Optics & Materials Science & Technology (OMST) Organization at LLNL
Suratwala,; Tayyab,; Nguyen, Hoang; Bude, Jeff; Dylla-Spears, Rebecca
2018-06-13
The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategy today.
Optics & Materials Science & Technology (OMST) Organization at LLNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suratwala,; Tayyab,; Nguyen, Hoang
The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategymore » today.« less
Optical Computers and Space Technology
NASA Technical Reports Server (NTRS)
Abdeldayem, Hossin A.; Frazier, Donald O.; Penn, Benjamin; Paley, Mark S.; Witherow, William K.; Banks, Curtis; Hicks, Rosilen; Shields, Angela
1995-01-01
The rapidly increasing demand for greater speed and efficiency on the information superhighway requires significant improvements over conventional electronic logic circuits. Optical interconnections and optical integrated circuits are strong candidates to provide the way out of the extreme limitations imposed on the growth of speed and complexity of nowadays computations by the conventional electronic logic circuits. The new optical technology has increased the demand for high quality optical materials. NASA's recent involvement in processing optical materials in space has demonstrated that a new and unique class of high quality optical materials are processible in a microgravity environment. Microgravity processing can induce improved orders in these materials and could have a significant impact on the development of optical computers. We will discuss NASA's role in processing these materials and report on some of the associated nonlinear optical properties which are quite useful for optical computers technology.
Integrated optics technology study
NASA Technical Reports Server (NTRS)
Chen, B.; Findakly, T.; Innarella, R.
1982-01-01
The status and near term potential of materials and processes available for the fabrication of single mode integrated electro-optical components are discussed. Issues discussed are host material and orientation, waveguide formation, optical loss mechanisms, wavelength selection, polarization effects and control, laser to integrated optics coupling fiber optic waveguides to integrated optics coupling, sources, and detectors. Recommendations of the best materials, technology, and processes for fabrication of integrated optical components for communications and fiber gyro applications are given.
Recent Advances in Photonic Devices for Optical Computing and the Role of Nonlinear Optics-Part II
NASA Technical Reports Server (NTRS)
Abdeldayem, Hossin; Frazier, Donald O.; Witherow, William K.; Banks, Curtis E.; Paley, Mark S.
2007-01-01
The twentieth century has been the era of semiconductor materials and electronic technology while this millennium is expected to be the age of photonic materials and all-optical technology. Optical technology has led to countless optical devices that have become indispensable in our daily lives in storage area networks, parallel processing, optical switches, all-optical data networks, holographic storage devices, and biometric devices at airports. This chapters intends to bring some awareness to the state-of-the-art of optical technologies, which have potential for optical computing and demonstrate the role of nonlinear optics in many of these components. Our intent, in this Chapter, is to present an overview of the current status of optical computing, and a brief evaluation of the recent advances and performance of the following key components necessary to build an optical computing system: all-optical logic gates, adders, optical processors, optical storage, holographic storage, optical interconnects, spatial light modulators and optical materials.
Development of New Electro-Optic and Acousto-Optic Materials.
1983-11-01
Improved materials are required for active optical devices, including electro - optic and acousto-optic modulators, switches and tunable filters, as...many microwave applications. In addition, electro - optic and acousto-optic devices are materials limited because the materials currently available are...these materials for applications involving the electro - optic effect, degenerate four-wave mixing and surface acoustic wave technology.
Integrated optics technology study
NASA Technical Reports Server (NTRS)
Chen, B.
1982-01-01
The materials and processes available for the fabrication of single mode integrated electrooptical components are described. Issues included in the study are: (1) host material and orientation, (2) waveguide formation, (3) optical loss mechanisms, (4) wavelength selection, (5) polarization effects and control, (6) laser to integrated optics coupling,(7) fiber optic waveguides to integrated optics coupling, (8) souces, (9) detectors. The best materials, technology and processes for fabrication of integrated optical components for communications and fiber gyro applications are recommended.
Nano-Bio Quantum Technology for Device-Specific Materials
NASA Technical Reports Server (NTRS)
Choi, Sang H.
2009-01-01
The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.
A Review of Optical NDT Technologies
Zhu, Yong-Kai; Tian, Gui-Yun; Lu, Rong-Sheng; Zhang, Hong
2011-01-01
Optical non-destructive testing (NDT) has gained more and more attention in recent years, mainly because of its non-destructive imaging characteristics with high precision and sensitivity. This paper provides a review of the main optical NDT technologies, including fibre optics, electronic speckle, infrared thermography, endoscopic and terahertz technology. Among them, fibre optics features easy integration and embedding, electronic speckle focuses on whole-field high precision detection, infrared thermography has unique advantages for tests of combined materials, endoscopic technology provides images of the internal surface of the object directly, and terahertz technology opens a new direction of internal NDT because of its excellent penetration capability to most of non-metallic materials. Typical engineering applications of these technologies are illustrated, with a brief introduction of the history and discussion of recent progress. PMID:22164045
Perspective and potential of smart optical materials
NASA Astrophysics Data System (ADS)
Choi, Sang H.; Duzik, Adam J.; Kim, Hyun-Jung; Park, Yeonjoon; Kim, Jaehwan; Ko, Hyun-U.; Kim, Hyun-Chan; Yun, Sungryul; Kyung, Ki-Uk
2017-09-01
The increasing requirements of hyperspectral imaging optics, electro/photo-chromic materials, negative refractive index metamaterial optics, and miniaturized optical components from micro-scale to quantum-scale optics have all contributed to new features and advancements in optics technology. Development of multifunctional capable optics has pushed the boundaries of optics into new fields that require new disciplines and materials to maximize the potential benefits. The purpose of this study is to understand and show the fundamental materials and fabrication technology for field-controlled spectrally active optics (referred to as smart optics) that are essential for future industrial, scientific, military, and space applications, such as membrane optics, filters, windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, and flat-panel displays. The proposed smart optics are based on the Stark and Zeeman effects in materials tailored with quantum dot arrays and thin films made from readily polarizable materials via ferroelectricity or ferromagnetism. Bound excitonic states of organic crystals are also capable of optical adaptability, tunability, and reconfigurability. To show the benefits of smart optics, this paper reviews spectral characteristics of smart optical materials and device technology. Experiments testing the quantum-confined Stark effect, arising from rare earth element doping effects in semiconductors, and applied electric field effects on spectral and refractive index are discussed. Other bulk and dopant materials were also discovered to have the same aspect of shifts in spectrum and refractive index. Other efforts focus on materials for creating field-controlled spectrally smart active optics on a selected spectral range. Surface plasmon polariton transmission of light through apertures is also discussed, along with potential applications. New breakthroughs in micro scale multiple zone plate optics as a micro convex lens are reviewed, along with the newly discovered pseudo-focal point not predicted with conventional optics modeling. Micron-sized solid state beam scanner chips for laser waveguides are reviewed as well.
NASA Astrophysics Data System (ADS)
Saito, Theodore T.; Langenbeck, Sharon L.; Al-Jamily, Ghanim; Arnold, Joe; Barbee, Troy; Coulter, Dan; Dolgin, Ben; Fichter, Buck; George, Patricia; Gorenstein, Paul
1992-08-01
Materials and structures technology covers a wide range of technical areas. Some of the most pertinent issues for the Astrotech 21 missions include dimensionally stable structural materials, advanced composites, dielectric coatings, optical metallic coatings for low scattered light applications, low scattered light surfaces, deployable and inflatable structures (including optical), support structures in 0-g and 1-g environments, cryogenic optics, optical blacks, contamination hardened surfaces, radiation hardened glasses and crystals, mono-metallic telescopes and instruments, and materials characterization. Some specific examples include low coefficients of thermal expansion (CTE) structures (0.01 ppm/K), lightweight thermally stable mirror materials, thermally stable optical assemblies, high reliability/accuracy (1 micron) deployable structures, and characterization of nanometer level behavior of materials/structures for interferometry concepts. Large filled-aperture concepts will require materials with CTE's of 10(exp 9) at 80 K, anti-contamination coatings, deployable and erectable structures, composite materials with CTE's less than 0.01 ppm/K and thermal hysteresis, 0.001 ppm/K. Gravitational detection systems such as LAGOS will require rigid/deployable structures, dimensionally stable components, lightweight materials with low conductivity, and high stability optics. The Materials and Structures panel addressed these issues and the relevance of the Astrotech 21 mission requirements by dividing materials and structures technology into five categories. These categories, the necessary development, and applicable mission/program development phasing are summarized. For each of these areas, technology assessments were made and development plans were defined.
Development of Generalizable Educational Programs in Laser/Electro-Optics Technology: Final Report.
ERIC Educational Resources Information Center
Hull, Daniel M.
The purpose of the Laser/Electro-Optics Technology (LEOT) Project was to establish a pilot educational program, develop a flexible curriculum, prepare and test instructional materials, transport the curriculum and instructional materials into other educational institutions by establishing relevant LEOT programs wherever they are needed, and to…
NASA Technical Reports Server (NTRS)
1991-01-01
Optoelectronic materials and devices are examined. Optoelectronic devices, which generate, detect, modulate, or switch electromagnetic radiation are being developed for a variety of space applications. The program includes spatial light modulators, solid state lasers, optoelectronic integrated circuits, nonlinear optical materials and devices, fiber optics, and optical networking photovoltaic technology and optical processing.
Highly Non-Linear Optical (NLO) organic crystals and films. Electrooptical organic materials
NASA Technical Reports Server (NTRS)
Mcmanus, Samuel P.; Rosenberger, Franz; Matthews, John
1987-01-01
Devices employing nonlinear optics (NLO) hold great promise for important applications in integrated optics, optical information processing and telecommunications. Properly designed organics possess outstanding optical and electrooptical properties which will substantially advance many technologies including electrooptical switching, optical amplification for communications, and parallel processing for hybrid optical computers. A brief comparison of organic and inorganic materials is given.
Lab-on-Fiber devices as an all around platform for sensing
NASA Astrophysics Data System (ADS)
Ricciardi, A.; Consales, M.; Quero, G.; Crescitelli, A.; Esposito, E.; Cusano, A.
2013-12-01
"Lab-on-Fiber" technology is an emerging field envisioning a novel class of advanced, multifunctional photonic devices and components arising from the integration onto optical fibers of different materials at micro and nano-scale with suitable physical, chemical and biological properties. This new fascinating and intriguing research field thus proposes a new technological platform where functionalized materials, devices and components are constructed, embedded all together in a single optical fiber providing the necessary physical connections and light matter interaction, exploitable in both communication and sensing applications. This technological innovation would open the way for the creation of a novel technological world completely integrated in a single optical fiber conferring unique and unprecedented performances and functionality degree. Although, the benefits provided by such a technology can be easily understood, many research efforts are, however, required to translate the vision in a technological reality. Indeed, the main issue to address concerns the identification and definition of viable fabrication methodologies, routes and strategies enabling the integration of a large set of functional materials at sub wavelength scale onto non conventional substrates as the case of optical fibers.
Way to nanogrinding technology
NASA Astrophysics Data System (ADS)
Miyashita, Masakazu
1990-11-01
Precision finishing process of hard and brittle material components such as single crystal silicon wafer and magnetic head consists of lapping and polishing which depend too much on skilled labor. This process is based on the traditional optical production technology and entirely different from the automated mass production technique in automobile production. Instead of traditional lapping and polishing, the nanogrinding is proposed as a new stock removal machining to generate optical surface on brittle materials. By this new technology, the damage free surface which is the same one produced by lapping and polishing can be obtained on brittle materials, and the free carvature can also be generated on brittle materials. This technology is based on the motion copying principle which is the same as in case of metal parts machining. The new nanogrinding technology is anticipated to be adapted as the machining technique suitable for automated mass production, because the stable machining on the level of optical production technique is expected to be obtained by the traditional lapping and polishing.
Optical temperature sensor using thermochromic semiconductors
Kronberg, J.W.
1994-01-01
Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. A subclass of such materials are those which change their color as a reversible and reproducible function of temperature. These materials are thermochromic. This invention is a composition to measure temperature utilizing thermochromic semiconductors.
Pilot Project for Spaceborne Massive Optical Storage Devices
NASA Technical Reports Server (NTRS)
Chen, Y. J.
1996-01-01
A space bound storage device has many special requirements. In addition to large storage capacity, fas read/ write time, and high reliability, it also needs to have small volume, light weight, low power consumption, radiation hardening, ability to operate in extreme temperature ranges, etc. Holographic optical recording technology, which has been making major advancements in recent years, is an extremely promising candidate. The goal of this pilot project is to demonstrate a laboratory bench-top holographic optical recording storage system (HORSS) based on nonlinear polymer films 1 and/or other advanced photo-refractive materials. This system will be used as a research vehicle to study relevant optical properties of novel holographic optical materials, to explore massive optical storage technologies based on the photo-refractive effect and to evaluate the feasibility of developing a massive storage system, based on holographic optical recording technology, for a space bound experiment in the near future.
Overview of the production of sintered SiC optics and optical sub-assemblies
NASA Astrophysics Data System (ADS)
Williams, S.; Deny, P.
2005-08-01
The following is an overview on sintered silicon carbide (SSiC) material properties and processing requirements for the manufacturing of components for advanced technology optical systems. The overview will compare SSiC material properties to typical materials used for optics and optical structures. In addition, it will review manufacturing processes required to produce optical components in detail by process step. The process overview will illustrate current manufacturing process and concepts to expand the process size capability. The overview will include information on the substantial capital equipment employed in the manufacturing of SSIC. This paper will also review common in-process inspection methodology and design rules. The design rules are used to improve production yield, minimize cost, and maximize the inherent benefits of SSiC for optical systems. Optimizing optical system designs for a SSiC manufacturing process will allow systems designers to utilize SSiC as a low risk, cost competitive, and fast cycle time technology for next generation optical systems.
A novel anti-piracy optical disk with photochromic diarylethene
NASA Astrophysics Data System (ADS)
Liu, Guodong; Cao, Guoqiang; Huang, Zhen; Wang, Shenqian; Zou, Daowen
2005-09-01
Diarylethene is one of photochromic material with many advantages and one of the most promising recording materials for huge optical data storage. Diarylethene has two forms, which can be converted to each other by laser beams of different wavelength. The material has been researched for rewritable optical disks. Volatile data storage is one of its properties, which was always considered as an obstacle to utility. Many researches have been done for combating the obstacle for a long time. In fact, volatile data storage is very useful for anti-piracy optical data storage. Piracy is a social and economical problem. One technology of anti-piracy optical data storage is to limit readout of the data recorded in the material by encryption software. By the development of computer technologies, this kind of software is more and more easily cracked. Using photochromic diarylethene as the optical recording material, the signals of the data recorded in the material are degraded when it is read, and readout of the data is limited. Because the method uses hardware to realize anti-piracy, it is impossible cracked. In this paper, we will introduce this usage of the material. Some experiments are presented for proving its feasibility.
Ramakrishnan, Manjusha; Rajan, Ginu; Semenova, Yuliya; Farrell, Gerald
2016-01-01
This paper provides an overview of the different types of fiber optic sensors (FOS) that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements. PMID:26784192
Nonlinear Optical Properties of Traditional and Novel Materials
NASA Astrophysics Data System (ADS)
Krupa, Sean J.
Nonlinear optical processes are an excellent candidate to provide the heralded, indistinguishable, or entangled photons necessary for development of quantum mechanics based technology which currently lack bright sources of these photons. In order to support these technologies, and others, two classes of materials: traditional and novel, were investigated via optical characterization methods with goal of gaining insight into which materials and experimental conditions yield the greatest nonlinear optical effects. Optical characterization of periodically poled lithium niobate (PPLN) helped support the development of a simple, efficient photon pair source that could be easily integrated into optical networks. Additionally, an in-situ measurement of the 2nd order nonlinear optical coefficient was developed to aid in the characterization of PPLN pair sources. Lastly, an undergraduate demonstration of quantum key distribution was constructed such that students could see the primary application for PPLN photon pair sources in an affordable, approachable demonstration. A class of novel optical materials known as 2D materials has been identified as potential replacements to the traditional nonlinear optical materials discussed in Part I. Through optical characterization of second harmonic generation (SHG) the ideal conditions for spontaneous parametric downconversion were established as well as signal thresholds for successful detection. Attempts to observe SPDC produces hints that weak generate SPDC may be present in WS2 samples however this is incredibly difficult to confirm. As growth techniques of 2D materials improve, a photonic device constructed from these materials may be possible, however it will need some mechanism e.g. stacking, a cavity, etc. to help enhance the SPDC signal.
The Electronic and Electro-Optic Future of III-V Semiconductor Compounds.
1978-12-01
An assessment of material development of III-V compounds for electro - optic , microwave and millimeter wave technology is presented. Questions concerning material selection, needs and processing is addressed. (Author)
NASA Astrophysics Data System (ADS)
Goev, A. I.; Knyazeva, N. A.; Potelov, V. V.; Senik, B. N.
2005-06-01
The present paper represents in detail the complex approach to creating industrial technology of production of polymeric optical components: information has been given on optical polymeric materials, automatic machines for injection moulding, the possibilities of the Moldflow system (the AB "Universal" company) used for mathematical simulation of the technological process of injection moulding and making the moulds.
NASA Technical Reports Server (NTRS)
Hawkins, Gary J.; Seeley, John S.; Hunneman, Roger
1992-01-01
Infrared optical multilayer filters and materials were exposed to the space environment of low Earth orbit on LDEF. The effects are summarized of that environment on the physical and optical properties of the filters and materials flown.
Development of optical fiber technology in Poland 2015
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.; Wójcik, Waldemar
2015-12-01
The paper is a digest of works presented during the XVIth National Symposium on Optical Fibres and Their Applications. The Symposium is organized since 1976. OFTA 2015 was organized by Optical Fibre Laboratory of the Faculty of Chemistry at University of Maria Curie Skłodowska, and Institute of Electronics and Information Technology of Lublin University of Technology, in Nałęczów on 22-25 September 2015. The meeting has gathered around 120 participants who presented 85 research and technical papers. The Symposium organized every 18 months is a good portrait of optical fibre technology development in Poland at university laboratories, governmental institutes, company R&D laboratories, etc. Topical tracks of the Symposium were: optical and photonic materials, technology of classical, tailored and structural photonic optical fibres, light propagation physics in optical fibres, passive and active optical fibre components, optical fibre sensors, passive and active optical fibre networks, optical fibre amplifiers and lasers, optical fibre network issues: modulation, architectures, economy, etc.
NIF optical materials and fabrication technologies: an overview
NASA Astrophysics Data System (ADS)
Campbell, John H.; Hawley-Fedder, Ruth A.; Stolz, Christopher J.; Menapace, Joseph A.; Borden, Michael R.; Whitman, Pamela K.; Yu, June; Runkel, Michael J.; Riley, Michael O.; Feit, Michael D.; Hackel, Richard P.
2004-05-01
The high-energy/high-power section of the NIF laser system contains 7360 meter-scale optics. Advanced optical materials and fabrication technologies needed to manufacture the NIF optics have been developed and put into production at key vendor sites. Production rates are up to 20 times faster and per-optic costs 5 times lower than could be achieved prior to the NIF. In addition, the optics manufactured for NIF are better than specification giving laser performance better than the design. A suite of custom metrology tools have been designed, built and installed at the vendor sites to verify compliance with NIF optical specifications. A brief description of the NIF optical wavefront specifications for the glass and crystal optics is presented. The wavefront specifications span a continuous range of spatial scale-lengths from 10 μm to 0.5 m (full aperture). We have continued our multi-year research effort to improve the lifetime (i.e. damage resistance) of bulk optical materials, finished optical surfaces and multi-layer dielectric coatings. New methods for post-processing the completed optic to improve the damage resistance have been developed and made operational. This includes laser conditioning of coatings, glass surfaces and bulk KDP and DKDP and well as raster and full aperture defect mapping systems. Research on damage mechanisms continues to drive the development of even better optical materials.
Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil
2018-02-01
Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonlinear Optics and Applications
NASA Technical Reports Server (NTRS)
Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)
2007-01-01
Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.
Innovative materials tailored for advanced micro-optic applications
NASA Astrophysics Data System (ADS)
Himmelhuber, Roland; Fink, Marion; Pfeiffer, Karl; Ostrzinski, Ute; Klukowska, Anna; Gruetzner, Gabi; Houbertz, Ruth; Wolter, Herbert
2007-02-01
The handling of a continuously increasing amount of data leads to a strong need for high-speed short-range connections. Conventional Cu technology between chips on a board is limited. Optical interconnects will dominate the market, since they can overcome the limitations. One of the issues for materials used, e.g., for waveguides embedded in printed circuit boards (PCBs) is the compatibility with standard epoxies used for PCBs during the entire board fabrication process. Materials applied for optical interconnects should be mechanically and optically reliable, and also allow low-cost production. From the material production side, the process should be easy to up-scale. Therefore, anticipatory research strategy and suitable tailoring is asked for. The handling of light in the UV and visible range often requires the use of specially designed materials. Most polymer materials show an increased yellowing effect upon being exposed to shorter wavelength light. The major influence on the absorption in the UV and visible range of a UV curable material is related to the UV initiator, beside any other chromophores formed mainly during the exposure. Different material approaches will be presented which fulfil the requirements for highly sophisticated applications in optics / optical packaging technology. Firstly, an epoxy-based material system for optical chip-to-chip interconnection will be introduced. Secondly, the adaptation of a UV patternable inorganic-organic hybrid material (ORMOCER ®) originally developed for waveguide applications in the data and telecom regime, will be discussed with respect to applications in the visible regime. Spectroscopy and UV-DSC measurements were carried out to investigate the influence of standard photoinitiators on the optical properties for an ORMOCER ® system suitable for microoptic applications. The results show that the resulting material properties were significantly improved by exchange of the initiators compared to the originally incorporated one.
Applications of Ionic Liquids for the Development of Optical Chemical Sensors and Biosensors.
Muginova, Svetlana V; Myasnikova, Dina A; Kazarian, Sergei G; Shekhovtsova, Tatiana N
2017-01-01
This paper reviews the primary literature reporting the use of ionic liquids (ILs) in optical sensing technologies. The optical chemical sensors that have been developed with the assistance of ILs are classified according to the type of resultant material. Key aspects of applying ILs in such sensors are revealed and discussed. They include using ILs as solvents for the synthesis of sensor matrix materials; additives in polymer matrices; matrix materials; modifiers of the surfaces; and multifunctional sensor components. The operational principles, design, texture, and analytical characteristics of the offered sensors for determining CO 2 , O 2 , metal ions, CN - , and various organic compounds are critically discussed. The key advantages and disadvantages of using ILs in optical sensing technologies are defined. Finally, the applicability of the described materials for chemical analysis is evaluated, and possibilities for their further modernization are outlined.
Science and technology of stressed liquid crystals: display and non-display applications
NASA Astrophysics Data System (ADS)
Melnyk, Olha; Garbovskiy, Yuriy; Glushchenko, Anatoliy
2017-08-01
Stressed liquid crystals (SLCs) have emerged as promising tunable electro-optical materials more than a decade ago. They are optically transparent and are characterized by a giant phase modulation of the incident light (Nπ, N >> 1), fast (millisecond and shorter) electro-optical response, and a relatively low driving voltage (∼1 V/μm). Surprisingly, despite their advanced electro-optical performance, these new materials did not receive due attention in the research community. One possible reason of such an inadequate interest in SLCs is the lack of the well-documented procedure describing how to actually produce these materials. This paper is aimed at the development of such a step-by-step practical guide suitable for experimentalist and engineers. The proposed technology is applied to produce and characterize SLCs. In addition, some applications of the materials are briefly discussed and a broader overview of their possible use is outlined.
Optical properties monitor: Experiment definition phase
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Bennett, Jean M.; Hummer, Leigh L.; Chipman, Russell A.; Hadaway, James B.; Pezzaniti, Larry
1990-01-01
The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment (both natural and induced) on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination.
Optical properties monitor: Experiment definition phase
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Bennett, Jean M.; Hummer, Leigh L.; Chipman, Russell A.; Hadaway, James B.; Pezzaniti, Larry
1989-01-01
The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment-both natural and induced-on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM Experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination.
Yang, Yang; Song, Xuan; Li, Xiangjia; Chen, Zeyu; Zhou, Chi; Zhou, Qifa; Chen, Yong
2018-06-19
Nature has developed high-performance materials and structures over millions of years of evolution and provides valuable sources of inspiration for the design of next-generation structural materials, given the variety of excellent mechanical, hydrodynamic, optical, and electrical properties. Biomimicry, by learning from nature's concepts and design principles, is driving a paradigm shift in modern materials science and technology. However, the complicated structural architectures in nature far exceed the capability of traditional design and fabrication technologies, which hinders the progress of biomimetic study and its usage in engineering systems. Additive manufacturing (three-dimensional (3D) printing) has created new opportunities for manipulating and mimicking the intrinsically multiscale, multimaterial, and multifunctional structures in nature. Here, an overview of recent developments in 3D printing of biomimetic reinforced mechanics, shape changing, and hydrodynamic structures, as well as optical and electrical devices is provided. The inspirations are from various creatures such as nacre, lobster claw, pine cone, flowers, octopus, butterfly wing, fly eye, etc., and various 3D-printing technologies are discussed. Future opportunities for the development of biomimetic 3D-printing technology to fabricate next-generation functional materials and structures in mechanical, electrical, optical, and biomedical engineering are also outlined. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optical based tactile shear and normal load sensor
Salisbury, Curt Michael
2015-06-09
Various technologies described herein pertain to a tactile sensor that senses normal load and/or shear load. The tactile sensor includes a first layer and an optically transparent layer bonded together. At least a portion of the first layer is made of optically reflective material. The optically transparent layer is made of resilient material (e.g., clear silicone rubber). The tactile sensor includes light emitter/light detector pair(s), which respectively detect either normal load or shear load. Light emitter(s) emit light that traverses through the optically transparent layer and reflects off optically reflective material of the first layer, and light detector(s) detect and measure intensity of reflected light. When a normal load is applied, the optically transparent layer compresses, causing a change in reflected light intensity. When shear load is applied, a boundary between optically reflective material and optically absorptive material is laterally displaced, causing a change in reflected light intensity.
1989-08-30
year period in the following products: Technology Field Product New materials Composite materials Amorphous alloys Macromolecule separation...plastics 8. Composite materials B. Parts 9. Optical fiber 10. Semiconductor lasers 11. CCD 12. Semiconductor memory elements 13. Microcomputers...separation. Composite materials (containing carbon fiber) (1) Aerospace users required strict specifi cations for carbon fiber, resulting in
Low-weight, low-cost, low-cycle time, replicated glass mirrors
NASA Astrophysics Data System (ADS)
Egerman, Robert; De Smitt, Steven; Strafford, David
2010-07-01
ITT has patented and continues to develop processes to fabricate low-cost borosilicate mirrors that can be used for both ground and space-based optical telescopes. Borosilicate glass is a commodity and is the material of choice for today's flat-panel televisions and monitors. Supply and demand has kept its cost low compared to mirror substrate materials typically found in telescopes. The current technology development is on the path to having the ability to deliver imaging quality optics of up to 1m (scalable to 2m) in diameter in three weeks. For those applications that can accommodate the material properties of borosilicate glasses, this technology has the potential to revolutionize ground and space-based astronomy. ITT Corporation has demonstrated finishing a planar, 0.6m borosilicate, optic to <100 nm-rms. This paper will provide an historical overview of the development in this area with an emphasis on recent technology developments to fabricate a 0.6m parabolic mirror under NASA Earth Science Technology Office (ESTO) grant #NNX09AD61G.
Advanced imaging research and development at DARPA
NASA Astrophysics Data System (ADS)
Dhar, Nibir K.; Dat, Ravi
2012-06-01
Advances in imaging technology have huge impact on our daily lives. Innovations in optics, focal plane arrays (FPA), microelectronics and computation have revolutionized camera design. As a result, new approaches to camera design and low cost manufacturing is now possible. These advances are clearly evident in visible wavelength band due to pixel scaling, improvements in silicon material and CMOS technology. CMOS cameras are available in cell phones and many other consumer products. Advances in infrared imaging technology have been slow due to market volume and many technological barriers in detector materials, optics and fundamental limits imposed by the scaling laws of optics. There is of course much room for improvements in both, visible and infrared imaging technology. This paper highlights various technology development projects at DARPA to advance the imaging technology for both, visible and infrared. Challenges and potentials solutions are highlighted in areas related to wide field-of-view camera design, small pitch pixel, broadband and multiband detectors and focal plane arrays.
NASA Technical Reports Server (NTRS)
Leslie, Thomas M.
1993-01-01
A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film-forming material in a working device is a complex, multifaceted endeavor. It requires close attention to maintaining the optical properties of the electro-optic active portion of the polymer while manipulating the polymer structure to obtain the desired secondary polymer properties.
Applications of Optical Scanners in an Academic Center.
ERIC Educational Resources Information Center
Molinari, Carol; Tannenbaum, Robert S.
1995-01-01
Describes optical scanners, including how the technology works; applications in data management and research; development of instructional materials; and providing community services. Discussion includes the three basic types of optical scanners: optical character recognition (OCR), optical mark readers (OMR), and graphic scanners. A sidebar…
Beyond Our Boundaries: Research and Technology
NASA Technical Reports Server (NTRS)
1996-01-01
Topics considered include: Propulsion and Fluid Management; Structures and Dynamics; Materials and Manufacturing Processes; Sensor Technology; Software Technology; Optical Systems; Microgravity Science; Earth System Science; Astrophysics; Solar Physics; and Technology Transfer.
Overview of detector technologies for EO/IR sensing applications
NASA Astrophysics Data System (ADS)
Sood, Ashok K.; Zeller, John W.; Welser, Roger E.; Puri, Yash R.; Lewis, Jay S.; Dhar, Nibir K.; Wijewarnasuriya, Priyalal
2016-05-01
Optical sensing technology is critical for optical communication, defense and security applications. Advances in optoelectronics materials in the UV, Visible and Infrared, using nanostructures, and use of novel materials such as CNT and Graphene have opened doors for new approaches to apply device design methodology that are expected to offer enhanced performance and low cost optical sensors in a wide range of applications. This paper is intended to review recent advancements and present different device architectures and analysis. The chapter will briefly introduce the basics of UV and Infrared detection physics and various wave bands of interest and their characteristics [1, 2] We will cover the UV band (200-400 nm) and address some of the recent advances in nanostructures growth and characterization using ZnO/MgZnO based technologies and their applications. Recent advancements in design and development of CNT and Graphene based detection technologies have shown promise for optical sensor applications. We will present theoretical and experimental results on these device and their potential applications in various bands of interest.
NASA Astrophysics Data System (ADS)
Bauer, Thomas
2005-09-01
Optical transparent polymers are used for technical optics for more than 50 years and currently replace glass as optical material in several application fields. Optical functional coatings like mirrors, filters, beam splitters and anti-reflection coatings gain increasingly in importance. New light sources and head mounted systems need light and effective reflector designs. The paper gives an overview about vacuum coating technologies for metal and dielectric layers on polymers for technical optics. Especially for polymers controlling the complete process chain from injection moulding to storing, coating and shipping decides on the technological and commercial success.
A review of materials engineering in silicon-based optical fibres
NASA Astrophysics Data System (ADS)
Healy, Noel; Gibson, Ursula; Peacock, Anna C.
2018-02-01
Semiconductor optical fibre technologies have grown rapidly in the last decade and there are now a range of production and post-processing techniques that allow for a vast degree of control over the core material's optoelectronic properties. These methodologies and the unique optical fibre geometry provide an exciting platform for materials engineering and fibres can now be produced with single crystal cores, low optical losses, tunable strain, and inscribable phase composition. This review discusses the state-of-the-art regarding the production of silicon optical fibres in amorphous and crystalline form and then looks at the post-processing techniques and the improved material quality and new functionality that they afford.
Dish concentrators for solar thermal energy - Status and technology development
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1981-01-01
Comparisons are presented of point-focusing, or 'dish' solar concentrator system features, development status, and performance levels demonstrated to date. In addition to the requirements of good optical efficiency and high geometric concentration ratios, the most important future consideration in solar thermal energy dish concentrator design will be the reduction of installed and lifetime costs, as well as the materials and labor costs of production. It is determined that technology development initiatives are needed in such areas as optical materials, design wind speeds and wind loads, structural configuration and materials resistance to prolonged exposure, and the maintenance of optical surfaces. The testing of complete concentrator systems, with energy-converting receivers and controls, is also necessary. Both reflector and Fresnel lens concentrator systems are considered.
Toward high throughput optical metamaterial assemblies.
Fontana, Jake; Ratna, Banahalli R
2015-11-01
Optical metamaterials have unique engineered optical properties. These properties arise from the careful organization of plasmonic elements. Transitioning these properties from laboratory experiments to functional materials may lead to disruptive technologies for controlling light. A significant issue impeding the realization of optical metamaterial devices is the need for robust and efficient assembly strategies to govern the order of the nanometer-sized elements while enabling macroscopic throughput. This mini-review critically highlights recent approaches and challenges in creating these artificial materials. As the ability to assemble optical metamaterials improves, new unforeseen opportunities may arise for revolutionary optical devices.
Ion beam machining error control and correction for small scale optics.
Xie, Xuhui; Zhou, Lin; Dai, Yifan; Li, Shengyi
2011-09-20
Ion beam figuring (IBF) technology for small scale optical components is discussed. Since the small removal function can be obtained in IBF, it makes computer-controlled optical surfacing technology possible to machine precision centimeter- or millimeter-scale optical components deterministically. Using a small ion beam to machine small optical components, there are some key problems, such as small ion beam positioning on the optical surface, material removal rate, ion beam scanning pitch control on the optical surface, and so on, that must be seriously considered. The main reasons for the problems are that it is more sensitive to the above problems than a big ion beam because of its small beam diameter and lower material ratio. In this paper, we discuss these problems and their influences in machining small optical components in detail. Based on the identification-compensation principle, an iterative machining compensation method is deduced for correcting the positioning error of an ion beam with the material removal rate estimated by a selected optimal scanning pitch. Experiments on ϕ10 mm Zerodur planar and spherical samples are made, and the final surface errors are both smaller than λ/100 measured by a Zygo GPI interferometer.
Dish concentrators for solar thermal energy: Status and technology development
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1982-01-01
Point-focusing concentrators under consideration for solar thermal energy use are reviewed. These concentrators differ in such characteristics as optical configuration, optical materials, structure for support of the optical elements and of the receiver, mount, foundation, drive, controls and enclosure. Concentrator performance and cost are considered. Technology development is outlined, including wind loads and aerodynamics; precipitation, sand, and seismic considerations; and maintenance and cleaning.
NASA Technical Reports Server (NTRS)
Fischer, Robert E. (Editor); Pollicove, Harvey M. (Editor); Smith, Warren J. (Editor)
1989-01-01
Various papers on current developments in optical engineering and commercial optics are presented. Individual topics addressed include: large optics fabrication technology drivers and new manufacturing techniques, new technology for beryllium mirror production, design examples of hybrid refractive-diffractive lenses, optical sensor designs for detecting cracks in optical materials, retroreflector field-of-view properties for open and solid cube corners, correction of misalignment-dependent aberrations of the HST via phase retrieval, basic radiometry review for seeker test set, radiation effects on visible optical elements, and nonlinear simulation of efficiency for large-orbit nonwiggler FELs.
NASA Astrophysics Data System (ADS)
Zhong, Xianyun; Fan, Bin; Wu, Fan
2017-10-01
Single crystal calcium fluoride (CaF2) is the excellent transparent optical substance that has extremely good permeability and refractive index from 120nm wavelength ultraviolet range to 12μm wavelength infrared range and it has widely used in the applications of various advanced optical instrument, such as infrared optical systems (IR), short wavelength optical lithography systems (DUV), as well as high power UV laser systems. Nevertheless, the characteristics of CaF2 material, including low fracture toughness, low hardness, low thermal conductivity and high thermal expansion coefficient, result in that the conventional pitch polishing techniques usually expose to lots of problems, such as subsurface damage, scratches, digs and so on. Single point diamond turning (SPDT) is a prospective technology for manufacture the brittle material, but the residual surface textures or artifacts of SPDT will cause great scattering losses. Meanwhile, the roughness also falls far short from the requirement in the short wavelength optical systems. So, the advanced processing technologies for obtaining the shape accuracy, roughness, surface flaw at the same time need to put forward. In this paper, the authors investigate the Magnetorheological Finishing (MRF) technology for the high precision processing of CaF2 material. We finish the surface accuracy RMS λ/150 and roughness Rq 0.3nm on the concave aspheric from originate shape error 0.7λ and roughness 17nm by the SPDT. The studying of the MRF techniques makes a great effort to the processing level of CaF2 material for the state-of-the-art DUV lithography systems applications.
Study on micro-bend light transmission performance of novel liquid-core optical fiber
NASA Astrophysics Data System (ADS)
Ma, Junyan; Zhao, Zhimin; Wang, Kaisheng; Guo, Linfeng
2007-01-01
With the increasing development of material technology and electronic integration technology, optical fiber and its using in smart structure have become hot in the field of material research. And liquid-core optical fiber is a special kind of optical fiber, which is made using liquid material as core and polymer material as optical layer and protective covering, and it has the characteristics of large core diameter, high numerical aperture, large-scope and efficient spectrum transmission and long life for using. So the liquid-core optical fiber is very suitable for spectrum cure, ultraviolet solidification, fluorescence detection, criminal investigation and evidence obtainment, etc, and especially as light transfer element in some new structures for the measurement of some signals, such as concentration, voltage, temperature, light intensity and so on. In this paper, the novel liquid-core optical fiber is self-made, and then through the test of its light transmission performance in free state, the relation between axial micro-bend and light-intensity loss are presented. When the liquid-core optical fiber is micro-bent axially, along with the axial displacement's increase, output power of light is reducing increasingly, and approximately has linear relation to micro-displacement in a range. According to the results liquid-core fiber-optic micro-bend sensor can be designed to measure micro-displacement of the tested objects. Experimental data and analysis provide experimental basis for further application of liquid-core optical fiber.
Application de la technologie des materiaux sol-gel et polymere a l'optique integree
NASA Astrophysics Data System (ADS)
Saddiki, Zakaria
2002-01-01
With the advancement of optical telecommunication systems, "integrated optics" and "optical interconnect" technology are becoming more and more important. The major components of these two technologies are photonic integrated circuits (PICs), optoelectronic integrated circuits (OEICs), and optoelectronic multichip modules ( OE-MCMs). Optical signals are transmitted through optical waveguides that interconnect such components. The principle of optical transmission in waveguides is the same as that in optical fibres. To implement these technologies, both passive and active optical devices are needed. A wide variety of optical materials has been studied, e.g., glasses, lithium niobate, III-V semiconductors, sol-gel and polymers. In particular, passive optical components have been fabricated using glass optical waveguides by ion-exchange, or by flame hydrolysis deposition and reactive ion etching (FHD and RIE ). When using FHD and RIE, a very high temperatures (up to 1300°C) are needed to consolidate silica. This work reports on the fabrication and characterization of a new photo-patternable hybrid organic-inorganic glass sol-gel and polymer materials for the realisation of integrated optic and opto-electronic devices. They exhibit low losses in the NIR range, especially at the most important wavelengths windows for optical communications (1320 nm and 1550 nm). The sol-gel and polymer process is based on photo polymerization and thermo polymerization effects to create the wave-guide. The single-layer film is at low temperature and deep UV-light is employed to make the wave-guide by means of the well-known photolithography process. Like any photo-imaging process, the UV energy should exceed the threshold energy of chemical bonds in the photoactive component of hybrid glass material to form the expected integrated optic pattern with excellent line width control and vertical sidewalls. To achieve optical wave-guide, a refractive index difference Delta n occurred between the isolated (guiding layer) and the surrounding region (buffer and cladding). Accordingly, the refractive index emerges as a fundamental device performance material parameter and it is investigated using slab wave-guide. (Abstract shortened by UMI.)
SIC material and technology for space optics
NASA Astrophysics Data System (ADS)
Bougoin, Michel
2017-11-01
Taking benefit from its very high specific stiffness and its exclusive thermal stability, the SiCSPACE material is now used for the fabrication of scientific and commercial lightweight space telescopes. This paper gives a review of the characteristics of this sintered silicon carbide. The BOOSTEC facilities and the technology described here allow to manufacture large structural components or mirrors (up to several meters) at cost effective condition, from a single part to mass production. Several examples of SiC space optical components are presented.
Status of Mirror Technology for the Next Generation Space Telescope
NASA Astrophysics Data System (ADS)
Jacobson, D. N.
2000-10-01
The NGST primary mirror is anticipated to be a segmented deployable optic with segment size being in the range of 1-3m depending on the details of the architecture. Over the past 4 years the NGST program has initiated and implemented an aggressive lightweight cryogenic mirror technology program. The program was designed to challenge and excite the optical community in reaching a new standard in production of lightweight optics. The goal was to develop optics at < 15 kg/m2, operational at ~ 40K and meeting the overall NGST observatory requirement for diffraction limited performance at 2 microns. In order to meet the NGST needs, technology efforts were initiated to investigate and develop mirrors in a variety of materials, which held promise for the program. The basic technology approaches have initially targeted the production of large mirrors in the 1.2-2.0m diameter range (or side-to-side distance in the case of hexagonal optics). Although this size may not be the final size of an NGST primary mirror segment, it was felt that a 1.2-2.0m optic would be of sufficient size to understand the mirror material and fabrication processes which drive the cost and schedule of mirror production. The ultimate goals of the technology program are both to demonstrate mirrors meeting the NGST performance requirements, and to establish cost and schedule credibility for producing and implementing the mirrors for the NGST flight system. Establishing cost and schedule credibility is essential to NGST which is a cost capped mission, with past program experience demonstrating that the optics will be a large portion of the total cost of the program. The first two years of the program were dedicated to understanding the various applicable materials, funding those materials to various levels of maturity and implementing the first large mirror procurement, the NGST Mirror System Demonstrator (NMSD), in order to establish a benchmark for the state-of-the-art in lightweight optics and to establish credibility that the goals of NGST could be achieved. The past two years of the program has seen major steps in the development of several mirror materials, which not only might have NGST applicability but could also support other programs for other customers. Additionally, a second large mirror procurement, the Advanced Mirror System Demonstrator (AMSD), has been implemented providing a focal point to complete the mirror technology development and lead ultimately to the production of mirrors that will fly on NEXUS (NGST flight experimentand) and NGST. This talk will focus on a status of the mirror technology developed over the past 4 years on the NGST program.
Holographic rugate structures for x-ray optics applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannson, T.; Savant, G.
1990-03-19
Physical Optics Corporation (POC) has proposed and investigated a novel approach to x-ray optics during this DOE-sponsored three-year program, based on our well-established technologies in volume holography and holographic materials. With these technologies, a majority of conventional XUV optical elements, such as uniform and nonuniform gratings/multilayers, lenses, slanted (non-Snellian) mirrors, Fresnel zone-plates, concentrators/collimators, beam splitters, Fabry-Perot etalons, and binary optical elements, can be fabricated using a unified, low cost process. Furthermore, volume holography offer nonconventional optical elements, such as x-ray holographic optical elements (HOEs) with any desirable wavefront formation characteristics and multiple gratings multiplexed in the same volume to performmore » different operations for different wavelengths, that are difficult or even impossible to produce with the existing technologies.« less
Optical technologies for space sensor
NASA Astrophysics Data System (ADS)
Wang, Hu; Liu, Jie; Xue, Yaoke; Liu, Yang; Liu, Meiying; Wang, Lingguang; Yang, Shaodong; Lin, Shangmin; Chen, Su; Luo, Jianjun
2015-10-01
Space sensors are used in navigation sensor fields. The sun, the earth, the moon and other planets are used as frame of reference to obtain stellar position coordinates, and then to control the attitude of an aircraft. Being the "eyes" of the space sensors, Optical sensor system makes images of the infinite far stars and other celestial bodies. It directly affects measurement accuracy of the space sensor, indirectly affecting the data updating rate. Star sensor technology is the pilot for Space sensors. At present more and more attention is paid on all-day star sensor technology. By day and night measurements of the stars, the aircraft's attitude in the inertial coordinate system can be provided. Facing the requirements of ultra-high-precision, large field of view, wide spectral range, long life and high reliability, multi-functional optical system, we integration, integration optical sensors will be future space technology trends. In the meantime, optical technologies for space-sensitive research leads to the development of ultra-precision optical processing, optical and precision test machine alignment technology. It also promotes the development of long-life optical materials and applications. We have achieved such absolute distortion better than ±1um, Space life of at least 15years of space-sensitive optical system.
Optical pH detector based on LTCC and sol-gel technologies
NASA Astrophysics Data System (ADS)
Tadaszak, R. J.; Łukowiak, A.; Golonka, L. J.
2013-01-01
This paper presents an investigation on using sol-gel thin film as a material for sensors application in LTCC (Low Temperature Co-fired Ceramics) technology. This material gives the opportunity to make new, low-cost highly integrated optoelectronic devices. Sensors with optical detection are a significant part of these applications. They can be used for quick and safe diagnostics of some parameters. Authors present a pH detector with the optical detection system made of the LTCC material. The main part of the device is a flow channel with the chamber and sol-gel active material. The silica sol-gel with bromocresol green indicator was used. As the absorbance of sol-gel layer changes with the pH value of a measured medium, the transmitted light power was measured. The pH detector was integrated with the electronic components on the LTCC substrate.
NASA Astrophysics Data System (ADS)
Nayak, Aditya B.; Price, James M.; Dai, Bin; Perkins, David; Chen, Ding Ding; Jones, Christopher M.
2015-06-01
Multivariate optical computing (MOC), an optical sensing technique for analog calculation, allows direct and robust measurement of chemical and physical properties of complex fluid samples in high-pressure/high-temperature (HP/HT) downhole environments. The core of this MOC technology is the integrated computational element (ICE), an optical element with a wavelength-dependent transmission spectrum designed to allow the detector to respond sensitively and specifically to the analytes of interest. A key differentiator of this technology is it uses all of the information present in the broadband optical spectrum to determine the proportion of the analyte present in a complex fluid mixture. The detection methodology is photometric in nature; therefore, this technology does not require a spectrometer to measure and record a spectrum or a computer to perform calculations on the recorded optical spectrum. The integrated computational element is a thin-film optical element with a specific optical response function designed for each analyte. The optical response function is achieved by fabricating alternating layers of high-index (a-Si) and low-index (SiO2) thin films onto a transparent substrate (BK7 glass) using traditional thin-film manufacturing processes (e.g., ion-assisted e-beam vacuum deposition). A proprietary software and process are used to control the thickness and material properties, including the optical constants of the materials during deposition to achieve the desired optical response function. The ion-assisted deposition is useful for controlling the densification of the film, stoichiometry, and material optical constants as well as to achieve high deposition growth rates and moisture-stable films. However, the ion-source can induce undesirable absorption in the film; and subsequently, modify the optical constants of the material during the ramp-up and stabilization period of the e-gun and ion-source, respectively. This paper characterizes the unwanted absorption in the a-Si thin-film using advanced thin-film metrology methods, including spectroscopic ellipsometry and Fourier transform infrared (FTIR) spectroscopy. The resulting analysis identifies a fundamental mechanism contributing to this absorption and a method for minimizing and accounting for the unwanted absorption in the thin-film such that the exact optical response function can be achieved.
