerated polymer film deposited upon surface-conductive fiber optics, which are then used to link a biological receptor to the fiber tip through light mediation. This fiber-optic electroconductive surface modification is done by the deposition of a thin layer of indium tin oxide on the silica surface of the fiber optics. Monomers are then electropolymerized onto the conductive metal oxide surface; thereafter, the fibers are immersed in a solution containing HCV-E2 envelope protein antigen and illuminated with UV light (wavelength approximately 345 nm). As a result of the photochemical reaction, a thin layer of the antigen becomes covalently bound to the benzophenone-modified surface. The photochemically modified fiber optics were tested as immunosensors for the detection of anti-E2 protein antibody analyte that was measured through chemiluminescence reaction. The biosensor was tested for sensitivity, specificity, and overall practicality. Our results suggest that the detection of anti-E2 antibodies with this microbiosensor may enhance significantly HCV serological standard testing especially among patients during dialysis, which were diagnosed as HCV negative, by standard immunological tests, but were known to carry the virus. If transformed into an easy to use procedure, this assay might be used in the future as an important clinical tool for HCV screening in blood banks.

  6. Transmitter And Receiver Design For Microwave Fiber Optic Links

    NASA Astrophysics Data System (ADS)

    Blauvelt, H.; Yen, H.

    1984-11-01

    Optical fibers are an attractive media for transmitting microwave signals due to their low attenuation, light weight, immunity from electromagnetic interference and large bandwidth capabilities. In this paper, transmitter and receiver components for microwave fiber optic links are reviewed. Current limitations to link signal to noise imposed by the performance of these components are analyzed and promising trends in component development are discussed.

  7. Analytical model and figures of merit for filtered Microwave Photonic Links.

    PubMed

    Gasulla, Ivana; Capmany, José

    2011-09-26

    The concept of filtered Microwave Photonic Links is proposed in order to provide the most general and versatile description of complex analog photonic systems. We develop a field propagation model where a global optical filter, characterized by its optical transfer function, embraces all the intermediate optical components in a linear link. We assume a non-monochromatic light source characterized by an arbitrary spectral distribution which has a finite linewidth spectrum and consider both intensity modulation and phase modulation with balanced and single detection. Expressions leading to the computation of the main figures of merit concerning the link gain, noise and intermodulation distortion are provided which, to our knowledge, are not available in the literature. The usefulness of this derivation resides in the capability to directly provide performance criteria results for complex links just by substituting in the overall closed-form formulas the numerical or measured optical transfer function characterizing the link. This theory is presented thus as a potential tool for a wide range of relevant microwave photonic application cases which is extendable to multiport radio over fiber systems. © 2011 Optical Society of America

  8. High frequency optical communications; Proceedings of the Meeting, Cambridge, MA, Sept. 23, 24, 1986

    NASA Astrophysics Data System (ADS)

    Ramer, O. Glenn; Sierak, Paul

    Topics discussed in this volume include systems and applications, detectors, sources, and coherent communications. Papers are presented on RF fiber optic links for avionics applications, fiber optics and optoelectronics for radar and electronic warfare applications, symmetric coplanar electrodes for high-speed Ti:LiNbO3 devices, and surface wave electrooptic modulator. Attention is given to X-band RF fiber-optic links, fiber-optic links for microwave signal transmission, GaAs monolithic receiver and laser driver for GHz transmission rates, and monolithically integrable high-speed photodetectors. Additional papers are on irregular and chaotic behavior of semiconductor lasers under modulation, high-frequency laser package for microwave optical communications, receiver modeling for coherent light wave communications, and polarization sensors and controllers for coherent optical communication systems.

  9. Linearized electrooptic polymeric directional coupler modulator

    NASA Astrophysics Data System (ADS)

    Hung, Yu-Chueh

    External linearized modulators are required in high-performance analog optical communication systems since the performance of conventional modulators, such as Mach-Zehnder modulators, are degraded by distortions by the nonlinearity of their transfer functions. Various linearization schemes have been proposed to increase the dynamic range of an analog optical link. Most of the optical schemes involve multiple Mach-Zehnder modulators, either in parallel or series configuration, incorporated with strict balance of RF and bias control. This is a significant challenge when it comes to practical implementation. In this dissertation, a linearized two-section directional coupler modulator made from electrooptic polymer is presented. The coupling coefficient of each section is tailored by properly tuning the refractive index contrast, which can be easily employed using the photobleaching technique in polymer technology. A two-tone test was performed to evaluate the linearity of the modulator and the spur-free dynamic range shows a 7.5 dB improvement compared to a conventional Mach-Zehnder modulator. This scheme avoids multiple modulators or complicated modulation synchronization and demonstrates a compact design in real implementation. Most of the linearization schemes up to date consider only the direct detection mode of operation. However, the RF output characteristics at the detection side are determined differently by various system parameters if a coherent link is implemented instead. Therefore, different considerations of linearization have to be examined for this kind of application. In the second part of this dissertation, the impact of various modulation scenarios on the system performance of an analog coherent optical link will be addressed. It will be shown that a directional coupler modulator is better suited at increasing the dynamic range in coherent optical links. Specific designs of a directional coupler modulator shows an SFDR improvement of 20 dB compared to a Mach-Zehnder modulator. This new type of device can be easily fabricated using photobleaching technique in eletrooptic polymer and can be utilized in various applications.

  10. Received optical power calculations for optical communications link performance analysis

    NASA Technical Reports Server (NTRS)

    Marshall, W. K.; Burk, B. D.

    1986-01-01

    The factors affecting optical communication link performance differ substantially from those at microwave frequencies, due to the drastically differing technologies, modulation formats, and effects of quantum noise in optical communications. In addition detailed design control table calculations for optical systems are less well developed than corresponding microwave system techniques, reflecting the relatively less mature state of development of optical communications. Described below are detailed calculations of received optical signal and background power in optical communication systems, with emphasis on analytic models for accurately predicting transmitter and receiver system losses.

  11. SMART-1 Technology and Science Experiments in Preparation of Future Missions and ESA Cornerstones

    NASA Astrophysics Data System (ADS)

    Marini, A. E.; Racca, G. D.; Foing, B. H.; SMART-1 Project

    1999-12-01

    SMART-1 is the first ESA Small Mission for Advanced Research in Technology, aimed at the demonstration of enabling technologies for future scientific missions. SMART-1's prime technology objective is the demonstration of the solar primary electric propulsion, a key for future interplanetary missions. SMART-1 will use a Stationary Plasma Thruster engine, cruising 15 months to capture a Moon polar orbit. A gallery of images of the spacecraft is available at the web site: http://www.estec.esa.nl/spdwww/smart1/html/11742.html SMART-1 payload aims at monitoring the electric propulsion and its spacecraft environment and to test novel instrument technologies. The Diagnostic Instruments include SPEDE, a spacecraft potential plasma and charged particles detector, to characterise both spacecraft and planetary environment, together with EPDP, a suite of sensors monitoring secondary thrust-ions, charging and deposition effects. Innovative spacecraft technologies will be tested on SMART-1 : Lithium batteries and KATE, an experimental X/Ka-band deep-space transponder, to support radio-science, to monitor the accelerations of the electric propulsion and to test turbo-code technique, enhancing the return of scientific data. The scientific instruments for imaging and spectrometry are: \\begin{itemize} D-CIXS, a compact X-ray spectrometer based on novel SCD detectors and micro-structure optics, to observe X-ray celectial objects and to perform lunar chemistry measurements. SIR, a miniaturised quasi-monolithic point-spectrometer, operating in the Near-IR (0.9 ÷ 2.4 micron), to survey the lunar crust in previously uncovered optical regions. AMIE, a miniature camera based on 3-D integrated electronics, imaging the Moon, and other bodies and supporting LASER-LINK and RSIS. RSIS and LASER-LINK are investigations performed with the SMART-1 Payload: \\begin{itemize} RSIS: A radio-science Experiment to validate in-orbit determination of the libration of the celestial target, based on high-accuracy tracking in Ka-band and imaging of a surface landmark LASER-LINK: a demonstration of acquisition of a deep-space laser-link from the ESA Optical Ground Station at Tenerife, validating also the novel sub-apertured telescope designed for the mitigation of atmospheric scintillation disturbances.

  12. Stable radio frequency transfer in 114 km urban optical fiber link.

    PubMed

    Kumagai, Motohiro; Fujieda, Miho; Nagano, Shigeo; Hosokawa, Mizuhiko

    2009-10-01

    An rf dissemination system using an optical fiber link has been developed. The phase noise induced during optical fiber transmission has been successfully cancelled using what we believe to be a novel fiber-noise compensation system with a combination of electrical and optical compensations. We have performed rf transfer in a 114 km urban telecom fiber link in Tokyo with a transfer stability of 10(-18) level at an averaging time of 1 day. Additionally, a high degree of continuous operation robustness has been confirmed.

  13. Demonstration of fully enabled data center subsystem with embedded optical interconnect

    NASA Astrophysics Data System (ADS)

    Pitwon, Richard; Worrall, Alex; Stevens, Paul; Miller, Allen; Wang, Kai; Schmidtke, Katharine

    2014-03-01

    The evolution of data storage communication protocols and corresponding in-system bandwidth densities is set to impose prohibitive cost and performance constraints on future data storage system designs, fuelling proposals for hybrid electronic and optical architectures in data centers. The migration of optical interconnect into the system enclosure itself can substantially mitigate the communications bottlenecks resulting from both the increase in data rate and internal interconnect link lengths. In order to assess the viability of embedding optical links within prevailing data storage architectures, we present the design and assembly of a fully operational data storage array platform, in which all internal high speed links have been implemented optically. This required the deployment of mid-board optical transceivers, an electro-optical midplane and proprietary pluggable optical connectors for storage devices. We present the design of a high density optical layout to accommodate the midplane interconnect requirements of a data storage enclosure with support for 24 Small Form Factor (SFF) solid state or rotating disk drives and the design of a proprietary optical connector and interface cards, enabling standard drives to be plugged into an electro-optical midplane. Crucially, we have also modified the platform to accommodate longer optical interconnect lengths up to 50 meters in order to investigate future datacenter architectures based on disaggregation of modular subsystems. The optically enabled data storage system has been fully validated for both 6 Gb/s and 12 Gb/s SAS data traffic conveyed along internal optical links.

  14. ALOFT Flight Test Report

    DTIC Science & Technology

    1977-10-01

    China Lake, CA 93555. USNWC ltr, 1Mar 1978 THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200,20 AND NO...wmmmmmmmmmmmm i ifmu.immM\\]i\\ ßinimm^mmmmviwmmiwui »vimtm twfjmmmmmmi c-f—rmSmn NWC TP 5954 ALOFT Flight Test Report by James D. Ross anrJ I.. M...results of tests on a fiber optic data link, manufactured by International Business Machines (IBM) under Contract No. N0O«3J6^򒹁 for the Naval

  15. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1992-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  16. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1993-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  17. Optical radiation emissions from compact fluorescent lamps.

    PubMed

    Khazova, M; O'Hagan, J B

    2008-01-01

    There is a drive to energy efficiency to mitigate climate change. To meet this challenge, the UK Government has proposed phasing out incandescent lamps by the end of 2011 and replacing them with energy efficient fluorescent lighting, including compact fluorescent lamps (CFLs) with integrated ballasts. This paper presents a summary of an assessment conducted by the Health Protection Agency in March 2008 to evaluate the optical radiation emissions of CFLs currently available in the UK consumer market. The study concluded that the UV emissions from a significant percentage of the tested CFLs with single envelopes may result in foreseeable overexposure of the skin when these lamps are used in desk or task lighting applications. The optical output of all tested CFLs, in addition to high-frequency modulation, had a 100-Hz envelope with modulation in excess of 15%. This degree of modulation may be linked to a number of adverse effects.

  18. Hybrid Ground Station Technology for RF and Optical Communication Links

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz; Hoppe, D.; Charles, J.; Vilnrotter, V.; Sehic, A.; Hanson, T.; Gam, E.

    2012-01-01

    To support future enhancements of NASA's deep space and planetary communications and tracking services, the Jet Propulsion Laboratory is developing a hybrid ground station that will be capable of simultaneously supporting RF and optical communications. The main reason for adding optical links to the existing RF links is to significantly increase the capacity of deep space communications in support of future solar system exploration. It is envisioned that a mission employing an optical link will also use an RF link for telemetry and emergency purposes, hence the need for a hybrid ground station. A hybrid station may also reduce operations cost by requiring fewer staff than would be required to operate two stations. A number of approaches and techniques have been examined. The most promising ones have been prototyped for field examination and validation.

  19. A Colorimetric Enzyme-Linked Immunosorbent Assay (ELISA) Detection Platform for a Point-of-Care Dengue Detection System on a Lab-on-Compact-Disc.

    PubMed

    Thiha, Aung; Ibrahim, Fatimah

    2015-05-18

    The enzyme-linked Immunosorbent Assay (ELISA) is the gold standard clinical diagnostic tool for the detection and quantification of protein biomarkers. However, conventional ELISA tests have drawbacks in their requirement of time, expensive equipment and expertise for operation. Hence, for the purpose of rapid, high throughput screening and point-of-care diagnosis, researchers are miniaturizing sandwich ELISA procedures on Lab-on-a-Chip and Lab-on-Compact Disc (LOCD) platforms. This paper presents a novel integrated device to detect and interpret the ELISA test results on a LOCD platform. The system applies absorption spectrophotometry to measure the absorbance (optical density) of the sample using a monochromatic light source and optical sensor. The device performs automated analysis of the results and presents absorbance values and diagnostic test results via a graphical display or via Bluetooth to a smartphone platform which also acts as controller of the device. The efficacy of the device was evaluated by performing dengue antibody IgG ELISA on 64 hospitalized patients suspected of dengue. The results demonstrate high accuracy of the device, with 95% sensitivity and 100% specificity in detection when compared with gold standard commercial ELISA microplate readers. This sensor platform represents a significant step towards establishing ELISA as a rapid, inexpensive and automatic testing method for the purpose of point-of-care-testing (POCT) in resource-limited settings.

  20. Driver-receiver combined optical transceiver modules for bidirectional optical interconnection

    NASA Astrophysics Data System (ADS)

    Park, Hyo-Hoon; Kang, Sae-Kyoung; Kim, Do-Won; Nga, Nguyen T. H.; Hwang, Sung-Hwan; Lee, Tae-Woo

    2008-02-01

    We review a bidirectional optical link scheme for memory-interface applications. A driver-receiver combined optical transceiver (TRx) modules was demonstrated on an optical printed-circuit board (OPCB) platform. To select the bidirectional electric input/output signals, a driver-receiver combined TRx IC with a switching function was designed in 0.18-μm CMOS technology. The TRx IC was integrated with VCSEL/PD chips for optical link in the TRx module. The optical TRx module was assembled on a fiber-embedded OPCB, employing a 90°-bent fiber connector for 90° deflection of light beams between the TRx module and the OPCB. The TRx module and the 90° connector were passively assembled on the OPCB, using ferrule-type guide pins/ holes. Employing these constituent components, the bidirectional optical link between a pair of TRx modules has been successfully demonstrated up to 1.25 Gb/s on the OPCB.

  1. Testing FSO WDM communication system in simulation software optiwave OptiSystem in different atmospheric environments

    NASA Astrophysics Data System (ADS)

    Vanderka, Ales; Hajek, Lukas; Bednarek, Lukas; Latal, Jan; Vitasek, Jan; Hejduk, Stanislav; Vasinek, Vladimir

    2016-09-01

    In this article the author's team deals with using Wavelength Division Multiplexing (WDM) for Free Space Optical (FSO) Communications. In FSO communication occurs due to the influence of atmospheric effect (attenuation, and fluctuation of the received power signal, influence turbulence) and the WDM channel suffers from interchannel crosstalk. There is considered only the one direction. The behavior FSO link was tested for one or eight channels. Here we will be dealing with modulation schemes OOK (On-Off keying), QAM (Quadrature Amplitude Modulation) and Subcarrier Intensity Modulation (SIM) based on a BPSK (Binary Phase Shift Keying). Simulation software OptiSystem 14 was used for tasting. For simulation some parameters were set according to real FSO link such as the datarate 1.25 Gbps, link range 1.4 km. Simulated FSO link used wavelength of 1550 nm with 0.8 nm spacing. There is obtained the influence of crosstalk and modulation format for the BER, depending on the amount of turbulence in the propagation medium.

  2. Design of Broadband High Dynamic-Range Fiber Optic Links

    NASA Astrophysics Data System (ADS)

    Monsurrò, P.; Tommasino, P.; Trifiletti, A.; Vannucci, A.

    2018-04-01

    An analytic design-oriented model of microwave optical links has been developed. The core of the model is the non-linear and noise model of a Mach-Zehnder LiNbO3 interferometer. Both a 100 MHz-20 GHz link and a linearized microwave link, comprising an auxiliary modulator, have been designed and prototyped by using the model.

  3. Owls as platform technology in OPTOS satellite

    NASA Astrophysics Data System (ADS)

    Rivas, J.; Martinez-Oter, J.; Arruego, I.; Martin-Ortega, A.; de Mingo, J. R.; Jimenez, J. J.; Martin, B.

    2017-09-01

    Optical Wireless Links for intra-Satellite communications (OWLS) [1] was proposed by Instituto Nacional de Tecnica Aeroespacial (INTA) in 1999 [2] [3] [4] and was developed during the last years. Several ground and in-orbit demonstrations were made to test and validate new technologies and concepts, for example, network architectures and communication protocols.

  4. The First Geodetic VLBI Field Test of LIFT: A 550-km-long Optical Fiber Link for Remote Antenna Synchronization

    NASA Astrophysics Data System (ADS)

    Perini, Federico; Bortolotti, Claudio; Roma, Mauro; Ambrosini, Roberto; Negusini, Monia; Maccaferri, Giuseppe; Stagni, Matteo; Nanni, Mauro; Clivati, Cecilia; Frittelli, Matteo; Mura, Alberto; Levi, Filippo; Zucco, Massimo; Calonico, Davide; Bertarini, Alessandra; Artz, Thomas

    2016-12-01

    We present the first field test of the implementation of a coherent optical fiber link for remote antenna synchronization realized in Italy between the Italian Metrological Institute (INRIM) and the Medicina radio observatory of the National Institute for Astrophysics (INAF). The Medicina VLBI antenna participated in the EUR137 experiment carried out in September 2015 using, as reference systems, both the local H-maser and a remote H-maser hosted at the INRIM labs in Turin, separated by about 550 km. In order to assess the quality of the remote clock, the observed radio sources were split into two sets, using either the local or the remote H-maser. A system to switch automatically between the two references was integrated into the antenna field system. The observations were correlated in Bonn and preliminary results are encouraging since fringes were detected with both time references along the full 24 hours of the session. The experimental set-up, the results, and the perspectives for future radio astronomical and geodetic experiments are presented.

  5. High-performance parallel interface to synchronous optical network gateway

    DOEpatents

    St. John, W.B.; DuBois, D.H.

    1996-12-03

    Disclosed is a system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway. 7 figs.

  6. Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer.

    PubMed

    Hong, F-L; Musha, M; Takamoto, M; Inaba, H; Yanagimachi, S; Takamizawa, A; Watabe, K; Ikegami, T; Imae, M; Fujii, Y; Amemiya, M; Nakagawa, K; Ueda, K; Katori, H

    2009-03-01

    We demonstrate a precision frequency measurement using a phase-stabilized 120 km optical fiber link over a physical distance of 50 km. The transition frequency of the (87)Sr optical lattice clock at the University of Tokyo is measured to be 429228004229874.1(2.4) Hz referenced to international atomic time. The results demonstrate the excellent functions of the intercity optical fiber link and the great potential of optical lattice clocks for use in the redefinition of the second.

  7. Power smart in-door optical wireless link design

    NASA Astrophysics Data System (ADS)

    Marraccini, P. J.; Riza, N. A.

    2011-12-01

    Presented for the first time, to the best of the authors´ knowledge, is the design of a power smart in-door optical wireless link that provides lossless beam propagation between Transmitter (T) and Receiver (R) for changing link distances. Each T/R unit uses a combination of fixed and variable focal length optics to smartly adjust the laser beam propagation parameters of minimum beam waist size and its location to produce the optimal zero propagation loss coupling condition at the R for that link distance. An Electronically Controlled Variable Focus Lens (ECVFL) is used to form the wide field-of-view search beam and change the beam size at R to form a low loss beam. The T/R unit can also deploy camera optics and thermal energy harvesting electronics to improve link operational smartness and efficiency. To demonstrate the principles of the beam conditioned low loss indoor link, a visible 633 nm laser link using an electro-wetting technology liquid ECVFL is demonstrated for a variable 1 to 4 m link range. Measurements indicate a 53% improvement over an unconditioned laser link at 4 m. Applications for this power efficient wireless link includes mobile computer platform communications and agile server rack interconnections in data centres.

  8. Missile telemetry systems for flight tests and EMC tests on EED's

    NASA Astrophysics Data System (ADS)

    Freymann, D.

    1985-06-01

    This paper describes telemetry systems developed for use in the 'Roland', 'MLRS AT2' and 'Kormoran' missiles. The main design effort required to obtain a high performance of telemetry data acquisition and transmission under extreme environmental conditions are discussed, along with test results. Considered are different types of PCM telemetry systems where the data is either transmitted directly to the ground via an RF or fiber optic link or stored in an onboard solid-state memory. The safety of EEDs in the presence of unwanted electromagnetic fields or currents is very important in weapon-systems. Therefore another type of telemetry system is reported here allowing the measurement of extremely small DC- and RF-currents induced on EEDs during EMC ground-tests. These telemetry signals are transmitted via fiber optics, to avoid additional coupling. Finally, there is a brief commentary on the future design philosophy of missile telemetry systems.

  9. Near Sun Free-Space Optical Communications from Space

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit; Khatri, F.; Boroson, D.

    2006-01-01

    Free-space optical communications offers expanded data return capacity, from probes distributed throughout the solar system and beyond. Space-borne and Earth-based optical transceivers used for communicating optically, will periodically encounter near Sun pointing. This will result in an increase in the scattered background light flux, often contributing to degraded link performance. The varying duration of near Sun pointing link operations relative to the location of space-probes, is discussed in this paper. The impact of near Sun pointing on link performance for a direct detection photon-counting communications system is analyzed for both ground- and space-based Earth receivers. Finally, impact of near Sun pointing on spaceborne optical transceivers is discussed.

  10. Wireless optical transceiver design, link analisys and alignment control for mobile communication

    NASA Astrophysics Data System (ADS)

    Zhou, Dayong

    Pointing, acquisition and tracking of a free-space optical node in a mobile network experiencing misalignment due to adverse factors including vibration, motion and atmospheric turbulence requires a different approach than traditional free-space optical transceivers. A recent fiber-bundle approach for beam steering at the transmitter was investigated to provide continuous beam coverage at the receiver without the application of mechanical devices. Utilizing multiple fibers-lenses sets at the receiver was also proposed to enhance the tolerance of optical link misalignment. In this work, both laboratory experiments and software simulation were implemented to evaluate the optical link performance for different fiber-bundle-based transceiver setups as the link parameters were varied. The performance was evaluated in terms of the coverage area at the receiver, which is a measure of misalignment tolerance and is dependent not only on wavelength but on other key parameters such as link length, transmitted power, the pattern of transmitters, beam divergence, and the receiver construction. The results showed that fiber-bindle-based transceivers reveal significant potential to maximize the up time of the link, and the results also provide guidance on the further development of the overall system. To incorporate the proposed transceiver designs, an alignment control system was developed and evaluated as well. The laboratory results show that the optical control system successfully recovered and maintained the link while the receiver was in motion and the signal coverage at the target area was enhanced significantly.

  11. Non-disturbing optical power monitor for links in the visible spectrum using a polymer optical fibre

    NASA Astrophysics Data System (ADS)

    Ribeiro, Ricardo M.; Freitas, Taiane A. M. G.; Barbero, Andrés P. L.; Silva, Vinicius N. H.

    2015-08-01

    We describe a simple and inexpensive inline optical power monitor (OPMo) for polymer optical fibre (POF) links that are transmitting visible light carriers. The OPMo is non-invasive in the sense that it does not tap any guided light from the fibre core; rather, it collects and detects the spontaneous side-scattered light. Indeed, the OPMo indicates whether a POF transmission link has dark or live status and measures the average optical power level of the propagating signals without disconnecting the fibre link. This paper demonstrates the proof-of-principle of the device for one wavelength at a time, selected from a set of previously calibrated wavelength channels which have been found in the 45 dB dynamic range, with 50 dBm sensitivity or insensitivity by the use or non-use of a mode scrambler. Our findings are very promising milestones for further OPMo development towards the marketplace.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brewer, Forrest; Incandela, Joseph

    This project was slated to design and develop Rad-Hard IP components for 1Gb/s links and supporting hardware designs such as PLL, SER/DES, pad drivers and receivers and custom protocol hardware for the 1Gb/s channel. Also included in the proposal was a study of a hardened memory to be used as a packet buffer for channel and data concentrator components to meet the 1 Gb/s specification. Over the course of the proposal, technology change and innovation of hardware designs lead us away from the 1 Gb/s goal to contemplate much higher performance link IP which, we believed better met the goalsmore » of physics experiments. Note that CERN microelectronics had managed to create a 4.7 Gb/s link designed to drive optical fibers and containing infrastructure for connecting much lower bandwidth front-end devices. Our own work to that point had shown the possibility of constructing a link with much lower power, lower physical overhead but of equivalent performance that could be designed to integrate directly onto the front-end ASIC (ADC and data encoding) designs. Substantial overall power savings and experimental simplicity could be achieved by eliminating data transmission to data concentrators and data concentrators and related hardened buffering themselves, with conversion to optical media at a removed distance from the experiment core. We had already developed and tested Rad-Hard SER/DES components (1Gb in 130nm standard cells) and redundant Pad Drivers/Receivers (3+ Gb/s designed and measured performance), and had a viable 1Gb/s link design based on redundant a stuttered clock receiver and classical PLL, so the basic goals of the proposal had been achieved. Below, in chronological order, are the products and tools we constructed, as well as our tests and publications.« less

  13. Improved Performance Analysis of Free Space Optics Communication Link under Rain Conditions using EDFA Pre-amplifier

    NASA Astrophysics Data System (ADS)

    Singh, Mehtab

    2018-04-01

    Free Space Optics (FSO) also known as Optical Wireless Communication (OWC) is a communication technology in which free space/air is used as the propagation medium and optical signals are used as the information carriers. One of the most crucial factors which degrade the performance of FSO link is the signal attenuation due to different atmospheric weather conditions such as haze, rain, storm, and fog. In this paper, an improved performance analysis of a 2.5 Gbps FSO link under rain conditions has been reported using Erbium-Doped Fiber Amplifier (EDFA) as a pre-amplifier. The results show that the maximum link distance for an FSO link under rain weather conditions with acceptable performance levels (Q ˜6 and BER ≤ 10-9 in the absence of EDFA pre-amplifier is 1,250 m which increases to 1,675 m with the use of EDFA pre-amplifier.

  14. A coherent free space optical link for long distance clock comparison, navigation, and communication: The Mini-Doll project

    NASA Astrophysics Data System (ADS)

    Djerroud, K.; Samain, E.; Clairon, A.; Acef, O.; Man, N.; Lemonde, P.; Wolf, P.

    2017-11-01

    We describe the realization of a 5 km free space coherent optical link through the turbulent atmosphere between a telescope and a ground target. We present the phase noise of the link, limited mainly by atmospheric turbulence and mechanical vibrations of the telescope and the target. We discuss the implications of our results for applications, with particular emphasis on optical Doppler ranging to satellites and long distance frequency transfer.

  15. A novel approach for simulating the optical misalignment caused by satellite platform vibration in the ground test of satellite optical communication systems.

    PubMed

    Wang, Qiang; Tan, Liying; Ma, Jing; Yu, Siyuan; Jiang, Yijun

    2012-01-16

    Satellite platform vibration causes the misalignment between incident direction of the beacon and optical axis of the satellite optical communication system, which also leads to the instability of the laser link and reduces the precision of the system. So how to simulate the satellite platform vibration is a very important work in the ground test of satellite optical communication systems. In general, a vibration device is used for simulating the satellite platform vibration, but the simulation effect is not ideal because of the limited randomness. An approach is reasonable, which uses a natural random process for simulating the satellite platform vibration. In this paper, we discuss feasibility of the concept that the effect of angle of arrival fluctuation is taken as an effective simulation of satellite platform vibration in the ground test of the satellite optical communication system. Spectrum characteristic of satellite platform vibration is introduced, referring to the model used by the European Space Agency (ESA) in the SILEX program and that given by National Aeronautics and Space Development Agency (NASDA) of Japan. Spectrum characteristic of angle of arrival fluctuation is analyzed based on the measured data from an 11.16km bi-directional free space laser transmission experiment. Spectrum characteristic of these two effects is compared. The results show that spectra of these two effects have similar variation trend with the variation of frequency and feasibility of the concept is proved by the comparison results. At last the procedure of this method is proposed, which uses the power spectra of angle of arrival fluctuation to simulate that of the satellite platform vibration. The new approach is good for the ground test of satellite optical communication systems.

  16. Prediction of optical communication link availability: real-time observation of cloud patterns using a ground-based thermal infrared camera

    NASA Astrophysics Data System (ADS)

    Bertin, Clément; Cros, Sylvain; Saint-Antonin, Laurent; Schmutz, Nicolas

    2015-10-01

    The growing demand for high-speed broadband communications with low orbital or geostationary satellites is a major challenge. Using an optical link at 1.55 μm is an advantageous solution which potentially can increase the satellite throughput by a factor 10. Nevertheless, cloud cover is an obstacle for this optical frequency. Such communication requires an innovative management system to optimize the optical link availability between a satellite and several Optical Ground Stations (OGS). The Saint-Exupery Technological Research Institute (France) leads the project ALBS (French acronym for BroadBand Satellite Access). This initiative involving small and medium enterprises, industrial groups and research institutions specialized in aeronautics and space industries, is currently developing various solutions to increase the telecommunication satellite bandwidth. This paper presents the development of a preliminary prediction system preventing the cloud blockage of an optical link between a satellite and a given OGS. An infrared thermal camera continuously observes (night and day) the sky vault. Cloud patterns are observed and classified several times a minute. The impact of the detected clouds on the optical beam (obstruction or not) is determined by the retrieval of the cloud optical depth at the wavelength of communication. This retrieval is based on realistic cloud-modelling on libRadtran. Then, using subsequent images, cloud speed and trajectory are estimated. Cloud blockage over an OGS can then be forecast up to 30 minutes ahead. With this information, the preparation of the new link between the satellite and another OGS under a clear sky can be prepared before the link breaks due to cloud blockage.

  17. Phase change material based tunable reflectarray for free-space optical inter/intra chip interconnects.

    PubMed

    Zou, Longfang; Cryan, Martin; Klemm, Maciej

    2014-10-06

    The concept of phase change material (PCM) based optical antennas and antenna arrays is proposed for dynamic beam shaping and steering utilized in free-space optical inter/intra chip interconnects. The essence of this concept lies in the fact that the behaviour of PCM based optical antennas will change due to the different optical properties of the amorphous and crystalline state of the PCM. By engineering optical antennas or antenna arrays, it is feasible to design dynamic optical links in a desired manner. In order to illustrate this concept, a PCM based tunable reflectarray is proposed for a scenario of a dynamic optical link between a source and two receivers. The designed reflectarray is able to switch the optical link between two receivers by switching the two states of the PCM. Two types of antennas are employed in the proposed tunable reflectarray to achieve full control of the wavefront of the reflected beam. Numerical studies show the expected binary beam steering at the optical communication wavelength of 1.55 μm. This study suggests a new research area of PCM based optical antennas and antenna arrays for dynamic optical switching and routing.

  18. Technology, Data Bases and System Analysis for Space-to-Ground Optical Communications

    NASA Technical Reports Server (NTRS)

    Lesh, James

    1995-01-01

    Optical communications is becoming an ever-increasingly important option for designers of space-to- ground communications links, whether it be for government or commercial applications. In this paper the technology being developed by NASA for use in space-to-ground optical communications is presented. Next, a program which is collecting a long term data base of atmospheric visibility statistics for optical propagation through the atmosphere will be described. Finally, a methodology for utilizing the statistics of the atmospheric data base in the analysis of space-to-ground links will be presented. This methodology takes into account the effects of station availability, is useful when comparing optical communications with microwave systems, and provides a rationale establishing the recommended link margin.

  19. Architecture and design of optical path networks utilizing waveband virtual links

    NASA Astrophysics Data System (ADS)

    Ito, Yusaku; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi

    2016-02-01

    We propose a novel optical network architecture that uses waveband virtual links, each of which can carry several optical paths, to directly bridge distant node pairs. Future photonic networks should not only transparently cover extended areas but also expand fiber capacity. However, the traversal of many ROADM nodes impairs the optical signal due to spectrum narrowing. To suppress the degradation, the bandwidth of guard bands needs to be increased, which degrades fiber frequency utilization. Waveband granular switching allows us to apply broader pass-band filtering at ROADMs and to insert sufficient guard bands between wavebands with minimum frequency utilization offset. The scheme resolves the severe spectrum narrowing effect. Moreover, the guard band between optical channels in a waveband can be minimized, which increases the number of paths that can be accommodated per fiber. In the network, wavelength path granular routing is done without utilizing waveband virtual links, and it still suffers from spectrum narrowing. A novel network design algorithm that can bound the spectrum narrowing effect by limiting the number of hops (traversed nodes that need wavelength path level routing) is proposed in this paper. This algorithm dynamically changes the waveband virtual link configuration according to the traffic distribution variation, where optical paths that need many node hops are effectively carried by virtual links. Numerical experiments demonstrate that the number of necessary fibers is reduced by 23% compared with conventional optical path networks.

  20. End-to-end communication test on variable length packet structures utilizing AOS testbed

    NASA Technical Reports Server (NTRS)

    Miller, Warner H.; Sank, V.; Fong, Wai; Miko, J.; Powers, M.; Folk, John; Conaway, B.; Michael, K.; Yeh, Pen-Shu

    1994-01-01

    This paper describes a communication test, which successfully demonstrated the transfer of losslessly compressed images in an end-to-end system. These compressed images were first formatted into variable length Consultative Committee for Space Data Systems (CCSDS) packets in the Advanced Orbiting System Testbed (AOST). The CCSDS data Structures were transferred from the AOST to the Radio Frequency Simulations Operations Center (RFSOC), via a fiber optic link, where data was then transmitted through the Tracking and Data Relay Satellite System (TDRSS). The received data acquired at the White Sands Complex (WSC) was transferred back to the AOST where the data was captured and decompressed back to the original images. This paper describes the compression algorithm, the AOST configuration, key flight components, data formats, and the communication link characteristics and test results.

  1. Chip-to-chip interconnects based on 3D stacking of optoelectrical dies on Si

    NASA Astrophysics Data System (ADS)

    Duan, P.; Raz, O.; Smalbrugge, B. E.; Duis, J.; Dorren, H. J. S.

    2012-01-01

    We demonstrate a new approach to increase the optical interconnection bandwidth density by stacking the opto-electrical dies directly on the CMOS driver. The suggested implementation is aiming to provide a wafer scale process which will make the use of wire bonding redundant and will allow for impedance matched metallic wiring between the electronic driving circuit and its opto-electronic counter part. We suggest the use of a thick photoresist ramp between CMOS driver and opto-electrical dies surface as the bridge for supporting co-plannar waveguides (CPW) electrically plated with lithographic accuracy. In this way all three dimensions of the interconnecting metal layer, width, length and thickness can be completely controlled. In this 1st demonstration all processing is done on commercially available devices and products, and is compatible with CMOS processing technology. To test the applicability of CPW instead of wire bonds for interconnecting the CMOS circuit and opto-electronic chips, we have made test samples and tested their performance at speeds up to 10 Gbps. In this demonstration, a silicon substrate was used on which we evaporated gold co-planar waveguides (CPW) to mimic a wire on the driver. An optical link consisting of a VCSEL chip and a photodiode chip has been assembled and fully characterized using optical coupling into and out of a multimode fiber (MMF). A 10 Gb/s 27-1 NRZ PRBS signal transmitted from one chip to another chip was detected error free. A 4 dB receiver sensitivity penalty is measured for the integrated device compared to a commercial link.

  2. Optical fibers for the distribution of frequency and timing references

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.

    1981-01-01

    An optical fiber communications link was installed for the purpose of evaluating the applicability of optical fiber technology to the distribution of frequency and timing reference signals. It incorporated a 1.5km length of optical fiber cable containing two multimode optical fibers. The two fibers were welded together at one end of the cable to attain a path length of 3km. Preliminary measurements made on this link, including Allan variance and power spectral density of phase noise are reported.

  3. Closed-loop motor control using high-speed fiber optics

    NASA Technical Reports Server (NTRS)

    Dawson, Reginald (Inventor); Rodriquiz, Dagobert (Inventor)

    1991-01-01

    A closed-loop control system for controlling the operation of one or more servo motors or other controllable devices is described. The system employs a fiber optics link immune to electromagnetic interference, for transmission of control signals from a controller or controllers at a remote station to the power electronics located in proximity to the motors or other devices at the local station. At the remote station the electrical control signals are time-multiplexed, converted to a formatted serial bit stream, and converted to light signals for transmission over a single fiber of the fiber optics link. At the local station, the received optical signals are reconstructed as electrical control signals for the controlled motors or other devices. At the local station, an encoder sensor linked to the driven device generates encoded feedback signals which provide information as to a condition of the controlled device. The encoded signals are placed in a formatted serial bit stream, multiplexed, and transmitted as optical signals over a second fiber of the fiber optic link which closes the control loop of the closed-loop motor controller. The encoded optical signals received at the remote station are demultiplexed, reconstructed and coupled to the controller(s) as electrical feedback signals.

  4. Transmitters and receivers in free space optical communications for Deep Space links

    NASA Technical Reports Server (NTRS)

    Beebe, J.

    2003-01-01

    Two of the many research areas integral making a Mars-Earth optical communication link a reality are optical antenna design and laser transmitter design. This paper addresses areas of both of these by exploring a mode-matched design for a cavity-dumped communications laser, and by reporting on the initial stages of the analysis of an existing 100 inch telescope for use as an optical communications receiver.

  5. High-sensitivity DPSK receiver for high-bandwidth free-space optical communication links.

    PubMed

    Juarez, Juan C; Young, David W; Sluz, Joseph E; Stotts, Larry B

    2011-05-23

    A high-sensitivity modem and high-dynamic range optical automatic gain controller (OAGC) have been developed to provide maximum link margin and to overcome the dynamic nature of free-space optical links. A sensitivity of -48.9 dBm (10 photons per bit) at 10 Gbps was achieved employing a return-to-zero differential phase shift keying based modem and a commercial Reed-Solomon forward error correction system. Low-noise optical gain was provided by an OAGC with a noise figure of 4.1 dB (including system required input loses) and a dynamic range of greater than 60 dB.

  6. Scintillation index and performance analysis of wireless optical links over non-Kolmogorov weak turbulence based on generalized atmospheric spectral model.

    PubMed

    Cang, Ji; Liu, Xu

    2011-09-26

    Based on the generalized spectral model for non-Kolmogorov atmospheric turbulence, analytic expressions of the scintillation index (SI) are derived for plane, spherical optical waves and a partially coherent Gaussian beam propagating through non-Kolmogorov turbulence horizontally in the weak fluctuation regime. The new expressions relate the SI to the finite turbulence inner and outer scales, spatial coherence of the source and spectral power-law and then used to analyze the effects of atmospheric condition and link length on the performance of wireless optical communication links. © 2011 Optical Society of America

  7. Analyses of space environment effects on active fiber optic links orbited aboard the LDEF

    NASA Technical Reports Server (NTRS)

    Taylor, Edward W.; Monarski, T. W.; Berry, J. N.; Sanchez, A. D.; Padden, R. J.; Chapman, S. P.

    1993-01-01

    The results of the 'Preliminary Analysis of WL Experiment no. 701, Space Environment Effects on Operating Fiber Optic Systems,' is correlated with space simulated post retrieval terrestrial studies performed on the M0004 experiment. Temperature cycling measurements were performed on the active optical data links for the purpose of assessing link signal to noise ratio and bit error rate performance some 69 months following the experiment deployment in low Earth orbit. The early results indicate a high correlation between pre-orbit, orbit, and post-orbit functionality of the first known and longest space demonstration of operating fiber optic systems.

  8. Modeling and Performance Analysis of 10 Gbps Inter-satellite Optical Wireless Communication Link

    NASA Astrophysics Data System (ADS)

    Singh, Mehtab

    2017-12-01

    Free-space optical (FSO) communication has the advantages of two of the most predominant data transmission technologies - optical fiber communication and wireless communication. Most of the technical aspects of FSO are similar to that of optical fiber communication, with major difference in the information signal propagation medium which is free space in case of FSO rather than silica glass in optical fiber communication. One of the most important applications of FSO is inter-satellite optical wireless communication (IsOWC) links which will be deployed in the future in space. The IsOWC links have many advantages over the previously existing microwave satellite communication technologies such as higher bandwidth, lower power consumption, low cost of implementation, light size, and weight. In this paper, modeling and performance analysis of a 10-Gbps inter-satellite communication link with two satellites separated at a distance of 1,200 km has been done using OPTISYSTEM simulation software. Performance has been analyzed on the basis of quality factor, signal to noise ratio (SNR), and total power of the received signal.

  9. Free-space quantum key distribution by rotation-invariant twisted photons.

    PubMed

    Vallone, Giuseppe; D'Ambrosio, Vincenzo; Sponselli, Anna; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2014-08-08

    "Twisted photons" are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network.

  10. Free-Space Quantum Key Distribution by Rotation-Invariant Twisted Photons

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; D'Ambrosio, Vincenzo; Sponselli, Anna; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2014-08-01

    "Twisted photons" are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network.

  11. Secure communications using quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, R.J.; Buttler, W.T.; Kwiat, P.G.

    1997-08-01

    The secure distribution of the secret random bit sequences known as {open_quotes}key{close_quotes} material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is an emerging technology for secure key distribution with single-photon transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). We have developed experimental quantum cryptography systems based on the transmission of non-orthogonal single-photon states to generate shared key material over multi-kilometer optical fiber paths and over line-of-sight links. In both cases, key material is built up using the transmission of a single-photon per bit ofmore » an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. In our optical fiber experiment we have performed quantum key distribution over 24-km of underground optical fiber using single-photon interference states, demonstrating that secure, real-time key generation over {open_quotes}open{close_quotes} multi-km node-to-node optical fiber communications links is possible. We have also constructed a quantum key distribution system for free-space, line-of-sight transmission using single-photon polarization states, which is currently undergoing laboratory testing. 7 figs.« less

  12. Flexible multimode polymer waveguides for high-speed short-reach communication links

    NASA Astrophysics Data System (ADS)

    Bamiedakis, N.; Shi, F.; Chu, D.; Penty, R. V.; White, I. H.