Developing optic technologies in Belarus
NASA Astrophysics Data System (ADS)
Rubanov, Alexander S.; Shkadarevich, Alexei P.
2001-03-01
In this work we give a retrospective analysis of the development of optical technologies in Belarus. In the post-war period a great scientific and technological potential has been built up in this sphere, highly skilled specialist have been trained and prestigious scientific and technical schools have appeared. Belarusian multiprofile optical industry is noticed to be capable of producing not only the materials and equipment for optical production but also optical goods of the highest level of complication. The characteristics of cosmic photoequipment, photogrammetric and cinetheodolite techniques, a variety of laser devices and optical goods for civic purposes are given as an example. The instances demonstrating the realization of unique optical projects are considered as well. High quality of Belarusian optical production makes it be much in demand in Russia, Japan, USA, Germany, France, China, Korea, Sweden, Spain, England, United Arab Emirates and other countries.
Progress In Optical Memory Technology
NASA Astrophysics Data System (ADS)
Tsunoda, Yoshito
1987-01-01
More than 20 years have passed since the concept of optical memory was first proposed in 1966. Since then considerable progress has been made in this area together with the creation of completely new markets of optical memory in consumer and computer application areas. The first generation of optical memory was mainly developed with holographic recording technology in late 1960s and early 1970s. Considerable number of developments have been done in both analog and digital memory applications. Unfortunately, these technologies did not meet a chance to be a commercial product. The second generation of optical memory started at the beginning of 1970s with bit by bit recording technology. Read-only type optical memories such as video disks and compact audio disks have extensively investigated. Since laser diodes were first applied to optical video disk read out in 1976, there have been extensive developments of laser diode pick-ups for optical disk memory systems. The third generation of optical memory started in 1978 with bit by bit read/write technology using laser diodes. Developments of recording materials including both write-once and erasable have been actively pursued at several research institutes. These technologies are mainly focused on the optical memory systems for computer application. Such practical applications of optical memory technology has resulted in the creation of such new products as compact audio disks and computer file memories.
An Evaluation of Grazing-Incidence Optics for Neutron Imaging
NASA Technical Reports Server (NTRS)
Gubarev, M. V.
2007-01-01
The refractive index for most materials is slightly less than unity, which opens an opportunity to develop the grazing incidence neutron imaging optics. The ideal material for the optics would be natural nickel and its isotopes. Marshall Space Flight Center (MSFC) has active development program on the nickel replicated optics for use in x-ray astronomy. Brief status report on the program is presented. The results of the neutron focusing optic test carried by the MSFC team at National Institute of Standards and Technology (NIST) are also presented. Possible applications of the optics are briefly discussed.
NASA Astrophysics Data System (ADS)
Reitberger, Thomas; Hoffmann, Gerd-Albert; Wolfer, Tim; Overmeyer, Ludger; Franke, Joerg
2016-09-01
The optical data transfer is considered as the future of signal transfer due to its various advantages compared to conventional copper-based technologies. The Aerosol Jet Printing (AJP) technology offers the opportunity to print materials with high viscosities, such as liquid transparent polymer adhesives (epoxy resins), on almost any possible substrate material and even in third dimension. This paper introduces a new flexible and comparatively cost-effective way of generating polymer optical waveguides through AJP. Furthermore, the conditioning of the substrate material and the printing process of planar waveguides are presented. In the first step, two lines with hydrophobic behavior are applied on foil material (PMMA, PVC, PI) by using a flexographic printing machine. These silicone based patterns containing functional polymer form barriers for the core material due to their low surface energy after curing. In the second step, the core material (liquid polymer, varnish) is printed between the barrier lines. Because of the hydrophobic behavior of the lines, the contact angle between the substrate surface and the liquid core material is increased which yields to higher aspect ratio. The distance between the barrier lines is at least 100 μm, which defines the width of the waveguide. The minimum height of the core shall be 50 μm. After UV-curing of the core polymer, the cladding material is printed on the top. This is also applied by using the AJP technology. Various tests were performed to achieve the optimal surface properties for adequate adhesion and machine process parameters.
Field-Sensitive Materials for Optical Applications
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Little, Mark
2002-01-01
The purpose of investigation is to develop the fundamental materials and fabrication technology for field-controlled spectrally active optics that are essential for industry, NASA, and DOD (Department of Defense) applications such as: membrane optics, filters for LIDARs (Light Detection and Ranging), windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, flat-panel displays, etc. The proposed idea is based on the quantum-dots (QD) array or thin-film of field-sensitive Stark and Zeeman materials and the bound excitonic state of organic crystals that will offer optical adaptability and reconfigurability. Major tasks are the development of concept demonstration article and test data of field-controlled spectrally smart active optics (FCSAO) for optical multi-functional capabilities on a selected spectral range.
Precision machining of optical surfaces with subaperture correction technologies MRF and IBF
NASA Astrophysics Data System (ADS)
Schmelzer, Olaf; Feldkamp, Roman
2015-10-01
Precision optical elements are used in a wide range of technical instrumentations. Many optical systems e.g. semiconductor inspection modules, laser heads for laser material processing or high end movie cameras, contain precision optics even aspherical or freeform surfaces. Critical parameters for such systems are wavefront error, image field curvature or scattered light. Following these demands the lens parameters are also critical concerning power and RMSi of the surface form error and micro roughness. How can we reach these requirements? The emphasis of this discussion is set on the application of subaperture correction technologies in the fabrication of high-end aspheres and free-forms. The presentation focuses on the technology chain necessary for the production of high-precision aspherical optical components and the characterization of the applied subaperture finishing tools MRF (magneto-rheological finishing) and IBF (ion beam figuring). These technologies open up the possibility of improving the performance of optical systems.
NASA Astrophysics Data System (ADS)
Hoffmann, Gerd-Albert; Wolfer, Tim; Zeitler, Jochen; Franke, Jörg; Suttmann, Oliver; Overmeyer, Ludger
2017-02-01
Optical data communication is increasingly interesting for many applications in industrial processes. Therefore mass production is required to meet the requested price and lot sizes. Polymer optical waveguides show great promises to comply with price requirements while providing sufficient optical quality for short range data transmission. A high efficient fabrication technology using polymer materials could be able to create the essential backbone for 3D-optical data transmission in the future. The approach for high efficient fabrication technology of micro optics described in this paper is based on a self-assembly effect of fluids on preconditioned 3D-thermoformed polymer foils. Adjusting the surface energy on certain areas on the flexible substrate by flexographic printing mechanism is presented in this paper. With this technique conditioning lines made of silicone containing UV-varnish are printed on top of the foils and create gaps with the exposed substrate material in between. Subsequent fabrication processes are selected whether the preconditioned foil is coated with acrylate containing waveguide material prior or after the thermoforming process. Due to the different surface energy this material tends to dewet from the conditioning lines. It acts like regional barriers and sets the width of the arising waveguides. With this fabrication technology it is possible to produce multiple waveguides with a single coating process. The relevant printing process parameters that affect the quality of the generated waveguides are discussed and results of the produced waveguides with width ranging from 10 to 300 μm are shown.
Professional development in optics and photonics education
NASA Astrophysics Data System (ADS)
Donnelly, Judith F.; Hanes, Fenna; Massa, Nicholas J.; Washburn, Barbara R.
2002-05-01
In recent years, several New England projects have promoted professional development and curriculum design in optics and photonics. Funded in part by the Advanced Technological Education (ATE) program of the National Science Foundation (NSF), these projects have prepared middle and high school teachers, college faculty and career counselors from more than 100 New England institutions to introduce fiber optics, telecommunications and photonics technology education. Four of these projects will be discussed here: (1) The New England Board of Higher Education's (NEBHE) Fiber Optics Technology Education Project, (FOTEP) was designed to teach fiber optics theory and to provide laboratory experiences at the secondary and postsecondary levels. (2) Springfield Technical Community College's Northeast Center for Telecommunications Technologies (NCTT) is developing curricula and instructional materials in lightwave, networking and wireless telecommunications technologies. (3) The Harvard-Smithsonian Center for Astrophysics project ComTech developed a 12-week, hands-on curriculum and teaching strategies for middle and high school science and technology teachers in telecommunications and focused on optical communication (fiber optics). (4) NEBHE's project PHOTON is preparing middle, secondary and postsecondary instructors to introduce theory and laboratory experiences in photonics, including geometric and wave optics as well as principles of lasers and photonics applications.
Nonlinear Optical Materials for the Smart Filtering of Optical Radiation.
Dini, Danilo; Calvete, Mário J F; Hanack, Michael
2016-11-23
The control of luminous radiation has extremely important implications for modern and future technologies as well as in medicine. In this Review, we detail chemical structures and their relevant photophysical features for various groups of materials, including organic dyes such as metalloporphyrins and metallophthalocyanines (and derivatives), other common organic materials, mixed metal complexes and clusters, fullerenes, dendrimeric nanocomposites, polymeric materials (organic and/or inorganic), inorganic semiconductors, and other nanoscopic materials, utilized or potentially useful for the realization of devices able to filter in a smart way an external radiation. The concept of smart is referred to the characteristic of those materials that are capable to filter the radiation in a dynamic way without the need of an ancillary system for the activation of the required transmission change. In particular, this Review gives emphasis to the nonlinear optical properties of photoactive materials for the function of optical power limiting. All known mechanisms of optical limiting have been analyzed and discussed for the different types of materials.
NASA Astrophysics Data System (ADS)
Xi, Jiefeng; Zhang, Yuying; Huo, Li; Chen, Yongping; Jabbour, Toufic; Li, Ming-Jun; Li, Xingde
2010-09-01
This paper reviews our recent developments of ultrathin fiber-optic endomicroscopy technologies for transforming high-resolution noninvasive optical imaging techniques to in vivo and clinical applications such as early disease detection and guidance of interventions. Specifically we describe an all-fiber-optic scanning endomicroscopy technology, which miniaturizes a conventional bench-top scanning laser microscope down to a flexible fiber-optic probe of a small footprint (i.e. ~2-2.5 mm in diameter), capable of performing two-photon fluorescence and second harmonic generation microscopy in real time. This technology aims to enable realtime visualization of histology in situ without the need for tissue removal. We will also present a balloon OCT endoscopy technology which permits high-resolution 3D imaging of the entire esophagus for detection of neoplasia, guidance of biopsy and assessment of therapeutic outcome. In addition we will discuss the development of functional polymeric fluorescent nanocapsules, which use only FAD approved materials and potentially enable fast track clinical translation of optical molecular imaging and targeted therapy.
NASA Astrophysics Data System (ADS)
1988-05-01
Many laboratory programs continue to need optical components of ever-increasing size and accuracy. Unfortunately, optical surfaces produced by the conventional sequence of grinding, lapping, and polishing can become prohibitively expensive. Research in the Fabrication Technology area focuses on methods of fabricating components with heretofore unrealized levels of precision. In FY87, researchers worked to determine the fundamental mechanical limits of material removal, experimented with unique material removal and deposition processes, developed servo systems for controlling the geometric position of ultraprecise machine tools, and advanced the ability to precisely measure contoured workpieces. Continued work in these areas will lead to more cost-effective processes to fabricate even higher quality optical components for advanced lasers and for visible, ultraviolet, and X-ray diagnostic systems.
JPRS report. Science and technology: Europe and Latin America
NASA Astrophysics Data System (ADS)
1987-12-01
Topics addressed include: advanced materials; aerospace; civil aviation; automative industry; biotechnology; computers; metallurgical industries; microelectronics; science and technology policy; and lasers, sensor, and optics.
WaferOptics® mass volume production and reliability
NASA Astrophysics Data System (ADS)
Wolterink, E.; Demeyer, K.
2010-05-01
The Anteryon WaferOptics® Technology platform contains imaging optics designs, materials, metrologies and combined with wafer level based Semicon & MEMS production methods. WaferOptics® first required complete new system engineering. This system closes the loop between application requirement specifications, Anteryon product specification, Monte Carlo Analysis, process windows, process controls and supply reject criteria. Regarding the Anteryon product Integrated Lens Stack (ILS), new design rules, test methods and control systems were assessed, implemented, validated and customer released for mass production. This includes novel reflowable materials, mastering process, replication, bonding, dicing, assembly, metrology, reliability programs and quality assurance systems. Many of Design of Experiments were performed to assess correlations between optical performance parameters and machine settings of all process steps. Lens metrologies such as FFL, BFL, and MTF were adapted for wafer level production and wafer mapping was introduced for yield management. Test methods for screening and validating suitable optical materials were designed. Critical failure modes such as delamination and popcorning were assessed and modeled with FEM. Anteryon successfully managed to integrate the different technologies starting from single prototypes to high yield mass volume production These parallel efforts resulted in a steep yield increase from 30% to over 90% in a 8 months period.
Optical computing, optical memory, and SBIRs at Foster-Miller
NASA Astrophysics Data System (ADS)
Domash, Lawrence H.
1994-03-01
A desktop design and manufacturing system for binary diffractive elements, MacBEEP, was developed with the optical researcher in mind. Optical processing systems for specialized tasks such as cellular automation computation and fractal measurement were constructed. A new family of switchable holograms has enabled several applications for control of laser beams in optical memories. New spatial light modulators and optical logic elements have been demonstrated based on a more manufacturable semiconductor technology. Novel synthetic and polymeric nonlinear materials for optical storage are under development in an integrated memory architecture. SBIR programs enable creative contributions from smaller companies, both product oriented and technology oriented, and support advances that might not otherwise be developed.
Challenges in mold manufacturing for high precision molded diffractive optical elements
NASA Astrophysics Data System (ADS)
Pongs, Guido; Bresseler, Bernd; Schweizer, Klaus; Bergs, Thomas
2016-09-01
Isothermal precision glass molding of imaging optics is the key technology for mass production of precise optical elements. Especially for numerous consumer applications (e.g. digital cameras, smart phones, …), high precision glass molding is applied for the manufacturing of aspherical lenses. The usage of diffractive optical elements (DOEs) can help to further reduce the number of lenses in the optical systems which will lead to a reduced weight of hand-held optical devices. But today the application of molded glass DOEs is limited due to the technological challenges in structuring the mold surfaces. Depending on the application submicrometer structures are required on the mold surface. Furthermore these structures have to be replicated very precisely to the glass lens surface. Especially the micro structuring of hard and brittle mold materials such as Tungsten Carbide is very difficult and not established. Thus a multitude of innovative approaches using diffractive optical elements cannot be realized. Aixtooling has investigated in different mold materials and different suitable machining technologies for the micro- and sub-micrometer structuring of mold surfaces. The focus of the work lays on ultra-precision grinding to generate the diffractive pattern on the mold surfaces. This paper presents the latest achievements in diffractive structuring of Tungsten Carbide mold surfaces by ultra-precision grinding.
MSTD 2007 Publications and Patents
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, W E
2008-04-01
The Materials Science and Technology Division (MSTD) supports the central scientific and technological missions of the Laboratory, and at the same time, executes world-class, fundamental research and novel technological development over a wide range of disciplines. Our organization is driven by the institutional needs in nuclear weapons stockpile science, high-energy-density science, nuclear reactor science, and energy and environment science and technology. We maintain expertise and capabilities in many diverse areas, including actinide science, electron microscopy, laser-materials interactions, materials theory, simulation and modeling, materials synthesis and processing, materials science under extreme conditions, ultrafast materials science, metallurgy, nanoscience and technology, nuclear fuelsmore » and energy security, optical materials science, and surface science. MSTD scientists play leadership roles in the scientific community in these key and emerging areas.« less
MSFC Thermal Protection System Materials on MISSE-6
NASA Technical Reports Server (NTRS)
Finckenor, Miria M.; Valentine, Peter G.; Gubert, Michael K.
2010-01-01
The Lightweight Nonmetallic Thermal Protection Materials Technology (LNTPMT) program studied a number of ceramic matrix composites, ablator materials, and tile materials for durability in simulated space environment. Materials that indicated low atomic oxygen reactivity and negligible change in thermo-optical properties in ground testing were selected to fly on the Materials on International Space Station Experiment (MISSE)-6. These samples were exposed for 17 months to the low Earth orbit environment on both the ram and wake sides of MISSE-6B. Thermo-optical properties are discussed, along with any changes in mass.
Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin; Shih, Hung-Dah
1998-01-01
Interest in optical devices which can operate in the visible spectrum has motivated research interest in the II-VI wide band gap semiconductor materials. The recent challenge for semiconductor opto-electronics is the development of a laser which can operate at short visible wavelengths, In the past several years, major advances in thin film technology such as molecular beam epitaxy and metal organic chemical vapor deposition have demonstrated the applicability of II-VI materials to important devices such as light-emitting diodes, lasers, and ultraviolet detectors.The demonstration of its optical bistable properties in bulk and thin film forms also make ZnSe a possible candidate material for the building blocks of a digital optical computer. Despite this, developments in the crystal growth of bulk II-VI semiconductor materials has not advanced far enough to provide the low price, high quality substrates needed for the thin film growth technology. The electrical and optical properties of semiconductor materials depend on the native point defects, (the deviation from stoichiometry), and the impurity or dopant distribution. To date, the bulk growth of ZnSe substrates has been plagued with problems related to defects such as non-uniform distributions of native defects, impurities and dopants, lattice strain, dislocations, grain boundaries, and second phase inclusions which greatly effect the device performance. In the bulk crystal growth of some technologically important semiconductors, such as ZnTe, CdS, ZnSe and ZnS, vapor growth techniques have significant advantages over melt growth techniques due to the high melting points of these materials.
A novel optical fibre doped with the nano-material as InP
NASA Astrophysics Data System (ADS)
Chen, Xi; Lee, Ly Guat; Zhang, Ru
2007-11-01
As the key of these optical devices which are widely used in the communication system, high nonlinear optical fibre will play an important role in the future optical fibre communication. With recent growth of nano-technology, researchers are hoping to obtain some kinds of optical fibre by combining the optical fibre with the nanotechnology. According to this current situation, the optical fibre doped with nano-material as InP (indium phosphide) is manufactured by using the MCVD (modified chemical vapor deposition) technology after our comprehensive consideration of many relative factors. Proved by experiments, this novel optical fibre has an excellent waveguide characteristic. After a consideration of the model of this novel optical fibre, its propagation constant β has been simulated by using the FEM (finite element method), and the graphs of presentation of magnetic field of the core are also obtained. In accordance with the results, the effective refractive index n eff = 1.401 has be calculated. Both the calculated result and the simulated graphs are matching well with the test, and this result is a step-stone bridge for future research of nonlinear parameter on this novel optical fiber.
Inkjet Printing of Functional Materials for Optical and Photonic Applications
Alamán, Jorge; Alicante, Raquel; Peña, Jose Ignacio; Sánchez-Somolinos, Carlos
2016-01-01
Inkjet printing, traditionally used in graphics, has been widely investigated as a valuable tool in the preparation of functional surfaces and devices. This review focuses on the use of inkjet printing technology for the manufacturing of different optical elements and photonic devices. The presented overview mainly surveys work done in the fabrication of micro-optical components such as microlenses, waveguides and integrated lasers; the manufacturing of large area light emitting diodes displays, liquid crystal displays and solar cells; as well as the preparation of liquid crystal and colloidal crystal based photonic devices working as lasers or optical sensors. Special emphasis is placed on reviewing the materials employed as well as in the relevance of inkjet in the manufacturing of the different devices showing in each of the revised technologies, main achievements, applications and challenges. PMID:28774032
Ackermann, Mark R [Albuquerque, NM; Diels, Jean-Claude M [Albuquerque, NM
2007-06-26
An optical system comprising a concave primary mirror reflects light through an intermediate focus to a secondary mirror. The secondary mirror re-focuses the image to a final image plane. Optical limiter material is placed near the intermediate focus to optically limit the intensity of light so that downstream components of the optical system are protected from intense optical transients. Additional lenses before and/or after the intermediate focus correct optical aberrations.
Nano-Scale Fabrication Using Optical-Near-Field
NASA Astrophysics Data System (ADS)
Yatsui, Takashi; Ohtsu, Motoichi
This paper reviews the specific nature of nanophotonics, i.e., a novel optical nano-technology, utilizing dressed photon excited in the nano-material. As examples of nanophotnic fabrication, optical near-field etching and increased spatial homogeneity of contents in compound semiconductors is demonstrated with a self-organized manner.
Optical Material Researches for Frontier Optical Ceramics and Visible Fiber Laser Technologies
2016-07-07
zeolite method”, Motoichiro Murakami, Yasushi Fujimoto, Shinji Motokoshi, Tatsuhiro Sato, Hiroyuki Shiraga, Optics Communications 328 (2014) pp.121...Center, Shanghai, China. 13) “Rare Earth Doped Fiber Lasers Based on Zeolite Method - (invited)”, Y. Fujimoto, The 4th International Workshop on
Silk materials--a road to sustainable high technology.
Tao, Hu; Kaplan, David L; Omenetto, Fiorenzo G
2012-06-05
This review addresses the use of silk protein as a sustainable material in optics and photonics, electronics and optoelectronic applications. These options represent additional developments for this technology platform that compound the broad utility and impact of this material for medical needs that have been recently described in the literature. The favorable properties of the material certainly make a favorable case for the use of silk, yet serve as a broad inspiration to further develop biological foundries for both the synthesis and processing of Nature's materials for technological applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Ryan, Robert; Underwood, Lauren; Holekamp, Kara; May, George; Spiering, Bruce; Davis, Bruce
2011-01-01
This technology exploits the organic decomposition capability and hydrophilic properties of the photocatalytic material titanium dioxide (TiO2), a nontoxic and non-hazardous substance, to address contamination and biofouling issues in field-deployed optical sensor systems. Specifically, this technology incorporates TiO2 coatings and materials applied to, or integrated as a part of, the optical surfaces of sensors and calibration sources, including lenses, windows, and mirrors that are used in remote, unattended, ground-based (land or maritime) optical sensor systems. Current methods used to address contamination or biofouling of these optical surfaces in deployed systems are costly, toxic, labor intensive, and non-preventative. By implementing this novel technology, many of these negative aspects can be reduced. The functionality of this innovative self-cleaning solution to address the problem of contamination or biofouling depends on the availability of a sufficient light source with the appropriate spectral properties, which can be attained naturally via sunlight or supplemented using artificial illumination such as UV LEDs (light emitting diodes). In land-based or above-water systems, the TiO2 optical surface is exposed to sunlight, which catalyzes the photocatalytic reaction, facilitating both the decomposition of inorganic and organic compounds, and the activation of superhydrophilic properties. Since underwater optical surfaces are submerged and have limited sunlight exposure, supplementary UV light sources would be required to activate the TiO2 on these optical surfaces. Nighttime operation of land-based or above-water systems would require this addition as well. For most superhydrophilic self-cleaning purposes, a rainwater wash will suffice; however, for some applications an attached rainwater collector/ dispenser or other fresh water dispensing system may be required to wash the optical surface and initiate the removal of contaminates. Deployment of this non-toxic,non-hazardous-technology will take advantage of environmental elements (i.e. rain and sunlight), increase the longevity of unattended optical systems, increase the amount of time between required maintenance, and improve the long-term accuracy of sensor measurements.
Nonlinear optical polymers for electro-optic signal processing
NASA Technical Reports Server (NTRS)
Lindsay, Geoffrey A.
1991-01-01
Photonics is an emerging technology, slated for rapid growth in communications systems, sensors, imagers, and computers. Its growth is driven by the need for speed, reliability, and low cost. New nonlinear polymeric materials will be a key technology in the new wave of photonics devices. Electron-conjubated polymeric materials offer large electro-optic figures of merit, ease of processing into films and fibers, ruggedness, low cost, and a plethora of design options. Several new broad classes of second-order nonlinear optical polymers were developed at the Navy's Michelson Laboratory at China Lake, California. Polar alignment in thin film waveguides was achieved by electric-field poling and Langmuir-Blodgett processing. Our polymers have high softening temperatures and good aging properties. While most of the films can be photobleached with ultraviolet (UV) light, some have excellent stability in the 500-1600 nm range, and UV stability in the 290-310 nm range. The optical nonlinear response of these polymers is subpicosecond. Electro-optic switches, frequency doublers, light modulators, and optical data storage media are some of the device applications anticipated for these polymers.
NASA Technical Reports Server (NTRS)
Abdeldayem, Hossin; Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin; Witherow, William K.; Bank, Curtis; Shields, Angela; Hicks, Rosline; Ashley, Paul R.
1996-01-01
In this paper, we will take a closer look at the state of the art of polydiacetylene, and metal-free phthalocyanine films, in view of the microgravity impact on their optical properties, their nonlinear optical properties and their potential advantages for integrated optics. These materials have many attractive features with regard to their use in integrated optical circuits and optical switching. Thin films of these materials processed in microgravity environment show enhanced optical quality and better molecular alignment than those processed in unit gravity. Our studies of these materials indicate that microgravity can play a major role in integrated optics technology. Polydiacetylene films are produced by UV irradiation of monomer solution through an optical window. This novel technique of forming polydiacetylene thin films has been modified for constructing sophisticated micro-structure integrated optical patterns using a pre-programmed UV-Laser beam. Wave guiding through these thin films by the prism coupler technique has been demonstrated. The third order nonlinear parameters of these films have been evaluated. Metal-free phthalocyanine films of good optical quality are processed in our laboratories by vapor deposition technique. Initial studies on these films indicate that they have excellent chemical, laser, and environmental stability. They have large nonlinear optical parameters and show intrinsic optical bistability. This bistability is essential for optical logic gates and optical switching applications. Waveguiding and device making investigations of these materials are underway.
The development and application of high energy laser protective material
NASA Astrophysics Data System (ADS)
Zhao, Xinying; Hu, Yihua; Zhao, Yizheng
2016-03-01
With the emergence of strong light source, laser weapons in the modern war, the threat of damage to the photoelectric sensor and the human eye, the laser protection technology has begun to be paid attention to and widespread concern. In the laser protective materials, we can divide it into the protective material based on the principle of linear optics and the protective material based on the principle of nonlinear optics. In this paper, two different mechanisms of laser protective materials are introduced, and their development and application are reviewed.
NASA Astrophysics Data System (ADS)
Efron, Uzi
Recent advances in the technology and applications of spatial light modulators (SLMs) are discussed in review essays by leading experts. Topics addressed include materials for SLMs, SLM devices and device technology, applications to optical data processing, and applications to artificial neural networks. Particular attention is given to nonlinear optical polymers, liquid crystals, magnetooptic SLMs, multiple-quantum-well SLMs, deformable-mirror SLMs, three-dimensional optical memories, applications of photorefractive devices to optical computing, photonic neurocomputers and learning machines, holographic associative memories, SLMs as parallel memories for optoelectronic neural networks, and coherent-optics implementations of neural-network models.
NASA Technical Reports Server (NTRS)
Efron, Uzi (Editor)
1990-01-01
Recent advances in the technology and applications of spatial light modulators (SLMs) are discussed in review essays by leading experts. Topics addressed include materials for SLMs, SLM devices and device technology, applications to optical data processing, and applications to artificial neural networks. Particular attention is given to nonlinear optical polymers, liquid crystals, magnetooptic SLMs, multiple-quantum-well SLMs, deformable-mirror SLMs, three-dimensional optical memories, applications of photorefractive devices to optical computing, photonic neurocomputers and learning machines, holographic associative memories, SLMs as parallel memories for optoelectronic neural networks, and coherent-optics implementations of neural-network models.
NASA Technical Reports Server (NTRS)
Ayon, Juan A.
1992-01-01
The Astrotech 21 Optical Systems Technology Workshop was held in Pasadena, California on March 6-8, 1991. The purpose of the workshop was to examine the state of Optical Systems Technology at the National Aeronautics Space Administration (NASA), and in industry and academia, in view of the potential Astrophysics mission set currently being considered for the late 1990's through the first quarter of the 21st century. The principal result of the workshop is this publication, which contains an assessment of the current state of the technology, and specific technology advances in six critical areas of optics, all necessary for the mission set. The workshop was divided into six panels, each of about a dozen experts in specific fields, representing NASA, industry, and academia. In addition, each panel contained expertise that spanned the spectrum from x-ray to submillimeter wavelengths. This executive summary contains the principal recommendations of each panel. The six technology panels and their chairs were: (1) Wavefront Sensing, Control, and Pointing, Thomas Pitts, Itek Optical Systems, A Division of Litton; (2) Fabrication, Roger Angel, Steward Observatory, University of Arizona; (3) Materials and Structures, Theodore Saito, Lawrence Livermore National Laboratory; (4) Optical Testing, James Wyant, WYKO Corporation; (5) Optical Systems Integrated Modeling, Robert R. Shannon, Optical Sciences Center, University of Arizona; and (6) Advanced Optical Instruments Technology, Michael Shao, Jet Propulsion Laboratory, California Institute of Technology. This Executive Summary contains the principal recommendations of each panel.
Study of optical properties of cerium ion doped barium aluminate phosphor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lohe, P. P., E-mail: prachiti.lohe2012@gmail.com; Omanwar, S. K.; Bajaj, N. S.
2016-05-06
In the recent years due to their various optical and technological applications aluminate materials have attracted attention of several researchers. When these materials are doped with rare earth ions they show properties favorable for many optical applications such as high quantum efficiencies. These materials are used in various applications such as lamp phosphors, optically and thermoluminescence dosimeter etc Barium aluminate BaAl{sub 2}O{sub 4} doped with Ce is well known long lasting phosphor. This paper reports synthesis of BaAl{sub 2}O{sub 4}: Ce phosphor prepared by a simple combustion synthesis. The samples were characterized for the phase purity, chemical bonds and luminescentmore » properties.« less
Development of optical sciences in Poland
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2013-10-01
Research and technical communities for optics, photonics and optoelectronics is grouped in this country in several organizations and institutions. These are: Photonics Society of Poland (PSP), Polish Committee of Optoelectronics of SEP, Photonics Section of KEiT PAN, Laser Club at WAT, and Optics Section of PTF. Each of these communities keeps slightly different specificity. PSP publishes a quarterly journal Photonics Letters of Poland, stimulates international cooperation, and organizes conferences during Industrial Fairs on Innovativeness. PKOpto SEP organizes didactic diploma competitions in optoelectronics. KEiT PAN takes patronage over national conferences in laser technology, optical fiber technology and communications, and photonics applications. SO-PTF has recently taken a decision to organize a cyclic event "Polish Optical Conference". The third edition of this conference PKO'2013 was held in Sandomierz on 30.06-04.07.2013. The conference scientific and technical topics include: quantum and nonlinear optics, photon physics, optic and technology of lasers and other sources of coherent radiation, optoelectronics, optical integrated circuits, optical fibers, medical optics, instrumental optics, optical spectroscopy, optical metrology, new optical materials, applications of optics, teaching in optics. This paper reviews chosen works presented during the III Polish Optical Conference (PKO'2013), representing the research efforts at different national institutions.
Homogenous isotropic invisible cloak based on geometrical optics.
Sun, Jingbo; Zhou, Ji; Kang, Lei
2008-10-27
Invisible cloak derived from the coordinate transformation requires its constitutive material to be anisotropic. In this work, we present a cloak of graded-index isotropic material based on the geometrical optics theory. The cloak is realized by concentric multilayered structure with designed refractive index to achieve the low-scattering and smooth power-flow. Full-wave simulations on such a design of a cylindrical cloak are performed to demonstrate the cloaking ability to incident wave of any polarization. Using normal nature material with isotropy and low absorption, the cloak shows light on a practical path to stealth technology, especially that in the optical range.
Science and Technology of Nanostructured Magnetic Materials
1990-07-06
galvano-magnetic and magneto-optic effects that can lead to future storage technologies. Ultrafine particles also show interesting and unique properties...areas including thin films, multilayers, disordered systems, ultrafine particles , intermetallic compounds, permanent magnets and magnetic imaging... ultrafine particles , intermetallic compounds, permanent magnets and magnetic imaging techniques. The development of new techniques for materials preparation
Chip-scale sensor system integration for portable health monitoring.
Jokerst, Nan M; Brooke, Martin A; Cho, Sang-Yeon; Shang, Allan B
2007-12-01
The revolution in integrated circuits over the past 50 yr has produced inexpensive computing and communications systems that are powerful and portable. The technologies for these integrated chip-scale sensing systems, which will be miniature, lightweight, and portable, are emerging with the integration of sensors with electronics, optical systems, micromachines, microfluidics, and the integration of chemical and biological materials (soft/wet material integration with traditional dry/hard semiconductor materials). Hence, we stand at a threshold for health monitoring technology that promises to provide wearable biochemical sensing systems that are comfortable, inauspicious, wireless, and battery-operated, yet that continuously monitor health status, and can transmit compressed data signals at regular intervals, or alarm conditions immediately. In this paper, we explore recent results in chip-scale sensor integration technology for health monitoring. The development of inexpensive chip-scale biochemical optical sensors, such as microresonators, that are customizable for high sensitivity coupled with rapid prototyping will be discussed. Ground-breaking work in the integration of chip-scale optical systems to support these optical sensors will be highlighted, and the development of inexpensive Si complementary metal-oxide semiconductor circuitry (which makes up the vast majority of computational systems today) for signal processing and wireless communication with local receivers that lie directly on the chip-scale sensor head itself will be examined.
Large optics technology; Proceedings of the Meeting, San Diego, CA, August 19-21, 1985. Volume 571
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanger, G.M.
1986-01-01
The present conference on telescope primary mirror design and manufacturing technologies considers topics in mirror fabrication and testing, novel technology currently under development, recently instituted large optics development programs, and large mirror materials. Among the topics discussed are aspheric figure generation using feedback from an IR phase-shifting interferometer, thermal stability tests of CFRP sandwich panels for far-IR astronomy, Zerodur lightweight (large mirror) blanks, and the precision machining of grazing-incidence X-ray mirror substrates. Also treated are the rapid fabrication of large aspheric optics, steps toward 8-m honeycomb mirrors, a novel telescope design employing the refraction of prism rows, telescope technology formore » the Far-UV Spectroscopic Explorer, hot isostatic-pressed Be for large optics, and a concept for a moderate cost large deployable reflector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Richard Karl; Martin, Jeffrey B.; Wiemann, Dora K.
We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development ofmore » room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.« less
Optics Communications: Special issue on Polymer Photonics and Its Applications
NASA Astrophysics Data System (ADS)
Zhang, Ziyang; Pitwon, Richard C. A.; Feng, Jing
2016-03-01
In the last decade polymer photonics has witnessed a tremendous boost in research efforts and practical applications. Polymer materials can be engineered to exhibit unique optical and electrical properties. Extremely transparent and reliable passive optical polymers have been made commercially available and paved the ground for the development of various waveguide components. Advancement in the research activities regarding the synthesis of active polymers has enabled devices such as ultra-fast electro-optic modulators, efficient white light emitting diodes, broadband solar cells, flexible displays, and so on. The fabrication technology is not only fast and cost-effective, but also provides flexibility and broad compatibility with other semiconductor processing technologies. Reports show that polymers have been integrated in photonic platforms such as silicon-on-insulator (SOI), III-V semiconductors, and silica PLCs, and vice versa, photonic components made from a multitude of materials have been integrated, in a heterogeneous/hybrid manner, in polymer photonic platforms.
EDITORIAL: Special issue on silicon photonics
NASA Astrophysics Data System (ADS)
Reed, Graham; Paniccia, Mario; Wada, Kazumi; Mashanovich, Goran
2008-06-01
The technology now known as silicon photonics can be traced back to the pioneering work of Soref in the mid-1980s (see, for example, Soref R A and Lorenzo J P 1985 Electron. Lett. 21 953). However, the nature of the research conducted today, whilst it builds upon that early work, is unrecognizable in terms of technology metrics such as device efficiency, device data rate and device dimensions, and even in targeted applications areas. Today silicon photonics is still evolving, and is enjoying a period of unprecedented attention in terms of research focus. This has resulted in orders-of-magnitude improvement in device performance over the last few years to levels many thought were impossible. However, despite the existence of the research field for more than two decades, silicon is still regarded as a 'new' optical material, one that is being manipulated and modified to satisfy the requirements of a range of applications. This is somewhat ironic since silicon is one of the best known and most thoroughly studied materials, thanks to the electronics industry that has made silicon its material of choice. The principal reasons for the lack of study of this 'late developer' are that (i) silicon is an indirect bandgap material and (ii) it does not exhibit a linear electro-optic (Pockels) effect. The former condition means that it is difficult to make a laser in silicon based on the intrinsic performance of the material, and consequently, in recent years, researchers have attempted to modify the material to artificially engineer the conditions for lasing to be viable (see, for example, the review text, Jalali B et al 2008 Silicon Lasers in Silicon Photonics: The State of the Art ed G T Reed (New York: Wiley)). The latter condition means that optical modulators are intrinsically less efficient in silicon than in some other materials, particularly when targeting the popular telecommunications wavelengths around 1.55 μm. Therefore researchers have sought alternative mechanisms for modulation in silicon that have yielded increasingly impressive results (see, for example, Liao L et al 2007 Electron. Lett. 43 issue 22). The convergence of computing and communications and the resultant demand for increased bandwidth has been one of the factors influencing the upsurge of interest in silicon, together with the requirement for photonic and electronic integration, all to be realized at low cost. Thus emerging applications such as short-reach communications links for optical interconnect and fibre to the home (FTTH) (as well as a multitude of other applications) are frequently offered as examples of where silicon photonics will have a significant, perhaps a revolutionary, impact. One of the major conclusions of the joint MIT-industry Communication Technology Roadmap (http://mph-roadmap.mit.edu/index.php), was that 'Photonics technology will be driven by electronic-photonic synergy and short (<1 km) reach interconnection. This direction will ignite a major shift in leadership of the optical component industry from information transmission (telecom) to information processing (computing imaging).' Thus the case is made for low-cost implementation, making silicon a prime candidate, particularly if true electronic/photonic integration is to be realized. Despite the limitations of silicon as an optical material, the intrinsic advantages of the most popular silicon optical platform, silicon-on-insulator (SOI), should not be overlooked. The very high confinement nature of this technology platform brings a host of advantages, including the possibility to miniaturize devices and circuits, to reduce power consumption, optical loss and cost, to increase yield, and to be compatible with CMOS-based intelligence. Thus the limitations of silicon as an optical material can be offset against the very significant advantages, to both commercial as well as technological success. Of course, there is still much to do, hence the increasing global investment in silicon technology and the massive increase in research activity in silicon photonics since the early work in the 1980s. Only time will tell if silicon can realize its potential to satisfy the ever-increasing array of applications. However, the indications are positive, and the contributors to this cause employ increasingly impressive levels of intellectual and technological capability to realize the desired goals. It is an interesting time to be involved in slicon photonics, and it will be equally fascinating to watch the evolution of the technology in the future. Whatever happens, silicon will make the transition from being regarded as purely an electronic material to recognition as an optoelectronic material. The evidence for this is represented in the collection of papers that form this special issue of Semiconductor Science and Technology. This special issue is, in turn, representative of the rapidly increasing body of literature that represents the field of silicon photonics. In a field of such rapid transition as silicon photonics, the hope is that this special issue takes a snapshot of the technology at the time of publication, to document the progress of the field for future reference, and in turn to stimulate further work. The Guest Editors are grateful for the tireless support of Clare Bedrock at IOP Publishing.
NASA Technical Reports Server (NTRS)
Kersten, Ralf T. (Editor)
1990-01-01
Recent advances in fiber-optic sensor (FOS) technology are examined in reviews and reports. Sections are devoted to components for FOSs, special fibers for FOSs, interferometry, FOS applications, and sensing principles and influence. Particular attention is given to solder glass sealing technology for FOS packaging, the design of optical-fiber current sensors, pressure and temperature effects on beat length in highly birefringent optical fibers, a pressure FOS based on vibrating-quartz-crystal technology, remote sensing of flammable gases using a fluoride-fiber evanescent probe, a displacement sensor with electronically scanned white-light interferometer, the use of multimode laser diodes in low-coherence coupled-cavity interferometry, electronic speckle interferometry compensated for environmentally induced phase noise, a dual-resolution noncontact vibration and displacement sensor based on a two-wavelength source, and fiber optics in composite materials.
Gyrotropic response in the absence of a bias field
Wang, Zhiyu; Wang, Zheng; Wang, Jingyu; Zhang, Bin; Huangfu, Jiangtao; Joannopoulos, John D.; Soljačić, Marin; Ran, Lixin
2012-01-01
Electromagnetic materials lacking local time-reversal symmetry, such as gyrotropic materials, are of keen interest and importance both scientifically and technologically. Scientifically, topologically nontrivial phenomena, such as photonic chiral edge states, allow for reflection-free transport even in the presence of large disorder. Technologically, nonreciprocal photonic devices, such as optical isolators and circulators, play critical roles in optical communication and computing technologies because of their ability to eliminate cross-talk and feedback. Nevertheless, most known natural materials that lack local time-reversal symmetry require strong external fields and function only in a limited range of the electromagnetic spectrum. By taking advantage of metamaterials capable of translating the property of unidirectional active electronic circuits into effective dielectric response, we introduce a microwave gyrotropic metamaterial that does not require an external magnetic bias. Strong bulk Faraday-like effects, observed in both simulations and experiments, confirm nonreciprocity of the effective medium. This approach is scalable to many other wavelengths, and it also illustrates an opportunity to synthesize exotic electromagnetic materials. PMID:22847403
Gyrotropic response in the absence of a bias field.
Wang, Zhiyu; Wang, Zheng; Wang, Jingyu; Zhang, Bin; Huangfu, Jiangtao; Joannopoulos, John D; Soljačić, Marin; Ran, Lixin
2012-08-14
Electromagnetic materials lacking local time-reversal symmetry, such as gyrotropic materials, are of keen interest and importance both scientifically and technologically. Scientifically, topologically nontrivial phenomena, such as photonic chiral edge states, allow for reflection-free transport even in the presence of large disorder. Technologically, nonreciprocal photonic devices, such as optical isolators and circulators, play critical roles in optical communication and computing technologies because of their ability to eliminate cross-talk and feedback. Nevertheless, most known natural materials that lack local time-reversal symmetry require strong external fields and function only in a limited range of the electromagnetic spectrum. By taking advantage of metamaterials capable of translating the property of unidirectional active electronic circuits into effective dielectric response, we introduce a microwave gyrotropic metamaterial that does not require an external magnetic bias. Strong bulk Faraday-like effects, observed in both simulations and experiments, confirm nonreciprocity of the effective medium. This approach is scalable to many other wavelengths, and it also illustrates an opportunity to synthesize exotic electromagnetic materials.
NASA Astrophysics Data System (ADS)
Suleimanov, S. Kh.; Dyskin, V. G.; Dzhanklich, M. U.; Dudko, O. A.; Kulagina, N. A.
2018-01-01
We present the results of studying the effect of technological synthesis regimes of a solar furnace using the method of a partial metal reduction of one of the oxides on the phase formation of cermet composite materials of the TiO2-CuO system. It has been established that the phase composition of the synthesized cermet composite materials depends on the carbon concentration, melting temperature and cooling rate. The dependence of the spectral-optical properties of selectively absorbing coatings on the production technology and properties of synthesized composite materials has been presented. It has been found that the coatings fabricated by melting in air with overheating at a melt cooling rate of about 105-106°C/s have the highest values of the integral absorption coefficient, α s = 91.0-94.5%.
Realization of optical multimode TSV waveguides for Si-Interposer in 3D-chip-stacks
NASA Astrophysics Data System (ADS)
Killge, S.; Charania, S.; Richter, K.; Neumann, N.; Al-Husseini, Z.; Plettemeier, D.; Bartha, J. W.
2017-05-01
Optical connectivity has the potential to outperform copper-based TSVs in terms of bandwidth at the cost of more complexity due to the required electro-optical and opto-electrical conversion. The continuously increasing demand for higher bandwidth pushes the breakeven point for a profitable operation to shorter distances. To integrate an optical communication network in a 3D-chip-stack optical through-silicon vertical VIAs (TSV) are required. While the necessary effort for the electrical/optical and vice versa conversion makes it hard to envision an on-chip optical interconnect, a chip-to-chip optical link appears practicable. In general, the interposer offers the potential advantage to realize electro-optical transceivers on affordable expense by specific, but not necessarily CMOS technology. We investigated the realization and characterization of optical interconnects as a polymer based waveguide in high aspect ratio (HAR) TSVs proved on waferlevel. To guide the optical field inside a TSV as optical-waveguide or fiber, its core has to have a higher refractive index than the surrounding material. Comparing different material / technology options it turned out that thermal grown silicon dioxide (SiO2) is a perfect candidate for the cladding (nSiO2 = 1.4525 at 850 nm). In combination with SiO2 as the adjacent polymer layer, the negative resist SU-8 is very well suited as waveguide material (nSU-8 = 1.56) for the core. Here, we present the fabrication of an optical polymer based multimode waveguide in TSVs proved on waferlevel using SU-8 as core and SiO2 as cladding. The process resulted in a defect-free filling of waveguide TSVs with SU-8 core and SiO2 cladding up to aspect ratio (AR) 20:1 and losses less than 3 dB.
Responding to Industry Demands: Advanced Technology Centers.
ERIC Educational Resources Information Center
Smith, Elizabeth Brient
1991-01-01
Discusses characteristics identified by the Center for Occupational Research and Development as indicative of fully functioning advanced technology centers, including the provision of training and retraining in such areas as design, manufacturing, materials science, and electro-optics; technology transfer; demonstration sites; needs assessment;…
Large optics for the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baisden, P.
2015-01-12
The National Ignition Facility (NIF) laser with its 192 independent laser beams is not only the world’s largest laser, it is also the largest optical system ever built. With its 192 independent laser beams, the NIF requires a total of 7648 large-aperture (meter-sized) optics. One of the many challenges in designing and building NIF has been to carry out the research and development on optical materials, optics design, and optics manufacturing and metrology technologies needed to achieve NIF’s high output energies and precision beam quality. This paper describes the multiyear, multi-supplier, development effort that was undertaken to develop the advancedmore » optical materials, coatings, fabrication technologies, and associated process improvements necessary to manufacture the wide range of NIF optics. The optics include neodymium-doped phosphate glass laser amplifiers; fused silica lenses, windows, and phase plates; mirrors and polarizers with multi-layer, high-reflectivity dielectric coatings deposited on BK7 substrates; and potassium di-hydrogen phosphate crystal optics for fast optical switches, frequency conversion, and polarization rotation. Also included is a discussion of optical specifications and custom metrology and quality-assurance tools designed, built, and fielded at supplier sites to verify compliance with the stringent NIF specifications. In addition, a brief description of the ongoing program to improve the operational lifetime (i.e., damage resistance) of optics exposed to high fluence in the 351-nm (3ω) is provided.« less
Fundamentals of Materials, Techniques, and Instrumentation for OSL and FNTD Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akselrod, M. S.
The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al{sub 2}O{sub 3}:C as a material of choice for many dosimetric applications. Different aspects of OSL theory, materials optical and dosimetric properties,more » instrumentation, and data processing algorithms are described. The next technological breakthrough was done with Fluorescent Nuclear Track Detectors (FNTD) that have some important advantages in measuring fast neutron and high energy heavy charge particles that have become the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology are discussed with regard to application in mixed neutron-gamma fields, medical dosimetry and radiobiological research.« less
Fundamentals of Materials, Techniques, and Instrumentation for OSL and FNTD Dosimetry
NASA Astrophysics Data System (ADS)
Akselrod, M. S.