    2018-02-01

    Multimode polymer waveguides have attracted great interest for use in high-speed short-reach communication links as they can be cost-effectively integrated onto standard PCBs using conventional methods of the electronics industry and provide low loss (<0.04 dB/cm at 850 nm) and high bandwidth (>30 GHz×m) interconnection. The formation of such waveguides on flexible substrates can further provide flexible low-weight low-thickness interconnects and offer additional freedom in the implementation of high-speed short-reach optical links. These attributes make these flexible waveguides particularly attractive for use in low-cost detachable chip-to-chip links and in environments where weight and shape conformity become important, such as in cars and aircraft. However, the highly-multimoded nature of these waveguides raises important questions about their performance under severe flex due to mode loss and mode coupling. In this work therefore, we investigate the loss, crosstalk and bandwidth performance of such waveguides under out-of plane bending and in-plane twisting under different launch conditions and carry out data transmission tests at 40 Gb/s on a 1 m long spiral flexible waveguide under flexure. Excellent optical transmission characteristics are obtained while robust loss, crosstalk and bandwidth performance are demonstrated under flexure. Error-free (BER<10-12) 40 Gb/s data transmission is achieved over the 1 m long spiral waveguide for a 180° bend with a 4 mm radius. The obtained results demonstrate the excellent optical and mechanical properties of this technology and highlight its potential for use in real-world systems.

  13. Characterization of optical frequency transfer over 154  km of aerial fiber.

    PubMed

    Gozzard, David R; Schediwy, Sascha W; Wallace, Bruce; Gamatham, Romeo; Grainge, Keith

    2017-06-01

    We present measurements of the frequency transfer stability and analysis of the noise characteristics of an optical signal propagating over aerial suspended fiber links up to 153.6 km in length. The measured frequency transfer stability over these links is on the order of 10-11 at an integration time of 1 s dropping to 10-12 for integration times longer than 100 s. We show that wind-loading of the cable spans is the dominant source of short-timescale noise on the fiber links. We also report an attempt to stabilize the optical frequency transfer over these aerial links.

  14. Design and optimization of a fiber optic data link for new generation on-board SAR processing architectures

    NASA Astrophysics Data System (ADS)

    Ciminelli, Caterina; Dell'Olio, Francesco; Armenise, Mario N.; Iacomacci, Francesco; Pasquali, Franca; Formaro, Roberto

    2017-11-01

    A fiber optic digital link for on-board data handling is modeled, designed and optimized in this paper. Design requirements and constraints relevant to the link, which is in the frame of novel on-board processing architectures, are discussed. Two possible link configurations are investigated, showing their advantages and disadvantages. An accurate mathematical model of each link component and the entire system is reported and results of link simulation based on those models are presented. Finally, some details on the optimized design are provided.

  15. Microsurgical Resection of Lateral Tuberculum Sellae Meningioma: Operative Video.

    PubMed

    Cândido, Duarte N C; Nakashima, Paulo E H; de Oliveira, Jean Gonçalves; Borba, Luis A B

    2018-02-01

    Tuberculum Sellae Meningiomas (TSMs) are lesions dramatically related to the optic apparatus once the principal clinical complain remains on visual alterations. This is the main picture on decision making to evaluate the best time, risk-benefit, and surgical approaches to the patient treatment. In this video, we present a 65 years old female with 30 days complaint of unilateral (right) complete blindness and complete impaired right eye field test. On physical examination, there were normal pupillary function to light tests. The scans demonstrated the presence of a TSM mostly related to the right optic nerve and encasing it altogether with the right internal carotid artery. Promptly, surgery was addressed using a modified one piece cranio-orbital-zygomatic approach with extra-dural anterior clinoidectomy, as this is the procedure of choice of the senior author (LB), with easy access to decompression of the optic canal and nerve. As demonstrated on the video, the optic nerve was encased by the tumor and pushed upwards against the falciform ligament. Complete resection and decompression was established with step by step dissection, starting unroofing the optic canal, opening the ligament and finally with carefully tumor debulking. Pathology demonstrated a grade one meningioma. The patient improved remarkably her visual acuity and visual field tests on the postoperative period, emphasizing the importance of early treatment for nerve function outcome. The link to the video can be found at: https://youtu.be/pALZqDUkltQ .

  16. Convergence of broadband optical and wireless access networks

    NASA Astrophysics Data System (ADS)

    Chang, Gee-Kung; Jia, Zhensheng; Chien, Hung-Chang; Chowdhury, Arshad; Hsueh, Yu-Ting; Yu, Jianjun

    2009-01-01

    This paper describes convergence of optical and wireless access networks for delivering high-bandwidth integrated services over optical fiber and air links. Several key system technologies are proposed and experimentally demonstrated. We report here, for the first ever, a campus-wide field trial demonstration of radio-over-fiber (RoF) system transmitting uncompressed standard-definition (SD) high-definition (HD) real-time video contents, carried by 2.4-GHz radio and 60- GHz millimeter-wave signals, respectively, over 2.5-km standard single mode fiber (SMF-28) through the campus fiber network at Georgia Institute of Technology (GT). In addition, subsystem technologies of Base Station and wireless tranceivers operated at 60 GHz for real-time video distribution have been developed and tested.

  17. A Colorimetric Enzyme-Linked Immunosorbent Assay (ELISA) Detection Platform for a Point-of-Care Dengue Detection System on a Lab-on-Compact-Disc

    PubMed Central

    Thiha, Aung; Ibrahim, Fatimah

    2015-01-01

    The enzyme-linked Immunosorbent Assay (ELISA) is the gold standard clinical diagnostic tool for the detection and quantification of protein biomarkers. However, conventional ELISA tests have drawbacks in their requirement of time, expensive equipment and expertise for operation. Hence, for the purpose of rapid, high throughput screening and point-of-care diagnosis, researchers are miniaturizing sandwich ELISA procedures on Lab-on-a-Chip and Lab-on-Compact Disc (LOCD) platforms. This paper presents a novel integrated device to detect and interpret the ELISA test results on a LOCD platform. The system applies absorption spectrophotometry to measure the absorbance (optical density) of the sample using a monochromatic light source and optical sensor. The device performs automated analysis of the results and presents absorbance values and diagnostic test results via a graphical display or via Bluetooth to a smartphone platform which also acts as controller of the device. The efficacy of the device was evaluated by performing dengue antibody IgG ELISA on 64 hospitalized patients suspected of dengue. The results demonstrate high accuracy of the device, with 95% sensitivity and 100% specificity in detection when compared with gold standard commercial ELISA microplate readers. This sensor platform represents a significant step towards establishing ELISA as a rapid, inexpensive and automatic testing method for the purpose of point-of-care-testing (POCT) in resource-limited settings. PMID:25993517

  18. Optical space-to-ground link availability assessment and diversity requirements

    NASA Technical Reports Server (NTRS)

    Chapman, William; Fitzmaurice, Michael

    1991-01-01

    The application of optical space-to-ground links (SGLs) for high speed data distribution from geosynchronous and low earth orbiting satellites (e.g., sensor data from the planned Earth Observing System), for lunar and Mars links, and for links from interplanetary probes has been a topic of considerable recent interest. These optical SGLs could conceivably represent the system's operational baseline, or could represent backup links in the event of a GEO relay terminal failure. In this paper the availability of optical SGLs for various system/orbit configurations is considered. Single CONUS sites are assessed for their probability of cloud free line of sight (PCFLOS), and cloud free field of view (PCFFOV). PCFLOS represents an availability metric for geosynchronous platforms, while PCFFOV is a relevant performance metric for non-geostationary platforms (e.g., low earth orbiting satellites). Additionally, the availability of multiple ground terminals utilized in a diversity configuration is considered. Availability statistics vs. the number of diversity sites are derived from climatological data bases for CONUS sites.

  19. MEMS-based beam-steerable free-space optical communication link for reconfigurable wireless data center

    NASA Astrophysics Data System (ADS)

    Deng, Peng; Kavehrad, Mohsen; Lou, Yan

    2017-01-01

    Flexible wireless datacenter networks based on free space optical communication (FSO) links are being considered as promising solutions to meet the future datacenter demands of high throughput, robustness to dynamic traffic patterns, cabling complexity and energy efficiency. Robust and precise steerable FSO links over dynamic traffic play a key role in the reconfigurable optical wireless datacenter inter-rack network. In this work, we propose and demonstrate a reconfigurable 10Gbps FSO system incorporated with smart beam acquisition and tracking mechanism based on gimballess two-axis MEMS micro-mirror and retro-reflective film marked aperture. The fast MEMS-based beam acquisition switches laser beam of FSO terminal from one rack to the next for reconfigurable networks, and the precise beam tracking makes FSO device auto-correct the misalignment in real-time. We evaluate the optical power loss and bit error rate performance of steerable FSO links at various directions. Experimental results suggest that the MEMS based beam steerable FSO links hold considerable promise for the future reconfigurable wireless datacenter networks.

  20. All Optical Solution for Free Space Optics Point to Point Links

    NASA Astrophysics Data System (ADS)

    Hirayama, Daigo

    Optical network systems are quickly replacing electrical network systems. Optical systems provide better bandwidth, faster data rates, better security to networks, and are less susceptible to noise. Free Space Optics (systems) still rely on numerous electrical systems such as the modulation and demodulation systems to convert optical signals to electrical signals for the transmitting laser. As the concept of the entirely optical network becomes more realizable, the electrical components of the FSO system will become a hindrance to communications. The focus of this thesis is to eliminate the electrical devices for the FSO point to point links by replacing them with optical devices. The concept is similar to an extended beam connector. However, where an extended beam connector deals with a gap of a few millimeters, my focus looks at distances from 100 meters to one kilometer. The aim is to achieve a detectable signal of 1nW at a distance of 500 meters at a wavelength of 1500-1600nm. This leads to application in building to building links and mobile networks. The research examines the design of the system in terms of generating the wave, the properties of the fiber feeding the wave, and the power necessary to achieve a usable distance. The simulation is executed in Code V by Synopsys, which is an industry standard to analyze optical systems. A usable device with a range of around 500m was achieved with an input power of 1mW. The approximations of the phase function resulted in some aberrations to the profile of the beam, but were not very detrimental to the function of the device. The removal of electrical devices from a FSO point to point link decreased the power used to establish the link and decreased the cost.

  1. A Study of an Optical Lunar Surface Communications Network with High Bandwidth Direct to Earth Link

    NASA Technical Reports Server (NTRS)

    Wilson, K.; Biswas, A.; Schoolcraft, J.

    2011-01-01

    Analyzed optical DTE (direct to earth) and lunar relay satellite link analyses, greater than 200 Mbps downlink to 1-m Earth receiver and greater than 1 Mbps uplink achieved with mobile 5-cm lunar transceiver, greater than 1Gbps downlink and greater than 10 Mpbs uplink achieved with 10-cm stationary lunar transceiver, MITLL (MIT Lincoln Laboratory) 2013 LLCD (Lunar Laser Communications Demonstration) plans to demonstrate 622 Mbps downlink with 20 Mbps uplink between lunar orbiter and ground station; Identified top five technology challenges to deploying lunar optical network, Performed preliminary experiments on two of challenges: (i) lunar dust removal and (ii)DTN over optical carrier, Exploring opportunities to evaluate DTN (delay-tolerant networking) over optical link in a multi-node network e.g. Desert RATS.

  2. Optical-frequency transfer over a single-span 1840 km fiber link.

    PubMed

    Droste, S; Ozimek, F; Udem, Th; Predehl, K; Hänsch, T W; Schnatz, H; Grosche, G; Holzwarth, R

    2013-09-13

    To compare the increasing number of optical frequency standards, highly stable optical signals have to be transferred over continental distances. We demonstrate optical-frequency transfer over a 1840-km underground optical fiber link using a single-span stabilization. The low inherent noise introduced by the fiber allows us to reach short term instabilities expressed as the modified Allan deviation of 2×10(-15) for a gate time τ of 1 s reaching 4×10(-19) in just 100 s. We find no systematic offset between the sent and transferred frequencies within the statistical uncertainty of about 3×10(-19). The spectral noise distribution of our fiber link at low Fourier frequencies leads to a τ(-2) slope in the modified Allan deviation, which is also derived theoretically.

  3. Quantum and classical optics-emerging links

    NASA Astrophysics Data System (ADS)

    Eberly, J. H.; Qian, Xiao-Feng; Qasimi, Asma Al; Ali, Hazrat; Alonso, M. A.; Gutiérrez-Cuevas, R.; Little, Bethany J.; Howell, John C.; Malhotra, Tanya; Vamivakas, A. N.

    2016-06-01

    Quantum optics and classical optics are linked in ways that are becoming apparent as a result of numerous recent detailed examinations of the relationships that elementary notions of optics have with each other. These elementary notions include interference, polarization, coherence, complementarity and entanglement. All of them are present in both quantum and classical optics. They have historic origins, and at least partly for this reason not all of them have quantitative definitions that are universally accepted. This makes further investigation into their engagement in optics very desirable. We pay particular attention to effects that arise from the mere co-existence of separately identifiable and readily available vector spaces. Exploitation of these vector-space relationships are shown to have unfamiliar theoretical implications and new options for observation. It is our goal to bring emerging quantum-classical links into wider view and to indicate directions in which forthcoming and future work will promote discussion and lead to unified understanding.

  4. Performances and reliability predictions of optical data transmission links using a system simulator for aerospace applications

    NASA Astrophysics Data System (ADS)

    Bechou, L.; Deshayes, Y.; Aupetit-Berthelemot, C.; Guerin, A.; Tronche, C.

    Space missions for Earth Observation are called upon to carry a growing number of instruments in their payload, whose performances are increasing. Future space systems are therefore intended to generate huge amounts of data and a key challenge in coming years will therefore lie in the ability to transmit that significant quantity of data to ground. Thus very high data rate Payload Telemetry (PLTM) systems will be required to face the demand of the future Earth Exploration Satellite Systems and reliability is one of the major concern of such systems. An attractive approach associated with the concept of predictive modeling consists in analyzing the impact of components malfunctioning on the optical link performances taking into account the network requirements and experimental degradation laws. Reliability estimation is traditionally based on life-testing and a basic approach is to use Telcordia requirements (468GR) for optical telecommunication applications. However, due to the various interactions between components, operating lifetime of a system cannot be taken as the lifetime of the less reliable component. In this paper, an original methodology is proposed to estimate reliability of an optical communication system by using a dedicated system simulator for predictive modeling and design for reliability. At first, we present frameworks of point-to-point optical communication systems for space applications where high data rate (or frequency bandwidth), lower cost or mass saving are needed. Optoelectronics devices used in these systems can be similar to those found in terrestrial optical network. Particularly we report simulation results of transmission performances after introduction of DFB Laser diode parameters variations versus time extrapolated from accelerated tests based on terrestrial or submarine telecommunications qualification standards. Simulations are performed to investigate and predict the consequence of degradations of the Laser diode (acting as a - requency carrier) on system performances (eye diagram, quality factor and BER). The studied link consists in 4× 2.5 Gbits/s WDM channels with direct modulation and equally spaced (0,8 nm) around the 1550 nm central wavelength. Results clearly show that variation of fundamental parameters such as bias current or central wavelength induces a penalization of dynamic performances of the complete WDM link. In addition different degradation kinetics of aged Laser diodes from a same batch have been implemented to build the final distribution of Q-factor and BER values after 25 years. When considering long optical distance, fiber attenuation, EDFA noise, dispersion, PMD, ... penalize network performances that can be compensated using Forward Error Correction (FEC) coding. Three methods have been investigated in the case of On-Off Keying (OOK) transmission over an unipolar optical channel corrupted by Gaussian noise. Such system simulations highlight the impact of component parameter degradations on the whole network performances allowing to optimize various time and cost consuming sensitivity analyses at the early stage of the system development. Thus the validity of failure criteria in relation with mission profiles can be evaluated representing a significant part of the general PDfR effort in particular for aerospace applications.

  5. Investigation of coherent receiver designs in high-speed optical inter-satellite links using digital signal processing

    NASA Astrophysics Data System (ADS)

    Schaefer, S.; Gregory, M.; Rosenkranz, W.

    2017-09-01

    Due to higher data rates, better data security and unlicensed spectral usage optical inter-satellite links (OISL) offer an attractive alternative to conventional RF-communication. However, the very high transmission distances necessitate an optical receiver design enabling high receiver sensitivity which requires careful carrier synchronization and a quasi-coherent detection scheme.

  6. An Update on the CCSDS Optical Communications Working Group

    NASA Technical Reports Server (NTRS)

    Edwards, Bernard L.; Schulz, Klaus-Juergen; Hamkins, Jonathan; Robinson, Bryan; Alliss, Randall; Daddato, Robert; Schmidt, Christopher; Giggebach, Dirk; Braatz, Lena

    2017-01-01

    International space agencies around the world are currently developing optical communication systems for Near Earth and Deep Space applications for both robotic and human rated spacecraft. These applications include both links between spacecraft and links between spacecraft and ground. The Interagency Operation Advisory Group (IOAG) has stated that there is a strong business case for international cross support of spacecraft optical links. It further concluded that in order to enable cross support the links must be standardized. This paper will overview the history and structure of the space communications international standards body, the Consultative Committee for Space Data Systems (CCSDS), that will develop the standards and provide an update on the proceedings of the Optical Communications Working Group within CCSDS. This paper will also describe the set of optical communications standards being developed and outline some of the issues that must be addressed in the next few years. The paper will address in particular the ongoing work on application scenarios for deep space to ground called High Photon Efficiency, for LEO to ground called Low Complexity, for inter-satellite and near Earth to ground called High Data Rate, as well as associated atmospheric measurement techniques and link operations concepts.

  7. Full-duplex bidirectional transmission of 10-Gb/s millimeter-wave QPSK signal in E-band optical wireless link.

    PubMed

    Fang, Yuan; Yu, Jianjun; Chi, Nan; Xiao, Jiangnan

    2014-01-27

    We experimentally demonstrated full-duplex bidirectional transmission of 10-Gb/s millimeter-wave (mm-wave) quadrature phase shift keying (QPSK) signal in E-band (71-76 GHz and 81-86 GHz) optical wireless link. Single-mode fibers (SMF) are connected at both sides of the antenna for uplink and downlink which realize 40-km SMF and 2-m wireless link for bidirectional transmission simultaneously. We utilized multi-level modulation format and coherent detection in such E-band optical wireless link for the first time. Mm-wave QPSK signal is generated by photonic technique to increase spectrum efficiency and received signal is coherently detected to improve receiver sensitivity. After the coherent detection, digital signal processing is utilized to compensate impairments of devices and transmission link.

  8. Effect of the incidence angle to free space optical communication based on cat-eye modulating retro-reflector

    NASA Astrophysics Data System (ADS)

    Zhang, Lai-xian; Sun, Hua-yan; Zhao, Yan-zhong; Zheng, Yong-hui; Shan, Cong-miao

    2013-08-01

    Based on the cat-eye effect of optical system, free space optical communication based on cat-eye modulating retro-reflector can build communication link rapidly. Compared to classical free space optical communication system, system based on cat-eye modulating retro-reflector has great advantages such as building communication link more rapidly, a passive terminal is smaller, lighter and lower power consuming. The incident angle is an important factor of cat-eye effect, so it will affect the retro-reflecting communication link. In this paper, the principle and work flow of free space optical communication based on cat-eye modulating retro-reflector were introduced. Then, using the theory of geometric optics, the equivalent model of modulating retro-reflector with incidence angle was presented. The analytical solution of active area and retro-reflected light intensity of cat-eye modulating retro-reflector were given. Noise of PIN photodetector was analyzed, based on which, bit error rate of free space optical communication based on cat-eye modulating retro-reflector was presented. Finally, simulations were done to study the effect of incidence angle to the communication. The simulation results show that the incidence angle has little effect on active area and retro-reflected light intensity when the incidence beam is in the active field angle of cat-eye modulating retro-reflector. With certain system and condition, the communication link can rapidly be built when the incidence light beam is in the field angle, and the bit error rate increases greatly with link range. When link range is smaller than 35Km, the bit error rate is less than 10-16.

  9. Effects of fourth-order dispersion in very high-speed optical time-division multiplexed transmission.

    PubMed

    Capmany, J; Pastor, D; Sales, S; Ortega, B

    2002-06-01

    We present a closed-form expression for computation of the output pulse's rms time width in an optical fiber link with up to fourth-order dispersion (FOD) by use of an optical source with arbitrary linewidth and chirp parameters. We then specialize the expression to analyze the effect of FOD on the transmission of very high-speed linear optical time-division multiplexing systems. By suitable source chirping, FOD can be compensated for to an upper link-length limit above which other techniques must be employed. Finally, a design formula to estimate the maximum attainable bit rate limited by FOD as a function of the link length is also presented.

  10. Free-space optical communications research and demonstrations at the U.S. Naval Research Laboratory.

    PubMed

    Rabinovich, W S; Moore, C I; Mahon, R; Goetz, P G; Burris, H R; Ferraro, M S; Murphy, J L; Thomas, L M; Gilbreath, G C; Vilcheck, M; Suite, M R

    2015-11-01

    Free-space optical communication can allow high-bandwidth data links that are hard to detect, intercept, or jam. This makes them attractive for many applications. However, these links also require very accurate pointing, and their availability is affected by weather. These challenges have limited the deployment of free-space optical systems. The U.S. Naval Research Laboratory has, for the last 15 years, engaged in research into atmospheric propagation and photonic components with a goal of characterizing and overcoming these limitations. In addition several demonstrations of free-space optical links in real-world Navy applications have been conducted. This paper reviews this work and the principles guiding it.

  11. High-aggregate-capacity visible light communication links using stacked multimode polymer waveguides and micro-pixelated LED arrays

    NASA Astrophysics Data System (ADS)

    Bamiedakis, N.; McKendry, J. J. D.; Xie, E.; Gu, E.; Dawson, M. D.; Penty, R. V.; White, I. H.

    2018-02-01

    In recent years, light emitting diodes (LEDs) have gained renewed interest for use in visible light communication links (VLC) owing to their potential use as both high-quality power-efficient illumination sources as well as low-cost optical transmitters in free-space and guided-wave links. Applications that can benefit from their use include optical wireless systems (LiFi and Internet of Things), in-home and automotive networks, optical USBs and short-reach low-cost optical interconnects. However, VLC links suffer from the limited LED bandwidth (typically 100 MHz). As a result, a combination of novel LED devices, advanced modulation formats and multiplexing methods are employed to overcome this limitation and achieve high-speed (>1 Gb/s) data transmission over such links. In this work, we present recent advances in the formation of high-aggregate-capacity low cost guided wave VLC links using stacked polymer multimode waveguides and matching micro-pixelated LED (μLED) arrays. μLEDs have been shown to exhibit larger bandwidths (>200 MHz) than conventional broad-area LEDs and can be formed in large array configurations, while multimode polymer waveguides enable the formation of low-cost optical links onto standard PCBs. Here, three- and four-layered stacks of multimode waveguides, as well as matching GaN μLED arrays, are fabricated in order to generate high-density yet low-cost optical interconnects. Different waveguide topologies are implemented and are investigated in terms of loss and crosstalk performance. The initial results presented herein demonstrate good intrinsic crosstalk performance and indicate the potential to achieve >= 0.5 Tb/s/mm2 aggregate interconnection capacity using this low-cost technology.

  12. A 10-Gbit/s EML link using detuned narrowband optical filtering.

    PubMed

    Ebrahimi, P; Jones, R; Wang, Y; Yan, L; Mader, T; Paniccia, M; Willner, A E; Paraschis, L

    2007-08-20

    In this paper, the effects of asymmetric narrowband optical filtering are investigated in a 10-Gbit/s optical communication link using integrated electro-absorption modulated lasers (EML). We investigate the effect of EML chirp on link performance as well as the optimal filter bandwidth and wavelength detuning. We show that both the phase response and the spectral narrowing of the filter will enable a longer distance transmission by interacting with the EML transient chirp and compensating for the fiber chromatic dispersion. Experimentally, an 8.75-GHz filter is shown to improve the link distance by 40 km from 65 to 105 km, when transmitting over standard single mode fiber.

  13. 5.6 Gbps optical intersatellite communication link

    NASA Astrophysics Data System (ADS)

    Smutny, Berry; Kaempfner, Hartmut; Muehlnikel, Gerd; Sterr, Uwe; Wandernoth, Bernhard; Heine, Frank; Hildebrand, Ulrich; Dallmann, Daniel; Reinhardt, Martin; Freier, Axel; Lange, Robert; Boehmer, Knut; Feldhaus, Thomas; Mueller, Juergen; Weichert, Andreas; Greulich, Peter; Seel, Stefan; Meyer, Rolf; Czichy, Reinhard

    2009-02-01

    A 5.6 Gbps optical communication link has been verified in-orbit. The intersatellite link uses homodyne BPSK (binary phase shift keying) and allows to transmit data with a duplex data rate of 5.6 Gbps and a bit error rate better than 10-9 between two LEO satellites, NFIRE (U.S.) and TerraSAR-X, Germany). We report on the terminal design and the link performance during the measurement campaign. As an outlook we report on the flight units adapted to LEO-to-GEO intersatellite links that TESAT currently builds and on plans to study GEO-to-ground links.

  14. Crystal structure, optical and thermal studies of a new organic nonlinear optical material: L-Histidinium maleate 1.5-hydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonsago, C. Alosious; Albert, Helen Merina; Karthikeyan, J.

    2012-07-15

    Highlights: ► L-Histidinium maleate 1.5-hydrate, a new organic crystal has been grown for the first time. ► The crystal structure is reported for the first time (CCDC 845975). ► The crystal belongs to monoclinic system with space group P2{sub 1}, Z = 4, a = 11.4656(7) Å, b = 8.0530(5) Å, c = 14.9705(9) Å and β = 101.657(2)°. ► The optical absorption study substantiates the complete transparency of the crystal. ► Kurtz powder SHG test confirms the nonlinear property of the crystal. -- Abstract: A new organic nonlinear optical material L-histidinium maleate 1.5-hydrate (LHM) with the molecular formula C{submore » 10}H{sub 16}N{sub 3}O{sub 7.5} has been successfully synthesized from aqueous solution by slow solvent evaporation method. The structural characterization of the grown crystal was carried out by single crystal X-ray diffraction at 293(2) K. In the crystal, molecules are linked through inter and intramolecular N-H⋯O and O-H⋯O hydrogen bonds, generate edge fused ring motif. The hydrogen bonded motifs are linked to each other to form a three dimensional network. The FT-IR spectroscopy was used to identify the functional groups of the synthesized compound. The optical behavior of the grown crystal was examined by UV–visible spectral analysis, which shows that the optical absorption is almost negligible in the wavelength range 280–1300 nm. The nonlinear optical property was confirmed by the powder technique of Kurtz and Perry. The thermal behavior of the grown crystal was analyzed by thermogravimetric analysis.« less

  15. Experimental demonstration of a retro-reflective laser communication link on a mobile platform

    NASA Astrophysics Data System (ADS)

    Nikulin, Vladimir V.; Malowicki, John E.; Khandekar, Rahul M.; Skormin, Victor A.; Legare, David J.

    2010-02-01

    Successful pointing, acquisition, and tracking (PAT) are crucial for the implementation of laser communication links between ground and aerial vehicles. This technology has advantages over the traditional radio frequency communication, thus justifying the research efforts presented in this paper. The authors have been successful in the development of a high precision, agile, digitally controlled two-degree-of-freedom electromechanical system for positioning of optical instruments, cameras, telescopes, and communication lasers. The centerpiece of this system is a robotic manipulator capable of singularity-free operation throughout the full hemisphere range of yaw/pitch motion. The availability of efficient two-degree-of-freedom positioning facilitated the development of an optical platform stabilization system capable of rejecting resident vibrations with the angular and frequency range consistent with those caused by a ground vehicle moving on a rough terrain. This technology is being utilized for the development of a duplex mobile PAT system demonstrator that would provide valuable feedback for the development of practical laser communication systems intended for fleets of moving ground, and possibly aerial, vehicles. In this paper, a tracking system providing optical connectivity between stationary and mobile ground platforms is described. It utilizes mechanical manipulator to perform optical platform stabilization and initial beam positioning, and optical tracking for maintaining the line-of-sight communication. Particular system components and the challenges of their integration are described. The results of field testing of the resultant system under practical conditions are presented.

  16. Optimization and throughput estimation of optical ground networks for LEO-downlinks, GEO-feeder links and GEO-relays

    NASA Astrophysics Data System (ADS)

    Fuchs, Christian; Poulenard, Sylvain; Perlot, Nicolas; Riedi, Jerome; Perdigues, Josep

    2017-02-01

    Optical satellite communications play an increasingly important role in a number of space applications. However, if the system concept includes optical links to the surface of the Earth, the limited availability due to clouds and other atmospheric impacts need to be considered to give a reliable estimate of the system performance. An OGS network is required for increasing the availability to acceptable figures. In order to realistically estimate the performance and achievable throughput in various scenarios, a simulation tool has been developed under ESA contract. The tool is based on a database of 5 years of cloud data with global coverage and can thus easily simulate different optical ground station network topologies for LEO- and GEO-to-ground links. Further parameters, like e.g. limited availability due to sun blinding and atmospheric turbulence, are considered as well. This paper gives an overview about the simulation tool, the cloud database, as well as the modelling behind the simulation scheme. Several scenarios have been investigated: LEO-to-ground links, GEO feeder links, and GEO relay links. The key results of the optical ground station network optimization and throughput estimations will be presented. The implications of key technical parameters, as e.g. memory size aboard the satellite, will be discussed. Finally, potential system designs for LEO- and GEO-systems will be presented.

  17. Optical characterization of porous silicon microcavities for glucose oxidase biosensing

    NASA Astrophysics Data System (ADS)

    Palestino, G.; Agarwal, V.; Garcia, D. B.; Legros, R.; Pérez, E.; Gergely, C.

    2008-04-01

    PSi microcavity (PSiMc) is characterized by a narrow resonance peak in the optical spectrum that is very sensitive to small changes in the refractive index. We report that the resonant optical cavities of PSi structures can be used to enhance the detection of labeled fluorescent biomolecules. Various PSi configurations were tested in order to compare the optical response of the PSi devices to the capture of organic molecules. Morphological and topographical analyses were performed on PSiMc using Atomic Force (AFM) and Scanning Electron (SEM) microscopies. The heterogeneity in pores lengths resulting from etching process assures a better penetration of larger molecules into the pores and sensor sensitivity depends on the pore size. Molecular detection is monitored by the successive red shifts in the reflectance spectra after the stabilization of PSiMc with 3-aminopropyltriethoxysilane (APTES). The glucose oxidase was cross linked into the PSiMc structures following a silane-glutaraldehyde (GTA) chemistry.

  18. A New Type of Frequency Chain and Its Application to Fundamental Frequency Metrology

    NASA Astrophysics Data System (ADS)

    Udem, Thomas; Reichert, Joerg; Holzwarth, Ronald; Diddams, Scott; Jones, David; Ye, Jun; Cundiff, Steven; Haensch, Theodor; Hall, John

    A suitable femtosecond (fs) laser system can provide a broad band comb of stable optical frequencies and thus can serve as an rf/optical coherent link. In this way we have performed a direct comparison of the 1S-2S transition in atomic hydrogen at 121 nm with a cesium fountain clock, built at the LPTF/Paris, to reach an accuracy of 1.9times 10^{-14}. The same comb-line counting technique was exploited to determine and recalibrate several important optical frequency standards. In particular, the improved measurement of the Cesium D1 line is necessary for a more precise determination of the fine structure constant. In addition, several of the best-known optical frequency standards have been recalibrated via the fs method. By creating an octave-spanning frequency comb a single-laser frequency chain has been realized and tested.

  19. High speed QPPM direct detection optical communication receivers for FSDD intersatellite links

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli

    1993-01-01

    This final report consists of four separate reports, one for each project involved in this contract. The first report is entitled '325 Mbps QPPM (quaternary pulse position modulation) Direct Detection Free Space Optical Communication Encoder and Receiver,' which was our primary work. The second report is entitled 'Test Results of the 325 Mbps QPPM High Speed Data Transmission GaAs ASICs,' which describes our work in connection with Galaxy Microsystems, Inc. who produced these ASICs for NASA. The third report, 'Receiver Performance Analysis of BPPM Optical Communication Systems Using 1.3 micron Wavelength Transmitter and InGaAs PIN Photodiodes,' was prepared at the request of the NASA/Photonics Branch for their efforts in upgrading the 1773 optical fiber data bus. The fourth report, 'Photomultiplier Tubes for Use at 1.064 micron Wavelength,' was also prepared at the request of the NASA/Photonics Branch as a research project.

  20. Transmission analysis for OFDM signals over hybrid RF-optical high-throughput satellite.

    PubMed

    Kolev, Dimitar R; Toyoshima, Morio

    2018-02-19

    In this paper, a theoretical investigation of the performance of a communication scenario where a geostationary-orbit satellite provides radio-frequency broadband access to the users through orthogonal-frequency-division multiplexing technology and has an optical feeder link is presented. The interface between the radio frequency and the optical parts is achieved by using radio-on-fiber technology for optical-electro and electro-optical conversion onboard and no further signal processing is required. The proposed scheme has significant potential, but presents limitations related to the noise. The noise in both forward and reverse links is described, and the system performance for an example scenario with 1280 MHz bandwidth for QPSK, 16QAM, and 64QAM subcarrier modulation is estimated. The obtained results show that under certain conditions regarding link budget and components choice, the proposed solution is feasible.

  1. Free Space Optical Communication Utilizing Mid-Infrared Interband Cascade Laser

    NASA Technical Reports Server (NTRS)

    Soibel, A.; Wright, M.; Farr, W.; Keo, S.; Hill, C.; Yang, R. Q.; Liu, H. C.

    2010-01-01

    A Free Space Optical (FSO) link utilizing mid-IR Interband Cascade lasers has been demonstrated in the 3-5 micron atmospheric transmission window with data rates up to 70 Mb/s and bit-error-rate (BER) less than 10 (exp -8). The performance of the mid-IR FSO link has been compared with the performance of a near-IR link under various fog conditions using an indoor communication testbed. These experiments demonstrated the lower attenuation and scintillation advantages of a mid-IR FSO link through fog than a 1550 nm FSO link.

  2. Studies of free-space optical links through simulated boundary layer and long-path turbulence

    NASA Astrophysics Data System (ADS)

    Wasiczko, Linda; Smolyaninov, Igor I.; Milner, Stuart D.; Davis, Christopher C.

    2004-02-01

    There is recent interest from the US Department of Defense in free space optical communication networks involving aircraft flying at various altitudes. The optical links between these aircraft may be as long as 100km, and involve communication between network nodes that are moving at sub-sonic speeds. An unresolved issue for links of this kind between pairs of aircraft is the effect of boundary layer turbulence near each aircraft, as well as along the atmospheric path between them. The deployment of optical wireless links in several different scenarios will be described. These include links near to the ground for which the turbulence parameter Cn2 varies along the path between transmitter (TX) and receiver (RX), high altitude links between aircraft, and ground to aircraft links. The last two of these may involve boundary layer turbulence near the aircraft node where the turbulence is localized either at the TX or at the RX. Some of the theoretical approaches to examining these situations will be described, as well as an ongoing program of research to examine these situations experimentally. Ways to mitigate the effects of node motion, and scintillation at the RX will be discussed, including the use of non-imaging concentrators at the RX.

  3. First international comparison of fountain primary frequency standards via a long distance optical fiber link

    NASA Astrophysics Data System (ADS)

    Guéna, J.; Weyers, S.; Abgrall, M.; Grebing, C.; Gerginov, V.; Rosenbusch, P.; Bize, S.; Lipphardt, B.; Denker, H.; Quintin, N.; Raupach, S. M. F.; Nicolodi, D.; Stefani, F.; Chiodo, N.; Koke, S.; Kuhl, A.; Wiotte, F.; Meynadier, F.; Camisard, E.; Chardonnet, C.; Le Coq, Y.; Lours, M.; Santarelli, G.; Amy-Klein, A.; Le Targat, R.; Lopez, O.; Pottie, P. E.; Grosche, G.

    2017-06-01

    We report on the first comparison of distant caesium fountain primary frequency standards (PFSs) via an optical fiber link. The 1415 km long optical link connects two PFSs at LNE-SYRTE (Laboratoire National de métrologie et d’Essais—SYstème de Références Temps-Espace) in Paris (France) with two at PTB (Physikalisch-Technische Bundesanstalt) in Braunschweig (Germany). For a long time, these PFSs have been major contributors to accuracy of the International Atomic Time (TAI), with stated accuracies of around 3× {{10}-16} . They have also been the references for a number of absolute measurements of clock transition frequencies in various optical frequency standards in view of a future redefinition of the second. The phase coherent optical frequency transfer via a stabilized telecom fiber link enables far better resolution than any other means of frequency transfer based on satellite links. The agreement for each pair of distant fountains compared is well within the combined uncertainty of a few 10-16 for all the comparisons, which fully supports the stated PFSs’ uncertainties. The comparison also includes a rubidium fountain frequency standard participating in the steering of TAI and enables a new absolute determination of the 87Rb ground state hyperfine transition frequency with an uncertainty of 3.1× {{10}-16} . This paper is dedicated to the memory of André Clairon, who passed away on 24 December 2015, for his pioneering and long-lasting efforts in atomic fountains. He also pioneered optical links from as early as 1997.

  4. High-speed optical links for UAV applications

    NASA Astrophysics Data System (ADS)

    Chen, C.; Grier, A.; Malfa, M.; Booen, E.; Harding, H.; Xia, C.; Hunwardsen, M.; Demers, J.; Kudinov, K.; Mak, G.; Smith, B.; Sahasrabudhe, A.; Patawaran, F.; Wang, T.; Wang, A.; Zhao, C.; Leang, D.; Gin, J.; Lewis, M.; Nguyen, D.; Quirk, K.

    2017-02-01

    High speed optical backbone links between a fleet of UAVs is an integral part of the Facebook connectivity architecture. To support the architecture, the optical terminals need to provide high throughput rates (in excess of tens of Gbps) while achieving low weight and power consumption. The initial effort is to develop and demonstrate an optical terminal capable of meeting the data rate requirements and demonstrate its functions for both air-air and air-ground engagements. This paper is a summary of the effort to date.

  5. Deep space optical communications experiment

    NASA Technical Reports Server (NTRS)

    Kinman, P.; Katz, J.; Gagliardi, R.

    1983-01-01

    An optical communications experiment between a deep space vehicle and an earth terminal is under consideration for later in this decade. The experimental link would be incoherent (direct detection) and would employ two-way cooperative pointing. The deep space optical transceiver would ride piggyback on a spacecraft with an independent scientific objective. Thus, this optical transceiver is being designed for minimum spacecraft impact - specifically, low mass and low power. The choices of laser transmitter, coding/modulation scheme, and pointing mechanization are discussed. A representative telemetry link budget is presented.

  6. Unclassified Publications of Lincoln Laboratory, 1 January - 31 December 1991. Volume 17

    DTIC Science & Technology

    1991-12-31

    FIBER OPTIC ANALOG LINK MS-9183 MS-8873 FABRY - PEROT LASER FIBER OPTIC APPLICATIONS JA-6656 JA-6686 FABRY - PEROT SCANNING FIBER OPTIC LINK JA-6567 MS...8532, MS-9353 FABRY - PEROT SPECTRUM ANALYZER FIBER OPTICS TECHNOLOGY JA-6682 JA-6458 FAR-FIELD BEAM DIVERGENCE FIELD EFFECT TRANSISTORS JA-6505 JA-6662...8734 JA-6604, JA-6680 CRAMER-RAO LOWER BOUND DELAY LINES JA-6461 MS-8890 CROSS-CORRELATION DEMODULATION MS-8734 TR-91 0 CROSSLINK DEPOSITION METHODS JA

  7. Superdense Coding over Optical Fiber Links with Complete Bell-State Measurements

    NASA Astrophysics Data System (ADS)

    Williams, Brian P.; Sadlier, Ronald J.; Humble, Travis S.

    2017-02-01

    Adopting quantum communication to modern networking requires transmitting quantum information through a fiber-based infrastructure. We report the first demonstration of superdense coding over optical fiber links, taking advantage of a complete Bell-state measurement enabled by time-polarization hyperentanglement, linear optics, and common single-photon detectors. We demonstrate the highest single-qubit channel capacity to date utilizing linear optics, 1.665 ±0.018 , and we provide a full experimental implementation of a hybrid, quantum-classical communication protocol for image transfer.

  8. Optical coherence tomography angiography indicates associations of the retinal vascular network and disease activity in multiple sclerosis.

    PubMed

    Feucht, Nikolaus; Maier, Mathias; Lepennetier, Gildas; Pettenkofer, Moritz; Wetzlmair, Carmen; Daltrozzo, Tanja; Scherm, Pauline; Zimmer, Claus; Hoshi, Muna-Miriam; Hemmer, Bernhard; Korn, Thomas; Knier, Benjamin

    2018-01-01

    Patients with multiple sclerosis (MS) and clinically isolated syndrome (CIS) may show alterations of retinal layer architecture as measured by optical coherence tomography. Little is known about changes in the retinal vascular network during MS. To characterize retinal vessel structures in patients with MS and CIS and to test for associations with MS disease activity. In all, 42 patients with MS or CIS and 50 healthy controls underwent retinal optical coherence tomography angiography (OCT-A) with analysis of the superficial and deep vascular plexuses and the choriocapillaries. We tested OCT-A parameters for associations with retinal layer volumes, history of optic neuritis (ON), and the retrospective disease activity. Inner retinal layer volumes correlated positively with the density of both the superficial and deep vascular plexuses. Eyes of MS/CIS patients with a history of ON revealed reduced vessel densities of the superficial and deep vascular plexuses as compared to healthy controls. Higher choriocapillary vessel densities were associated with ongoing inflammatory disease activity during 24 months prior to OCT-A examination in MS and CIS patients. Optic neuritis is associated with rarefaction of the superficial and deep retinal vessels. Alterations of the choriocapillaries might be linked to disease activity in MS.

  9. Monolithic optical link in silicon-on-insulator CMOS technology.

    PubMed

    Dutta, Satadal; Agarwal, Vishal; Hueting, Raymond J E; Schmitz, Jurriaan; Annema, Anne-Johan

    2017-03-06

    This work presents a monolithic laterally-coupled wide-spectrum (350 nm < λ < 1270 nm) optical link in a silicon-on-insulator CMOS technology. The link consists of a silicon (Si) light-emitting diode (LED) as the optical source and a Si photodiode (PD) as the detector; both realized by vertical abrupt n+p junctions, separated by a shallow trench isolation composed of silicon dioxide. Medium trench isolation around the devices along with the buried oxide layer provides galvanic isolation. Optical coupling in both avalanche-mode and forward-mode operation of the LED are analyzed for various designs and bias conditions. From both DC and pulsed transient measurements, it is further shown that heating in the avalanche-mode LED leads to a slow thermal coupling to the PD with time constants in the ms range. An integrated heat sink in the same technology leads to a ∼ 6 times reduction in the change in PD junction temperature per unit electrical power dissipated in the avalanche-mode LED. The analysis paves way for wide-spectrum optical links integrated in smart power technologies.