2011-05-01
The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al2O3:C as a material of choice for many dosimetric applications. Different aspects of OSL theory, materials optical and dosimetric properties, instrumentation, and data processing algorithms are described. The next technological breakthrough was done with Fluorescent Nuclear Track Detectors (FNTD) that have some important advantages in measuring fast neutron and high energy heavy charge particles that have become the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology are discussed with regard to application in mixed neutron-gamma fields, medical dosimetry and radiobiological research.
Li, Longxiang; Xue, Donglin; Deng, Weijie; Wang, Xu; Bai, Yang; Zhang, Feng; Zhang, Xuejun
2017-11-10
In deterministic computer-controlled optical surfacing, accurate dwell time execution by computer numeric control machines is crucial in guaranteeing a high-convergence ratio for the optical surface error. It is necessary to consider the machine dynamics limitations in the numerical dwell time algorithms. In this paper, these constraints on dwell time distribution are analyzed, and a model of the equal extra material removal is established. A positive dwell time algorithm with minimum equal extra material removal is developed. Results of simulations based on deterministic magnetorheological finishing demonstrate the necessity of considering machine dynamics performance and illustrate the validity of the proposed algorithm. Indeed, the algorithm effectively facilitates the determinacy of sub-aperture optical surfacing processes.
AlGaInN laser diode technology for free-space and plastic optical fibre telecom applications
NASA Astrophysics Data System (ADS)
Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Bóckowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.; Watson, S.; Kelly, A. E.; Watson, M. A.; Blanchard, P.; White, H.
2016-03-01
Gallium Nitride laser diodes fabricated from the AlGaInN material system is an emerging technology for laser sources from the UV to visible and is a potential key enabler for new system applications such as free-space (underwater & air bourne links) and plastic optical fibre telecommunications. We measure visible light (free-space and underwater) communications at high frequency (up to 2.5 Gbit/s) and in plastic optical fibre (POF) using a directly modulated GaN laser diode.
Semiconductor technology program. Progress briefs
NASA Technical Reports Server (NTRS)
Bullis, W. M.
1980-01-01
Measurement technology for semiconductor materials, process control, and devices is reviewed. Activities include: optical linewidth and thermal resistance measurements; device modeling; dopant density profiles; resonance ionization spectroscopy; and deep level measurements. Standardized oxide charge terminology is also described.
Optical fibers and their applications 2012
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.; Wójcik, Waldemar
2013-01-01
XIVth Conference on Optical Fibers and Their Applications, Nałęczów 2012, which has been organized since more than 35 years, has summarized the achievements of the local optical fiber technology community, for the last year and a half. The conference specializes in developments of optical fiber technology, glass and polymer, classical and microstructured, passive and active. The event gathered around 100 participants. There were shown 60 presentations from 20 research and application groups active in fiber photonics, originating from academia and industry. Topical tracks of the Conference were: photonic materials, planar waveguides, passive and active optical fibers, propagation theory in nonstandard optical fibers, and new constructions of optical fibers. A panel discussion concerned teaching in fiber photonics. The conference was accompanied by a school on Optical Fiber Technology. The paper summarizes the chosen main topical tracks of the conference on Optical Fibers and Their Applications, Nałęczów 2012. The papers from the conference presentations will be published in Proc.SPIE. The next conference from this series is scheduled for January 2014 in Białowieża.
Replicated x-ray optics for space applications
NASA Astrophysics Data System (ADS)
Hudec, René; Pína, Ladislav; Inneman, Adolf
2017-11-01
We report on the program of design and development of X-ray optics for space applications in the Czech Republic. Having more than 30 years background in X-ray optics development for space applications (for use in astronomical X-ray telescopes onboard spacecrafts, before 1989 mostly for Soviet and East European INTERKOSMOS program), we focus nowadays on novel technologies and approaches, thin shell replicated mirrors, as well as studies of light-weight mirrors based on innovative materials such as ceramics. The collaboration includes teams from the Academy of Sciences, Universities, and industry. We will describe and discuss both the history of the development of Xray optics in the Czech Republic and the developed technologies and approaches (with focus on replication technology) as well as recent activities and developments including our participation on the ESA XEUS mirror technology development based on the Agreement between ESA and Czech Government.
NASA Astrophysics Data System (ADS)
Matveenko, V. P.; Kosheleva, N. A.; Shardakov, I. N.; Voronkov, A. A.
2018-04-01
The presence of process-induced strains induced by various manufacturing and operational factors is one of the characteristics of polymer composite materials (PCM). Conventional methods of registration and evaluation of process-induced strains can be laborious, time-consuming and demanding in terms of technical applications. The employment of embedded fibre-optic strain sensors (FOSS) offers a real prospect of measuring residual strains. This paper demonstrates the potential for using embedded FOSS for recording technological strains in a PCM plate. The PCM plate is manufactured from prepreg, using the direct compression-moulding method. In this method, the prepared reinforcing package is placed inside a mould, heated, and then exposed to compaction pressure. The examined technology can be used for positioning FOSS between the layers of the composite material. Fibre-optic sensors, interacting with the material of the examined object, make it possible to register the evolution of the strain process during all stages of polymer-composite formation. FOSS data were recorded with interrogator ASTRO X 327. The obtained data were processed using specially developed algorithms.
Photonics: Technology project summary
NASA Technical Reports Server (NTRS)
Depaula, Ramon P.
1991-01-01
Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.
Determination of the element-specific complex permittivity using a soft x-ray phase modulator
NASA Astrophysics Data System (ADS)
Kubota, Y.; Hirata, Y.; Miyawaki, J.; Yamamoto, S.; Akai, H.; Hobara, R.; Yamamoto, Sh.; Yamamoto, K.; Someya, T.; Takubo, K.; Yokoyama, Y.; Araki, M.; Taguchi, M.; Harada, Y.; Wadati, H.; Tsunoda, M.; Kinjo, R.; Kagamihata, A.; Seike, T.; Takeuchi, M.; Tanaka, T.; Shin, S.; Matsuda, I.
2017-12-01
We report on directly determining the complex permittivity tensor using a method combining a developed light source from a segmented cross undulator of synchrotron radiation and the magneto-optical Kerr effect. The empirical permittivity, which carries the electronic and magnetic information of a material, has element specificity and has perfect confirmation using the quantum-mechanical calculation for itinerant electrons systems. These results help in understanding the interaction of light and matter, and they provide an interesting approach to seek the best materials as optical elements, for example, in extended-ultraviolet lithographic technologies or in state-of-the-art laser technologies.
Transparency through Structural Disorder: A New Concept for Innovative Transparent Ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Saghir, Kholoud; Chenu, Sébastien; Veron, Emmanuel
2015-01-27
Transparent polycrystalline ceramics present signi fi cant eco- nomical and functional advantages over single crystal materials for optical, communication, and laser technologies. To date, transparency in these ceramics is ensured either by an optical isotropy (i.e., cubic symmetry) or a nanometric crystallite size, and the main challenge remains to eliminate porosity through complex high pressure - high temperature synthesis. Here we introduce a new concept to achieve ultimate transparency reaching the theoretical limit. We use a controlled degree of chemical disorder in the structure to obtain optical isotropy at the micrometer length scale. This approach can be applied in themore » case of anisotropic structures and micrometer scale crystal size ceramics. We thus report Sr 1+ x /2 Al 2+ x Si 2 - x O 8 (0 < x ≤ 0.4) readily scalable polycrystalline ceramics elaborated by full and congruent crystallization from glass. These materials reach 90% transmittance. This innovative method should drive the development of new highly transparent materials with technologically relevant applications.« less
Birefringent coherent diffraction imaging
NASA Astrophysics Data System (ADS)
Karpov, Dmitry; dos Santos Rolo, Tomy; Rich, Hannah; Kryuchkov, Yuriy; Kiefer, Boris; Fohtung, E.
2016-10-01
Directional dependence of the index of refraction contains a wealth of information about anisotropic optical properties in semiconducting and insulating materials. Here we present a novel high-resolution lens-less technique that uses birefringence as a contrast mechanism to map the index of refraction and dielectric permittivity in optically anisotropic materials. We applied this approach successfully to a liquid crystal polymer film using polarized light from helium neon laser. This approach is scalable to imaging with diffraction-limited resolution, a prospect rapidly becoming a reality in view of emergent brilliant X-ray sources. Applications of this novel imaging technique are in disruptive technologies, including novel electronic devices, in which both charge and spin carry information as in multiferroic materials and photonic materials such as light modulators and optical storage.
Physics through the 1990s: Scientific interfaces and technological applications
NASA Technical Reports Server (NTRS)
1986-01-01
The volume examines the scientific interfaces and technological applications of physics. Twelve areas are dealt with: biological physics-biophysics, the brain, and theoretical biology; the physics-chemistry interface-instrumentation, surfaces, neutron and synchrotron radiation, polymers, organic electronic materials; materials science; geophysics-tectonics, the atmosphere and oceans, planets, drilling and seismic exploration, and remote sensing; computational physics-complex systems and applications in basic research; mathematics-field theory and chaos; microelectronics-integrated circuits, miniaturization, future trends; optical information technologies-fiber optics and photonics; instrumentation; physics applications to energy needs and the environment; national security-devices, weapons, and arms control; medical physics-radiology, ultrasonics, MNR, and photonics. An executive summary and many chapters contain recommendations regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs.
Complete denture analyzed by optical coherence tomography
NASA Astrophysics Data System (ADS)
Negrutiu, Meda L.; Sinescu, Cosmin; Todea, Carmen; Podoleanu, Adrian G.
2008-02-01
The complete dentures are currently made using different technologies. In order to avoid deficiencies of the prostheses made using the classical technique, several alternative systems and procedures were imagined, directly related to the material used and also to the manufacturing technology. Thus, at the present time, there are several injecting systems and technologies on the market, that use chemoplastic materials, which are heat cured (90-100°C), in dry or wet environment, or cold cured (below 60°C). There are also technologies that plasticize a hard cured material by thermoplastic processing (without any chemical changes) and then inject it into a mold. The purpose of this study was to analyze the existence of possible defects in several dental prostheses using a non invasive method, before their insertion in the mouth. Different dental prostheses, fabricated from various materials were investigated using en-face optical coherence tomography. In order to discover the defects, the scanning was made in three planes, obtaining images at different depths, from 0,01 μm to 2 mm. In several of the investigated prostheses we found defects which may cause their fracture. These defects are totally included in the prostheses material and can not be vizualised with other imagistic methods. In conclusion, en-face OCT is an important investigative tool for the dental practice.
The National Cancer Institute seeks licensees and/or co-development partners for methods that provide significant improvements in examining clinically relevant tissue samples, by improving spatial resolution and tissue depth using optical trapping.
Engineered materials for all-optical helicity-dependent magnetic switching
NASA Astrophysics Data System (ADS)
Fullerton, Eric
2014-03-01
The possibilities of manipulating magnetization without applied magnetic fields have attracted growing attention over the last fifteen years. The low-power manipulation of magnetization, preferably at ultra-short time scales, has become a fundamental challenge with implications for future magnetic information memory and storage technologies. Here we explore the optical manipulation of the magnetization of engineered materials and devices using 100 fs optical pulses. We demonstrate that all optical - helicity dependent switching (AO-HDS) can be observed not only in selected rare-earth transition-metal (RE-TM) alloy films but also in a much broader variety of materials, including alloys, multilayers, heterostructures and RE-free Co-Ir-based synthetic ferrimagnets. The discovery of AO-HDS in RE-free TM-based synthetic ferrimagnets can enable breakthroughs for numerous applications since it exploits materials that are currently used in magnetic data storage, memories and logic technologies. In addition, this materials study of AO-HDS offers valuable insight into the underlying mechanisms involved. Indeed the common denominator of the diverse structures showing AO-HDS in this study is that two ferromagnetic sub-lattices exhibit magnetization compensation (and therefore angular momentum compensation) at temperatures near or above room temperature. We are highlighting that compensation plays a major role and that this compensation can be established at the atomic level as in alloys but also over a larger nanometers scale as in the multilayers or in heterostructures. We will also discuss the potential to extend AO-HDS to new classes of magnetic materials. This work was done in collaboration with S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, and M. Aeschlimann. Supported by the ANR-10-BLANC-1005 ``Friends,'' a grant from the Advanced Storage Technology Consortium, Partner University Fund ``Novel Magnetic Materials for Spin Torque Physics'' as well as the European Project (OP2M FP7-IOF-2011-298060).
Wang, Xu; Zhang, Xuejun
2009-02-10
This paper is based on a microinteraction principle of fabricating a RB-SiC material with a fixed abrasive. The influence of the depth formed on a RB-SiC workpiece by a diamond abrasive on the material removal rate and the surface roughness of an optical component are quantitatively discussed. A mathematical model of the material removal rate and the simulation results of the surface roughness are achieved. In spite of some small difference between the experimental results and the theoretical anticipation, which is predictable, the actual removal rate matches the theoretical prediction very well. The fixed abrasive technology's characteristic of easy prediction is of great significance in the optical fabrication industry, so this brand-new fixed abrasive technology has wide application possibilities.
Advanced optical instruments technology
NASA Technical Reports Server (NTRS)
Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William
1992-01-01
The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.
Advanced optical instruments technology
NASA Astrophysics Data System (ADS)
Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William
1992-08-01
The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.
NASA Astrophysics Data System (ADS)
Ke, Jingtang; Pryputniewicz, Ryszard J.
Various papers on the state of the art in laser and optoelectronic technology in industry are presented. Individual topics addressed include: wavelength compensation for holographic optical element, optoelectronic techniques for measurement and inspection, new optical measurement methods in Western Europe, applications of coherent optics at ISL, imaging techniques for gas turbine development, the Rolls-Royce experience with industrial holography, panoramic holocamera for tube and borehole inspection, optical characterization of electronic materials, optical strain measurement of rotating components, quantitative interpretation of holograms and specklegrams, laser speckle technique for hydraulic structural model test, study of holospeckle interferometry, common path shearing fringe scanning interferometer, and laser interferometry applied to nondestructive testing of tires.
NASA Technical Reports Server (NTRS)
Frazier, Donald O.
2000-01-01
Technically, the field of integrated optics using organic/polymer materials as a new means of information processing, has emerged as of vital importance to optical computers, optical switching, optical communications, the defense industry, etc. The goal is to replace conventional electronic integrated circuits and wires by equivalent miniaturized optical integrated circuits and fibers, offering larger bandwidths, more compactness and reliability, immunity to electromagnetic interference and less cost. From the Code E perspective, this research area represents an opportunity to marry "front-line" education in science and technology with national scientific and technological interests while maximizing human resources utilization. This can be achieved by the development of untapped resources for scientific research - such as minorities, women, and universities traditionally uninvolved in scientific research.
Fabricating binary optics: An overview of binary optics process technology
NASA Technical Reports Server (NTRS)
Stern, Margaret B.
1993-01-01
A review of binary optics processing technology is presented. Pattern replication techniques have been optimized to generate high-quality efficient microoptics in visible and infrared materials. High resolution optical photolithography and precision alignment is used to fabricate maximally efficient fused silica diffractive microlenses at lambda = 633 nm. The degradation in optical efficiency of four-phase-level fused silica microlenses resulting from an intentional 0.35 micron translational error has been systematically measured as a function of lens speed (F/2 - F/60). Novel processes necessary for high sag refractive IR microoptics arrays, including deep anisotropic Si-etching, planarization of deep topography and multilayer resist techniques, are described. Initial results are presented for monolithic integration of photonic and microoptic systems.
A review of recent theoretical studies in nonlinear crystals: towards the design of new materials
NASA Astrophysics Data System (ADS)
Luppi, Eleonora; Véniard, Valérie
2016-12-01
Nonlinear optics is an important and exciting field of fundamental and applied research, with applications in many different disciplines such as physics chemistry, material science and biology. In the recent years, nonlinear optical phenomena started to be also widely used in technological applications for optoelectronics and photovoltaics. This coincided with an important experimental and theoretical search for new materials with an efficient and exploitable nonlinear optical response. Here, starting from the discovery of nonlinear optics, we review the most important theoretical formalisms developed to understand, interpret and predict the nonlinear optical phenomena. We show the different level of approximation of the many-electrons interactions that these formalisms can describe which are fundamental in the interpretation of the experiments. The impact of the theory is then analyzed on different classes of new materials particularly studied in these years: silicon bulk to nano, compound semiconductors, graphene, transition metal dichalcogenide, hexagonal boron nitride and borate crystals.
Optical Material Researches for Frontier Optical Ceramics and Visible Fiber Laser Technologies
2016-07-07
technology of visible fiber laser, Pr-doped waterproof fluoro-aluminate glass fiber (Pr:WPFGF) laser. The significant achievements are as follows; 1...greater than 1-W and multi-color visible fiber laser oscillations, 2) visible laser pulse generation in a Pr-doped waterproof fluoride glass fiber ...for more high power operation, fabrication of a Pr-doped double-clad structured waterproof fluoride glass fiber with a single-mode beam. These results
Ultra-Smooth As-Deposited Optical Films
2004-03-31
reduction. • Conformal Coatings . Unlike other PVD processes which are strictly line-of- sight, PLASMION’s NMIBD has demonstrated the ability to create...a few days (for in-line coating machine, or roll-to-roll machine). In our project we use the box chamber and deposition materials: SiO2 and Ta2O5 ...are widely used for optical applications; these may be roughly divided into low and high technology categories. Low technology coatings (a relative
Engineered materials for all-optical helicity-dependent magnetic switching
NASA Astrophysics Data System (ADS)
Mangin, S.; Gottwald, M.; Lambert, C.-H.; Steil, D.; Uhlíř, V.; Pang, L.; Hehn, M.; Alebrand, S.; Cinchetti, M.; Malinowski, G.; Fainman, Y.; Aeschlimann, M.; Fullerton, E. E.
2014-03-01
The possibility of manipulating magnetic systems without applied magnetic fields have attracted growing attention over the past fifteen years. The low-power manipulation of the magnetization, preferably at ultrashort timescales, has become a fundamental challenge with implications for future magnetic information memory and storage technologies. Here we explore the optical manipulation of the magnetization in engineered magnetic materials. We demonstrate that all-optical helicity-dependent switching (AO-HDS) can be observed not only in selected rare earth-transition metal (RE-TM) alloy films but also in a much broader variety of materials, including RE-TM alloys, multilayers and heterostructures. We further show that RE-free Co-Ir-based synthetic ferrimagnetic heterostructures designed to mimic the magnetic properties of RE-TM alloys also exhibit AO-HDS. These results challenge present theories of AO-HDS and provide a pathway to engineering materials for future applications based on all-optical control of magnetic order.
NASA Technical Reports Server (NTRS)
Leviton, Douglas B.; Madison, Timothy J.; Petrone, Peter
1998-01-01
Refractive index measurements using the minimum deviation method have been carried out for prisms of a variety of far ultraviolet optical materials used in the manufacture of Solar Blind Channel (SBC) filters for the HST Advanced Camera for Surveys (ACS). Some of the materials measured are gaining popularity in a variety of high technology applications including high power excimer lasers and advanced microlithography optics operating in a wavelength region where high quality knowledge of optical material properties is sparse. Our measurements are of unusually high accuracy and precision for this wavelength region owing to advanced instrumentation in the large vacuum chamber of the Diffraction Grating Evaluation Facility (DGEF) at Goddard Space Flight Center (GSFC). Index values for CaF2, BaF2, LiF, and far ultraviolet grades of synthetic sapphire and synthetic fused silica are reported and compared with values from the literature.
NASA Technical Reports Server (NTRS)
2002-01-01
The Optical Vector Analyzer (OVA) 1550 significantly reduces the time and cost of testing sophisticated optical components. The technology grew from the research Luna Technologies' Dr. Mark Froggatt conducted on optical fiber strain measurement while working at Langley Research Center. Dr. Froggatt originally developed the technology for non- destructive evaluation testing at Langley. The new technique can provide 10,000 independent strain measurements while adding less than 10 grams to the weight of the vehicle. The OVA is capable of complete linear characterization of single-mode optical components used in high- bit-rate applications. The device can test most components over their full range in less than 30 seconds, compared to the more than 20 minutes required by other testing methods. The dramatically shortened measurement time results in increased efficiency in final acceptance tests of optical devices, and the comprehensive data produced by the instrument adds considerable value for component consumers. The device eliminates manufacturing bottlenecks, while reducing labor costs and wasted materials during production.
Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties
NASA Astrophysics Data System (ADS)
Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu
2015-12-01
By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07647a
NASA Applications of Molecular Adsorber Coatings
NASA Technical Reports Server (NTRS)
Abraham, Nithin S.
2015-01-01
The Molecular Adsorber Coating (MAC) is a new, innovative technology that was developed to reduce the risk of molecular contamination on spaceflight applications. Outgassing from materials, such as plastics, adhesives, lubricants, silicones, epoxies, and potting compounds, pose a significant threat to the spacecraft and the lifetime of missions. As a coating made of highly porous inorganic materials, MAC offers impressive adsorptive capabilities that help capture and trap contaminants. Past research efforts have demonstrated the coating's promising adhesion performance, optical properties, acoustic durability, and thermal stability. These results advocate its use near or on surfaces that are targeted by outgassed materials, such as internal optics, electronics, detectors, baffles, sensitive instruments, thermal control coatings, and vacuum chamber test environments. The MAC technology has significantly progressed in development over the recent years. This presentation summarizes the many NASA spaceflight applications of MAC and how the coatings technology has been integrated as a mitigation tool for outgassed contaminants. For example, this sprayable paint technology has been beneficial for use in various vacuum chambers for contamination control and hardware bake-outs. The coating has also been used in small instrument cavities within spaceflight instrument for NASA missions.
Organo-erbium systems for optical amplification at telecommunications wavelengths.
Ye, H Q; Li, Z; Peng, Y; Wang, C C; Li, T Y; Zheng, Y X; Sapelkin, A; Adamopoulos, G; Hernández, I; Wyatt, P B; Gillin, W P
2014-04-01
Modern telecommunications rely on the transmission and manipulation of optical signals. Optical amplification plays a vital part in this technology, as all components in a real telecommunications system produce some loss. The two main issues with present amplifiers, which rely on erbium ions in a glass matrix, are the difficulty in integration onto a single substrate and the need of high pump power densities to produce gain. Here we show a potential organic optical amplifier material that demonstrates population inversion when pumped from above using low-power visible light. This system is integrated into an organic light-emitting diode demonstrating that electrical pumping can be achieved. This opens the possibility of direct electrically driven optical amplifiers and optical circuits. Our results provide an alternative approach to producing low-cost integrated optics that is compatible with existing silicon photonics and a different route to an effective integrated optics technology.
A magneto-electro-optical effect in a plasmonic nanowire material
Valente, João; Ou, Jun-Yu; Plum, Eric; Youngs, Ian J.; Zheludev, Nikolay I.
2015-01-01
Electro- and magneto-optical phenomena play key roles in photonic technology enabling light modulators, optical data storage, sensors and numerous spectroscopic techniques. Optical effects, linear and quadratic in external electric and magnetic field are widely known and comprehensively studied. However, optical phenomena that depend on the simultaneous application of external electric and magnetic fields in conventional media are barely detectable and technologically insignificant. Here we report that a large reciprocal magneto-electro-optical effect can be observed in metamaterials. In an artificial chevron nanowire structure fabricated on an elastic nano-membrane, the Lorentz force drives reversible transmission changes on application of a fraction of a volt when the structure is placed in a fraction-of-tesla magnetic field. We show that magneto-electro-optical modulation can be driven to hundreds of thousands of cycles per second promising applications in magneto-electro-optical modulators and field sensors at nano-tesla levels. PMID:25906761
NASA Technical Reports Server (NTRS)
Morten, F. D. (Editor); Seeley, John S. (Editor)
1986-01-01
The present conference on advancements in IR-sensitive materials and detector technologies employing them gives attention to thermal detectors, focal plane array processing detectors, novel detector designs, general properties of IR optics materials, and preparation methods for such materials. Specific topics encompass the fabrication of InSb MIS structures prepared by photochemical vapor deposition, IR heterodyne detectors employing cadmium mercury telluride, low microphony pyroelectric arrays, IR detection based on minority carrier extrusion, longwave reststrahl in IR crystals, and molecular beam techniques for optical thin film fabrication.
Teach Your Computer to Read: Scanners and Optical Character Recognition.
ERIC Educational Resources Information Center
Marsden, Jim
1993-01-01
Desktop scanners can be used with a software technology called optical character recognition (OCR) to convert the text on virtually any paper document into an electronic form. OCR offers educators new flexibility in incorporating text into tests, lesson plans, and other materials. (MLF)
NASA Astrophysics Data System (ADS)
Elder, Delwin L.; Johnson, Lewis E.; Tillack, Andreas F.; Robinson, Bruce H.; Haffner, Christian; Heni, Wolfgang; Hoessbacher, Claudia; Fedoryshyn, Yuriy; Salamin, Yannick; Baeuerle, Benedikt; Josten, Arne; Ayata, Masafumi; Koch, Ueli; Leuthold, Juerg; Dalton, Larry R.
2018-02-01
Multi-scale (correlated quantum and statistical mechanics) modeling methods have been advanced and employed to guide the improvement of organic electro-optic (OEO) materials, including by analyzing electric field poling induced electro-optic activity in nanoscopic plasmonic-organic hybrid (POH) waveguide devices. The analysis of in-device electro-optic activity emphasizes the importance of considering both the details of intermolecular interactions within organic electro-optic materials and interactions at interfaces between OEO materials and device architectures. Dramatic improvement in electro-optic device performance-including voltage-length performance, bandwidth, energy efficiency, and lower optical losses have been realized. These improvements are critical to applications in telecommunications, computing, sensor technology, and metrology. Multi-scale modeling methods illustrate the complexity of improving the electro-optic activity of organic materials, including the necessity of considering the trade-off between improving poling-induced acentric order through chromophore modification and the reduction of chromophore number density associated with such modification. Computational simulations also emphasize the importance of developing chromophore modifications that serve multiple purposes including matrix hardening for enhanced thermal and photochemical stability, control of matrix dimensionality, influence on material viscoelasticity, improvement of chromophore molecular hyperpolarizability, control of material dielectric permittivity and index of refraction properties, and control of material conductance. Consideration of new device architectures is critical to the implementation of chipscale integration of electronics and photonics and achieving the high bandwidths for applications such as next generation (e.g., 5G) telecommunications.
New liquid crystal devices for adaptive optics
NASA Astrophysics Data System (ADS)
Restaino, Sergio R.; Baker, Jeffrey T.; Payne, Don M.
2002-02-01
The idea of using liquid crystal as adaptive optics components has been proposed by several authors. In recent years a vigorous research effort has been carried out, and it is still flourishing, in several countries. Mainly the research and experimental work has been concentrated in US, U.K. and Russia. There are several reasons why liquid crystal may represent a valid alternative to the traditional deformable mirror technology that has been used for the past two decades or so. The main attractiveness of LC is resides in the cost. Current deformable mirror technology has a range of price going from $2K to $15K per channel. LC technology promises to be at least a couple of orders of magnitude cheaper. Other reasons are connected with reliability, low power consumption and with a huge technological momentum based on a wide variety of industrial applications. In this paper I present some of the experimental results of a 5 years, on going, research effort at the Air Force Research Lab. Most of the work has been on the development of suitable devices with extremely high optical quality, individually addressable pixels, fast switching time. The bulk of the work has been concentrated in the arena of the untwisted nematic material. However new devices are now under development using dual-frequency nematic material and high tilt angle ferroelectric material.
Development of Smart Optical Gels with Highly Magnetically Responsive Bicelles.
Isabettini, Stéphane; Stucki, Sandro; Massabni, Sarah; Baumgartner, Mirjam E; Reckey, Pernille Q; Kohlbrecher, Joachim; Ishikawa, Takashi; Windhab, Erich J; Fischer, Peter; Kuster, Simon
2018-03-14
Hydrogels delivering on-demand tailorable optical properties are formidable smart materials with promising perspectives in numerous fields, including the development of modern sensors and switches, the essential quality criterion being a defined and readily measured response to environmental changes. Lanthanide ion (Ln 3+ )-chelating bicelles are interesting building blocks for such materials because of their magnetic responsive nature. Imbedding these phospholipid-based nanodiscs in a magnetically aligned state in gelatin permits an orientation-dependent retardation of polarized light. The resulting tailorable anisotropy gives the gel a well-defined optical signature observed as a birefringence signal. These phenomena were only reported for a single bicelle-gelatin pair and required high magnetic field strengths of 8 T. Herein, we demonstrate the versatility and enhance the viability of this technology with a new generation of aminocholesterol (Chol-NH 2 )-doped bicelles imbedded in two different types of gelatin. The highly magnetically responsive nature of the bicelles allowed to gel the anisotropy at commercially viable magnetic field strengths between 1 and 3 T. Thermoreversible gels with a unique optical signature were generated by exposing the system to various temperature conditions and external magnetic field strengths. The resulting optical properties were a signature of the gel's environmental history, effectively acting as a sensor. Solutions containing the bicelles simultaneously aligning parallel and perpendicular to the magnetic field directions were obtained by mixing samples chelating Tm 3+ and Dy 3+ . These systems were successfully gelled, providing a material with two distinct temperature-dependent optical characteristics. The high degree of tunability in the magnetic response of the bicelles enables encryption of the gel's optical properties. The proposed gels are viable candidates for temperature tracking of sensitive goods and provide numerous perspectives for future development of tomorrow's smart materials and technologies.
NASA Astrophysics Data System (ADS)
Cone, R. L.; Thiel, C. W.; Sun, Y.; Böttger, Thomas; Macfarlane, R. M.
2012-02-01
Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.
Latest results on solarization of optical glasses with pulsed laser radiation
NASA Astrophysics Data System (ADS)
Jedamzik, Ralf; Petzold, Uwe
2017-02-01
Femtosecond lasers are more and more used for material processing and lithography. Femtosecond laser help to generate three dimensional structures in photoresists without using masks in micro lithography. This technology is of growing importance for the field of backend lithography or advanced packaging. Optical glasses used for beam shaping and inspection tools need to withstand high laser pulse energies. Femtosecond laser radiation in the near UV wavelength range generates solarization effects in optical glasses. In this paper results are shown of femtosecond laser solarization experiments on a broad range of optical glasses from SCHOTT. The measurements have been performed by the Laser Zentrum Hannover in Germany. The results and their impact are discussed in comparison to traditional HOK-4 and UVA-B solarization measurements of the same materials. The target is to provide material selection guidance to the optical designer of beam shaping lens systems.
Optically inactive defects in monolayer and bilayer phosphorene: A first-principles study
NASA Astrophysics Data System (ADS)
Huang, Ling-yi; Zhang, Xu; Zhang, Mingliang; Lu, Gang
2018-05-01
Many-body excitonic effect is crucial in two-dimensional (2D) materials and can significantly impact their optoelectronic properties. Because defects are inevitable in 2D materials, understanding how they influence the optical and excitonic properties of the 2D materials is of significant scientific and technological importance. Here we focus on intrinsic point defects in monolayer and bilayer phosphorene and examine whether and how their optoelectronic properties may be modified by the defects. Based on large-scale first-principles calculations, we have systematically explored the optical and excitonic properties of phosphorene in the presence and absence of the point defects. We find that the optical properties of bilayer phosphorene depend on the stacking order of the layers. More importantly, we reveal that the dominant point defects in few-layer phosphorene are optically inactive, which renders phosphorene particularly attractive in optoelectronic applications.
Stretchable liquid-crystal blue-phase gels.
Castles, F; Morris, S M; Hung, J M C; Qasim, M M; Wright, A D; Nosheen, S; Choi, S S; Outram, B I; Elston, S J; Burgess, C; Hill, L; Wilkinson, T D; Coles, H J
2014-08-01
Liquid-crystalline polymers are materials of considerable scientific interest and technological value. An important subset of these materials exhibit rubber-like elasticity, combining the optical properties of liquid crystals with the mechanical properties of rubber. Moreover, they exhibit behaviour not seen in either type of material independently, and many of their properties depend crucially on the particular mesophase employed. Such stretchable liquid-crystalline polymers have previously been demonstrated in the nematic, chiral-nematic, and smectic mesophases. Here, we report the fabrication of a stretchable gel of blue phase I, which forms a self-assembled, three-dimensional photonic crystal that remains electro-optically switchable under a moderate applied voltage, and whose optical properties can be manipulated by an applied strain. We also find that, unlike its undistorted counterpart, a mechanically deformed blue phase exhibits a Pockels electro-optic effect, which sets out new theoretical challenges and possibilities for low-voltage electro-optic devices.
Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 1
NASA Technical Reports Server (NTRS)
1991-01-01
Papers from the technical sessions of the Technology 2001 Conference and Exposition are presented. The technical sessions featured discussions of advanced manufacturing, artificial intelligence, biotechnology, computer graphics and simulation, communications, data and information management, electronics, electro-optics, environmental technology, life sciences, materials science, medical advances, robotics, software engineering, and test and measurement.
Research on the magnetorheological finishing (MRF) technology with dual polishing heads
NASA Astrophysics Data System (ADS)
Huang, Wen; Zhang, Yunfei; He, Jianguo; Zheng, Yongcheng; Luo, Qing; Hou, Jing; Yuan, Zhigang
2014-08-01
Magnetorheological finishing (MRF) is a key polishing technique capable of rapidly converging to the required surface figure. Due to the deficiency of general one-polishing-head MRF technology, a dual polishing heads MRF technology was studied and a dual polishing heads MRF machine with 8 axes was developed. The machine has the ability to manufacture large aperture optics with high figure accuracy. The large polishing head is suitable for polishing large aperture optics, controlling large spatial length's wave structures, correcting low-medium frequency errors with high removal rates. While the small polishing head has more advantages in manufacturing small aperture optics, controlling small spatial wavelength's wave structures, correcting mid-high frequency and removing nanoscale materials. Material removal characteristic and figure correction ability for each of large and small polishing head was studied. Each of two polishing heads respectively acquired stable and valid polishing removal function and ultra-precision flat sample. After a single polishing iteration using small polishing head, the figure error in 45mm diameter of a 50 mm diameter plano optics was significantly improved from 0.21λ to 0.08λ by PV (RMS 0.053λ to 0.015λ). After three polishing iterations using large polishing head , the figure error in 410mm×410mm of a 430mm×430mm large plano optics was significantly improved from 0.40λ to 0.10λ by PV (RMS 0.068λ to 0.013λ) .This results show that the dual polishing heads MRF machine not only have good material removal stability, but also excellent figure correction capability.
NASA Technical Reports Server (NTRS)
Talham, Daniel R.; Adair, James H.
2005-01-01
Materials with directional properties are opening new horizons in a variety of applications including chemistry, electronics, and optics. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. The new applications and the need for model particles in scientific investigations are rapidly out-distancing the ability to synthesize anisotropic particles with specific chemistries and narrowly distributed physical characteristics (e.g. size distribution, shape, and aspect ratio).
Fiber optic hydrogen sensors: a review
NASA Astrophysics Data System (ADS)
Yang, Minghong; Dai, Jixiang
2014-12-01
Hydrogen is one of the next generation energies in the future, which shows promising applications in aerospace and chemical industries. Hydrogen leakage monitoring is very dangerous and important because of its low ignition energy, high combustion efficiency, and smallest molecule. This paper reviews the state-of-art development of the fiber optic hydrogen sensing technology. The main developing trends of fiber optic hydrogen sensors are based on two kinds of hydrogen sensitive materials, i.e. palladium-alloy thin films and Pt-doped WO3 coatings. In this review work, the advantages and disadvantages of these two kinds of sensing technologies will be evaluated.
Ammonia Optical Sensing by Microring Resonators
Passaro, Vittorio M. N.; Dell'Olio, Francesco; De Leonardis, Francesco
2007-01-01
A very compact (device area around 40 μm2) optical ammonia sensor based on a microring resonator is presented in this work. Silicon-on-insulator technology is used in sensor design and a dye doped polymer is adopted as sensing material. The sensor exhibits a very good linearity and a minimum detectable refractive index shift of sensing material as low as 8×10-5, with a detection limit around 4 ‰. PMID:28903258
NASA Astrophysics Data System (ADS)
Ota, Yasutomo; Moriya, Rai; Yabuki, Naoto; Arai, Miho; Kakuda, Masahiro; Iwamoto, Satoshi; Machida, Tomoki; Arakawa, Yasuhiko
2017-05-01
Atomically thin black phosphorus (BP) is an emerging two dimensional (2D) material exhibiting bright photoluminescence in the near infrared region. Coupling its radiation to photonic nanostructures will be an important step toward the realization of 2D material based nanophotonic devices that operate efficiently in the near infrared region, which includes the technologically important optical telecommunication wavelength bands. In this letter, we demonstrate the optical coupling between atomically thin BP and a 2D photonic crystal nanocavity. We employed a home-build dry transfer apparatus for placing a thin BP flake on the surface of the nanocavity. Their optical coupling was analyzed through measuring cavity mode emission under optical carrier injection at room temperature.
Atomic layer deposition (ALD) for optical nanofabrication
NASA Astrophysics Data System (ADS)
Maula, Jarmo
2010-02-01
ALD is currently one of the most rapidly developing fields of thin film technology. Presentation gives an overview of ALD technology for optical film deposition, highlighting benefits, drawbacks and peculiarities of the ALD, especially compared to PVD. Viewpoint is practical, based on experience gained from tens of different applications over the last few decades. ALD is not competing, but enabling technology to provide coatings, which are difficult for traditional technologies. Examples of such cases are films inside of tubes; double side deposition on the substrate; large area accurate coatings; decorative coating for 3D parts; conformal coatings on high aspect ratio surfaces or inside porous structures. Novel materials can be easily engineered by making modifications on molecular level. ALD coats large surfaces effectively and fast. Opposite to common view, it actually provides high throughput (coated area/time), when used properly with a batch and/or in-line tools. It is possible to use ALD for many micrometers thick films or even produce thin parts with competitive cost. Besides optical films ALD provides large variety of features for nanofabrication. For example pin hole free films for passivation and barrier applications and best available films for conformal coatings like planarization or to improve surface smoothness. High deposition repeatability even with subnanometer film structures helps fabrication. ALD enters to production mostly through new products, not yet existing on the market and so the application IP field is reasonably open. ALD is an enabling, mature technology to fabricate novel optical materials and to open pathways for new applications.
Cutting of optical materials by using femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Nolte, Stefan; Will, Matthias; Augustin, Markus; Triebel, Peter; Zoellner, Karsten; Tuennermann, Andreas
2001-11-01
In the past years, ultrashort pulse lasers have been established as precise and universal tools for the microstructuring of solid materials. Since thermal and mechanical influences are minimized, the application of this technology is also suitable for the structuring of optical materials and opens new possibilities. In this paper, the influence of pulse duration, pulse energy (fluence) and polarization on the cutting quality for glass and silicon will be discussed. As a concrete application, the cutting and micromarking of dielectric coated mirrors for high power fiber lasers will be highlighted.
2016-02-26
5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Georgia Institute of Technology , School of Materials...Report Submitted by: Robert F. Speyer Professor School of Materials Science and Engineering Georgia Institute of Technology 771 Ferst Drive Atlanta, GA...Bellato group [23] at Clemson and the Zhou group [14] at the Shanghai Inst. of Technology . For the Zhou group, sintering at 1720◦C for 15 min was followed
New developments in optical phase-change memory
NASA Astrophysics Data System (ADS)
Ovshinsky, Stanford R.; Czubatyj, Wolodymyr
2001-02-01
Phase change technology has progressed from the original invention of Ovshinsky to become the leading choice for rewritable optical disks. ECD's early work in phase change materials and methods for operating in a direct overwrite fashion were crucial to the successes that have been achieved. Since the introduction of the first rewritable phase change products in 1991, the market has expanded from CD-RW into rewritable DVD with creative work going on worldwide. Phase change technology is ideally suited to address the continuous demand for increased storage capacity. First, laser beams can be focused to ever-smaller spot sizes using shorter wavelength lasers and higher performance optics. Blue lasers are now commercially viable and high numerical aperture and near field lenses have been demonstrated. Second, multilevel approaches can be used to increase capacity by a factor of three or more with concomitant increases in data transfer rate. In addition, ECD has decreased manufacturing costs through the use of innovative production technology. These factors combine to accelerate the widespread use of phase change technology. As in all our technologies, such as thin film photovoltaics, nickel metal hydride batteries, hydrogen storage systems, fuel cells, electrical memory, etc., we have invented the materials, the products, the production machines and the production processes for high rate, low-cost manufacture.
Next-generation materials for future synchrotron and free-electron laser sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assoufid, Lahsen; Graafsma, Heinz
We show that the development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materialsmore » issues of components for synchrotron and free-electron laser accelerators are briefly discussed. Lastly, the articles in this issue expand on these topics.« less
NASA Astrophysics Data System (ADS)
Thompson, Nicholas Allan
2013-06-01
With recent developments in multispectral detector technology, the interest in common aperture, common focal plane multispectral imaging systems is increasing. Such systems are particularly desirable for military applications, where increased levels of target discrimination and identification are required in cost-effective, rugged, lightweight systems. During the optical design of dual waveband or multispectral systems, the options for material selection are limited. This selection becomes even more restrictive for military applications, where material resilience, thermal properties, and color correction must be considered. We discuss the design challenges that lightweight multispectral common aperture systems present, along with some potential design solutions. Consideration is given to material selection for optimum color correction, as well as material resilience and thermal correction. This discussion is supported using design examples currently in development at Qioptiq.
Next-generation materials for future synchrotron and free-electron laser sources
Assoufid, Lahsen; Graafsma, Heinz
2017-06-09
We show that the development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materialsmore » issues of components for synchrotron and free-electron laser accelerators are briefly discussed. Lastly, the articles in this issue expand on these topics.« less
Guided Acoustic and Optical Waves in Silicon-on-Insulator for Brillouin Scattering and Optomechanics
2016-08-01
APL PHOTONICS 1, 071301 (2016) Guided acoustic and optical waves in silicon-on- insulator for Brillouin scattering and optomechanics Christopher J...is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin...mechanism on which to base on-chip nonlinear optical devices compatible with a rapidly growing silicon photonics toolbox.3–9 While silicon on insulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Yifan; Kapilashrami, Mukes; Chuang, Cheng-Hao
Some recent advances in synchrotron based x-ray spectroscopy enable materials scientists to emanate fingerprints on important materials properties, e.g., electronic, optical, structural, and magnetic properties, in real-time and under nearly real-world conditions. This characterization, then, in combination with optimized materials synthesis routes and tailored morphological properties could contribute greatly to the advances in solid-state electronics and renewable energy technologies. In connection to this, such perspective reflects the current materials research in the space of emerging energy technologies, namely photocatalysis, with a focus on transition metal oxides, mainly on the Fe 2O 3- and TiO 2-based materials.
Wang, Xiao-Dong; Chen, Bo; Wang, Hai-Feng; He, Fei; Zheng, Xin; He, Ling-Ping; Chen, Bin; Liu, Shi-Jie; Cui, Zhong-Xu; Yang, Xiao-Hu; Li, Yun-Peng
2015-01-01
Application of π-multilayer technology is extended to high extinction coefficient materials, which is introduced into metal-dielectric filter design. Metal materials often have high extinction coefficients in far ultraviolet (FUV) region, so optical thickness of metal materials should be smaller than that of the dielectric material. A broadband FUV filter of 9-layer non-periodic Al/MgF2 multilayer was successfully designed and fabricated and it shows high reflectance in 140–180 nm, suppressed reflectance in 120–137 nm and 181–220 nm. PMID:25687255
NASA Astrophysics Data System (ADS)
Mentzer, Mark A.; Sriram, S.
The design and implementation of integrated optical circuits are discussed in reviews and reports. Topics addressed include lithium niobate devices, silicon integrated optics, waveguide phenomena, coupling considerations, processing technology, nonlinear guided-wave optics, integrated optics for fiber systems, and systems considerations and applications. Also included are eight papers and a panel discussion from an SPIE conference on the processing of guided-wave optoelectronic materials (held in Los Angeles, CA, on January 21-22, 1986).
Light-neuron interactions: key to understanding the brain
NASA Astrophysics Data System (ADS)
Go, Mary Ann; Daria, Vincent R.
2017-02-01
In recent years, advances in light-based technology have driven an ongoing optical revolution in neuroscience. Synergistic technologies in laser microscopy, molecular biology, organic and synthetic chemistry, genetic engineering and materials science have allowed light to overcome the limitations of and to replace many conventional tools used by physiologists to record from and to manipulate single cells or whole cellular networks. Here we review the different optical techniques for stimulating neurons, influencing neuronal growth, manipulating neuronal structures and neurosurgery.
Technology development of fabrication techniques for advanced solar dynamic concentrators
NASA Technical Reports Server (NTRS)
Richter, Scott W.
1991-01-01
The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.
NASA Technical Reports Server (NTRS)
Mehle, Greg; Stahl, Phil (Technical Monitor)
2002-01-01
This presentation provides an overview of the development of the 1.6 meter hybrid mirror demonstrator for the NGST Mirror System Demonstrator (NMSD) program. The COI design approach for the NGST program combines the optical performance of glass, with the high specific stiffness capabilities of composite materials The foundation technologies being exploited in the development of the hybrid mirror focus upon precision Composite Materials for cryogenic operation, and non-contact optical processing (ion figuring) of the lightweight mirror surface. The NGST Mirror System Demonstrator (NMSD) has been designed and built by Composite Optics, Inc. (COI) with optical processing performed by SAGEM (REOSC). The sponsors of these efforts are the NASA Marshall and Goddard Space Flight Centers.
Adaptability Through Modular Materials
ERIC Educational Resources Information Center
Hull, Daniel M.; And Others
1974-01-01
Several short articles describe programs utilizing laser/electro-optics technology curriculum materials developed by Technical Education Research Centers (TERC): at undergraduate and graduate levels in universities; in a city college; in continuing education; and in industry. Modules, independent units based on booklets or films, include…
NASA Astrophysics Data System (ADS)
Wavering, Thomas A.; Greene, Jonathan A.; Meller, Scott A.; Bailey, Timothy A.; Kozikowski, Carrie L.; Lenahan, Shannon M.; Murphy, Kent A.; Camden, Michael P.; Simmons, Larry W.
1999-01-01
Optical fiber sensors have numerous advantages over conventional sensing technologies. One such advantage is that optical fiber sensors can operate in high temperature environments. While most conventional electrical-based sensors do not operate reliably over 300 degrees C, fused silica based optical fiber sensors can survive up to 900 degrees C, and sapphire based optical fiber sensors can survive up to 2000 degrees C. Using both fused silica and sapphire technologies, we present result for high temperature strain, pressure, and temperature sensors using Extrinsic Fabry-Perot INterferometric-based and Bragg grating sensors. High temperature strain and temperature sensors were used to conduct fatigue testing of composite coupons at 600 degrees C. The results from these specific high temperature applications are presented along with future applications and directions for these sensors.
Evaluation of the automatic optical authentication technologies for control systems of objects
NASA Astrophysics Data System (ADS)
Averkin, Vladimir V.; Volegov, Peter L.; Podgornov, Vladimir A.