  10. A top-down design methodology and its implementation for VCSEL-based optical links design

    NASA Astrophysics Data System (ADS)

    Li, Jiguang; Cao, Mingcui; Cai, Zilong

    2005-01-01

    In order to find the optimal design for a given specification of an optical communication link, an integrated simulation of electronic, optoelectronic, and optical components of a complete system is required. It is very important to be able to simulate at both system level and detailed model level. This kind of model is feasible due to the high potential of Verilog-AMS language. In this paper, we propose an effective top-down design methodology and employ it in the development of a complete VCSEL-based optical links simulation. The principle of top-down methodology is that the development would proceed from the system to device level. To design a hierarchical model for VCSEL based optical links, the design framework is organized in three levels of hierarchy. The models are developed, and implemented in Verilog-AMS. Therefore, the model parameters are fitted to measured data. A sample transient simulation demonstrates the functioning of our implementation. Suggestions for future directions in top-down methodology used for optoelectronic systems technology are also presented.

  11. 5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station

    NASA Astrophysics Data System (ADS)

    Fields, Renny A.; Kozlowski, David A.; Yura, Harold T.; Wong, Robert L.; Wicker, Josef M.; Lunde, Carl T.; Gregory, Mark; Wandernoth, Bernhard K.; Heine, Frank F.; Luna, Joseph J.

    2011-11-01

    5.625 Gbps bidirectional laser communication at 1064 nm has been demonstrated on a repeatable basis between a Tesat coherent laser communication terminal with a 6.5 cm diameter ground aperture mounted inside the European Space Agency Optical Ground Station dome at Izana, Tenerife and a similar space-based terminal (12.4 cm diameter aperture) on the Near-Field InfraRed Experiment (NFIRE) low-earth-orbiting spacecraft. Both night and day bidirectional links were demonstrated with the longest being 177 seconds in duration. Correlation with atmospheric models and preliminary atmospheric r0 and scintillation measurements have been made for the conditions tested, suggesting that such coherent systems can be deployed successfully at still lower altitudes without resorting to the use of adaptive optics for compensation.

  12. Sidelobe apodization in optical pulse compression reflectometry for fiber optic distributed acoustic sensing.

    PubMed

    Mompó, Juan José; Martín-López, Sonia; González-Herráez, Miguel; Loayssa, Alayn

    2018-04-01

    We demonstrate a technique to reduce the sidelobes in optical pulse compression reflectometry for distributed acoustic sensing. The technique is based on using a Gaussian probe pulse with linear frequency modulation. This is shown to improve the sidelobe suppression by 13 dB compared to the use of square pulses without any significant penalty in terms of spatial resolution. In addition, a 2.25 dB enhancement in signal-to-noise ratio is calculated compared to the use of receiver-side windowing. The method is tested by measuring 700 Hz vibrations with a 140  nε amplitude at the end of a 50 km fiber sensing link with 34 cm spatial resolution, giving a record 147,058 spatially resolved points.

  13. Nanophotonic Devices in Silicon for Nonlinear Optics

    DTIC Science & Technology

    2010-10-15

    record performance  Demonstration of world‟s lowest loss slot waveguides, made in a DOD-trusted foundry (BAE Systems)  Design study showing...highly-cited design study.  Design study on analog links using the above modulators.  Demonstration of the first silicon waveguides for the mid...Hochberg. Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links. Optics Express 2010

  14. CEMERLL: The Propagation of an Atmosphere-Compensated Laser Beam to the Apollo 15 Lunar Array

    NASA Technical Reports Server (NTRS)

    Fugate, R. Q.; Leatherman, P. R.; Wilson, K. E.

    1997-01-01

    Adaptive optics techniques can be used to realize a robust low bit-error-rate link by mitigating the atmosphere-induced signal fades in optical communications links between ground-based transmitters and deep-space probes.

  15. Link establishment criterion and topology optimization for hybrid GPS satellite communications with laser crosslinks

    NASA Astrophysics Data System (ADS)

    Li, Lun; Wei, Sixiao; Tian, Xin; Hsieh, Li-Tse; Chen, Zhijiang; Pham, Khanh; Lyke, James; Chen, Genshe

    2018-05-01

    In the current global positioning system (GPS), the reliability of information transmissions can be enhanced with the aid of inter-satellite links (ISLs) or crosslinks between satellites. Instead of only using conventional radio frequency (RF) crosslinks, the laser crosslinks provide an option to significantly increase the data throughput. The connectivity and robustness of ISL are needed for analysis, especially for GPS constellations with laser crosslinks. In this paper, we first propose a hybrid GPS communication architecture in which uplinks and downlinks are established via RF signals and crosslinks are established via laser links. Then, we design an optical crosslink assignment criteria considering the practical optical communication factors such as optical line- of-sight (LOS) range, link distance, and angular velocity, etc. After that, to further improve the rationality of establishing crosslinks, a topology control algorithm is formulated to optimize GPS crosslink networks at both physical and network layers. The RF transmission features for uplink and downlink and optical transmission features for crosslinks are taken into account as constraints for the optimization problem. Finally, the proposed link establishment criteria are implemented for GPS communication with optical crosslinks. The designs of this paper provide a potential crosslink establishment and topology control algorithm for the next generation GPS.

  16. Optical Phase Recovery and Locking in a PPM Laser Communication Link

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Yu, Nan; Farr, William H.

    2012-01-01

    Free-space optical communication holds great promise for future space missions requiring high data rates. For data communication in deep space, the current architecture employs pulse position modulation (PPM). In this scheme, the light is transmitted and detected as pulses within an array of time slots. While the PPM method is efficient for data transmission, the phase of the laser light is not utilized. The phase coherence of a PPM optical signal has been investigated with the goal of developing a new laser communication and ranging scheme that utilizes optical coherence within the established PPM architecture and photon-counting detection (PCD). Experimental measurements of a PPM modulated optical signal were conducted, and modeling code was developed to generate random PPM signals and simulate spectra via FFT (Fast Fourier Transform) analysis. The experimental results show very good agreement with the simulations and confirm that coherence is preserved despite modulation with high extinction ratios and very low duty cycles. A real-time technique has been developed to recover the phase information through the mixing of a PPM signal with a frequency-shifted local oscillator (LO). This mixed signal is amplified, filtered, and integrated to generate a voltage proportional to the phase of the modulated signal. By choosing an appropriate time constant for integration, one can maintain a phase lock despite long dark times between consecutive pulses with low duty cycle. A proof-of-principle demonstration was first achieved with an RF-based PPM signal and test setup. With the same principle method, an optical carrier within a PPM modulated laser beam could also be tracked and recovered. A reference laser was phase-locked to an independent pulsed laser signal with low-duty-cycle pseudo-random PPM codes. In this way, the drifting carrier frequency in the primary laser source is tracked via its phase change in the mixed beat note, while the corresponding voltage feedback maintains the phase lock between the two laser sources. The novelty and key significance of this work is that the carrier phase information can be harnessed within an optical communication link based on PPM-PCD architecture. This technology development could lead to quantum-limited efficient performance within the communication link itself, as well as enable high-resolution optical tracking capabilities for planetary science and spacecraft navigation.

  17. Commissioning of the upgraded CSC Endcap Muon Port Cards at CMS

    NASA Astrophysics Data System (ADS)

    Ecklund, K.; Liu, J.; Madorsky, A.; Matveev, M.; Michlin, B.; Padley, P.; Rorie, J.

    2016-01-01

    There are 180 1.6 Gbps optical links from 60 Muon Port Cards (MPC) to the Cathode Strip Chamber Track Finder (CSCTF) in the original system. Before the upgrade each MPC was able to provide up to three trigger primitives from a cluster of nine CSC chambers to the Level 1 CSCTF. With an LHC luminosity increase to 1035 cm-2s-1 at full energy of 7 TeV/beam, the simulation studies suggest that we can expect two or three times more trigger primitives per bunch crossing from the front-end electronics. To comply with this requirement, the MPC, CSCTF, and optical cables need to be upgraded. The upgraded MPC allows transmission of up to 18 trigger primitives from the peripheral crate. This feature would allow searches for physics signatures of muon jets that require more trigger primitives per trigger sector. At the same time, it is very desirable to preserve all the old optical links for compatibility with the older Track Finder during transition period at the beginning of Run 2. Installation of the upgraded MPC boards and the new optical cables has been completed at the CMS detector in the summer of 2014. We describe the final design of the new MPC mezzanine FPGA, its firmware, and results of tests in laboratory and in situ with the old and new CSCTF boards.

  18. A Hybrid Solution for Simultaneous Transfer of Ultrastable Optical Frequency, RF Frequency, and UTC Time-Tags Over Optical Fiber.

    PubMed

    Krehlik, Przemyslaw; Schnatz, Harald; Sliwczynski, Lukasz

    2017-12-01

    We describe a fiber-optic solution for simultaneous distribution of all signals generated at today's most advanced time and frequency laboratories, i.e., an ultrastable optical reference frequency derived from an optical atomic clock, a radio frequency precisely linked to a realization of the SI-Second, and a realization of an atomic timescale, being the local representation of the virtual, global UTC timescale. In our solution both the phase of the optical carrier and the delay of electrical signals (10-MHz frequency reference and one-pulse-per-second time tags) are stabilized against environmental perturbations influencing the fiber link instability and accuracy. We experimentally demonstrate optical transfer stabilities of and for 100 s averaging period, for optical carrier and 10-MHz signals, respectively.

  19. Free-space laser communication technologies III; Proceedings of the Meeting, Los Angeles, CA, Jan. 21, 22, 1991

    NASA Technical Reports Server (NTRS)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1991-01-01

    The present volume on free-space laser communication technologies discusses system analysis, performance, and applications, pointing, acquisition, and tracking in beam control, laboratory demonstration systems, and transmitter and critical component technologies. Attention is given to a space station laser communication transceiver, meeting intersatellite links mission requirements by an adequate optical terminal design, an optical approach to proximity-operations communications for Space Station Freedom, and optical space-to-ground link availability assessment and diversity requirements. Topics addressed include nonmechanical steering of laser beams by multiple aperture antennas, a free-space simulator for laser transmission, heterodyne acquisition and tracking in a free-space diode laser link, and laser terminal attitude determination via autonomous star tracking. Also discussed are stability considerations in relay lens design for optical communications, liquid crystals for lasercom applications, and narrowband optical interference filters.

  20. A Study of an Optical Lunar Surface Communications Network with High Bandwidth Direct to Earth Link

    NASA Technical Reports Server (NTRS)

    Wilson, K.; Biswas, A.; Schoolcraft, J.

    2011-01-01

    A lunar surface systems study explores the application of optical communications to support a high bandwidth data link from a lunar relay satellite and from fixed lunar assets. The results show that existing 1-m ground stations could provide more than 99% coverage of the lunar terminal at 100Mb/s data rates from a lunar relay satellite and in excess of 200Mb/s from a fixed terminal on the lunar surface. We have looked at the effects of the lunar regolith and its removal on optical samples. Our results indicate that under repeated dust removal episodes sapphire rather than fused silica would be a more durable material for optical surfaces. Disruption tolerant network protocols can minimize the data loss due to link dropouts. We report on the preliminary results of the DTN protocol implemented over the optical carrier.

  1. Networked Operations of Hybrid Radio Optical Communications Satellites

    NASA Technical Reports Server (NTRS)

    Hylton, Alan; Raible, Daniel

    2014-01-01

    In order to address the increasing communications needs of modern equipment in space, and to address the increasing number of objects in space, NASA is demonstrating the potential capability of optical communications for both deep space and near-Earth applications. The Integrated Radio Optical Communications (iROC) is a hybrid communications system that capitalizes on the best of both the optical and RF domains while using each technology to compensate for the other's shortcomings. Specifically, the data rates of the optical links can be higher than their RF counterparts, whereas the RF links have greater link availability. The focus of this paper is twofold: to consider the operations of one or more iROC nodes from a networking point of view, and to suggest specific areas of research to further the field. We consider the utility of Disruption Tolerant Networking (DTN) and the Virtual Mission Operation Center (VMOC) model.

  2. Results From Phase-1 and Phase-2 GOLD Experiments

    NASA Technical Reports Server (NTRS)

    Wilson, K.; Jeganathan, M.; Lesh, J. R.; James, J.; Xu, G.

    1997-01-01

    The Ground/Orbiter Lasercomm Demonstration conducted between the Japanese Engineering Test Satellite (ETS-VI) and the ground station at JPL's Table Mountain Facility, Wrightwood, California, was the rst ground-to-space two-way optical communications experiment. Experiment objectives included validating the performance predictions of the optical link. Atmospheric attenuation and seeing measurements were made during the experiment, and data were analyzed. Downlink telemetry data recovered over the course of the experiment provided information on in-orbit performance of the ETS-VI's laser communications equipment. Biterror rates as low as 10 4 were measured on the uplink and 10 5 on the downlink. Measured signal powers agreed well with theoretical predictions.

  3. Thermally induced distortion of a high-average-power laser system by an optical transport system

    NASA Astrophysics Data System (ADS)

    Chow, Robert; Ault, Linda E.; Taylor, John R.; Jedlovec, Don

    1999-11-01

    The atomic vapor laser isotope separation process uses high- average power lasers that have the commercial potential to enrich uranium for the electric power utilities. The transport of the laser beam through the laser system to the separation chambers requires high performance optical components, most of which have either fused silica or Zerodur as the substrate material. One of the requirements of the optical components is to preserve the wavefront quality of the laser beam that propagate over long distances. Full aperture tests with the high power process lasers and finite element analysis (FEA) have been performed on the transport optics. The wavefront distortions of the various sections of the transport path were measured with diagnostic Hartmann sensor packages. The FEA results were derived from an in-house thermal-structural- optical code which is linked to the commercially available CodeV program. In comparing the measured and predicted results, the bulk absorptance of fused silica was estimated to about 50 ppm/cm in the visible wavelength regime. Wavefront distortions will be reported on optics made from fused silica and Zerodur substrate materials.

  4. [Spectral characteristics of refractive index based on nanocoated optical fiber F-P sensor].

    PubMed

    Jiang, Ming-Shun; Li, Qiu-Shun; Sui, Qing-Mei; Jia, Lei; Peng, Peng

    2013-01-01

    An optical fiber Fabry-Perot (F-P) interferometer end surface was modified using layer-by-layer assembly and chemical covalent cross linking method, and the refractive index (RI) response characteristics of coated optical fiber F-P sensor were experimentally studied. Poly diallyldimethylammonium chloride (PDDA) and sodium polystyrene sulfonate (PSS) were chosen as nano-film materials. With the numbers of layers increasing, the reflection spectral contrast of optical fiber F-P sensor presents from high to low, then to high regularity. And the reflection spectral contrast has good temperature stability. The reflection spectra of the optical F-P sensor coated with 20 bilayers for a series of concentration of sucrose and inorganic solution were measured. Experimental results show that the inflection point extends from 1.457 to 1.462 3, and the reflection spectral contrast sensitivity to low RI material and high RI material is 24.53 and 3.60 dB x RI(-1), respectively, with good linearity. The results demonstrate that the functional coated optical F-P sensor provides a new method for biology and chemical material test.

  5. Investigation of the height dependency of optical turbulence in the surface layer over False Bay (South Africa)

    NASA Astrophysics Data System (ADS)

    Sprung, Detlev; van Eijk, Alexander M. J.; Günter, Willie; Griffith, Derek; Eisele, Christian; Sucher, Erik; Seiffer, Dirk; Stein, Karin

    2017-09-01

    Atmospheric turbulence impacts on the propagation of electro-optical radiation. Typical manifestations of optical turbulence are scintillation (intensity fluctuations), beam wander and (for laser systems) reduction of beam quality. For longer propagation channels, it is important to characterize the vertical and horizontal distribution (inhomogeneity) of the optical turbulence. In the framework of the First European South African Transmission ExpeRiment (FESTER) optical turbulence was measured between June 2015 and February 2016 over a 1.8 km over-water link over False Bay. The link ran from the Institute of Maritime Technology (IMT) at Simons Town to the lighthouse at Roman Rock Island. Three Boundary layer scintillometers (BLS900) allowed assessing the vertical distribution of optical turbulence at three different heights between 5 and 12 m above the water surface. The expected decrease with Cn2 with height is not always found. These results are analyzed in terms of the meteorological scenario, and a comparison is made with a fourth optical link providing optical turbulence data over a 8.69 km path from IMT to St. James, roughly perpendicular to the three 1.8 km paths.

  6. Digital optical conversion module

    DOEpatents

    Kotter, D.K.; Rankin, R.A.

    1988-07-19

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

  7. Digital optical conversion module

    DOEpatents

    Kotter, Dale K.; Rankin, Richard A.

    1991-02-26

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

  8. FSO and quality of service software prediction

    NASA Astrophysics Data System (ADS)

    Bouchet, O.; Marquis, T.; Chabane, M.; Alnaboulsi, M.; Sizun, H.

    2005-08-01

    Free-space optical (FSO) communication links constitute an alternative option to radio relay links and to optical cables facing growth needs in high-speed telecommunications (abundance of unregulated bandwidth, rapid installation, availability of low-cost optical components offering a high data rate, etc). Their operationalisation requires a good knowledge of the atmospheric effects which can negatively affect role propagation and the availability of the link, and thus to the quality of service (QoS). Better control of these phenomena will allow for the evaluation of system performance and thus assist with improving reliability. The aim of this paper is to compare the behavior of a FSO link located in south of France (Toulouse: with the following parameters: around 270 meters (0.2 mile) long, 34 Mbps data rate, 850 nm wavelength and PDH frame) with airport meteorological data. The second aim of the paper is to assess in-house FSO quality of service prediction software, through comparing simulations with the optical link data and the weather data. The analysis uses in-house software FSO quality of service prediction software ("FSO Prediction") developed by France Telecom Research & Development, which integrates news fog fading equations (compare to Kim & al.) and includes multiple effects (geometrical attenuation, atmospheric fading, rain, snow, scintillation and refraction attenuation due to atmospheric turbulence, optical mispointing attenuation). The FSO link field trial, intended to enable the demonstration and evaluation of these different effects, is described; and preliminary results of the field trial, from December 2004 to May 2005, are then presented.

  9. Basic Investigations of Dynamic Travel Time Estimation Model for Traffic Signals Control Using Information from Optical Beacons

    NASA Astrophysics Data System (ADS)

    Okutani, Iwao; Mitsui, Tatsuro; Nakada, Yusuke

    In this paper put forward are neuron-type models, i.e., neural network model, wavelet neuron model and three layered wavelet neuron model(WV3), for estimating traveling time between signalized intersections in order to facilitate adaptive setting of traffic signal parameters such as green time and offset. Model validation tests using simulated data reveal that compared to other models, WV3 model works very fast in learning process and can produce more accurate estimates of travel time. Also, it is exhibited that up-link information obtainable from optical beacons, i.e., travel time observed during the former cycle time in this case, makes a crucial input variable to the models in that there isn't any substantial difference between the change of estimated and simulated travel time with the change of green time or offset when up-link information is employed as input while there appears big discrepancy between them when not employed.

  10. Statistics of link blockage due to cloud cover for free-space optical communications using NCDC surface weather observation data

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.; Piazzolla, S.

    2002-01-01

    Cloud opacity is one of the main atmospheric physical phenomena that can jeopardize the successful completion of an optical link between a spacecraft and a ground station. Hence, the site location chosen for a telescope used for optical communications must rely on knowledge of weather and cloud cover statistics for the geographical area where the telescope itself is located.

  11. Optical Communications from Planetary Distances

    NASA Technical Reports Server (NTRS)

    Davarian, F.; Farr, W.; Hemmati, H.; Piazzolla, S.

    2008-01-01

    Future planetary campaigns, including human missions, will require data rates difficult to realize by microwave links. Optical channels not only provide an abundance of bandwidth, they also allow for significant size, weight, and power reduction. Moreover, optical-based tracking may enhance spacecraft navigation with respect to microwave-based tracking. With all its advantages, optical communications from deep space is not without its challenges. Due to the extreme distance between the two ends of the link, specialized technologies are needed to enable communications in the deep space environment. Although some of the relevant technologies have been developed in the last decade, they remain to be validated in an appropriate domain. The required assets include efficient pulsed laser sources, modulators, transmitters, receivers, detectors, channel encoders, precise beam pointing technologies for the flight transceiver and large apertures for the ground receiver. Clearly, space qualification is required for the systems that are installed on a deep space probe. Another challenge is atmospheric effects on the optical beam. Typical candidate locations on the ground have a cloud-free line of sight only on the order of 60-70% of the time. Furthermore, atmospheric losses and background light can be problematic even during cloud-free periods. Lastly, operational methodologies are needed for efficient and cost effective management of optical links. For more than a decade, the National Aeronautics and Space Administration (NASA) has invested in relevant technologies and procedures to enable deep space optical communications capable of providing robust links with rates in the order of 1 Gb/s from Mars distance. A recent publication indicates that potential exists for 30-dB improvement in performance through technology development with respect to the state-of-the-art in the early years of this decade. The goal is to fulfill the deep space community needs from about 2020 to the foreseeable future. It is envisioned that, at least initially, optical links will be complemented by microwave assets for added robustness, especially for human missions. However, it is expected that as optical techniques mature, laser communications may be operated without conventional radio frequency links. The purpose of this paper is to briefly review the state-of-the-art in deep space laser communications and its challenges and discuss NASA-supported technology development efforts and plans for deep space optical communications at JPL.

  12. A 400 Gbps/100 m free-space optical link

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Yu; Lu, Hai-Han; Ho, Chun-Ming; Cheng, Ming-Te; Huang, Sheng-Jhe; Wang, Yun-Chieh; Chi, Jing-Kai

    2017-02-01

    A 400 Gbps/100 m free-space optical (FSO) link with dense-wavelength-division-multiplexing (DWDM)/space-division-multiplexing (SDM) techniques and a doublet lens scheme is proposed. To the best of our knowledge, this is the first time that a link adopting DWDM and SDM techniques and a doublet lens scheme has demonstrated a 400 Gbps/100 m FSO link. The experimental results show that the free-space transmission rate is significantly enhanced by the DWDM and SDM techniques, and the free-space transmission distance is greatly increased by the doublet lens scheme. A 16-channel FSO link with a total transmission rate of 400 Gbps (25 Gbps/λ  ×  16 λ  =  400 Gbps) over a 100 m free-space link is successfully demonstrated. Such a 400 Gbps/100 m DWDM/SDM FSO link provides the advantages of optical wireless communications for high transmission rates and long transmission distances, which is very useful for high-speed and long-haul light-based WiFi (LiFi) applications.

  13. Link importance incorporated failure probability measuring solution for multicast light-trees in elastic optical networks

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhang, Lu; Tang, Ying; Huang, Shanguo

    2018-03-01

    The light-tree-based optical multicasting (LT-OM) scheme provides a spectrum- and energy-efficient method to accommodate emerging multicast services. Some studies focus on the survivability technologies for LTs against a fixed number of link failures, such as single-link failure. However, a few studies involve failure probability constraints when building LTs. It is worth noting that each link of an LT plays different important roles under failure scenarios. When calculating the failure probability of an LT, the importance of its every link should be considered. We design a link importance incorporated failure probability measuring solution (LIFPMS) for multicast LTs under independent failure model and shared risk link group failure model. Based on the LIFPMS, we put forward the minimum failure probability (MFP) problem for the LT-OM scheme. Heuristic approaches are developed to address the MFP problem in elastic optical networks. Numerical results show that the LIFPMS provides an accurate metric for calculating the failure probability of multicast LTs and enhances the reliability of the LT-OM scheme while accommodating multicast services.

  14. Evaluation of optical up- and downlinks from high altitude platforms using IM/DD

    NASA Astrophysics Data System (ADS)

    Henniger, Hennes; Giggenbach, Dirk; Horwath, Joachim; Rapp, Christoph

    2005-04-01

    The advantages of optical links like small, light and power efficient terminals are practical for high data rate services over high altitude platforms (HAPs). However, atmospheric effects can disturb the optical links and must be considered in link design. In this paper we evaluate clear sky and non clear sky attenuation effects and their impact on the link-quality of up- and downlinks from HAPs. As vertical links could be restricted by very large cloud and fog attenuation, investigations of the scattering effects in cloud media has been done. The Mie-theory shows that cloud transmittance is not depending on the wavelength, whereas the attenuation of fog and dust is smaller for longer wavelengths. Satellite cloud data has been used to predict the link availability for a ground station in Germany. A ground station diversity concept is introduced to achieve higher link availability. As high receiver sensitivity helps to reduce terminal mass, power and size, evaluation of receiver sensitivity is shown. Also, a receiver model is developed which enables to calculate for the background light loss in direct detection systems.

  15. A potent approach for the development of FPGA based DAQ system for HEP experiments

    NASA Astrophysics Data System (ADS)

    Khan, Shuaib Ahmad; Mitra, Jubin; David, Erno; Kiss, Tivadar; Nayak, Tapan Kumar

    2017-10-01

    With ever increasing particle beam energies and interaction rates in modern High Energy Physics (HEP) experiments in the present and future accelerator facilities, there has always been the demand for robust Data Acquisition (DAQ) schemes which perform in the harsh radiation environment and handle high data volume. The scheme is required to be flexible enough to adapt to the demands of future detector and electronics upgrades, and at the same time keeping the cost factor in mind. To address these challenges, in the present work, we discuss an efficient DAQ scheme for error resilient, high speed data communication on commercially available state-of-the-art FPGA with optical links. The scheme utilises GigaBit Transceiver (GBT) protocol to establish radiation tolerant communication link between on-detector front-end electronics situated in harsh radiation environment to the back-end Data Processing Unit (DPU) placed in a low radiation zone. The acquired data are reconstructed in DPU which reduces the data volume significantly, and then transmitted to the computing farms through high speed optical links using 10 Gigabit Ethernet (10GbE). In this study, we focus on implementation and testing of GBT protocol and 10GbE links on an Intel FPGA. Results of the measurements of resource utilisation, critical path delays, signal integrity, eye diagram and Bit Error Rate (BER) are presented, which are the indicators for efficient system performance.

  16. Development of a 1-m Class Telescope at TMF to Support Optical Communications Demonstrations

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Sandusky, J.

    1998-01-01

    With the impetus towards high data rate communications in inter-satellite and space-to-ground links, the small size, low-mass, and low-power consumption of optical communications is seen as a viable alternative to radio frequency links.

  17. High-speed digital fiber optic links for satellite traffic

    NASA Technical Reports Server (NTRS)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-01-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  18. An analog method of cross-talk compensation for a RGB wavelength division multiplexed optical link

    NASA Astrophysics Data System (ADS)

    Chisholm, George; Leveneur, Jérôme; Futter, John; Kennedy, John

    2018-06-01

    Pulse-width modulation (PWM) over optical fiber can be a very advantageous data transmission approach when an electrically isolated data link is required. The use of wavelength division multiplexing allows multiple data streams to be sent through a single fiber independently. The present investigation aims to demonstrate a novel approach to reduce cross-talk in a three-channel RGB optical link without the need for complex optical componentry. An op-amp circuit is developed to reduce the cross-talk so that the resolution of the PWM data is preserved. An iterative Monte-Carlo simulation approach is used to optimize the op-amp circuit. The approach is developed for a set of three PWM Hall effect magnetometers with 12-bit resolution and 128 Hz sampling rate. We show that, in these conditions, the loss of resolution due to cross-talk is prevented. We also show that the cross-talk compensation allows the RGB PWM link to outperform other transmission schemes.

  19. Vortex instability in turbulent free-space propagation

    NASA Astrophysics Data System (ADS)

    Lavery, Martin P. J.

    2018-04-01

    The spatial structuring of optical fields is integral within many next generation optical metrology and communication techniques. A verifiable physical model of the propagation of these optical fields in a turbulent environment is important for developing effective mitigation techniques for the modal degradation that occurs in a free-space link. We present a method to simulate this modal degradation that agrees with recently reported experimental findings. A 1.5 km free-space link is emulated by decomposing the optical turbulence that accumulates over a long distance link, into many, weakly perturbing steps of 10 m. This simulation shows that the high-order vortex at the centre of the helical phase profiles in modes that carry orbital angular momentum of | {\\ell }| ≥slant 2{\\hslash } are unstable and fracture into many vortices when they propagate over the link. This splitting presents issues for the application of turbulence mitigation techniques. The usefulness of pre-correction, post-correction, and complex field conjugation techniques are discussed.

  20. Superdense Coding over Optical Fiber Links with Complete Bell-State Measurements

    DOE PAGES

    Williams, Brian P.; Sadlier, Ronald J.; Humble, Travis S.

    2017-02-01

    Adopting quantum communication to modern networking requires transmitting quantum information through a fiber-based infrastructure. In this paper, we report the first demonstration of superdense coding over optical fiber links, taking advantage of a complete Bell-state measurement enabled by time-polarization hyperentanglement, linear optics, and common single-photon detectors. Finally, we demonstrate the highest single-qubit channel capacity to date utilizing linear optics, 1.665 ± 0.018, and we provide a full experimental implementation of a hybrid, quantum-classical communication protocol for image transfer.

  1. Nonlinear Optics Technology. Volume 2. Phase Conjugated Optical Communication Link. Phase 3

    DTIC Science & Technology

    1991-01-12

    who performed the mission analysis, Mr. Larry A. Dozal whose laboratory assistance was vital to both the comm link experiments and mechanical design of...further the understanding of FWM PC comm link physics and to determine design requirements for a fieldable system. The system model demonstrated that...neterodyne receiver using photorefractive iaterial was also designed , fabricated, and characterized. The efficiency o heterodyne mixing of an aberrated

  2. Coherence transfer of subhertz-linewidth laser light via an 82-km fiber link

    NASA Astrophysics Data System (ADS)

    Ma, Chaoqun; Wu, Lifei; Jiang, Yanyi; Yu, Hongfu; Bi, Zhiyi; Ma, Longsheng

    2015-12-01

    We demonstrate optical coherence transfer of subhertz-linewidth laser light through fiber links by actively compensating random fiber phase noise induced by environmental perturbations. The relative linewidth of laser light after transferring through a 32-km urban fiber link is suppressed within 1 mHz (resolution bandwidth limited), and the absolute linewidth of the transferred laser light is less than 0.36 Hz. For an 82-km fiber link, a repeater station is constructed between a 32-km urban fiber and a 50-km spooled fiber to recover the spectral purity. A relative linewidth of 1 mHz is also demonstrated for light transferring through the 82-km cascaded fiber. Such an optical signal distribution network based on repeater stations allows optical coherence and synchronization available over spatially separated places.

  3. NASA's current activities in free space optical communications

    NASA Astrophysics Data System (ADS)

    Edwards, Bernard L.

    2017-11-01

    NASA and other space agencies around the world are currently developing free space optical communication systems for both space-to-ground links and space-to-space links. This paper provides an overview of NASA's current activities in free space optical communications with a focus on Near Earth applications. Activities to be discussed include the Lunar Laser Communication Demonstration, the Laser Communications Relay Demonstration, and the commercialization of the underlying technology. The paper will also briefly discuss ongoing efforts and studies for Deep Space optical communications. Finally the paper will discuss the development of international optical communication standards within the Consultative Committee for Space Data Systems.

  4. Optical satellite communications in Europe

    NASA Astrophysics Data System (ADS)

    Sodnik, Zoran; Lutz, Hanspeter; Furch, Bernhard; Meyer, Rolf

    2010-02-01

    This paper describes optical satellite communication activities based on technology developments, which started in Europe more than 30 years ago and led in 2001 to the world-first optical inter-satellite communication link experiment (SILEX). SILEX proved that optical communication technologies can be reliably mastered in space and in 2006 the Japanese Space Agency (JAXA) joined the optical inter-satellite experiment from their own satellite. Since 2008 the German Space Agency (DLR) is operating an inter-satellite link between the NFIRE and TerraSAR-X satellites based on a second generation of laser communication technology, which will be used for the new European Data Relay Satellite (EDRS) system to be deployed in 2013.

  5. Modelling of 10 Gbps Free Space Optics Communication Link Using Array of Receivers in Moderate and Harsh Weather Conditions

    NASA Astrophysics Data System (ADS)

    Gupta, Amit; Shaina, Nagpal

    2017-08-01

    Intersymbol interference and attenuation of signal are two major parameters affecting the quality of transmission in Free Space Optical (FSO) Communication link. In this paper, the impact of these parameters on FSO communication link is analysed for delivering high-quality data transmission. The performance of the link is investigated under the influence of amplifier in the link. The performance parameters of the link like minimum bit error rate, received signal power and Quality factor are examined by employing erbium-doped fibre amplifier in the link. The effects of amplifier are visualized with the amount of received power. Further, the link is simulated for moderate weather conditions at various attenuation levels on transmitted signal. Finally, the designed link is analysed in adverse weather conditions by using high-power laser source for optimum performance.

  6. Practical Aspects of Access Network Indoor Extensions Using Multimode Glass and Plastic Optical Fibers

    NASA Astrophysics Data System (ADS)

    Keiser, Gerd; Liu, Hao-Yu; Lu, Shao-Hsi; Devi Pukhrambam, Puspa

    2012-07-01

    Low-cost multimode glass and plastic optical fibers are attractive for high-capacity indoor telecom networks. Many existing buildings already have glass multimode fibers installed for local area network applications. Future indoor applications will use combinations of glass multimode fibers with plastic optical fibers that have low losses in the 850-nm-1,310-nm range. This article examines real-world link losses when randomly interconnecting glass and plastic fiber segments having factory-installed connectors. Potential interconnection issues include large variations in connector losses among randomly selected fiber segments, asymmetric link losses in bidirectional links, and variations in bandwidths among different types of fibers.

  7. Conditions for the optical wireless links bit error ratio determination

    NASA Astrophysics Data System (ADS)

    Kvíčala, Radek

    2017-11-01

    To determine the quality of the Optical Wireless Links (OWL), there is necessary to establish the availability and the probability of interruption. This quality can be defined by the optical beam bit error rate (BER). Bit error rate BER presents the percentage of successfully transmitted bits. In practice, BER runs into the problem with the integration time (measuring time) determination. For measuring and recording of BER at OWL the bit error ratio tester (BERT) has been developed. The 1 second integration time for the 64 kbps radio links is mentioned in the accessible literature. However, it is impossible to use this integration time for singularity of coherent beam propagation.

  8. Optimetrics for Precise Navigation

    NASA Technical Reports Server (NTRS)

    Yang, Guangning; Heckler, Gregory; Gramling, Cheryl

    2017-01-01

    Optimetrics for Precise Navigation will be implemented on existing optical communication links. The ranging and Doppler measurements are conducted over communication data frame and clock. The measurement accuracy is two orders of magnitude better than TDRSS. It also has other advantages of: The high optical carrier frequency enables: (1) Immunity from ionosphere and interplanetary Plasma noise floor, which is a performance limitation for RF tracking; and (2) High antenna gain reduces terminal size and volume, enables high precision tracking in Cubesat, and in deep space smallsat. High Optical Pointing Precision provides: (a) spacecraft orientation, (b) Minimal additional hardware to implement Precise Optimetrics over optical comm link; and (c) Continuous optical carrier phase measurement will enable the system presented here to accept future optical frequency standard with much higher clock accuracy.

  9. Radio-Frequency Down-Conversion via Sampled Analog Optical Links

    DTIC Science & Technology

    2010-08-09

    temporal intensity Popt(ω) includes intensity noise quantities arising from the optical source (e.g. laser intensity noise, amplified spontaneous emission...nm distributed feedback laser RF Down-Conversion via Sampled Links 5 (DFB, EM4, Inc.) the output of which is modulated via a low-biased Mach-Zehnder...Figure 5 (a). For comparison purposes the RF gain of one arm of the balanced link (utilizing a continuous- wave laser source) is measured and

  10. Effect of fog on free-space optical links employing imaging receivers.

    PubMed

    Mahalati, Reza Nasiri; Kahn, Joseph M

    2012-01-16

    We analyze free-space optical links employing imaging receivers in the presence of misalignment and atmospheric effects, such as haze, fog or rain. We present a detailed propagation model based on the radiative transfer equation. We also compare the relative importance of two mechanisms by which these effects degrade link performance: signal attenuation and image blooming. We show that image blooming dominates over attenuation, except under medium-to-heavy fog conditions.

  11. Analysis on detection accuracy of binocular photoelectric instrument optical axis parallelism digital calibration instrument

    NASA Astrophysics Data System (ADS)

    Ying, Jia-ju; Yin, Jian-ling; Wu, Dong-sheng; Liu, Jie; Chen, Yu-dan

    2017-11-01

    Low-light level night vision device and thermal infrared imaging binocular photoelectric instrument are used widely. The maladjustment of binocular instrument ocular axises parallelism will cause the observer the symptom such as dizziness, nausea, when use for a long time. Binocular photoelectric equipment digital calibration instrument is developed for detecting ocular axises parallelism. And the quantitative value of optical axis deviation can be quantitatively measured. As a testing instrument, the precision must be much higher than the standard of test instrument. Analyzes the factors that influence the accuracy of detection. Factors exist in each testing process link which affect the precision of the detecting instrument. They can be divided into two categories, one category is factors which directly affect the position of reticle image, the other category is factors which affect the calculation the center of reticle image. And the Synthesize error is calculated out. And further distribute the errors reasonably to ensure the accuracy of calibration instruments.

  12. Daytime adaptive optics for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith; Troy, M.; Srinivasan, M.; Platt, B.; Vilnrotter, V.; Wright, M.; Garkanian, V.; Hemmati, H.

    2003-01-01

    The deep space optical communications subsystem offers a higher bandwidth communications link in smaller size, lower mass, and lower power consumption subsystem than does RF. To demonstrate the benefit of this technology to deep space communications NASA plans to launch an optical telecommunications package on the 2009 Mars Telecommunications orbiter spacecraft. Current performance goals are 30-Mbps from opposition, and 1-Mbps near conjunction (-3 degrees Sun-Earth-Probe angle). Yet, near conjunction the background noise from the day sky will degrade the performance of the optical link. Spectral and spatial filtering and higher modulation formats can mitigate the effects of background sky. Narrowband spectral filters can result in loss of link margin, and higher modulation formats require higher transmitted peak powers. In contrast, spatial filtering at the receiver has the potential of being lossless while providing the required sky background rejection. Adaptive optics techniques can correct wave front aberrations caused by atmospheric turbulence and enable near-diffraction-limited performance of the receiving telescope. Such performance facilitates spatial filtering, and allows the receiver field-of-view and hence the noise from the sky background to be reduced.

  13. Radiation-hard mid-power booster optical fiber amplifiers for high-speed digital and analogue satellite laser communication links

    NASA Astrophysics Data System (ADS)

    Stampoulidis, L.; Kehayas, E.; Stevens, G.; Henwood-Moroney, L.; Hosking, P.; Robertson, A.

    2017-11-01

    Optical laser communications (OLC) has been identified as the technology to enable high-data rate, secure links between and within satellites, as well as between satellites and ground stations with decreased mass, size, and electrical power compared to traditional RF technology.

  14. The optical antenna system design research on earth integrative network laser link in the future

    NASA Astrophysics Data System (ADS)

    Liu, Xianzhu; Fu, Qiang; He, Jingyi

    2014-11-01

    Earth integrated information network can be real-time acquisition, transmission and processing the spatial information with the carrier based on space platforms, such as geostationary satellites or in low-orbit satellites, stratospheric balloons or unmanned and manned aircraft, etc. It is an essential infrastructure for China to constructed earth integrated information network. Earth integrated information network can not only support the highly dynamic and the real-time transmission of broadband down to earth observation, but the reliable transmission of the ultra remote and the large delay up to the deep space exploration, as well as provide services for the significant application of the ocean voyage, emergency rescue, navigation and positioning, air transportation, aerospace measurement or control and other fields.Thus the earth integrated information network can expand the human science, culture and productive activities to the space, ocean and even deep space, so it is the global research focus. The network of the laser communication link is an important component and the mean of communication in the earth integrated information network. Optimize the structure and design the system of the optical antenna is considered one of the difficulty key technologies for the space laser communication link network. Therefore, this paper presents an optical antenna system that it can be used in space laser communication link network.The antenna system was consisted by the plurality mirrors stitched with the rotational paraboloid as a substrate. The optical system structure of the multi-mirror stitched was simulated and emulated by the light tools software. Cassegrain form to be used in a relay optical system. The structural parameters of the relay optical system was optimized and designed by the optical design software of zemax. The results of the optimal design and simulation or emulation indicated that the antenna system had a good optical performance and a certain reference value in engineering. It can provide effective technical support to realize interconnection of earth integrated laser link information network in the future.

  15. A technique for studying cardiac myosin dynamics using optical tweezers

    NASA Astrophysics Data System (ADS)

    Paolino, Michael; Migirditch, Sam; Nesmelov, Yuri; Hester, Brooke; Appalachian State Biophysics; Optical Sciences Facility Team

    A primary protein involved in human muscle contraction is myosin, which exists in α- and β- isoforms. Myosin exerts forces on actin filaments when ATP is present, driving muscle contraction. A significant decrease in the population of cardiac α-myosin has been linked to heart failure. It is proposed that slow β-myosin in a failing heart could, through introduction of a drug, be made to mimic the action of α-myosin, thereby improving cardiac muscle performance. In working towards testing this hypothesis, the focus of this work is to develop a technique to measure forces exerted by myosin on actin using optical tweezers. An actin-myosin arrangement is constructed between two optically trapped polystyrene microspheres. The displacement of a microsphere is monitored when ATP is introduced, and the force responsible is measured. With this achieved, we can then modify the actin-myosin arrangement, for example with varying amounts of α- and β- myosin and test the effects on forces exerted. In this work, assemblies of actin and myosin molecules and preliminary force measurements are discussed. North Carolina Space Grant.

  16. An optical approach to proximity-operations communications for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Marshalek, Robert G.

    1991-01-01

    An optical communications system is described that supports bi-directional interconnections between Space Station Freedom (SSF) and a host of attached and co-orbiting platforms. These proximity-operations (Prox-Ops) platforms are categorized by their maximum distance from SSF, with several remaining inside 1-km range and several extending out to 37-km and 2000-km ranges in the initial and growth phases, respectively. Two distinct Prox-Ops optical terminals are described. A 1-cm-aperture system is used on the short-range platforms to reduce payload mass, and a 10-cm-aperture system is used on the long-range platforms and on SSF to support the optical link budgets. The system supports up to four simultaneous user links, by assigning wavelengths to the various platforms and by using separate SSF terminals for each link.

  17. Inhomogeneity of optical turbulence over False Bay (South Africa)

    NASA Astrophysics Data System (ADS)

    Ullwer, Carmen; Sprung, Detlev; van Eijk, Alexander M. J.; Gunter, Willi; Stein, Karin

    2017-09-01

    Atmospheric turbulence impacts on the propagation of electro-optical radiation. Typical manifestations of optical turbulence are scintillation (intensity fluctuations), beam wander and (for laser systems) reduction of beam quality. For longer propagation channels, it is important to characterize the vertical and horizontal distribution (inhomogeneity) of the optical turbulence. In the framework of the First European South African Transmission ExpeRiment (FESTER) optical turbulence was measured between June 2015 and February 2016 on a 2 km over-water link over False Bay. The link ran from the Institute of Maritime Technology (IMT) in Simons Town to the lighthouse at Roman Rock Island. Three Boundary layer scintillometers (BLS900) allowed assessing the vertical distribution of optical turbulence at three different heights between 5 and 12 m above the water surface. The expected decrease of Cn2 with height is not always found. These results are analyzed in terms of the meteorological scenarios, and a comparison is made with a fourth optical link providing optical turbulence data over a 8.7 km path from IMT to Kalk Bay, roughly 36° to the north of the three 2 km paths. The results are related to the inhomogeneous meteorological conditions over the Bay as assessed with the numerical weather prediction tool, the Weather Forecast and Research model WRF.