2000-03-01
The report considers the evaluation of the automatic optical authentication technologies for the automated integrated system of physical protection, control and accounting of nuclear materials at RFNC-VNIITF, and for providing of the nuclear materials nonproliferation regime. The report presents the nuclear object authentication objectives and strategies, the methodology of the automatic optical authentication and results of the development of pattern recognition techniques carried out under the ISTC project #772 with the purpose of identification of unique features of surface structure of a controlled object and effects of its random treatment. The current decision of following functional control tasks is described in the report: confirmation of the item authenticity (proof of the absence of its substitution by an item of similar shape), control over unforeseen change of item state, control over unauthorized access to the item. The most important distinctive feature of all techniques is not comprehensive description of some properties of controlled item, but unique identification of item using minimum necessary set of parameters, properly comprising identification attribute of the item. The main emphasis in the technical approach is made on the development of rather simple technological methods for the first time intended for use in the systems of physical protection, control and accounting of nuclear materials. The developed authentication devices and system are described.
Satisloh centering technology developments past to present
NASA Astrophysics Data System (ADS)
Leitz, Ernst Michael; Moos, Steffen
2015-10-01
The centering of an optical lens is the grinding of its edge profile or contour in relationship to its optical axis. This is required to ensure that the lens vertex and radial centers are accurately positioned within an optical system. Centering influences the imaging performance and contrast of an optical system. Historically, lens centering has been a purely manual process. Along its 62 years of assembling centering machines, Satisloh introduced several technological milestones to improve the accuracy and quality of this process. During this time more than 2.500 centering machines were assembled. The development went from bell clamping and diamond grinding to Laser alignment, exchange chuckor -spindle systems, to multi axis CNC machines with integrated metrology and automatic loading systems. With the new centering machine C300, several improvements for the clamping and grinding process were introduced. These improvements include a user friendly software to support the operator, a coolant manifold and "force grinding" technology to ensure excellent grinding quality and process stability. They also include an air bearing directly driven centering spindle to provide a large working range of lenses made of all optical materials and diameters from below 10 mm to 300 mm. The clamping force can be programmed between 7 N and 1200 N to safely center lenses made of delicate materials. The smaller C50 centering machine for lenses below 50 mm diameter is available with an optional CNC loading system for automated production.
Highly Polarized Fluorescent Illumination Using Liquid Crystal Phase.
Gim, Min-Jun; Turlapati, Srikanth; Debnath, Somen; Rao, Nandiraju V S; Yoon, Dong Ki
2016-02-10
Liquid crystal (LC) materials are currently the dominant electronic materials in display technology because of the ease of control of molecular orientation using an electric field. However, this technology requires the fabrication of two polarizers to create operational displays, reducing light transmission efficiency below 10%. It is therefore desirable to develop new technologies to enhance the light efficiency while maintaining or improving other properties such as the modulation speed of the molecular orientation. Here we report a uniaxial-oriented B7 smectic liquid crystalline film, using fluorescent bent-core LC molecules, a chemically modified substrate, and an in-plane electric field. A LC droplet under homeotropic boundary conditions of air/LC as well as LC/substrate exhibits large focal conic like optical textures. The in-plane electric field induced uniaxial orientation of the LC molecules, in which molecular polar directors are aligned in the direction of the electric field. This highly oriented LC film exhibits linearly polarized luminescence and microsecond time-scale modulation characteristics. The resultant device is both cheap and easy to fabricate and thus has great potential for electro-optic applications, including LC displays, bioimaging systems, and optical communications.
Single molecules and single nanoparticles as windows to the nanoscale
NASA Astrophysics Data System (ADS)
Caldarola, Martín; Orrit, Michel
2018-05-01
Since the first optical detection of single molecules, they have been used as nanometersized optical sensors to explore the physical properties of materials and light-matter interaction at the nanoscale. Understanding nanoscale properties of materials is fundamental for the development of new technology that requires precise control of atoms and molecules when the quantum nature of matter cannot be ignored. In the following lines, we illustrate this journey into nanoscience with some experiments from our group.
Growth and characterization of pure and Cadmium chloride doped KDP Crystals grown by gel medium
NASA Astrophysics Data System (ADS)
Kalaivani, M. S.; Asaithambi, T.
2016-10-01
Crystal growth technology provides an important basis for many industrial branches. Crystals are the unrecognized pillars of modern technology. Without crystals, there is no electronic industry, no photonic industry, and no fiber optic communications. Single crystals play a major role and form the strongest base for the fast growing field of engineering, science and technology. Crystal growth is an interdisciplinary subject covering physics, chemistry, material science, chemical engineering, metallurgy, crystallography, mineralogy, etc. In past few decades, there has been a keen interest on crystal growth processes, particularly in view of the increasing demand of materials for technological applications. Optically good quality pure and metal doped KDP crystals have been grown by gel method at room temperature and their characterization have been studied. Gel method is a much uncomplicated method and can be utilized to synthesize crystals which are having low solubility. Potassium dihydrogen orthophosphate KH2PO4 (KDP) continues to be an interesting material both academically and industrially. KDP is a representative of hydrogen bonded materials which possess very good electro - optic and nonlinear optical properties in addition to interesting electrical properties. Due to this interesting properties, we made an attempt to grow pure and cadmium chloride doped KDP crystals in various concentrations (0.002, 0.004, 0.006, 0.008 and 0.010) using gel method. The grown crystals were collected after 20 days. We get crystals with good quality and shaped. The dc electrical conductivity (resistance, capacitance and dielectric constant) values were measured at frequencies in the range of 1 KHZ and 100 HZ of pure and cadmium chloride added crystal with a temperature range of 400C to 1300C using simple two probe setup with Q band digital LCR meter present in our lab. The electrical conductivity increases with increase of temperature. The dielectric constants of metal doped KDP crystals were slightly decreased compared to pure KDP crystals.
Progress and Opportunities in Soft Photonics and Biologically Inspired Optics.
Kolle, Mathias; Lee, Seungwoo
2018-01-01
Optical components made fully or partially from reconfigurable, stimuli-responsive, soft solids or fluids-collectively referred to as soft photonics-are poised to form the platform for tunable optical devices with unprecedented functionality and performance characteristics. Currently, however, soft solid and fluid material systems still represent an underutilized class of materials in the optical engineers' toolbox. This is in part due to challenges in fabrication, integration, and structural control on the nano- and microscale associated with the application of soft components in optics. These challenges might be addressed with the help of a resourceful ally: nature. Organisms from many different phyla have evolved an impressive arsenal of light manipulation strategies that rely on the ability to generate and dynamically reconfigure hierarchically structured, complex optical material designs, often involving soft or fluid components. A comprehensive understanding of design concepts, structure formation principles, material integration, and control mechanisms employed in biological photonic systems will allow this study to challenge current paradigms in optical technology. This review provides an overview of recent developments in the fields of soft photonics and biologically inspired optics, emphasizes the ties between the two fields, and outlines future opportunities that result from advancements in soft and bioinspired photonics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optical design for reliability and efficiency in concentrating photovoltaics
NASA Astrophysics Data System (ADS)
Leutz, Ralf; Annen, Hans Philipp; Fu, Ling
2010-08-01
Complex systems like modules in concentrating photovoltaics (CPV) are designed in a systems approach. The better the components are concerted, the better the performance goals of the system can be fulfilled. Optics are central to the CPV module's reliability and efficiency. Fresnel lens optics provide the module cover, and protect the module against the environment. Fresnel lenses on glass can provide the module's structural integrity. The secondary optical element, used to increase the collection of light, the acceptance half-angle, and the uniformity on the cell, may provide encapsulation for the receiver. This encapsulation function may be provided by some optical designs in sol gel, or silicone. Both materials are unknown in their longevity in this application. We present optical designs fulfilling structural or protective functions, discuss the optical penalties to be paid, and the innovative materials and manufacturing technologies to be tested.
Application of phase-change materials in memory taxonomy.
Wang, Lei; Tu, Liang; Wen, Jing
2017-01-01
Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects.
Fiber optic shape sensing for monitoring of flexible structures
NASA Astrophysics Data System (ADS)
Lally, Evan M.; Reaves, Matt; Horrell, Emily; Klute, Sandra; Froggatt, Mark E.
2012-04-01
Recent advances in materials science have resulted in a proliferation of flexible structures for high-performance civil, mechanical, and aerospace applications. Large aspect-ratio aircraft wings, composite wind turbine blades, and suspension bridges are all designed to meet critical performance targets while adapting to dynamic loading conditions. By monitoring the distributed shape of a flexible component, fiber optic shape sensing technology has the potential to provide valuable data during design, testing, and operation of these smart structures. This work presents a demonstration of such an extended-range fiber optic shape sensing technology. Three-dimensional distributed shape and position sensing is demonstrated over a 30m length using a monolithic silica fiber with multiple optical cores. A novel, helicallywound geometry endows the fiber with the capability to convert distributed strain measurements, made using Optical Frequency-Domain Reflectometry (OFDR), to a measurement of curvature, twist, and 3D shape along its entire length. Laboratory testing of the extended-range shape sensing technology shows
Silicon carbide optics for space and ground based astronomical telescopes
NASA Astrophysics Data System (ADS)
Robichaud, Joseph; Sampath, Deepak; Wainer, Chris; Schwartz, Jay; Peton, Craig; Mix, Steve; Heller, Court
2012-09-01
Silicon Carbide (SiC) optical materials are being applied widely for both space based and ground based optical telescopes. The material provides a superior weight to stiffness ratio, which is an important metric for the design and fabrication of lightweight space telescopes. The material also has superior thermal properties with a low coefficient of thermal expansion, and a high thermal conductivity. The thermal properties advantages are important for both space based and ground based systems, which typically need to operate under stressing thermal conditions. The paper will review L-3 Integrated Optical Systems - SSG’s (L-3 SSG) work in developing SiC optics and SiC optical systems for astronomical observing systems. L-3 SSG has been fielding SiC optical components and systems for over 25 years. Space systems described will emphasize the recently launched Long Range Reconnaissance Imager (LORRI) developed for JHU-APL and NASA-GSFC. Review of ground based applications of SiC will include supporting L-3 IOS-Brashear’s current contract to provide the 0.65 meter diameter, aspheric SiC secondary mirror for the Advanced Technology Solar Telescope (ATST).
Silicon carbide as a basis for spaceflight optical systems
NASA Astrophysics Data System (ADS)
Curcio, Michael E.
1994-09-01
New advances in the areas of microelectronics and micro-mechanical devices have created a momentum in the development of lightweight, miniaturized, electro-optical space subsystems. The performance improvements achieved and new observational techniques developed as a result, have provided a basis for a new range of Small Explorer, Discovery-class and other low-cost mission concepts for space exploration. However, the ultimate objective of low-mass, inexpensive space science missions will only be achieved with a companion development in the areas of flight optical systems and sensor instrument benches. Silicon carbide (SiC) is currently emerging as an attractive technology to fill this need. As a material basis for reflective, flight telescopes and optical benches, SiC offers: the lightweight and stiffness characteristics of beryllium; glass-like inherent stability consistent with performance to levels of diffraction-limited visible resolution; superior thermal properties down to cryogenic temperatures; and an existing, commercially-based material and processing infrastructure like aluminum. This paper will describe the current status and results of on-going technology developments to utilize these material properties in the creation of lightweight, high- performing, thermally robust, flight optical assemblies. System concepts to be discussed range from an 18 cm aperture, 4-mirror, off-axis system weighing less than 2 kg to a 0.5 m, 15 kg reimager. In addition, results in the development of a thermally-stable, `GOES-like' scan mirror will be presented.
Kirkham, R.R.
1984-08-03
A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.
Extraterrestrial applications of solar optics for interior illumination
NASA Technical Reports Server (NTRS)
Eijadi, David A.; Williams, Kyle D.
1992-01-01
Solar optics is a terrestrial technology that has potential extraterrestrial applications. Active solar optics (ASO) and passive solar optics (PSO) are two approaches to the transmission of sunlight to remote interior spaces. Active solar optics is most appropriate for task illumination, while PSO is most appropriate for general illumination. Research into solar optics, motivated by energy conservation, has produced lightweight and low-cost materials, products that have applications to NASA's Controlled Ecological Life Support System (CELSS) program and its lunar base studies. Specifically, prism light guides have great potential in these contexts. Several applications of solar optics to lunar base concepts are illustrated.
The role of laser technology in materials processing and nondestructive testing in the 21st century
NASA Astrophysics Data System (ADS)
Sheinberg, B. M.
Some of the potential applications of laser technology in the 21st century are explored, and the proposed role of this technology in relation to materials processing, nondestructive testing, and quality control are discussed. Examples illustrating the implementation of this techology include the proposed construction of vehicles and platforms in near and deep space, and construction of underwater platforms. The direction in which today's technology should evolve to pursue the achievement of such goals is indicated. Included in the discussion is an evaluation of laser, robotics, and fiber optics technologies with respect to their ability to achieve a synergistic level of operation.
Characteristics of photonic nanojets from two-layer dielectric hemisphere
NASA Astrophysics Data System (ADS)
Liu, Yunyue; Liu, Xianchao; Li, Ling; Chen, Weidong; Chen, Yan; Huang, Yuerong; Xie, Zhengwei
2017-10-01
Not Available Project supported by State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences; Sichuan Provincial Department of Education, China (Grant No. 16ZA0047); the State Key Laboratory of Metastable Materials Science and Technology, Yansan University, China (Grant No. 201509); and the Large Precision Instruments Open Project Foundation of Sichuan Normal University, China (Grant Nos. DJ2015-57, DJ2015-58, DJ2015-60, DJ2016-58, and DJ2016-59).
Microgravity Processing and Photonic Applications of Organic and Polymeric Materials
NASA Technical Reports Server (NTRS)
Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin G.; Abdeldayem, Hossin A.; Smith, David D.; Witherow, William K.
1997-01-01
Some of the primary purposes of this work are to study important technologies, particularly involving thin films, relevant to organic and polymeric materials for improving applicability to optical circuitry and devices and to assess the contribution of convection on film quality in unit and microgravity environments. Among the most important materials processing techniques of interest in this work are solution-based and by physical vapor transport, both having proven gravitational and acceleration dependence. In particular, PolyDiAcetylenes (PDA's) and PhthaloCyanines (Pc's) are excellent NonLinear Optical (NLO) materials with the promise of significantly improved NLO properties through order and film quality enhancements possible through microgravity processing. Our approach is to focus research on integrated optical circuits and optoelectronic devices relevant to solution-based and vapor processes of interest in the Space Sciences Laboratory at the Marshall Space Flight Center (MSFC). Modification of organic materials is an important aspect of achieving more highly ordered structures in conjunction with microgravity processing. Parallel activities include characterization of materials for particular NLO properties and determination of appropriation device designs consistent with selected applications. One result of this work is the determination, theoretically, that buoyancy-driven convection occurs at low pressures in an ideal gas in a thermalgradient from source to sink. Subsequent experiment supports the theory. We have also determined theoretically that buoyancy-driven convection occurs during photodeposition of PDA, an MSFC-patented process for fabricating complex circuits, which is also supported by experiment. Finally, the discovery of intrinsic optical bistability in metal-free Pc films enables the possibility of the development of logic gate technology on the basis of these materials.
NASA Technical Reports Server (NTRS)
1991-01-01
Technology 2000 was the first major industrial conference and exposition spotlighting NASA technology and technology transfer. It's purpose was, and continues to be, to increase awareness of existing NASA-developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. Included are sessions on: computer technology and software engineering; human factors engineering and life sciences; materials science; sensors and measurement technology; artificial intelligence; environmental technology; optics and communications; and superconductivity.
1999-04-01
NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. Image shows Dr. Alan Shapiro cleaning mirror mandrel to be applied with highly reflective and high-density coating in the Large Aperture Coating Chamber, MFSC Space Optics Manufacturing Technology Center (SOMTC).
Nanotechnology and clean energy: sustainable utilization and supply of critical materials
NASA Astrophysics Data System (ADS)
Fromer, Neil A.; Diallo, Mamadou S.
2013-11-01
Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies.
NASA Astrophysics Data System (ADS)
Wallace, Kotska; Bavdaz, Marcos; Collon, Maximilien; Beijersbergen, Marco; Kraft, Stefan; Fairbend, Ray; Séguy, Julien; Blanquer, Pascal; Graue, Roland; Kampf, Dirk
2017-11-01
In support of future x-ray telescopes ESA is developing new optics for the x-ray regime. To date, mass and volume have made x-ray imaging technology prohibitive to planetary remote sensing imaging missions. And although highly successful, the mirror technology used on ESA's XMM-Newton is not sufficient for future, large, x-ray observatories, since physical limits on the mirror packing density mean that aperture size becomes prohibitive. To reduce telescope mass and volume the packing density of mirror shells must be reduced, whilst maintaining alignment and rigidity. Structures can also benefit from a modular optic arrangement. Pore optics are shown to meet these requirements. This paper will discuss two pore optic technologies under development, with examples of results from measurement campaigns on samples. One activity has centred on the use of coated, silicon wafers, patterned with ribs, that are integrated onto a mandrel whose form has been polished to the required shape. The wafers follow the shape precisely, forming pore sizes in the sub-mm region. Individual stacks of mirrors can be manufactured without risk to, or dependency on, each other and aligned in a structure from which they can also be removed without hazard. A breadboard is currently being built to demonstrate this technology. A second activity centres on glass pore optics. However an adaptation of micro channel plate technology to form square pores has resulted in a monolithic material that can be slumped into an optic form. Alignment and coating of two such plates produces an x-ray focusing optic. A breadboard 20cm aperture optic is currently being built.
Applications of ultrafast laser direct writing: from polarization control to data storage
NASA Astrophysics Data System (ADS)
Donko, A.; Gertus, T.; Brambilla, G.; Beresna, M.
2018-02-01
Ultrafast laser direct writing is a fascinating technology which emerged more than two decades from fundamental studies of material resistance to high-intensity optical fields. Its development saw the discovery of many puzzling phenomena and demonstration of useful applications. Today, ultrafast laser writing is seen as a technology with great potential and is rapidly entering the industrial environment. Whereas, less than 10 years ago, ultrafast lasers were still confined within the research labs. This talk will overview some of the unique features of ultrafast lasers and give examples of its applications in optical data storage, polarization control and optical fibers.
NASA Technical Reports Server (NTRS)
Zukic, Muamer; Torr, Douglas G.
1993-01-01
The application of thin film technology to the vacuum ultraviolet (VUV) wavelength region from 120 nm to 230 nm has not been fully exploited in the past because of absorption effects which complicate the accurate determination of the optical functions of dielectric materials. The problem therefore reduces to that of determining the real and imaginary parts of a complex optical function, namely the frequency dependent refractive index n and extinction coefficient k. We discuss techniques for the inverse retrieval of n and k for dielectric materials at VUV wavelengths from measurements of their reflectance and transmittance. Suitable substrate and film materials are identified for application in the VUV. Such applications include coatings for the fabrication of narrow and broadband filters and beamsplitters. The availability of such devices open the VUV regime to high resolution photometry, interferometry and polarimetry both for space based and laboratory applications. This chapter deals with the optics of absorbing multilayers, the determination of the optical functions for several useful materials, and the design of VUV multilayer stacks as applied to the design of narrow and broadband reflection and transmission filters and beamsplitters. Experimental techniques are discussed briefly, and several examples of the optical functions derived for selected materials are presented.
Lemaillet, Paul; Cooksey, Catherine C; Levine, Zachary H; Pintar, Adam L; Hwang, Jeeseong; Allen, David W
2016-03-24
The National Institute of Standards and Technology (NIST) has maintained scales for reflectance and transmittance over several decades. The scales are primarily intended for regular transmittance, mirrors, and solid surface scattering diffusers. The rapidly growing area of optical medical imaging needs a scale for volume scattering of diffuse materials that are used to mimic the optical properties of tissue. Such materials are used as phantoms to evaluate and validate instruments under development intended for clinical use. To address this need, a double-integrating sphere based instrument has been installed to measure the optical properties of tissue-mimicking phantoms. The basic system and methods have been described in previous papers. An important attribute in establishing a viable calibration service is the estimation of measurement uncertainties. The use of custom models and comparisons with other established scales enabled uncertainty measurements. Here, we describe the continuation of those efforts to advance the understanding of the uncertainties through two independent measurements: the bidirectional reflectance distribution function and the bidirectional transmittance distribution function of a commercially available solid biomedical phantom. A Monte Carlo-based model is used and the resulting optical properties are compared to the values provided by the phantom manufacturer.
Creating the Future: Research and Technology
NASA Technical Reports Server (NTRS)
1998-01-01
With the many different technical talents, Marshall Space Flight Center (MSFC) continues to be an important force behind many scientific breakthroughs. The MSFC's annual report reviews the technology developments, research in space and microgravity sciences, studies in space system concepts, and technology transfer. The technology development programs include development in: (1) space propulsion and fluid management, (2) structures and dynamics, (3) materials and processes and (4) avionics and optics.
NASA Astrophysics Data System (ADS)
Leviton, Douglas B.; Madison, Timothy J.; Petrone, Peter
1998-10-01
Refractive index measurements using the minimum deviation method have been carried out for prisms of a variety of far ultraviolet optical materials used in the manufacture of Solar Blind Channel (SBC) filters for the HST Advanced Camera for Surveys (ACS). Some of the materials measured are gaining popularity in a variety of high technology applications including high power excimer lasers and advanced microlithography optics operating in a wavelength region where high quality knowledge of optical material properties is sparse yet critical. Our measurements are of unusually high accuracy and precision for this wavelength region owing to advanced instrumentation in the large vacuum chamber of the Diffraction Grating Evaluation Facility (DGEF) at Goddard Space Flight Center (GSFC) used to implement a minimum deviation method refractometer. Index values for CaF2, BaF2, LiF, and far ultraviolet grades of synthetic sapphire and synthetic fused silica are reported and compared with values from the literature.
NASA Astrophysics Data System (ADS)
Stratford, K.; Henrich, O.; Lintuvuori, J. S.; Cates, M. E.; Marenduzzo, D.
2014-06-01
Colloidal particles dispersed in liquid crystals can form new materials with tunable elastic and electro-optic properties. In a periodic ‘blue phase’ host, particles should template into colloidal crystals with potential uses in photonics, metamaterials and transformational optics. Here we show by computer simulation that colloid/cholesteric mixtures can give rise to regular crystals, glasses, percolating gels, isolated clusters, twisted rings and undulating colloidal ropes. This structure can be tuned via particle concentration, and by varying the surface interactions of the cholesteric host with both the particles and confining walls. Many of these new materials are metastable: two or more structures can arise under identical thermodynamic conditions. The observed structure depends not only on the formulation protocol but also on the history of an applied electric field. This new class of soft materials should thus be relevant to design of switchable, multistable devices for optical technologies such as smart glass and e-paper.
X-ray spectroscopies studies of the 3d transition metal oxides and applications of photocatalysis
Ye, Yifan; Kapilashrami, Mukes; Chuang, Cheng-Hao; ...
2017-02-08
Some recent advances in synchrotron based x-ray spectroscopy enable materials scientists to emanate fingerprints on important materials properties, e.g., electronic, optical, structural, and magnetic properties, in real-time and under nearly real-world conditions. This characterization, then, in combination with optimized materials synthesis routes and tailored morphological properties could contribute greatly to the advances in solid-state electronics and renewable energy technologies. In connection to this, such perspective reflects the current materials research in the space of emerging energy technologies, namely photocatalysis, with a focus on transition metal oxides, mainly on the Fe 2O 3- and TiO 2-based materials.
NASA Astrophysics Data System (ADS)
Satria, E.
2018-03-01
Preservice teachers in primary education should be well equipped to meet the challenges of teaching primary science effectively in 21century. The purpose of this research was to describe the projects for the implementation of Science-Technology-Society (STS) approach in Basic Concept of Natural Science course as application of optical and electrical instruments’ material by the preservice teachers in Elementary Schools Teacher Education Program. One of the reasons is the lack of preservice teachers’ ability in making projects for application of STS approach and optical and electrical instruments’ material in Basic Concept of Natural Science course. This research applied descriptive method. The instrument of the research was the researcher himself. The data were gathered through observation and documentation. Based on the results of the research, it was figured out that preservice teachers, in groups, were creatively and successful to make the projects of optical and electrical instruments assigned such as projector and doorbell. It was suggested that the construction of the instruments should be better (fixed and strong structure) and more attractive for both instruments, and used strong light source, high quality images, and it could use speaker box for projector, power battery, and heat sink for electrical instruments.
Grism manufacturing by low temperature mineral bonding
NASA Astrophysics Data System (ADS)
Kalkowski, G.; Grabowski, K.; Harnisch, G.; Flügel-Paul, T.; Zeitner, U.; Risse, S.
2017-09-01
By uniting a grating with a prism to a GRISM compound, the optical characteristics of diffractive and refractive elements can be favorably combined to achieve outstanding spectral resolution features. Ruling the grating structure into the prism surface is common for wavelengths around 1 μm and beyond, while adhesive bonding of two separate parts is generally used for shorter wavelengths and finer structures. We report on a manufacturing approach for joining the corresponding glass elements by the technology of hydrophilic direct bonding. This allows to manufacture the individual parts separately and subsequently combine them quasimonolithically by generating stiff and durable bonds of vanishing thickness, high strength and excellent transmission. With this approach for GRISM bonding, standard direct-write- or mask-lithography equipment may be used for the fabrication of the grating structure and the drawbacks of adhesive bonding (thermal mismatch, creep, aging) are avoided. The technology of hydrophilic bonding originates from "classical" optical contacting [1], but has been much improved and perfected during the last decades in the context of 3-dimensinal stacking Si-wafers for microelectronic applications [2]. It provides joins through covalent bonds of the Si-O-Si type at the nanometer scale, i.e. the elementary bond type in many minerals and glasses. The mineral nature of the bond is perfectly adapted to most optical materials and the extremely thin bonding layers generated with this technology are well suited for transmission optics. Creeping under mechanical load, as commonly observed with adhesive bonding, is not an issue. With respect to diffusion bonding, which operates at rather high temperatures close to the glass transition or crystal melting point, hydrophilic bonding is a low temperature process that needs only moderate heating. This facilitates provision of handling and alignment means for the individual parts during the set-up stages and greatly eases joining optical materials of different thermal expansion. The technology has been successfully used in the past for bonding various glasses as well as crystalline optical materials [3, 4]. Here we will focus on bonding prisms elements and binary gratings of fused silica with and without coatings at the bonding interface. Further, preliminary results on bonding prism-grating-prism (PGP) combinations will be presented.
Resonant optical spectroscopy and coherent control of Cr4+ spin ensembles in SiC and GaN
NASA Astrophysics Data System (ADS)
Koehl, William
Spins bound to point defects have emerged as an important resource in quantum information and spintronic technologies, especially as new materials systems have been developed that enable robust and precise quantum state control via optical, electronic, or mechanical degrees of freedom. In an effort to broaden the range of materials platforms available to such defect-based quantum technologies, we have recently begun exploring optically active transition metal ion spins doped into common wide-bandgap semiconductors. The spins of such ions are derived in part from unpaired d orbital electron states, suggesting in some cases that they may be portable across multiple materials systems. This in contrast to many vacancy-related defect spins such as the diamond nitrogen vacancy center or silicon carbide divacancy, which are formed primarily from the dangling bond states of the host. Here we demonstrate ensemble optical spin polarization and time-resolved optically detected magnetic resonance (ODMR) of the S = 1 electronic ground state of chromium (Cr4+) impurities in silicon carbide (SiC) and gallium nitride (GaN). We find that these impurities possess narrow optical linewidths (<8.5 GHz at cryogenic temperatures) that allow us to optically resolve the magnetic sublevels of the spins even when probing a large ensemble of many ions simultaneously. This enables us to directly polarize and probe the Cr4+ spins using straightforward optical techniques, which we then combine with coherent microwave excitation in order to characterize the dynamical properties of the ensemble. Significantly, these near-infrared emitters also possess exceptionally weak phonon sidebands, ensuring that >73% of the overall optical emission is contained within the defects' zero-phonon lines. These characteristics make the Cr4+ ion system a promising target for further study in the ongoing effort to integrate optically active quantum states within common optoelectronic materials. In collaboration with B. Diler, S. J. Whiteley, A. Bourassa, N. T. Son, E. Janzén, and D. D. Awschalom. This work supported by AFOSR, ARO, NSF MRSEC, the Argonne LDRD Program, LiLi-NFM, and the Knut and Alice Wallenberg Foundation.
3D printing of optical materials: an investigation of the microscopic properties
NASA Astrophysics Data System (ADS)
Persano, Luana; Cardarelli, Francesco; Arinstein, Arkadii; Uttiya, Sureeporn; Zussman, Eyal; Pisignano, Dario; Camposeo, Andrea
2018-02-01
3D printing technologies are currently enabling the fabrication of objects with complex architectures and tailored properties. In such framework, the production of 3D optical structures, which are typically based on optical transparent matrices, optionally doped with active molecular compounds and nanoparticles, is still limited by the poor uniformity of the printed structures. Both bulk inhomogeneities and surface roughness of the printed structures can negatively affect the propagation of light in 3D printed optical components. Here we investigate photopolymerization-based printing processes by laser confocal microscopy. The experimental method we developed allows the printing process to be investigated in-situ, with microscale spatial resolution, and in real-time. The modelling of the photo-polymerization kinetics allows the different polymerization regimes to be investigated and the influence of process variables to be rationalized. In addition, the origin of the factors limiting light propagation in printed materials are rationalized, with the aim of envisaging effective experimental strategies to improve optical properties of printed materials.
Advanced materials and techniques for fibre-optic sensing
NASA Astrophysics Data System (ADS)
Henderson, Philip J.
2014-06-01
Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.
Quantum cryptography over underground optical fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, R.J.; Luther, G.G.; Morgan, G.L.
1996-05-01
Quantum cryptography is an emerging technology in which two parties may simultaneously generated shared, secret cryptographic key material using the transmission of quantum states of light whose security is based on the inviolability of the laws of quantum mechanics. An adversary can neither successfully tap the key transmissions, nor evade detection, owing to Heisenberg`s uncertainty principle. In this paper the authors describe the theory of quantum cryptography, and the most recent results from their experimental system with which they are generating key material over 14-km of underground optical fiber. These results show that optical-fiber based quantum cryptography could allow secure,more » real-time key generation over ``open`` multi-km node-to-node optical fiber communications links between secure ``islands.``« less
Geometrical Optics of Dense Aerosols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.
2013-04-24
Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, amore » critical result for controlled focusing. __________________________________________________« less
Geometrical optics of dense aerosols: forming dense plasma slabs.
Hay, Michael J; Valeo, Ernest J; Fisch, Nathaniel J
2013-11-01
Assembling a freestanding, sharp-edged slab of homogeneous material that is much denser than gas, but much more rarefied than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed field, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the finite particle density reduces the effective Stokes number of the flow, a critical result for controlled focusing.
Silicon photonics devices for metro applications
NASA Astrophysics Data System (ADS)
Fukuda, H.; Kikuchi, K.; Jizodo, M.; Kawamura, Y.; Takeda, K.; Honda, K.
2017-01-01
Digital coherent technology is considered an attractive way of realizing both high-speed metro links and long distance transmissions. In metro areas, there is a strong demand for a smaller, faster transceiver module. This demand is mainly driven by the rapidly increasing data center interconnection traffic, where transmission capacity per faceplane is a key feature. Therefore, optical integration technology is desired. Since compensation in digital coherent technology is performed in the electrical or digital domain, users can deal with those optics performances that are not compensated for digitally. This means using a new material that cannot provide perfect characteristics but that is suitable for miniaturization and integration is possible. Silicon photonics (SiPh) is considered an attractive technology that would enable the significant miniaturization of optical circuits and be capable of optical integration with high manufacturability. While SiPh-based devices have begun to be deployed for very short or short reach links on the basis of direct detection technology, their digital coherent applications have recently been investigated in view of their integration capability. This paper describes recent progress on SiPh-based integrated optical devices for high-speed digital coherent transceivers targeting metro links. An optical modulator and receiver with related circuits have been integrated into a single SiPh chip. TEC-free operation under non-hermetic conditions and the direct attachment of optical fibers have both been realized. Very thin and small packaging with sufficient performance has been demonstrated by using the SiPh chip co-packaged with high-speed ICs.
Processing, properties, and applications of sol-gel silica optics
NASA Astrophysics Data System (ADS)
Nogues, Jean-Luc R.; LaPaglia, Anthony J.
1989-12-01
For many years the market share maintained by U.S. optics manufacturers has been declining continuously caused in part by intense competition principally from countries in the Far East, and in part by the lack of a highly trained cadre of opticians to replace the current generation. This fact could place in jeopardy the defense system of the United States in case of international war. For example, in 1987, optical glass component imports accounted for approximately 50 percent of the Department of Defense (DOD) consumption. GELTECH's sol-gel technology is a new process for making a high quality optical glass and components for commercial and military uses. This technology offers in addition to being a local source of optics, the possibility to create new materials for high-tech optical applications, and the elimination of the major part of grinding and polishing for which the skill moved off-shore. This paper presents a summary of the solgel technology for the manufacture of high quality optical glass and components. Properties of pure silica glass made by solgel process (Type V and Type VI silicas) are given and include: ultraviolet, visible and near infrared spectrophotometry, optical homogeneity and thermal expansion. Many applications such as near net shape casting or Fresnel lens surface replication are discussed. Several potential new applications offered by the solgel technology such as organic-inorganic composites for non linear optics or scintillation detection are also reported in this paper.
NASA Astrophysics Data System (ADS)
Noé, Pierre; Vallée, Christophe; Hippert, Françoise; Fillot, Frédéric; Raty, Jean-Yves
2018-01-01
Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te alloys, have shown outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as PCM memories or phase-change random access memories (PCRAMs), are the most promising candidates among emerging non-volatile memory (NVM) technologies to replace the current FLASH memories at CMOS technology nodes under 28 nm. Chalcogenide PCMs exhibit fast and reversible phase transformations between crystalline and amorphous states with very different transport and optical properties leading to a unique set of features for PCRAMs, such as fast programming, good cyclability, high scalability, multi-level storage capability, and good data retention. Nevertheless, PCM memory technology has to overcome several challenges to definitively invade the NVM market. In this review paper, we examine the main technological challenges that PCM memory technology must face and we illustrate how new memory architecture, innovative deposition methods, and PCM composition optimization can contribute to further improvements of this technology. In particular, we examine how to lower the programming currents and increase data retention. Scaling down PCM memories for large-scale integration means the incorporation of the PCM into more and more confined structures and raises materials science issues in order to understand interface and size effects on crystallization. Other materials science issues are related to the stability and ageing of the amorphous state of PCMs. The stability of the amorphous phase, which determines data retention in memory devices, can be increased by doping the PCM. Ageing of the amorphous phase leads to a large increase of the resistivity with time (resistance drift), which has up to now hindered the development of ultra-high multi-level storage devices. A review of the current understanding of all these issues is provided from a materials science point of view.
NASA Technical Reports Server (NTRS)
Leidich, C. A. (Editor); Pittman, R. B. (Editor)
1984-01-01
The results of five technology panels which convened to discuss the Large Deployable Reflector (LDR) are presented. The proposed LDR is a large, ambient-temperature, far infrared/submillimeter telescope designed for space. Panel topics included optics, materials and structures, sensing and control, science instruments, and systems and missions. The telescope requirements, the estimated technology levels, and the areas in which the generic technology work has to be augmented are enumerated.
NASA Technical Reports Server (NTRS)
1991-01-01
The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity.
Fabrication of a 20.5-inch-diameter segmented silicon annular optic prototype for the ROMA program
NASA Astrophysics Data System (ADS)
Hassell, Frank R.; Groark, Frank M.
1995-10-01
Recent advancements in single crystal silicon material science and fabrication capabilities and very low absorption (VLA) multi-layer dielectric coating technology have led to the development of uncooled, large aperture, high power mirrors for high energy laser (HEL) systems. Based on this success, a segmented single-crystal silicon substrate concept has been selected as the baseline fabrication approach for uncooled 1.2 meter diameter resonator annular optics for the Alpha space based high energy laser. The objective of this Resonator Optics Materials Assessment (ROMA) task was to demonstrate all of the key fabrication processes required to fabricate the full sized annular optics for the Alpha space based high energy laser. This paper documents the fabrication of a half-scale annular optic prototype (AOP) of the Alpha laser rear cone.
Solid hemoglobin-polymer phantoms for evaluation of biophotonic systems.
Jang, Hyounguk; Pfefer, T Joshua; Chen, Yu
2015-09-15
Stable tissue phantoms that incorporate the spectral absorption properties of hemoglobin would benefit a wide range of biophotonic technologies. Toward this end, we have developed and validated a novel polymer material incorporating hemoglobin. Our solid hemoglobin-polymer (SHP) material is fabricated by mixing liquid silicone base with a hemoglobin solution, followed by sonication and low temperature curing. The optical properties of samples were determined over 450-1000 nm using the inverse adding-doubling method and the Beer-Lambert law. Measurements indicated SHP optical stability over four months. Near-infrared spectroscopy and hyperspectral imaging measurements of SHP samples were performed to demonstrate the utility of this approach. SHP materials have the potential to improve tissue-simulating phantoms used for development, evaluation, and standardization of optical devices for oximetry and other applications.
Fiber optic moisture sensor with moisture-absorbing reflective target
Kirkham, Randy R.
1987-01-01
A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.
NASA Astrophysics Data System (ADS)
Maloney, Chris; Lormeau, Jean Pierre; Dumas, Paul
2016-07-01
Many astronomical sensing applications operate in low-light conditions; for these applications every photon counts. Controlling mid-spatial frequencies and surface roughness on astronomical optics are critical for mitigating scattering effects such as flare and energy loss. By improving these two frequency regimes higher contrast images can be collected with improved efficiency. Classically, Magnetorheological Finishing (MRF) has offered an optical fabrication technique to correct low order errors as well has quilting/print-through errors left over in light-weighted optics from conventional polishing techniques. MRF is a deterministic, sub-aperture polishing process that has been used to improve figure on an ever expanding assortment of optical geometries, such as planos, spheres, on and off axis aspheres, primary mirrors and freeform optics. Precision optics are routinely manufactured by this technology with sizes ranging from 5-2,000mm in diameter. MRF can be used for form corrections; turning a sphere into an asphere or free form, but more commonly for figure corrections achieving figure errors as low as 1nm RMS while using careful metrology setups. Recent advancements in MRF technology have improved the polishing performance expected for astronomical optics in low, mid and high spatial frequency regimes. Deterministic figure correction with MRF is compatible with most materials, including some recent examples on Silicon Carbide and RSA905 Aluminum. MRF also has the ability to produce `perfectly-bad' compensating surfaces, which may be used to compensate for measured or modeled optical deformation from sources such as gravity or mounting. In addition, recent advances in MRF technology allow for corrections of mid-spatial wavelengths as small as 1mm simultaneously with form error correction. Efficient midspatial frequency corrections make use of optimized process conditions including raster polishing in combination with a small tool size. Furthermore, a novel MRF fluid, called C30, has been developed to finish surfaces to ultra-low roughness (ULR) and has been used as the low removal rate fluid required for fine figure correction of mid-spatial frequency errors. This novel MRF fluid is able to achieve <4Å RMS on Nickel-plated Aluminum and even <1.5Å RMS roughness on Silicon, Fused Silica and other materials. C30 fluid is best utilized within a fine figure correction process to target mid-spatial frequency errors as well as smooth surface roughness 'for free' all in one step. In this paper we will discuss recent advancements in MRF technology and the ability to meet requirements for precision optics in low, mid and high spatial frequency regimes and how improved MRF performance addresses the need for achieving tight specifications required for astronomical optics.
A review of recent measurements of optical and thermal properties of alpha-mercuric iodide
NASA Astrophysics Data System (ADS)
Burger, A.; Morgan, S. H.; Silberman, E.; Nason, D.; Cheng, A. Y.
The knowledge of the physical properties of a crystal and their relation to the nature and content of defects are essential for both applications and fundamental reasons. Alpha-mercuric iodide (alpha-HgI2) is a material which was found important applications as room temperature x ray and gamma ray detectors. Some recent thermal and optical measurements of this material, using the samples of improved crystallinity which are now available, are reviewed below. Heretofore, these properties have received less attention than the mechanical and electrical properties, particularly at elevated temperatures. In the technology of alpha-HgI2 where there is a continuing motivation to obtain larger single crystals without compromising the material quality, a better knowledge of the thermal and optical properties may lead to improvements in the processes of material purification, crystal growth, and device fabrication.
NASA Astrophysics Data System (ADS)
Ashley, P. R.; Temmen, M. G.; Diffey, W. M.; Sanghadasa, M.; Bramson, M. D.
2007-10-01
Active and passive polymer materials have been successfully used in the development of highly accurate, compact and low cost guided-wave components: an optical transceiver and a phase modulator, for inertial measurement units (IMUs) based on the interferometric fibre optic gyroscope (IFOG) technology for precision guidance in navigation systems. High performance and low noise transceivers with high optical power and good spectral quality were fabricated using a silicon-bench architecture. Low loss phase modulators with low halfwave drive voltage (Vπ) have been fabricated with a backscatter compensated design using polarizing waveguides consisting of CLD- and FTC-type high performance electro-optic (E-O) chromophores. Gyro bias stability of less than 0.02° h-1 has been demonstrated with these guided-wave components.
NASA Astrophysics Data System (ADS)
Levati, N.; Vitali, L.; Fustinoni, D.; Niro, A.
2014-11-01
In recent years, window-integrated solar protection systems are used and studied as a promising energy saving technology, both for cold and hot climates. In particular, smart windows, whose optical proprieties in the solar wavelength range can somehow be controlled, show interesting results, especially in reducing the air conditioning power consumption. With the improvement of nanolithography techniques as well as with the possibility of designing polarization intervals, coupled polarizing films show a good potential as a dynamic and wavelength-selective shading technology. In this paper, UV-Vis-NIR spectrophotometric measurements are carried out on two polarizing technologies, Polaroid crystalline polarizer and Wire Grid broadband polarizer, in single- and double- film layout, to evaluate their optical performances, i.e. spectral transmittance, reflectance and absorptivity. The solar radiation glazing factors, according to the standard UNI EN 410, are calculated. The measured data are also analyzed in detail to emphasize the optical peculiarities of the materials under study that do not stand out from the standard parameters, as well as the specific problems that arise in spectrophotometric evaluations of polarizing films.
Vrancken, C; Longhurst, P J; Wagland, S T
2017-03-01
Waste management processes generally represent a significant loss of material, energy and economic resources, so legislation and financial incentives are being implemented to improve the recovery of these valuable resources whilst reducing contamination levels. Material recovery and waste derived fuels are potentially valuable options being pursued by industry, using mechanical and biological processes incorporating sensor and sorting technologies developed and optimised for recycling plants. In its current state, waste management presents similarities to other industries that could improve their efficiencies using process analytical technology tools. Existing sensor technologies could be used to measure critical waste characteristics, providing data required by existing legislation, potentially aiding waste treatment processes and assisting stakeholders in decision making. Optical technologies offer the most flexible solution to gather real-time information applicable to each of the waste mechanical and biological treatment processes used by industry. In particular, combinations of optical sensors in the visible and the near-infrared range from 800nm to 2500nm of the spectrum, and different mathematical techniques, are able to provide material information and fuel properties with typical performance levels between 80% and 90%. These sensors not only could be used to aid waste processes, but to provide most waste quality indicators required by existing legislation, whilst offering better tools to the stakeholders. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantum technology past, present, future: quantum energetics (Conference Presentation)
NASA Astrophysics Data System (ADS)
Choi, Sang H.
2017-04-01
Since the development of quantum physics in the early part of the 1900s, this field of study has made remarkable contributions to our civilization. Some of these advances include lasers, light-emitting diodes (LED), sensors, spectroscopy, quantum dots, quantum gravity and quantum entanglements. In 1998, the NASA Langley Research Center established a quantum technology committee to monitor the progress in this area and initiated research to determine the potential of quantum technology for future NASA missions. The areas of interest in quantum technology at NASA included fundamental quantum-optics materials associated with quantum dots and quantum wells, device-oriented photonic crystals, smart optics, quantum conductors, quantum information and computing, teleportation theorem, and quantum energetics. A brief review of the work performed, the progress made in advancing these technologies, and the potential NASA applications of quantum technology will be presented.
Sensing systems using chip-based spectrometers
NASA Astrophysics Data System (ADS)
Nitkowski, Arthur; Preston, Kyle J.; Sherwood-Droz, Nicolás.; Behr, Bradford B.; Bismilla, Yusuf; Cenko, Andrew T.; DesRoches, Brandon; Meade, Jeffrey T.; Munro, Elizabeth A.; Slaa, Jared; Schmidt, Bradley S.; Hajian, Arsen R.
2014-06-01
Tornado Spectral Systems has developed a new chip-based spectrometer called OCTANE, the Optical Coherence Tomography Advanced Nanophotonic Engine, built using a planar lightwave circuit with integrated waveguides fabricated on a silicon wafer. While designed for spectral domain optical coherence tomography (SD-OCT) systems, the same miniaturized technology can be applied to many other spectroscopic applications. The field of integrated optics enables the design of complex optical systems which are monolithically integrated on silicon chips. The form factors of these systems can be significantly smaller, more robust and less expensive than their equivalent free-space counterparts. Fabrication techniques and material systems developed for microelectronics have previously been adapted for integrated optics in the telecom industry, where millions of chip-based components are used to power the optical backbone of the internet. We have further adapted the photonic technology platform for spectroscopy applications, allowing unheard-of economies of scale for these types of optical devices. Instead of changing lenses and aligning systems, these devices are accurately designed programmatically and are easily customized for specific applications. Spectrometers using integrated optics have large advantages in systems where size, robustness and cost matter: field-deployable devices, UAVs, UUVs, satellites, handheld scanning and more. We will discuss the performance characteristics of our chip-based spectrometers and the type of spectral sensing applications enabled by this technology.
NASA Astrophysics Data System (ADS)
Marmon, Jason; Rai, Satish; Wang, Kai; Zhou, Weilie; Zhang, Yong
The pathway for CMOS technology beyond the 5-nm technology node remains unclear for both physical and technological reasons. A new transistor paradigm is required. A LET (Marmon et. al., Front. Phys. 2016, 4, No. 8) offers electronic-optical hybridization at the component level, and is capable of continuing Moore's law to the quantum scale. A LET overcomes a FET's fabrication complexity, e.g., physical gate and doping, by employing optical gating and photoconductivity, while multiple independent, optical gates readily realize unique functionalities. We report LET device characteristics and novel digital and analog applications, such as optical logic gates and optical amplification. Prototype CdSe-nanowire-based LETs, incorporating an M-S-M structure, show output and transfer characteristics resembling advanced FETs, e.g., on/off ratios up to 106 with a source-drain voltage of 1.43V, gate-power of 260nW, and a subthreshold swing of 0.3nW/decade (excluding losses). A LET has potential for high-switching (THz) speeds and extremely low-switching energies (aJ) in the ballistic transport region. Our work offers new electronic-optical integration strategies for high speed and low energy computing approaches, which could potentially be extended to other materials and devices.