  18. High-Speed Operation of Interband Cascade Lasers

    NASA Technical Reports Server (NTRS)

    Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Wright, Malcom W.; Farr, William H.; Yang, Rui Q.; Liu, H. C.

    2010-01-01

    Optical sources operating in the atmospheric window of 3-5 microns are of particular interest for the development of free-space optical communication link. It is more advantageous to operate the free-space optical communication link in 3-5-microns atmospheric transmission window than at the telecom wavelength of 1.5 m due to lower optical scattering, scintillation, and background radiation. However, the realization of optical communications at the longer wavelength has encountered significant difficulties due to lack of adequate optical sources and detectors operating in the desirable wavelength regions. Interband Cascade (IC) lasers are novel semiconductor lasers that have a great potential for the realization of high-power, room-temperature optical sources in the 3-5-microns wavelength region, yet no experimental work, until this one, was done on high-speed direct modulation of IC lasers. Here, highspeed interband cascade laser, operating at wavelength 3.0 m, has been developed and the first direct measurement of the laser modulation bandwidth has been performed using a unique, highspeed quantum well infrared photodetector (QWIP). The developed laser has modulation bandwidth exceeding 3 GHz. This constitutes a significant increase of the IC laser modulation bandwidth over currently existing devices. This result has demonstrated suitability of IC lasers as a mid-IR light source for multi-GHz free-space optical communications links

  19. Two-way wireless-over-fibre and FSO-over-fibre communication systems with an optical carrier transmission

    NASA Astrophysics Data System (ADS)

    Huang, Xu-Hong; Lu, Hai-Han; Donati, Silvano; Li, Chung-Yi; Wang, Yun-Chieh; Jheng, Yu-Bo; Chang, Jen-Chieh

    2018-07-01

    Two-way wireless-over-fiber and free-space optical (FSO)-over-fiber communication systems, with an optical carrier transmission for a hybrid 10 Gbps baseband data stream, are proposed and practically demonstrated. 10 Gbps/50 GHz and 10 Gbps/100 GHz millimeter-wave data signal transmissions are also proposed and practically demonstrated. An optical carrier with a 10 Gbps baseband data stream is delivered via a 50 km single-mode fiber transportation to effectively lower dispersion-induced limitation due to fiber links and distortion produced by beating among multiple optical sidebands. To our understanding, this experiment is foremost in employing an optical carrier transmission approach to a two-way wireless-over-fiber and FSO-over-fiber communication system to suppress fiber dispersion and distortion effectively. Bit error rate performs well for downlink and uplink deliveries via a 50 km single-mode fiber transportation with a 100 m FSO link/5 m RF wireless delivery. The offered two-way wireless-over-fiber and FSO-over-fiber communication system with an optical carrier transmission is a promising option. It should be interesting for signifying the progress in the integration of long-haul fiber-based trunks and short-range RF/optical wireless link-based branches.

  20. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip.

    PubMed

    Jia, Hao; Zhou, Ting; Zhang, Lei; Ding, Jianfeng; Fu, Xin; Yang, Lin

    2017-08-21

    We propose a 2 × 2 multimode optical switch, which is composed of two mode de-multiplexers, n 2 × 2 single-mode optical switches where n is the number of the supported spatial modes, and two mode multiplexers. As a proof of concept, asymmetric directional couplers are employed to construct the mode multiplexers and de-multiplexers, balanced Mach-Zehnder interferometer is utilized to construct the 2 × 2 single-mode optical switches. The fabricated silicon 2 × 2 multimode optical switch has a broad optical bandwidth and can support four spatial modes. The link-crosstalk for all four modes is smaller than -18.8 dB. The inter-mode crosstalk for the same optical link is less than -22.1 dB. 40 Gbps data transmission is performed for all spatial modes and all optical links. The power penalties for the error-free switching (BER<10 -9 ) at 25 Gbps are less than 1.8 dB for all channels at the wavelength of 1550 nm. The power consumption of the device is 117.9 mW in the "cross" state and 116.2 mW in the "bar" state. The switching time is about 21 μs. This work enables large-capacity multimode photonic networks-on-chip.

  1. Bidirectional fiber-IVLLC and fiber-wireless convergence system with two orthogonally polarized optical sidebands.

    PubMed

    Lu, Hai-Han; Wu, Hsiao-Wen; Li, Chung-Yi; Ho, Chun-Ming; Yang, Zih-Yi; Cheng, Ming-Te; Lu, Chang-Kai

    2017-05-01

    A bidirectional fiber-invisible laser light communication (IVLLC) and fiber-wireless convergence system with two orthogonally polarized optical sidebands for hybrid cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and experimentally demonstrated. Two optical sidebands generated by a 60-GHz MMW signal are orthogonally polarized and separated into different polarizations. These orthogonally polarized optical sidebands are delivered over a 40-km single-mode fiber (SMF) transport to effectually reduce the fiber dispersion induced by a 40-km SMF transmission and the distortion caused by the parallel polarized optical sidebands. To the best of our knowledge, this work is the first to adopt two orthogonally polarized optical sidebands in a bidirectional fiber-IVLLC and fiber-wireless convergence system to reduce fiber dispersion and distortion effectually. Good carrier-to-noise ratio, composite second order, composite triple beat, and bit error rate (BER) are achieved for downlink transmission at a 40-km SMF operation and a 100-m free-space optical (FSO) link/3-m RF wireless transmission. For up-link transmission, good BER performance is acquired over a 40-km SMF transport and a 100-m FSO link. The approach presented in this work signifies the advancements in the convergence of SMF-based backbone and optical/RF wireless-based feeder.

  2. Realization of an all-solid-state cryocooler using optical refrigeration

    NASA Astrophysics Data System (ADS)

    Meng, Junwei; Albrecht, Alexander R.; Gragossian, Aram; Lee, Eric; Volpi, Azzurra; Ghasemkhani, Mohammadreza; Hehlen, Markus P.; Epstein, Richard I.; Sheik-Bahae, Mansoor

    2018-05-01

    Optical refrigeration of rare-earth-doped solids has reached the boiling point of argon, 87 K, and is expected to cool to that of nitrogen, 77 K, in the near future. This technology is poised to pave the way to compact, reliable, and vibrationfree all-solid-state optical cryocoolers. By attaching the Yb:YLF cooling crystal to a cold finger via a double 90° kink thermal link, we have cooled a silicon temperature sensor to below 151 K. An advanced design of the thermal link and the clamshell surrounding the cooled assembly successfully controlled the flow of heat and radiation to allow cooling of a payload to cryogenic temperatures. Key elements of the design were a low-absorption thermal link material, an optimized thermal link geometry, and a spectrally-selective coating of the clamshell.

  3. An underwater optical wireless communication network

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2009-08-01

    The growing need for underwater observation and sub-sea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, bio-geochemical, evolutionary and ecological changes in the sea, ocean and lake environments and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. We present models of three kinds of optical wireless communication links a) a line-of-sight link, b) a modulating retro-reflector link and c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered lighted it was possible to mitigate this decrease in some cases. We conclude from the analysis that a high data rate underwater optical wireless network is a feasible solution for emerging applications such as UUV to UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  4. Underwater optical wireless communication network

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2010-01-01

    The growing need for underwater observation and subsea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, biogeochemical, evolutionary, and ecological changes in the sea, ocean, and lake environments, and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. Models are presented for three kinds of optical wireless communication links: (a) a line-of-sight link, (b) a modulating retroreflector link, and (c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered light it was possible to mitigate this decrease in some cases. It is concluded from the analysis that a high-data-rate underwater optical wireless network is a feasible solution for emerging applications such as UUV-to-UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  5. Maritime Laser Communications Trial 98152-19703

    DTIC Science & Technology

    2012-06-01

    of the optical transmitters (typically 0.1 to 5 milliradians ) implies a low probability of detection and interception (LPD and LPI). In addition...it has a ±25° acceptance cone, which compares favourably with an f/1 lens of the same diameter that has a field-of-view of ±8°. An optical bandpass...to set- up the scintillometer. However, the optical link equipment was shown to be operating correctly. 5.2 Shore-to-shore link across water

  6. Link Power Budget and Traffict QoS Performance Analysis of Gygabit Passive Optical Network

    NASA Astrophysics Data System (ADS)

    Ubaidillah, A.; Alfita, R.; Toyyibah

    2018-01-01

    Data service of telecommunication network is needed widely in the world; therefore extra wide bandwidth must be provided. For this case, PT. Telekomunikasi Tbk. applies GPON (Gigabit Passive Optical Network) as optical fibre based on telecommunication network system. GPON is a point to a multipoint technology of FTTx (Fiber to The x) that transmits information signals to the subscriber over optical fibre. In GPON trunking system, from OLT (Optical Line Terminal), the network is split to many ONT (Optical Network Terminal) of the subscribers, so it causes path loss and attenuation. In this research, the GPON performance is measured from the link power budget system and the Quality of Service (QoS) of the traffic. And the observation result shows that the link power budget system of this GPON is in good condition. The link power budget values from the mathematical calculation and direct measurement are satisfy the ITU-T G984 Class B standard, that the power level must be between -8 dBm to -27 dBm. While from the traffic performance, the observation result shows that the network resource utility of the subscribers of the observed area is not optimum. The mean of subscriber utility rate is 27.985 bps for upstream and 79.687 bps for downstream. While maximally, It should be 60.800 bps for upstream and 486.400 bps for downstream.

  7. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, J.M.

    1993-04-20

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  8. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, John M.

    1993-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  9. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  10. Fiber optic interconnect and optoelectronic packaging challenges for future generation avionics

    NASA Astrophysics Data System (ADS)

    Beranek, Mark W.

    2007-02-01

    Forecasting avionics industry fiber optic interconnect and optoelectronic packaging challenges that lie ahead first requires an assumption that military avionics architectures will evolve from today's centralized/unified concept based on gigabit laser, optical-to-electrical-to-optical switching and optical backplane technology, to a future federated/distributed or centralized/unified concept based on gigabit tunable laser, electro-optical switch and add-drop wavelength division multiplexing (WDM) technology. The requirement to incorporate avionics optical built-in test (BIT) in military avionics fiber optic systems is also assumed to be correct. Taking these assumptions further indicates that future avionics systems engineering will use WDM technology combined with photonic circuit integration and advanced packaging to form the technical basis of the next generation military avionics onboard local area network (LAN). Following this theme, fiber optic cable plants will evolve from today's multimode interconnect solution to a single mode interconnect solution that is highly installable, maintainable, reliable and supportable. Ultimately optical BIT for fiber optic fault detection and isolation will be incorporated as an integral part of a total WDM-based avionics LAN solution. Cost-efficient single mode active and passive photonic component integration and packaging integration is needed to enable reliable operation in the harsh military avionics application environment. Rugged multimode fiber-based transmitters and receivers (transceivers) with in-package optical BIT capability are also needed to enable fully BIT capable single-wavelength fiber optic links on both legacy and future aerospace platforms.

  11. 20-Gbps optical LiFi transport system.

    PubMed

    Ying, Cheng-Ling; Lu, Hai-Han; Li, Chung-Yi; Cheng, Chun-Jen; Peng, Peng-Chun; Ho, Wen-Jeng

    2015-07-15

    A 20-Gbps optical light-based WiFi (LiFi) transport system employing vertical-cavity surface-emitting laser (VCSEL) and external light injection technique with 16-quadrature amplitude modulation (QAM)-orthogonal frequency-division multiplexing (OFDM) modulating signal is proposed. Good bit error rate (BER) performance and clear constellation map are achieved in our proposed optical LiFi transport systems. An optical LiFi transport system, delivering 16-QAM-OFDM signal over a 6-m free-space link, with a data rate of 20 Gbps, is successfully demonstrated. Such a 20-Gbps optical LiFi transport system provides the advantage of a free-space communication link for high data rates, which can accelerate the visible laser light communication (VLLC) deployment.

  12. Demodulation of micro fiber-optic Fabry-Perot interferometer using subcarrier and dual-wavelength method

    NASA Astrophysics Data System (ADS)

    Lu, En; Ran, Zengling; Peng, Fei; Liu, Zhiwei; Xu, Fuguo

    2012-03-01

    Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic Fabry-Perot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.

  13. Demodulation of micro fiber-optic Fabry-Perot interferometer using subcarrier and dual-wavelength method

    NASA Astrophysics Data System (ADS)

    Ran, Zengling; Rao, Yunjiang; Liu, Zhiwei; Xu, Fuguo

    2011-05-01

    Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic fabry-periot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.

  14. A Sub-ps Stability Time Transfer Method Based on Optical Modems.

    PubMed

    Frank, Florian; Stefani, Fabio; Tuckey, Philip; Pottie, Paul-Eric

    2018-06-01

    Coherent optical fiber links recently demonstrate their ability to compare the most advanced optical clocks over a continental scale. The outstanding performances of the optical clocks are stimulating the community to build much more stable time scales, and to develop the means to compare them. Optical fiber link is one solution that needs to be explored. Here, we are investigating a new method to transfer time based on an optical demodulation of a phase step imprint onto the optical carrier. We show the implementation of a proof-of-principle experiment over 86-km urban fiber, and report time interval transfer stability of 1 pulse per second signal with sub-ps resolution from 10 s to one day of measurement time. Prospects for future development and implementation in active telecommunication networks, not only regarding performance but also compatibility, conclude this paper.

  15. Visible CWDM system design for Multi-Gbit/s transmission over SI-POF

    NASA Astrophysics Data System (ADS)

    Vázquez, Carmen; Pinzón, Plinio Jesús; Pérez, Isabel

    2015-01-01

    In order to increase the data rates of Multi-Gbit/s links based on large core step index (SI) plastic optical fibers (POF), different modulation scenes have been proposed. Another option is to use multiple optical carriers for parallel transmission of communication channels over the same fiber. Some designs to reach data rates of 14.77 Gb/s in 50 m, with 4 channels have been developed by off line processing. In this work, designs to test the potential of real Multi- Gbit/s transmission systems using commercial products are reported. Special care in designing low insertion loss multiplexers and demultiplexers is carried out to allow for greener solutions in terms of power consumption.

  16. Coherent ultra dense wavelength division multiplexing passive optical networks

    NASA Astrophysics Data System (ADS)

    Shahpari, Ali; Ferreira, Ricardo; Ribeiro, Vitor; Sousa, Artur; Ziaie, Somayeh; Tavares, Ana; Vujicic, Zoran; Guiomar, Fernando P.; Reis, Jacklyn D.; Pinto, Armando N.; Teixeira, António

    2015-12-01

    In this paper, we firstly review the progress in ultra-dense wavelength division multiplexing passive optical network (UDWDM-PON), by making use of the key attributes of this technology in the context of optical access and metro networks. Besides the inherit properties of coherent technology, we explore different modulation formats and pulse shaping. The performance is experimentally demonstrated through a 12 × 10 Gb/s bidirectional UDWDM-PON over hybrid 80 km standard single mode fiber (SSMF) and optical wireless link. High density, 6.25 GHz grid, Nyquist shaped 16-ary quadrature amplitude modulation (16QAM) and digital frequency shifting are some of the properties exploited together in the tests. Also, bidirectional transmission in fiber, relevant in the context, is analyzed in terms of nonlinear and back-reflection effects on receiver sensitivity. In addition, as a basis for the discussion on market readiness, we experimentally demonstrate real-time detection of a Nyquist-shaped quaternary phase-shift keying (QPSK) signal using simple 8-bit digital signal processing (DSP) on a field-programmable gate array (FPGA).

  17. Back-support large laser mirror unit: mounting modeling and analysis

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Zhang, Zheng; Long, Kai; Liu, Tianye; Li, Jun; Liu, Changchun; Xiong, Zhao; Yuan, Xiaodong

    2018-01-01

    In high-power laser system, the surface wavefront of large optics has a close link with its structure design and mounting method. The back-support transport mirror design is presently being investigated as a means in China's high-power laser system to hold the optical component firmly while minimizing the distortion of its reflecting surface. We have proposed a comprehensive analytical framework integrated numerical modeling and precise metrology for the mirror's mounting performance evaluation while treating the surface distortion as a key decision variable. The combination of numerical simulation and field tests demonstrates that the comprehensive analytical framework provides a detailed and accurate approach to evaluate the performance of the transport mirror. It is also verified that the back-support transport mirror is effectively compatible with state-of-the-art optical quality specifications. This study will pave the way for future research to solidify the design of back-support large laser optics in China's next generation inertial confinement fusion facility.

  18. Development of Laser Beam Transmission Strategies for Future Ground-to-Space Optical Communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith E.; Kovalik, Joseph M.; Biswas, Abhijit; Roberts, William T.

    2007-01-01

    Optical communications is a key technology to meet the bandwidth expansion required in the global information grid. High bandwidth bi-directional links between sub-orbital platforms and ground and space terminals can provide a seamless interconnectivity for rapid return of critical data to analysts. The JPL Optical Communications Telescope Laboratory (OCTL) is located in Wrightwood California at an altitude of 2.2.km. This 200 sq-m facility houses a state-of- the-art 1-m telescope and is used to develop operational strategies for ground-to-space laser beam propagation that include safe beam transmission through navigable air space, adaptive optics correction and multi-beam scintillation mitigation, and line of sight optical attenuation monitoring. JPL has received authorization from international satellite owners to transmit laser beams to more than twenty retro-reflecting satellites. This paper presents recent progress in the development of these operational strategies tested by narrow laser beam transmissions from the OCTL to retro-reflecting satellites. We present experimental results and compare our measurements with predicted performance for a variety of atmospheric conditions.

  19. The engagement of optical angular momentum in nanoscale chirality

    NASA Astrophysics Data System (ADS)

    Andrews, David L.

    2017-09-01

    Wide-ranging developments in optical angular momentum have recently led to refocused attention on issues of material chirality. The connection between optical spin and circular polarization, linking to well-known and utilized probes of chirality such as circular dichroism, has prompted studies aiming to achieve enhanced means of differentiating enantiomers - molecules or particles of opposite handedness. A number of newly devised schemes for physically separating mirror-image components by optical methods have also been gaining traction, together with a developing appreciation of how the scale of physical dimensions ultimately determines any capacity to differentially select for material chirality. The scope of such enquiries has substantially widened on recognition that suitably structured, topologically charged beams of light - often known as `twisted light' or `optical vortices' can additionally convey orbital angular momentum. A case can be made that understanding the full scope and constraints upon chiroptical interactions in the nanoscale regime involves the resolution of CPT symmetry conditions governing the fundamental interactions between matter and photons. The principles provide a sound theoretical test-bed for new methodologies.

  20. Direct detection optical intersatellite link at 220 Mbps using AlGaAs laser diode and silicon APD with 4-ary PPM signaling

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.

    1990-01-01

    A newly developed 220 Mbps free-space 4-ary pulse position modulation (PPM) direct detection optical communication system is described. High speed GaAs integrated circuits were used to construct the PPM encoder and receiver electronic circuits. Both PPM slot and word timing recovery were provided in the PPM receiver. The optical transmitter consisted of an AlGaAs laser diode (Mitsubishi ML5702A, lambda=821nm) and a high speed driver unit. The photodetector consisted of a silicon avalanche photodiode (APD) (RCA30902S) preceded by an optical interference filter (delta lambda=10nm). Preliminary tests showed that the self-synchronized PPM receiver could achieve a receiver bit error rate of less than 10(exp -6) at 25 nW average received optical signal power or 360 photons per transmitted information bit. The relatively poor receiver sensitivity was believed to be caused by the insufficient electronic bandwidth of the APD preamplifier and the poor linearity of the preamplifier high frequency response.

  1. Study of Lateral Misalignment Tolerance of a Symmetric Free-Space Optical Link for Intra International Space Station Communication

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Schoenholz, Bryan; Suddath, Shannon N.

    2016-01-01

    This paper describes the study of lateral misalignment tolerance of a symmetric high-rate free-space optical link (FSOL) for use between International Space Station (ISS) payload sites and the main cabin. The link will enable gigabit per second (Gbps) transmission of data, which is up to three orders of magnitude greater than the current capabilities. This application includes 10-20 meter links and requires minimum size, weight, and power (SWaP). The optical power must not present an eye hazard and must be easily integrated into the existing ISS infrastructure. On the ISS, rapid thermal changes and astronaut movement will cause flexure of the structure which will potentially misalign the free space transmit and receive optics 9 cm laterally and 0.2 degrees angularly. If this misalignment is not accounted for, a loss of the link or degradation of link performance will occur. Power measurements were collected to better understand the effect of various system design parameters on lateral misalignment. Parameters that were varied include: the type of small form pluggable (SFP) transceivers, type of fiber, and transmitted power level. A potential solution was identified that can reach the lateral misalignment tolerance (decenter span) required to create an FSOL on the ISS by using 105 m core fibers, a duplex SFP, two channels of light, and two fiber amplifiers.

  2. Polarization-independent optical wavelength filter for channel dropping applications

    DOEpatents

    Deri, R.J.; Patterson, F.

    1996-05-07

    The polarization dependence of optical wavelength filters is eliminated by using waveguide directional couplers. Material birefringence is used to compensate for the waveguide (electromagnetic) birefringence which is the original cause of the polarization dependence. Material birefringence is introduced in a controllable fashion by replacing bulk waveguide layers by finely layered composites, such as multiple quantum wells using III-V semiconductor materials. The filter has use in wavelength-division multiplexed fiber optic communication systems. This filter has broad application for wavelength-tunable receivers in fiber optic communication links, which may be used for telecommunications, optical computer interconnect links, or fiber optic sensor systems. Since multiple-wavelength systems are increasingly being used for all of these applications, the filter is useable whenever a rapidly tunable, wavelength-filtering receiver is required. 14 figs.

  3. Polarization-independent optical wavelength filter for channel dropping applications

    DOEpatents

    Deri, Robert J.; Patterson, Frank

    1996-01-01

    The polarization dependence of optical wavelength filters is eliminated by using waveguide directional couplers. Material birefringence is used to compensate for the waveguide (electromagnetic) birefringence which is the original cause of the polarization dependence. Material birefringence is introduced in a controllable fashion by replacing bulk waveguide layers by finely layered composites, such as multiple quantum wells using III-V semiconductor materials. The filter has use in wavelength-division-multiplexed fiber optic communication systems. This filter has broad application for wavelength-tunable receivers in fiber optic communication links, which may be used for telecommunications, optical computer interconnect links, or fiber optic sensor systems. Since multiple-wavelength systems are increasingly being used for all of these applications, the filter is useable whenever a rapidly tunable, wavelength-filtering receiver is required.

  4. Optical metrics of the extracellular matrix predict compositional and mechanical changes after myocardial infarction

    NASA Astrophysics Data System (ADS)

    Quinn, Kyle P.; Sullivan, Kelly E.; Liu, Zhiyi; Ballard, Zachary; Siokatas, Christos; Georgakoudi, Irene; Black, Lauren D.

    2016-11-01

    Understanding the organization and mechanical function of the extracellular matrix (ECM) is critical for the development of therapeutic strategies that regulate wound healing following disease or injury. However, these relationships are challenging to elucidate during remodeling following myocardial infarction (MI) due to rapid changes in cellularity and an inability to characterize both ECM microstructure and function non-destructively. In this study, we overcome those challenges through whole organ decellularization and non-linear optical microscopy to directly relate the microstructure and mechanical properties of myocardial ECM. We non-destructively quantify collagen organization, content, and cross-linking within decellularized healthy and infarcted myocardium using second harmonic generation (SHG) and two photon excited autofluorescence. Tensile mechanical testing and compositional analysis reveal that the cumulative SHG intensity within each image volume and the average collagen autofluorescence are significantly correlated with collagen content and elastic modulus of the ECM, respectively. Compared to healthy ECM, infarcted tissues demonstrate a significant increase in collagen content and fiber alignment, and a decrease in cross-linking and elastic modulus. These findings indicate that cross-linking plays a key role in stiffness at the collagen fiber level following infarction, and highlight how this non-destructive approach to assessing remodeling can be used to understand ECM structure-function relationships.

  5. Linking Aerosol Optical Properties Between Laboratory, Field, and Model Studies

    NASA Astrophysics Data System (ADS)

    Murphy, S. M.; Pokhrel, R. P.; Foster, K. A.; Brown, H.; Liu, X.

    2017-12-01

    The optical properties of aerosol emissions from biomass burning have a significant impact on the Earth's radiative balance. Based on measurements made during the Fourth Fire Lab in Missoula Experiment, our group published a series of parameterizations that related optical properties (single scattering albedo and absorption due to brown carbon at multiple wavelengths) to the elemental to total carbon ratio of aerosols emitted from biomass burning. In this presentation, the ability of these parameterizations to simulate the optical properties of ambient aerosol is assessed using observations collected in 2017 from our mobile laboratory chasing wildfires in the Western United States. The ambient data includes measurements of multi-wavelength absorption, scattering, and extinction, size distribution, chemical composition, and volatility. In addition to testing the laboratory parameterizations, this combination of measurements allows us to assess the ability of core-shell Mie Theory to replicate observations and to assess the impact of brown carbon and mixing state on optical properties. Finally, both laboratory and ambient data are compared to the optical properties generated by a prominent climate model (Community Earth System Model (CESM) coupled with the Community Atmosphere Model (CAM 5)). The discrepancies between lab observations, ambient observations and model output will be discussed.

  6. Thermally induced distortion of high average power laser system by an optical transport system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ault, L; Chow, R; Taylor, Jedlovec, D

    1999-03-31

    The atomic vapor laser isotope separation process uses high-average power lasers that have the commercial potential to enrich uranium for the electric power utilities. The transport of the laser beam through the laser system to the separation chambers requires high performance optical components, most of which have either fused silica or Zerodur as the substrate material. One of the requirements of the optical components is to preserve the wavefront quality of the laser beam that propagate over long distances. Full aperture tests with the high power process lasers and finite element analysis (FEA) have been performed on the transport optics.more » The wavefront distortions of the various sections of the transport path were measured with diagnostic Hartmann sensor packages. The FEA results were derived from an in-house thermal-structural-optical code which is linked to the commercially available CodeV program. In comparing the measured and predicted results, the bulk absorptance of fused silica was estimated to about 50 ppm/cm in the visible wavelength regime. Wavefront distortions are reported on optics made from fused silica and Zerodur substrate materials.« less

  7. Rice Crop Monitoring Using Microwave and Optical Remotely Sensed Image Data

    NASA Astrophysics Data System (ADS)

    Suga, Y.; Konishi, T.; Takeuchi, S.; Kitano, Y.; Ito, S.

    Hiroshima Institute of Technology HIT is operating the direct down-links of microwave and optical satellite data in Japan This study focuses on the validation for rice crop monitoring using microwave and optical remotely sensed image data acquired by satellites referring to ground truth data such as height of crop ratio of crop vegetation cover and leaf area index in the test sites of Japan ENVISAT-1 ASAR data has a capability to capture regularly and to monitor during the rice growing cycle by alternating cross polarization mode images However ASAR data is influenced by several parameters such as landcover structure direction and alignment of rice crop fields in the test sites In this study the validation was carried out combined with microwave and optical satellite image data and ground truth data regarding rice crop fields to investigate the above parameters Multi-temporal multi-direction descending and ascending and multi-angle ASAR alternating cross polarization mode images were used to investigate rice crop growing cycle LANDSAT data were used to detect landcover structure direction and alignment of rice crop fields corresponding to the backscatter of ASAR As the result of this study it was indicated that rice crop growth can be precisely monitored using multiple remotely sensed data and ground truth data considering with spatial spectral temporal and radiometric resolutions

  8. Atmospheric propagation issues relevant to optical communications

    NASA Technical Reports Server (NTRS)

    Churnside, James H.; Shaik, Kamran

    1989-01-01

    Atmospheric propagation issues relevant to space-to-ground optical communications for near-earth applications are studied. Propagation effects, current optical communication activities, potential applications, and communication techniques are surveyed. It is concluded that a direct-detection space-to-ground link using redundant receiver sites and temporal encoding is likely to be employed to transmit earth-sensing satellite data to the ground some time in the future. Low-level, long-term studies of link availability, fading statistics, and turbulence climatology are recommended to support this type of application.

  9. High-performance fiber optic link for ECM antenna remoting

    NASA Astrophysics Data System (ADS)

    Edge, Colin; Burgess, John W.; Wale, Michael J.; Try, Nicholas W.

    1998-11-01

    The ability to remotely radiate microwave signals has become an essential feature of modern electronic counter-measures (ECM) systems. The use of fiber optics allows remote microwave links to be constructed which have very low propagation loss and dispersion, are very flexible and light in weight, and have a high degree of immunity from external electromagnetic fields, crosstalk and environmental effects. This combination of desirable characteristics are very beneficial to avionic ECM antenna remoting as well as many other applications. GEC-Marconi have developed high performance fiber components for use in a towed radar decoy. The resulting rugged and compact optical transmitter and receiver modules have been developed and proven to maintain the required performance over the full hostile range of environmental conditions encountered on a fast jet. Packaged fiber optic links have been produced which can achieve a compression dynamic range of greater than 87 dB in 1 MHz bandwidth over a 2 to 18 GHz.

  10. Modal noise investigation in multimode polymer waveguides

    NASA Astrophysics Data System (ADS)

    Beals, Joseph, IV; Bamiedakis, Nikos; Penty, Richard V.; White, Ian H.; DeGroot, Jon V., Jr.; Clapp, Terry V.

    2007-11-01

    In this work the recent interest in waveguides for use in short optical links has motivated a study of the modal noise dependence on launch conditions in short-reach step-index multimode polymer waveguides. Short optical links, especially those with several connection interfaces and utilising a restricted launch are likely to be subject to a modal noise power penalty. We therefore experimentally study the modal noise impact of restricted launches for a short-reach optical link employing a 50 x 50 μm polymer multimode waveguide. Lens launches resulting in small diameter input spots are investigated as are restricted launches from an 8 μm core optical fibre. For a launch spot of 10 μm diameter no impairment is observed for up to 9 dBo of mode selective loss, and for a fibre launch with a dynamic input movement of 6 μm no impairment is seen for up to 8 dBo of mode selective loss.

  11. A comparative study of optical concentrators for visible light communications

    NASA Astrophysics Data System (ADS)

    Mulyawan, Rahmat; Gomez, Ariel; Chun, Hyunchae; Rajbhandari, Sujan; Manousiadis, Pavlos P.; Vithanage, Dimali A.; Faulkner, Grahame; Turnbull, Graham A.; Samuel, Ifor D. W.; Collins, Stephen; O'Brien, Dominic

    2017-01-01

    Given the imminent radio frequency spectrum crunch, Visible Light Communication (VLC) is being proposed as an alternative wireless technology allowing for scalable connectivity to potentially millions of mobile and Internet-of- Things (IoT) devices. A VLC system uses a photo-detector (PD) receiver that converts the optically modulated light from a light source into a modulated electrical signal. The corresponding receiver electrical bandwidth is typically inversely proportional to the PD active area. Consequently, to construct a high-speed VLC link, the PD active area is often substantially reduced and an optical concentrator is used to enhance the receiver collection area. However, to achieve high concentrating factor, the link field-of-view (FOV) needs to be narrow due to the étendue conservation in linear passive optical systems. This paper studies a Fluorescent Concentrator (FC) that breaks this étendue conservation. The FC is not only based on reflective and refractive principles but also makes use of fluorescence process. A comparison between the FC and conventional optical concentrators, namely Compound Parabolic Concentrator (CPC) is also investigated. The trade-off between received signal strength and incoming link angle is demonstrated over 60° coverage. Experimental results show that performance degradation as the link angle increases using FC-based receivers is significantly lower than for conventional CPC.

  12. Results of the Compensated Earth-Moon-Earth Retroreflector Laser Link (CEMERLL) Experiment

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Leatherman, P. R.; Cleis, R.; Spinhirne, J.; Fugate, R. Q.

    1997-01-01

    Adaptive optics techniques can be used to realize a robust low bit-error-rate link by mitigating the atmosphere-induced signal fades in optical communications links between ground-based transmitters and deep-space probes. Phase I of the Compensated Earth-Moon-Earth Retroreflector Laser Link (CEMERLL) experiment demonstrated the first propagation of an atmosphere-compensated laser beam to the lunar retroreflectors. A 1.06-micron Nd:YAG laser beam was propagated through the full aperture of the 1.5-m telescope at the Starfire Optical Range (SOR), Kirtland Air Force Base, New Mexico, to the Apollo 15 retroreflector array at Hadley Rille. Laser guide-star adaptive optics were used to compensate turbulence-induced aberrations across the transmitter's 1.5-m aperture. A 3.5-m telescope, also located at the SOR, was used as a receiver for detecting the return signals. JPL-supplied Chebyshev polynomials of the retroreflector locations were used to develop tracking algorithms for the telescopes. At times we observed in excess of 100 photons returned from a single pulse when the outgoing beam from the 1.5-m telescope was corrected by the adaptive optics system. No returns were detected when the outgoing beam was uncompensated. The experiment was conducted from March through September 1994, during the first or last quarter of the Moon.

  13. Pre-configured polyhedron based protection against multi-link failures in optical mesh networks.

    PubMed

    Huang, Shanguo; Guo, Bingli; Li, Xin; Zhang, Jie; Zhao, Yongli; Gu, Wanyi

    2014-02-10

    This paper focuses on random multi-link failures protection in optical mesh networks, instead of single, the dual or sequential failures of previous studies. Spare resource efficiency and failure robustness are major concerns in link protection strategy designing and a k-regular and k-edge connected structure is proved to be one of the optimal solutions for link protection network. Based on this, a novel pre-configured polyhedron based protection structure is proposed, and it could provide protection for both simultaneous and sequential random link failures with improved spare resource efficiency. Its performance is evaluated in terms of spare resource consumption, recovery rate and average recovery path length, as well as compared with ring based and subgraph protection under probabilistic link failure scenarios. Results show the proposed novel link protection approach has better performance than previous works.

  14. Knotted optical vortices in exact solutions to Maxwell's equations

    NASA Astrophysics Data System (ADS)

    de Klerk, Albertus J. J. M.; van der Veen, Roland I.; Dalhuisen, Jan Willem; Bouwmeester, Dirk

    2017-05-01

    We construct a family of exact solutions to Maxwell's equations in which the points of zero intensity form knotted lines topologically equivalent to a given but arbitrary algebraic link. These lines of zero intensity, more commonly referred to as optical vortices, and their topology are preserved as time evolves and the fields have finite energy. To derive explicit expressions for these new electromagnetic fields that satisfy the nullness property, we make use of the Bateman variables for the Hopf field as well as complex polynomials in two variables whose zero sets give rise to algebraic links. The class of algebraic links includes not only all torus knots and links thereof, but also more intricate cable knots. While the unknot has been considered before, the solutions presented here show that more general knotted structures can also arise as optical vortices in exact solutions to Maxwell's equations.

  15. Atmospheric turbulence compensation in orbital angular momentum communications: Advances and perspectives

    NASA Astrophysics Data System (ADS)

    Li, Shuhui; Chen, Shi; Gao, Chunqing; Willner, Alan E.; Wang, Jian

    2018-02-01

    Orbital angular momentum (OAM)-carrying beams have recently generated considerable interest due to their potential use in communication systems to increase transmission capacity and spectral efficiency. For OAM-based free-space optical (FSO) links, a critical challenge is the atmospheric turbulence that will distort the helical wavefronts of OAM beams leading to the decrease of received power, introducing crosstalk between multiple channels, and impairing link performance. In this paper, we review recent advances in turbulence effects compensation techniques for OAM-based FSO communication links. First, basic concepts of atmospheric turbulence and theoretical model are introduced. Second, atmospheric turbulence effects on OAM beams are theoretically and experimentally investigated and discussed. Then, several typical turbulence compensation approaches, including both adaptive optics-based (optical domain) and signal processing-based (electrical domain) techniques, are presented. Finally, key challenges and perspectives of compensation of turbulence-distorted OAM links are discussed.

  16. A Submersible Holographic Camera for the Undisturbed Characterization of Optically Relevant Particles in Water (HOLOCAM)

    DTIC Science & Technology

    2012-09-01

    how to improve both reconstruction and analytical software during testing of the submersible system. IMPACT AND APPLICATIONS Quality of Life...project (see related projects below). It could also be used for sediment load monitoring and assesment . The HOLOCAM could provide critical data to any...Science Education and Communication Currently the link between the suspended particle field and the bulk scattering properties of natural waters is

  17. Spatial bandwidth considerations for optical communication through a free space propagation link.

    PubMed

    Tyler, Glenn A

    2011-12-01

    This Letter concentrates on the transverse limitations imposed by a finite aperture optical propagation link that supports free space optical communication. Here it is assumed that a series of states, which are the spatial component of the message, are sent through the communication channel. The spatial bandwidth of the propagation link expressed as bits per transmitted photon is computed as the product of the average link efficiency times the entropy of the link. To facilitate the evaluation, it is assumed that the transmitted states are minimum energy loss orbital angular momentum states expressed in the form of f(nm)(r)exp(imθ), where the radial function is controlled to ensure that, for each quantum number denoted by the values of n and m, the minimum energy loss is obtained. The results illustrate that the bandwidth in units of bits per transmitted photon is very nearly equal to log(2)(N(2)(f)here log(2)(·) denotes the logarithm in base 2 and the Fresnel number, N(f)=(π/4)D(1)D(2)/(λz), where D(1) is the diameter of the transmitting aperture, D(2) is the diameter of the receiving aperture, λ is the wavelength of the light used, and z is the propagation distance. © 2011 Optical Society of America

  18. A High-Speed Optical Modem Communication System for CORK Seafloor Observatories

    NASA Astrophysics Data System (ADS)

    Farr, N.; Tivey, M.; Ware, J.; Pontbriand, C.; Pelletier, L. P.

    2014-12-01

    High-speed communications underwater is an increasing requirement for data intensive seafloor sensors. Acoustic modems provide dependable long-range communications underwater, but data rates are limited to <57Kbps. Free-water optical modems (OMs) offer high data rate, 10Mbps communications over a range of 200 m - a distance for ROVs, AUVs or wire-lowered packages to communicate without the need to directly plug-in or retrieve the instrument. Over the past 4 years, we have demonstrated the functionality and utility of OM technology using a CORK borehole observatory as a test case. A CORK represents all of the basic components required for a seafloor observatory: a stable environment for long-term continuous measurements of earth and ocean phenomena, access to a unique environment below the seafloor and a standard communication interface. The CORK-OM features a high-bandwidth, low-latency optical system based on LED emitters and PMT receivers and an acoustic command and control system. OM tests established a communication link from 20 to 200 meters range at rates of 1, 5 and 10 Mbps with no bit errors. The seafloor OM was plugged into the CORK's existing underwater wet mateable connector and provided additional power to the CORK to boost the data rate to 1 Hz from the normal 1 minute sample period. To communicate with the seafloor CORK-OM, a number of different modalities were used. One method was an OM mounted to a CTD frame on a lowered wire from a ship with an SDSL link over the conducting wire. Other methods utilized OMs mounted to both ROV Jason and submersible Alvin. We deployed OMs at two CORKs in 2012 in the northeast pacific at sites 857D and 1025C. The CORKs were visited in 2013 by a vessel of opportunity to download data and were put into sleep mode. The CORKs were revisited in 2014, woken up and successfully interrogated for data. ALVIN retrieved the CORK-OMs for corrosion, biofouling and battery performance assessment. We also performed tests of a next generation OM using a deployed seafloor modem and AUV Sentry. A complete lambertian optical field was quantitatively mapped by Sentry and test data was successfully downloaded from 20 to 150 m slant range. The AUV modality demonstrates the capability of 'data-mule' operations to autonomously recover data from a seafloor observatory with minimal human intervention.

  19. Suppression of optical beat interference-noise in orthogonal frequency division multiple access-passive optical network link using self-homodyne balanced detection

    NASA Astrophysics Data System (ADS)

    Won, Yong-Yuk; Jung, Sang-Min; Han, Sang-Kook

    2014-08-01

    A new technique, which reduces optical beat interference (OBI) noise in orthogonal frequency division multiple access-passive optical network (OFDMA-PON) links, is proposed. A self-homodyne balanced detection, which uses a single laser for the optical line terminal (OLT) as well as for the optical network unit (ONU), reduces OBI noise and also improves the signal to noise ratio (SNR) of the discrete multi-tone (DMT) signal. The proposed scheme is verified by transmitting quadrature phase shift keying (QPSK)-modulated DMT signal over a 20-km single mode fiber. The optical signal to noise ratio (OSNR), that is required for BER of 10-5, is reduced by 2 dB in the balanced detection compared with a single channel due to the cancellation of OBI noise in conjunction with the local laser.

  20. Quantum cascade lasers and the Kruse model in free space optical communication.

    PubMed

    Corrigan, Paul; Martini, Rainer; Whittaker, Edward A; Bethea, Clyde

    2009-03-16

    Mid-infrared (MIR) free space optical communication has seen renewed interest in recent years due to advances in quantum cascade lasers. We present data from a multi-wavelength test-bed operated in the New York metropolitan area under realistic weather conditions. We show that a mid-infrared source (8.1 microm) provides enhanced link stability with 2x to 3x greater transmission over near infrared wavelengths (1.3 microm & 1.5 microm) during fog formation and up to 10x after a short scavenging rain event where fog developed and visibility reduced to approximately 1 km. We attribute the improvement to less Mie scattering at longer wavelengths. We confirm that this result is generally consistent with the empirical benchmark Kruse model at visibilities above 2.5 km, but towards the 1 km eye-seeing limit we measured the equivalent MIR visibility to be > 10 km. (c) 2008 Optical Society of America

  1. Multipoint fiber-optic laser-ultrasonic actuator based on fiber core-opened tapers.

    PubMed

    Tian, Jiajun; Dong, Xiaolong; Gao, Shimin; Yao, Yong

    2017-11-27

    In this study, a novel fiber-optic, multipoint, laser-ultrasonic actuator based on fiber core-opened tapers (COTs) is proposed and demonstrated. The COTs were fabricated by splicing single-mode fibers using a standard fiber splicer. A COT can effectively couple part of a core mode into cladding modes, and the coupling ratio can be controlled by adjusting the taper length. Such characteristics are used to obtain a multipoint, laser-ultrasonic actuator with balanced signal strength by reasonably controlling the taper lengths of the COTs. As a prototype, we constructed an actuator that generated ultrasound at four points with a balanced ultrasonic strength by connecting four COTs with coupling ratios of 24.5%, 33.01%, 49.51%, and 87.8% in a fiber link. This simple-to-fabricate, multipoint, laser-ultrasonic actuator with balanced ultrasound signal strength has potential applications in fiber-optic ultrasound testing technology.

  2. Infrared cloud imaging in support of Earth-space optical communication.

    PubMed

    Nugent, Paul W; Shaw, Joseph A; Piazzolla, Sabino

    2009-05-11

    The increasing need for high data return from near-Earth and deep-space missions is driving a demand for the establishment of Earth-space optical communication links. These links will require a nearly obstruction-free path to the communication platform, so there is a need to measure spatial and temporal statistics of clouds at potential ground-station sites. A technique is described that uses a ground-based thermal infrared imager to provide continuous day-night cloud detection and classification according to the cloud optical depth and potential communication channel attenuation. The benefit of retrieving cloud optical depth and corresponding attenuation is illustrated through measurements that identify cloudy times when optical communication may still be possible through thin clouds.

  3. Absolute measurement of the 1S0 − 3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link

    PubMed Central

    Morzyński, Piotr; Bober, Marcin; Bartoszek-Bober, Dobrosława; Nawrocki, Jerzy; Krehlik, Przemysław; Śliwczyński, Łukasz; Lipiński, Marcin; Masłowski, Piotr; Cygan, Agata; Dunst, Piotr; Garus, Michał; Lisak, Daniel; Zachorowski, Jerzy; Gawlik, Wojciech; Radzewicz, Czesław; Ciuryło, Roman; Zawada, Michał

    2015-01-01

    We report a stability below 7 × 10−17 of two independent optical lattice clocks operating with bosonic 88Sr isotope. The value (429 228 066 418 008.3(1.9)syst (0.9)stat Hz) of the absolute frequency of the 1S0 – 3P0 transition was measured with an optical frequency comb referenced to the local representation of the UTC by the 330 km-long stabilized fibre optical link. The result was verified by series of measurements on two independent optical lattice clocks and agrees with recommendation of Bureau International des Poids et Mesures. PMID:26639347

  4. Cross-linked polyimides for integrated optics

    NASA Astrophysics Data System (ADS)

    Singer, Kenneth D.; Kowalczyk, Tony C.; Nguyen, Hung D.; Beuhler, Allyson J.; Wargowski, David A.

    1997-01-01

    We have investigated a promising class of polyimide materials for both passive and active electro-optic devices, namely crosslinkable polyimides. These fluorinated polyimides are soluble in the imidized form and are both thermally and photo-crosslinkable leading to easy processability into waveguide structures and the possibility of stable electro-optic properties. We have fabricated channel and slab waveguides and investigated the mechanism of optical propagation loss using photothermal deflection spectroscopy and waveguide loss spectroscopy, and found the losses to arise from residual absorption due to the formation of charge transfer states. The absorption is inhibited by fluorination leading to propagation losses as low as 0.3 dB/cm in the near infrared. Because of the ability to photocrosslink, channel waveguides are fabricated using a simple wet-etch process. Channel waveguides so formed are observed to have no excess loss over slab structures. Solubility followed by thermal cross-linking allows the formation of multilayer structures. We have produced electro-optic polymers by doping with the nonlinear optical chromophores, DCM and DADC; and a process of concurrent poling and thermal crosslinking. Multilayer structures have been investigated and poling fields optimized in the active layer by doping the cladding with an anti-static agent. The high glass-transition temperature and cross-linking leads to very stable electro-optic properties. We are currently building electro-optic modulators based on these materials. Progress and results in this area also are reported.

  5. Coupling efficiency of laser beam to multimode fiber for free space optical communication

    NASA Astrophysics Data System (ADS)

    Arisa, Suguru; Takayama, Yoshihisa; Endo, Hiroyuki; Shimizu, Ryosuke; Fujiwara, Mikio; Sasaki, Masahide

    2017-11-01

    Recently, the free space optical (FSO) communications have been widely studied as an alternative for large capacity communications and its possible implementation in satellite and terrestrial laser links. In satellite communications, clouds can strongly attenuate the laser signal that would lead to high bit-error rates or temporal unavailability of the link. To overcome the cloud coverage effects, often site diversity technique is implemented. When using multiple ground stations though, simplified optical system is required to allow the usage of more flexible approaches. In terrestrial laser communications, several methods for optical system simplification by using a multimode fiber (MMF) have been proposed.

  6. Signal Statistics and Maximum Likelihood Sequence Estimation in Intensity Modulated Fiber Optic Links Containing a Single Optical Pre-amplifier.

    PubMed

    Alić, Nikola; Papen, George; Saperstein, Robert; Milstein, Laurence; Fainman, Yeshaiahu

    2005-06-13

    Exact signal statistics for fiber-optic links containing a single optical pre-amplifier are calculated and applied to sequence estimation for electronic dispersion compensation. The performance is evaluated and compared with results based on the approximate chi-square statistics. We show that detection in existing systems based on exact statistics can be improved relative to using a chi-square distribution for realistic filter shapes. In contrast, for high-spectral efficiency systems the difference between the two approaches diminishes, and performance tends to be less dependent on the exact shape of the filter used.

  7. Testing and performance analysis of a 650 Mbps QPPM modem for free-space laser communications

    NASA Astrophysics Data System (ADS)

    Mortensen, Dale J.

    1994-08-01

    The testing and performance of a prototype modem developed at NASA Lewis Research Center for high-speed free-space direct detection optical communications is described. The testing was performed under laboratory conditions using computer control with specially developed test equipment that simulates free-space link conditions. The modem employs quaternary pulse position modulation (QPPM) at 325 Megabits per second (Mbps) on two optical channels, which are multiplexed to transmit a single 650 Mbps data stream. The measured results indicate that the receiver's automatic gain control (AGC), phased-locked-loop slot clock recovery, digital symbol clock recovery, matched filtering, and maximum likelihood data recovery circuits were found to have only 1.5 dB combined implementation loss during bit-error-rate (BER) performance measurements. Pseudo random bit sequences and real-time high quality video sources were used to supply 650 Mbps and 325 Mbps data streams to the modem. Additional testing revealed that Doppler frequency shifting can be easily tracked by the receiver, that simulated pointing errors are readily compensated for by the AGC circuits, and that channel timing skew affects the BER performance in an expected manner. Overall, the needed technologies for a high-speed laser communications modem were demonstrated.

  8. Heterogeneous wireless/wireline optical access networks with the R-EAT as backend component

    NASA Astrophysics Data System (ADS)

    Hagedorn, Klaus; Gindera, Ralf; Stohr, Andreas; Jager, Dieter

    2004-09-01

    A heterogeneous wireless/wireline optical transmission link using a reflection type electroabsorption transceiver (R-EAT) is presented. Simultaneous transmission of full-duplex broadband wireless LAN (WLAN) channels and 1Gb/s base band data is experimentally demonstrated. The system link employs sub-carrier multiplexing (SCM) and two optical channels for full duplex transmission of various analog WLAN channels and downlink digital base band data. The developed link architecture is suitable for simultaneous transmission of broadband wireline and wireless signals, it enables the coexistence and interoperability between wireline and wireless access technologies. The developed R-EAT component employed in this wireline/wireless access system, features "single-chip-component" base stations in access networks with star type topology where only a single optical fiber is used for bidirectional optical transmission. The R-EAT can be used within the optical C-band (1530- 1560nm) and is suitable for (D)WDM networks. Bit error rate measurements demonstrate the capabilities of the R-EAT for 1Gb/s base band transmission. The analog performance for WLAN transmission is characterised by a spurious free dynamic range (SFDR) of more than 75dB and 90dB for uplink and downlink transmission, respectively. The link gain for uplink and downlink transmission is -42dB and -37dB, respectively. The demonstrates the analog performances of the R-EAT for being used in wireless access networks such as W-LAN.

  9. Aerospace laser communications technology as enabler for worldwide quantum key distribution

    NASA Astrophysics Data System (ADS)

    Moll, Florian; Weinfurter, Harald; Rau, Markus; Schmidt, Christopher; Melén, Gwen; Vogl, Tobias; Nauerth, Sebastian; Fuchs, Christian

    2016-04-01

    A worldwide growing interest in fast and secure data communications pushes technology development along two lines. While fast communications can be realized using laser communications in fiber and free-space, inherently secure communications can be achieved using quantum key distribution (QKD). By combining both technologies in a single device, many synergies can be exploited, therefore reducing size, weight and power of future systems. In recent experiments we demonstrated quantum communications over large distances as well as between an aircraft and a ground station which proved the feasibility of QKD between moving partners. Satellites thus may be used as trusted nodes in combination with QKD receiver stations on ground, thereby enabling fast and secure communications on a global scale. We discuss the previous experiment with emphasis on necessary developments to be done and corresponding ongoing research work of German Aerospace Center (DLR) and Ludwig Maximilians University Munich (LMU). DLR is performing research on satellite and ground terminals for the high-rate laser communication component, which are enabling technologies for the QKD link. We describe the concept and hardware of three generations of OSIRIS (Optical High Speed Infrared Link System) laser communication terminals for low Earth orbiting satellites. The first type applies laser beam pointing solely based on classical satellite control, the second uses an optical feedback to the satellite bus and the third, currently being in design phase, comprises of a special coarse pointing assembly to control beam direction independent of satellite orientation. Ongoing work also targets optical terminals for CubeSats. A further increase of beam pointing accuracy can be achieved with a fine pointing assembly. Two ground stations will be available for future testing, an advanced stationary ground station and a transportable ground station. In parallel the LMU QKD source size will be reduced by more than an order of magnitude thereby simplifying its integration into future free-space optical communication links with CubeSats.

  10. Quantum Limits of Space-to-Ground Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Dolinar, S.

    2012-01-01

    Quantum limiting factors contributed by the transmitter, the optical channel, and the receiver of a space-to-ground optical communications link are described. Approaches to move toward the ultimate quantum limit are discussed.

  11. Laser based bi-directional Gbit ground links with the Tesat transportable adaptive optical ground station

    NASA Astrophysics Data System (ADS)

    Heine, Frank; Saucke, Karen; Troendle, Daniel; Motzigemba, Matthias; Bischl, Hermann; Elser, Dominique; Marquardt, Christoph; Henninger, Hennes; Meyer, Rolf; Richter, Ines; Sodnik, Zoran

    2017-02-01

    Optical ground stations can be an alternative to radio frequency based transmit (forward) and receive (return) systems for data relay services and other applications including direct to earth optical communications from low earth orbit spacecrafts, deep space receivers, space based quantum key distribution systems and Tbps capacity feeder links to geostationary spacecrafts. The Tesat Transportable Adaptive Optical Ground Station is operational since September 2015 at the European Space Agency site in Tenerife, Spain.. This paper reports about the results of the 2016 experimental campaigns including the characterization of the optical channel from Tenerife for an optimized coding scheme, the performance of the T-AOGS under different atmospheric conditions and the first successful measurements of the suitability of the Alphasat LCT optical downlink performance for future continuous variable quantum key distribution systems.

  12. An improved approximate network blocking probability model for all-optical WDM Networks with heterogeneous link capacities

    NASA Astrophysics Data System (ADS)

    Khan, Akhtar Nawaz

    2017-11-01

    Currently, analytical models are used to compute approximate blocking probabilities in opaque and all-optical WDM networks with the homogeneous link capacities. Existing analytical models can also be extended to opaque WDM networking with heterogeneous link capacities due to the wavelength conversion at each switch node. However, existing analytical models cannot be utilized for all-optical WDM networking with heterogeneous structure of link capacities due to the wavelength continuity constraint and unequal numbers of wavelength channels on different links. In this work, a mathematical model is extended for computing approximate network blocking probabilities in heterogeneous all-optical WDM networks in which the path blocking is dominated by the link along the path with fewer number of wavelength channels. A wavelength assignment scheme is also proposed for dynamic traffic, termed as last-fit-first wavelength assignment, in which a wavelength channel with maximum index is assigned first to a lightpath request. Due to heterogeneous structure of link capacities and the wavelength continuity constraint, the wavelength channels with maximum indexes are utilized for minimum hop routes. Similarly, the wavelength channels with minimum indexes are utilized for multi-hop routes between source and destination pairs. The proposed scheme has lower blocking probability values compared to the existing heuristic for wavelength assignments. Finally, numerical results are computed in different network scenarios which are approximately equal to values obtained from simulations. Since January 2016, he is serving as Head of Department and an Assistant Professor in the Department of Electrical Engineering at UET, Peshawar-Jalozai Campus, Pakistan. From May 2013 to June 2015, he served Department of Telecommunication Engineering as an Assistant Professor at UET, Peshawar-Mardan Campus, Pakistan. He also worked as an International Internship scholar in the Fukuda Laboratory, National Institute of Informatics, Tokyo, Japan on the topic large-scale simulation for internet topology analysis. His research interests include design and analysis of optical WDM networks, network algorithms, network routing, and network resource optimization problems.

  13. Optical Coherence Tomography Evolution in a Case of X-Linked Juvenile Retinoschisis: 15 Years of Follow-Up.

    PubMed

    Chatziralli, Irini; Theodossiadis, George; Brouzas, Dimitrios; Emfietzoglou, Ioannis; Theodossiadis, Panagiotis

    2017-01-01

    We present the evolution of X-linked juvenile retinoschisis (XLRS) in a male patient using optical coherence tomography (OCT) with a long-term follow-up time of 15 years. A 10-year-old male patient presented at the Medical Retina Department of our hospital complaining for blurred vision in both eyes. At the initial presentation in 2001, his best corrected visual acuity (BCVA) was 6/12 in both eyes on the Snellen chart. Based on clinical and OCT findings, the diagnosis of XLRS was made, and it was confirmed by genetic testing. No treatment was performed, but the patient was regularly examined. His BCVA and OCT findings remained relatively stable from 2001 to 2012, when BCVA decreased to 6/18 and 6/24 in the right and left eye, respectively. In 2016, his BCVA was 6/24 and 6/36 in right and left eye, respectively, while OCT depicted significant macular thinning, accompanied by irregularities of the foveal contour in both eyes. Patients with XLRS should be monitored regularly to evaluate the progression of the disease and manage the potential complications.

  14. Multi-gigabit optical interconnects for next-generation on-board digital equipment

    NASA Astrophysics Data System (ADS)

    Venet, Norbert; Favaro, Henri; Sotom, Michel; Maignan, Michel; Berthon, Jacques

    2017-11-01

    Parallel optical interconnects are experimentally assessed as a technology that may offer the high-throughput data communication capabilities required to the next-generation on-board digital processing units. An optical backplane interconnect was breadboarded, on the basis of a digital transparent processor that provides flexible connectivity and variable bandwidth in telecom missions with multi-beam antenna coverage. The unit selected for the demonstration required that more than tens of Gbit/s be supported by the backplane. The demonstration made use of commercial parallel optical link modules at 850 nm wavelength, with 12 channels running at up to 2.5 Gbit/s. A flexible optical fibre circuit was developed so as to route board-to-board connections. It was plugged to the optical transmitter and receiver modules through 12-fibre MPO connectors. BER below 10-14 and optical link budgets in excess of 12 dB were measured, which would enable to integrate broadcasting. Integration of the optical backplane interconnect was successfully demonstrated by validating the overall digital processor functionality.

  15. Multi-gigabit optical interconnects for next-generation on-board digital equipment

    NASA Astrophysics Data System (ADS)

    Venet, Norbert; Favaro, Henri; Sotom, Michel; Maignan, Michel; Berthon, Jacques

    2004-06-01

    Parallel optical interconnects are experimentally assessed as a technology that may offer the high-throughput data communication capabilities required to the next-generation on-board digital processing units. An optical backplane interconnect was breadboarded, on the basis of a digital transparent processor that provides flexible connectivity and variable bandwidth in telecom missions with multi-beam antenna coverage. The unit selected for the demonstration required that more than tens of Gbit/s be supported by the backplane. The demonstration made use of commercial parallel optical link modules at 850 nm wavelength, with 12 channels running at up to 2.5 Gbit/s. A flexible optical fibre circuit was developed so as to route board-to-board connections. It was plugged to the optical transmitter and receiver modules through 12-fibre MPO connectors. BER below 10-14 and optical link budgets in excess of 12 dB were measured, which would enable to integrate broadcasting. Integration of the optical backplane interconnect was successfully demonstrated by validating the overall digital processor functionality.

  16. Free-space laser communication technologies II; Proceedings of the Meeting, Los Angeles, CA, Jan. 15-17, 1990

    NASA Technical Reports Server (NTRS)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1990-01-01

    Various papers on free-space laser communication technologies are presented. Individual topics addressed include: optical intersatellite link experiment between the earth station and ETS-VI, the Goddard optical communications program, technologies and techniques for lasercom terminal size, weight, and cost reduction, laser beam acquisition and tracking system for ETS-VI laser communication equipment, analog dividers for acquisition and tracking signal normalization, fine pointing mechanism using multilayered piezoelectric actuator for optical ISL system, analysis of SILEX tracking sensor performance, new telescope concept for space communication, telescope considered as a very high gain antenna, design of compact transceiver optical systems for optical intersatellite links, ultralightweight optics for laser communications, highly sensitive measurement method for stray light and retroreflected light, depolarization effects on free space laser transceiver communication systems, in-orbit measurements of microaccelerations of ESA's communication satellite Olympus, high-performance laser diode transmitter for optical free space communication, diode-pumped Nd:host laser transmitter for intersatellite optical communications, single-frequency diode-pumped laser for free-space communication.

  17. Aerosol-Induced Changes of Convective Cloud Anvils Produce Strong Climate Warming

    NASA Technical Reports Server (NTRS)

    Koren, I.; Remer, L. A.; Altaratz, O.; Martins, J. V.; Davidi, A.

    2010-01-01

    The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm(exp-2) . Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing. We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvi1 clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming) at top-of-atmosphere. Furthermore we introduce the cloud optical depth (r), cloud height (Z) forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene. Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds; increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.

  18. The wavefront compensation of free space optics utilizing micro corner-cube-reflector arrays

    NASA Astrophysics Data System (ADS)

    You, Shengzui; Yang, Guowei; Li, Changying; Bi, Meihua; Fan, Bing

    2018-01-01

    The wavefront compensation effect of micro corner-cube-reflector arrays (MCCRAs) in modulating retroreflector (MRR) free-space optical (FSO) link is investigated theoretically and experimentally. Triangular aperture of MCCRAs has been optically characterized and studied in an indoor atmospheric turbulence channel. The use of the MCCRAs instead of a single corner-cube reflector (CCR) as the reflective device is found to improve dramatically the quality of the reflected beam spot. We draw a conclusion that the MCCRAs can in principle yield a powerful wavefront compensation in MRR FSO communication links.

  19. Undergraduate optics program for the 21st Century

    NASA Astrophysics Data System (ADS)

    Palmer, James M.

    2002-05-01

    We have been offering a successful BS degree in optical engineering for the past ten years. We have produced more than 100 graduates, highly trained in basic optics and electronics. Our Industrial Affiliates, while very pleased with our graduates, requested that we produce some with greater mechanical engineering skills and knowledge. Our response was the creation of a new degree program, retaining the virtues of the previous one, but allowing a high degree of flexibility through the inclusion of minors within the program. The new program allows sufficient room for a variety of minors. Engineering minors identified include aerospace, computer, electrical, materials and mechanical. Science minors include astronomy, computer science, math and physics. Non-science minors accommodated include business, pre-health and pre-law. The new BSO program features: (1) Better structure and flow, more tightly coupling related classes; (2) New laboratory classes for juniors, linked to lecture classes; (3) Expanded optical deign, fabrication and testing classes; (4) New class in electronics for optics; (5) New classes in fiber optics and optical communications; (6) New capstone/senior project class for ABET compliance. This new BSO program will produce better entry-level optical scientists and engineers, and better candidates for graduate school. Our interactions with the external community will provide inputs concerning industrial needs, leading towards improved student counseling and program development. We will better serve national needs for skilled personnel in optics, and contribute even more to the optics workforce pipeline.

  20. Do we need to measure total serum IgA to exclude IgA deficiency in coeliac disease?

    PubMed Central

    Sinclair, D; Saas, M; Turk, A; Goble, M; Kerr, D

    2006-01-01

    Background Screening for IgA deficiency in patients with coeliac disease is essential because of the increased incidence of IgA deficiency associated with the disease, which usually relies on the estimation of IgA levels in each case. Aim To devise a method of excluding IgA deficiency without measuring total serum IgA in each case. Materials and methods The optical density readings on enzyme‐linked immunosorbent assay (ELISA) of 608 routine samples received for tissue transglutaminase (TTG) antibody testing for coeliac disease were compared with their total IgA concentrations. Dilution experiments were also carried out to ensure linear relationships between optical density on ELISA and IgA concentrations and to compare the sensitivities for TTG and endomysium antibodies in TTG‐positive samples. Results and discussion A clear relationship was shown between total IgA concentration and TTG optical density readings by ELISA. To ensure a positive TTG result if antibodies are present, it was possible to recommend an optical density level above which all samples have sufficient IgA. Samples with optical density <0.05 should be investigated further by estimating total IgA and, if low, samples should be subjected to immunofluorescence microscopy testing for IgA and IgG endomysium antibodies. Conclusions An easier, more cost‐effective and practical way of excluding IgA deficiency in the investigation on coeliac disease is reported. PMID:16489174

  1. Development status of the mid-infrared two-field camera and spectrograph MIMIZUKU for the TAO 6.5-m Telescope

    NASA Astrophysics Data System (ADS)

    Kamizuka, Takafumi; Miyata, Takashi; Sako, Shigeyuki; Ohsawa, Ryou; Okada, Kazushi; Uchiyama, Masahito S.; Mori, Kiyoshi; Yamaguchi, Jumpei; Asano, Kentaro; Uchiyama, Mizuho; Sakon, Itsuki; Onaka, Takashi; Kataza, Hirokazu; Hasegawa, Sunao; Usui, Fumihiko; Takato, Naruhisa; Aoki, Tsutomu; Doi, Mamoru; Kato, Natsuko M.; Kitagawa, Yutaro; Kobayakawa, Yutaka; Kohno, Kotaro; Konishi, Masahiro; Minezaki, Takeo; Morokuma, Tomoki; Motohara, Kentaro; Ohashi, Hirofumi; Soyano, Takao; Takahashi, Hidenori; Tamura, Yoichi; Tanabé, Toshihiko; Tanaka, Masuo; Tarusawa, Ken'ichi; Terao, Yasunori; Yoshii, Yuzuru

    2016-08-01

    MIMIZUKU is the first-generation mid-infrared instrument for the university of Tokyo Atacama Observatory (TAO) 6.5-m telescope. MIMIZUKU provides imaging and spectroscopic monitoring capabilities in a wide wavelength range from 2 to 38 μm, including unique bands like 2.7-μm and 30-μm band. Recently, we decided to add spectroscopic functions, KL-band mode (λ= 2.1-4.0 μm R =λ/Δλ 210) and 2.7-μm band mode ( λ= 2.4-2.95 μm R 620), and continuous spectroscopic coverage from 2.1 to 26 μm is realized by this update. Their optical designing is completed, and fabrications of optical elements are ongoing. As recent progress, we also report the completion of the cryogenic system and optics. The cryogenic system has been updated by changing materials and structures of thermal links, and the temperatures of the optical bench and detector mounting stages finally achieved required temperatures. Their stability against instrument attitude is also confirmed through an inclination test. As for the optics, its gold-plated mirrors have been recovered from galvanic corrosion by refabrication and reconstruction. Enough image quality and stability are confirmed by room-temperature tests. MIMIZUKU is intended to be completed in this autumn, and commissioning at the Subaru telescope and scientific operations on the TAO telescope are planned in 2017 and around 2019, respectively. In this paper, these development activities and future prospects of MIMIZUKU are reported.

  2. An Analytical Approach for Performance Enhancement of FSO Communication System Using Array of Receivers in Adverse Weather Conditions

    NASA Astrophysics Data System (ADS)

    Nagpal, Shaina; Gupta, Amit

    2017-08-01

    Free Space Optics (FSO) link exploits the tremendous network capacity and is capable of offering wireless communications similar to communications through optical fibres. However, FSO link is extremely weather dependent and the major effect on FSO links is due to adverse weather conditions like fog and snow. In this paper, an FSO link is designed using an array of receivers. The disparity of the link for very high attenuation conditions due to fog and snow is analysed using aperture averaging technique. Further effect of aperture averaging technique is investigated by comparing the systems using aperture averaging technique with systems not using aperture averaging technique. The performance of proposed model of FSO link has been evaluated in terms of Q factor, bit error rate (BER) and eye diagram.

  3. Fiber optic data link for data acquisition and analysis

    NASA Astrophysics Data System (ADS)

    Saulsberry, Garen

    A data link has been designed and developed for use with fiber optics as a transmission medium, though coaxial and twisted pair cable might also be used. Multiple data types may be transferred at various rates up to 100 Mbits per second and data word width may be programmed to obtain the highest level of efficiency from the bit rate.

  4. Reduction of Photodiode Nonlinearities by Adaptive Biasing

    DTIC Science & Technology

    2016-10-14

    2016 Approved for public release; distribution is unlimited. Meredith N. hutchiNsoN Nicholas J. Frigo Photonics Technology Branch Optical Sciences...Unclassified Unlimited Unclassified Unlimited 19 Meredith N. Hutchinson (202) 767-9549 Fiber optics Analog photonics RF photonic links impress information...to nonlinearities. These spurious tones masquerade as signals and impair the performance of the photonic link. Earlier research has shown the

  5. Analysis of the influence of backscattered optical power over bidirectional PON links

    NASA Astrophysics Data System (ADS)

    Martínez, J. J.; Garcés, I.; López, A.; Villafranca, A.; Losada, M. A.

    2010-05-01

    Our aim is to describe the behavior of non-linear scattering effects that arise in standard single mode fiber (SMF), specifically scattering effects that propagate optical power in the reverse direction of the source signal such as Rayleigh Scattering (RS) and Brillouin Scattering (BS). For this purpose, the effects of backscattering phenomena over a bidirectional data transmission in a passive optical network (PON) scheme have been assessed. The impact of these high optical power components over reception at the optical line terminal (OLT) side has been determined when both links use the same wavelength. Bit Error Rate (BER) measurements have been performed with different transmission rates, using several techniques to mitigate the influence of backscattering over the received signal and considering cases with filtered and unfiltered BS.

  6. Electroabsorption optical modulator

    DOEpatents

    Skogen, Erik J.

    2017-11-21

    An electroabsorption modulator incorporates waveguiding regions along the length of the modulator that include quantum wells where at least two of the regions have quantum wells with different bandgaps. In one embodiment of the invention, the regions are arranged such that the quantum wells have bandgaps with decreasing bandgap energy along the length of the modulator from the modulator's input to its output. The bandgap energy of the quantum wells may be decreased in discrete steps or continuously. Advantageously, such an arrangement better distributes the optical absorption as well as the carrier density along the length of the modulator. Further advantageously, the modulator may handle increased optical power as compared with prior art modulators of similar dimensions, which allows for improved link gain when the optical modulator is used in an analog optical communication link.

  7. ISS Fiber Optic Failure Investigation Root Cause Report

    NASA Technical Reports Server (NTRS)

    Leidecker, Henning; Plante, Jeannette

    2000-01-01

    In August of 1999, Boeing Corporation (Boeing) engineers began investigating failures of optical fiber being used on International Space Station flight hardware. Catastrophic failures of the fiber were linked to a defect in the glass fiber. Following several meetings of Boeing and NASA engineers and managers, Boeing created and led an investigation team, which examined the reliability of the cable installed in the U.S. Lab. NASA Goddard Space Flight Center's Components Technologies and Radiation Effects Branch (GSFC) led a team investigating the root cause of the failures. Information was gathered from: regular telecons and other communications with the investigation team, investigative trips to the cable distributor's plant, the cable manufacturing plant and the fiber manufacturing plant (including a review of build records), destructive and non-destructive testing, and expertise supplied by scientists from Dupont, and Lucent-Bell Laboratories. Several theories were established early on which were not able to completely address the destructive physical analysis and experiential evidence. Lucent suggested hydrofluoric acid (HF) etching of the glass and successfully duplicated the "rocket engine" defect. Strength testing coupled with examination of the low strength break sites linked features in the polyimide coating with latent defect sites. The information provided below explains what was learned about the susceptibility of the pre-cabled fiber to failure when cabled as it was for Space Station and the nature of the latent defects.

  8. Experimental demonstration of optical data links using a hybrid CAP/QAM modulation scheme.

    PubMed

    Wei, J L; Ingham, J D; Cheng, Q; Cunningham, D G; Penty, R V; White, I H

    2014-03-15

    The first known experimental demonstrations of a 10  Gb/s hybrid CAP-2/QAM-2 and a 20  Gb/s hybrid CAP-4/QAM-4 transmitter/receiver-based optical data link are performed. Successful transmission over 4.3 km of standard single-mode fiber (SMF) is achieved, with a link power penalty ∼0.4  dBo for CAP-2/QAM-2 and ∼1.5  dBo for CAP-4/QAM-4 at BER=10(-9).

  9. One-step detection of pathogens and cancer biomarkers by the naked eye based on aggregation of immunomagnetic beads

    NASA Astrophysics Data System (ADS)

    Chen, Yiping; Xianyu, Yunlei; Sun, Jiashu; Niu, Yajing; Wang, Yu; Jiang, Xingyu

    2015-12-01

    This report shows that immunomagnetic beads (IMBs) can act as the optical readout for assays, in addition to serving as the carrier for purification/separation. Under the influence of an external magnet, IMBs are attracted to coat one side of a test tube. IMBs specifically bound to targets can form a narrow brown stripe, whereas free IMBs will form a diffuse, yellow coating on the side of the test tube. Target analytes can aggregate initially dispersed IMBs in a sample concentration-dependent manner, yielding a color change from yellow to brown that can be seen with the naked eye. This assay combines the convenience of a lateral flow assay, allowing a one-step assay to finish within 15 min, with the sensitivity of an enzyme-linked immonosorbent assay.This report shows that immunomagnetic beads (IMBs) can act as the optical readout for assays, in addition to serving as the carrier for purification/separation. Under the influence of an external magnet, IMBs are attracted to coat one side of a test tube. IMBs specifically bound to targets can form a narrow brown stripe, whereas free IMBs will form a diffuse, yellow coating on the side of the test tube. Target analytes can aggregate initially dispersed IMBs in a sample concentration-dependent manner, yielding a color change from yellow to brown that can be seen with the naked eye. This assay combines the convenience of a lateral flow assay, allowing a one-step assay to finish within 15 min, with the sensitivity of an enzyme-linked immonosorbent assay. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07044a

  10. Optical subnet concepts for the deep space network

    NASA Technical Reports Server (NTRS)

    Shaik, K.; Wonica, D.; Wilhelm, M.

    1993-01-01

    This article describes potential enhancements to the Deep Space Network, based on a subnet of receiving stations that will utilize optical communications technology in the post-2010 era. Two optical subnet concepts are presented that provide full line-of-sight coverage of the ecliptic, 24 hours a day, with high weather availability. The technical characteristics of the optical station and the user terminal are presented, as well as the effects of cloud cover, transmittance through the atmosphere, and background noise during daytime or nighttime operation on the communications link. In addition, this article identifies candidate geographic sites for the two network concepts and includes a link design for a hypothetical Pluto mission in 2015.

  11. 10.7 Gb/s uncompensated transmission over a 470 km hybrid fiber link with in-line SOAs using MLSE and duobinary signals.

    PubMed

    Downie, John D; Hurley, Jason; Mauro, Yihong

    2008-09-29

    We experimentally demonstrate uncompensated 8-channel wavelength division multiplexing (WDM) and single channel transmission at 10.7 Gb/s over a 470 km hybrid fiber link with in-line semiconductor optical amplifiers (SOAs). Two different forms of the duobinary modulation format are investigated and compared. Maximum Likelihood Sequence Estimation (MLSE) receiver technology is found to significantly mitigate nonlinear effects from the SOAs and to enable the long transmission, especially for optical duobinary signals derived from differential phase shift keying (DPSK) signals directly detected after narrowband optical filter demodulation. The MLSE also helps to compensate for a non-optimal Fabry-Perot optical filter demodulator.

  12. Experiment definition phase shuttle laboratory LDRL-10.6 experiment. [applying optical communication

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The 10.6 microns laser data relay link (LDRL 10.6) program was directed to applying optical communications to NASA's wideband data transmission requirements through the 1980's. The LDRL consists of a transmitter on one or more low earth orbit satellites with an elliptical orbit satellite receivers. Topics discussed include: update of the LDRL design control table to detail the transmitter optical chain losses and to incorporate the change to a reflective beam pre-expander; continued examination of the link establishment sequence, including its dependence upon spacecraft stability; design of the transmitter pointing and tracking control system; and finalization of the transmitter brassboard optical and mechanical design.

  13. Thin glass based packaging and photonic single-mode waveguide integration by ion-exchange technology on board and module level

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Lang, Günter; Schröder, Henning

    2011-01-01

    The proposed novel packaging approach merges micro-system packaging and glass integrated optics. It provides 3D optical single-mode intra system links to bridge the gap between novel photonic integrated circuits and the glass fibers for inter system interconnects. We introduce our hybrid 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip links. Optical mirrors and lenses provide optical mode matching for photonic IC assemblies and optical fiber interconnects. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties as reviewed in the paper. That makes it perfect for micro-system packaging. The adopted planar waveguide process based on ion-exchange technology is capable for high-volume manufacturing. This ion-exchange process and the optical propagation are described in detail for thin glass substrates. An extensive characterization of all basic circuit elements like straight and curved waveguides, couplers and crosses proves the low attenuation of the optical circuit elements.

  14. The development of a cryogenic integrated system with the working temperature of 100K

    NASA Astrophysics Data System (ADS)

    Liu, En'guang; Wu, Yi'nong; Wang, Yueming; Wen, Jiajia; Lv, Gang; Li, Chunlai; Hou, Jia; Yuan, Liyin

    2016-05-01

    In the infrared system, cooling down the optic components' temperature is a better choice to decrease the background radiation and maximize the sensitivity. This paper presented a 100K cryogenic optical system, for which an integrated designation of mechanical cooler, flexible thermal link and optical bench was developed. The whole infrared optic components which were assembled in a vacuum box were cooled down to 100K by two mechanical coolers. Low thermal conductivity supports and low emissivity multi-layers were used to reduce the cryogenic optical system's heat loss. The experiment results showed that in about eight hours, the temperature of the optical components reached 100K from room temperature, and the vibration from the mechanical coolers nearly have no affection to the imaging process by using of thermal links. Some experimental results of this cryogenic system will be discussed in this paper.

  15. CAPILLARY NETWORK ALTERATIONS IN X-LINKED RETINOSCHISIS IMAGED ON OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    PubMed

    Romano, Francesco; Arrigo, Alessandro; Chʼng, Soon Wai; Battaglia Parodi, Maurizio; Manitto, Maria Pia; Martina, Elisabetta; Bandello, Francesco; Stanga, Paulo E

    2018-06-05

    To assess foveal and parafoveal vasculature at the superficial capillary plexus, deep capillary plexus, and choriocapillaris of patients with X-linked retinoschisis by means of optical coherence tomography angiography. Six patients with X-linked retinoschisis (12 eyes) and seven healthy controls (14 eyes) were recruited and underwent complete ophthalmologic examination, including best-corrected visual acuity, dilated fundoscopy, and 3 × 3-mm optical coherence tomography angiography macular scans (DRI OCT Triton; Topcon Corp). After segmentation and quality review, optical coherence tomography angiography slabs were imported into ImageJ 1.50 (NIH; Bethesda) and digitally binarized. Quantification of vessel density was performed after foveal avascular zone area measurement and exclusion. Patients were additionally divided into "responders" and "nonresponders" to dorzolamide therapy. Foveal avascular zone area resulted markedly enlarged at the deep capillary plexus (P < 0.001), particularly in nonresponders. Moreover, patients disclosed a significant deep capillary plexus rarefaction, when compared with controls (P: 0.04); however, a subanalysis revealed that this damage was limited to the fovea (P: 0.006). Finally, the enlargement of foveal avascular zone area positively correlated with a decline in best-corrected visual acuity (P: 0.01). Prominent foveal vascular impairment is detectable in the deep capillary plexus of patients with X-linked retinoschisis. Our results correlate with functional outcomes, suggesting a possible vascular role in X-linked retinoschisis clinical manifestations.

  16. Optical Phased Array Antennas using Coupled Vertical Cavity Surface Emitting Lasers

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; Rojas, Roberto A.; Nessel, James A.; Miranda, Felix A.

    2007-01-01

    High data rate communication links are needed to meet the needs of NASA as well as other organizations to develop space-based optical communication systems. These systems must be robust to high radiation environments, reliable, and operate over a wide temperature range. Highly desirable features include beam steering capability, reconfigurability, low power consumption, and small aperture size. Optical communication links, using coupled vertical cavity surface emitting laser radiating elements are promising candidates for the transmit portion of these communication links. In this talk we describe a mission scenario, and how the antenna requirements are derived from the mission needs. We describe a potential architecture for this type of antenna, and outline the advantages and drawbacks of this approach relative to competing technologies. The technology we are proposing used coupled arrays of 1550 nm vertical cavity surface emitting lasers for transmission. The feasibility of coupling these arrays together, to form coherent high-power beams that can be modulated at data rates exceeding 1 Gbps, will be explored. We will propose an architecture that enables electronic beam steering, thus mitigating the need for ancillary acquisition, tracking and beam pointing equipment such as needed for current optical communicatin systems. The beam-steering capability we are proposing also opens the possibility of using this technology for inter-satellite communicatin links, and satellite-to-surface links.

  17. 45 Mbps cat's eye modulating retro-reflector link over 7 Km

    NASA Astrophysics Data System (ADS)

    Rabinovich, W. S.; Mahon, R.; Goetz, P. G.; Swingen, L.; Murphy, J.; Ferraro, M.; Burris, R.; Suite, M.; Moore, C. I.; Gilbreath, G. C.; Binari, S.

    2006-09-01

    Modulating retro-reflectors (MRR) allow free space optical links with no need for pointing, tracking or a laser on one end of the link. They work by coupling a passive optical retro-reflector with an optical modulator. The most common kind of MRR uses a corner cube retro-reflector. These devices must have a modulator whose active area is as large as the area of the corner cube. This limits the ability to close longer range high speed links because the large aperture need to return sufficient light implies a large modulator capacitance. To overcome this limitation we developed the concept of a cat's eye MRR. Cat's eye MRRs place the modulator in the focal plane of a lens system designed to passively retro-reflect light. Because the light focuses onto the modulator, a small, low capacitance, modulator can be used with a large optical aperture. However, the position of the focal spot varies with the angle of incidence so an array of modulators must be placed in the focal plane, In addition, to avoid having to drive all the modulator pixels, an angle of arrival sensor must be used. We discuss several cat's eye MRR systems with near diffraction limited performance and bandwidths of 45 Mbps. We also discuss a link to a cat's eye MRR over a 7 Km range.

  18. Design and Implementation of Secure and Reliable Communication using Optical Wireless Communication

    NASA Astrophysics Data System (ADS)

    Saadi, Muhammad; Bajpai, Ambar; Zhao, Yan; Sangwongngam, Paramin; Wuttisittikulkij, Lunchakorn

    2014-11-01

    Wireless networking intensify the tractability in the home and office environment to connect the internet without wires but at the cost of risks associated with stealing the data or threat of loading malicious code with the intention of harming the network. In this paper, we proposed a novel method of establishing a secure and reliable communication link using optical wireless communication (OWC). For security, spatial diversity based transmission using two optical transmitters is used and the reliability in the link is achieved by a newly proposed method for the construction of structured parity check matrix for binary Low Density Parity Check (LDPC) codes. Experimental results show that a successful secure and reliable link between the transmitter and the receiver can be achieved by using the proposed novel technique.

  19. Patulous Subarachnoid Space of the Optic Nerve Associated with X-Linked Hypophosphatemic Rickets.

    PubMed

    Galvez-Ruiz, Alberto; Chaudhry, Imtiaz

    2013-01-01

    Although the deficiency forms are the most common manifestations of rickets, there are other forms of rickets that are resistant to vitamin D. Of these, the most common is X-linked hypophosphatemic rickets. Rickets represents a group of multiple cranial bone disorders-craniosynostosis and the presence of Chari I malformation being the most notable-that explain the increase in intracranial pressure. We present a 4-year-old patient with an unusual association of X-linked hypophosphataemic rickets, bilateral proptosis, and prominent bilateral widening of the optic nerve sheaths. Although the association between intracranial hypertension and rickets is known, to the best of our knowledge, such a prominent distention of the subarachnoid space of the optic nerve without papilloedema has not been previously described.

  20. Converged photonic data storage and switch platform for exascale disaggregated data centers

    NASA Astrophysics Data System (ADS)

    Pitwon, R.; Wang, K.; Worrall, A.

    2017-02-01

    We report on a converged optically enabled Ethernet storage, switch and compute platform, which could support future disaggregated data center architectures. The platform includes optically enabled Ethernet switch controllers, an advanced electro-optical midplane and optically interchangeable generic end node devices. We demonstrate system level performance using optically enabled Ethernet disk drives and micro-servers across optical links of varied lengths.

  1. Changes in White Matter Microstructure Impact Cognition by Disrupting the Ability of Neural Assemblies to Synchronize.

    PubMed

    Bells, Sonya; Lefebvre, Jérémie; Prescott, Steven A; Dockstader, Colleen; Bouffet, Eric; Skocic, Jovanka; Laughlin, Suzanne; Mabbott, Donald J

    2017-08-23

    Cognition is compromised by white matter (WM) injury but the neurophysiological alterations linking them remain unclear. We hypothesized that reduced neural synchronization caused by disruption of neural signal propagation is involved. To test this, we evaluated group differences in: diffusion tensor WM microstructure measures within the optic radiations, primary visual area (V1), and cuneus; neural phase synchrony to a visual attention cue during visual-motor task; and reaction time to a response cue during the same task between 26 pediatric patients (17/9: male/female) treated with cranial radiation treatment for a brain tumor (12.67 ± 2.76 years), and 26 healthy children (16/10: male/female; 12.01 ± 3.9 years). We corroborated our findings using a corticocortical computational model representing perturbed signal conduction from myelin. Patients show delayed reaction time, WM compromise, and reduced phase synchrony during visual attention compared with healthy children. Notably, using partial least-squares-path modeling we found that WM insult within the optic radiations, V1, and cuneus is a strong predictor of the slower reaction times via disruption of neural synchrony in visual cortex. Observed changes in synchronization were reproduced in a computational model of WM injury. These findings provide new evidence linking cognition with WM via the reliance of neural synchronization on propagation of neural signals. SIGNIFICANCE STATEMENT By comparing brain tumor patients to healthy children, we establish that changes in the microstructure of the optic radiations and neural synchrony during visual attention predict reaction time. Furthermore, by testing the directionality of these links through statistical modeling and verifying our findings with computational modeling, we infer a causal relationship, namely that changes in white matter microstructure impact cognition in part by disturbing the ability of neural assemblies to synchronize. Together, our human imaging data and computer simulations show a fundamental connection between WM microstructure and neural synchronization that is critical for cognitive processing. Copyright © 2017 the authors 0270-6474/17/378227-12$15.00/0.

  2. FELIX: a PCIe based high-throughput approach for interfacing front-end and trigger electronics in the ATLAS Upgrade framework

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Bauer, K.; Borga, A.; Boterenbrood, H.; Chen, H.; Chen, K.; Drake, G.; Dönszelmann, M.; Francis, D.; Guest, D.; Gorini, B.; Joos, M.; Lanni, F.; Lehmann Miotto, G.; Levinson, L.; Narevicius, J.; Panduro Vazquez, W.; Roich, A.; Ryu, S.; Schreuder, F.; Schumacher, J.; Vandelli, W.; Vermeulen, J.; Whiteson, D.; Wu, W.; Zhang, J.

    2016-12-01

    The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. The Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. The FELIX system, the design of the PCIe prototype card and the integration test results are presented in this paper.