Optics for multimode lasers with elongated depth of field
NASA Astrophysics Data System (ADS)
Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei
2017-02-01
Modern multimode high-power lasers are widely used in industrial applications and control of their radiation, especially by focusing, is of great importance. Because of relatively low optical quality, characterized by high values of specifications Beam Parameter Product (BPP) or M², the depth of field by focusing of multimode laser radiation is narrow. At the same time laser technologies like deep penetration welding, cutting of thick metal sheets get benefits from elongated depth of field in area of focal plane, therefore increasing of zone along optical axis with minimized spot size is important technical task. As a solution it is suggested to apply refractive optical systems splitting an initial laser beam into several beamlets, which are focused in different foci separated along optical axis with providing reliable control of energy portions in each separate focus, independently of beam size or mode structure. With the multi-focus optics, the length of zone of material processing along optical axis is defined rather by distances between separate foci, which are determined by optical design of the optics and can be chosen according to requirements of a particular laser technology. Due to stability of the distances between foci there is provided stability of a technology process. This paper describes some design features of refractive multi-focus optics, examples of real implementations and experimental results will be presented as well.
Fabrication and comparison of selective, transparent optics for concentrating solar systems
NASA Astrophysics Data System (ADS)
Taylor, Robert A.; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P.
2015-09-01
Concentrating optics enable solar thermal energy to be harvested at high temperature (<100oC). As the temperature of the receiver increases, radiative losses can become dominant. In many concentrating systems, the receiver is coated with a selectively absorbing surface (TiNOx, Black Chrome, etc.) to obtain higher efficiency. Commercial absorber coatings are well-developed to be highly absorbing for short (solar) wavelengths, but highly reflective at long (thermal emission) wavelengths. If a solar system requires an analogous transparent, non-absorbing optic - i.e. a cover material which is highly transparent at short wavelengths, but highly reflective at long wavelengths - the technology is simply not available. Low-e glass technology represents a commercially viable option for this sector, but it has only been optimized for visible light transmission. Optically thin metal hole-arrays are another feasible solution, but are often difficult to fabricate. This study investigates combinations of thin film coatings of transparent conductive oxides and nanoparticles as a potential low cost solution for selective solar covers. This paper experimentally compares readily available materials deposited on various substrates and ranks them via an `efficiency factor for selectivity', which represents the efficiency of radiative exchange in a solar collector. Out of the materials studied, indium tin oxide and thin films of ZnS-Ag-ZnS represent the most feasible solutions for concentrated solar systems. Overall, this study provides an engineering design approach and guide for creating scalable, selective, transparent optics which could potentially be imbedded within conventional low-e glass production techniques.
Design and Performance Evaluation of Sensors and Actuators for Advanced Optical Systems
NASA Technical Reports Server (NTRS)
Clark, Natalie
2011-01-01
Current state-of-the-art commercial sensors and actuators do not meet many of NASA s next generation spacecraft and instrument needs. Nor do they satisfy the DoD needs for satellite missions, especially micro/nano satellite missions. In an effort to develop advanced optical devices and instruments that meet mission requirements, NASA Langley recently completed construction of a new cleanroom housing equipment capable of fabricating high performance active optic and adaptive optic technologies including deformable mirrors, reconfigurable lenses (both refractive and diffractive), spectrometers, spectro-polarimeters, tunable filters and many other active optic devices. In addition to performance, these advanced optic technologies offer advantages in speed, size, weight, power consumption, and radiation tolerance. The active optic devices described in this paper rely on birefringent liquid crystal materials to alter either the phase or the polarization of the incoming light. Design considerations and performance evaluation results for various NASA applications are presented. Applications presented will include large space telescopes, optical communications, spacecraft windows, coronagraphs, and star trackers. Keywords: Photonics, Adaptive Optics, Tunable Filters, MEMs., MOEMs, Coronagraph, Star Tracker
NASA Technical Reports Server (NTRS)
1996-01-01
Under a Small Business Innovation Research (SBIR) contract to Kennedy Space Center, EIC Laboratories invented a Raman Spectrograph with fiber optic sampling for space applications such as sensing hazardous fuel vapors and making on-board rapid analyses of chemicals and minerals. Raman spectroscopy is a laser-based measurement technique that provides through a unique vibrational spectrum a molecular 'fingerprint,' and can function in aqueous environments. EIC combined optical fiber technology with Raman methods to develop sensors that can be operated at a distance from the spectrographic analysis instruments and the laser excitation source. EIC refined and commercialized the technology to create the Fiber Optic Raman Spectrograph and the RamanProbe. Commercial applications range from process control to monitoring hazardous materials.
Optical Measurements for Intelligent Aerospace Propulsion
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.
2003-01-01
There is growing interest in applying intelligent technologies to aerospace propulsion systems to reap expected benefits in cost, performance, and environmental compliance. Cost benefits span the engine life cycle from development, operations, and maintenance. Performance gains are anticipated in reduced fuel consumption, increased thrust-toweight ratios, and operability. Environmental benefits include generating fewer pollutants and less noise. Critical enabling technologies to realize these potential benefits include sensors, actuators, logic, electronics, materials, and structures. For propulsion applications, the challenge is to increase the robustness of these technologies so that they can withstand harsh temperatures, vibrations, and grime while providing extremely reliable performance. This paper addresses the role that optical metrology is playing in providing solutions to these challenges. Optics for ground-based testing (development cycle), flight sensing (operations), and inspection (maintenance) are described. Opportunities for future work are presented.
Fiber-optic technologies in laser-based therapeutics: threads for a cure.
Wang, Zheng; Chocat, Noémie
2010-06-01
In the past decade, novel fiber structures and material compositions have led to the introduction of new diagnostic and therapeutic tools. We review the structure, the material composition and the fabrication processes behind these novel fiber systems. Because of their structural flexibility, their compatibility with endoscopic appliances and their efficiency in laser delivery, these fiber systems have greatly extended the reach of a wide range of surgical lasers in minimally invasive procedures. Much research in novel fiber-optics delivery systems has been focused on the accommodation of higher optical powers and the extension to a broader wavelength range. Until recently, CO2 laser surgery, renowned for its precision and efficiency, was limited to open surgeries by the lack of delivery fibers. Hollow-core photonic bandgap fibers are assessed for their ability to transmit CO2 laser at surgical power level and for their applications in a range of clinical areas. Current fiber-delivery technologies for a number of laser surgery modalities and wavelengths are compared.
Towards three-dimensional optical metamaterials
NASA Astrophysics Data System (ADS)
Tanaka, Takuo; Ishikawa, Atsushi
2017-12-01
Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.
Rapid Fabrication of Lightweight SiC Optics using Reactive Atom Plasma (RAP) Processing
NASA Technical Reports Server (NTRS)
Fiske, Peter S.
2006-01-01
Reactive Atom Plasma (RAP) processing is a non-contact, plasma-based processing technology that can be used to generate damage-free optical surfaces. We have developed tools and processes using RAP that allow us to shape extremely lightweight mirror Surfaces made from extremely hard-to-machine materials (e.g. SiC). We will describe our latest results using RAP in combination with other technologies to produce finished lightweight SiC mirrors and also discuss applications for RAP in the rapid fabrication of mirror segments for reflective and grazing incidence telescopes.
Toward biomaterial-based implantable photonic devices
NASA Astrophysics Data System (ADS)
Humar, Matjaž; Kwok, Sheldon J. J.; Choi, Myunghwan; Yetisen, Ali K.; Cho, Sangyeon; Yun, Seok-Hyun
2017-03-01
Optical technologies are essential for the rapid and efficient delivery of health care to patients. Efforts have begun to implement these technologies in miniature devices that are implantable in patients for continuous or chronic uses. In this review, we discuss guidelines for biomaterials suitable for use in vivo. Basic optical functions such as focusing, reflection, and diffraction have been realized with biopolymers. Biocompatible optical fibers can deliver sensing or therapeutic-inducing light into tissues and enable optical communications with implanted photonic devices. Wirelessly powered, light-emitting diodes (LEDs) and miniature lasers made of biocompatible materials may offer new approaches in optical sensing and therapy. Advances in biotechnologies, such as optogenetics, enable more sophisticated photonic devices with a high level of integration with neurological or physiological circuits. With further innovations and translational development, implantable photonic devices offer a pathway to improve health monitoring, diagnostics, and light-activated therapies.
1999-04-01
NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. MSFC's Space Optics Manufacturing Technology Center (SOMTC) has grinding and polishing equipment ranging from conventional spindles to custom-designed polishers. These capabilities allow us to grind precisely and polish a variety of optical devices, including x-ray mirror mandrels. This image shows Charlie Griffith polishing the half-meter mandrel at SOMTC.
Double degree master program: Optical Design
NASA Astrophysics Data System (ADS)
Bakholdin, Alexey; Kujawinska, Malgorzata; Livshits, Irina; Styk, Adam; Voznesenskaya, Anna; Ezhova, Kseniia; Ermolayeva, Elena; Ivanova, Tatiana; Romanova, Galina; Tolstoba, Nadezhda
2015-10-01
Modern tendencies of higher education require development of master programs providing achievement of learning outcomes corresponding to quickly variable job market needs. ITMO University represented by Applied and Computer Optics Department and Optical Design and Testing Laboratory jointly with Warsaw University of Technology represented by the Institute of Micromechanics and Photonics at The Faculty of Mechatronics have developed a novel international master double-degree program "Optical Design" accumulating the expertise of both universities including experienced teaching staff, educational technologies, and experimental resources. The program presents studies targeting research and professional activities in high-tech fields connected with optical and optoelectronics devices, optical engineering, numerical methods and computer technologies. This master program deals with the design of optical systems of various types, assemblies and layouts using computer modeling means; investigation of light distribution phenomena; image modeling and formation; development of optical methods for image analysis and optical metrology including optical testing, materials characterization, NDT and industrial control and monitoring. The goal of this program is training a graduate capable to solve a wide range of research and engineering tasks in optical design and metrology leading to modern manufacturing and innovation. Variability of the program structure provides its flexibility and adoption according to current job market demands and personal learning paths for each student. In addition considerable proportion of internship and research expands practical skills. Some special features of the "Optical Design" program which implements the best practices of both Universities, the challenges and lessons learnt during its realization are presented in the paper.
El-Sharkawy, Yasser H; Elbasuney, Sherif
2017-08-01
Laser photoacoustic spectroscopy (LPAS) is an attractive technology in terms of simplicity, ruggedness, and overall sensitivity; it detects the time dependent heat generated (thermo-elastic effect) in the target via interaction with pulsed optical radiation. This study reports on novel LPAS technique that offers instant and standoff detection capabilities of trace explosives. Over the current study, light is generated using pulsed Q-switched Nd:YAG laser; the generated photoacoustic response in stimulated explosive material offers signature values that depend on the optical, thermal, and acoustical properties. The generated acoustic waves were captured using piezoelectric transducer as well as novel customized optical sensor with remotely laser interferometer probe. A digital signal processing algorithm was employed to identify explosive material signatures via calculation of characteristic optical properties (absorption coefficient), sound velocity, and frequency response of the generated photoacoustic signal. Customized LPAS technique was employed for instantaneous trace detection of three main different high explosive materials including TNT, RDX, and HMX. The main outcome of this study is that the novel customized optical sensor signals were validated with traditional piezoelectric transducer. Furthermore, the customized optical sensor offered standoff detection capabilities (10cm), fast response, high sensitivity, and enhanced signal to noise ratio. This manuscript shaded the light on the instant detection of trace explosive materials from significant standoffs using novel customized LPAS technique. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Thiel, Charles Warren
There are a vast number of applications for rare-earth-activated materials and much of today's cutting-edge optical technology and emerging innovations are enabled by their unique properties. In many of these applications, interactions between the rare-earth ion and the host material's electronic states can enhance or inhibit performance and provide mechanisms for manipulating the optical properties. Continued advances in these technologies require knowledge of the relative energies of rare-earth and crystal band states so that properties of available materials may be fully understood and new materials may be logically developed. Conventional and resonant electron photoemission techniques were used to measure 4f electron and valence band binding energies in important optical materials, including YAG, YAlO3, and LiYF4. The photoemission spectra were theoretically modeled and analyzed to accurately determine relative energies. By combining these energies with ultraviolet spectroscopy, binding energies of excited 4fN-15d and 4fN+1 states were determined. While the 4fN ground-state energies vary considerably between different trivalent ions and lie near or below the top of the valence band in optical materials, the lowest 4f N-15d states have similar energies and are near the bottom of the conduction band. As an example for YAG, the Tb3+ 4f N ground state is in the band gap at 0.7 eV above the valence band while the Lu3+ ground state is 4.7 eV below the valence band maximum; however, the lowest 4fN-15d states are 2.2 eV below the conduction band for both ions. We found that a simple model accurately describes the binding energies of the 4fN, 4fN-1 5d, and 4fN+1 states. The model's success across the entire rare-earth series indicates that measurements on two different ions in a host are sufficient to predict the energies of all rare-earth ions in that host. This information provides new insight into electron transfer transitions, luminescence quenching, and valence stability. All of these results lead to a clearer picture for the host's effect on the rare-earth ion's electron binding energies and will motivate fundamental theoretical analysis and accelerate the development of new optical materials.
Optical 3D printing: bridging the gaps in the mesoscale
NASA Astrophysics Data System (ADS)
Jonušauskas, Linas; Juodkazis, Saulius; Malinauskas, Mangirdas
2018-05-01
Over the last decade, optical 3D printing has proved itself to be a flexible and capable approach in fabricating an increasing variety of functional structures. One of the main reasons why this technology has become so prominent is the fact that it allows the creation of objects in the mesoscale, where structure dimensions range from nanometers to centimeters. At this scale, the size and spatial configuration of produced single features start to influence the characteristics of the whole object, enabling an array of new, exotic and otherwise unachievable properties and structures (i.e. metamaterials). Here, we present the advantages of this technology in creating mesoscale structures in comparison to subtractive manufacturing techniques and to other branches of 3D printing. Differences between stereolithography, sintering, laser-induced forward transfer and femtosecond laser 3D multi-photon polymerization are highlighted. Attention is given to the discussion of applicable light sources, as well as to an ongoing analysis of the light–matter interaction mechanisms, as they determine the processable materials, required technological steps and the fidelity of feature sizes in fabricated patterns and workpieces. Optical 3D printing-enabled functional structures in micromechanics, medicine, microfluidics, micro-optics and photonics are discussed, with an emphasis on how this particular technology benefits advances in those fields. 4D printing, achieved by varying both the architecture and spatial material composition of the 3D structure, feature-size reduction via stimulated emission depletion-inspired nanolithography or thermal post-treatment, as well as plasmonic nanoparticle-polymer nanocomposites, are presented among examples of the newest trends in the development of this technology. Finally, an outlook is given, examining further scientific frontiers in the field as well as possibilities and challenges in transferring laboratory-level know-how to industrial-scale production.
Application of phase-change materials in memory taxonomy
Wang, Lei; Tu, Liang; Wen, Jing
2017-01-01
Abstract Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects. PMID:28740557
An optoelectronic framework enabled by low-dimensional phase-change films.
Hosseini, Peiman; Wright, C David; Bhaskaran, Harish
2014-07-10
The development of materials whose refractive index can be optically transformed as desired, such as chalcogenide-based phase-change materials, has revolutionized the media and data storage industries by providing inexpensive, high-speed, portable and reliable platforms able to store vast quantities of data. Phase-change materials switch between two solid states--amorphous and crystalline--in response to a stimulus, such as heat, with an associated change in the physical properties of the material, including optical absorption, electrical conductance and Young's modulus. The initial applications of these materials (particularly the germanium antimony tellurium alloy Ge2Sb2Te5) exploited the reversible change in their optical properties in rewritable optical data storage technologies. More recently, the change in their electrical conductivity has also been extensively studied in the development of non-volatile phase-change memories. Here we show that by combining the optical and electronic property modulation of such materials, display and data visualization applications that go beyond data storage can be created. Using extremely thin phase-change materials and transparent conductors, we demonstrate electrically induced stable colour changes in both reflective and semi-transparent modes. Further, we show how a pixelated approach can be used in displays on both rigid and flexible films. This optoelectronic framework using low-dimensional phase-change materials has many likely applications, such as ultrafast, entirely solid-state displays with nanometre-scale pixels, semi-transparent 'smart' glasses, 'smart' contact lenses and artificial retina devices.
NASA Technical Reports Server (NTRS)
Kreutz, E. W. (Editor); Quenzer, Alain (Editor); Schuoecker, Dieter (Editor)
1987-01-01
The design and operation of high-power lasers for industrial applications are discussed in reviews and reports. Topics addressed include the status of optical technology in the Netherlands, laser design, the deposition of optical energy, laser diagnostics, nonmetal processing, and energy coupling and plasma formation. Consideration is given to laser-induced damage to materials, fluid and gas flow dynamics, metal processing, and manufacturing. Graphs, diagrams, micrographs, and photographs are provided.
3D MOEMS-based optical micro-bench platform for the miniaturization of sensing devices
NASA Astrophysics Data System (ADS)
Garcia-Blanco, Sonia; Caron, Jean-Sol; Leclair, Sébastien; Topart, Patrice A.; Jerominek, Hubert
2008-02-01
As we enter into the 21st century, the need for miniaturized portable diagnostic devices is increasing continuously. Portable devices find important applications for point-of-care diagnostics, patient self-monitoring and in remote areas, such as unpopulated regions where the cost of large laboratory facilities is not justifiable, underdeveloped countries and other remote locations such as space missions. The advantage of miniaturized sensing optical systems includes not only the reduced weight and size but also reduced cost, decreased time to results and robustness (e.g. no need for frequent re-alignments). Recent advances in micro-fabrication and assembly technologies have enabled important developments in the field of miniaturized sensing systems. INO has developed a technology platform for the three dimensional integration of MOEMS on an optical microbench. Building blocks of the platform include microlenses, micromirrors, dichroic beamsplitters, filters and optical fibers, which can be positioned using passive alignment structures to build the desired miniaturised system. The technology involves standard microfabrication, thick resist UV-lithography, thick metal electroplating, soldering, replication in sol-gel materials and flip-chip bonding processes. The technology is compatible with wafer-to-wafer bonding. A placement accuracy of +/- 5 μm has been demonstrated thanks to the integration of alignment marks co registered with other optical elements fabricated on different wafers. In this paper, the building blocks of the technology will be detailed. The design and fabrication of a 5x5 channels light processing unit including optical fibers, mirrors and collimating microlenses will be described. Application of the technology to various kinds of sensing devices will be discussed.
Lemaillet, Paul; Cooksey, Catherine C.; Levine, Zachary H.; Pintar, Adam L.; Hwang, Jeeseong; Allen, David W.
2016-01-01
The National Institute of Standards and Technology (NIST) has maintained scales for reflectance and transmittance over several decades. The scales are primarily intended for regular transmittance, mirrors, and solid surface scattering diffusers. The rapidly growing area of optical medical imaging needs a scale for volume scattering of diffuse materials that are used to mimic the optical properties of tissue. Such materials are used as phantoms to evaluate and validate instruments under development intended for clinical use. To address this need, a double-integrating sphere based instrument has been installed to measure the optical properties of tissue-mimicking phantoms. The basic system and methods have been described in previous papers. An important attribute in establishing a viable calibration service is the estimation of measurement uncertainties. The use of custom models and comparisons with other established scales enabled uncertainty measurements. Here, we describe the continuation of those efforts to advance the understanding of the uncertainties through two independent measurements: the bidirectional reflectance distribution function and the bidirectional transmittance distribution function of a commercially available solid biomedical phantom. A Monte Carlo-based model is used and the resulting optical properties are compared to the values provided by the phantom manufacturer. PMID:27453623
Last Advances in Silicon-Based Optical Biosensors.
Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C; Lechuga, Laura M
2016-02-24
We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies.
Giant Faraday Rotation in Metal-Fluoride Nanogranular Films.
Kobayashi, N; Ikeda, K; Gu, Bo; Takahashi, S; Masumoto, H; Maekawa, S
2018-03-21
Magneto-optical Faraday effect is widely applied in optical devices and is indispensable for optical communications and advanced information technology. However, the bismuth garnet Bi-YIG is only the Faraday material since 1972. Here we introduce (Fe, FeCo)-(Al-,Y-fluoride) nanogranular films exhibiting giant Faraday effect, 40 times larger than Bi-YIG. These films have a nanocomposite structure, in which nanometer-sized Fe, FeCo ferromagnetic granules are dispersed in a Al,Y-fluoride matrix.
Holographic Gratings for Optical Processing
NASA Technical Reports Server (NTRS)
Kukhtarev, Nickolai
2002-01-01
Investigation of astronomical objects and tracking of man-made space objects lead to generation of huge amount of information for optical processing. Traditional big-size optical elements (such as optical telescopes) have a tendency for increasing aperture size in order to improve sensitivity. This tendency leads to increasing of weight and costs of optical systems and stimulate search for the new, more adequate technologies. One approach to meet these demands is based on developing of holographic optical elements using new polymeric materials. We have investigated possibility to use new material PQ-PMMA (phenantrenequinone-doped PMMA (Polymethyl Methacrylate)) for fabrication of highly selective optical filters and fast spatial-temporal light modulators. This material was originally developed in Russia and later was tested in CalTech as a candidate material for optical storage. Our theoretical investigation predicts the possibility of realization of fast spatial and temporal light modulation, using volume reflection-type spectral filter. We have developed also model of holographic-grating recording in PQ-PMMA material, based on diffusional amplification. This mechanism of recording allow to receive high diffraction efficiency during recording of reflection-type volume holographic grating (holographic mirror). We also investigated recording of dynamic gratings in the photorefractive crystals LiNbO3 (LN) for space-based spectroscopy and for adaptive correction of aberrations in the telescope's mirrors. We have shown, that specific 'photogalvanic' mechanism of holographic grating recording in LN allow to realize recording of blazed gratings for volume and surface gratings. Possible applications of dynamic gratings in LN for amplification of images, transmitted through an imaging fiber guide was also demonstrated.
Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices
NASA Astrophysics Data System (ADS)
Khan, Mohammed Zahed Mustafa; Ng, Tien Khee; Ooi, Boon S.
2014-11-01
The advances in lasers, electronic and photonic integrated circuits (EPIC), optical interconnects as well as the modulation techniques allow the present day society to embrace the convenience of broadband, high speed internet and mobile network connectivity. However, the steep increase in energy demand and bandwidth requirement calls for further innovation in ultra-compact EPIC technologies. In the optical domain, advancement in the laser technologies beyond the current quantum well (Qwell) based laser technologies are already taking place and presenting very promising results. Homogeneously grown quantum dot (Qdot) lasers and optical amplifiers, can serve in the future energy saving information and communication technologies (ICT) as the work-horse for transmitting and amplifying information through optical fiber. The encouraging results in the zero-dimensional (0D) structures emitting at 980 nm, in the form of vertical cavity surface emitting laser (VCSEL), are already operational at low threshold current density and capable of 40 Gbps error-free transmission at 108 fJ/bit. Subsequent achievements for lasers and amplifiers operating in the O-, C-, L-, U-bands, and beyond will eventually lay the foundation for green ICT. On the hand, the inhomogeneously grown quasi 0D quantum dash (Qdash) lasers are brilliant solutions for potential broadband connectivity in server farms or access network. A single broadband Qdash laser operating in the stimulated emission mode can replace tens of discrete narrow-band lasers in dense wavelength division multiplexing (DWDM) transmission thereby further saving energy, cost and footprint. We herein reviewed the1 progress of both Qdots and Qdash devices, based on the InAs/InGaAlAs/InP and InAs/InGaAsP/InP material systems, from the angles of growth and device performance. In particular, we discussed the progress in lasers, semiconductor optical amplifiers (SOA), mode locked lasers, and superluminescent diodes, which are the building blocks of EPIC and ICT. Alternatively, these optical sources are potential candidates for other multi-disciplinary field applications.
Components for IFOG based inertial measurement units using active and passive polymer materials
NASA Astrophysics Data System (ADS)
Ashley, Paul R.; Temmen, Mark G.; Diffey, William M.; Sanghadasa, Mohan; Bramson, Michael D.; Lindsay, Geoffrey A.; Guenthner, Andrew J.
2006-08-01
Highly accurate, compact, and low cost inertial measurement units (IMUs) are needed for precision guidance in navigation systems. Active and passive polymer materials have been successfully used in fabricating two of the key guided-wave components, the phase modulator and the optical transceiver, for IMUs based on the interferometric fiber optic gyroscope (IFOG) technology. Advanced hybrid waveguide fabrication processes and novel optical integration techniques have been introduced. Backscatter compensated low loss phase modulators with low half-wave drive voltage (V π) have been fabricated with CLD- and FTC- type high performance electro-optic chromophores. A silicon-bench architecture has been used in fabricating high gain low noise transceivers with high optical power while maintaining the spectral quality and long lifetime. Gyro bias stability of less than 0.02 deg/hr has been demonstrated with these components. A review of the novel concepts introduced, fabrication and integration techniques developed and performance achieved are presented.
Current Status and Tasks in Development of Cable Recycling Technology
NASA Astrophysics Data System (ADS)
Ezure, Takashi; Goto, Kazuhiko
This paper shows current status and tasks in development of cable recycling technology and it’s items to be solved. Electric cable recycle system has been activated especially for copper conductor recycle in Japan. Previously removed cable coverings materials were mainly land filled. But landfill capacity is decreased and limited in recent years, at the same time, recycle technology was highly developed. A cable recycle technology has 4 tasks. (1) Applying new high efficiency separation system instead of electrostatic and gravity methods to classify mixed various kind of plastics materials including recently developed ecological material (ex PE, PVC, Rubber), (2) Removing heavy metal, especially lead from PVC material, (3) Treatment of optical glass fiber core, which has possibility going to be harmful micro particles, and (4) Establishment of social recycle system for electric wire and cable. Taking action for these tasks shall be proceeded under environmentally sensitive technology together with local government, user, manufacturer, and waste-disposal company on cost performance basis.
Ultra-smooth finishing of aspheric surfaces using CAST technology
NASA Astrophysics Data System (ADS)
Kong, John; Young, Kevin
2014-06-01
Growing applications for astronomical ground-based adaptive systems and air-born telescope systems demand complex optical surface designs combined with ultra-smooth finishing. The use of more sophisticated and accurate optics, especially aspheric ones, allows for shorter optical trains with smaller sizes and a reduced number of components. This in turn reduces fabrication and alignment time and costs. These aspheric components include the following: steep surfaces with large aspheric departures; more complex surface feature designs like stand-alone off-axis-parabola (OAP) and free form optics that combine surface complexity with a requirement for ultra-high smoothness, as well as special optic materials such as lightweight silicon carbide (SiC) for air-born systems. Various fabrication technologies for finishing ultra-smooth aspheric surfaces are progressing to meet these growing and demanding challenges, especially Magnetorheological Finishing (MRF) and ion-milling. These methods have demonstrated some good success as well as a certain level of limitations. Amongst them, computer-controlled asphere surface-finishing technology (CAST), developed by Precision Asphere Inc. (PAI), plays an important role in a cost effective manufacturing environment and has successfully delivered numerous products for the applications mentioned above. One of the most recent successes is the Gemini Planet Imager (GPI), the world's most powerful planet-hunting instrument, with critical aspheric components (seven OAPs and free form optics) made using CAST technology. GPI showed off its first images in a press release on January 7, 2014 . This paper reviews features of today's technologies in handling the ultra-smooth aspheric optics, especially the capabilities of CAST on these challenging products. As examples, three groups of aspheres deployed in astronomical optics systems, both polished and finished using CAST, will be discussed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloß, P., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jüttner, G., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jacob, S., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de
2014-05-15
Micro plastic parts open new fields for application, e. g., to electronics, sensor technologies, optics, and medical engineering. Before micro parts can go to mass production, there is a strong need of having the possibility for testing different designs and materials including material combinations. Hence, flexible individual technical and technological solutions for processing are necessary. To manufacture high quality micro parts, a micro injection moulding machine named formicaPlast based on a two-step plunger injection technology was developed. Resulting from its design, the residence time and the accuracy problems for managing small shot volumes with reproducible high accuracy are uncompromisingly solved.more » Due to their simple geometry possessing smooth transitions and non adherent inner surfaces, the plunger units allow to process 'all' thermoplastics from polyolefines to high performance polymers, optical clear polymers, thermally sensitive bioresorbables, highly filled systems (the so-called powder injection molding PIM), and liquid silicon rubber (LSR, here with a special kit). The applied platform strategy in the 1K and 2K version allows integrating automation for assembling, handling and packaging. A perpendicular arrangement allows encapsulation of inserts, also partially, and integration of this machine into process chains. Considering a wide variety of different parts consisting of different materials, the high potential of the technology is demonstrated. Based on challenging industrial parts from electronic applications (2K micro MID and bump mat, where both are highly structured parts), the technological solutions are presented in more detail.« less
NASA Technical Reports Server (NTRS)
Agnew, Donald L.; Jones, Peter A.
1989-01-01
A study was conducted to define reasonable and representative large deployable reflector (LDR) system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume includes the executive summary for the total study, a report of thirteen system analysis and trades tasks (optical configuration, aperture size, reflector material, segmented mirror, optical subsystem, thermal, pointing and control, transportation to orbit, structures, contamination control, orbital parameters, orbital environment, and spacecraft functions), and descriptions of three selected LDR system concepts. Supporting information is contained in appendices.
Hydrothermal crystal growth of oxides for optical applications
NASA Astrophysics Data System (ADS)
McMillen, Colin David
2007-12-01
The manipulation of light has proven to be an integral part of today's technology-based society. In particular, there is great interest in obtaining coherent radiation in all regions of the optical spectrum to advance technology in military, medical, industrial, scientific and consumer fields. Exploring new crystal growth techniques as well as the growth of new optical materials is critical in the advancement of solid state optics. Surprisingly, the academic world devotes little attention to the growth of large crystals. This shortcoming has left gaps in the optical spectrum inaccessible by solid state devices. This dissertation explores the hydrothermal crystal growth of materials that could fill two such gaps. The first gap exists in the deep-UV region, particularly below 200 nm. Some materials such as LiB3O5 and beta-BaB2O4 can generate coherent light at wavelengths as low as 205 nm. The growth of these materials was explored to investigate the feasibility of the hydrothermal method as a new technique for growing these crystals. Particular attention was paid to the descriptive chemistry surrounding these systems, and several novel structures were elucidated. The study was also extended to the growth of materials that could be used for the generation of coherent light as low as 155 nm. Novel synthetic schemes for Sr2Be2B2O7 and KBe2BO 3F2 were developed and the growth of large crystals was explored. An extensive study of the structures, properties and crystal growth of related compounds, RbBe2BO3F2 and CsBe2BO 3F2, was also undertaken. Optimization of a number of parameters within this family of compounds led to the hydrothermal growth of large, high quality single crystal at rates suitable for large-scale growth. The second gap in technology is in the area of high average power solid state lasers emitting in the 1 mum and eye-safe (>1.5 mum) regions. A hydrothermal technique was developed to grow high quality crystals of Sc 2O3 and Sc2O3 doped with suitable lanthanide activator ions. Preliminary spectroscopic studies were performed and large crystals were again grown at rates suitable for commercial production. The synthesis of ultra-high purity Ln2O3 (Ln = Sc, Y, La-Lu) nanoparticles was also explored to advance the development of ceramic-based solid state lasers. Crystal growth is a complex task involving a great number of intricacies that must be understood and balanced. This dissertation has advanced the art and science of growing crystals, and documented the development of large, high quality crystals of advanced optical materials The materials and hydrothermal crystal growth techniques developed over the course of this work represent important progress toward controlling the optical spectrum.
Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Brebrick, Robert F.; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin; Shih, Hung-Dah
2000-01-01
Interest in optical devices which can operate in the visible spectrum has motivated research interest in the II-VI wide band gap semiconductor materials. The recent challenge for semiconductor opto-electronics is the development of a laser which can operate at short visible wavelengths. In the past several years, major advances in thin film technology such as molecular beam epitaxy and metal organic chemical vapor deposition have demonstrated the applicability of II-VI materials to important devices such as light-emitting diodes, lasers, and ultraviolet detectors. With an energy gap of 2.7 eV at room temperature, and an efficient band- to-band transition, ZnSe has been studied extensively as the primary candidate for a blue light emitting diode for optical displays, high density recording, and military communications. By employing a ternary or quaternary system, the energy band gap of II-VI materials can be tuned to a specific range. While issues related to the compositional inhomogeneity and defect incorporation are still to be fully resolved, ZnSe bulk crystals and ZnSe-based heterostructures such as ZnSe/ZnSeS, ZnSe/ZnCdSe and ZnCdSe/ZnSeS have showed photopumped lasing capability in the blue-green region at a low threshold power and high temperatures. The demonstration of its optical bistable properties in bulk and thin film forms also make ZnSe a possible candidate material for the building blocks of a digital optical computer. Despite this, developments in the crystal growth of bulk H-VI semiconductor materials has not advanced far enough to provide the low price, high quality substrates needed for the thin film growth technology.
1999-04-21
NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. Dr. Joe Ritter examines a replicated electro-formed nickel-alloy mirror which exemplifies the improvements in mirror fabrication techniques, with benefits such as dramtic weight reduction that have been achieved at the Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC).
NASA Astrophysics Data System (ADS)
Salmaso, B.; Basso, S.; Brizzolari, C.; Civitani, M.; Ghigo, M.; Pareschi, G.; Spiga, D.; Tagliaferri, G.; Vecchi, G.
2017-11-01
To significantly improve the performances of the current X-ray observatories, the next generation of X-ray telescopes has to be characterized by a large effective area (Aeff { 2 m2 at 1 keV) and angular resolution better than 5 arcsec. The large dimension implied by these requirements forces the use of a modular approach, splitting the optics into segments. Moreover, lightweight materials, such as glass, have to be selected for the segmented optics in order to maintain a manageable weight for the optics. Since 2009 we are developing a direct hot slumping technique assisted by pressure, in which the glass optical surface is in contact with the mould and a pressure is applied in order to force the glass to copy the mould shape. A cold slumping step is used then to integrate the mirror segments into the final Wolter-I configuration. We present the state of the art of our hot slumping technology, comparing the results obtained with different glass types and mould materials. We also provide an overview of the possibilities of this technology also in view of future developments.
Injection molding of high precision optics for LED applications made of liquid silicone rubber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopmann, Christian; Röbig, Malte
Light Emitting Diodes (LED) conquer the growing global market of lighting technologies. Due to their advantages, they are increasingly used in consumer products, in lighting applications in the home and in the mobility sector as well as in industrial applications. Particularly, with regard to the increasing use of high-power LED (HP-LED) the materials in the surrounding area of the light emitting semiconductor chip are of utmost importance. While the materials behind the semiconductor chip are optimized for maximum heat dissipation, the materials currently used for the encapsulation of the semiconductor chip (primary optics) and the secondary optics encounter their limitsmore » due to the high temperatures. In addition certain amounts of blue UV radiation degrade the currently used materials such as epoxy resins or polyurethanes for primary optics. In the context of an ongoing joint research project with various partners from the industry, an innovative manufacturing method for high precision optics for LED applications made of liquid silicone rubber (LSR) is analyzed at the Institut of Plastics Processing (IKV), Aachen. The aim of this project is to utilize the material-specific advantages of high transparent LSR, especially the excellent high temperature resistance and the great freedom in design. Therefore, a high integrated injection molding process is developed. For the production of combined LED primary and secondary optics a LED board is placed in an injection mold and overmolded with LSR. Due to the integrated process and the reduction of subcomponents like the secondary optics the economics of the production process can be improved significantly. Furthermore combined LED optics offer an improved effectiveness, because there are no losses of the light power at the transition of the primary and secondary optics.« less
Degradation of Silicone Encapsulants in CPV Optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Can; Miller, David C.; Tappan, Ian A.
High efficiency multijunction solar cells in terrestrial concentrator photovoltaic (CPV) modules are becoming an increasingly cost effective and viable option in utility scale power generation. As with other utility scale photovoltaics, CPV modules need to guarantee operational lifetimes of at least 25 years. The reliability of optical elements in CPV modules poses a unique materials challenge due to the increased UV irradiance and enhanced temperature cycling associated with concentrated solar flux. The polymeric and thin film materials used in the optical elements are especially susceptible to UV damage, diurnal temperature cycling and active chemical species from the environment. We usedmore » fracture mechanics approaches to study the degradation modes including: the adhesion between the encapsulant and the cell or secondary optical element; and the cohesion of the encapsulant itself. Understanding the underlying mechanisms of materials degradation under elevated stress conditions is critical for commercialization of CPV technology and can offer unique insights into degradation modes in similar encapsulants used in other photovoltaic modules.« less
Degradation of Silicone Encapsulants in CPV Optics: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, David C.; Tappan, Ian A.; Cai, Can
High efficiency multijunction solar cells in terrestrial concentrator photovoltaic (CPV) modules are becoming an increasingly cost effective and viable option in utility scale power generation. As with other utility scale photovoltaics, CPV modules need to guarantee operational lifetimes of at least 25 years. The reliability of optical elements in CPV modules poses a unique materials challenge due to the increased UV irradiance and enhanced temperature cycling associated with concentrated solar flux. The polymeric and thin film materials used in the optical elements are especially susceptible to UV damage, diurnal temperature cycling and active chemical species from the environment. We usedmore » fracture mechanics approaches to study the degradation modes including: the adhesion between the encapsulant and the cell or secondary optical element; and the cohesion of the encapsulant itself. Understanding the underlying mechanisms of materials degradation under elevated stress conditions is critical for commercialization of CPV technology and can offer unique insights into degradation modes in similar encapsulants used in other photovoltaic modules.« less
Optical density and photonic efficiency of silica-supported TiO2 photocatalysts.
Marugán, J; Hufschmidt, D; Sagawe, G; Selzer, V; Bahnemann, D
2006-02-01
Over the last years, many research groups have developed supported TiO2-based materials in order to improve the engineering applications of photocatalytic technologies. However, not many attempts have been made to evaluate the optical behavior of these materials. This work focuses on the study of the photonic efficiencies of silica-supported TiO2 photocatalysts following the photodegradation of dichloroacetic acid (DCA) as model compound. Catalysts with different types of silica support and titania loadings were tested and their activity was found to be in correlation with the results of the clusters size distribution of the TiO2 nanocrystals. The photonic efficiency of the supported photocatalysts depends extremely on the optical density of the solid suspensions. Influence of the textural properties of the support and the titania loading on the optical density as well as on the photonic efficiency of the materials are discussed. The dependence of the absorption of radiation by the suspension on the catalyst concentration is also analyzed.
Electrowetting Variable Optics for Visible and Infrared Applications
NASA Astrophysics Data System (ADS)
Watson, Alexander Maxwell
Miniaturized variable optical devices are important for the fields of medical technology, optical communication, and consumer imaging devices. Areas ranging from endoscopy and optogenetics to atomic clocks and imaging all benefit from versatile optical systems. These applications all require precise and rapid control of imaging focal depth and lateral scanning. Electrowetting variable optics is one emergent technology that has the capability to provide focus tuning, beam steering, and even phase modulation in a small and robust package which requires no moving parts. Furthermore, electrowetting based devices there are attractive due to their transmissive nature, polarization insensitivity, low insertion loss, low electrical power requirements, and high optical quality. These features mean that electrowetting adaptive optical components are an attractive solution, compared with MEMS and liquid crystal optical components. Electrowetting is a technique that enables control of the shape of a liquid droplet with applied voltage. A conductive droplet on a dielectric surface alters its contact angle due to charges that build up between an underlying electrode and the surface of the droplet. This effect can be used to tune the curvature and tilt of liquids within cavities. The liquid boundary creates a high quality surface to use for lensing or steering applications. This thesis will focus on the development of electrowetting based lenses and prisms and applications in imaging for both visible and infrared wavelengths. Within this dissertation is the first demonstration of electrowetting lenses for phase control, as well as the investigation of non-aqueous electrowetting lens liquids for electrowetting lenses operation in the infrared. Key considerations that affect the performance and reliability are dielectric material and thickness, liquid selection and source of ionic conduction. The optical devices presented herein utilize judicious selection of dielectric material and electrowetting liquids to enable low voltage variable optics and demonstrate applications in microscopy and microendoscopy.
NASA Astrophysics Data System (ADS)
Eilert, Arnold James
1995-01-01
The utility of near-IR spectroscopy for routine quantitative analyses of a wide variety of compositional, chemical, or physical parameters of organic materials is well understood. It can be used for relatively fast and inexpensive non-destructive bulk material analysis before, during, and after processing. It has been demonstrated as being a particularly useful technique for numerous analytical applications in cereal (food and feed) science and industry. Further fulfillment of the potential of near-IR spectroscopic analysis, both in the process and laboratory environment, is reliant upon the development of instrumentation that is capable of meeting the challenges of increasingly difficult applications. One approach to the development of near-IR spectroscopic instrumentation that holds a great deal of promise is acousto-optic tunable filter (AOTF) technology. A combination of attributes offered by AOTF spectrometry, including speed, optical throughput, wavelength reproducibility, ruggedness (no -moving-parts operation) and flexibility, make it particularly desirable for numerous applications. A series of prototype (research model) acousto -optic tunable filter instruments were developed and tested in order to investigate the feasibility of the technology for quantitative near-IR spectrometry. Development included design, component procurement, assembly and/or configuration of the optical and electronic subsystems of which each functional spectrometer arrangement was comprised, as well as computer interfacing and acquisition/control software development. Investigation of this technology involved an evolution of several operational spectrometer systems, each of which offered improvements over its predecessor. Appropriate testing was conducted at various stages of development. Demonstrations of the potential applicability of our AOTF spectrometer to quantitative process monitoring or laboratory analysis of numerous organic substances, including food materials, were performed. Lipid determination in foods by spectroscopic analysis of a solvent used after cold batch extraction and simulated supercritical fluid extraction monitoring were among the applications tested. The ultimate performance specifications of our instrument included full-range wavelength coverage from 1250 to 2400 nm (with random, segmented range, or continuous range wavelength access capability), real -time quantitative analysis rates in excess of 150 determinations per second, and full range (2 nm increment) scanning speeds of 200 milliseconds.
Fiber-optic sensor applications in civil and geotechnical engineering
NASA Astrophysics Data System (ADS)
Habel, Wolfgang R.; Krebber, Katerina
2011-09-01
Different types of fiber-optic sensors based on glass or polymeric fibers are used to evaluate material behavior or to monitor the integrity and long-term stability of load-bearing structure components. Fiber-optic sensors have been established as a new and innovative measurement technology in very different fields, such as material science, civil engineering, light-weight structures, geotechnical areas as well as chemical and high-voltage substations. Very often, mechanical quantities such as deformation, strain or vibration are requested. However, measurement of chemical quantities in materials and structure components, such as pH value in steel reinforced concrete members also provides information about the integrity of concrete structures. A special fiber-optic chemical sensor for monitoring the alkaline state (pH value) of the cementitious matrix in steel-reinforced concrete structures with the purpose of early detection of corrosion-initiating factors is described. The paper presents the use of several fiber-optic sensor technologies in engineering. One example concerns the use of highly resolving concrete-embeddable fiber Fabry-Perot acoustic emission (AE) sensors for the assessment of the bearing behaviour of large concrete piles in existing foundations or during and after its installation. Another example concerns fiber Bragg grating (FBG) sensors attached to anchor steels (micro piles) to measure the strain distribution in loaded soil anchors. Polymer optical fibers (POF) can be — because of their high elasticity and high ultimate strain — well integrated into textiles to monitor their deformation behaviour. Such "intelligent" textiles are capable of monitoring displacement of soil or slopes, critical mechanical deformation in geotechnical structures (dikes, dams, and embankments) as well as in masonry structures during and after earthquakes.
Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures
NASA Technical Reports Server (NTRS)
Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David
2013-01-01
Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry
NASA Astrophysics Data System (ADS)
Dramićanin, Miroslav D.; Antić, Željka; Viana, Bruno
2013-11-01
The 3rd International Conference on the Physics of Optical Materials and Devices (ICOM2012) was held in Belgrade (Serbia) from 2 to 6 September 2012 (figure 1). The conference was organized by the Vinča Institute of Nuclear Sciences, University of Belgrade (Serbia) and the Laboratoire de Chimie de la Matière Condensée de Paris (France), and supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia and Optical Society of America. ICOM2012 was a follow-up to the two previous, successful ICOM conferences held in Herceg Novi in 2006 and 2009. The conference aimed at providing a forum for scientists in optical materials to debate on: • Luminescent materials and nanomaterials • Hybrid optical materials (organic/inorganic) • Characterization techniques of optical materials • Luminescence mechanisms and energy transfers • Theory and modeling of optical processes • Ultrafast-laser processing of materials • Optical sensors • Medical imaging • Advanced optical materials in photovoltaics and biophotonics • Photothermal and photoacoustic spectroscopy and phenomena The conference stressed the value of a fundamental scientific understanding of optical materials. A particular accent was put on wide band-gap materials in crystalline, glass and nanocrystalline forms. The applications mainly involved lasers, scintillators and phosphors. Rare earth and transition metal ions introduced as dopants in various hosts were considered, and their impact on the optical properties were detailed in several presentations. This volume contains selected contributions of speakers and participants of the ICOM2012 conference. The conference provided a unique opportunity for about 200 scientists from 32 countries to discuss recent progress in the field of optical materials. During the three and half days, 21 invited talks and 52 contributed lectures were given, with a special event in memory of our dear colleague Professor Dr Tsoltan Basiev (Russia). In addition, 183 posters were presented and the two Young Scientist Awards were announced at the closing ceremony. Acknowledgments We thank all the authors for their valuable research contribution presented in this volume. We express our acknowledgements to all reviewers with a special thanks to Dr G Watt, then Publisher of the journal, for accepting the publication of these papers in a special issue of Physica Scripta . We wish to express our gratitude to the members of the ICOM scientific advisory committee and organizing committee for their excellent work and commitment for the success of ICOM2012.
Laser-driven formation of a high-pressure phase in amorphous silica.
Salleo, Alberto; Taylor, Seth T; Martin, Michael C; Panero, Wendy R; Jeanloz, Raymond; Sands, Timothy; Génin, François Y
2003-12-01
Because of its simple composition, vast availability in pure form and ease of processing, vitreous silica is often used as a model to study the physics of amorphous solids. Research in amorphous silica is also motivated by its ubiquity in modern technology, a prominent example being as bulk material in transmissive and diffractive optics for high-power laser applications such as inertial confinement fusion (ICF). In these applications, stability under high-fluence laser irradiation is a key requirement, with optical breakdown occurring when the fluence of the beam is higher than the laser-induced damage threshold (LIDT) of the material. The optical strength of polished fused silica transmissive optics is limited by their surface LIDT. Surface optical breakdown is accompanied by densification, formation of point defects, cratering, material ejection, melting and cracking. Through a combination of electron diffraction and infrared reflectance measurements we show here that synthetic vitreous silica transforms partially into a defective form of the high-pressure stishovite phase under high-intensity (GW cm(-2)) laser irradiation. This phase transformation offers one suitable mechanism by which laser-induced damage grows catastrophically once initiated, thereby dramatically shortening the service lifetime of optics used for high-power photonics.