  3. Fiber Optic Control System Integration program: for optical flight control system development

    NASA Astrophysics Data System (ADS)

    Weaver, Thomas L.; Seal, Daniel W.

    1994-10-01

    Hardware and software were developed for optical feedback links in the flight control system of an F/A-18 aircraft. Developments included passive optical sensors and optoelectronics to operate the sensors. Sensors with different methods of operation were obtained from different manufacturers and integrated with common optoelectronics. The sensors were the following: Air Data Temperature; Air Data Pressure; and Leading Edge Flap, Nose Wheel Steering, Trailing Edge Flap, Pitch Stick, Rudder, Rudder Pedal, Stabilator, and Engine Power Lever Control Position. The sensors were built for a variety of aircraft locations and harsh environments. The sensors and optoelectronics were as similar as practical to a production system. The integrated system was installed by NASA for flight testing. Wavelength Division Multiplexing proved successful as a system design philosophy. Some sensors appeared to be better choices for aircraft applications than others, with digital sensors generally being better than analog sensors, and rotary sensors generally being better than linear sensors. The most successful sensor approaches were selected for use in a follow-on program in which the sensors will not just be flown on the aircraft and their performance recorded; but, the optical sensors will be used in closing flight control loops.

  4. Integrated RF/Optical Interplanetary Networking Preliminary Explorations and Empirical Results

    NASA Technical Reports Server (NTRS)

    Raible, Daniel E.; Hylton, Alan G.

    2012-01-01

    Over the last decade interplanetary telecommunication capabilities have been significantly expanded--specifically in support of the Mars exploration rover and lander missions. NASA is continuing to drive advances in new, high payoff optical communications technologies to enhance the network to Gbps performance from Mars, and the transition from technology demonstration to operational system is examined through a hybrid RF/optical approach. Such a system combines the best features of RF and optical communications considering availability and performance to realize a dual band trunk line operating within characteristic constraints. Disconnection due to planetary obscuration and solar conjunction, link delays, timing, ground terminal mission congestion and scheduling policy along with space and atmospheric weather disruptions all imply the need for network protocol solutions to ultimately manage the physical layer in a transparent manner to the end user. Delay Tolerant Networking (DTN) is an approach under evaluation which addresses these challenges. A multi-hop multi-path hybrid RF and optical test bed has been constructed to emulate the integrated deep space network and to support protocol and hardware refinement. Initial experimental results characterize several of these challenges and evaluate the effectiveness of DTN as a solution to mitigate them.

  5. High-speed fiber-optic links for distribution of satellite traffic

    NASA Technical Reports Server (NTRS)

    Daryoush, Afshin S.; Saedi, Reza; Ackerman, Edward; Kunath, Richard; Shalkhauser, Kurt

    1990-01-01

    Low-loss fiberoptic links are designed for distribution of data and the frequency reference in large-aperture phased-array antennas based on the transmit/receive-level data mixing architecture. In particular, design aspects of a fiberoptic link satisfying the distribution requirements of satellite data traffic are presented. The design is addressed in terms of reactively matched optical transmitter and receiver modules. Analog and digital characterization of a 50-m fiberoptic link realized using these modules indicates the applicability of this architecture as the only viable alternative for distribution of data signals inside a satellite at present. It is demonstrated that the design of a reactive matching modules enhances the link performance. A dynamic range of 88 dB/MHz was measured for analog data over a 500-1000-MHz bandwidth.

  6. Development of the Free-space Optical Communications Analysis Software (FOCAS)

    NASA Technical Reports Server (NTRS)

    Jeganathan, M.; Mecherle, G.; Lesh, J.

    1998-01-01

    The Free-space Optical Communications Analysis Software (FOCAS) was developed at the Jet Propulsion Laboratory (JPL) to provide mission planners, systems engineers and communications engineers with an easy to use tool to analyze optical communications link.

  7. Center for Adaptive Optics | Links

    Science.gov Websites

    extraterrestrische Physik, Infrared/Submillimeter Astronomy MMT Adaptive Optics Mount Wilson Observatory National Astronomical Observatory of Japan National Solar Observatory National Optical Astronomy Observatories, AO Astronomy Observatoire de Paris Osservatorio Astrofisico di Arcetri Padua Observatory Palomar Observatory

  8. Acquiring Combat Capability through Innovative Uses of Public-Private Partnerships

    DTIC Science & Technology

    2006-06-01

    needed for a vital fiber -optic link near the Arctic Circle. Then, we will explore the history of the Energy Saving Performance Contracts (ESPCs...research examines Hannon Armstrong’s “fee for service contract” solution to funding the vital fiber -optic link near the Arctic Circle. The second...5 A. INNOVATIVE USE OF FEE FOR SERVICE CONTRACT .....................5 1. Introduction to the Arctic Circle Fiber

  9. Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) Instrument Improvements

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Redemann, Jens; Chang, Cecilia; Dahlgren, Robert; Fahey, Lauren; Flynn, Connor; Johnson, Roy; Kacenelenbogen, Meloe; Leblanc, Samuel; Liss, Jordan; hide

    2017-01-01

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with grating spectroscopy to improve knowledge of atmospheric constituents and their links to air-pollution and climate. Hyper-spectral measurements of direct-beam solar irradiance provide retrievals of gas constituents, aerosol optical depth, and aerosol and thin cloud optical properties. Sky radiance measurements in the principal and almucantar planes enhance retrievals of aerosol absorption, aerosol type, and size mode distribution. Zenith radiance measurements are used to retrieve cloud properties and phase, which in turn are used to quantify the radiative transfer below cloud layers. These airborne measurements tighten the closure between satellite and ground-based measurements. In contrast to the Ames Airborne Tracking Sunphotometer (AATS-14) predecessor instrument, new technologies for each subsystem have been incorporated into 4STAR. In particular, 4STAR utilizes a modular sun-trackingsky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and spectrometerdetector configurations that may be tailored for specific scientific objectives. This paper discusses technical challenges relating to compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage at high resolution. Test results benchmarking the performance of the instrument against the AATS-14 standard and emerging science requirements are presented.

  10. [Gene Therapy for Inherited RETINAL AND OPTIC NERVE Disorders: Current Knowledge].

    PubMed

    Ďuďáková, Ľ; Kousal, B; Kolářová, H; Hlavatá, L; Lišková, P

    The aim of this review is to provide a comprehensive summary of current gene therapy clinical trials for monogenic and optic nerve disorders.The number of genes for which gene-based therapies are being developed is growing. At the time of writing this review gene-based clinical trials have been registered for Leber congenital amaurosis 2 (LCA2), retinitis pigmentosa 38, Usher syndrome 1B, Stargardt disease, choroideremia, achromatopsia, Leber hereditary optic neuropathy (LHON) and X-linked retinoschisis. Apart from RPE65 gene therapy for LCA2 and MT-ND4 for LHON which has reached phase III, all other trials are in investigation phase I and II, i.e. testing the efficacy and safety.Because of the relatively easy accessibility of the retina and its ease of visualization which allows monitoring of efficacy, gene-based therapies for inherited retinal disorders represent a very promising treatment option. With the development of novel therapeutic approaches, the importance of establishing not only clinical but also molecular genetic diagnosis is obvious.Key words: gene therapy, monogenic retinal diseases, optic nerve atrophy, mitochondrial disease.

  11. Robust optical wireless links over turbulent media using diversity solutions

    NASA Astrophysics Data System (ADS)

    Moradi, Hassan

    Free-space optic (FSO) technology, i.e., optical wireless communication (OWC), is widely recognized as superior to radio frequency (RF) in many aspects. Visible and invisible optical wireless links solve first/last mile connectivity problems and provide secure, jam-free communication. FSO is license-free and delivers high-speed data rates in the order of Gigabits. Its advantages have fostered significant research efforts aimed at utilizing optical wireless communication, e.g. visible light communication (VLC), for high-speed, secure, indoor communication under the IEEE 802.15.7 standard. However, conventional optical wireless links demand precise optical alignment and suffer from atmospheric turbulence. When compared with RF, they suffer a low degree of reliability and lack robustness. Pointing errors cause optical transceiver misalignment, adversely affecting system reliability. Furthermore, atmospheric turbulence causes irradiance fluctuations and beam broadening of transmitted light. Innovative solutions to overcome limitations on the exploitation of high-speed optical wireless links are greatly needed. Spatial diversity is known to improve RF wireless communication systems. Similar diversity approaches can be adapted for FSO systems to improve its reliability and robustness; however, careful diversity design is needed since FSO apertures typically remain unbalanced as a result of FSO system sensitivity to misalignment. Conventional diversity combining schemes require persistent aperture monitoring and repetitive switching, thus increasing FSO implementation complexities. Furthermore, current RF diversity combining schemes may not be optimized to address the issue of unbalanced FSO receiving apertures. This dissertation investigates two efficient diversity combining schemes for multi-receiving FSO systems: switched diversity combining and generalized selection combining. Both can be exploited to reduce complexity and improve combining efficiency. Unlike maximum ratio combing, equal gain combining, and selective combining, switched diversity simplifies receiver design by avoiding unnecessary switching among receiving apertures. The most significant advantage of generalized combining is its ability to exclude apertures with low quality that could potentially affect the resultant output signal performance. This dissertation also investigates mobile FSO by considering a multi-receiving system in which all receiving FSO apertures are circularly placed on a platform. System mobility and performance are analyzed. Performance results confirm improvements when using angular diversity and generalized selection combining. The precis of this dissertation establishes the foundation of reliable FSO communications using efficient diversity-based solutions. Performance parameters are analyzed mathematically, and then evaluated using computer simulations. A testbed prototype is developed to facilitate the evaluation of optical wireless links via lab experiments.

  12. Stoichiometric Lithium Niobate (SLN) Based Linearized Electro-Optic (EO) Modulator

    DTIC Science & Technology

    2006-01-01

    AFRL-SN-RS-TR-2006-15 Final Technical Report January 2006 STOICHIOMETRIC LITHIUM NIOBATE (SLN) BASED LINEARIZED ELECTRO - OPTIC (EO...LITHIUM NIOBATE (SLN) BASED LINEARIZED ELECTRO - OPTIC (EO) MODULATOR 6. AUTHOR(S) Dr Stuart Kingsley, Dr Sri Sriram 5. FUNDING NUMBERS C...SUBJECT TERMS electro - optic modulator, linearization, directional coupler, variable coupling, optical waveguide, Mach-Zehnder, photonic link, lithium

  13. Optical voltage reference

    DOEpatents

    Rankin, Richard; Kotter, Dale

    1994-01-01

    An optical voltage reference for providing an alternative to a battery source. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function.

  14. Signal to noise ratio calculation for fiber optics links

    NASA Technical Reports Server (NTRS)

    Lau, K. Y.

    1980-01-01

    The signal to noise ratio (SNR) effect upon the maximum transmission length of a fiberoptic system is discussed. The relationships of different system parameters are discussed. A general formula to obtain the SNR of a single mode fiberoptic system is derived. The SNR attainable with single mode and multimode fiber optics links was calculated from fundamental noise considerations. It was found that for single mode fibers, laser noise dominates the noise contributions for links less than 30 km long, while thermal noise dominates for longer links. Multimode fibers degrade SNR for long links because of intermode dispersion. For frequency standard transmission, as long as the baseband modulation signals are within the bandwidth of the fibers, respectable SNR can be attained with low loss fibers (approximately 1 dB/km) for links as long as 70 km. For wideband transmission SNR is decreased by a factor equal to the ratio of the bandwidth.

  15. Cone Photoreceptor Structure in Patients With X-Linked Cone Dysfunction and Red-Green Color Vision Deficiency.

    PubMed

    Patterson, Emily J; Wilk, Melissa; Langlo, Christopher S; Kasilian, Melissa; Ring, Michael; Hufnagel, Robert B; Dubis, Adam M; Tee, James J; Kalitzeos, Angelos; Gardner, Jessica C; Ahmed, Zubair M; Sisk, Robert A; Larsen, Michael; Sjoberg, Stacy; Connor, Thomas B; Dubra, Alfredo; Neitz, Jay; Hardcastle, Alison J; Neitz, Maureen; Michaelides, Michel; Carroll, Joseph

    2016-07-01

    Mutations in the coding sequence of the L and M opsin genes are often associated with X-linked cone dysfunction (such as Bornholm Eye Disease, BED), though the exact color vision phenotype associated with these disorders is variable. We examined individuals with L/M opsin gene mutations to clarify the link between color vision deficiency and cone dysfunction. We recruited 17 males for imaging. The thickness and integrity of the photoreceptor layers were evaluated using spectral-domain optical coherence tomography. Cone density was measured using high-resolution images of the cone mosaic obtained with adaptive optics scanning light ophthalmoscopy. The L/M opsin gene array was characterized in 16 subjects, including at least one subject from each family. There were six subjects with the LVAVA haplotype encoded by exon 3, seven with LIAVA, two with the Cys203Arg mutation encoded by exon 4, and two with a novel insertion in exon 2. Foveal cone structure and retinal thickness was disrupted to a variable degree, even among related individuals with the same L/M array. Our findings provide a direct link between disruption of the cone mosaic and L/M opsin variants. We hypothesize that, in addition to large phenotypic differences between different L/M opsin variants, the ratio of expression of first versus downstream genes in the L/M array contributes to phenotypic diversity. While the L/M opsin mutations underlie the cone dysfunction in all of the subjects tested, the color vision defect can be caused either by the same mutation or a gene rearrangement at the same locus.

  16. Comparison of direct and heterodyne detection optical intersatellite communication links

    NASA Technical Reports Server (NTRS)

    Chen, C. C.; Gardner, C. S.

    1987-01-01

    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity.

  17. Basic test framework for the evaluation of text line segmentation and text parameter extraction.

    PubMed

    Brodić, Darko; Milivojević, Dragan R; Milivojević, Zoran

    2010-01-01

    Text line segmentation is an essential stage in off-line optical character recognition (OCR) systems. It is a key because inaccurately segmented text lines will lead to OCR failure. Text line segmentation of handwritten documents is a complex and diverse problem, complicated by the nature of handwriting. Hence, text line segmentation is a leading challenge in handwritten document image processing. Due to inconsistencies in measurement and evaluation of text segmentation algorithm quality, some basic set of measurement methods is required. Currently, there is no commonly accepted one and all algorithm evaluation is custom oriented. In this paper, a basic test framework for the evaluation of text feature extraction algorithms is proposed. This test framework consists of a few experiments primarily linked to text line segmentation, skew rate and reference text line evaluation. Although they are mutually independent, the results obtained are strongly cross linked. In the end, its suitability for different types of letters and languages as well as its adaptability are its main advantages. Thus, the paper presents an efficient evaluation method for text analysis algorithms.

  18. Basic Test Framework for the Evaluation of Text Line Segmentation and Text Parameter Extraction

    PubMed Central

    Brodić, Darko; Milivojević, Dragan R.; Milivojević, Zoran

    2010-01-01

    Text line segmentation is an essential stage in off-line optical character recognition (OCR) systems. It is a key because inaccurately segmented text lines will lead to OCR failure. Text line segmentation of handwritten documents is a complex and diverse problem, complicated by the nature of handwriting. Hence, text line segmentation is a leading challenge in handwritten document image processing. Due to inconsistencies in measurement and evaluation of text segmentation algorithm quality, some basic set of measurement methods is required. Currently, there is no commonly accepted one and all algorithm evaluation is custom oriented. In this paper, a basic test framework for the evaluation of text feature extraction algorithms is proposed. This test framework consists of a few experiments primarily linked to text line segmentation, skew rate and reference text line evaluation. Although they are mutually independent, the results obtained are strongly cross linked. In the end, its suitability for different types of letters and languages as well as its adaptability are its main advantages. Thus, the paper presents an efficient evaluation method for text analysis algorithms. PMID:22399932

  19. Teleoperation of an experimental mobile vehicle via a free-space optical laser line-of-sight communication link for use in nuclear power plant environments

    NASA Astrophysics Data System (ADS)

    Girach, Khalid; Bouazza-Marouf, K.; Kerr, David; Hewit, Jim

    1994-11-01

    The paper describes the investigations carried out to implement a line of sight control and communication link for a mobile robot vehicle for use in structured nuclear semi-hazardous environments. Line of sight free space optical laser communication links for remote teleoperation have important applications in hazardous environments. They have certain advantages over radio/microwave links and umbilical control such as greater protection against generation of and susceptance to electro-magnetic fields. The cable-less environment provides increased integrity and mechanical freedom to the mobile robot. However, to maintain the communication link, continuous point and tracking is required between the base station and the mobile vehicle. This paper presents a novel two ended optical tracking system utilizing the communication laser beams and photodetectors. The mobile robot is a six wheel drive vehicle with a manipulator arm which can operate in a variety of terrain. The operator obtains visual feedback information from cameras placed on the vehicle. From this information, the speed and direction of the vehicle can be controlled from a joystick panel. We describe the investigations carried out for the communication of analogue video and digital data signals over the laser link for speed and direction control.

  20. Mode-Division-Multiplexing of Multiple Bessel-Gaussian Beams Carrying Orbital-Angular-Momentum for Obstruction-Tolerant Free-Space Optical and Millimetre-Wave Communication Links.

    PubMed

    Ahmed, Nisar; Zhao, Zhe; Li, Long; Huang, Hao; Lavery, Martin P J; Liao, Peicheng; Yan, Yan; Wang, Zhe; Xie, Guodong; Ren, Yongxiong; Almaiman, Ahmed; Willner, Asher J; Ashrafi, Solyman; Molisch, Andreas F; Tur, Moshe; Willner, Alan E

    2016-03-01

    We experimentally investigate the potential of using 'self-healing' Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively.

  1. Mode-Division-Multiplexing of Multiple Bessel-Gaussian Beams Carrying Orbital-Angular-Momentum for Obstruction-Tolerant Free-Space Optical and Millimetre-Wave Communication Links

    PubMed Central

    Ahmed, Nisar; Zhao, Zhe; Li, Long; Huang, Hao; Lavery, Martin P. J.; Liao, Peicheng; Yan, Yan; Wang, Zhe; Xie, Guodong; Ren, Yongxiong; Almaiman, Ahmed; Willner, Asher J.; Ashrafi, Solyman; Molisch, Andreas F.; Tur, Moshe; Willner, Alan E.

    2016-01-01

    We experimentally investigate the potential of using ‘self-healing’ Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively. PMID:26926068

  2. Physical-layer network coding in coherent optical OFDM systems.

    PubMed

    Guan, Xun; Chan, Chun-Kit

    2015-04-20

    We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, T.; Smith, K.S.; Severino, F.

    A critical capability of the new RHIC low level rf (LLRF) system is the ability to synchronize signals across multiple locations. The 'Update Link' provides this functionality. The 'Update Link' is a deterministic serial data link based on the Xilinx RocketIO protocol that is broadcast over fiber optic cable at 1 gigabit per second (Gbps). The link provides timing events and data packets as well as time stamp information for synchronizing diagnostic data from multiple sources. The new RHIC LLRF was designed to be a flexible, modular system. The system is constructed of numerous independent RF Controller chassis. To providemore » synchronization among all of these chassis, the Update Link system was designed. The Update Link system provides a low latency, deterministic data path to broadcast information to all receivers in the system. The Update Link system is based on a central hub, the Update Link Master (ULM), which generates the data stream that is distributed via fiber optic links. Downstream chassis have non-deterministic connections back to the ULM that allow any chassis to provide data that is broadcast globally.« less

  4. Optical intersatellite links - Application to commercial satellite communications

    NASA Technical Reports Server (NTRS)

    Paul, D.; Faris, F.; Garlow, R.; Inukai, T.; Pontano, B.; Razdan, R.; Ganz, Aura; Caudill, L.

    1992-01-01

    Application of optical intersatellite links for commercial satellite communications services is addressed in this paper. The feasibility of commercialization centers around basic issues such as the need and derived benefits, implementation complexity and overall cost. In this paper, commercialization of optical ISLs is assessed in terms of the services provided, systems requirements and feasibility of appropriate technology. Both long- and short-range ISLs for GEO-GEO, GEO-LEO and LEO applications are considered. Impact of systems requirements on the payload design and use of advanced technology in reducing its mass, power, and volume requirements are discussed.

  5. Demonstration of intradyne BPSK optical free-space transmission in representative atmospheric turbulence conditions for geostationary uplink channel.

    PubMed

    Surof, Janis; Poliak, Juraj; Calvo, Ramon Mata

    2017-06-01

    Binary phase-shift keying optical transmission in the C-band with coherent intradyne reception is demonstrated over a long-range (10.45 km) link through the atmosphere. The link emulates representative channel conditions for geostationary optical feeder uplinks in satellite communications. The digital signal processing used in recovering the transmitted data and the performed measurements are described. Finally, the bit error rate results for 10 Gbit/s, 20 Gbit/s, and 30 Gbit/s of the outdoor experiments are presented and compared with back-to-back measurements and theory.

  6. Spontaneous closure of macular hole in a patient with x-linked juvenile retinoschisis.

    PubMed

    Gao, Hua; Province, William D; Peracha, Mohammed O

    2010-01-01

    To observe macular hole in a patient with juvenile retinoschisis. A 4-year-old boy with X-linked juvenile retinoschisis was examined and followed-up for 2 years. Optical coherence tomography was used to study his maculae. A full-thickness macular hole was detected by clinical examination and optical coherence tomography. Spontaneous closure of the macular hole was noticed and confirmed by optical coherence tomography 2 years later with visual improvement. Macular hole in patients with juvenile retinoschisis should be observed for at least a short period of time before a surgical repair is considered.

  7. Detection of swine-origin influenza A (H1N1) viruses using a paired surface plasma waves biosensor

    NASA Astrophysics Data System (ADS)

    Su, Li-Chen; Chang, Ying-Feng; Li, Ying-Chang; Hsieh, Jo-Ping; Lee, Cheng-Chung; Chou, Chien

    2010-08-01

    In order to enhance the sensitivity of conventional rapid test technique for the detection of swine-origin influenza A (H1N1) viruses (S-OIVs), we used a paired surface plasma waves biosensor (PSPWB) based on SPR in conjunction with an optical heterodyne technique. Experimentally, PSPWB showed a 125-fold improvement at least in the S-OIV detection as compared to conventional enzyme linked immunosorbent assay. Moreover, the detection limit of the PSPWB for the S-OIV detection was enhanced 250-fold in buffer at least in comparison with that of conventional rapid influenza diagnostic test.

  8. Impact of the Boundary Layer on Pointing and Tracking in Airborne Free-Space Laser Communication Links

    DTIC Science & Technology

    2008-06-01

    and hopefully a better linearization. The edges were treated in a different manner than before. Their voltages only varied between 0–2000-nm...followed by tilt, and then other optical aberrations such as focus, astigmatism , 54 defocus, and coma. These aberations continue to increase in complexity as...testing proved that the linearization LUT was adequate for also reproducing Zernike shapes on the DM. In the lowest-order terms ( astigmatism and tilt) the

  9. Eye-Directed Overpressure Airwave-Induced Trauma Causes Lasting Damage to the Anterior and Posterior Globe: A Model for Testing Cell-Based Therapies

    PubMed Central

    Bricker-Anthony, Courtney; Hines-Beard, Jessica

    2016-01-01

    Abstract Purpose: Characterization of the response of the Balb/c mouse to an eye-directed overpressure airwave, with the hypothesis that this mouse strain and model is useful for testing potential therapeutics for the treatment of traumatic eye injury. Methods: The left eyes of adult Balb/c mice were exposed to an eye-directed overpressure airwave. Intraocular pressure (IOP) was measured and eyes were inspected for gross pathology changes. Optical coherence tomography and histology were used to examine the structural integrity of the retina and optic nerve. Immunohistochemistry, in vivo molecular fluorophores, and a multiplex enzyme-linked immunosorbent assay were utilized to identify changes in cell death, neuroinflammation, and oxidative stress. Results: This model induced a transient increase in IOP, corneal injuries, infrequent large retinal detachments, retinal pigment epithelium (RPE) vacuolization, glial reactivity, and retinal cell death. Both the corneal damage and RPE vacuolization persisted with time. Optic nerve degeneration occurred as early as 7 days postinjury and persisted out to 60 days. Retinal cell death, increased levels of reactive oxygen species, and neuroinflammation were detected at 7 days postinjury. Conclusions: The injury profile of the Balb/c mouse is consistent with commonly observed pathologies in blast-exposed patients. The damage is throughout the eye and persistent, making this mouse model useful for testing cell-based therapies. PMID:26982447

  10. Electro-optical line cards with multimode polymer waveguides for chip-to-chip interconnects

    NASA Astrophysics Data System (ADS)

    Zhu, Long Xiu; Immonen, Marika; Wu, Jinhua; Yan, Hui Juan; Shi, Ruizhi; Chen, Peifeng; Rapala-Virtanen, Tarja

    2014-10-01

    In this paper, we report developments of electro-optical PCBs (EO-PCB) with low-loss (<0.05dB/cm) polymer waveguides. Our results shows successful fabrication of complex waveguide structures part of hybrid EO-PCBs utilizing production scale process on standard board panels. Test patterns include 90° bends of varying radii (40mm - 2mm), waveguide crossing with varied crossing angles (90°-20°), cascaded bends with varying radii, splitters and tapered waveguides. Full ranges of geometric configurations are required to meet practical optical routing functions and layouts. Moreover, we report results obtained to realize structures to integrate optical connectors with waveguides. Experimental results are shown for MT in-plane and 90° out-of-plane optical connectors realized with coupling loss < 2dB and < 2.5 dB, respectively. These connectors are crucial to realize efficient light coupling from/to TX/RX chip-to-waveguide and within waveguide-to-fiber connections in practical optical PCBs. Furthermore, we show results for fabricating electrical interconnect structures e.g. tracing layers, vias, plated vias top/bottom and through optical layers. Process compatibility with accepted practices and production scale up for high volumes are key concerns to meet the yield target and cost efficiency. Results include waveguide characterization, transmission loss, misalignment tolerance, and effect of lamination. Critical link metrics are reported.

  11. An improved methodology for heliostat testing and evaluation at the Plataforma Solar de Almería

    NASA Astrophysics Data System (ADS)

    Monterreal, Rafael; Enrique, Raúl; Fernández-Reche, Jesús

    2017-06-01

    The optical quality of a heliostat basically quantifies the difference between the scattering effects of the actual solar radiation reflected on its optical surface, compared to the so called canonical dispersion, that is, the one reflected on an optical surface free of constructional errors (paradigm). However, apart from the uncertainties of the measuring process itself, the value of the optical quality must be independent of the measuring instrument; so, any new measuring techniques that provide additional information about the error sources on the heliostat reflecting surface would be welcome. That error sources are responsible for the final optical quality value, with different degrees of influence. For the constructor of heliostats it will be extremely useful to know the value of the classical sources of error and their weight on the overall optical quality of a heliostat, such as facets geometry or focal length, as well as the characteristics of the heliostat as a whole, i.e., its geometry, focal length, facets misalignment and also the possible dependence of these effects with mechanical and/or meteorological factors. It is the goal of the present paper to unfold these optical quality error sources by exploring directly the reflecting surface of the heliostat with the help of a laser-scanner device and link the result with the traditional methods of heliostat evaluation at the Plataforma Solar de Almería.

  12. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate.

    PubMed

    Shen, Chao; Guo, Yujian; Oubei, Hassan M; Ng, Tien Khee; Liu, Guangyu; Park, Ki-Hong; Ho, Kang-Ting; Alouini, Mohamed-Slim; Ooi, Boon S

    2016-10-31

    The video streaming, data transmission, and remote control in underwater call for high speed (Gbps) communication link with a long channel length (~10 meters). We present a compact and low power consumption underwater wireless optical communication (UWOC) system utilizing a 450-nm laser diode (LD) and a Si avalanche photodetector. With the LD operating at a driving current of 80 mA with an optical power of 51.3 mW, we demonstrated a high-speed UWOC link offering a data rate up to 2 Gbps over a 12-meter-long, and 1.5 Gbps over a record 20-meter-long underwater channel. The measured bit-error rate (BER) are 2.8 × 10-5, and 3.0 × 10-3, respectively, which pass well the forward error correction (FEC) criterion.

  13. Statistical and temporal irradiance fluctuations modeling for a ground-to-geostationary satellite optical link.

    PubMed

    Camboulives, A-R; Velluet, M-T; Poulenard, S; Saint-Antonin, L; Michau, V

    2018-02-01

    An optical communication link performance between the ground and a geostationary satellite can be impaired by scintillation, beam wandering, and beam spreading due to its propagation through atmospheric turbulence. These effects on the link performance can be mitigated by tracking and error correction codes coupled with interleaving. Precise numerical tools capable of describing the irradiance fluctuations statistically and of creating an irradiance time series are needed to characterize the benefits of these techniques and optimize them. The wave optics propagation methods have proven their capability of modeling the effects of atmospheric turbulence on a beam, but these are known to be computationally intensive. We present an analytical-numerical model which provides good results on the probability density functions of irradiance fluctuations as well as a time series with an important saving of time and computational resources.

  14. Dissemination of optical-comb-based ultra-broadband frequency reference through a fiber network.

    PubMed

    Nagano, Shigeo; Kumagai, Motohiro; Li, Ying; Ido, Tetsuya; Ishii, Shoken; Mizutani, Kohei; Aoki, Makoto; Otsuka, Ryohei; Hanado, Yuko

    2016-08-22

    We disseminated an ultra-broadband optical frequency reference based on a femtosecond (fs)-laser optical comb through a kilometer-scale fiber link. Its spectrum ranged from 1160 nm to 2180 nm without additional fs-laser combs at the end of the link. By employing a fiber-induced phase noise cancellation technique, the linewidth and fractional frequency instability attained for all disseminated comb modes were of order 1 Hz and 10-18 in a 5000 s averaging time. The ultra-broad optical frequency reference, for which absolute frequency is traceable to Japan Standard Time, was applied in the frequency stabilization of an injection-seeded Q-switched 2051 nm pulse laser for a coherent light detection and ranging LIDAR system.

  15. Two-dimensional optical phased array antenna on silicon-on-insulator.

    PubMed

    Van Acoleyen, Karel; Rogier, Hendrik; Baets, Roel

    2010-06-21

    Optical wireless links can offer a very large bandwidth and can act as a complementary technology to radiofrequency links. Optical components nowadays are however rather bulky. Therefore, we have investigated the potential of silicon photonics to fabricated integrated components for wireless optical communication. This paper presents a two-dimensional phased array antenna consisting of grating couplers that couple light off-chip. Wavelength steering of $0.24 degrees /nm is presented reducing the need of active phase modulators. The needed steering range is $1.5 degrees . The 3dB angular coverage range of these antennas is about $0.007pi sr with a directivity of more than 38dBi and antenna losses smaller than 3dB.

  16. International standards for optical wireless communications: state-of-the-art and future directions

    NASA Astrophysics Data System (ADS)

    Marciniak, Marian

    2017-10-01

    As the number of active OWC installations is growing fast, the standards for compatibility of co-existing neighbouring systems are being developed. The paper addresses the Laser Safety (IEC standards), ITU-T Study Group 15 standards (G.640 Co-location longitudinally compatible interfaces for free space optical systems), ITU-Radiocommunication Sector standards (P.1817-1 Propagation data required for the design of terrestrial free-space optical links), and the IEEE Work in Progress - standardization activity on Visible Light Communications. International standards of FSO communications have been reviewed and discussed. ITU, IEC, and IEEE International standards for Free-Space Optical links have been reviewed. The system reliability and availability as well as security issues will be addressed as well in the talk.

  17. Per-Pixel, Dual-Counter Scheme for Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.; Bimbaum, Kevin M.; Quirk, Kevin J.; Sburlan, Suzana; Sahasrabudhe, Adit

    2013-01-01

    Free space optical communications links from deep space are projected to fulfill future NASA communication requirements for 2020 and beyond. Accurate laser-beam pointing is required to achieve high data rates at low power levels.This innovation is a per-pixel processing scheme using a pair of three-state digital counters to implement acquisition and tracking of a dim laser beacon transmitted from Earth for pointing control of an interplanetary optical communications system using a focal plane array of single sensitive detectors. It shows how to implement dim beacon acquisition and tracking for an interplanetary optical transceiver with a method that is suitable for both achieving theoretical performance, as well as supporting additional functions of high data rate forward links and precision spacecraft ranging.

  18. ACTS 118x Final Report High-Speed TCP Interoperability Testing

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Zernic, Mike; Hoder, Douglas J.; Brooks, David E.; Beering, Dave R.; Welch, Arun

    1999-01-01

    With the recent explosion of the Internet and the enormous business opportunities available to communication system providers, great interest has developed in improving the efficiency of data transfer using the Transmission Control Protocol (TCP) of the Internet Protocol (IP) suite. The satellite system providers are interested in solving TCP efficiency problems associated with long delays and error-prone links. Similarly, the terrestrial community is interested in solving TCP problems over high-bandwidth links. Whereas the wireless community is interested in improving TCP performance over bandwidth constrained, error-prone links. NASA realized that solutions had already been proposed for most of the problems associated with efficient data transfer over large bandwidth-delay links (which include satellite links). The solutions are detailed in various Internet Engineering Task Force (IETF) Request for Comments (RFCs). Unfortunately, most of these solutions had not been tested at high-speed (155+ Mbps). Therefore, the NASA's ACTS experiments program initiated a series of TCP experiments to demonstrate scalability of TCP/IP and determine how far the protocol can be optimized over a 622 Mbps satellite link. These experiments were known as the 118i and 118j experiments. During the 118i and 118j experiments, NASA worked closely with SUN Microsystems and FORE Systems to improve the operating system, TCP stacks. and network interface cards and drivers. We were able to obtain instantaneous data throughput rates of greater than 520 Mbps and average throughput rates of 470 Mbps using TCP over Asynchronous Transfer Mode (ATM) over a 622 Mbps Synchronous Optical Network (SONET) OC12 link. Following the success of these experiments and the successful government/industry collaboration, a new series of experiments. the 118x experiments. were developed.

  19. Packet error rate analysis of decode-and-forward free-space optical cooperative networks in the presence of random link blockage

    NASA Astrophysics Data System (ADS)

    Zdravković, Nemanja; Cvetkovic, Aleksandra; Milic, Dejan; Djordjevic, Goran T.

    2017-09-01

    This paper analyses end-to-end packet error rate (PER) of a free-space optical decode-and-forward cooperative network over a gamma-gamma atmospheric turbulence channel in the presence of temporary random link blockage. Closed-form analytical expressions for PER are derived for the cases with and without transmission links being prone to blockage. Two cooperation protocols (denoted as 'selfish' and 'pilot-adaptive') are presented and compared, where the latter accounts for the presence of blockage and adapts transmission power. The influence of scintillation, link distance, average transmitted signal power, network topology and probability of an uplink and/or internode link being blocked are discussed when the destination applies equal gain combining. The results show that link blockage caused by obstacles can degrade system performance, causing an unavoidable PER floor. The implementation of the pilot-adaptive protocol improves performance when compared to the selfish protocol, diminishing internode link blockage and lowering the PER floor, especially for larger networks.

  20. Orbital-angular-momentum-multiplexed free-space optical communication link using transmitter lenses.

    PubMed

    Li, Long; Xie, Guodong; Ren, Yongxiong; Ahmed, Nisar; Huang, Hao; Zhao, Zhe; Liao, Peicheng; Lavery, Martin P J; Yan, Yan; Bao, ChangJing; Wang, Zhe; Willner, Asher J; Ashrafi, Nima; Ashrafi, Solyman; Tur, Moshe; Willner, Alan E

    2016-03-10

    In this paper, we explore the potential benefits and limitations of using transmitter lenses in an orbital-angular-momentum (OAM)-multiplexed free-space optical (FSO) communication link. Both simulation and experimental results indicate that within certain transmission distances, using lenses at the transmitter to focus OAM beams could reduce power loss in OAM-based FSO links and that this improvement might be more significant for higher-order OAM beams. Moreover, the use of transmitter lenses could enhance system tolerance to angular error between transmitter and receiver, but they might degrade tolerance to lateral displacement.

  1. Low-loss reciprocal optical terminals for two-way time-frequency transfer.

    PubMed

    Swann, W C; Sinclair, L C; Khader, I; Bergeron, H; Deschênes, J-D; Newbury, N R

    2017-12-01

    We present the design and performance of a low-cost, reciprocal, compact free-space terminal employing tip/tilt pointing compensation that enables optical two-way time-frequency transfer over free-space links across the turbulent atmosphere. The insertion loss of the terminals is ∼1.5  dB with total link losses of 15 dB, 24 dB, and 50 dB across horizontal, turbulent 2-km, 4-km, and 12-km links, respectively. The effects of turbulence on pointing control and aperture size, and their influence on the terminal design, are discussed.

  2. Sea urchin skeleton: Structure, composition, and application as a template for biomimetic materials

    NASA Astrophysics Data System (ADS)

    Shapkin, Nikolay P.; Khalchenko, Irina G.; Panasenko, Alexander E.; Drozdov, Anatoly L.

    2017-07-01

    SEM and optical microscopy, chemical and EDX analysis, XRD, and FT-IR spectroscopy of three sea urchins skeletons (tests) show that the test is a spongy stereom, consisting of calcite with high content of magnesium. The tests are composed of mineral-organic composite of calcite-magnesite crystals, coated with organic film, containing silicon in form of polyphenylsiloxane. In the test of sea urchin pore spaces are linked into united system of regular structure with structure motive period about 20 um. This developed three-dimensional structure was used as a template for polymer material based on polyferrofenilsiloxane [OSiC6H5OH]x[OSiC6H5O]y[OFeO]z, which is chemically similar to the native film, coating sea urchins skeleton.

  3. Optical ground station optimization for future optical geostationary satellite feeder uplinks

    NASA Astrophysics Data System (ADS)

    Camboulives, A.-R.; Velluet, M.-T.; Poulenard, S.; Saint-Antonin, L.; Michau, V.

    2017-02-01

    An optical link based on a multiplex of wavelengths at 1:55 μm is foreseen to be a valuable alternative to the conventional radio-frequencies for the feeder link of the next-generation of high throughput geostationary satellite. Considering the limited power of lasers envisioned for feeder links, the beam divergence has to be dramatically reduced. Consequently, the beam pointing becomes a key issue. During its propagation between the ground station and a geostationary satellite, the optical beam is deflected (beam wandering), and possibly distorted (beam spreading), by atmospheric turbulence. It induces strong fluctuations of the detected telecom signal, thus increasing the bit error rate (BER). A steering mirror using a measurement from a beam coming from the satellite is used to pre-compensate the deflection. Because of the point-ahead angle between the downlink and the uplink, the turbulence effects experienced by both beams are slightly different, inducing an error in the correction. This error is characterized as a function of the turbulence characteristics as well as of the terminal characteristics, such as the servo-loop bandwidth or the beam diameter, and is included in the link budget. From this result, it is possible to predict intensity fluctuations detected by the satellite statistically (mean intensity, scintillation index, probability of fade, etc.)). The final objective is to optimize the different parameters of an optical ground station capable of mitigating the impact of atmospheric turbulence on the uplink in order to be compliant with the targeted capacity (1Terabit/s by 2025).

  4. Nonlinear Optics Technology. Phase 3. Volume 2. Phase Conjugated Optical Communication Link

    DTIC Science & Technology

    1991-01-12

    experiments and mechanical design of the artificial turbulence generator (turbox), Dr. George M. Harpole who provided the technical design of the turbox, Dr...understanding of FWM PC comm link physics and to determine design requirements for a fieldable system. The system model demonstrated that phase...using photorefractive material was also designed , fabricated, and characterized. The efficiency of heterodyne mixing of an aberrated beacon beam was

  5. Optical communication noise rejection using corelated photons

    NASA Technical Reports Server (NTRS)

    Jackson, D.; Hockney, G. M.; Dowling, J. P.

    2002-01-01

    This paper describes a completely new way to perform noise rejection using photons correlated through quantum entanglement to improve an optical communications link in the presence of uncorrelated noise. In particular, a detailed analysis is made of the case where a classical link would be saturated by an intense background, such as when a satellite is in front of the sun, and identifies where the quantum correlating system has superior performance.

  6. High-resolution 3D laser imaging based on tunable fiber array link

    NASA Astrophysics Data System (ADS)

    Zhao, Sisi; Ruan, Ningjuan; Yang, Song

    2017-10-01

    Airborne photoelectric reconnaissance system with the bore sight down to the ground is an important battlefield situational awareness system, which can be used for reconnaissance and surveillance of complex ground scene. Airborne 3D imaging Lidar system is recognized as the most potential candidates for target detection under the complex background, and is progressing in the directions of high resolution, long distance detection, high sensitivity, low power consumption, high reliability, eye safe and multi-functional. However, the traditional 3D laser imaging system has the disadvantages of lower imaging resolutions because of the small size of the existing detector, and large volume. This paper proposes a high resolution laser 3D imaging technology based on the tunable optical fiber array link. The echo signal is modulated by a tunable optical fiber array link and then transmitted to the focal plane detector. The detector converts the optical signal into electrical signals which is given to the computer. Then, the computer accomplishes the signal calculation and image restoration based on modulation information, and then reconstructs the target image. This paper establishes the mathematical model of tunable optical fiber array signal receiving link, and proposes the simulation and analysis of the affect factors on high density multidimensional point cloud reconstruction.

  7. A 30 Gb/s full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band.

    PubMed

    Tang, Chanjuan; Yu, Jianjun; Li, Xinying; Chi, Nan; Xiao, Jiangnan; Tian, Yumin; Zhang, Junwen

    2014-01-13

    We propose and experimentally demonstrate a full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band (75-100 GHz) with the speed up to 15 Gb/s for both 95.4 GHz link and 88.6 GHz link for the first time. The generation of millimeter-wave (mm-wave) wireless signal is based on the photonic technique by heterodyne mixing of an optical quadrature-phase-shift-keying (QPSK) signal with a free-running light at different wavelength. After 20 km fiber transmission, up to 30 Gb/s mm-wave signal is delivered over 2 m wireless link, and then converted to the optical signal for another 20 km fiber transmission. At the wireless receiver, coherent detection and advanced digital signal processing (DSP) are introduced to improve receiver sensitivity and system performance. With the OSNR of 15 dB, the bit error ratios (BERs) for 10 Gb/s signal transmission at 95.4 GHz and 88.6 GHz are below the forward-error-correction (FEC) threshold of 3.8 × 10(-3) whether post filter is used or not, while the BER for 15 Gb/s QPSK signal employing post filter in the link of 95.4 GHz is 2.9 × 10(-3).

  8. Optical communications and a comparison of optical technologies for a high data rate return link from Mars

    NASA Technical Reports Server (NTRS)

    Spence, Rodney L.