Emmons, Erik D; Farrell, Mikella E; Holthoff, Ellen L; Tripathi, Ashish; Green, Norman; Moon, Raphael P; Guicheteau, Jason A; Christesen, Steven D; Pellegrino, Paul M; Fountain, Augustus W
2012-06-01
The United States Army and the first responder community are evaluating optical detection systems for the trace detection of hazardous energetic materials. Fielded detection systems must be evaluated with the appropriate material concentrations to accurately identify the residue in theater. Trace levels of energetic materials have been observed in mutable polymorphic phases and, therefore, the systems being evaluated must be able to detect and accurately identify variant sample phases observed in spectral data. In this work, we report on the novel application of drop-on-demand technology for the fabrication of standardized trace 1,3,5-trinitro-1,3,5-triazine (RDX) samples. The drop-on-demand sample fabrication technique is compared both visually and spectrally to the more commonly used drop-and-dry technique. As the drop-on-demand technique allows for the fabrication of trace level hazard materials, concerted efforts focused on characterization of the polymorphic phase changes observed with low concentrations of RDX commonly used in drop-on-demand processing. This information is important when evaluating optical detection technologies using samples prepared with a drop-on-demand inkjet system, as the technology may be "trained" to detect the common bulk α phase of the explosive based on its spectral features but fall short in positively detecting a trace quantity of RDX (β-phase). We report the polymorphic shifts observed between α- and β-phases of this energetic material and discuss the conditions leading to the favoring of one phase over the other.
Superconductivity Devices: Commercial Use of Space
NASA Technical Reports Server (NTRS)
Haertling, Gene (Principal Investigator); Furman, Eugene; Li, Guang
1996-01-01
The work described in this report covers various aspects of the Rainbow solid-state actuator and sensor technologies. It is presented in five parts dealing with sensor applications, nonlinear properties, stress-optic and electrooptic properties, stacks and arrays, and publications. The Rainbow actuator technology is a relatively new materials development which had its inception in 1992. It involves a new processing technique for preparing pre-stressed, high lead containing piezoelectric and electrostrictive ceramic materials. Ceramics fabricated by this method produce bending-mode actuator devices which possess several times more displacement and load bearing capacity than present-day benders. Since they can also be used in sensor applications, Rainbows are part of the family of materials known as smart ceramics. During this period, PLZT Rainbow ceramics were characterized with respect to their piezoelectric properties for potential use in stress sensor applications. Studies of the nonlinear and stress-optic/electrooptic birefringent properties were also initiated during this period. Various means for increasing the utility of stress-enhanced Rainbow actuators are presently under investigation.
Computational Screening of 2D Materials for Photocatalysis.
Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G
2015-03-19
Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.
Opportunities and challenges for 3D printing of solid-state lighting systems
NASA Astrophysics Data System (ADS)
Narendran, Nadarajah; Perera, Indika U.; Mou, Xi; Thotagamuwa, Dinusha R.
2017-09-01
Low energy use and reduced maintenance have made the LED, a solid-state light (SSL) source, the preferred technology for many lighting applications. With the explosion of products in the marketplace and subsequent price erosion, manufacturers are looking for lower cost materials and manufacturing methods. 3-D printing, also known as additive manufacturing, could be a potential solution. Recently, manufacturers in the automotive, aerospace, and medical industries have embraced 3-D printing for manufacturing parts and systems. This could pave the way for the lighting industry to produce lower cost, custom lighting systems that are 3-D printed on-site to achieve on-time and on-demand manufacturing. One unique aspect of LED fixture manufacturing is that it requires thermo-mechanical, electrical, and optical components. The goal of our investigation was to understand if current 3-D printing technologies and materials can be used to manufacture functional thermo-mechanical, electrical, and optical components for SSL fixtures. We printed heat sink components and electrical traces using an FFF-type 3-D printer with different filaments. The results showed that the printed heat sinks achieved higher thermal conductivity values compared to components made with plastic materials. For electrical traces, graphene-infused PLA showed low resistivity but it is much higher than bulk copper resistivity. For optics, SLA-printed optical components showed that print resolution, print orientation, and postprocessing affect light transmission and light scatter properties. Overall, 3-D printing offers an opportunity for mass customization of SSL fixtures and changing architectural lighting practice, but several challenges in terms of process and materials still have to be overcome.
Exotic Optical Fibers and Glasses: Innovative Material Processing Opportunities in Earth's Orbit.
Cozmuta, Ioana; Rasky, Daniel J
2017-09-01
Exotic optical fibers and glasses are the platform material for photonics applications, primarily due to their superior signal transmission (speed, low attenuation), with extending bandwidth deep into the infrared, exceeding that of silica fibers. Gravitational effects (convection sedimentation) have a direct impact on the phase diagram of these materials and influence melting properties, crystallization temperatures, and viscosity of the elemental mix during the manufacturing process. Such factors constitute limits to the yield, transmission quality, and strength and value of these fibers; they also constrain the range of applications. Manufacturing in a gravity-free environment such as the Earth's Orbit also helps with other aspects of the fabrication process (i.e., improved form factor of the manufacturing unit, sustainability). In this article, revolutionary developments in the field of photonics over the past decade merge with the paradigm shift in the privatization of government-owned capabilities supporting a more diverse infrastructure (parabolic, suborbital, orbital), reduced price, and increased frequency to access space and the microgravity environment. With the increased dependence on data (demand, bandwidth, efficiency), space and the microgravity environment provide opportunities for optimized performance of these exotic optical fibers and glasses underlying the development of enabling technologies to meet future data demand. Existing terrestrial markets (Internet, telecommunications, market transactions) and emerging space markets (on-orbit satellite servicing, space manufacturing, space resources, space communications, etc.) seem to converge, and this innovative material processing opportunity of exotic optical fibers and glasses might just be that "killer app": technologically competitive, economically viable, and with the ability to close the business case.
Exotic Optical Fibers and Glasses: Innovative Material Processing Opportunities in Earth's Orbit
Rasky, Daniel J.
2017-01-01
Abstract Exotic optical fibers and glasses are the platform material for photonics applications, primarily due to their superior signal transmission (speed, low attenuation), with extending bandwidth deep into the infrared, exceeding that of silica fibers. Gravitational effects (convection sedimentation) have a direct impact on the phase diagram of these materials and influence melting properties, crystallization temperatures, and viscosity of the elemental mix during the manufacturing process. Such factors constitute limits to the yield, transmission quality, and strength and value of these fibers; they also constrain the range of applications. Manufacturing in a gravity-free environment such as the Earth's Orbit also helps with other aspects of the fabrication process (i.e., improved form factor of the manufacturing unit, sustainability). In this article, revolutionary developments in the field of photonics over the past decade merge with the paradigm shift in the privatization of government-owned capabilities supporting a more diverse infrastructure (parabolic, suborbital, orbital), reduced price, and increased frequency to access space and the microgravity environment. With the increased dependence on data (demand, bandwidth, efficiency), space and the microgravity environment provide opportunities for optimized performance of these exotic optical fibers and glasses underlying the development of enabling technologies to meet future data demand. Existing terrestrial markets (Internet, telecommunications, market transactions) and emerging space markets (on-orbit satellite servicing, space manufacturing, space resources, space communications, etc.) seem to converge, and this innovative material processing opportunity of exotic optical fibers and glasses might just be that “killer app”: technologically competitive, economically viable, and with the ability to close the business case. PMID:29375939
Space Optics for the 21st Century
NASA Technical Reports Server (NTRS)
Bilbro, James W.
2006-01-01
Technological advances over the last decade in metrology, fabrication techniques and materials have made a significant impact on spacebased astronomy and together with advances in adaptive optics offer the opportunity for even more radical changes in the future. The Hubble Space Telescope primary mirror is 2.4 meters in diameter and weighs on the order of 150 kilograms per square meter. The technology demonstration mirrors developed for the James Webb Telescope had an order of magnitude less in area density and developments in membrane optics offer the opportunity to achieve another order of magnitude decrease. Similar advances in mirrors for x-ray astronomy means that across the spectrum future space based telescopes will have greater and greater collecting areas with ever increasing resolution.
Radio Frequency Identification Applications in Pavements
DOT National Transportation Integrated Search
2014-08-01
Radio frequency identification (RFID) technology is widely used for inventory control, tool and material tracking, and other similar applications where line-of-sight optical bar codes are inconvenient or impractical. Several applications of RFID tech...
Early Risk Reduction Phase 1 FLIR/Laser Designator Window. Revision
1991-12-31
Sandwich-Type FLIR Windows," Air Force AFWAL-TR-83- 4122, Nov 1983. 4-1 Hughes Danbury Optical Systems Final Report, "ATA Window Technology Program," PRBll...Risk Reduction -- Phase I, Optical Properties Measurement Techniques of Three Wide Band Window Materials," 22 August 1991. xii I i 86PR0869 30... Optical Systems, Lexington, MA, 02173, 1 Feb 1991. 5-7 McDonnell Aircraft Company Technical Memorandum TM 256.91.0056.01, "Early Risk Reduction -- Phase
Metal-Coated Optical Fibers for High Temperature Applications
NASA Technical Reports Server (NTRS)
Zeakes, Jason; Murphy, Kent; Claus, Richard; Greene, Jonathan; Tran, Tuan
1996-01-01
A DC magnetron sputtering system has been used to actively coat optical fibers with hermetic metal coatings during the fiber draw process. Thin films of Inconel 625 have been deposited on optical fibers and annealed in air at 2000 F. Scanning electron microscopy and Auger electron microscopy have been used to investigate the morphology and composition of the films prior to and following thermal cycling. Issues to be addressed include film adhesion, other coating materials, and a discussion of additional applications for this novel technology.
Last Advances in Silicon-Based Optical Biosensors
Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C.; Lechuga, Laura M.
2016-01-01
We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies. PMID:26927105
Space optics with silicon wafers and slumped glass
NASA Astrophysics Data System (ADS)
Hudec, R.; Semencova, V.; Inneman, A.; Skulinova, M.; Sveda, L.; Míka, M.; Sik, J.; Lorenc, M.
2017-11-01
The future space X-ray astronomy imaging missions require very large collecting areas at still fine angular resolution and reasonable weight. The novel substrates for X-ray mirrors such as Silicon wafers and thin thermally formed glass enable wide applications of precise and very light weight (volume densities 2.3 to 2.5 gcm-3) optics. The recent status of novel technologies as well as developed test samples with emphasis on precise optical surfaces based on novel materials and their space applications is presented and discussed.
NASA Astrophysics Data System (ADS)
Thompson, S. J.; Doel, A. P.; Whalley, M.; Edeson, R.; Edeson, R.; Tosh, I.; Poyntz-Wright, O.; Atad-Ettedgui, E.; Montgomery, D.; Nawasra, J.
2017-11-01
Large aperture telescope technology (LATT) is a design study for a differential lidar (DIAL) system; the main investigation being into suitable methods, technologies and materials for a 4-metre diameter active mirror that can be stowed to fit into a typical launch vehicle (e.g. ROKOT launcher with 2.1-metre diameter cargo) and can self-deploy - in terms of both leaving the space vehicle and that the mirrors unfold and self-align to the correct optical form within the tolerances specified. The primary mirror requirements are: main wavelength of 935.5 nm, RMS corrected wavefront error of λ/6, optical surface roughness better than 5 nm, areal density of less than 16 kg/m2 and 1-2 mirror shape corrections per orbit. The primary mirror consists of 7 segments - a central hexagonal mirror and 6 square mirror petals which unfold to form the 4-meter diameter aperture. The focus of the UK LATT consortium for this European Space Agency (ESA) funded project is on using lightweighted aluminium or carbon-fibre-composite materials for the mirror substrate in preference to more traditional materials such as glass and ceramics; these materials have a high strength and stiffness to weight ratio, significantly reducing risk of damage due to launch forces and subsequent deployment in orbit. We present an overview of the design, which includes suitable actuators for wavefront correction, petal deployment mechanisms and lightweight mirror technologies. Preliminary testing results from manufactured lightweight mirror samples will also be summarised.
EDITORIAL: Changes to the journal Changes to the journal
NASA Astrophysics Data System (ADS)
Zheludev, Nikolay I.
2010-01-01
It is a privilege to be Editor-in-Chief of Journal of Optics at this exciting time when the use of light spearheads the development of new technologies in telecommunications, green energy, manufacturing, medicine and defence, just to mention a few. These technological advances, seen by many as the next photonic technological revolution, are underpinned by fundamental and applied research in the following key directions: Nanophotonics and plasmonics Metamaterials and structured photonic materials Nonlinear and ultrafast optics Photonics at the life science interface Information and communication optics Integrated optics systems and devices Material processing with light Propagation, diffraction and scattering This is where Journal of Optics focuses its attention. This editorial marks the first issue of the journal published under the abbreviated name (shortened from Journal of Optics A: Pure and Applied Optics). The name change is just one of a series of changes introduced in the last year, along with the 8 subject sections listed above and the appointment of Section Editors. With the name change, we will also update the look of the journal by introducing colour cover images which will feature some of the most exciting research in the journal. We have retained many of the journal's original selling points: we are found in thousands of libraries around the world, and will continue our policy of free web access to all papers for 30 days after publication, ensuring broad and unrestricted dissemination of your research results. We will also continue our strong and well respected special issue and topical review programmes and we are always grateful to receive new suggestions for special issues or review articles. Along with the Editorial Board, I would like to thank the authors, referees and readers who have contributed to the success of Journal of Optics. The increasing quality and visibility of the journal, as demonstrated by the dramatic increase in its impact factor in recent years, make it a prime destination for research papers across the field of optics. So, if you're not already part of our community, we hope you'll join us soon by submitting your next research paper to Journal of Optics.
Development of automated optical verification technologies for control systems
NASA Astrophysics Data System (ADS)
Volegov, Peter L.; Podgornov, Vladimir A.
1999-08-01
The report considers optical techniques for automated verification of object's identity designed for control system of nuclear objects. There are presented results of experimental researches and results of development of pattern recognition techniques carried out under the ISTC project number 772 with the purpose of identification of unique feature of surface structure of a controlled object and effects of its random treatment. Possibilities of industrial introduction of the developed technologies in frames of USA and Russia laboratories' lab-to-lab cooperation, including development of up-to-date systems for nuclear material control and accounting are examined.
Self-assembled nanolaminate coatings (SV)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, H.
2012-03-01
Sandia National Laboratories (Sandia) and Lockheed Martin Aeronautics (LM Aero) are collaborating to develop affordable, self-assembled, nanocomposite coatings and associated fabrication processes that will be tailored to Lockheed Martin product requirements. The purpose of this project is to develop a family of self-assembled coatings with properties tailored to specific performance requirements, such as antireflective (AR) optics, using Sandia-developed self-assembled techniques. The project met its objectives by development of a simple and economic self-assembly processes to fabricate multifunctional coatings. Specifically, materials, functionalization methods, and associated coating processes for single layer and multiple layers coatings have been developed to accomplish high reflectivemore » coatings, hydrophobic coatings, and anti-reflective coatings. Associated modeling and simulations have been developed to guide the coating designs for optimum optical performance. The accomplishments result in significant advantages of reduced costs, increased manufacturing freedom/producibility, improved logistics, and the incorporation of new technology solutions not possible with conventional technologies. These self-assembled coatings with tailored properties will significantly address LMC's needs and give LMC a significant competitive lead in new engineered materials. This work complements SNL's LDRD and BES programs aimed at developing multifunctional nanomaterials for microelectronics and optics as well as structure/property investigations of self-assembled nanomaterials. In addition, this project will provide SNL with new opportunities to develop and apply self-assembled nanocomposite optical coatings for use in the wavelength ranges of 3-5 and 8-12 micrometers, ranges of vital importance to military-based sensors and weapons. The SANC technologies will be applied to multiple programs within the LM Company including the F-35, F-22, ADP (Future Strike Bomber, UAV, UCAV, etc.). The SANC technologies will establish LMA and related US manufacturing capability for commercial and military applications therefore reducing reliance on off-shore development and production of related critical technologies. If these technologies are successfully licensed, production of these coatings in manufactory will create significant technical employment opportunities.« less
Optical and optomechanical ultralightweight C/SiC components
NASA Astrophysics Data System (ADS)
Papenburg, Ulrich; Pfrang, Wilhelm; Kutter, G. S.; Mueller, Claus E.; Kunkel, Bernd P.; Deyerler, Michael; Bauereisen, Stefan
1999-11-01
Optical and optomechanical structures based on silicon carbide (SiC) ceramics are becoming increasingly important for ultra- lightweight optical systems that must work in adverse environments. At IABG and Dornier Satellite Systems (DSS) in Munich, a special form of SiC ceramics carbon fiber reinforced silicon carbide (C/SiCR) has been developed partly under ESA and NASA contracts. C/SiCR is a light-weight, high- strength engineering material that features tunable mechanical and thermal properties. It offers exceptional design freedom due to its reduced brittleness and negligible volume shrinkage during processing in comparison to traditional, powder-based ceramics. Furthermore, its rapid fabrication process produces near-net-shape components using conventional NC machining/milling equipment and, thus, provides substantial schedule, cost, and risk savings. These characteristics allow C/SiCR to overcome many of the problems associated with more traditional optical materials. To date, C/SiCR has been used to produce ultra-lightweight mirrors and reflectors, antennas, optical benches, and monolithic and integrated reference structures for a variety of space and terrestrial applications. This paper describes the material properties, optical system and structural design aspects, the forming and manufacturing process including high-temperature joining technology, precision grinding and cladding techniques, and the performance results of a number of C/SiCR optical components we have built.
Polymer optics for the passive infrared
NASA Astrophysics Data System (ADS)
Claytor, Richard N.
2016-10-01
An important, but largely invisible, area of polymer optics involves sensing the motion of warm objects. It can be further subdivided into optics for security, for energy conservation, and for convenience; the area has become known as optics for the passive infrared. The passive infrared is generally known as the 8 to 14 μm region of the optical spectrum. The region's roots are in the traditional infrared technology of many decades ago; there is a coincident atmospheric window, although that has little relevance to many short-range applications relevant to polymer optics. Regrettably, there is no polymer material ideally suited to the passive infrared, but one material is generally superior to other candidates. The inadequacy of this material makes the Fresnel lens important. Polymer optics for the passive infrared were first introduced in the 1970s. Patents from that period will be shown, as well as early examples. The unfamiliar names of the pioneering companies and their technical leaders will be mentioned. The 1980s and 90s brought a new and improved lens type, and rapid growth. Pigments for visible-light appearance and other reasons were introduced; one was a spectacular failure. Recent advances include faster lenses, a new groove structure, additional pigments, and lens-mirror combinations. New sensor types are also being introduced. Finally, some unique and inventive applications will be discussed.
High performance optical materials cyclo olefin polymer ZEONEX
NASA Astrophysics Data System (ADS)
Obuchi, Kazuyuki; Komatsu, Masaaki; Minami, Koji
2007-09-01
ZEON CORPORATION developed innovative optical plastic Cyclo Olefin Polymer (COP), ZEONEX (R) with own technology in 1990 then started commercial production of ZEONEX (R) for optical applications with its very unique properties such as high light transmission, low birefringence, low water absorption, and high glass-transition temperature etc. ZEONEX (R) exhibits outstanding optical performance even under high humidity and temperature conditions. In order to meet increasing requirements of optical market, ZEON CORPORATION newly developed ZEONEX (R)F52R which has high glass-transition temperature 156 deg. C and shows the feature of very low focal length change after high-temperature and high-humidity test.
Some comments upon current optical shop practices.
Larmer, J W; Goldstein, E
1966-05-01
The fabrication of optical elements began as an art rather than a science and has tended to remain so throughout its history. Today's methods are largely extensions of the original techniques. With spaceage demands for rapid response as well as quality, some effort is being made to remove optical technology from the realm of wizardry by standardizing fabrication procedures and associated working materials. However, the diversity of problems encountered in modern optical fabrication requires a flexibility of approach which indicates that the artisan will always be with us. Examples of some optical fabrication and testing procedures employed at the Goddard Space Flight Center are presented.
Advanced industrial fluorescence metrology used for qualification of high quality optical materials
NASA Astrophysics Data System (ADS)
Engel, Axel; Becker, Hans-Juergen; Sohr, Oliver; Haspel, Rainer; Rupertus, Volker
2003-11-01
Schott Glas is developing and producing the optical material for various specialized applications in telecommunication, biomedical, optical, and micro lithography technology. The requirements on quality for optical materials are extremely high and still increasing. For example in micro lithography applications the impurities of the material are specified to be in the low ppb range. Usually the impurities in the lower ppb range are determined using analytical methods like LA ICP-MS and Neutron Activation Analysis. On the other hand absorption and laser resistivity of optical material is qualified with optical methods like precision spectral photometers and in-situ transmission measurements having UV lasers. Analytical methods have the drawback that they are time consuming and rather expensive, whereas the sensitivity for the absorption method will not be sufficient to characterize the future needs (coefficient much below 10-3 cm-1). In order to achieve the current and future quality requirements a Jobin Yvon FLUOROLOG 3.22 fluorescence spectrometer is employed to enable fast and precise qualification and analysis. The main advantage of this setup is the combination of highest sensitivity (more than one order of magnitude higher sensitivity that state of the art UV absorption spectroscopy) and fast measurement and evaluation cycles (several minutes compared to several hours necessary for chemical analytics). An overview is given for spectral characteristics and using specified standards. Moreover correlations to the material qualities are shown. In particular we have investigated the elementary fluorescence and absorption of rare earth element impurities as well as defects induced luminescence originated by impurities.
A compact Nd:YAG DPSSL using diamond-cooled technology
NASA Astrophysics Data System (ADS)
Chou, Hsian P.; Wang, Yu-Lin; Hasson, Victor H.; Trainor, Daniel W.
2005-03-01
In our diamond-cooled approach, thin disks of laser gain material, e.g., Nd:YAG, are alternated between thin disks of single crystal synthetic diamond whose heat conductivity is over 2000 W/m-°K. The gain medium is face-pumped (along the optical axis) by the output of laser diode arrays. This optical configuration produces heat transfer from Nd:YAG to the diamond, in the direction of the optical axis, and then heat is rapidly conducted radially outward through the diamond to the cooling fluid circulating at the circumference of the diamond/YAG assembly. This geometry effectively removes the heat from the gain material in a manner that permits the attainment of high power output with excellent beam quality.
From photons to phonons and back: a THz optical memory in diamond.
England, D G; Bustard, P J; Nunn, J; Lausten, R; Sussman, B J
2013-12-13
Optical quantum memories are vital for the scalability of future quantum technologies, enabling long-distance secure communication and local synchronization of quantum components. We demonstrate a THz-bandwidth memory for light using the optical phonon modes of a room temperature diamond. This large bandwidth makes the memory compatible with down-conversion-type photon sources. We demonstrate that four-wave mixing noise in this system is suppressed by material dispersion. The resulting noise floor is just 7×10(-3) photons per pulse, which establishes that the memory is capable of storing single quanta. We investigate the principle sources of noise in this system and demonstrate that high material dispersion can be used to suppress four-wave mixing noise in Λ-type systems.
Fiber optic sensor technology - An opportunity for smart aerospace structures
NASA Technical Reports Server (NTRS)
Heyman, J. S.; Rogowski, R. S.; Claus, R. O.
1988-01-01
Fiber optic sensors provide the opportunity for fabricating materials with internal sensors which can serve as lifetime health monitors, analogous to a central nervous system. The embedded fiber optic sensors can be interrogated by various techniques to measure internal strain, temperature, pressure, acoustic waves and other parameters indicative of structural integrity. Experiments have been conducted with composite samples with embedded sensors to measure strain using optical time domain reflectometry, modal interference and an optical phase locked loop. Fiber optic sensors have been developed to detect acoustic emission and impact damage and have been demonstrated for cure monitoring. These sensors have the potential for lifetime monitoring of structural properties, providing real time nondestructive evaluation.
Multimodal optical phenotyping of cancer cells
NASA Astrophysics Data System (ADS)
Kastl, Lena; Budde, Björn; Isbach, Michael; Rommel, Christina; Kemper, Björn; Schnekenburger, Jürgen
2015-03-01
There is a growing interest in label-free, optical techniques like digital holographic microscopy (DHM) and optical cell stretching, since the interaction with samples is minimized. Because optical manipulation strongly depends on the optical and physiological properties of the investigated material, we combined the usage of these methods for the characterization of pancreatic tumor cells. Our results demonstrate that cells of distinct differentiation levels, or different expression in only one protein, show differences in their deformability. Additionally, the DHM results showed only few variations in the refractive index, indicating that it does not significantly influence the results of the optical cell stretching. Thus, the combined usage of the two technologies represents a promising new approach for tumor cell characterization.
NASA Astrophysics Data System (ADS)
Lee, Kwang-Sup; Kim, Sung-Hyun; Jung, Juhyoung; Teng, Xue-Cheng; Prabhakaran, Prem
2017-02-01
Groups around the world are pursuing optoelctronic and magneto-optic properties of graphene-based materials since they hold a lot of promise for future technologies. Quantum dot (QD) decorated graphenic nanohybrids can be candidates for demonstrating energy transfer, while magnetic nanoparticles (MNPs) on graphene give rise to interesting electronic phenomena like magneto-optical effects. Graphene containing MNPs are also good candidates for exploring quantum-hall effect. In medicine these materials have demonstrated applications in bioimaging, drug delivery, photothermal treatment and magnetic resonance imaging. A majority of groups working on QD or MNPs have focused on chemical functionalization methods for making graphene-MNP nanohybrids. We have developed a set of small molecule as well as polymeric ligands for noncovalent self-assembly of nanoparticles on graphene. The ligands contain pyrene as an anchor group for graphene and also thiol or dipamine as anchor groups for QD or MNPs. In this presentation we discuss the synthesis and characterization of these materials and outline some early results regarding exploratory device fabrication involving these materials.
Applying CLIPS to control of molecular beam epitaxy processing
NASA Technical Reports Server (NTRS)
Rabeau, Arthur A.; Bensaoula, Abdelhak; Jamison, Keith D.; Horton, Charles; Ignatiev, Alex; Glover, John R.
1990-01-01
A key element of U.S. industrial competitiveness in the 1990's will be the exploitation of advanced technologies which involve low-volume, high-profit manufacturing. The demands of such manufacture limit participation to a few major entities in the U.S. and elsewhere, and offset the lower manufacturing costs of other countries which have, for example, captured much of the consumer electronics market. One such technology is thin-film epitaxy, a technology which encompasses several techniques such as Molecular Beam Epitaxy (MBE), Chemical Beam Epitaxy (CBE), and Vapor-Phase Epitaxy (VPE). Molecular Beam Epitaxy (MBE) is a technology for creating a variety of electronic and electro-optical materials. Compared to standard microelectronic production techniques (including gaseous diffusion, ion implantation, and chemical vapor deposition), MBE is much more exact, though much slower. Although newer than the standard technologies, MBE is the technology of choice for fabrication of ultraprecise materials for cutting-edge microelectronic devices and for research into the properties of new materials.
Roadmap on optical energy conversion
NASA Astrophysics Data System (ADS)
Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang
2016-07-01
For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.
Application and testing of additive manufacturing for mirrors and precision structures
NASA Astrophysics Data System (ADS)
Sweeney, Michael; Acreman, Martyn; Vettese, Tom; Myatt, Ray; Thompson, Mike
2015-09-01
Additive Manufacturing (aka AM, and 3-D printing) is widely touted in the media as the foundation for the next industrial revolution. Beneath the hype, AM does indeed offer profound advantages in lead-time, dramatically reduced consumption of expensive raw materials, while enabling new and innovative design forms that cannot be produced by other means. General Dynamics and their industry partners have begun to embrace this technology for mirrors and precision structures used in the aerospace, defense, and precision optical instrumentation industries. Aggressively lightweighted, open and closed back test mirror designs, 75-150 mm in size, were first produced by AM from several different materials. Subsequent optical finishing and test experiments have exceeded expectations for density, surface finish, dimensional stability and isotropy of thermal expansion on the optical scale of measurement. Materials currently under examination include aluminum, titanium, beryllium, aluminum beryllium, Inconel 625, stainless steel/bronze, and PEKK polymer.
Ammonia Optical Sensing by Microring Resonators.
Passaro, Vittorio M N; Dell'Olio, Francesco; De Leonardis, Francesco
2007-11-15
A very compact (device area around 40 μm²) optical ammonia sensor based on amicroring resonator is presented in this work. Silicon-on-insulator technology is used insensor design and a dye doped polymer is adopted as sensing material. The sensor exhibitsa very good linearity and a minimum detectable refractive index shift of sensing materialas low as 8x10 -5 , with a detection limit around 4 ‰.
Recent Progress in Adjustable X-ray Optics for Astronomy
NASA Technical Reports Server (NTRS)
Reid, Paul B.; Allured, Ryan; Cotroneo, Vincenzo; McMuldroch, Stuart; Marquez, Vanessa; Schwartz, Daniel A.; Vikhlinin, Alexey; ODell, Stephen L.; Ramsey, Brian; Trolier-McKinstry, Susan;
2014-01-01
Two adjustable X-ray optics approaches are being developed for thin grazing incidence optics for astronomy. The first approach employs thin film piezoelectric material sputter deposited as a continuous layer on the back of thin, lightweight Wolter-I mirror segments. The piezoelectric material is used to correct mirror figure errors from fabrication, mounting/alignment, and any ground to orbit changes. The goal of this technology is to produce Wolter mirror segment pairs corrected to 0.5 arc sec image resolution. With the combination of high angular resolution and lightweight, this mirror technology is suitable for the Square Meter Arc Second Resolution Telescope for X-rays (SMART-X) mission concept.. The second approach makes use of electrostrictive adjusters and full shell nickel/cobalt electroplated replication mirrors. An array of radial adjusters is used to deform the full shells to correct the lowest order axial and azimuthal errors, improving imaging performance from the 10 - 15 arc sec level to 5 arc sec. We report on recent developments in both technologies. In particular, we discuss the use of insitu strain gauges on the thin piezo film mirrors for use as feedback on piezoelectric adjuster functionality, including their use for on-orbit figure correction. We also report on the first tests of full shell nickel/cobalt mirror correction with radial adjusters.
Deterministic ion beam material adding technology for high-precision optical surfaces.
Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin
2013-02-20
Although ion beam figuring (IBF) provides a highly deterministic method for the precision figuring of optical components, several problems still need to be addressed, such as the limited correcting capability for mid-to-high spatial frequency surface errors and low machining efficiency for pit defects on surfaces. We propose a figuring method named deterministic ion beam material adding (IBA) technology to solve those problems in IBF. The current deterministic optical figuring mechanism, which is dedicated to removing local protuberances on optical surfaces, is enriched and developed by the IBA technology. Compared with IBF, this method can realize the uniform convergence of surface errors, where the particle transferring effect generated in the IBA process can effectively correct the mid-to-high spatial frequency errors. In addition, IBA can rapidly correct the pit defects on the surface and greatly improve the machining efficiency of the figuring process. The verification experiments are accomplished on our experimental installation to validate the feasibility of the IBA method. First, a fused silica sample with a rectangular pit defect is figured by using IBA. Through two iterations within only 47.5 min, this highly steep pit is effectively corrected, and the surface error is improved from the original 24.69 nm root mean square (RMS) to the final 3.68 nm RMS. Then another experiment is carried out to demonstrate the correcting capability of IBA for mid-to-high spatial frequency surface errors, and the final results indicate that the surface accuracy and surface quality can be simultaneously improved.
Optic-null space medium for cover-up cloaking without any negative refraction index materials
Sun, Fei; He, Sailing
2016-01-01
With the help of optic-null medium, we propose a new way to achieve invisibility by covering up the scattering without using any negative refraction index materials. Compared with previous methods to achieve invisibility, the function of our cloak is to cover up the scattering of the objects to be concealed by a background object of strong scattering. The concealed object can receive information from the outside world without being detected. Numerical simulations verify the performance of our cloak. The proposed method will be a great addition to existing invisibility technology. PMID:27383833
Optic-null space medium for cover-up cloaking without any negative refraction index materials.
Sun, Fei; He, Sailing
2016-07-07
With the help of optic-null medium, we propose a new way to achieve invisibility by covering up the scattering without using any negative refraction index materials. Compared with previous methods to achieve invisibility, the function of our cloak is to cover up the scattering of the objects to be concealed by a background object of strong scattering. The concealed object can receive information from the outside world without being detected. Numerical simulations verify the performance of our cloak. The proposed method will be a great addition to existing invisibility technology.
Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing.
Kuzum, Duygu; Jeyasingh, Rakesh G D; Lee, Byoungil; Wong, H-S Philip
2012-05-09
Brain-inspired computing is an emerging field, which aims to extend the capabilities of information technology beyond digital logic. A compact nanoscale device, emulating biological synapses, is needed as the building block for brain-like computational systems. Here, we report a new nanoscale electronic synapse based on technologically mature phase change materials employed in optical data storage and nonvolatile memory applications. We utilize continuous resistance transitions in phase change materials to mimic the analog nature of biological synapses, enabling the implementation of a synaptic learning rule. We demonstrate different forms of spike-timing-dependent plasticity using the same nanoscale synapse with picojoule level energy consumption.
Consortium for Nanomaterials for Aerospace Commerce and Technology (CONTACT)
2013-02-01
108 47 Absorption mechanism in tandem OPVs and absorption spectra of common organic materials...different protection mechanisms in the humid air of terrestrial environments and the dry vacuum of space. From these initial successes, a range of...confinement based materials enable the ability to manipulate and enhance the optical, electrical, thermal and noise mechanisms to optimize device
Optical coatings on laser crystals for HiPER project
NASA Astrophysics Data System (ADS)
Oulehla, Jindrich; Pokorný, Pavel; Lazar, Josef
2011-12-01
In this contribution we present a technology for deposition of interference coatings for optical components designed to operate as active media in power pulsed lasers. The aim of the technology is to prepare crystals for lasers for the HiPER project (High Power laser Energy Research facility) which should demonstrate the feasibility of laser driven fusion as a future energy source. Diode pumped solid state lasers (DPSSL) are the most likely option for fusion ignition. The choice of the material for the lasers' active medium is critical. Some of the most important properties include the ability to be antireflection coated to reduce the energy losses and increase the overall efficiency. This contribution deals with some of the materials considered to be candidates for slabs serving as the active medium of the DPSSLs. We tested Yb:YAG and Yb:CaF2 samples. As large amounts of heat need to be dissipated during laser operation, cryogenic cooling is necessary. Appropriate coating materials and techniques need to be chosen. Therefore differences between available coating techniques are investigated in terms of adhesion, enduring of stress from temperature shocks, etc. Coated samples were placed into cryogenic environment in order to simulate conditions similar to those in real life operation. Optical microscopy was used for coating investigation after the conducted experiments.
[Nanobiophotonics: photon-associated nanobiotechnology for laser and personalized medicine].
Zalesskiĭ, V N; Movchan, B A
2013-01-01
Analyzed are the literature in the field of development and use nanobiophotonic technologies for laser and personalized medicine. Arguably, the origins of nanobiophotonic are closely tied in the first experimental realization of near-field optics, which enabled optical imaging beyond the diffraction limit. The information about the gist of nanobiophotonics and other photon-associations technologies (photonics, nanophotonics, biophotonics, nanooptics, plasmonics, nanospectroscopy, laser and personalized medicine) is summarized. Nanobiophotonics is the use of light to image, probe and manipulate biological materials. The particular strength of nanobiophotonics is thet in ideal case it retains of the light for permits live cell sensing. The area of nanobiophotonics technologies is too broad to possible capture all aspects nano-analitic directions and biomedical research within the last years.
NASA Astrophysics Data System (ADS)
Wilcox, Christopher; Fernandez, Bautista; Bagnasco, John; Martinez, Ty; Romeo, Robert; Agrawal, Brij
2015-03-01
The Adaptive Optics Center of Excellence for National Security at the Naval Postgraduate School has implemented a technology testing platform and array of facilities for next-generation space-based telescopes and imaging system development. The Segmented Mirror Telescope is a 3-meter, 6 segment telescope with actuators on its mirrors for system optical correction. Currently, investigation is being conducted in the use of lightweight carbon fiber reinforced polymer structures for large monolithic optics. Advantages of this material include lower manufacturing costs, very low weight, and high durability and survivability compared to its glass counterparts. Design and testing has begun on a 1-meter, optical quality CFRP parabolic mirror for the purpose of injecting collimated laser light through the SMT primary and secondary mirrors as well as the following aft optics that include wavefront sensors and deformable mirrors. This paper will present the design, testing, and usage of this CFRP parabolic mirror and the current path moving forward with this ever-evolving technology.
Amorphous silicon as high index photonic material
NASA Astrophysics Data System (ADS)
Lipka, T.; Harke, A.; Horn, O.; Amthor, J.; Müller, J.
2009-05-01
Silicon-on-Insulator (SOI) photonics has become an attractive research topic within the area of integrated optics. This paper aims to fabricate SOI-structures for optical communication applications with lower costs compared to standard fabrication processes as well as to provide a higher flexibility with respect to waveguide and substrate material choice. Amorphous silicon is deposited on thermal oxidized silicon wafers with plasma-enhanced chemical vapor deposition (PECVD). The material is optimized in terms of optical light transmission and refractive index. Different a-Si:H waveguides with low propagation losses are presented. The waveguides were processed with CMOS-compatible fabrication technologies and standard DUV-lithography enabling high volume production. To overcome the large mode-field diameter mismatch between incoupling fiber and sub-μm waveguides three dimensional, amorphous silicon tapers were fabricated with a KOH etched shadow mask for patterning. Using ellipsometric and Raman spectroscopic measurements the material properties as refractive index, layer thickness, crystallinity and material composition were analyzed. Rapid thermal annealing (RTA) experiments of amorphous thin films and rib waveguides were performed aiming to tune the refractive index of the deposited a-Si:H waveguide core layer after deposition.
JPRS report: Science and technology. Europe and Latin America
NASA Astrophysics Data System (ADS)
1988-01-01
Articles from the popular and trade press of Western Europe and Latin America are presented on advanced materials, aerospace and civial aviation, computers, defense industries, factory automation and robotics, lasers, senors, optics microelectronics, science and technology policy, biotechnology, marine technology, and nuclear developments. The aerospace articles include an overview of Austrian space activities and plans and a report on a panel of West German experts recommending against self-sufficiency for the Airbus.
Ion beams provided by small accelerators for material synthesis and characterization
NASA Astrophysics Data System (ADS)
Mackova, Anna; Havranek, Vladimir
2017-06-01
The compact, multipurpose electrostatic tandem accelerators are extensively used for production of ion beams with energies in the range from 400 keV to 24 MeV of almost all elements of the periodic system for the trace element analysis by means of nuclear analytical methods. The ion beams produced by small accelerators have a broad application, mainly for material characterization (Rutherford Back-Scattering spectrometry, Particle Induced X ray Emission analysis, Nuclear Reaction Analysis and Ion-Microprobe with 1 μm lateral resolution among others) and for high-energy implantation. Material research belongs to traditionally progressive fields of technology. Due to the continuous miniaturization, the underlying structures are far beyond the analytical limits of the most conventional methods. Ion Beam Analysis (IBA) techniques provide this possibility as they use probes of similar or much smaller dimensions (particles, radiation). Ion beams can be used for the synthesis of new progressive functional nanomaterials for optics, electronics and other applications. Ion beams are extensively used in studies of the fundamental energetic ion interaction with matter as well as in the novel nanostructure synthesis using ion beam irradiation in various amorphous and crystalline materials in order to get structures with extraordinary functional properties. IBA methods serve for investigation of materials coming from material research, industry, micro- and nano-technology, electronics, optics and laser technology, chemical, biological and environmental investigation in general. Main research directions in laboratories employing small accelerators are also the preparation and characterization of micro- and nano-structured materials which are of interest for basic and oriented research in material science, and various studies of biological, geological, environmental and cultural heritage artefacts are provided too.
Development of Grazing Incidence Optics for Neutron Imaging and Scattering
NASA Technical Reports Server (NTRS)
Gubarev, M. V.; Khaykovich, B.; Liu, D.; Ramsey, B. D.; Zavlin, V. E.; Kilaru, K.; Romaine, S.; Rosati, R. E.; Bruni, R.; Moncton, D. E.
2012-01-01
Because of their wave nature, thermal and cold neutrons can be reflected from smooth surfaces at grazing incidence angles, be reflected by multilayer coatings or be refracted at boundaries of different materials. The optical properties of materials are characterized by their refractive indices which are slightly less than unity for most elements and their isotopes in the case of cold and thermal neutrons as well as for x-rays. The motivation for the optics use for neutrons as well as for x-rays is to increase the signal rate and, by virtue of the optic's angular resolution, to improve the signal-to-noise level by reducing the background so the efficiency of the existing neutron sources use can be significantly enhanced. Both refractive and reflective optical techniques developed for x-ray applications can be applied to focus neutron beams. Typically neutron sources have lower brilliance compared to conventional x-ray sources so in order to increase the beam throughput the neutron optics has to be capable of capturing large solid angles. Because of this, the replicated optics techniques developed for x-ray astronomy applications would be a perfect match for neutron applications, so the electroformed nickel optics under development at the Marshall Space Flight Center (MSFC) can be applied to focus neutron beams. In this technique, nickel mirror shells are electroformed onto a figured and superpolished nickel-plated aluminum cylindrical mandrel from which they are later released by differential thermal contraction. Cylindrical mirrors with different diameters, but the same focal length, can be nested together to increase the system throughput. The throughput can be increased further with the use of the multilayer coatings deposited on the reflectivr surface of the mirror shells. While the electroformed nickel replication technique needs to be adopted for neutron focusing, the technology to coat the inside of cylindrical mirrors with neutron multilayers has to be developed. The availability of these technologies would bring new capabilities to neutron instrumentation and, hence, lead to new scientific breakthroughs. We have established a program to adopt the electroformed nickel replication optics technique for neutron applications and to develop the neutron multilayer replication technology.
NASA Technical Reports Server (NTRS)
Ott, Melanie; Thomes, W. Joe; Blair, Diana; Chuska, Rick; Switzer, Rob
2010-01-01
The Diamond AVIM optical fiber connector has been used for over a decade in flight environments. AVIM which stands for Aviation Intermediate Maintenance is always referenced as a fiber optic connector type from the DIN (Deutsches Institut fur Normung) family of optical fiber connectors. The newly available Mini AVIM and DMI (Definition Multimedia Interface) connectors also by Diamond provide similar features as the high performance AVIM with the added benefits of being small form factor for board mount and internal box use where long connectors and strain relief can not be accommodated. Transceiver, fiber laser technology and receiver optic technology based on small sized constraints will benefit the most by the reduction in connector form factor. It is for this reason that the Mini AVIM is being evaluated for multimode and single mode optical fiber use in both fiber based and cable based packaging configurations. In a fiber based termination, there are no cable materials to bond to the connector. The only bonding that is conducted is the mounting of the fiber with epoxy to the connector ferrules (which are called DMI ferrules). In a cable configuration, the compatibility of the connector subcomponents along with the upjacketing materials of the cable around the fiber needs to be considered carefully for termination fabrication. Cabled terminations will show greater insertion loss and high probability of failures during thermal cycling testing. This is due to the stressing of the combination of materials that each have different Coefficients of Thermal Expansion (CTE's) and that are bonded together to the connector subcomponents. As the materials flex during thermal excursions, forces are applied to the termination and can make the system fail if the grouping of materials (per their CTE's) are not compatible and this includes cable materials, epoxies, ferrule and connector body components. For this evaluation, multimode 100 micron core step index fiber was used for the fiber terminated condition, and single mode SMF-28 upjacketed with W.L. Gore Flexlite was used for the cabled configuration. For background purposes, a comparison is presented here for information purposes between the high performance AVIM connector features and the Mini AVIM small form factor connectors. Basic connector features are described here.
Adaptive smart wing design for military aircraft: requirements, concepts, and payoffs
NASA Astrophysics Data System (ADS)
Kudva, Jayanth N.; Appa, Kari; Van Way, Craig B.; Lockyer, Allen J.
1995-05-01
New developments in smart structures and materials have made it possible to revisit earlier work in adaptive and flexible wing technology, and remove some of the limitations for technology transition to next-generation aircraft. Research performed by Northrop Grumman, under internal funding, has led to a new program sponsored by ARPA to investigate the application of smart structures and materials technologies to twist and adapt and aircraft wing. Conceptual designs are presented based on state-of-the-art materials, including shape memory alloys, piezoelectrics, and fiber optic sensors for incorporation in a proposed smart wing design. Plans are described to demonstrate proof-of-concept on a prototype 1/10 scale -18 model that will be tested in a wind tunnel for final validation. Highlights of the proposed program are summarized with respect to program objectives, requirements, key concept design features, demonstration testing, and smart wing technology payoffs and risks.
Optical coating technology for the EUV
NASA Astrophysics Data System (ADS)
Osantowski, J. F.; Keski-Kuha, R. A. M.; Herzig, H.; Toft, A. R.; Gum, J. S.; Fleetwood, C. M.
Adavaces in optical coating and materials technology are one of the key motivators for the development of missions such as the Far Ultraviolet Spectroscopic Explorer recently selected by NASA for an Explorer class mission in the mid 1990's. The performance of a range of candidate coatings are reviewed for normal-incidence and glancing-incidence applications, and attention is given to strengths and problem areas for their use in space. The importance of recent developments in multilayer films, chemical-vapor deposited SiC (CVD-SiC) mirrors, and SiC films are discussed in the context of EUV instrumentation design. For example, the choice of optical coatings is a design driver for the selection of the average glancing angle for the FUSE telescope, and impacts efficiency, short-wavelength cut-off, and physical size.
Optical coating technology for the EUV
NASA Technical Reports Server (NTRS)
Osantowski, J. F.; Keski-Kuha, R. A. M.; Herzig, H.; Toft, A. R.; Gum, J. S.; Fleetwood, C. M.
1991-01-01
Advances in optical coating and materials technology are one of the key motivators for the development of missions such as the Far Ultraviolet Spectroscopic Explorer recently selected by NASA for an Explorer class mission in the mid 1990's. The performance of a range of candidate coatings are reviewed for normal-incidence and glancing-incidence applications, and attention is given to strengths and problem areas for their use in space. The importance of recent developments in multilayer films, chemical-vapor deposited SiC (CVD-SiC) mirrors, and SiC films are discussed in the context of EUV instrumentation design. For example, the choice of optical coatings is a design driver for the selection of the average glancing angle for the FUSE telescope, and impacts efficiency, short-wavelength cut-off, and physical size.
Threshold temperature optical fibre sensors
NASA Astrophysics Data System (ADS)
Stasiewicz, K. A.; Musial, J. E.
2016-12-01
This paper presents a new approach to manufacture a threshold temperature sensor based on a biconical optical fibre taper. The presented sensor employs the influence of variable state of concentration of some isotropic materials like wax or paraffin. Application of the above- mentioned materials is an attempt to prove that there is a possibility to obtain a low-cost, repeatable and smart sensor working as an in-line element. Optical fibre taper was obtained from a standard single mode fibre (SMF28®) by using a low pressure gas burner technique. The diameter of the manufactured tapers was 6.0 ± 0.5 μm with the length of elongation equal to 30.50 ± 0.16 mm. The applied technology allowed to produce tapers with the losses of 0.183 ± 0.015 dB. Application of materials with different temperature transition points made it possible to obtain the threshold work at the temperatures connected directly with their conversion temperature. External materials at the temperatures above their melting points do not influence the propagation losses. For each of them two types of the protection area and position of the optical fibre taper were applied.
Li, Xiangping; Zhang, Qiming; Chen, Xi; Gu, Min
2013-10-02
Graphene oxides (GOs) have emerged as precursors offering the potential of a cost-effective and large-scale production of graphene-based materials. Despite that their intrinsic fluorescence property has already brought interest of researchers for optical applications, to date, refractive-index modulation as one of the fundamental aspects of optical properties of GOs has received less attention. Here we reported on a giant refractive-index modulation on the order of 10(-2) to 10(-1), accompanied by a fluorescence intensity change, through the two-photon reduction of GOs. These features enabled a mechanism for multimode optical recording with the fluorescence contrast and the hologram-encoded refractive-index modulation in GO-dispersed polymers for security-enhanced high-capacity information technologies. Our results show that GO-polymer composites may provide a new material platform enabling flexible micro-/nano-photonic information devices.
State-of-the-art low-cost solar reflector materials
NASA Astrophysics Data System (ADS)
Kennedy, C.; Jorgensen, G.
1994-11-01
Solar thermal technologies generate power by concentrating sunlight with large mirrors. The National Renewable Energy Laboratory (NREL) is working with industrial partners to develop the optical reflector materials needed for the successful deployment of this technology. The reflector materials must be low in cost and maintain high specular reflectance for extended lifetimes in severe outdoor environments. Currently, the best candidate materials for solar mirrors are silver-coated low-iron glass and silvered polymer films. Polymer reflectors are lighter in weight, offer greater flexibility in system design, and have the potential for lower cost than glass mirrors. In parallel with collaborative activities, several innovative candidate reflector-material constructions were investigated at NREL. The low-cost material requirement necessitates manufacturing compatible with mass-production techniques. Future cooperative efforts with the web-coating industry offers the promise of exciting new alternative materials and the potential for dramatic cost savings in developing advanced solar reflector materials.
First-principles engineering of charged defects for two-dimensional quantum technologies
NASA Astrophysics Data System (ADS)
Wu, Feng; Galatas, Andrew; Sundararaman, Ravishankar; Rocca, Dario; Ping, Yuan
2017-12-01
Charged defects in two-dimensional (2D) materials have emerging applications in quantum technologies such as quantum emitters and quantum computation. The advancement of these technologies requires a rational design of ideal defect centers, demanding reliable computation methods for the quantitatively accurate prediction of defect properties. We present an accurate, parameter-free, and efficient procedure to evaluate the quasiparticle defect states and thermodynamic charge transition levels of defects in 2D materials. Importantly, we solve critical issues that stem from the strongly anisotropic screening in 2D materials, that have so far precluded the accurate prediction of charge transition levels in these materials. Using this procedure, we investigate various defects in monolayer hexagonal boron nitride (h -BN ) for their charge transition levels, stable spin states, and optical excitations. We identify CBVN (nitrogen vacancy adjacent to carbon substitution of boron) to be the most promising defect candidate for scalable quantum bit and emitter applications.
Imaging Exoplanets with the Exo-S Starshade Mission: Key Enabling Technologies
NASA Astrophysics Data System (ADS)
Kasdin, N. Jeremy; Lisman, Doug; Shaklan, Stuart; Thomson, Mark; Webb, David; Cady, Eric; Exo-S Science; Technology Definition Team, Exoplanet Program Probe Study Design Team
2015-01-01
There is increasing interest in the use of a starshade, a spacecraft employing a large screen flying in formation with a space telescope, for providing the starlight suppression needed to detect and characterize exoplanets. In particular, Exo-S is a NASA study directed at designing a probe-scale exoplanet mission employing a starshade. In this poster we present the enabling technologies needed to make a starshade mission a reality: flight-like petals, a deployable truss to support the petals, optical edges, optical diffraction studies, and formation sensing and control. We show the status of each technology gap and summarize our progress over the past 5 years with plans for the next 3 years in demonstrating feasibility in all these areas. In particular, since no optical end-to-end test is possible, it is necessary to both show that a starshade can be built and deployed to the required accuracy and, via laboratory experiments at smaller scale, that the optical modeling upon which the accuracy requirements are based is validated. We show our progress verifying key enabling technologies, including demonstrating that a starshade petal made from flight-like materials can be manufactured to the needed accuracy and that a central truss with attached petals can be deployed with the needed precision. We also summarize our sub-scale lab experiments that demonstrate we can achieve the contrast predicted by our optical models.
Laser Science & Technology Program Annual Report - 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H-L
2001-03-20
The Laser Science and Technology (LS&T) Program Annual Report 2001 provides documentation of the achievements of the LLNL LS&T Program during the April 2001 to March 2002 period using three formats: (1) an Overview that is a narrative summary of important results for the year; (2) brief summaries of research and development activity highlights within the four Program elements: Advanced Lasers and Components (AL&C), Laser Optics and Materials (LO&M), Short Pulse Laser Applications and Technologies (SPLAT), and High-Energy Laser System and Tests (HELST); and (3) a compilation of selected articles and technical reports published in reputable scientific or technology journalsmore » in this period. All three elements (Annual Overview, Activity Highlights, and Technical Reports) are also on the Web: http://laser.llnl.gov/lasers/pubs/icfq.html. The underlying mission for the LS&T Program is to develop advanced lasers, optics, and materials technologies and applications to solve problems and create new capabilities of importance to the Laboratory and the nation. This mission statement has been our guide for defining work appropriate for our Program. A major new focus of LS&T beginning this past year has been the development of high peak power short-pulse capability for the National Ignition Facility (NIF). LS&T is committed to this activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiquan Tao
2006-12-31
The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fibermore » optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of fiber optic sensors uses sol-gel derived porous silica materials doped with nanometer particles of noble metals in the form of fiber or coating for sensing trace H{sub 2}, NH{sub 3} and HCl in gas samples at for applications ambient temperature. The third classes of fiber optic sensors use sol-gel derived semiconductor metal oxide coating on the surface of silica optical fiber as transducers for selectively sensing H{sub 2}, CH{sub 4} and CO at high temperature. In addition, optical fiber temperature sensors use the fluorescence signal of rare-earth metal ions doped porous silica optical fiber or the optical absorption signal of thermochromic metal oxide materials coated on the surface of silica optical fibers have also been developed for monitoring gas temperature of corrosive gas. Based on the results obtained from this project, the principle of fiber optic sensor techniques for monitoring matrix gas components as well as trace components of coal gasification derived syngas has been established. Prototype sensors for sensing trace ammonia and hydrogen sulfide in gasification derived syngas have been built up in our laboratory and have been tested using gas samples with matrix gas composition similar to that of gasification derived fuel gas. Test results illustrated the feasibility of these sensors for applications in IGCC processes.« less
Tuning nonlinear optical absorption properties of WS₂ nanosheets.
Long, Hui; Tao, Lili; Tang, Chun Yin; Zhou, Bo; Zhao, Yuda; Zeng, Longhui; Yu, Siu Fung; Lau, Shu Ping; Chai, Yang; Tsang, Yuen Hong
2015-11-14
To control the optical properties of two-dimensional (2D) materials is a long-standing goal, being of both fundamental and technological significance. Tuning nonlinear optical absorption (NOA) properties of 2D transition metal dichalcogenides in a cost effective way has emerged as an important research topic because of its possibility to custom design NOA properties, implying enormous applications including optical computers, communications, bioimaging, and so on. In this study, WS2 with different size and thickness distributions was fabricated. The results demonstrate that both NOA onset threshold, F(ON), and optical limiting threshold, F(OL), of WS2 under the excitation of a nanosecond pulsed laser can be tuned over a wide range by controlling its size and thickness. The F(ON) and F(OL) show a rapid decline with the decrease of size and thickness. Due to the edge and quantum confinement effect, WS2 quantum dots (2.35 nm) exhibit the lowest F(ON) (0.01 J cm(-2)) and F(OL) (0.062 J cm(-2)) among all the samples, which are comparable to the lowest threshold achieved in graphene based materials, showing great potential as NOA materials with tunable properties.
Drive to miniaturization: integrated optical networks on mobile platforms
NASA Astrophysics Data System (ADS)
Salour, Michael M.; Batayneh, Marwan; Figueroa, Luis
2011-11-01
With rapid growth of the Internet, bandwidth demand for data traffic is continuing to explode. In addition, emerging and future applications are becoming more and more network centric. With the proliferation of data communication platforms and data-intensive applications (e.g. cloud computing), high-bandwidth materials such as video clips dominating the Internet, and social networking tools, a networking technology is very desirable which can scale the Internet's capability (particularly its bandwidth) by two to three orders of magnitude. As the limits of Moore's law are approached, optical mesh networks based on wavelength-division multiplexing (WDM) have the ability to satisfy the large- and scalable-bandwidth requirements of our future backbone telecommunication networks. In addition, this trend is also affecting other special-purpose systems in applications such as mobile platforms, automobiles, aircraft, ships, tanks, and micro unmanned air vehicles (UAVs) which are becoming independent systems roaming the sky while sensing data, processing, making decisions, and even communicating and networking with other heterogeneous systems. Recently, WDM optical technologies have seen advances in its transmission speeds, switching technologies, routing protocols, and control systems. Such advances have made WDM optical technology an appealing choice for the design of future Internet architectures. Along these lines, scientists across the entire spectrum of the network architectures from physical layer to applications have been working on developing devices and communication protocols which can take full advantage of the rapid advances in WDM technology. Nevertheless, the focus has always been on large-scale telecommunication networks that span hundreds and even thousands of miles. Given these advances, we investigate the vision and applicability of integrating the traditionally large-scale WDM optical networks into miniaturized mobile platforms such as UAVs. We explain the benefits of WDM optical technology for these applications. We also describe some of the limitations of WDM optical networks as the size of a vehicle gets smaller, such as in micro-UAVs, and study the miniaturization and communication system limitations in such environments.
Technologies for Trapped-Ion Quantum Information Systems
2016-03-21
mate- rials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and...trapping techniques. Keywords ion traps · quantum computation · quantum information · trapped ions · ion-photon interface · graphene · indium tin oxide...displays are typically made of indium tin oxide (ITO), a material that is both an elec- trical and an optical conductor. However, using ITO electrodes
Nonlinear Optics Technology. Phase 3. Volume 2. Phase Conjugated Optical Communication Link
1991-01-12
experiments and mechanical design of the artificial turbulence generator (turbox), Dr. George M. Harpole who provided the technical design of the turbox, Dr...understanding of FWM PC comm link physics and to determine design requirements for a fieldable system. The system model demonstrated that phase...using photorefractive material was also designed , fabricated, and characterized. The efficiency of heterodyne mixing of an aberrated beacon beam was
2016-09-13
NASA astronaut Kate Rubins works on Selectable Optical Diagnostics Instrument Experiment Diffusion Coefficient Mixture-3 (SODI) DCMix-3 Installation inside the station’s Microgravity Science Glovebox. The glovebox is one of the major dedicated science facilities inside the Destiny laboratory and provides a sealed environment for conducting science and technology experiments. The glovebox is particularly suited for handling hazardous materials when the crew is present.
Development of optical-electronic system for the separation of cullet
NASA Astrophysics Data System (ADS)
Solovey, Alexey A.; Alekhin, Artem A.
2017-06-01
Broken glass being the waste in many fields of production is usually used as a raw material in the production of construction materials. The purity level of collected and processed glass cullet, as a rule, is quite low. Direct usage of these materials without preliminary processing leads to the emergence of defects in the end product or sometimes even to technological downtime. That's why purity control of cullet should be strictly verified. The study shows the method of construction and requirements for an optical-electronic system designed for cullet separation. Moreover, the author proposes a registration channel scheme and shows a scheme of control exposure area. Also the issues of image processing for the implementation of a typical system are examined.
Plasmonic transparent conductors
NASA Astrophysics Data System (ADS)
Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.
2016-09-01
Many of today's technological applications, such as solar cells, light-emitting diodes, displays, and touch screens, require materials that are simultaneously optically transparent and electrically conducting. Here we explore transparent conductors based on the excitation of surface plasmons in nanostructured metal films. We measure both the optical and electrical properties of films perforated with nanometer-scale features and optimize the design parameters in order to maximize optical transmission without sacrificing electrical conductivity. We demonstrate that plasmonic transparent conductors can out-perform indium tin oxide in terms of both their transparency and their conductivity.
High definition surface micromachining of LiNbO 3 by ion implantation
NASA Astrophysics Data System (ADS)
Chiarini, M.; Bentini, G. G.; Bianconi, M.; De Nicola, P.
2010-10-01
High Energy Ion Implantation (HEII) of both medium and light mass ions has been successfully applied for the surface micromachining of single crystal LiNbO 3 (LN) substrates. It has been demonstrated that the ion implantation process generates high differential etch rates in the LN implanted areas, when suitable implantation parameters, such as ion species, fluence and energy, are chosen. In particular, when traditional LN etching solutions are applied to suitably ion implanted regions, etch rates values up to three orders of magnitude higher than the typical etching rates of the virgin material, are registered. Further, the enhancement in the etching rate has been observed on x, y and z-cut single crystalline material, and, due to the physical nature of the implantation process, it is expected that it can be equivalently applied also to substrates with different crystallographic orientations. This technique, associated with standard photolithographic technologies, allows to generate in a fast and accurate way very high aspect ratio relief micrometric structures on LN single crystal surface. In this work a description of the developed technology is reported together with some examples of produced micromachined structures: in particular very precisely defined self sustaining suspended structures, such as beams and membranes, generated on LN substrates, are presented. The developed technology opens the way to actual three dimensional micromachining of LN single crystals substrates and, due to the peculiar properties characterising this material, (pyroelectric, electro-optic, acousto-optic, etc.), it allows the design and the production of complex integrated elements, characterised by micrometric features and suitable for the generation of advanced Micro Electro Optical Systems (MEOS).
Aluminum Mirror Coatings for UVOIR Telescope Optics Including the Far UV
NASA Technical Reports Server (NTRS)
Balasubramanian, Kunjithapatha; Hennessy, John; Raouf, Nasrat; Nikzad, Shouleh; Ayala, Michael; Shaklan, Stuart; Scowen, Paul; Del Hoyo, Javier; Quijada, Manuel
2015-01-01
NASA Cosmic Origins (COR) Program identified the development of high reflectivity mirror coatings for large astronomical telescopes particularly for the far ultra violet (FUV) part of the spectrum as a key technology requiring significant materials research and process development. In this paper we describe the challenges and accomplishments in producing stable high reflectance aluminum mirror coatings with conventional evaporation and advanced Atomic Layer Deposition (ALD) techniques. We present the current status of process development with reflectance of approx. 55 to 80% in the FUV achieved with little or no degradation over a year. Keywords: Large telescope optics, Aluminum mirror, far UV astrophysics, ALD, coating technology development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanotto, Simone; Pitanti, Alessandro; Lange, Christoph
2015-09-21
By placing a material in close vicinity of a resonant optical element, its intrinsic optical response can be tuned, possibly to a wide extent. Here, we show that a graphene monolayer, spaced a few tenths of nanometers from a split ring resonator metasurface, exhibits a magneto-optical response which is strongly influenced by the presence of the metasurface itself. This hybrid system holds promises in view of thin optical modulators, polarization rotators, and nonreciprocal devices, in the technologically relevant terahertz spectral range. Moreover, it could be chosen as the playground for investigating the cavity electrodynamics of Dirac fermions in the quantummore » regime.« less
Microscopic morphology evolution during ion beam smoothing of Zerodur® surfaces.
Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin
2014-01-13
Ion sputtering of Zerodur material often results in the formation of nanoscale microstructures on the surfaces, which seriously influences optical surface quality. In this paper, we describe the microscopic morphology evolution during ion sputtering of Zerodur surfaces through experimental researches and theoretical analysis, which shows that preferential sputtering together with curvature-dependent sputtering overcomes ion-induced smoothing mechanisms leading to granular nanopatterns formation in morphology and the coarsening of the surface. Consequently, we propose a new method for ion beam smoothing (IBS) of Zerodur optics assisted by deterministic ion beam material adding (IBA) technology. With this method, Zerodur optics with surface roughness down to 0.15 nm root mean square (RMS) level is obtained through the experimental investigation, which demonstrates the feasibility of our proposed method.
Modified Brewster angle on conducting 2D materials
NASA Astrophysics Data System (ADS)
Majérus, Bruno; Cormann, Mirko; Reckinger, Nicolas; Paillet, Matthieu; Henrard, Luc; Lambin, Philippe; Lobet, Michaël
2018-04-01
Insertion of two-dimensional (2D) materials in optical systems modifies their electrodynamical response. In particular, the Brewster angle undergoes an up-shift if a substrate is covered with a conducting 2D material. This work theoretically and experimentally investigates this effect related to the 2D induced current at the interface. The shift is predicted for all conducting 2D materials and tunability with respect to the Fermi level of graphene is evidenced. Analytical approximations for high and low 2D conductivities are proposed and avoid cumbersome numerical analysis of experimental data. Experimental demonstration using spectroscopic ellipsometry has been performed in the UV to NIR range on mono-, bi- and trilayer graphene samples. The non-contact measurement of this modified Brewster angle allows to deduce the optical conductivity of 2D materials. Applications to telecommunication technologies can be considered thanks to the tunability of the shift at 1.55 μm.
In-pile Thermal Conductivity Characterization with Time Resolved Raman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xinwei; Hurley, David H.
The project is designed to achieve three objectives: (1) Develop a novel time resolved Raman technology for direct measurement of fuel and cladding thermal conductivity. (2) Validate and improve the technology development by measuring ceramic materials germane to the nuclear industry. (3) Conduct instrumentation development to integrate optical fiber into our sensing system for eventual in-pile measurement. We have developed three new techniques: time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), and energy transport state-resolved Raman (ET-Raman). The TD-Raman varies the laser heating time and does simultaneous Raman thermal probing, the FR-Raman probes the material’s thermal response under periodical laser heatingmore » of different frequencies, and the ET-Raman probes the thermal response under steady and pulsed laser heating. The measurement capacity of these techniques have been fully assessed and verified by measuring micro/nanoscale materials. All these techniques do not need the data of laser absorption and absolute material temperature rise, yet still be able to measure the thermal conductivity and thermal diffusivity with unprecedented accuracy. It is expected they will have broad applications for in-pile thermal characterization of nuclear materials based on pure optical heating and sensing.« less
NASA Astrophysics Data System (ADS)
Bray, Mark E.; Shears, Robert A.
2013-10-01
The Materials and Components for Missiles Innovation and Technology Partnership (ITP) is a research programme supporting research for guided weapons at Technology Readiness Levels 1 to 4. The Anglo-French initiative is supported by the DGA and the MoD, with matched funding from industry. A major objective is to foster projects which partner UK and French universities, SMEs and larger companies. The first projects started in January 2008 and the first phase completed in spring 2013. Providing funding is secured, the next phase of the programme is due to start later in 2013. Selex ES leads Domain 3 of the MCM-ITP which develops Electro-Optic sensor technology. In collaboration with DGA, MoD and MBDA, the prime contractor, we identified 4 key objectives for the first ITP phase and focussed resources on achieving these. The objectives were to enable better imagery, address operationally stressing scenarios, provide low overall through life cost and improve active and semi-active sensors Nine normal projects and one ITP innovation fund project have been supported within the domain. The technology providers have included 3 SMEs and 8 research centres from both the United Kingdom and France. Highlights of the projects are included. An outline of the priorities for the domain for the new phase ise provided and we encourage organisations with suitable technology to contact us to get involved.
Novel protein crystal growth technology: Proof of concept
NASA Technical Reports Server (NTRS)
Nyce, Thomas A.; Rosenberger, Franz
1989-01-01
A technology for crystal growth, which overcomes certain shortcomings of other techniques, is developed and its applicability to proteins is examined. There were several unknowns to be determined: the design of the apparatus for suspension of crystals of varying (growing) diameter, control of the temperature and supersaturation, the methods for seeding and/or controlling nucleation, the effect on protein solutions of the temperature oscillations arising from the circulation, and the effect of the fluid shear on the suspended crystals. Extensive effort was put forth to grow lysozyme crystals. Under conditions favorable to the growth of tetragonal lysozyme, spontaneous nucleation could be produced but the number of nuclei could not be controlled. Seed transfer techniques were developed and implemented. When conditions for the orthorhombic form were tried, a single crystal 1.5 x 0.5 x 0.2 mm was grown (after in situ nucleation) and successfully extracted. A mathematical model was developed to predict the flow velocity as a function of the geometry and the operating temperatures. The model can also be used to scaleup the apparatus for growing larger crystals of other materials such as water soluble non-linear optical materials. This crystal suspension technology also shows promise for high quality solution growth of optical materials such as TGS and KDP.
Innovative Materials for Aircraft Morphing
NASA Technical Reports Server (NTRS)
Simpson, J. O.; Wise, S. A.; Bryant, R. G.; Cano, R. J.; Gates, T. S.; Hinkley, J. A.; Rogowski, R. S.; Whitley, K. S.
1997-01-01
Reported herein is an overview of the research being conducted within the Materials Division at NASA Langley Research Center on the development of smart material technologies for advanced airframe systems. The research is a part of the Aircraft Morphing Program which is a new six-year research program to develop smart components for self-adaptive airframe systems. The fundamental areas of materials research within the program are computational materials; advanced piezoelectric materials; advanced fiber optic sensing techniques; and fabrication of integrated composite structures. This paper presents a portion of the ongoing research in each of these areas of materials research.
Art + technology in optics educational outreach programs
NASA Astrophysics Data System (ADS)
Silberman, Donn M.
2007-09-01
In the modern era, art and technology have been at opposite ends of the spectrum of human study. Artists tend to be non-technical and technologists tend not to be artistic. While this is a broad generalization, it is rare to find an artist teaching science or an engineer teaching art. However, if we think back several centuries, it was very common for great artists to be at the forefront of technology. The prime example being the great Leonardo Di Vinci. Over the past several years, the optics educational outreach programs of the Optics Institute of Southern California (OISC) have incorporated using art and artists to help teach optics and related science. The original use of this was with material from the General Atomics Education Foundation, Color My World, which has been used in a number of settings. Recently, the OISC has partnered with the UC Irvine Beall Center for Art + Technology to provide Family Day Event presentations that use the themes of current Art + Technology exhibits to help attendees learn and understand more about the fundamental science through the art. The two main concepts here are that artists are using science and technology as the basis for their art, also sometimes making some social statements; and the technologists are using the art to make the science more accessible and interesting to the general pubic. This paper weaves a path from the original OISC uses of art to the recent work at UC Irvine.
CFRP composite optical telescope assembly for the 1 m ULTRA project
NASA Astrophysics Data System (ADS)
Martin, Robert N.; Romeo, Robert C.
2006-06-01
The focus of the ULTRA Project is to develop and test Ultra-Lightweight Technology for Research applications in Astronomy. The ULTRA project is a collaborative effort involving the private firm Composite Mirror Applications, Inc (CMA) and 3 universities: University of Kansas, San Diego State University, and Dartmouth College. Funding for ULTRA is predominately from a NSF three year MRI program grant to CMA and KU with additional support from CMA, KU and SDSU. The goal of the ULTRA program is to demonstrate that a viable alternative exists to traditional glass mirror and steel telescope technology by designing, fabricating and testing a research telescope constructed from carbon fiber reinforced plastic (CFRP) materials. In particular, a 1m diameter, Cassegrain telescope optics set and optical tube assembly (OTA) are being designed and fabricated by CMA. The completed telescope will be deployed at SDSU's Mt Laguna Observatory in a refurbished structure (new dome and mount provided via KU and SDSU). We expect that a successful completion and testing of this project will lead to future use of CFRP technology in larger telescopes and segmented telescopes. This paper describes the OTA (optical tube assembly) that has been developed for the ULTRA project. The mirror technology is described in another paper in this conference. A poster describes the ULTRA project overview in more detail.
Common aperture multispectral optics for military applications
NASA Astrophysics Data System (ADS)
Thompson, N. A.
2012-06-01
With the recent developments in multi-spectral detector technology the interest in common aperture, common focal plane multi-spectral imaging systems is increasing. Such systems are particularly desirable for military applications where increased levels of target discrimination and identification are required in cost-effective, rugged, lightweight systems. During the optical design of dual waveband or multi-spectral systems, the options for material selection are limited. This selection becomes even more restrictive for military applications as material resilience and thermal properties must be considered in addition to colour correction. In this paper we discuss the design challenges that lightweight multi-spectral common aperture systems present along with some potential design solutions. Consideration will be given to material selection for optimum colour correction as well as material resilience and thermal correction. This discussion is supported using design examples that are currently in development at Qioptiq.
Optically-controlled long-term storage and release of thermal energy in phase-change materials.
Han, Grace G D; Li, Huashan; Grossman, Jeffrey C
2017-11-13
Thermal energy storage offers enormous potential for a wide range of energy technologies. Phase-change materials offer state-of-the-art thermal storage due to high latent heat. However, spontaneous heat loss from thermally charged phase-change materials to cooler surroundings occurs due to the absence of a significant energy barrier for the liquid-solid transition. This prevents control over the thermal storage, and developing effective methods to address this problem has remained an elusive goal. Herein, we report a combination of photo-switching dopants and organic phase-change materials as a way to introduce an activation energy barrier for phase-change materials solidification and to conserve thermal energy in the materials, allowing them to be triggered optically to release their stored latent heat. This approach enables the retention of thermal energy (about 200 J g -1 ) in the materials for at least 10 h at temperatures lower than the original crystallization point, unlocking opportunities for portable thermal energy storage systems.
3D Printing Optical Engine for Controlling Material Microstructure
NASA Astrophysics Data System (ADS)
Huang, Wei-Chin; Chang, Kuang-Po; Wu, Ping-Han; Wu, Chih-Hsien; Lin, Ching-Chih; Chuang, Chuan-Sheng; Lin, De-Yau; Liu, Sung-Ho; Horng, Ji-Bin; Tsau, Fang-Hei
Controlling the cooling rate of alloy during melting and resolidification is the most commonly used method for varying the material microstructure and consequently the resuling property. However, the cooling rate of a selective laser melting (SLM) production is restricted by a preset optimal parameter of a good dense product. The head room for locally manipulating material property in a process is marginal. In this study, we invent an Optical Engine for locally controlling material microstructure in a SLM process. It develops an invovative method to control and adjust thermal history of the solidification process to gain desired material microstucture and consequently drastically improving the quality. Process parameters selected locally for specific materials requirement according to designed characteristics by using thermal dynamic principles of solidification process. It utilize a technique of complex laser beam shape of adaptive irradiation profile to permit local control of material characteristics as desired. This technology could be useful for industrial application of medical implant, aerospace and automobile industries.
A Survey on Gas Sensing Technology
Liu, Xiao; Cheng, Sitian; Liu, Hong; Hu, Sha; Zhang, Daqiang; Ning, Huansheng
2012-01-01
Sensing technology has been widely investigated and utilized for gas detection. Due to the different applicability and inherent limitations of different gas sensing technologies, researchers have been working on different scenarios with enhanced gas sensor calibration. This paper reviews the descriptions, evaluation, comparison and recent developments in existing gas sensing technologies. A classification of sensing technologies is given, based on the variation of electrical and other properties. Detailed introduction to sensing methods based on electrical variation is discussed through further classification according to sensing materials, including metal oxide semiconductors, polymers, carbon nanotubes, and moisture absorbing materials. Methods based on other kinds of variations such as optical, calorimetric, acoustic and gas-chromatographic, are presented in a general way. Several suggestions related to future development are also discussed. Furthermore, this paper focuses on sensitivity and selectivity for performance indicators to compare different sensing technologies, analyzes the factors that influence these two indicators, and lists several corresponding improved approaches. PMID:23012563
Space Optic Manufacturing - X-ray Mirror
NASA Technical Reports Server (NTRS)
1998-01-01
NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. This image shows a lightweight replicated x-ray mirror with gold coatings applied.
NASA Astrophysics Data System (ADS)
Komerska, Anna; Ksionek, Dariusz; Rosiński, Marian
2017-11-01
This article presents results of the energy performance of an external translucent shading component integrated with a phase change material. A proposed technology is able to accumulate considerable amounts of energy in the latent heat by absorbing solar energy. Due to selective optical properties, much of the visible light is still transmitted through the facade. Experimental measurements were carried out in a laboratory set-up - testing thermal chamber, located in the Faculty of Building Services, Hydro and Environmental Engineering at Warsaw University of Technology. The main result of the experimental study was the evaluation of the average solar transmittance in the whole measured spectrum, as well as in the infrared and visible light. Since the shift in optical properties was observed when the material was undergoing a phase transition, the average spectral transmittances were measured for different states of matter of the PCM material. The tested shutter showed abilities to reduce and modulate daylight and solar heat gains in the indoor environment, which could contribute to considerable energy savings.
NASA Astrophysics Data System (ADS)
DePew, K. A.; Ma, C.; Schiffbauer, J. D.; Wang, J.; Dong, B.; Lally, E.; Wang, A.
2012-12-01
The Center for Photonics Technology (CPT) at Virginia Tech is engaged in cutting edge research of fiber optic sensing technologies. One current research area is the design of fiber optic temperature sensors for harsh environments. Fiber optic temperature sensing offers significant advantages over electronic sensing in terms of size and insensitivity to harsh environmental conditions and electromagnetic interference. In the field, fiber optic thermometers have been used in recent snow cover studies as well as fluvial temperature profiling projects. The extended capabilities of CPT optical sensors open further possibilities for application in additional geologic realms requiring high temperature sensing in corrosive environments. Significant strides have been made in developing single-crystal sapphire based fiber optic sensing elements for high temperature environments which are otherwise difficult to instrument. Utilization of strain insensitive designs and optical sapphire materials allow for thermometers capable of operation above 1500°C with reduced sensitivity to chemical corrosion and mechanical interference. Current efforts in fabrication techniques are reducing the footprint of temperature sensors below the millimeter scale while maintaining high resolution and operating range. The FEI Helios 600 NanoLab workstation at the Virginia Tech Institute for Critical Technologies and Applied Science has been employed, providing the capabilities necessary to reduce the footprint of sensing elements to the dimensions of standard optical communication fiber using a Ga+ focused ion beam (FIB). The capability of semi-distributed multi-point sensing can also be accomplished at this scale using similar FIB milling techniques. The fiber optic thermometer designs resulting from these methods are compact, lightweight, and able to provide remote sensing without need for electrical power at the measurement point. These traits make them an ideal sensing platform for laboratory applications with minimal instrumentation egress as well as field deployment in areas where traditional electronic technologies cannot survive.
EDITORIAL: Focus on Cloaking and Transformation Optics
NASA Astrophysics Data System (ADS)
Leonhardt, Ulf; Smith, David R.
2008-11-01
'Any sufficiently advanced technology is indistinguishable from magic', as the late Arthur C Clarke wrote. So what does it take to do magic by technology? Transformation optics has developed some tantalizing ideas and the first practical demonstrations of 'pure and applied magic'. Transformation optics gathers an unusual mix of scientists, ranging from practically-minded engineers to imaginative theoretical physicists and mathematicians or hybrids of all three. The engineers have been developing new materials with extraordinary electromagnetic properties, from materials for microwaves, to be used in radar or wireless technology, to materials for terahertz radiation and visible light. These materials typically are composites—they consist of artificial structures much smaller than the wavelength that act like man-made atoms, apart being much larger in size. The properties of these artificial atoms depend on their shapes and sizes and so they are tunable, in contrast to most real atoms or molecules. This degree of control is what makes these materials—called metamaterials—so interesting. Such new-won freedom invites the other side of the spectrum of scientists, the theorists, to dream. Just imagine there are no practical limits on electromagnetic materials—what could we do with them? One exciting application of metamaterials has been Veselago's idea of negative refraction, dating back to the 1960s. Metamaterials have breathed life into Veselago's idea, culminating in recent optical demonstrations (see for example [1,2]). Another application is cloaking, developing ideas and first experimental demonstrations for invisibility devices [3]. It turns out that both negative refraction and cloaking are examples where materials seem to transform the geometry of space. Any optical material appears to change light's perception of space, as countless optical illusions prove, but the materials of transformation optics act in more specific ways: they appear to perform coordinate transformations. If the coordinates they conjure up run backwards one gets negative refraction, if they exclude some region of space one makes anything inside invisible [4]. In physics, general relativity has honed the theoretical tools for understanding curved space and curved-coordinate transformations. In transformation optics, general relativity has become a theoretical tool for solving practical engineering problems [4]. What an unorthodox connection! This focus issue represents a snapshot of this rapidly developing research area. It is not restricted to optics or electromagnetism, though. Metamaterials for acoustics also exist and can be applied in ways similar to optical metamaterials. So transformation optics not only attracts an unusual mix of scientists, but also spans a range of applications in optics and beyond. Transformation optics has the potential to transform optics, for example by visualizing invisibility and making materials beyond materials—metamaterials. But before we transgress the boundaries to the hermeneutics of transformation optics [5], let the papers speak for themselves. References [1] Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy A M and Zhang X 2008 Science 321 930 [2] Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G and Zhang X 2008 Nature 455 376 [3] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977 [4] Leonhardt U and Philbin T G 2006 New J. Phys. 8 247 [5] Sokal A D 1996 Social Text 14(46/47) 217 Focus on Cloaking and Transformation Optics Contents Transformation optics for the full dielectric electromagnetic cloak and metal-dielectric planar hyperlens D P Gaillot, C Croënne, F Zhang and D Lippens Transmutation of singularities in optical instruments Tomáš Tyc and Ulf Leonhardt Electromagnetic cloaking with canonical spiral inclusions K Guven, E Saenz, R Gonzalo, E Ozbay and S Tretyakov Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking Andrea Alù and Nader Engheta Electromagnetic cloaking devices for TE and TM polarizations Filiberto Bilotti, Simone Tricarico and Lucio Vegni An aberration-free lens with zero F-number D Schurig Transformational optics of plasmonic metamaterials I I Smolyaninov An acoustic metafluid: realizing a broadband acoustic cloak J B Pendry and Jensen Li On the possibility of metamaterial properties in spin plasmas G Brodin and M Marklund A homogenization route towards square cylindrical acoustic cloaks Mohamed Farhat, Sébastien Guenneau, Stefan Enoch, Alexander Movchan, Frédéric Zolla and André Nicolet Transformation optics: approaching broadband electromagnetic cloaking A V Kildishev, W Cai, U K Chettiar and V M Shalaev Generalized field-transforming metamaterials Sergei A Tretyakov, Igor S Nefedov and Pekka Alitalo Electromagnetic beam modulation through transformation optical structures Xiaofei Xu, Yijun Feng and Tian Jiang Superantenna made of transformation media Ulf Leonhardt and Tomáš Tyc Material parameters and vector scaling in transformation acoustics Steven A Cummer, Marco Rahm and David Schurig Isotropic transformation optics: approximate acoustic and quantum cloaking Allan Greenleaf, Yaroslav Kurylev, Matti Lassas and Gunther Uhlmann Transformation optical designs for wave collimators, flat lenses and right-angle bends Do-Hoon Kwon and Douglas H Werner Alternative derivation of electromagnetic cloaks and concentrators A D Yaghjian and S Maci Solutions in folded geometries, and associated cloaking due to anomalous resonance Graeme W Milton, Nicolae-Alexandru P Nicorovici, Ross C McPhedran, Kirill Cherednichenko and Zubin Jacob Finite wavelength cloaking by plasmonic resonance N-A P Nicorovici, R C McPhedran, S Enoch and G Tayeb
Pidenko, Sergey A; Burmistrova, Natalia A; Shuvalov, Andrey A; Chibrova, Anastasiya A; Skibina, Yulia S; Goryacheva, Irina Y
2018-08-17
This review covers the current state of the art of luminescent biosensors based on various types of microstructured optical fiber. The unique optical and structural properties of this type of optical fiber make them one of the most promising integrated platforms for bioassays. The individual sections of this review are devoted to a) classification of microstructured optical fibers, b) microstructured optical fiber materials, c) aspects of biosensing based on the biomolecules incorporated into the microstructured optical fibers, and d) development of models for prediction of the efficiency of luminescent signal processing. The authors' views on current trends and limitations of microstructured optical fibers for biosensing as well as the most promising areas and technologies for application in analytical practice are presented. Copyright © 2017 Elsevier B.V. All rights reserved.
Performance of lightweight large C/SiC mirror
NASA Astrophysics Data System (ADS)
Yui, Yukari Y.; Goto, Ken; Kaneda, Hidehiro; Katayama, Haruyoshi; Kotani, Masaki; Miyamoto, Masashi; Naitoh, Masataka; Nakagawa, Takao; Saruwatari, Hideki; Suganuma, Masahiro; Sugita, Hiroyuki; Tange, Yoshio; Utsunomiya, Shin; Yamamoto, Yasuji; Yamawaki, Toshihiko
2017-11-01
Very lightweight mirror will be required in the near future for both astronomical and earth science/observation missions. Silicon carbide is becoming one of the major materials applied especially to large and/or light space-borne optics, such as Herschel, GAIA, and SPICA. On the other hand, the technology of highly accurate optical measurement of large telescopes, especially in visible wavelength or cryogenic circumstances is also indispensable to realize such space-borne telescopes and hence the successful missions. We have manufactured a very lightweight Φ=800mm mirror made of carbon reinforced silicon carbide composite that can be used to evaluate the homogeneity of the mirror substrate and to master and establish the ground testing method and techniques by assembling it as the primary mirror into an optical system. All other parts of the optics model are also made of the same material as the primary mirror. The composite material was assumed to be homogeneous from the mechanical tests of samples cut out from the various areas of the 800mm mirror green-body and the cryogenic optical measurement of the mirror surface deformation of a 160mm sample mirror that is also made from the same green-body as the 800mm mirror. The circumstance and condition of the optical testing facility has been confirmed to be capable for the highly precise optical measurements of large optical systems of horizontal light axis configuration. Stitching measurement method and the algorithm for analysis of the measurement is also under study.
Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure
NASA Astrophysics Data System (ADS)
Wang, Huaping; Xiang, Ping
2016-07-01
Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.
Directly polished lightweight aluminum mirror
NASA Astrophysics Data System (ADS)
ter Horst, Rik; Tromp, Niels; de Haan, Menno; Navarro, Ramon; Venema, Lars; Pragt, Johan
2017-11-01
During the last ten years, Astron has been a major contractor for the design and manufacturing of astronomical instruments for Space- and Earth based observatories, such as VISIR, MIDI, SPIFFI, X-Shooter and MIRI. Driven by the need to reduce the weight of optically ultra-stiff structures, two promising techniques have been developed in the last years: ASTRON Extreme Lightweighting [1][2] for mechanical structures and an improved Polishing Technique for Aluminum Mirrors. Using one single material for both optical components and mechanical structure simplifies the design of a cryogenic instrument significantly, it is very beneficial during instrument test and verification, and makes the instrument insensitive to temperature changes. Aluminum has been the main material used for cryogenic optical instruments, and optical aluminum mirrors are generally diamond turned. The application of a polishable hard top coating like nickel removes excess stray light caused by the groove pattern, but limits the degree of lightweighting of the mirrors due to the bi-metal effect. By directly polishing the aluminum mirror surface, the recent developments at Astron allow for using a non-exotic material for light weighted yet accurate optical mirrors, with a lower surface roughness ( 1nm RMS), higher surface accuracy and reduced light scattering. This paper presents the techniques, obtained results and a global comparison with alternative lightweight mirror solutions. Recent discussions indicate possible extensions of the extreme light weight technology to alternative materials such as Zerodur or Silicon Carbide.
NASA Technical Reports Server (NTRS)
Mcguire, Gary E. (Editor); Mcintyre, Dale C. (Editor); Hofmann, Siegfried (Editor)
1991-01-01
A conference on metallurgical coatings and thin films produced papers in the areas of coatings for use at high temperatures; hard coatings and deposition technologies; diamonds and related materials; tribological coatings/surface modifications; thin films for microelectronics and high temperature superconductors; optical coatings, film characterization, magneto-optics, and guided waves; and methods for characterizing films and modified surfaces.
RMB identification based on polarization parameters inversion imaging
NASA Astrophysics Data System (ADS)
Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang
2016-10-01
Social order is threatened by counterfeit money. Conventional anti-counterfeit technology is much too old to identify its authenticity or not. The intrinsic difference between genuine notes and counterfeit notes is its paper tissue. In this paper a new technology of detecting RMB is introduced, the polarization parameter indirect microscopic imaging technique. A conventional reflection microscopic system is used as the basic optical system, and inserting into it with polarization-modulation mechanics. The near-field structural characteristics can be delivered by optical wave and material coupling. According to coupling and conduction physics, calculate the changes of optical wave parameters, then get the curves of the intensity of the image. By analyzing near-field polarization parameters in nanoscale, finally calculate indirect polarization parameter imaging of the fiber of the paper tissue in order to identify its authenticity.
Next-generation mid-infrared sources
NASA Astrophysics Data System (ADS)
Jung, D.; Bank, S.; Lee, M. L.; Wasserman, D.
2017-12-01
The mid-infrared (mid-IR) is a wavelength range with a variety of technologically vital applications in molecular sensing, security and defense, energy conservation, and potentially in free-space communication. The recent development and rapid commercialization of new coherent mid-infrared sources have spurred significant interest in the development of mid-infrared optical systems for the above applications. However, optical systems designers still do not have the extensive optical infrastructure available to them that exists at shorter wavelengths (for instance, in the visible and near-IR/telecom wavelengths). Even in the field of optoelectronic sources, which has largely driven the growing interest in the mid-infrared, the inherent limitations of state-of-the-art sources and the gaps in spectral coverage offer opportunities for the development of new classes of lasers, light emitting diodes and emitters for a range of potential applications. In this topical review, we will first present an overview of the current state-of-the-art mid-IR sources, in particular thermal emitters, which have long been utilized, and the relatively new quantum- and interband-cascade lasers, as well as the applications served by these sources. Subsequently, we will discuss potential mid-infrared applications and wavelength ranges which are poorly served by the current stable of mid-IR sources, with an emphasis on understanding the fundamental limitations of the current source technology. The bulk of the manuscript will then explore both past and recent developments in mid-infrared source technology, including narrow bandgap quantum well lasers, type-I and type-II quantum dot materials, type-II superlattices, highly mismatched alloys, lead-salts and transition-metal-doped II-VI materials. We will discuss both the advantages and limitations of each of the above material systems, as well as the potential new applications which they might serve. All in all, this topical review does not aim to provide a survey of the current state of the art for mid-IR sources, but instead looks primarily to provide a picture of potential next-generation optical and optoelectronic materials systems for mid-IR light generation.
NASA Astrophysics Data System (ADS)
Kotula, Anthony P.; Meyer, Matthew W.; De Vito, Francesca; Plog, Jan; Hight Walker, Angela R.; Migler, Kalman B.
2016-10-01
The design and performance of an instrument capable of simultaneous Raman spectroscopy, rheology, and optical microscopy are described. The instrument couples a Raman spectrometer and optical microscope to a rotational rheometer through an optically transparent base, and the resulting simultaneous measurements are particularly advantageous in situations where flow properties vary due to either chemical or conformational changes in molecular structure, such as in crystallization, melting, gelation, or curing processes. Instrument performance is demonstrated on two material systems that show thermal transitions. First, we perform steady state rotational tests, Raman spectroscopy, and polarized reflection microscopy during a melting transition in a cosmetic emulsion. Second, we perform small amplitude oscillatory shear measurements along with Raman spectroscopy and polarized reflection microscopy during crystallization of a high density polyethylene. The instrument can be applied to study structure-property relationships in a variety of soft materials including thermoset resins, liquid crystalline materials, colloidal suspensions undergoing sol-gel processes, and biomacromolecules. Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.
Direct write fabrication of waveguides and interconnects for optical printed wiring boards
NASA Astrophysics Data System (ADS)
Dingeldein, Joseph C.
Current copper based circuit technology is becoming a limiting factor in high speed data transfer applications as processors are improving at a faster rate than are developments to increase on board data transfer. One solution is to utilize optical waveguide technology to overcome these bandwidth and loss restrictions. The use of this technology virtually eliminates the heat and cross-talk loss seen in copper circuitry, while also operating at a higher bandwidth. Transitioning current fabrication techniques from small scale laboratory environments to large scale manufacturing presents significant challenges. Optical-to-electrical connections and out-of-plane coupling are significant hurdles in the advancement of optical interconnects. The main goals of this research are the development of direct write material deposition and patterning tools for the fabrication of waveguide systems on large substrates, and the development of out-of-plane coupler components compatible with standard fiber optic cabling. Combining these elements with standard printed circuit boards allows for the fabrication of fully functional optical-electrical-printed-wiring-boards (OEPWBs). A direct dispense tool was designed, assembled, and characterized for the repeatable dispensing of blanket waveguide layers over a range of thicknesses (25-225 μm), eliminating waste material and affording the ability to utilize large substrates. This tool was used to directly dispense multimode waveguide cores which required no UV definition or development. These cores had circular cross sections and were comparable in optical performance to lithographically fabricated square waveguides. Laser direct writing is a non-contact process that allows for the dynamic UV patterning of waveguide material on large substrates, eliminating the need for high resolution masks. A laser direct write tool was designed, assembled, and characterized for direct write patterning waveguides that were comparable in quality to those produced using standard lithographic practices (0.047 dB/cm loss for laser written waveguides compared to 0.043 dB/cm for lithographic waveguides). Straight waveguides, and waveguide turns were patterned at multimode and single mode sizes, and the process was characterized and documented. Support structures such as angled reflectors and vertical posts were produced, showing the versatility of the laser direct write tool. Commercially available components were implanted into the optical layer for out-of-plane routing of the optical signals. These devices featured spherical lenses on the input and output sides of a total internal reflection (TIR) mirror, as well as alignment pins compatible with standard MT design. Fully functional OEPWBs were fabricated featuring input and output out-of-plane optical signal routing with total optical losses not exceeding 10 dB. These prototypes survived thermal cycling (-40°C to 85°C) and humidity exposure (95±4% humidity), showing minimal degradation in optical performance. Operational failure occurred after environmental aging life testing at 110°C for 216 hours.
High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate
NASA Astrophysics Data System (ADS)
Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.
2017-04-01
Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices.
Thin film optical coatings for the ultraviolet spectral region
NASA Astrophysics Data System (ADS)
Torchio, P.; Albrand, G.; Alvisi, M.; Amra, C.; Rauf, H.; Cousin, B.; Otrio, G.
2017-11-01
The applications and innovations related to the ultraviolet field are today in strong growth. To satisfy these developments which go from biomedical to the large equipment like the Storage Ring Free Electron Laser, it is crucial to control with an extreme precision the optical performances, in using the substrates and the thin film materials impossible to circumvent in this spectral range. In particular, the reduction of the losses by electromagnetic diffusion, Joule effect absorption, or the behavior under UV luminous flows of power, resistance to surrounding particulate flows... become top priority which concerns a broad European and international community. Our laboratory has the theoretical, experimental and technological tools to design and fabricate numerous multilayer coatings with desirable optical properties in the visible and infrared spectral ranges. We have extended our expertise to the ultraviolet. We present here some results on high reflectivity multidielectric mirrors towards 250 nm in wavelength, produced by Ion Plating Deposition. The latter technique allows us to obtain surface treatments with low absorption and high resistance. We give in this study the UV transparent materials and the manufacturing technology which have been the best suited to meet requirements. Single UV layers were deposited and characterized. HfO2/SiO2 mirrors with a reflectance higher than 99% at 300 nm were obtained. Optical and non-optical characterizations such as UV spectrophotometric measurements, X-Ray Diffraction spectra, Scanning Electron Microscope and Atomic Force Microscope images were performed
NASA Astrophysics Data System (ADS)
Xia, Liu; Shan, Ning; Chao, Ban; Caoshan, Wang
2016-10-01
Metal materials have been used in aerospace and other industrial fields widely because of its excellent characteristics, so its internal defects detection is very important. Ultrasound technology is used widely in the fields of nondestructive detection because of its excellent characteristic. But the conventional detection instrument for ultrasound, which has shortcomings such as low intelligent level and long development cycles, limits its development. In this paper, the theory of ultrasound detection is analyzed. A computational method of the defects distributional position is given. The non-contact type optical fiber F-P interference cavity structure is designed and the length of origin cavity is given. The real-time on-line ultrasound detecting experiment devices for internal defects of metal materials is established based on the optical fiber F-P sensing system. The virtual instrument of automation ultrasound detection internal defects is developed based on LabVIEW software and the experimental study is carried out. The results show that this system can be used in internal defect real-time on-line locating of engineering structures effectively. This system has higher measurement precision. Relative error is 6.7%. It can be met the requirement of engineering practice. The system is characterized by simple operation, easy realization. The software has a friendly interface, good expansibility, and high intelligent level.