    1993-01-01

    The important principles of direct- and heterodyne-detection optical free-space communications are reviewed. Signal-to-noise-ratio (SNR) and bit-error-rate (BER) expressions are derived for both the direct-detection and heterodyne-detection optical receivers. For the heterodyne system, performance degradation resulting from received-signal and local oscillator-beam misalignment and laser phase noise is analyzed. Determination of interfering background power from local and extended background sources is discussed. The BER performance of direct- and heterodyne-detection optical links in the presence of Rayleigh-distributed random pointing and tracking errors is described. Finally, several optical systems employing Nd:YAG, GaAs, and CO2 laser sources are evaluated and compared to assess their feasibility in providing high-data-rate (10- to 1000-Mbps) Mars-to-Earth communications. It is shown that the root mean square (rms) pointing and tracking accuracy is a critical factor in defining the system transmitting laser-power requirements and telescope size and that, for a given rms error, there is an optimum telescope aperture size that minimizes the required power. The results of the analysis conducted indicate that, barring the achievement of extremely small rms pointing and tracking errors (less than 0.2 microrad), the two most promising types of optical systems are those that use an Nd:YAG laser (lambda = 1.064 microns) and high-order pulse position modulator (PPM) and direct detection, and those that use a CO2 laser (lambda = 10.6 microns) and phase shifting keying homodyne modulation and coherent detection. For example, for a PPM order of M = 64 and an rms pointing accuracy of 0.4 microrad, an Nd:YAG system can be used to implement a 100-Mbps Mars link with a 40-cm transmitting telescope, a 20-W laser, and a 10-m receiving photon bucket. Under the same conditions, a CO2 system would require 3-m transmitting and receiving telescopes and a 32-W laser to implement such a link. Other types of optical systems, such as a semiconductor laser systems, are impractical in the presence of large rms pointing errors because of the high power requirements of the 100-Mbps Mars link, even when optimal-size telescopes are used.

  9. Testing and performance analysis of a 650-Mbps quaternary pulse position modulation (QPPM) modem for free-space laser communications

    NASA Astrophysics Data System (ADS)

    Mortensen, Dale J.

    1995-04-01

    The testing and performance of a prototype modem developed at NASA Lewis Research Center for high-speed free-space direct detection optical communications is described. The testing was performed under laboratory conditions using computer control with specially developed test equipment that simulates free-space link conditions. The modem employs quaternary pulse position modulation at 325 Megabits per second (Mbps) on two optical channels, which are multiplexed to transmit a single 650 Mbps data stream. The measured results indicate that the receiver's automatic gain control (AGC), phased-locked-loop slot clock recovery, digital symbol clock recovery, matched filtering, and maximum likelihood data recovery circuits were found to have only 1.5 dB combined implementation loss during bit-error-rate (BER) performance measurements. Pseudo random bit sequences and real-time high quality video sources were used to supply 650 Mbps and 325 Mbps data streams to the modem. Additional testing revealed that Doppler frequency shifting can be easily tracked by the receiver, that simulated pointing errors are readily compensated for by the AGC circuits, and that channel timing skew affects the BER performance in an expected manner. Overall, the needed technologies for a high-speed laser communications modem were demonstrated.

  10. Optical voltage reference

    DOEpatents

    Rankin, R.; Kotter, D.

    1994-04-26

    An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

  11. Performance improvements of MOEMS-based diffractive arrays: address isolation and optical switching

    NASA Astrophysics Data System (ADS)

    Panaman, Ganesh; Madison, Seth; Sano, Michael; Castracane, James

    2005-01-01

    Micro-Opto-Electro-Mechanical Systems (MOEMS) have found a variety of applications in fields such as telecommunications, spectroscopy and display technology. MOEMS-based optical switching is currently under investigation for the increased flexibility that such devices provide for reconfiguration of the I/O network for inter-chip communication applications. This potential not only adds an additional degree of freedom for adjustment of transmitter/receiver links but also allows for fine alignment of individual channels in the network link. Further, this use of diffractive arrays for specific applications combines beam steering/adjustment capabilities with the inherent wavelength dependence of the diffractive approach for channel separation and de-multiplexing. Research and development has been concentrated on the progression from single MOEMS components to parallel arrays integrated with optical source arrays for a successful feasibility demonstration. Successful development of such an approach will have a major impact of the next generation communication protocols. This paper will focus on the current status of the MOEMS research program for Free Space Optical inter-chip communication at the College of NanoScale Science and Engineering, University at Albany-SUNY (CNSE). New versions of diffractive arrays stemming from the basic MEMS Compound Grating (MCG; patent #5,999,319) have been produced through various fabrication methods including the MUMPs process1. Most MEMS components relying on electrostatic actuation tend to require high actuation voltages (>20V) compared to the typical 5V levels prevalent in conventional integrated circuits. The specific goal is to yield improved performance while minimizing the power consumption of the components. Structural modifications through the variation in the ruling/electrode spacing distance and array wiring layout through individually addressable gratings have been studied to understand effects on the actuation voltage and cross talk, respectively. A detailed overview of the optical and mechanical properties will be included. Modeling results along with the mechanical and optical testing results have been detailed and compared with previously obtained results. Future work focuses on alternate material sets for a reduction in operational voltage, improvements in optical efficiency and technology demonstrators for verification of massively parallel I/O performance.

  12. OSIRIS Detectors

    NASA Astrophysics Data System (ADS)

    Joven, E.; Gigante, J.; Beigbeder, F.

    OSIRIS (Optical System for Imaging and Low-Resolution Integrated Spectroscopy) is an instrument designed to obtain images and low-resolution spectra of astronomical objects in the optical domain (from 365-1000 nm). It will be installed on Day One (2004) in the Nasmyth focus of the 10-m Spanish GTC Telescope. The mosaic is composed of two abuttable 2Kx4K CCDs to yield a total of 4Kx4K pixels, 15 μm/pixel, 0.1252 plate scale. The arrangement allows the linking of a classical ARC-GenII controller to a PMC frame-grabber, plugged into a VME-CPU card, where a RTOS (VxWorks from Wind River) is running. Some tests and results, carried out with a couple of MAT44-82 engineering grade devices at room temperature, are given.

  13. Silicon photonics devices for metro applications

    NASA Astrophysics Data System (ADS)

    Fukuda, H.; Kikuchi, K.; Jizodo, M.; Kawamura, Y.; Takeda, K.; Honda, K.

    2017-01-01

    Digital coherent technology is considered an attractive way of realizing both high-speed metro links and long distance transmissions. In metro areas, there is a strong demand for a smaller, faster transceiver module. This demand is mainly driven by the rapidly increasing data center interconnection traffic, where transmission capacity per faceplane is a key feature. Therefore, optical integration technology is desired. Since compensation in digital coherent technology is performed in the electrical or digital domain, users can deal with those optics performances that are not compensated for digitally. This means using a new material that cannot provide perfect characteristics but that is suitable for miniaturization and integration is possible. Silicon photonics (SiPh) is considered an attractive technology that would enable the significant miniaturization of optical circuits and be capable of optical integration with high manufacturability. While SiPh-based devices have begun to be deployed for very short or short reach links on the basis of direct detection technology, their digital coherent applications have recently been investigated in view of their integration capability. This paper describes recent progress on SiPh-based integrated optical devices for high-speed digital coherent transceivers targeting metro links. An optical modulator and receiver with related circuits have been integrated into a single SiPh chip. TEC-free operation under non-hermetic conditions and the direct attachment of optical fibers have both been realized. Very thin and small packaging with sufficient performance has been demonstrated by using the SiPh chip co-packaged with high-speed ICs.

  14. EXCESS OPTICAL ENHANCEMENT OBSERVED WITH ARCONS FOR EARLY CRAB GIANT PULSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strader, M. J.; Mazin, B. A.; Spiro Jaeger, G. V.

    2013-12-10

    We observe an extraordinary link in the Crab pulsar between the enhancement of an optical pulse and the timing of the corresponding giant radio pulse. At optical through infrared wavelengths, our observations use the high time resolution of ARray Camera for Optical to Near-IR Spectrophotometry, a unique superconducting energy-resolving photon-counting array at the Palomar 200 inch telescope. At radio wavelengths, we observe with the Robert C. Byrd Green Bank Telescope and the Green Bank Ultimate Pulsar Processing Instrument backend. We see an 11.3% ± 2.5% increase in peak optical flux for pulses that have an accompanying giant radio pulse arrivingmore » near the peak of the optical main pulse, in contrast to a 3.2% ± 0.5% increase when an accompanying giant radio pulse arrives soon after the optical peak. We also observe that the peak of the optical main pulse is 2.8% ± 0.8% enhanced when there is a giant radio pulse accompanying the optical interpulse. We observe no statistically significant spectral differences between optical pulses accompanied by and not accompanied by giant radio pulses. Our results extend previous observations of optical-radio correlation to the time and spectral domains. Our refined temporal correlation suggests that optical and radio emission are indeed causally linked, and the lack of spectral differences suggests that the same mechanism is responsible for all optical emission.« less

  15. Excess optical enhancement observed with arcons for early crab giant pulses

    DOE PAGES

    Strader, M. J.; Johnson, M. D.; Mazin, B. A.; ...

    2013-11-26

    Here, we observe an extraordinary link in the Crab pulsar between the enhancement of an optical pulse and the timing of the corresponding giant radio pulse. At optical through infrared wavelengths, our observations use the high time resolution of ARray Camera for Optical to Near-IR Spectrophotometry, a unique superconducting energy-resolving photon-counting array at the Palomar 200 inch telescope. At radio wavelengths, we observe with the Robert C. Byrd Green Bank Telescope and the Green Bank Ultimate Pulsar Processing Instrument backend. We see an 11.3% ± 2.5% increase in peak optical flux for pulses that have an accompanying giant radio pulsemore » arriving near the peak of the optical main pulse, in contrast to a 3.2% ± 0.5% increase when an accompanying giant radio pulse arrives soon after the optical peak. We also observe that the peak of the optical main pulse is 2.8% ± 0.8% enhanced when there is a giant radio pulse accompanying the optical interpulse. We also observe no statistically significant spectral differences between optical pulses accompanied by and not accompanied by giant radio pulses. These results extend previous observations of optical-radio correlation to the time and spectral domains. Our refined temporal correlation suggests that optical and radio emission are indeed causally linked, and the lack of spectral differences suggests that the same mechanism is responsible for all optical emission.« less

  16. Electronic-To-Optical-To-Electronic Packet-Data Conversion

    NASA Technical Reports Server (NTRS)

    Monacos, Steve

    1996-01-01

    Space-time multiplexer (STM) cell-based communication system designed to take advantage of both high throughput attainable in optical transmission links and flexibility and functionality of electronic processing, storage, and switching. Long packets segmented and transmitted optically by wavelength-division multiplexing. Performs optoelectronic and protocol conversion between electronic "store-and-forward" protocols and optical "hot-potato" protocols.

  17. Optical Filter Assembly for Interplanetary Optical Communications

    NASA Technical Reports Server (NTRS)

    Chen, Yijiang; Hemmati, Hamid

    2013-01-01

    Ground-based, narrow-band, high throughput optical filters are required for optical links from deep space. We report on the development of a tunable filter assembly that operates at telecommunication window of 1550 nanometers. Low insertion loss of 0.5 decibels and bandwidth of 90 picometers over a 2000 nanometers operational range of detectors has been achieved.

  18. Laser communication experiments between Sota and Meo optical ground station

    NASA Astrophysics Data System (ADS)

    Artaud, G.,; Issler, J.-L.; Védrenne, N.; Robert, C.; Petit, C.; Samain, E.; Phung, D.-H.; Maurice, N.; Toyoshima, M.; Kolev, D.

    2017-09-01

    Optical transmissions between earth and space have been identified as key technologies for future high data rate transmissions between satellites and ground. CNES is investigating the use of optics both for High data rate direct to Earth transfer from observation satellites in LEO, and for future telecommunications applications using optics for the high capacity Gateway link.

  19. Evaluation of a combined index of optic nerve structure and function for glaucoma diagnosis

    PubMed Central

    2011-01-01

    Background The definitive diagnosis of glaucoma is currently based on congruent damage to both optic nerve structure and function. Given widespread quantitative assessment of both structure (imaging) and function (automated perimetry) in glaucoma, it should be possible to combine these quantitative data to diagnose disease. We have therefore defined and tested a new approach to glaucoma diagnosis by combining imaging and visual field data, using the anatomical organization of retinal ganglion cells. Methods Data from 1499 eyes of glaucoma suspects and 895 eyes with glaucoma were identified at a single glaucoma center. Each underwent Heidelberg Retinal Tomograph (HRT) imaging and standard automated perimetry. A new measure combining these two tests, the structure function index (SFI), was defined in 3 steps: 1) calculate the probability that each visual field point is abnormal, 2) calculate the probability of abnormality for each of the six HRT optic disc sectors, and 3) combine those probabilities with the probability that a field point and disc sector are linked by ganglion cell anatomy. The SFI was compared to the HRT and visual field using receiver operating characteristic (ROC) analysis. Results The SFI produced an area under the ROC curve (0.78) that was similar to that for both visual field mean deviation (0.78) and pattern standard deviation (0.80) and larger than that for a normalized measure of HRT rim area (0.66). The cases classified as glaucoma by the various tests were significantly non-overlapping. Based on the distribution of test values in the population with mild disease, the SFI may be better able to stratify this group while still clearly identifying those with severe disease. Conclusions The SFI reflects the traditional clinical diagnosis of glaucoma by combining optic nerve structure and function. In doing so, it identifies a different subset of patients than either visual field testing or optic nerve head imaging alone. Analysis of prospective data will allow us to determine whether the combined index of structure and function can provide an improved standard for glaucoma diagnosis. PMID:21314957

  20. Flat-topped beam transmittance in anisotropic non-Kolmogorov turbulent marine atmosphere

    NASA Astrophysics Data System (ADS)

    Ata, Yalçın; Baykal, Yahya

    2017-10-01

    Turbulence affects optical propagation, and, as a result, the intensity is attenuated along the path of propagation. The attenuation becomes significant when the turbulence becomes stronger. Transmittance is a measure indicating how much power is collected at the receiver after the optical wave propagates in the turbulent medium. The on-axis transmittance is formulated when a flat-topped optical beam propagates in a marine atmosphere experiencing anisotropic non-Kolmogorov turbulence. Variations in the transmittance are evaluated versus the beam source size, beam number, link distance, power law exponent, anisotropy factor, and structure constant. It is found that larger beam source sizes and beam numbers yield higher transmittance values; however, as the link distance, power law exponent, anisotropy factor, or structure constant increase, transmittance values are lowered. Our results will help in the performance evaluations of optical wireless communication and optical imaging systems operating in a marine atmosphere.

  1. Optical wireless link between a nanoscale antenna and a transducing rectenna.

    PubMed

    Dasgupta, Arindam; Mennemanteuil, Marie-Maxime; Buret, Mickaël; Cazier, Nicolas; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2018-05-18

    Initiated as a cable-replacement solution, short-range wireless power transfer has rapidly become ubiquitous in the development of modern high-data throughput networking in centimeter to meter accessibility range. Wireless technology is now penetrating a higher level of system integration for chip-to-chip and on-chip radiofrequency interconnects. However, standard CMOS integrated millimeter-wave antennas have typical size commensurable with the operating wavelength, and are thus an unrealistic solution for downsizing transmitters and receivers to the micrometer and nanometer scale. Herein, we demonstrate a light-in and electrical signal-out, on-chip wireless near-infrared link between a 220 nm optical antenna and a sub-nanometer rectifying antenna converting the transmitted optical energy into direct electrical current. The co-integration of subwavelength optical functional devices with electronic transduction offers a disruptive solution to interface photons and electrons at the nanoscale for on-chip wireless optical interconnects.

  2. Virtual optical network mapping and core allocation in elastic optical networks using multi-core fibers

    NASA Astrophysics Data System (ADS)

    Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli

    2017-11-01

    Virtualization technology can greatly improve the efficiency of the networks by allowing the virtual optical networks to share the resources of the physical networks. However, it will face some challenges, such as finding the efficient strategies for virtual nodes mapping, virtual links mapping and spectrum assignment. It is even more complex and challenging when the physical elastic optical networks using multi-core fibers. To tackle these challenges, we establish a constrained optimization model to determine the optimal schemes of optical network mapping, core allocation and spectrum assignment. To solve the model efficiently, tailor-made encoding scheme, crossover and mutation operators are designed. Based on these, an efficient genetic algorithm is proposed to obtain the optimal schemes of the virtual nodes mapping, virtual links mapping, core allocation. The simulation experiments are conducted on three widely used networks, and the experimental results show the effectiveness of the proposed model and algorithm.

  3. MAFL experiment: development of photonic devices for a space-based multiaperture fiber-linked interferometer.

    PubMed

    Olivier, Serge; Delage, Laurent; Reynaud, Francois; Collomb, Virginie; Trouillon, Michel; Grelin, Jerome; Schanen, Isabelle; Minier, Vincent; Broquin, Jean-Emmanuel; Ruilier, Cyril; Leone, Bruno

    2007-02-20

    We present a three-telescope space-based interferometer prototype dedicated to high-resolution imaging. This project, named multiaperture fiber-linked interferometer (MAFL), was founded by the European Space Agency. The aim of the MAFL project is to propose, design, and implement for the first time to the best of our knowledge all the optical functions required for the global instrument on the same integrated optics (IO) component for controlling a three-arm interferometer and to obtain reliable science data. The coherent transport from telescopes to the IO component is achieved by means of highly birefringent optical fiber. The laboratory bench is presented, and the results are reported allowing us to validate the optical potentiality of the IO component in this frame. The validation measurements consist of the throughput of this optical device, the performances of metrological servoloop, and the instrumental contrasts and phase closure of the science fringes.

  4. Shedding Light on Fiber Optics.

    ERIC Educational Resources Information Center

    Bunch, Robert M.

    1994-01-01

    Explains the principles of fiber optics as a medium for light-wave communication. Current uses of fiber systems on college campuses include voice, video, and local area network applications. A group of seven school districts in Minnesota are linked via fiber-optic cables. Other uses are discussed. (MLF)

  5. Quick acquisition and recognition method for the beacon in deep space optical communications.

    PubMed

    Wang, Qiang; Liu, Yuefei; Ma, Jing; Tan, Liying; Yu, Siyuan; Li, Changjiang

    2016-12-01

    In deep space optical communications, it is very difficult to acquire the beacon given the long communication distance. Acquisition efficiency is essential for establishing and holding the optical communication link. Here we proposed a quick acquisition and recognition method for the beacon in deep optical communications based on the characteristics of the deep optical link. To identify the beacon from the background light efficiently, we utilized the maximum similarity between the collecting image and the reference image for accurate recognition and acquisition of the beacon in the area of uncertainty. First, the collecting image and the reference image were processed by Fourier-Mellin. Second, image sampling and image matching were applied for the accurate positioning of the beacon. Finally, the field programmable gate array (FPGA)-based system was used to verify and realize this method. The experimental results showed that the acquisition time for the beacon was as fast as 8.1s. Future application of this method in the system design of deep optical communication will be beneficial.

  6. InGaAs multiple quantum well modulating retro-reflector for free-space optical communications

    NASA Astrophysics Data System (ADS)

    Rabinovich, William S.; Gilbreath, G. Charmaine; Goetz, Peter G.; Mahon, Rita; Katzer, D. Scott; Ikossi-Anastasiou, Kiki; Binari, Steven C.; Meehan, Timothy J.; Stell, Mena F.; Sokolsky, Ilene; Vasquez, John A.; Vilcheck, Michael J.

    2002-01-01

    Modulating retro-reflectors provide means for free space optical communication without the need for a laser, telescope or pointer tracker on one end of the link. These systems work by coupling a retro-reflector with an electro- optic shutter. The modulating retro-reflector is then interrogated by a cw laser beam from a conventional optical communications system and returns a modulated signal beam to the interrogator. Over the last few years the Naval Research Laboratory has developed modulating retro-reflector based on corner cubes and large area Transmissive InGaAs multiple quantum well modulators. These devices can allow optical links at speeds up to about 10 Mbps. We will discuss the critical performance characteristics of such systems including modulating rate, power consumption, optical contrast ratio and operating wavelength. In addition a new modulating retro-reflector architecture based upon cat s eye retroreflectors will be discussed. This architecture has the possibility for data rates of hundreds of megabits per second at power consumptions below 100 mW.

  7. Ka-Band Link Study and Analysis for a Mars Hybrid RF/Optical Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Zeleznikar, Daniel J.; Nappier, Jennifer M.; Downey, Joseph A.

    2014-01-01

    The integrated radio and optical communications (iROC) project at the NASA Glenn Research Center (GRC) is investigating the feasibility of a hybrid RF and optical communication subsystem for future deep space missions. The hybrid communications subsystem enables the advancement of optical communications while simultaneously mitigating the risk of infusion by combining an experimental optical transmitter and telescope with a reliable Ka-band RF transmitter and antenna. The iROC communications subsystem seeks to maximize the total data return over the course of a potential 2-year mission in Mars orbit beginning in 2021. Although optical communication by itself offers potential for greater data return over RF, the reliable Ka-band link is also being designed for high data return capability in this hybrid system. A daily analysis of the RF link budget over the 2-year span is performed to optimize and provide detailed estimates of the RF data return. In particular, the bandwidth dependence of these data return estimates is analyzed for candidate waveforms. In this effort, a data return modeling tool was created to analyze candidate RF modulation and coding schemes with respect to their spectral efficiency, amplifier output power back-off, required digital to analog conversion (DAC) sampling rates, and support by ground receivers. A set of RF waveforms is recommended for use on the iROC platform.

  8. Investigating the benefits of scene linking for a pathway HMD: from laboratory flight experiments to flight tests

    NASA Astrophysics Data System (ADS)

    Schmerwitz, Sven; Többen, Helmut; Lorenz, Bernd; Iijima, Tomoko; Kuritz-Kaiser, Anthea

    2006-05-01

    Pathway-in-the-sky displays enable pilots to accurately fly difficult trajectories. However, these displays may drive pilots' attention to the aircraft guidance task at the expense of other tasks particularly when the pathway display is located head-down. A pathway HUD may be a viable solution to overcome this disadvantage. Moreover, the pathway may mitigate the perceptual segregation between the static near domain and the dynamic far domain and hence, may improve attention switching between both sources. In order to more comprehensively overcome the perceptual near-to-far domain disconnect alphanumeric symbols could be attached to the pathway leading to a HUD design concept called 'scene-linking'. Two studies are presented that investigated this concept. The first study used a simplified laboratory flight experiment. Pilots (N=14) flew a curved trajectory through mountainous terrain and had to detect display events (discrete changes in a command speed indicator to be matched with current speed) and outside scene events (hostile SAM station on ground). The speed indicators were presented in superposition to the scenery either in fixed position or scene-linked to the pathway. Outside scene event detection was found improved with scene linking, however, flight-path tracking was markedly deteriorated. In the second study a scene-linked pathway concept was implemented on a monocular retinal scanning HMD and tested in real flights on a Do228 involving 5 test pilots. The flight test mainly focused at usability issues of the display in combination with an optical head tracker. Visual and instrument departure and approach tasks were evaluated comparing HMD navigation with standard instrument or terrestrial navigation. The study revealed limitations of the HMD regarding its see-through capability, field of view, weight and wearing comfort that showed to have a strong influence on pilot acceptance rather than rebutting the approach of the display concept as such.

  9. Laser differential image-motion monitor for characterization of turbulence during free-space optical communication tests.

    PubMed

    Brown, David M; Juarez, Juan C; Brown, Andrea M

    2013-12-01

    A laser differential image-motion monitor (DIMM) system was designed and constructed as part of a turbulence characterization suite during the DARPA free-space optical experimental network experiment (FOENEX) program. The developed link measurement system measures the atmospheric coherence length (r0), atmospheric scintillation, and power in the bucket for the 1550 nm band. DIMM measurements are made with two separate apertures coupled to a single InGaAs camera. The angle of arrival (AoA) for the wavefront at each aperture can be calculated based on focal spot movements imaged by the camera. By utilizing a single camera for the simultaneous measurement of the focal spots, the correlation of the variance in the AoA allows a straightforward computation of r0 as in traditional DIMM systems. Standard measurements of scintillation and power in the bucket are made with the same apertures by redirecting a percentage of the incoming signals to InGaAs detectors integrated with logarithmic amplifiers for high sensitivity and high dynamic range. By leveraging two, small apertures, the instrument forms a small size and weight configuration for mounting to actively tracking laser communication terminals for characterizing link performance.

  10. Studying the fundamental limit of optical fiber links to the 10-21 level.

    PubMed

    Xu, Dan; Lee, Won-Kyu; Stefani, Fabio; Lopez, Olivier; Amy-Klein, Anne; Pottie, Paul-Eric

    2018-04-16

    We present a hybrid fiber link combining effective optical frequency transfer and evaluation of performances with a self-synchronized two-way comparison. It enables us to detect the round-trip fiber noise and each of the forward and backward one-way fiber noises simultaneously. The various signals acquired with this setup allow us to study quantitatively several properties of optical fiber links. We check the reciprocity of the accumulated noise forth and back over a bi-directional fiber to the level of 3.1(±3.9) × 10 -20 based on a 160000s continuous data. We also analyze the noise correlation between two adjacent fibers and show the first experimental evidence of interferometric noise at very low Fourier frequency. We estimate redundantly and consistently the stability and accuracy of the transferred optical frequency over 43 km at 4 × 10 -21 level after 16 days of integration and demonstrate that a frequency comparison with instability as low as 8 × 10 -18 would be achievable with uni-directional fibers in urban area.

  11. An all-silicon optical PC-to-PC link utilizing USB

    NASA Astrophysics Data System (ADS)

    Goosen, Marius E.; Alberts, Antonie C.; Venter, Petrus J.; du Plessis, Monuko; Rademeyer, Pieter

    2013-02-01

    An integrated silicon light source still remains the Holy Grail for integrated optical communication systems. Hot carrier luminescent light sources provide a way to create light in a standard CMOS process, potentially enabling cost effective optical communication between CMOS integrated circuits. In this paper we present a 1 Mb/s integrated silicon optical link for information transfer, targeting a real-world integrated solution by connecting two PCs via a USB port while transferring data optically between the devices. This realization represents the first optical communication product prototype utilizing a CMOS light emitter. The silicon light sources which are implemented in a standard 0.35 μm CMOS technology are electrically modulated and detected using a commercial silicon avalanche photodiode. Data rates exceeding 10 Mb/s using silicon light sources have previously been demonstrated using raw bit streams. In this work data is sent in two half duplex streams accompanied with the separate transmission of a clock. Such an optical communication system could find application in high noise environments where data fidelity, range and cost are a determining factor.

  12. Extended model of restricted beam for FSO links

    NASA Astrophysics Data System (ADS)

    Poliak, Juraj; Wilfert, Otakar

    2012-10-01

    Modern wireless optical communication systems in many aspects overcome wire or radio communications. Their advantages are license-free operation and broad bandwidth that they offer. The medium in free-space optical (FSO) links is the atmosphere. Operation of outdoor FSO links struggles with many atmospheric phenomena that deteriorate phase and amplitude of the transmitted optical beam. This beam originates in the transmitter and is affected by its individual parts, especially by the lens socket and the transmitter aperture, where attenuation and diffraction effects take place. Both of these phenomena unfavourable influence the beam and cause degradation of link availability, or its total malfunction. Therefore, both of these phenomena should be modelled and simulated, so that one can judge the link function prior to the realization of the system. Not only the link availability and reliability are concerned, but also economic aspects. In addition, the transmitted beam is not, generally speaking, circularly symmetrical, what makes the link simulation more difficult. In a comprehensive model, it is necessary to take into account the ellipticity of the beam that is restricted by circularly symmetrical aperture where then the attenuation and diffraction occur. General model is too computationally extensive; therefore simplification of the calculations by means of analytical and numerical approaches will be discussed. Presented model is not only simulated using computer, but also experimentally proven. One can then deduce the ability of the model to describe the reality and to estimate how far can one go with approximations, i.e. limitations of the model are discussed.

  13. QIPS: quantum information and quantum physics in space

    NASA Astrophysics Data System (ADS)

    Schmitt-Manderbach, Tobias; Scheidl, Thomas; Ursin, Rupert; Tiefenbacher, Felix; Weier, Henning; Fürst, Martin; Jennewein, T.; Perdigues, J.; Sodnik, Z.; Rarity, J.; Zeilinger, Anton; Weinfurter, Harald

    2017-11-01

    The aim of the QIPS project (financed by ESA) is to explore quantum phenomena and to demonstrate quantum communication over long distances. Based on the current state-of-the-art a first study investigating the feasibility of space based quantum communication has to establish goals for mid-term and long-term missions, but also has to test the feasibility of key issues in a long distance ground-to-ground experiment. We have therefore designed a proof-of-concept demonstration for establishing single photon links over a distance of 144 km between the Canary Islands of La Palma and Tenerife to evaluate main limitations for future space experiments. Here we report on the progress of this project and present first measurements of crucial parameters of the optical free space link.

  14. FELIX: a PCIe based high-throughput approach for interfacing front-end and trigger electronics in the ATLAS Upgrade framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.; Bauer, K.; Borga, A.

    The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. Furthermore, the Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. Here, the FELIX system, the design of the PCIe prototypemore » card and the integration test results are presented.« less

  15. FELIX: a PCIe based high-throughput approach for interfacing front-end and trigger electronics in the ATLAS Upgrade framework

    DOE PAGES

    Anderson, J.; Bauer, K.; Borga, A.; ...

    2016-12-13

    The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. Furthermore, the Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. Here, the FELIX system, the design of the PCIe prototypemore » card and the integration test results are presented.« less

  16. Self-aligning LED-based optical link

    NASA Astrophysics Data System (ADS)

    Shen, Thomas C.; Drost, Robert J.; Rzasa, John R.; Sadler, Brian M.; Davis, Christopher C.

    2016-09-01

    The steady advances in light-emitting diode (LED) technology have motivated the use of LEDs in optical wireless communication (OWC) applications such as indoor local area networks (LANs) and communication between mobile platforms (e.g., robots, vehicles). In contrast to traditional radio frequency (RF) wireless communication, OWC utilizes electromagnetic spectrum that is largely unregulated and unrestricted. OWC communication may be especially useful in RF-denied environments, in which RF communication may be prohibited or undesirable. However, OWC does present some challenges, including the need to maintain alignment between potentially moving nodes. We describe a novel system for link alignment that is composed of a hyperboloidal mirror, camera, and gimbal. The experimental system is able to use the mirror and camera to detect an LED beacon of a neighboring node and estimate its bearing (azimuth and elevation), point the gimbal towards the beacon, and establish an optical link.

  17. The Level 0 Pixel Trigger system for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Aglieri Rinella, G.; Kluge, A.; Krivda, M.; ALICE Silicon Pixel Detector project

    2007-01-01

    The ALICE Silicon Pixel Detector contains 1200 readout chips. Fast-OR signals indicate the presence of at least one hit in the 8192 pixel matrix of each chip. The 1200 bits are transmitted every 100 ns on 120 data readout optical links using the G-Link protocol. The Pixel Trigger System extracts and processes them to deliver an input signal to the Level 0 trigger processor targeting a latency of 800 ns. The system is compact, modular and based on FPGA devices. The architecture allows the user to define and implement various trigger algorithms. The system uses advanced 12-channel parallel optical fiber modules operating at 1310 nm as optical receivers and 12 deserializer chips closely packed in small area receiver boards. Alternative solutions with multi-channel G-Link deserializers implemented directly in programmable hardware devices were investigated. The design of the system and the progress of the ALICE Pixel Trigger project are described in this paper.

  18. Transmitter diversity verification on ARTEMIS geostationary satellite

    NASA Astrophysics Data System (ADS)

    Mata Calvo, Ramon; Becker, Peter; Giggenbach, Dirk; Moll, Florian; Schwarzer, Malte; Hinz, Martin; Sodnik, Zoran

    2014-03-01

    Optical feeder links will become the extension of the terrestrial fiber communications towards space, increasing data throughput in satellite communications by overcoming the spectrum limitations of classical RF-links. The geostationary telecommunication satellite Alphasat and the satellites forming the EDRS-system will become the next generation for high-speed data-relay services. The ESA satellite ARTEMIS, precursor for geostationary orbit (GEO) optical terminals, is still a privileged experiment platform to characterize the turbulent channel and investigate the challenges of free-space optical communication to GEO. In this framework, two measurement campaigns were conducted with the scope of verifying the benefits of transmitter diversity in the uplink. To evaluate this mitigation technique, intensity measurements were carried out at both ends of the link. The scintillation parameter is calculated and compared to theory and, additionally, the Fried Parameter is estimated by using a focus camera to monitor the turbulence strength.

  19. In-orbit verification of small optical transponder (SOTA): evaluation of satellite-to-ground laser communication links

    NASA Astrophysics Data System (ADS)

    Takenaka, Hideki; Koyama, Yoshisada; Akioka, Maki; Kolev, Dimitar; Iwakiri, Naohiko; Kunimori, Hiroo; Carrasco-Casado, Alberto; Munemasa, Yasushi; Okamoto, Eiji; Toyoshima, Morio

    2016-03-01

    Research and development of space optical communications is conducted in the National Institute of Information and Communications Technology (NICT). The NICT developed the Small Optical TrAnsponder (SOTA), which was embarked on a 50kg-class satellite and launched into a low earth orbit (LEO). The space-to-ground laser communication experiments have been conducted with the SOTA. Atmospheric turbulence causes signal fadings and becomes an issue to be solved in satellite-to-ground laser communication links. Therefore, as error-correcting functions, a Reed-Solomon (RS) code and a Low-Density Generator Matrix (LDGM) code are implemented in the communication system onboard the SOTA. In this paper, we present the in-orbit verification results of SOTA including the characteristic of the functions, the communication performance with the LDGM code via satellite-to-ground atmospheric paths, and the link budget analysis and the comparison between theoretical and experimental results.

  20. Measurement of fog and haze extinction characteristics and availability evaluation of free space optical link under the sea surface environment.

    PubMed

    Wu, Xiaojun; Wang, Hongxing; Song, Bo

    2015-02-10

    Fog and haze can lead to changes in extinction characteristics. Therefore, the performance of the free space optical link is highly influenced by severe weather conditions. Considering the influential behavior of weather conditions, a state-of-the-art solution for the observation of fog and haze over the sea surface is presented in this paper. A Mie scattering laser radar, with a wavelength of 532 nm, is used to observe the weather conditions of the sea surface environment. The horizontal extinction coefficients and visibilities are obtained from the observation data, and the results are presented in the paper. The changes in the characteristics of extinction coefficients and visibilities are analyzed based on both the short-term (6 days) severe weather data and long-term (6 months) data. Finally, the availability performance of the free space optical communication link is evaluated under the sea surface environment.

  1. Argonne - Ring Resonators

    Science.gov Websites

    -- Link6 -- Integrated Photonic Spectrographs for Astronomy Optical Multi-Mode Interference Devices Dual Guiding, Modulating, and Emitting Light on Silicon Scope1 -- Scope 2 -- Lamp1 -- optical Ring Resonators

  2. Non-Gaussian statistics and optical rogue waves in stimulated Raman scattering.

    PubMed

    Monfared, Yashar E; Ponomarenko, Sergey A

    2017-03-20

    We explore theoretically and numerically optical rogue wave formation in stimulated Raman scattering inside a hydrogen filled hollow core photonic crystal fiber. We assume a weak noisy Stokes pulse input and explicitly construct the input Stokes pulse ensemble using the coherent mode representation of optical coherence theory, thereby providing a link between optical coherence and rogue wave theories. We show that the Stokes pulse peak power probability distribution function (PDF) acquires a long tail in the limit of nearly incoherent input Stokes pulses. We demonstrate a clear link between the PDF tail magnitude and the source coherence time. Thus, the latter can serve as a convenient parameter to control the former. We explain our findings qualitatively using the concepts of statistical granularity and global degree of coherence.

  3. Intramolecular aggregation and optical limiting properties of triazine-linked mono-, bis- and tris-phthalocyanines.

    PubMed

    Chen, Jun; Zhang, Tao; Wang, Shuangqing; Hu, Rui; Li, Shayu; Ma, Jin Shi; Yang, Guoqiang

    2015-10-05

    A series of triazine-linked mono-, bis- and tris-phthalocyanines are synthesized, intramolecular aggregation is found in bis- and tris-phthalocyanines via π-π stacking interaction. Theoretical and experimental studies reveal the formation of the intramolecular aggregation. The spectrographic, photophysical and nonlinear optical properties of these compounds are adjusted for the formation of the intramolecular aggregation. The bis-phthalocyanine dimer presents smaller fluorescence quantum yield, lower triplet formation yield and the triplet-minus-ground state extinction coefficient, which causes poorer optical limiting performance. It is interesting that the tris-phthalocyanine is composed of a mono-phthalocyanine part and a bis-phthalocyanine part, the optical limiting property of the tris-phthalocyanine is similar to that of mono-phthalocyanine. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Design of an optical fiber cable link for lightning instrumentation. [wideband pulse recording system

    NASA Technical Reports Server (NTRS)

    Grove, C. H.; Phillips, R. L.; Wojtasinski, R. J.

    1975-01-01

    A lightning instrumentation system was designed to record current magnitudes of lightning strikes that hit a launch pad service structure at NASA's Kennedy Space Center. The instrumentation system consists of a lightning ground rod with a current sensor coil, an optical transmitter, an optical fiber cable link, a detector receiver, and a recording system. The transmitter is a wideband pulse transformer driving an IR LED emitter. The transmitter operates linearly as a transducer. A low loss fiber bundle provides isolation of the recorder system from the electromagnetic field of the lightning strike. The output of an optical detector receiver module is sampled and recorded in digital format. The significant factors considered in the design were dynamic range, linearity, mechanical configuration, electromagnetic isolation, and temperature compensation.

  5. Overview of the Preliminary Design of the Optical Communication Demonstration and High-Rate Link Facility

    NASA Technical Reports Server (NTRS)

    Sandusky, John V.; Jeganathan, M.; Ortiz, G.; Biswas, A.; Lee, S.; Parker, G.; Liu, B.; Johnson, D.; DePew, J.; Lesh, J. R.

    2000-01-01

    Tlis paper presents an overview of the preliminary design of both the flight and ground systems of the Optical Communication Demonstration and High-Rate Link Facility which will demonstrate optical communication from the International Space Station to ground after its deployment in October 2002. The overview of the preliminary design of the Flight System proceeds by contrasting it with the design of the laboratory-model unit, emphasizing key changes and the rationale behind the design choices. After presenting the preliminary design of the Ground System, the timetable for the construction and deployment of the flight and ground systems is outlined.

  6. A coherent fiber link for very long baseline interferometry.

    PubMed

    Clivati, Cecilia; Costanzo, Giovanni A; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Zucco, Massimo; Ambrosini, Roberto; Bortolotti, Claudio; Perini, Federico; Roma, Mauro; Calonico, Davide

    2015-11-01

    We realize a coherent fiber link for application in very long baseline interferometry (VLBI) for radio astronomy and geodesy. A 550-km optical fiber connects the Italian National Metrological Institute (INRIM) to a radio telescope in Italy and is used for the primary Cs fountain clock stability and accuracy dissemination. We use an ultrastable laser frequency- referenced to the primary standard as a transfer oscillator; at the radio telescope, an RF signal is generated from the laser by using an optical frequency comb. This scheme now provides the traceability of the local maser to the SI second, realized by the Cs fountain at the 1.7 × 10(-16) accuracy. The fiber link never limits the experiment and is robust enough to sustain radio astronomical campaigns. This experiment opens the possibility of replacing the local hydrogen masers at the VLBI sites with optically-synthesized RF signals. This could improve VLBI resolution by providing more accurate and stable frequency references and, in perspective, by enabling common- clock VLBI based on a network of telescopes connected by fiber links.

  7. OWLS as platform technology in OPTOS satellite

    NASA Astrophysics Data System (ADS)

    Rivas Abalo, J.; Martínez Oter, J.; Arruego Rodríguez, I.; Martín-Ortega Rico, A.; de Mingo Martín, J. R.; Jiménez Martín, J. J.; Martín Vodopivec, B.; Rodríguez Bustabad, S.; Guerrero Padrón, H.

    2017-12-01

    The aim of this work is to show the Optical Wireless Link to intraSpacecraft Communications (OWLS) technology as a platform technology for space missions, and more specifically its use within the On-Board Communication system of OPTOS satellite. OWLS technology was proposed by Instituto Nacional de Técnica Aeroespacial (INTA) at the end of the 1990s and developed along 10 years through a number of ground demonstrations, technological developments and in-orbit experiments. Its main benefits are: mass reduction, flexibility, and simplification of the Assembly, Integration and Tests phases. The final step was to go from an experimental technology to a platform one. This step was carried out in the OPTOS satellite, which makes use of optical wireless links in a distributed network based on an OLWS implementation of the CAN bus. OPTOS is the first fully wireless satellite. It is based on the triple configuration (3U) of the popular Cubesat standard, and was completely built at INTA. It was conceived to procure a fast development, low cost, and yet reliable platform to the Spanish scientific community, acting as a test bed for space born science and technology. OPTOS presents a distributed OBDH architecture in which all satellite's subsystems and payloads incorporate a small Distributed On-Board Computer (OBC) Terminal (DOT). All DOTs (7 in total) communicate between them by means of the OWLS-CAN that enables full data sharing capabilities. This collaboration allows them to perform all tasks that would normally be carried out by a centralized On-Board Computer.

  8. Free space optical communications system performance under atmospheric scattering and turbulence for 850 and 1550  nm operation.

    PubMed

    El-Wakeel, Amr S; Mohammed, Nazmi A; Aly, Moustafa H

    2016-09-10

    In this work, a free space optical communication (FSO) link is proposed and utilized to explore and evaluate the FSO link performance under the joint occurrence of the atmospheric scattering and turbulence phenomena for 850 and 1550 nm operation. Diffraction and nondiffraction-limited systems are presented and evaluated for both wavelengths' operation, considering far-field conditions under different link distances. Bit error rate, pointing error angles, beam divergence angles, and link distance are the main performance indicators that are used to evaluate and compare the link performance under different system configurations and atmospheric phenomena combinations. A detailed study is performed to provide the merits of this work. For both far-field diffraction-limited and nondiffraction-limited systems, it is concluded that 1550 nm system operation is better than 850 nm for the whole presented joint occurrences of atmospheric scattering and turbulence.

  9. Method and apparatus for active tamper indicating device using optical time-domain reflectometry

    DOEpatents

    Smith, D. Barton; Muhs, Jeffrey D.; Pickett, Chris A.; Earl, D. Duncan

    1999-01-01

    An optical time-domain reflectometer (OTDR) launches pulses of light into a link or a system of multiplexed links and records the waveform of pulses reflected by the seals in the link(s). If a seal is opened, the link of cables will become a discontinuous transmitter of the light pulses and the OTDR can immediately detect that a seal has been opened. By analyzing the waveform, the OTDR can also quickly determine which seal(s) were opened. In this way the invention functions as a system of active seals. The invention is intended for applications that require long-term surveillance of a large number of closures. It provides immediate tamper detection, allows for periodic access to secured closures, and can be configured for many different distributions of closures. It can monitor closures in indoor and outdoor locations and it can monitor containers or groups of containers located many kilometers apart.

  10. PAM-4 Signaling over VCSELs with 0.13µm CMOS Chip Technology

    NASA Astrophysics Data System (ADS)

    Cunningham, J. E.; Beckman, D.; Zheng, Xuezhe; Huang, Dawei; Sze, T.; Krishnamoorthy, A. V.

    2006-12-01

    We present results for VCSEL based links operating PAM-4 signaling using a commercial 0.13µm CMOS technology. We perform a complete link analysis of the Bit Error Rate, Q factor, random and deterministic jitter by measuring waterfall curves versus margins in time and amplitude. We demonstrate that VCSEL based PAM 4 can match or even improve performance over binary signaling under conditions of a bandwidth limited, 100meter multi-mode optical link at 5Gbps. We present the first sensitivity measurements for optical PAM-4 and compare it with binary signaling. Measured benefits are reconciled with information theory predictions.

  11. PAM-4 Signaling over VCSELs with 0.13microm CMOS Chip Technology.

    PubMed

    Cunningham, J E; Beckman, D; Zheng, Xuezhe; Huang, Dawei; Sze, T; Krishnamoorthy, A V

    2006-12-11

    We present results for VCSEL based links operating PAM-4 signaling using a commercial 0.13microm CMOS technology. We perform a complete link analysis of the Bit Error Rate, Q factor, random and deterministic jitter by measuring waterfall curves versus margins in time and amplitude. We demonstrate that VCSEL based PAM-4 can match or even improve performance over binary signaling under conditions of a bandwidth limited, 100meter multi-mode optical link at 5Gbps. We present the first sensitivity measurements for optical PAM-4 and compare it with binary signaling. Measured benefits are reconciled with information theory predictions.

  12. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing.

    PubMed

    Ren, Yongxiong; Huang, Hao; Xie, Guodong; Ahmed, Nisar; Yan, Yan; Erkmen, Baris I; Chandrasekaran, Nivedita; Lavery, Martin P J; Steinhoff, Nicholas K; Tur, Moshe; Dolinar, Samuel; Neifeld, Mark; Padgett, Miles J; Boyd, Robert W; Shapiro, Jeffrey H; Willner, Alan E

    2013-10-15

    We experimentally investigate the performance of an orbital angular momentum (OAM) multiplexed free space optical (FSO) communication link through emulated atmospheric turbulence. The turbulence effects on the crosstalk and system power penalty of the FSO link are characterized. The experimental results show that the power of the transmitted OAM mode will tend to spread uniformly onto the neighboring mode in medium-to-strong turbulence, resulting in severe crosstalk at the receiver. The power penalty is found to exceed 10 dB in a weak-to-medium turbulence condition due to the turbulence-induced crosstalk and power fluctuation of the received signal.

  13. A photonic chip based frequency discriminator for a high performance microwave photonic link.

    PubMed

    Marpaung, David; Roeloffzen, Chris; Leinse, Arne; Hoekman, Marcel

    2010-12-20

    We report a high performance phase modulation direct detection microwave photonic link employing a photonic chip as a frequency discriminator. The photonic chip consists of five optical ring resonators (ORRs) which are fully programmable using thermo-optical tuning. In this discriminator a drop-port response of an ORR is cascaded with a through response of another ORR to yield a linear phase modulation (PM) to intensity modulation (IM) conversion. The balanced photonic link employing the PM to IM conversion exhibits high second-order and third-order input intercept points of + 46 dBm and + 36 dBm, respectively, which are simultaneously achieved at one bias point.

  14. Three years coherent space to ground links: performance results and outlook for the optical ground station equipped with adaptive optics

    NASA Astrophysics Data System (ADS)

    Gregory, M.; Troendle, D.; Muehlnikel, G.; Heine, F.; Meyer, R.; Lutzer, M.; Czichy, R.

    2013-03-01

    Tesat is performing inter-satellite links (ISLs) for over 5 years now. Besides the successful demonstration of the suitability of coherent laser communication for high speed data transmission in space, Tesat has also conducted two major satellite to ground link (SGL) campaigns during the last 3 years. A transportable ground station has been developed to measure the impact of atmospheric turbulence to the coherent system. The SGLs have been performed between the Tesat optical ground station and the two LEO satellites TerraSAR-X and NFIRE, both equipped with a Tesat LCT. The capability of the LCTs of measuring the signal intensity on a direct detection sensor and on a coherent sensor simultaneously makes the system unique for investigating the atmospheric distortion impacts. In this paper the main results of the SGL campaigns are presented, including BER performance for the uplink and downlink. Measured scintillation profiles versus elevation angles at different weather conditions are illustrated. Finally preliminary results of an adaptive optics system are presented that has been developed to be used in the transportable adaptive optical ground station (T-AOGS) acting as the counter terminal for the LCT mounted on Alphasat, a geostationary satellite of the European Space Agency (ESA), in autumn 2013.

  15. A home-built digital optical MRI console using high-speed serial links.

    PubMed

    Tang, Weinan; Wang, Weimin; Liu, Wentao; Ma, Yajun; Tang, Xin; Xiao, Liang; Gao, Jia-Hong

    2015-08-01

    To develop a high performance, cost-effective digital optical console for scalable multichannel MRI. The console system was implemented with flexibility and efficiency based on a modular architecture with distributed pulse sequencers. High-speed serial links were optimally utilized to interconnect the system, providing fast digital communication with a multi-gigabit data rate. The conventional analog radio frequency (RF) chain was replaced with a digital RF manipulation. The acquisition electronics were designed in close proximity to RF coils and preamplifiers, using a digital optical link to transmit the MR signal. A prototype of the console was constructed with a broad frequency range from direct current to 100 MHz. A temporal resolution of 1 μs was achieved for both the RF and gradient operations. The MR signal was digitized in the scanner room with an overall dynamic range between 16 and 24 bits and was transmitted to a master controller over a duplex optic fiber with a high data rate of 3.125 gigabits per second. High-quality phantom and human images were obtained using the prototype on both 0.36T and 1.5T clinical MRI scanners. A homemade digital optical MRI console with high-speed serial interconnection has been developed to better serve imaging research and clinical applications. © 2014 Wiley Periodicals, Inc.

  16. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation

    USGS Publications Warehouse

    Hansen, Angela; Kraus, Tamara; Pellerin, Brian; Fleck, Jacob; Downing, Bryan D.; Bergamaschi, Brian

    2016-01-01

    Advances in spectroscopic techniques have led to an increase in the use of optical properties (absorbance and fluorescence) to assess dissolved organic matter (DOM) composition and infer sources and processing. However, little information is available to assess the impact of biological and photolytic processing on the optical properties of original DOM source materials. We measured changes in commonly used optical properties and indices in DOM leached from peat soil, plants, and algae following biological and photochemical degradation to determine whether they provide unique signatures that can be linked to original DOM source. Changes in individual optical parameters varied by source material and process, with biodegradation and photodegradation often causing values to shift in opposite directions. Although values for different source materials overlapped at the end of the 111-day lab experiment, multivariate statistical analyses showed that unique optical signatures could be linked to original DOM source material even after degradation, with 17 optical properties determined by discriminant analysis to be significant (p<0.05) in distinguishing between DOM source and environmental processing. These results demonstrate that inferring the source material from optical properties is possible when parameters are evaluated in combination even after extensive biological and photochemical alteration.

  17. Research on Retro-reflecting Modulation in Space Optical Communication System

    NASA Astrophysics Data System (ADS)

    Zhu, Yifeng; Wang, Guannan

    2018-01-01

    Retro-reflecting modulation space optical communication is a new type of free space optical communication technology. Unlike traditional free space optical communication system, it applys asymmetric optical systems to reduce the size, weight and power consumption of the system and can effectively solve the limits of traditional free space optical communication system application, so it can achieve the information transmission. This paper introduces the composition and working principle of retro-reflecting modulation optical communication system, analyzes the link budget of this system, reviews the types of optical system and optical modulator, summarizes this technology future research direction and application prospects.

  18. Optical links in handheld multimedia devices

    NASA Astrophysics Data System (ADS)

    van Geffen, S.; Duis, J.; Miller, R.

    2008-04-01

    Ever emerging applications in handheld multimedia devices such as mobile phones, laptop computers, portable video games and digital cameras requiring increased screen resolutions are driving higher aggregate bitrates between host processor and display(s) enabling services such as mobile video conferencing, video on demand and TV broadcasting. Larger displays and smaller phones require complex mechanical 3D hinge configurations striving to combine maximum functionality with compact building volumes. Conventional galvanic interconnections such as Micro-Coax and FPC carrying parallel digital data between host processor and display module may produce Electromagnetic Interference (EMI) and bandwidth limitations caused by small cable size and tight cable bends. To reduce the number of signals through a hinge, the mobile phone industry, organized in the MIPI (Mobile Industry Processor Interface) alliance, is currently defining an electrical interface transmitting serialized digital data at speeds >1Gbps. This interface allows for electrical or optical interconnects. Above 1Gbps optical links may offer a cost effective alternative because of their flexibility, increased bandwidth and immunity to EMI. This paper describes the development of optical links for handheld communication devices. A cable assembly based on a special Plastic Optical Fiber (POF) selected for its mechanical durability is terminated with a small form factor molded lens assembly which interfaces between an 850nm VCSEL transmitter and a receiving device on the printed circuit board of the display module. A statistical approach based on a Lean Design For Six Sigma (LDFSS) roadmap for new product development tries to find an optimum link definition which will be robust and low cost meeting the power consumption requirements appropriate for battery operated systems.

  19. Active optics and the axisymmetric case: MINITRUST wide-field three-reflection telescopes with mirrors aspherized from tulip and vase forms

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.; Montiel, Pierre; Joulie, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2004-09-01

    Wide-field astronomy requires larger size telescopes. Compared to the catadioptric Schmidt, the optical properties of a three mirror telescope provides significant advantages. (1) The flat field design is anastigmatic at any wavelength, (2) the system is extremely compact -- four times shorter than a Schmidt -- and, (3) compared to a Schmidt with refractive corrector -- requiring the polishing of three optical surfaces --, the presently proposed Modified-Rumsey design uses all of eight available free parameters of a flat fielded anastigmatic three mirror telescope for mirrors generated by active optics methods. Compared to a Rumsey design, these parameters include the additional slope continuity condition at the primary-tertiary link for in-situ stressing and aspherization from a common sphere. Then, active optics allows the polishing of only two spherical surfaces: the combined primary-tertiary mirror and the secondary mirror. All mirrors are spheroids of the hyperboloid type. This compact system is of interest for space and ground-based astronomy and allows to built larger wide-field telescopes such as demonstrated by the design and construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° FOV, consisting of an in-situ stressed double vase form primary-tertiary and of a stress polished tulip form secondary. Optical tests of these telescopes, showing diffraction limited images, are presented.

  20. Cone Photoreceptor Structure in Patients With X-Linked Cone Dysfunction and Red-Green Color Vision Deficiency

    PubMed Central

    Patterson, Emily J.; Wilk, Melissa; Langlo, Christopher S.; Kasilian, Melissa; Ring, Michael; Hufnagel, Robert B.; Dubis, Adam M.; Tee, James J.; Kalitzeos, Angelos; Gardner, Jessica C.; Ahmed, Zubair M.; Sisk, Robert A.; Larsen, Michael; Sjoberg, Stacy; Connor, Thomas B.; Dubra, Alfredo; Neitz, Jay; Hardcastle, Alison J.; Neitz, Maureen; Michaelides, Michel; Carroll, Joseph

    2016-01-01

    Purpose Mutations in the coding sequence of the L and M opsin genes are often associated with X-linked cone dysfunction (such as Bornholm Eye Disease, BED), though the exact color vision phenotype associated with these disorders is variable. We examined individuals with L/M opsin gene mutations to clarify the link between color vision deficiency and cone dysfunction. Methods We recruited 17 males for imaging. The thickness and integrity of the photoreceptor layers were evaluated using spectral-domain optical coherence tomography. Cone density was measured using high-resolution images of the cone mosaic obtained with adaptive optics scanning light ophthalmoscopy. The L/M opsin gene array was characterized in 16 subjects, including at least one subject from each family. Results There were six subjects with the LVAVA haplotype encoded by exon 3, seven with LIAVA, two with the Cys203Arg mutation encoded by exon 4, and two with a novel insertion in exon 2. Foveal cone structure and retinal thickness was disrupted to a variable degree, even among related individuals with the same L/M array. Conclusions Our findings provide a direct link between disruption of the cone mosaic and L/M opsin variants. We hypothesize that, in addition to large phenotypic differences between different L/M opsin variants, the ratio of expression of first versus downstream genes in the L/M array contributes to phenotypic diversity. While the L/M opsin mutations underlie the cone dysfunction in all of the subjects tested, the color vision defect can be caused either by the same mutation or a gene rearrangement at the same locus. PMID:27447086

  1. Single-mode glass waveguide technology for optical interchip communication on board level

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a hybrid packaging process and design issues are discussed.

  2. Gigascale Silicon Photonic Transmitters Integrating HBT-based Carrier-injection Electroabsorption Modulator Structures

    NASA Astrophysics Data System (ADS)

    Fu, Enjin

    Demand for more bandwidth is rapidly increasing, which is driven by data intensive applications such as high-definition (HD) video streaming, cloud storage, and terascale computing applications. Next-generation high-performance computing systems require power efficient chip-to-chip and intra-chip interconnect yielding densities on the order of 1Tbps/cm2. The performance requirements of such system are the driving force behind the development of silicon integrated optical interconnect, providing a cost-effective solution for fully integrated optical interconnect systems on a single substrate. Compared to conventional electrical interconnect, optical interconnects have several advantages, including frequency independent insertion loss resulting in ultra wide bandwidth and link latency reduction. For high-speed optical transmitter modules, the optical modulator is a key component of the optical I/O channel. This thesis presents a silicon integrated optical transmitter module design based on a novel silicon HBT-based carrier injection electroabsorption modulator (EAM), which has the merits of wide optical bandwidth, high speed, low power, low drive voltage, small footprint, and high modulation efficiency. The structure, mechanism, and fabrication of the modulator structure will be discussed which is followed by the electrical modeling of the post-processed modulator device. The design and realization of a 10Gbps monolithic optical transmitter module integrating the driver circuit architecture and the HBT-based EAM device in a 130nm BiCMOS process is discussed. For high power efficiency, a 6Gbps ultra-low power driver IC implemented in a 130nm BiCMOS process is presented. The driver IC incorporates an integrated 27-1 pseudo-random bit sequence (PRBS) generator for reliable high-speed testing, and a driver circuit featuring digitally-tuned pre-emphasis signal strength. With outstanding drive capability, the driver module can be applied to a wide range of carrier injection modulators and light-emitting diodes (LED) with drive voltage requirements below 1.5V. Measurement results show an optical link based on a 70MHz red LED work well at 300Mbps by using the pre-emphasis driver module. A traveling wave electrode (TWE) modulator structure is presented, including a novel design methodology to address process limitations imposed by a commercial silicon fabrication technology. Results from 3D full wave EM simulation demonstrate the application of the design methodology to achieve specifications, including phase velocity matching, insertion loss, and impedance matching. Results show the HBT-based TWE-EAM system has the bandwidth higher than 60GHz.

  3. RF Photonic Technology in Optical Fiber Links

    NASA Astrophysics Data System (ADS)

    Chang, William S. C.

    2007-06-01

    List of contributors; Introduction and preface; 1. Figures of merit and performance analysis of photonic microwave links Charles Cox and William S. C. Chang; 2. RF subcarrier links in local access networks Xiaolin Lu; 3. Analog modulation of semiconductor lasers Joachim Piprek and John E. Bowers; 4. LiNbO3 external modulators and their use in high performance analog links Gary E. Betts; 5. Broadband traveling wave modulators in LiNbO3 Marta M. Howerton and William K. Burns; 6. Multiple quantum well electroabsorption modulators for RF photonic links William S. C. Chang; 7. Polymer modulators for RF photonics Timothy Van Eck; 8. Photodiodes for high performance analog links P. K. L. Yu and Ming C. Wu; 9. Opto-electronic oscillators X. Steve Yao; 10. Photonic link techniques for microwave frequency conversion Stephen A. Pappert, Roger Helkey and Ronald T. Logan Jr; 11. Antenna-coupled millimeter-wave electro-optical modulators William B. Bridges; 12. System design and performance of wideband photonic phased array antennas Greg L. Tangonan, Willie Ng, Daniel Yap and Ron Stephens; Acknowledgements; References; Index.

  4. The aero optics effect on near space laser communication optical system

    NASA Astrophysics Data System (ADS)

    Hu, Yuan; Fu, Yuegang; Jiang, Huilin

    2013-08-01

    With the developing of the space laser communication link, the performance index including higher transfer speed, extending transfer distance, and environmental adaptability, all ask the system accuracy and indexes improving. Special the developing near space platform, its environmental is extremes, the near space drone and other airplane flight speed is very quickly from the subsonic to supersonic. The aero optics effect caused by high speed will generate a thin turbulent air layer. It affects the performance of laser communication optical system by laser light vibration, deviation and so on, further more affects the performance of laser communication system working performance, even can't communication. Therefore, for achieving optical system indexes, we need do more research in optical system near space aero optics environmental adaptability. In this paper, near space link environmental characteristic are researched. And on the base of the aero optics theory, computer simulating method is applied to analyze the relationship among the altitude, the flight speed and the image dispersion. The result shows that, the aero optics effect cannot be ignored when the terminal is in low altitude or is moving with supersonic speed. The effect must be taken into considered from overall design. The result will provide the basis of research design.

  5. Experimental FSO network availability estimation using interactive fog condition monitoring

    NASA Astrophysics Data System (ADS)

    Turán, Ján.; Ovseník, Łuboš

    2016-12-01

    Free Space Optics (FSO) is a license free Line of Sight (LOS) telecommunication technology which offers full duplex connectivity. FSO uses infrared beams of light to provide optical broadband connection and it can be installed literally in a few hours. Data rates go through from several hundreds of Mb/s to several Gb/s and range is from several 100 m up to several km. FSO link advantages: Easy connection establishment, License free communication, No excavation are needed, Highly secure and safe, Allows through window connectivity and single customer service and Compliments fiber by accelerating the first and last mile. FSO link disadvantages: Transmission media is air, Weather and climate dependence, Attenuation due to rain, snow and fog, Scattering of laser beam, Absorption of laser beam, Building motion and Air pollution. In this paper FSO availability evaluation is based on long term measured data from Fog sensor developed and installed at TUKE experimental FSO network in TUKE campus, Košice, Slovakia. Our FSO experimental network has three links with different physical distances between each FSO heads. Weather conditions have a tremendous impact on FSO operation in terms of FSO availability. FSO link availability is the percentage of time over a year that the FSO link will be operational. It is necessary to evaluate the climate and weather at the actual geographical location where FSO link is going to be mounted. It is important to determine the impact of a light scattering, absorption, turbulence and receiving optical power at the particular FSO link. Visibility has one of the most critical influences on the quality of an FSO optical transmission channel. FSO link availability is usually estimated using visibility information collected from nearby airport weather stations. Raw data from fog sensor (Fog Density, Relative Humidity, Temperature measured at each ms) are collected and processed by FSO Simulator software package developed at our Department. Based on FSO link data the FSO link and experimental FSO network availability was estimated for years from 2007 up to 2015. The average FSO network availability up to 98,3378 % was measured (for the BER 10-9). From the experimental data also Hybrid RF/FSO link availability was evaluated. As the weather conditions for FSO and RF link are complementary (FSO works well in rain and RF works well in fog) Hybrid FSO/RF system long time average availability was much better up to 99,9986 %.

  6. 45 Km Horizontal Path Optical Link Experiment

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Ceniceros, J.; Novak, M.; Jeganathan, M.; Portillo, A.; Erickson, D.; Depew, J.; Sanii, B.; Lesh, J. R.

    2000-01-01

    Mountain-top to mountain-top optical link experiments have been initiated at JPL, in order to perform a systems level evaluation of optical communications. Progress made so far is reported. ne NASA, JPL developed optical communications demonstrator (OCD) is used to transmit a laser signal from Strawberry Peak (SP), located in the San Bernadino mountains of California. This laser beam is received by a 0.6 m aperture telescope at JPL's Table Mountain Facility (TMF), located in Wrightwood, California. The optical link is bi-directional with the TMF telescope transmitting a continuous 4-wave (cw) 780 run beacon and the OCD sending back a 840 nm, 100 - 500 Mbps pseudo noise (PN) modulated, laser beam. The optical link path is at an average altitude of 2 km above sea level, covers a range of 46.8 km and provides an atmospheric channel equivalent to approx. 4 air masses. Average received power measured at either end fall well within the uncertainties predicted by link analysis. The reduction in normalized intensity variance (sigma(sup 2, sub I)) for the 4-beam beacon, compared to each individual beam, at SP, was from approx. 0.68 to 0.22. With some allowance for intra-beam mis-alignment, this is consistent with incoherent averaging. The sigma(sup2, sub I) measured at TMF approx. 0.43 +/- 0.22 exceeded the expected aperture averaged value of less than 0.1, probably because of beam wander. The focused spot sizes of approx. 162 +/- 6 microns at the TMF Coude and approx. 64 +/- 3 microns on the OCD compare to the predicted size range of 52 - 172 microns and 57 - 93 microns, respectively. This is consistent with 4 - 5 arcsec of atmospheric "seeing". The preliminary evaluation of OCD's fine tracking indicates that the uncompensated tracking error is approx. 3.3 micro rad compared to approx. 1.7 micro rad observed in the laboratory. Fine tracking performance was intermittent, primarily due to beacon fades on the OCD tracking sensor. The best bit error rates observed while tracking worked were 1E-5 to 1E-6.

  7. Can 100Gb/s wavelengths be deployed using 10Gb/s engineering rules?

    NASA Astrophysics Data System (ADS)

    Saunders, Ross; Nicholl, Gary; Wollenweber, Kevin; Schmidt, Ted

    2007-09-01

    A key challenge set by carriers for 40Gb/s deployments was that the 40Gb/s wavelengths should be deployable over existing 10Gb/s DWDM systems, using 10Gb/s link engineering design rules. Typical 10Gb/s link engineering rules are: 1. Polarization Mode Dispersion (PMD) tolerance of 10ps (mean); 2. Chromatic Dispersion (CD) tolerance of +/-700ps/nm 3. Operation at 50GHz channel spacing, including transit through multiple cascaded [R]OADMs; 4. Optical reach up to 2,000km. By using a combination of advanced modulation formats and adaptive dispersion compensation (technologies rarely seen at 10Gb/s outside of the submarine systems space), vendors did respond to the challenge and broadly met this requirement. As we now start to explore feasible technologies for 100Gb/s optical transport, driven by 100GE port availability on core IP routers, the carrier challenge remains the same. 100Gb/s links should be deployable over existing 10Gb/s DWDM systems using 10Gb/s link engineering rules (as listed above). To meet this challenge, optical transport technology must evolve to yet another level of complexity/maturity in both modulation formats and adaptive compensation techniques. Many clues as to how this might be achieved can be gained by first studying sister telecommunications industries, e.g. satellite (QPSK, QAM, LDCP FEC codes), wireless (advanced DSP, MSK), HDTV (TCM), etc. The optical industry is not a pioneer of new ideas in modulation schemes and coding theory, we will always be followers. However, we do have the responsibility of developing the highest capacity "modems" on the planet to carry the core backbone traffic of the Internet. As such, the key to our success will be to analyze the pros and cons of advanced modulation/coding techniques and balance this with the practical limitations of high speed electronics processing speed and the challenges of real world optical layer impairments. This invited paper will present a view on what advanced technologies are likely candidates to support 100GE optical IP transport over existing 10Gb/s DWDM systems, using 10Gb/s link engineering rules.

  8. Spastic paraplegia gene 7 in patients with spasticity and/or optic neuropathy

    PubMed Central

    Klebe, Stephan; Depienne, Christel; Gerber, Sylvie; Challe, Georges; Anheim, Mathieu; Charles, Perrine; Fedirko, Estelle; Lejeune, Elodie; Cottineau, Julien; Brusco, Alfredo; Dollfus, Hélène; Chinnery, Patrick F.; Mancini, Cecilia; Ferrer, Xavier; Sole, Guilhem; Destée, Alain; Mayer, Jean-Michel; Fontaine, Bertrand; de Seze, Jérôme; Clanet, Michel; Ollagnon, Elisabeth; Busson, Philippe; Cazeneuve, Cécile; Stevanin, Giovanni; Kaplan, Josseline; Rozet, Jean-Michel; Brice, Alexis

    2012-01-01

    Mutations in the spastic paraplegia 7 (SPG7) gene encoding paraplegin are responsible for autosomal recessive hereditary spasticity. We screened 135 unrelated index cases, selected in five different settings: SPG7-positive patients detected during SPG31 analysis using SPG31/SPG7 multiplex ligation-dependent probe amplification (n = 7); previously reported ambiguous SPG7 cases (n = 5); patients carefully selected on the basis of their phenotype (spasticity of the lower limbs with cerebellar signs and/or cerebellar atrophy on magnetic resonance imaging/computer tomography scan and/or optic neuropathy and without other signs) (n = 24); patients with hereditary spastic paraparesis referred consecutively from attending neurologists and the national reference centre in a diagnostic setting (n = 98); and the index case of a four-generation family with autosomal dominant optic neuropathy but no spasticity linked to the SPG7 locus. We identified two SPG7 mutations in 23/134 spastic patients, 21% of the patients selected according to phenotype but only 8% of those referred directly. Our results confirm the pathogenicity of Ala510Val, which was the most frequent mutation in our series (65%) and segregated at the homozygous state with spastic paraparesis in a large family with autosomal recessive inheritance. All SPG7-positive patients tested had optic neuropathy or abnormalities revealed by optical coherence tomography, indicating that abnormalities in optical coherence tomography could be a clinical biomarker for SPG7 testing. In addition, the presence of late-onset very slowly progressive spastic gait (median age 39 years, range 18–52 years) associated with cerebellar ataxia (39%) or cerebellar atrophy (47%) constitute, with abnormal optical coherence tomography, key features pointing towards SPG7-testing. Interestingly, three relatives of patients with heterozygote SPG7 mutations had cerebellar signs and atrophy, or peripheral neuropathy, but no spasticity of the lower limbs, suggesting that SPG7 mutations at the heterozygous state might predispose to late-onset neurodegenerative disorders, mimicking autosomal dominant inheritance. Finally, a novel missense SPG7 mutation at the heterozygous state (Asp411Ala) was identified as the cause of autosomal dominant optic neuropathy in a large family, indicating that some SPG7 mutations can occasionally be dominantly inherited and be an uncommon cause of isolated optic neuropathy. Altogether, these results emphasize the clinical variability associated with SPG7 mutations, ranging from optic neuropathy to spastic paraplegia, and support the view that SPG7 screening should be carried out in both conditions. PMID:23065789

  9. Qubit-Programmable Operations on Quantum Light Fields

    PubMed Central

    Barbieri, Marco; Spagnolo, Nicolò; Ferreyrol, Franck; Blandino, Rémi; Smith, Brian J.; Tualle-Brouri, Rosa

    2015-01-01

    Engineering quantum operations is a crucial capability needed for developing quantum technologies and designing new fundamental physics tests. Here we propose a scheme for realising a controlled operation acting on a travelling continuous-variable quantum field, whose functioning is determined by a discrete input qubit. This opens a new avenue for exploiting advantages of both information encoding approaches. Furthermore, this approach allows for the program itself to be in a superposition of operations, and as a result it can be used within a quantum processor, where coherences must be maintained. Our study can find interest not only in general quantum state engineering and information protocols, but also details an interface between different physical platforms. Potential applications can be found in linking optical qubits to optical systems for which coupling is best described in terms of their continuous variables, such as optomechanical devices. PMID:26468614

  10. Nonimaging optics maximizing exergy for hybrid solar system

    NASA Astrophysics Data System (ADS)

    Winston, Roland; Jiang, Lun; Abdelhamid, Mahmoud; Widyolar, Bennett K.; Ferry, Jonathan; Cygan, David; Abbasi, Hamid; Kozlov, Alexandr; Kirk, Alexander; Elarde, Victor; Osowski, Mark

    2016-09-01

    The project team of University of California at Merced (UC-Merced), Gas Technology Institute (GTI) and MicroLink Devices Inc. (MicroLink) are developing a hybrid solar system using a nonimaging compound parabolic concentrator (CPC) that maximizes the exergy by delivering direct electricity and on-demand heat. The hybrid solar system technology uses secondary optics in a solar receiver to achieve high efficiency at high temperature, collects heat in particles and uses reflective liftoff cooled double junction (2J) InGaP/GaAs solar cells with backside infrared (IR) reflectors on the secondary optical element to raise exergy efficiency. The nonimaging optics provides additional concentration towards the high temperature thermal stream and enables it to operate efficiently at 650 °C while the solar cell is maintained at 40 °C to operate as efficiently as possible.

  11. Juvenile Macular Degenerations

    PubMed Central

    Altschwager, Pablo; Ambrosio, Lucia; Swanson, Emily A.; Moskowitz, Anne; Fulton, Anne B.

    2017-01-01

    In this paper we review three common juvenile macular degenerations: Stargardt disease, X-linked retinoschisis, and Best vitelliform macular dystrophy. These are inherited disorders that typically present during childhood, when vision is still developing. They are sufficiently common that they should be included in the differential diagnosis of visual loss in pediatric patients. Diagnosis is secured by a combination of clinical findings, optical coherence tomography (OCT) imaging, and genetic testing. Early diagnosis promotes optimal management. While there is currently no definitive cure for these conditions, therapeutic modalities under investigation include pharmacologic treatment, gene therapy, and stem cell transplantation. PMID:28941524

  12. Laser Ground System for Communication Experiments with ARTEMIS

    NASA Astrophysics Data System (ADS)

    Kuzkov, Volodymyr; Volovyk, Dmytro; Kuzkov, Sergii; Sodnik, Zoran; Pukha, Sergii; Caramia, Vincenzo

    2012-10-01

    The ARTEMIS satellite with the OPALE laser communication terminal on-board was launched on 12 July, 2001. 1789 laser communications sessions were performed between ARTEMIS and SPOT-4 (PASTEL) from 01 April 2003 to 09 January 2008 with total duration of 378 hours. Regular laser communication experiments between ESA's Optical Ground Station (OGS - altitude 2400 m above see level) and ARTEMIS in various atmosphere conditions were also performed. The Japanese Space Agency (JAXA) launched the KIRARI (OICETS) satellite with laser communication terminal called LUCE. Laser communication links between KIRARI and ARTEMIS were successfully realized and international laser communications experiments from the KIRARI satellite were also successfully performed with optical ground stations located in the USA (JPL), Spain (ESA OGS), Germany (DLR), and Japan (NICT). The German Space Agency (DLR) performed laser communication links between two LEO satellites (TerraSAR-X and NFIRE), demonstrating data transfer rates of 5.6Gbit/s and performed laser communication experiments between the satellites and the ESA optical ground station. To reduce the influence of weather conditions on laser communication between satellites and ground stations, a network of optical stations situated in different atmosphere regions needs to be created. In 2002, the Main Astronomical Observatory (MAO) started the development of its own laser communication system to be placed into the Cassegrain focus of its 0.7m AZT-2 telescope (Fe = 10.5m), located in Kyiv 190 meters above sea level. The work was supported by the National Space Agency of Ukraine and by ESA ARTEMIS has an orbital position of 21.4° E and an orbital inclination of more than 9.75°. As a result we developed a precise tracking system for AZT-2 telescope (weighing more than 2 tons) using micro-step motors. Software was developed for computer control of the telescope to track the satellite's orbit and a tracking accuracy of 0.6 arcsec was achieved. A compact terminal for Laser Atmosphere and Communication Experiments with Satellite (LACES) has been produced. The LACES terminal includes: A CMOS camera of the pointing subsystem, a CCD camera of the tracking subsystem, an avalanche photodiode receiver module with thermoelectric cooling, a laser transmitter module with thermoelectric temperature control, a tip/tilt atmospheric turbulence compensation subsystem with movable mirrors, a four-quadrant photo-detector, a bit error rate tester module and other optical and electronic components. The principal subsystems and optical elements are mounted on a platform (weight < 20kg), which is located in the Cassegrain focus of the telescope. All systems were tested with ARTEMIS. The telemetry and dump buffer information from OPALE received by the control center in Redu (Belgium) was analyzed. During the beacon scan, the acquisition phase of laser link between OPALE laser terminal of ARTEMIS and LACES laser terminal started and laser signals from AZT-2 were detected by acquisition and tracking CCD sensors of OPALE. Some of the tests were performed in cloudy conditions. A description of our laser ground system and the experimental results will be presented in the report.

  13. CBM First-level Event Selector Input Interface Demonstrator

    NASA Astrophysics Data System (ADS)

    Hutter, Dirk; de Cuveland, Jan; Lindenstruth, Volker

    2017-10-01

    CBM is a heavy-ion experiment at the future FAIR facility in Darmstadt, Germany. Featuring self-triggered front-end electronics and free-streaming read-out, event selection will exclusively be done by the First Level Event Selector (FLES). Designed as an HPC cluster with several hundred nodes its task is an online analysis and selection of the physics data at a total input data rate exceeding 1 TByte/s. To allow efficient event selection, the FLES performs timeslice building, which combines the data from all given input links to self-contained, potentially overlapping processing intervals and distributes them to compute nodes. Partitioning the input data streams into specialized containers allows performing this task very efficiently. The FLES Input Interface defines the linkage between the FEE and the FLES data transport framework. A custom FPGA PCIe board, the FLES Interface Board (FLIB), is used to receive data via optical links and transfer them via DMA to the host’s memory. The current prototype of the FLIB features a Kintex-7 FPGA and provides up to eight 10 GBit/s optical links. A custom FPGA design has been developed for this board. DMA transfers and data structures are optimized for subsequent timeslice building. Index tables generated by the FPGA enable fast random access to the written data containers. In addition the DMA target buffers can directly serve as InfiniBand RDMA source buffers without copying the data. The usage of POSIX shared memory for these buffers allows data access from multiple processes. An accompanying HDL module has been developed to integrate the FLES link into the front-end FPGA designs. It implements the front-end logic interface as well as the link protocol. Prototypes of all Input Interface components have been implemented and integrated into the FLES test framework. This allows the implementation and evaluation of the foreseen CBM read-out chain.

  14. VCSELs for datacom applications

    NASA Astrophysics Data System (ADS)

    Wipiejewski, Torsten; Wolf, Hans-Dieter; Korte, Lutz; Huber, Wolfgang; Kristen, Guenter; Hoyler, Charlotte; Hedrich, Harald; Kleinbub, Oliver; Albrecht, Tony; Mueller, Juergen; Orth, Andreas; Spika, Zeljko; Lutgen, Stephan; Pflaeging, Hartwig; Harrasser, Joerg; Droegemueller, Karsten; Plickert, Volker; Kuhl, Detlef; Blank, Juergen; Pietsch, Doris; Stange, Herwig; Karstensen, Holger

    1999-04-01

    The use of oxide confined VCSELs in datacom applications is demonstrated. The devices exhibit low threshold currents of approximately 3 mA and low electrical series resistance of about 50 (Omega) . The emission wavelength is in the 850 nm range. Life times of the devices are several million hours under normal operating conditions. VCSEL arrays are employed in a high performance parallel optical link called PAROLITM. This optical ink provides 12 parallel channels with a total bandwidth exceeding 12 Gbit/s. The VCSELs optimized for the parallel optical link show excellent threshold current uniformity between channels of < 50 (mu) A. The array life time drops compared to a single device, but is still larger than 1 million hours.

  15. Absolute frequency measurement of the ? optical clock transition in ? with an uncertainty of ? using a frequency link to international atomic time

    NASA Astrophysics Data System (ADS)

    Baynham, Charles F. A.; Godun, Rachel M.; Jones, Jonathan M.; King, Steven A.; Nisbet-Jones, Peter B. R.; Baynes, Fred; Rolland, Antoine; Baird, Patrick E. G.; Bongs, Kai; Gill, Patrick; Margolis, Helen S.

    2018-03-01

    The highly forbidden ? electric octupole transition in ? is a potential candidate for a redefinition of the SI second. We present a measurement of the absolute frequency of this optical transition, performed using a frequency link to International Atomic Time to provide traceability to the SI second. The ? optical frequency standard was operated for 76% of a 25-day period, with the absolute frequency measured to be 642 121 496 772 645.14(26) Hz. The fractional uncertainty of ? is comparable to that of the best previously reported measurement, which was made by a direct comparison to local caesium primary frequency standards.

  16. system aspects of optical LEO-to-ground links

    NASA Astrophysics Data System (ADS)

    Giggenbach, D.; Shrestha, A.; Fuchs, C.; Schmidt, C.; Moll, F.

    2017-09-01

    Optical Direct-to-Ground data links for earth-observation satellites will offer channel rates of several Gbps, together with low transmit powers and small terminal mass and also rather small ground receiver antennas. The avoidance of any signal spectrum limitation issues might be the most important advantage versus classical RF-technology. The effects of optical atmospheric signal attenuation, and the fast signal fluctuations induced by atmospheric index-of-refraction turbulence and sporadic miss-pointing-fading, require the use of adaptive signal formats together with fading mitigation techniques. We describe the typical downlink scenario, introduce the four different modes of data rate variation, and evaluate different methods of rate-adaptive modulation formats and repetition coding techniques.

  17. Rogue Waves and Extreme Events in Optics - Challenges and Questions

    NASA Astrophysics Data System (ADS)

    Dudley, John; Lacourt, Pierre-Ambroise; Genty, Goery; Dias, Frederic; Akhmediev, Nail

    2010-05-01

    A central challenge in understanding extreme events in physics is to develop rigorous models linking the complex generation dynamics and the associated statistical behavior. Quantitative studies of extreme phenomena, however, are often hampered in two ways: (i) the intrinsic scarcity of the events under study and (ii) the fact that such events often appear in environments where measurements are difficult. A particular case of interest concerns the infamous oceanic rogue waves that have been associated with many catastrophic maritime disasters. Studying rogue waves under controlled conditions is problematic, and the phenomenon remains a subject of intensive research. On the other hand, there are many qualitative and quantitative links between wave propagation in optics and in hydrodynamics, and it is thus natural to consider to what degree (if any) insights from studying instability phenomena in optics can be applied to other systems. In this context, significant experiments were reported by Solli et al. in late 2007 ["Optical rogue waves," Nature 450, 1054 (2007)], where a wavelength-to-time detection technique allowed the direct characterization of shot-to-shot instabilities in the extreme nonlinear optical spectral broadening process of supercontinuum generation. Specifically, although the process of supercontinuum generation is well-known to exhibit fluctuations in both the time and frequency domains, Solli et al. have shown that these fluctuations contain a small number of statistically-rare "rogue" events associated with a greatly enhanced spectral bandwidth and the generation of localized temporal solitons with greatly increased intensity. Crucially, because these experiments were performed in a regime where modulation instability (MI) plays a key role in the dynamics, an analogy was drawn with hydrodynamic rogue waves, whose origin and dynamics has also been discussed in terms of MI or, as it often referred to in hydrodynamics, the Benjamin-Feir instability. The analogy between the appearance of localized structures in optics and the rogue waves on the ocean's surface is both intriguing and attractive, as it opens up possibilities to explore the extreme value dynamics in a convenient benchtop optical environment. In addition to the proposed links with solitons suggested by Solli et al., other recent studies motivated from an optical context have experimentally demonstrated links with nonlinear breather propagation. The purpose of this paper will be to discuss these results that have been obtained in optics, and to consider possible similarities and differences with oceanic rogue wave counterparts.

  18. ImNet: a fiber optic network with multistar topology for high-speed data transmission

    NASA Astrophysics Data System (ADS)

    Vossebuerger, F.; Keizers, Andreas; Soederman, N.; Meyer-Ebrecht, Dietrich

    1993-10-01

    ImNet is a fiber-optic local area network, which has been developed for high speed image communication in Picture Archiving and Communication Systems (PACS). A comprehensive analysis of image communication requirements in hospitals led to the conclusion that there is a need for networks which are optimized for the transmission of large datafiles. ImNet is optimized for this application in contrast to current-state LANs. ImNet consists of two elements: a link module and a switch module. The point-to-point link module can be up to 4 km by using fiber optic cable. For short distances up to 100 m a cheaper module using shielded twisted pair cable is available. The link module works bi-directionally and handles all protocols up to OSI-Level 3. The data rate per link is up to 140 MBit/s (clock rate 175 MHz). The switch module consists of the control unit and the cross-point-switch array. The array has up to fourteen interfaces for link modules. Up to fourteen data transfers each with a maximal transfer rate of 400 MBit/s can be handled at the same time. Thereby the maximal throughput of a switch module is 5.6 GBit/s. Out of these modules a multi-star network can be built i.e., an arbitrary tree structure of stars. This topology allows multiple transmissions at the same time as long as they do not require identical links. Therefore the overall throughput of ImNet can be a multiple of the datarate per link.

  19. Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator.

    PubMed

    Kim, Seong-Ku; Liu, Wei; Pei, Qibing; Dalton, Larry R; Fetterman, Harold R

    2011-04-11

    A linearized dual parallel Mach-Zehnder modulator (DPMZM) based on electro-optic (EO) polymer was both fabricated, and experimentally used to suppress the third-order intermodulation distortion (IMD3) in a coherent analog fiber optic link. This optical transmitter design was based on a new EO chromophore called B10, which was synthesized for applications dealing with the fiber-optic communication systems. The chromophore was mixed with amorphous polycarbonate (APC) to form the waveguide's core material. The DPMZM was configured with two MZMs, of different lengths in parallel, with unbalanced input and output couplers and a phase shifter in one arm. In this configuration each of the MZMs carried a different optical power, and imposed a different depth of optical modulation. When the two optical beams from the MZMs were combined to generate the transmitted signal it was possible to set the IMD3 produced by each modulator to be equal in amplitude but 180° out of phase from the other. Therefore, the resulting IMD3 of the DPMZM transmitter was effectively canceled out during two-tone experiments. A reduction of the IMD3 below the noise floor was observed while leaving fifth-order distortion (IMD5) as the dominant IMD product. This configuration has the capability of broadband operation and shot-noise limited operation simultaneously. © 2011 Optical Society of America

  20. Misalignment corrections in optical interconnects

    NASA Astrophysics Data System (ADS)

    Song, Deqiang

    Optical interconnects are considered a promising solution for long distance and high bitrate data transmissions, outperforming electrical interconnects in terms of loss and dispersion. Due to the bandwidth and distance advantage of optical interconnects, longer links have been implemented with optics. Recent studies show that optical interconnects have clear advantages even at very short distances---intra system interconnects. The biggest challenge for such optical interconnects is the alignment tolerance. Many free space optical components require very precise assembly and installation, and therefore the overall cost could be increased. This thesis studied the misalignment tolerance and possible alignment correction solutions for optical interconnects at backplane or board level. First the alignment tolerance for free space couplers was simulated and the result indicated the most critical alignments occur between the VCSEL, waveguide and microlens arrays. An in-situ microlens array fabrication method was designed and experimentally demonstrated, with no observable misalignment with the waveguide array. At the receiver side, conical lens arrays were proposed to replace simple microlens arrays for a larger angular alignment tolerance. Multilayer simulation models in CodeV were built to optimized the refractive index and shape profiles of the conical lens arrays. Conical lenses fabricated with micro injection molding machine and fiber etching were characterized. Active component VCSOA was used to correct misalignment in optical connectors between the board and backplane. The alignment correction capability were characterized for both DC and AC (1GHz) optical signal. The speed and bandwidth of the VCSOA was measured and compared with a same structure VCSEL. Based on the optical inverter being studied in our lab, an all-optical flip-flop was demonstrated using a pair of VCSOAs. This memory cell with random access ability can store one bit optical signal with set or reset beam. The operating conditions were studied to generate two stable states between the VCSOA pair. The entire functionality test was implemented with free space optical components.

Top