Optical coatings on laser crystals for HiPER project
NASA Astrophysics Data System (ADS)
Oulehla, Jindrich; Pokorný, Pavel; Lazar, Josef
2011-06-01
In this contribution we present a technology for deposition of interference coatings for optical components designed to operate as active media in power pulsed lasers. The aim of the technology is to prepare crystals for lasers for the HiPER project (High Power laser Energy Research) which should demonstrate the feasibility of laser driven fusion as a future energy source. Diode pumped solid state lasers (DPSSL) are the most likely option for fusion ignition. The choice of material for the lasers active medium is critical. Some of the most important properties include the ability to be antireflection coated to reduce the energy losses and increase the overall efficiency. This contribution deals with some of the materials considered to be candidates for slabs serving as the active medium of the DPSSLs. We tested Yb:YAG, Yb:CaF2 and Yb:KGW samples. As large amounts of heat need to be dissipated during laser operation, cryogenic cooling is necessary. Appropriate coating materials and techniques need to be chosen. Therefore differences between available coating techniques are investigated in terms of adhesion, enduring of stress resulting from temperature shocks, etc. Coated samples were placed in a specially designed cryogenic apparatus in order to simulate conditions similar to those in real life operation. Optical microscopy and spectrophotometer measurements were used for coating investigation after the conducted experiments.
Site Directed Nucleation and Growth of Ceramic Films on Metallic Surfaces
2009-04-30
the ultimate goal being the cell-free, nanocrystalline assembly of adaptive bioceramic material systems. The ability to control or determine the...applications/technology developments for this research include adaptive materials, wear-resistant coatings, and optical coatings and gratings, and many...by Checa et al., which identified lipid bound vesicles that form the surface membrane of gastropod nacre.19 Folia formation was observed by
Production of Bulk and Fiber Glass in Space
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The production of bulk glass and fiber glass in space and on the moon and Mars should lead to superior products. Specifically glass plates for windows and optical elements could be produced with theoretical strengths by production in vacuum. Water vapor is known to decrease glass strength by up to two orders of magnitude from theoretical. A low gravity glass plate apparatus prototype has been designed and built which uses centrifugal force to shape the glass and solar energy to melt the glass. Glass fiber could be produced on the moon or Mars from in-situ materials using standard technologies. This material could then be used as reinforcement in composite materials in construction of bases. Also, it has been shown that processing in reduced gravity suppresses crystallization in certain heavy metal fluoride glasses. It is proposed to reprocess optical fiber preforms on the space station and then pull these into optical fiber. It is estimated that the attenuation coefficient should be reduced by two orders of magnitude.
Inner Structure in the TW Hya Circumstellar Disk
NASA Astrophysics Data System (ADS)
Akeson, Rachel L.; Millan-Gabet, R.; Ciardi, D.; Boden, A.; Sargent, A.; Monnier, J.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.
2011-05-01
TW Hya is a nearby (50 pc) young stellar object with an estimated age of 10 Myr and signs of active accretion. Previous modeling of the circumstellar disk has shown that the inner disk contains optically thin material, placing this object in the class of "transition disks". We present new near-infrared interferometric observations of the disk material and use these data, as well as previously published, spatially resolved data at 10 microns and 7 mm, to constrain disk models based on a standard flared disk structure. Our model demonstrates that the constraints imposed by the spatially resolved data can be met with a physically plausible disk but this requires a disk containing not only an inner gap in the optically thick disk as previously suggested, but also some optically thick material within this gap. Our model is consistent with the suggestion by previous authors of a planet with an orbital radius of a few AU. This work was conducted at the NASA Exoplanet Science Institute, California Institute of Technology.
Investigation of UV photocurable microcapsule inner crosslink extent
NASA Astrophysics Data System (ADS)
Li, Xiaowei; Meng, Shuangshuang; Lai, Weidong; Yu, Haiyang; Fu, Guangsheng
2008-11-01
UV photocuring technology has encountered increased applications in recent years, which finds a variety of applications on protective coating of the optical-fiber, ink and optical recording materials. Combined with techniques of photohardenable, microcapsule, heat-sensitive and interface-polymerization method, a novel photoheat sensitive recording material of non-silver salt is explored in this thesis. Microcapsules are particulate substance with a core and shell structure, where photopolymerizable composition, monofunctional/polyfunctional diluents, photopolymerization initiator, photosensitivity enhancing agent and dye precursor are encapsulated as the internal phase. In this paper introduced the characteristics and curing mechanism of photo-sensitive microcapsule materials. The photocuring process may be a complex-function with photopolymerizable compound and photopolymerization initiator. For the sake of high photocuring speed and degree, optimal photo-sensitive materials were selected. In order to match with the light source excitation wavelength and absorb more wider ultraviolet band, combined type of photo-polymerization initiators were employed. With the kinds and dosage of photopolymerization initiator changing, the photocuring speed and quality can be ameliorated. Through studying the UV-visible absorption spectrum and infra-red spectrum of the material , the optical response property of the inner compound can be obtained.
NASA Astrophysics Data System (ADS)
Doushkina, Valentina
2010-08-01
Innovative hybrid glass-polymer optical solutions on a component, module, or system level offer thermal stability of glass with low manufacturing cost of polymers reducing component weight, enhancing the safety and appeal of the products. Narrow choice of polymer materials is compensated by utilizing sophisticated optical surfaces such as refractive, reflective, and diffractive substrates with spherical, aspherical, cylindrical, and freeform prescriptions. Current advancements in polymer technology and injection molding capabilities placed polymer optics in the heart of many high tech devices and applications including Automotive Industry, Defense & Aerospace; Medical/Bio Science; Projection Displays, Sensors, Information Technology, Commercial and Industrial. This paper is about integration of polymer and glass optics for enhanced optical performance with reduced number of components, thermal stability, and low manufacturing cost. The listed advantages are not achievable when polymers or glass optics are used as stand-alone. The author demonstrates that integration of polymer and glass on component or optical system level on one hand offers high resolution and diffraction limited image quality, similar to the glass optics with stable refractive index and stable thermal performance when design is athermalized within the temperature range. On the other hand, the integrated hybrid solution significantly reduces cost, weight, and complexity, just like the polymer optics. The author will describe the design and analyzes process of combining glass and polymer optics for variety of challenging applications such as fast optics with low F/#, wide field of view lenses or systems, free form optics, etc.
Slab-coupled optical sensor fabrication using side-polished Panda fibers.
King, Rex; Seng, Frederick; Stan, Nikola; Cuzner, Kevin; Josephson, Chad; Selfridge, Richard; Schultz, Stephen
2016-11-01
A new device structure used for slab-coupled optical sensor (SCOS) technology was developed to fabricate electric field sensors. This new device structure replaces the D-fiber used in traditional SCOS technology with a side-polished Panda fiber. Unlike the D-fiber SCOS, the Panda fiber SCOS is made from commercially available materials and is simpler to fabricate. The Panda SCOS interfaces easier with lab equipment and exhibits ∼3 dB less loss at link points than the D-fiber SCOS. The optical system for the D-fiber is bandwidth limited by a transimpedance amplifier (TIA) used to amplify to the electric signal. The Panda SCOS exhibits less loss than the D-fiber and, as a result, does not require as high a gain setting on the TIA, which results in an overall higher bandwidth range. Results show that the Panda sensor also achieves comparable sensitivity results to the D-fiber SCOS. Although the Panda SCOS is not as sensitive as other side-polished fiber electric field sensors, it can be fabricated much easier because the fabrication process does not require special alignment techniques, and it is made from commercially available materials.
The Optical Society's 2016 topical meeting on optical interference coatings: introduction.
Ristau, Detlev; Li, Li; Sargent, Robert; Sytchkova, Anna
2017-02-01
This feature issue of Applied Optics is dedicated to the 13th Topical Meeting on Optical Interference Coatings, which was held June 19-24, 2016, in Tucson, Arizona, USA. The conference, taking place every three years, is a focal point for global technical interchange in the field of optical interference coatings and provides premier opportunities for people working in the field to present their new advances in research and development. Papers presented at the meeting covered a broad range of topics, including fundamental research on coating design theory, new materials, and deposition and characterization technologies, as well as the vast and growing number of applications in electronic displays, communication, optical instruments, high power and ultra-fast lasers, solar cells, space missions, gravitational wave detection, and many others.
Bai, Wubin; Yang, Hongjun; Ma, Yinji; Chen, Hao; Shin, Jiho; Liu, Yonghao; Yang, Quansan; Kandela, Irawati; Liu, Zhonghe; Kang, Seung-Kyun; Wei, Chen; Haney, Chad R; Brikha, Anlil; Ge, Xiaochen; Feng, Xue; Braun, Paul V; Huang, Yonggang; Zhou, Weidong; Rogers, John A
2018-06-26
Optical technologies offer important capabilities in both biological research and clinical care. Recent interest is in implantable devices that provide intimate optical coupling to biological tissues for a finite time period and then undergo full bioresorption into benign products, thereby serving as temporary implants for diagnosis and/or therapy. The results presented here establish a silicon-based, bioresorbable photonic platform that relies on thin filaments of monocrystalline silicon encapsulated by polymers as flexible, transient optical waveguides for accurate light delivery and sensing at targeted sites in biological systems. Comprehensive studies of the mechanical and optical properties associated with bending and unfurling the waveguides from wafer-scale sources of materials establish general guidelines in fabrication and design. Monitoring biochemical species such as glucose and tracking physiological parameters such as oxygen saturation using near-infrared spectroscopic methods demonstrate modes of utility in biomedicine. These concepts provide versatile capabilities in biomedical diagnosis, therapy, deep-tissue imaging, and surgery, and suggest a broad range of opportunities for silicon photonics in bioresorbable technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultra-Light Precision Membrane Optics
NASA Technical Reports Server (NTRS)
Moore, Jim; Gunter, Kent; Patrick, Brian; Marty, Dave; Bates, Kevin; Gatlin, Romona; Clayton, Bill; Rood, Bob; Brantley, Whitt (Technical Monitor)
2001-01-01
SRS Technologies and NASA Marshall Space Flight Center have conducted a research effort to explore the possibility of developing ultra-lightweight membrane optics for future imaging applications. High precision optical flats and spherical mirrors were produced under this research effort. The thin film mirrors were manufactured using surface replication casting of CPI(Trademark), a polyimide material developed specifically for UV hardness and thermal stability. In the course of this program, numerous polyimide films were cast with surface finishes better than 1.5 nanometers rms and thickness variation of less than 63 nanometers. Precision membrane optical flats were manufactured demonstrating better than 1/13 wave figure error when measured at 633 nanometers. The aerial density of these films is 0.037 kilograms per square meter. Several 0.5-meter spherical mirrors were also manufactured. These mirrors had excellent surface finish (1.5 nanometers rms) and figure error on the order of tens of microns. This places their figure error within the demonstrated correctability of advanced wavefront correction technologies such as real time holography.
Recent advances in integrated photonic sensors.
Passaro, Vittorio M N; de Tullio, Corrado; Troia, Benedetto; La Notte, Mario; Giannoccaro, Giovanni; De Leonardis, Francesco
2012-11-09
Nowadays, optical devices and circuits are becoming fundamental components in several application fields such as medicine, biotechnology, automotive, aerospace, food quality control, chemistry, to name a few. In this context, we propose a complete review on integrated photonic sensors, with specific attention to materials, technologies, architectures and optical sensing principles. To this aim, sensing principles commonly used in optical detection are presented, focusing on sensor performance features such as sensitivity, selectivity and rangeability. Since photonic sensors provide substantial benefits regarding compatibility with CMOS technology and integration on chips characterized by micrometric footprints, design and optimization strategies of photonic devices are widely discussed for sensing applications. In addition, several numerical methods employed in photonic circuits and devices, simulations and design are presented, focusing on their advantages and drawbacks. Finally, recent developments in the field of photonic sensing are reviewed, considering advanced photonic sensor architectures based on linear and non-linear optical effects and to be employed in chemical/biochemical sensing, angular velocity and electric field detection.
Recent Advances in Integrated Photonic Sensors
Passaro, Vittorio M. N.; de Tullio, Corrado; Troia, Benedetto; La Notte, Mario; Giannoccaro, Giovanni; De Leonardis, Francesco
2012-01-01
Nowadays, optical devices and circuits are becoming fundamental components in several application fields such as medicine, biotechnology, automotive, aerospace, food quality control, chemistry, to name a few. In this context, we propose a complete review on integrated photonic sensors, with specific attention to materials, technologies, architectures and optical sensing principles. To this aim, sensing principles commonly used in optical detection are presented, focusing on sensor performance features such as sensitivity, selectivity and rangeability. Since photonic sensors provide substantial benefits regarding compatibility with CMOS technology and integration on chips characterized by micrometric footprints, design and optimization strategies of photonic devices are widely discussed for sensing applications. In addition, several numerical methods employed in photonic circuits and devices, simulations and design are presented, focusing on their advantages and drawbacks. Finally, recent developments in the field of photonic sensing are reviewed, considering advanced photonic sensor architectures based on linear and non-linear optical effects and to be employed in chemical/biochemical sensing, angular velocity and electric field detection. PMID:23202223
Broken symmetries, non-reciprocity, and multiferroicity
Cheong, Sang-Wook; Talbayev, Diyar; Kiryukhin, Valery; ...
2018-04-03
The interplay of space and time symmetries, ferroic properties, chirality and notions of reciprocity determines many of the technologically important properties of materials such as optical diode effect, e.g., in polar ferromagnet FeZnMo 3O 8. Here, we illustrate these concepts, including the non-reciprocal directional dichroism, through a number of practical examples. In particular, the conditions for non-reciprocity of ferro-rotational order are discussed and the possible use of linear optical gyration is suggested as a way to detect ferro-rotational domains. In addition, we provide the means to achieve high-temperature optical diode effect and elucidate multiferroic behaviors as a result of helicalmore » vs. cycloidal spins. Finally, we identify different entities behaving similarly under all symmetry operations, which are useful to understand non-reciprocity and multiferroicity in various materials intuitively.« less
Broken symmetries, non-reciprocity, and multiferroicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheong, Sang-Wook; Talbayev, Diyar; Kiryukhin, Valery
The interplay of space and time symmetries, ferroic properties, chirality and notions of reciprocity determines many of the technologically important properties of materials such as optical diode effect, e.g., in polar ferromagnet FeZnMo 3O 8. Here, we illustrate these concepts, including the non-reciprocal directional dichroism, through a number of practical examples. In particular, the conditions for non-reciprocity of ferro-rotational order are discussed and the possible use of linear optical gyration is suggested as a way to detect ferro-rotational domains. In addition, we provide the means to achieve high-temperature optical diode effect and elucidate multiferroic behaviors as a result of helicalmore » vs. cycloidal spins. Finally, we identify different entities behaving similarly under all symmetry operations, which are useful to understand non-reciprocity and multiferroicity in various materials intuitively.« less
New Challenges in Tribology: Wear Assessment Using 3D Optical Scanners
Valigi, Maria Cristina; Logozzo, Silvia; Affatato, Saverio
2017-01-01
Wear is a significant mechanical and clinical problem. To acquire further knowledge on the tribological phenomena that involve freeform mechanical components or medical prostheses, wear tests are performed on biomedical and industrial materials in order to solve or reduce failures or malfunctions due to material loss. Scientific and technological advances in the field of optical scanning allow the application of innovative devices for wear measurements, leading to improvements that were unimaginable until a few years ago. It is therefore important to develop techniques, based on new instrumentations, for more accurate and reproducible measurements of wear. The aim of this work is to discuss the use of innovative 3D optical scanners and an experimental procedure to detect and evaluate wear, comparing this technique with other wear evaluation methods for industrial components and biomedical devices. PMID:28772905
New Challenges in Tribology: Wear Assessment Using 3D Optical Scanners.
Valigi, Maria Cristina; Logozzo, Silvia; Affatato, Saverio
2017-05-18
Wear is a significant mechanical and clinical problem. To acquire further knowledge on the tribological phenomena that involve freeform mechanical components or medical prostheses, wear tests are performed on biomedical and industrial materials in order to solve or reduce failures or malfunctions due to material loss. Scientific and technological advances in the field of optical scanning allow the application of innovative devices for wear measurements, leading to improvements that were unimaginable until a few years ago. It is therefore important to develop techniques, based on new instrumentations, for more accurate and reproducible measurements of wear. The aim of this work is to discuss the use of innovative 3D optical scanners and an experimental procedure to detect and evaluate wear, comparing this technique with other wear evaluation methods for industrial components and biomedical devices.
1999-04-01
NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. Optics replication uses reusable forms, called mandrels, to make telescope mirrors ready for final finishing. MSFC optical physicist Bill Jones monitors a device used to chill a mandrel, causing it to shrink and separate from the telescope mirror without deforming the mirror's precisely curved surface.
Shell Separation for Mirror Replication
NASA Technical Reports Server (NTRS)
1999-01-01
NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. Optics replication uses reusable forms, called mandrels, to make telescope mirrors ready for final finishing. MSFC optical physicist Bill Jones monitors a device used to chill a mandrel, causing it to shrink and separate from the telescope mirror without deforming the mirror's precisely curved surface.
NASA Astrophysics Data System (ADS)
Royer, François; Amata, Hadi; Parsy, François; Jamon, Damien; Ghibaudo, Elise; Broquin, Jean-Emmanuel; Neveu, Sophie
2012-01-01
The integration of magneto-optical materials with classical technologies being still a difficult problem, this study explores the possibility to realize a mode converter based on a hybrid structure. A composite magneto-optical layer made of a silica/zirconia matrix doped by magnetic nanoparticles is coated on the top face of ion-exchanged glass waveguides. Optical characterizations that have been carried out demonstrated the efficiency of these hybrid structures in terms of lateral confinement. Furthermore, TE to TM mode conversion has been observed when a longitudinal magnetic field is applied to the device. The amount of this conversion is analysed taking into account the magneto-optical confinement and the modal birefringence of the structure.
Secure communications using quantum cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, R.J.; Buttler, W.T.; Kwiat, P.G.
1997-08-01
The secure distribution of the secret random bit sequences known as {open_quotes}key{close_quotes} material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is an emerging technology for secure key distribution with single-photon transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). We have developed experimental quantum cryptography systems based on the transmission of non-orthogonal single-photon states to generate shared key material over multi-kilometer optical fiber paths and over line-of-sight links. In both cases, key material is built up using the transmission of a single-photon per bit ofmore » an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. In our optical fiber experiment we have performed quantum key distribution over 24-km of underground optical fiber using single-photon interference states, demonstrating that secure, real-time key generation over {open_quotes}open{close_quotes} multi-km node-to-node optical fiber communications links is possible. We have also constructed a quantum key distribution system for free-space, line-of-sight transmission using single-photon polarization states, which is currently undergoing laboratory testing. 7 figs.« less
Terrestrial applications from space technology
NASA Technical Reports Server (NTRS)
Clarks, H.
1985-01-01
NASA's Technology Utilization Program, which is concerned with transferring aerospace technologies to the public and private sectors, is described. The strategy for transferring the NASA technologies to engineering projects includes: (1) identification of the problem, (2) selection of an appropriate aerospace technology, (3) development of a partnership with the company, (4) implementation of the project, and (5) commercialization of the product. Three examples revealing the application of aerospace technologies to projects in biomedical engineering, materials, and automation and robotics are presented; the development of a programmable, implantable medication system and a programmable, mask-based optical correlator, and the improvement of heat and erosion resistance in continuous casting are examined.
Roadmap on optical energy conversion
Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; ...
2016-06-24
For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in themore » optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. As a result, it is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.« less
Review of Potential Wind Tunnel Balance Technologies
NASA Technical Reports Server (NTRS)
Burns, Devin E.; Williams, Quincy L.; Phillips, Ben D.; Commo, Sean A.; Ponder, Jonathon D.
2016-01-01
This manuscript reviews design, manufacture, materials, sensors, and data acquisition technologies that may benefit wind tunnel balances for the aerospace research community. Current state-of-the-art practices are used as the benchmark to consider advancements driven by researcher and facility needs. Additive manufacturing is highlighted as a promising alternative technology to conventional fabrication and has the potential to reduce both the cost and time required to manufacture force balances. Material alternatives to maraging steels are reviewed. Sensor technologies including piezoresistive, piezoelectric, surface acoustic wave, and fiber optic are compared to traditional foil based gages to highlight unique opportunities and shared challenges for implementation in wind tunnel environments. Finally, data acquisition systems that could be integrated into force balances are highlighted as a way to simplify the user experience and improve data quality. In summary, a rank ordering is provided to support strategic investment in exploring the technologies reviewed in this manuscript.
Luminescence of Eu(3+) doped SiO2 Thin Films and Glass Prepared by Sol-gel Technology
NASA Technical Reports Server (NTRS)
Castro, Lymari; Jia, Weiyi; Wang, Yanyun; Santiago, Miguel; Liu, Huimin
1998-01-01
Trivalent europium ions are an important luminophore for lighting and display. The emission of (5)D0 to (7)F2 transition exhibits a red color at about 610 nm, which is very attractive and fulfills the requirement for most red-emitting phosphors including lamp and cathode ray phosphorescence materials. Various EU(3+) doped phosphors have been developed, and luminescence properties have been extensively studied. On the other hand, sol-gel technology has been well developed by chemists. In recent years, applications of this technology to optical materials have drawn a great attention. Sol-gel technology provides a unique way to obtain homogeneous composition distribution and uniform doping, and the processing temperature can be very low. In this work, EU(3+) doped SiO2 thin films and glasses were prepared by sol-gel technology and their spectroscopic properties were investigated.
Characterization of passive polymer optical waveguides
NASA Astrophysics Data System (ADS)
Joehnck, Matthias; Kalveram, Stefan; Lehmacher, Stefan; Pompe, Guido; Rudolph, Stefan; Neyer, Andreas; Hofstraat, Johannes W.
1999-05-01
The characterization of monomode passive polymer optical devices fabricated according to the POPCORN technology by methods originated from electron, ion and optical spectroscopy is summarized. Impacts of observed waveguide perturbations on the optical characteristics of the waveguide are evaluated. In the POPCORN approach optical components for telecommunication applications are fabricated by photo-curing of liquid halogenated (meth)acrylates which have been applied on moulded thermoplastic substrates. For tuning of waveguide material refractive indices with respect to the substrate refractive index frequently comonomer mixtures are used. The polymerization characteristics, especially the polymerization kinetics of individual monomers, determine the formation of copolymers. Therefore the unsaturation as function of UV-illumination time in the formation of halogenated homo- and copolymers has been examined. From different suitable copolymer system, after characterization of their glass transition temperatures, their curing behavior and their refractive indices as function of the monomer ratios, monomode waveguides applying PMMA substrates have been fabricated. To examine the materials composition also in the 6 X 6 micrometers 2 waveguides they have been visualized by transmission electron microscopy. With this method e.g. segregation phenomena could be observed in the waveguide cross section characterization as well. The optical losses in monomode waveguides caused by segregation and other materials induce defects like micro bubbles formed as a result of shrinkage have been quantized by return loss measurements. Defects causing scattering could be observed by convocal laser scanning microscopy and by conventional light microscopy.
Hermann, Peter; Hoehl, Arne; Ulrich, Georg; Fleischmann, Claudia; Hermelink, Antje; Kästner, Bernd; Patoka, Piotr; Hornemann, Andrea; Beckhoff, Burkhard; Rühl, Eckart; Ulm, Gerhard
2014-07-28
We describe the application of scattering-type near-field optical microscopy to characterize various semiconducting materials using the electron storage ring Metrology Light Source (MLS) as a broadband synchrotron radiation source. For verifying high-resolution imaging and nano-FTIR spectroscopy we performed scans across nanoscale Si-based surface structures. The obtained results demonstrate that a spatial resolution below 40 nm can be achieved, despite the use of a radiation source with an extremely broad emission spectrum. This approach allows not only for the collection of optical information but also enables the acquisition of near-field spectral data in the mid-infrared range. The high sensitivity for spectroscopic material discrimination using synchrotron radiation is presented by recording near-field spectra from thin films composed of different materials used in semiconductor technology, such as SiO2, SiC, SixNy, and TiO2.
Diagnostic methods for CW laser damage testing
NASA Astrophysics Data System (ADS)
Stewart, Alan F.; Shah, Rashmi S.
2004-06-01
High performance optical coatings are an enabling technology for many applications - navigation systems, telecom, fusion, advanced measurement systems of many types as well as directed energy weapons. The results of recent testing of superior optical coatings conducted at high flux levels will be presented. The diagnostics used in this type of nondestructive testing and the analysis of the data demonstrates the evolution of test methodology. Comparison of performance data under load to the predictions of thermal and optical models shows excellent agreement. These tests serve to anchor the models and validate the performance of the materials and coatings.
Third-order nonlinear electro-optic measurements in the smectic-? phase
NASA Astrophysics Data System (ADS)
Nowicka, Kamila; Bielejewska, Natalia
2018-02-01
The chiral smectic subphase with three-layer structure, ?, is now of great interest from the point of view of device technologies such as multistate or symmetric switching. We report that the unique nonlinear electro-optic response can serve as precise mark of the phase transition into three-layer structure. The problem is illustrated with the first and third harmonic electro-optic spectra. Furthermore, the characteristic response of the helical liquid crystal phases correlated with particular collective modes using the Debye-type relaxation method for the well-known prototype liquid crystal material (MHPOBC) are presented.
NASA Astrophysics Data System (ADS)
Giraud, Philemon; Braillon, Julien; Delord, Christine; Raccurt, Olivier
2016-05-01
Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The objective is to develop new optical equipment for characterization of this solar absorber in condition of use that is to say in air and at elevated temperature. In this paper we present two new optical test benches developed for optical characterization of solar absorbers in condition of use up to 800°C. The first equipment is an integrated sphere with heated sample holder which measures the hemispherical reflectance between 280 and 2500 nm to calculate the solar absorbance at high temperature. The second optical test bench measures the emittance of samples up to 1000°C in the range of 1.25 to 28.57 µm. Results of high temperature measurements on a series of metallic absorbers with selective coating and refractory material for high thermal receiver are presented.
Selecting mirror materials for high-performance optical systems
NASA Astrophysics Data System (ADS)
Parsonage, Thomas B.
1990-11-01
The properties of four candidate mirror materials--beryllium, silicon carbide, a silicon carbide/aluminum iretal-matrix carposite and aluminum--are corrpared. Because of its high specific stiffness and dirrensional stability under changing mschanical and thermal loads , beryllium is the best choice . Berjllium mirrors have been made irore cost-conpetitive by new processing technologies in which mirror blanks are isostatically pressed to near-net shape directly fran beiyllium pc1ers. Isostatic pressing also improves material properties and mskes it possible to develop mirror rraterials with superior properties.
The development of composite materials for spacecraft precision reflector panels
NASA Technical Reports Server (NTRS)
Tompkins, Stephen S.; Bowles, David E.; Funk, Joan G.; Towell, Timothy W.; Lavoie, J. A.
1990-01-01
One of the critical technology needs for large precision reflectors required for future astrophysics and optical communications is in the area of structural materials. Therefore, a major area of the Precision Segmented Reflector Program at NASA is to develop lightweight composite reflector panels with durable, space environmentally stable materials which maintain both surface figure and required surface accuracy necessary for space telescope applications. Results from the materials research and development program at NASA Langley Research Center are discussed. Advanced materials that meet the reflector panel requirements are identified. Thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared to the baseline material.
NASA Astrophysics Data System (ADS)
Rezem, Maher; Kelb, Christian; Günther, Axel; Rahlves, Maik; Reithmeier, Eduard; Roth, Bernhard
2016-03-01
Micro-optical sensors based on optical waveguides are widely used to measure temperature, force and strain but also to detect biological and chemical substances such as explosives or toxins. While optical micro-sensors based on silicon technology require complex and expensive process technologies, a new generation of sensors based completely on polymers offer advantages especially in terms of low-cost and fast production techniques. We have developed a process to integrate micro-optical components such as embedded waveguides and optical interconnects into polymer foils with a thickness well below one millimeter. To enable high throughput production, we employ hot embossing technology, which is capable of reel-to-reel fabrication with a surface roughness in the optical range. For the waveguide fabrication, we used the thermoplastic polymethylmethacrylate (PMMA) as cladding and several optical adhesives as core materials. The waveguides are characterized with respect to refractive indices and propagation losses. We achieved propagation losses are as low as 0.3 dB/cm. Furthermore, we demonstrate coupling structures and their fabrication especially suited to integrate various light sources such as vertical-cavity surface-emitting lasers (VCSEL) and organic light emitting diodes (OLED) into thin polymer foils. Also, we present a concept of an all-polymer and waveguide based deformation sensor based on intensity modulation, which can be fabricated by utilizing our process. For future application, we aim at a low-cost and high-throughput reel-to-reel production process enabling the fabrication of large sensor arrays or disposable single-use sensing structures, which will open optical sensing to a large variety of application fields ranging from medical diagnosis to automotive sensing.
Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)
1996-01-01
There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.
NASA SBIR product catalog, 1991
NASA Technical Reports Server (NTRS)
1991-01-01
This catalog is a partial list of products of NASA SBIR (Small Business Innovation Research) projects that have advanced to some degree into Phase 3. While most of the products evolved from work conducted during SBIR Phase 1 and 2, a few advanced to commercial status solely from Phase 1 activities. The catalog presents information provided to NASA by SBIR contractors who wished to have their products exhibited at Technology 2001, a NASA-sponsored technology transfer conference held in San Jose, California, on December 4, 5, and 6, 1991. The catalog presents the product information in the following technology areas: computer and communication systems; information processing and AI; robotics and automation; signal and image processing; microelectronics; electronic devices and equipment; microwave electronic devices; optical devices and lasers; advanced materials; materials processing; materials testing and NDE; materials instrumentation; aerodynamics and aircraft; fluid mechanics and measurement; heat transfer devices; refrigeration and cryogenics; energy conversion devices; oceanographic instruments; atmosphere monitoring devices; water management; life science instruments; and spacecraft electromechanical systems.
DPSSL for direct dicing and drilling of dielectrics
NASA Astrophysics Data System (ADS)
Ashkenasi, David; Schwagmeier, M.
2007-02-01
New strategies in laser micro processing of glasses and other optically transparent materials are being developed with increasing interest and intensity using diode pumped solid state laser (DPSSL) systems generating short or ultra-short pulses in the optical spectra at good beam quality. Utilizing non-linear absorption channels, it can be demonstrated that ns green (532 nm) laser light can scribe, dice, full body cut and drill (flat) borofloat and borosilicate glasses at good quality. Outside of the correct choice in laser parameters, an intelligent laser beam management plays an important role in successful micro processing of glass. This application characterizes a very interesting alternative where standard methods demonstrate severe limitations such as diamond dicing, CO2 laser treatment or water jet cutting, especially for certain type of optical materials and/or geometric conditions. Application near processing examples using different DPSSL systems generating ns pulsed light at 532 nm in TEM 00 at average powers up to 10 W are presented and discussed in respect to potential applications in display technology, micro electronics and optics.
Demonstration of a Monolithic Micro-Spectrometer System
NASA Technical Reports Server (NTRS)
Rajic, S.; Egert, C. M.
1995-01-01
The starting design of a spectrometer based on a modified Czerny-Turner configuration containing five precision surfaces encapsulated in a monolithic structure is described. Since the purpose at the early stages of the development was to demonstrate the feasibility of the technology and not an attempt to address a specific sensing problem, the first substrate material chosen was optical quality polymethyl methacrylate (PMMA). The final system design decision was narrowed down to two possible configurations containing five and six precision surfaces. The five surface design was chosen since it contained one less precision optical surface, yet included multiple off-axis spheres. In this particular design and material system, the mass was kept below 7 g. The wavelength range (bandpass) design goal was 1 micrometer (0.6 - 1.6 micrometers). The PMMA is particularly transparent in this wavelength region and there are interesting effects to monitor within this band. The optical system was designed and optimized using the ZEMAX optical design software program to be entirely alignment free (self aligning).
Planar polymer and glass graded index waveguides for data center applications
NASA Astrophysics Data System (ADS)
Pitwon, Richard; Yamauchi, Akira; Brusberg, Lars; Wang, Kai; Ishigure, Takaaki; Schröder, Henning; Neitz, Marcel; Worrall, Alex
2016-03-01
Embedded optical waveguide technology for optical printed circuit boards (OPCBs) has advanced considerably over the past decade both in terms of materials and achievable waveguide structures. Two distinct classes of planar graded index multimode waveguide have recently emerged based on polymer and glass materials. We report on the suitability of graded index polymer waveguides, fabricated using the Mosquito method, and graded index glass waveguides, fabricated using ion diffusion on thin glass foils, for deployment within future data center environments as part of an optically disaggregated architecture. To this end, we first characterize the wavelength dependent performance of different waveguide types to assess their suitability with respect to two dominant emerging multimode transceiver classes based on directly modulated 850 nm VCSELs and 1310 silicon photonics devices. Furthermore we connect the different waveguide types into an optically disaggregated data storage system and characterize their performance with respect to different common high speed data protocols used at the intra and inter rack level including 10 Gb Ethernet and Serial Attached SCSI.
NCTM of liquids at high temperatures using polarization techniques
NASA Technical Reports Server (NTRS)
Krishnan, Shankar; Weber, J. K. Richard; Nordine, Paul C.; Schiffman, Robert A.
1990-01-01
Temperature measurement and control is extremely important in any materials processing application. However, conventional techniques for non-contact temperature measurement (mainly optical pyrometry) are very uncertain because of unknown or varying surface emittance. Optical properties like other properties change during processing. A dynamic, in-situ measurement of optical properties including the emittance is required. Intersonics is developing new technologies using polarized laser light scattering to determine surface emittance of freely radiating bodies concurrent with conventional optical pyrometry. These are sufficient to determine the true surface temperature of the target. Intersonics is currently developing a system called DAPP, the Division of Amplitude Polarimetric Pyrometer, that uses polarization information to measure the true thermodynamic temperature of freely radiating objects. This instrument has potential use in materials processing applications in ground and space based equipment. Results of thermophysical and thermodynamic measurements using laser reflection as a temperature measuring tool are presented. The impact of these techniques on thermophysical property measurements at high temperature is discussed.
Assurance Technology Challenges of Advanced Space Systems
NASA Technical Reports Server (NTRS)
Chern, E. James
2004-01-01
The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.
Design of intelligent mesoscale periodic array structures utilizing smart hydrogel
NASA Technical Reports Server (NTRS)
Sunkara, H. B.; Penn, B. G.; Frazier, D. O.; Weissman, J. M.; Asher, S. A.
1996-01-01
Mesoscale Periodic Array Structures (MPAS, also known as crystalline colloidal arrays), composed of aqueous or nonaqueous dispersions of self-assembled submicron colloidal spheres are emerging toward the development of advanced optical devices for technological applications. This is because of their unique optical diffraction properties and the ease with which these intriguing properties can be modulated experimentally. Moreover our recent advancements in this area which include 'locking' the liquid MPAS into solid or semisolid polymer matrices for greater stability with longer life span, and incorporation of CdS quantum dots and laser dyes into colloidal spheres to obtain nonlinear optical (NLO) responses further corroborate the use of MPAS in optical technology. Our long term goal is fabrication of all-optical and electro-optical devices such as spatial light modulators for optical signal processing and flat panel display devices by utilizing intelligent nonlinear periodic array structural materials. Here we show further progress in the design of novel linear MPAS which have the ability to sense and respond to an external source such as temperature. This is achieved by combining the self-assembly properties of polymer colloidal spheres and thermoshrinking properties of smart polymer gels. At selected temperatures the periodic array efficiently Bragg diffracts light and transmits most of the light at other temperatures. Hence these intelligent systems are of potential use as fixed notch filters optical switches or limiters to protect delicate optical sensors from high intensity laser radiation.
PREFACE: International Seminar on Science and Technology of Glass Materials (ISSTGM-2009)
NASA Astrophysics Data System (ADS)
Veeraiah, N.
2009-07-01
The progress of the human race is linked with the development of new materials and also the values they acquired in the course of time. Though the art of glass forming has been known from Egyptian civilization, the understanding and use of these glasses for technological applications only became possible once the structural aspects were revealed by the inspiring theories proposed by William H Zachariasen. Glass and glass ceramics have become the essential materials for modern technology. The applications of these materials are wide and cover areas such as optical communication, laser host, innovative architecture, bio-medical, automobile and space technology. As we master the technology, we must also learn to use it judiciously and for the overall development of all in this global village. The International Seminar on Science and Technology of Glass Materials (ISSTGM-2009) is organized to bring together scientists, academia and industry in order to discuss various aspects of the technology and to inspire young scholars to take up fruitful research. Various topics such as glass formation and glass-ceramics, glass structure, applications of glass and glass ceramics in nuclear waste management, radiation dosimetry, electronics and information technology, biotechnological applications, bulk metallic glasses, glasses containing nano-particles, hybrid glasses, novel glasses and applications in photonics, Non-linear optics and energy generation were discussed. In this volume, 59 research articles covering 18 invited talks, 10 oral presentations and 31 poster presentations are included. We hope these will serve as a valuable resource to all the scientists and scholars working with glass materials. Acharya Nagarjuna University, established in 1976, is named after the great Buddhist preceptor and philosopher, Acharya Nagarjuna, who founded a university on the banks of river Krishna some centuries ago. The University is situated between Vijayawada and Guntur, the famous commercial and academic centers of Andhra Pradesh, India. The Departments of Physics of Acharya Nagarjuna University and the Nuzvid Campus have existed since the inception of the University. For the past decade and a half, these Departments have been actively involved in research on glass materials. More than 200 research articles have been published by staff members of these departments exclusively on glass materials. A number of Major Research Projects are being carried out by the staff members of these Departments. The organizing committee is indebted to all the scientists and scholars for their active participation in the seminar and their contribution to this proceedings. The committee expresses its gratitude to the authorities of Acharya Nagarjuna University (The Vice-Chancellor, The Rector and The Registrar), Department of Atomic Energy, Board of Research in Nuclear Sciences, Department of Science and Technology, Council of Scientific and Industrial Research, Defence Research and Development Organization and AP State Council of Science and Technology for their financial support. The committee thanks the IOP: Conference Series publisher for publishing this proceedings which added value to the seminar. Professor N Veeraiah Convener and Editor-in-Chief Professor D Krishna Rao Co-Convener
NASA Astrophysics Data System (ADS)
Gan, Haiyong; Zhang, Hongxi; DeRose, Christopher T.; Norwood, Robert A.; Fallahi, Mahmoud; Luo, Jingdong; Jen, Alex K.-Y.; Liu, Boyang; Ho, Seng-Tiong; Peyghambarian, Nasser
2007-02-01
Fabry-Perot etalons using electro-optic (EO) organic materials can be used for devices such as tunable filters and spatial light modulators (SLM's) for wavelength division multiplexing (WDM) communication systems 1-5 and ultrafast imaging systems. For these applications the SLM's need to have: (i) low insertion loss, (ii) high speed operation, and (iii) large modulation depth with low drive voltage. Recently, there have been three developments which together can enhance the SLM performance to a higher level. First, low loss distributed Bragg reflector (DBR) mirrors are now used in SLM's to replace thin metal mirrors, resulting in reduced transmission loss, high reflectivity (>99%) and high finesse. Second, EO polymer materials have shown excellent properties for wide bandwidth optical modulation for information technology due to their fabrication flexibility, compatibility with high speed operation, and large EO coefficients at telecommunication wavelengths. For instance, the EO polymer AJL8/APC (AJL8: nonlinear optical chromophore, and APC: amorphous polycarbonate has recently been incorporated into waveguide modulators and achieved good performance for optical modulation. Finally, very low loss transparent conducting oxide (TCO) electrodes have drawn increasing attention for applications in optoelectronic devices. Here we will address how the low loss indium oxide (In IIO 3) electrodes with an absorption coefficient ~1000/cm and conductivity ~204 S/cm can help improve the modulation performance of EO polymer Fabry-Pérot étalons using the advanced electro-optic (EO) polymer material (AJL8/APC). A hybrid etalon structure with one highly conductive indium tin oxide (ITO) electrode outside the etalon cavity and one low-absorption In IIO 3 electrode inside etalon cavity has been demonstrated. High finesse (~234), improved effective applied voltage ratio (~0.25), and low insertion loss (~4 dB) have been obtained. A 10 dB isolation ratio and ~10% modulation depth at 200 kHz with only 5 V applied voltage have been achieved. These results indicate that such etalons are very promising candidates for ultrafast spatial light modulation in information technology.
Modified rod-in-tube for high-NA tellurite glass fiber fabrication: materials and technologies.
Chen, Qiuling; Wang, Hui; Wang, Qingwei; Chen, Qiuping; Hao, Yinlei
2015-02-01
In this paper, we report the whole fabrication process for high-numerical aperture (NA) tellurite glass fibers from material preparation to preform fabrication, and eventually, fiber drawing. A tellurite-based high-NA (0.9) magneto-optical glass fiber was drawn successfully and characterized. First, matchable core and cladding glasses were fabricated and matched in terms of physical properties. Second, a uniform bubble-free preform was fabricated by means of a modified rod-in-tube technique. Finally, the fiber drawing process was studied and optimized. The high-NA fibers (∅(core), 40-50 μm and ∅(cladding), 120-130 μm) so obtained were characterized for their geometrical and optical properties.
NASA Astrophysics Data System (ADS)
Mertus, Lou; Symmons, Alan
2012-10-01
In recent years, the trend within the molded optics community has been an overall advancement in the capability to diamond grind molds using a variety of grinding techniques. Improvements in grinding equipment, materials and tooling have enabled higher quality ceramic and carbide molds and thereby lenses. Diamond turned molds from ductile metals are still used prevalently throughout the molding industry. Each technology presents a unique set of advantages and disadvantages whether used for precision injection molding of plastic optics or precision glass molding. This paper reviews the manufacturing techniques for each approach and applicable molding process. The advantages and disadvantages of each are compared and analyzed. The subtle differences that exist in optics molded from each technique and the impact they have on the performance in various applications is reviewed. Differences stemming from tooling material properties, material-specific minor defects, as well as cutting and grinding process-induced artifacts are described in detail as well as their influence on the roughness, waviness, and form errors present on the molded surface. A comparison with results between similar surfaces for both diamond grinding and diamond turning is presented.
Keeping Up: Change, Currency and Accuracy.
ERIC Educational Resources Information Center
Hull, Darrell; Young, Marion
1999-01-01
Describes the curriculum-morphing process used by the Center for Occupational Research and Development (CORD) to develop curriculum materials in laser electro-optics technology (LEOT). Discusses this innovative developmental project as one in which faculty and curriculum developers work together to resolve the problem of static curriculum…
The Videodisc as a Pilot Project of the Public Archives of Canada.
ERIC Educational Resources Information Center
Mole, Dennis
1981-01-01
Discusses a project in which a large variety of materials from the collection of the Canadian Public Archives were recorded and played back using laser optical videodisc technology. The videodisc's capabilities for preserving, storing, and retrieving information are discussed. (Author/JJD)
Emerging Nanophotonic Applications Explored with Advanced Scientific Parallel Computing
NASA Astrophysics Data System (ADS)
Meng, Xiang
The domain of nanoscale optical science and technology is a combination of the classical world of electromagnetics and the quantum mechanical regime of atoms and molecules. Recent advancements in fabrication technology allows the optical structures to be scaled down to nanoscale size or even to the atomic level, which are far smaller than the wavelength they are designed for. These nanostructures can have unique, controllable, and tunable optical properties and their interactions with quantum materials can have important near-field and far-field optical response. Undoubtedly, these optical properties can have many important applications, ranging from the efficient and tunable light sources, detectors, filters, modulators, high-speed all-optical switches; to the next-generation classical and quantum computation, and biophotonic medical sensors. This emerging research of nanoscience, known as nanophotonics, is a highly interdisciplinary field requiring expertise in materials science, physics, electrical engineering, and scientific computing, modeling and simulation. It has also become an important research field for investigating the science and engineering of light-matter interactions that take place on wavelength and subwavelength scales where the nature of the nanostructured matter controls the interactions. In addition, the fast advancements in the computing capabilities, such as parallel computing, also become as a critical element for investigating advanced nanophotonic devices. This role has taken on even greater urgency with the scale-down of device dimensions, and the design for these devices require extensive memory and extremely long core hours. Thus distributed computing platforms associated with parallel computing are required for faster designs processes. Scientific parallel computing constructs mathematical models and quantitative analysis techniques, and uses the computing machines to analyze and solve otherwise intractable scientific challenges. In particular, parallel computing are forms of computation operating on the principle that large problems can often be divided into smaller ones, which are then solved concurrently. In this dissertation, we report a series of new nanophotonic developments using the advanced parallel computing techniques. The applications include the structure optimizations at the nanoscale to control both the electromagnetic response of materials, and to manipulate nanoscale structures for enhanced field concentration, which enable breakthroughs in imaging, sensing systems (chapter 3 and 4) and improve the spatial-temporal resolutions of spectroscopies (chapter 5). We also report the investigations on the confinement study of optical-matter interactions at the quantum mechanical regime, where the size-dependent novel properties enhanced a wide range of technologies from the tunable and efficient light sources, detectors, to other nanophotonic elements with enhanced functionality (chapter 6 and 7).
The 22nd International Conference on Optical Fibre Sensors, OFS-22
NASA Astrophysics Data System (ADS)
Liao, Yianbiao; Jin, Wei; Jones, Julian; Tatam, Ralph
2013-09-01
In October 2013, the 22nd International Conference on Optical Fibre Sensors was held in Beijing, attracting about 500 participants with 417 presentations. The conference began in 1983 in London, and in the subsequent 30 years has defined the subject. The conference is held approximately every 18 months, and rotates between three world regions: Asia/Pacific, Europe and the Americas. The conference is not 'owned' by any learned society or professional institution, but is organized by a self-sustaining international steering committee. This special feature represents the sixth occasion on which Measurement Science and Technology has published papers based on a development of a cross-section of work presented at the conference. The subject of optical fibre sensors has its beginnings in the enabling technologies of the optical fibre itself and the development of laser technologies suitable for practical use in demanding real-world applications. But the real driver for the subject in its early years was in the development of systems for defence applications, most notably for strategic-grade sea-bed hydrophone arrays for submarine detection, and the optical fibre gyroscope (the community has recently celebrated the 35th anniversary of its earliest publication) for aerospace navigation. Both applications continue to be important, but now with extensive civil applications: hydrophones for oil exploration and reservoir monitoring and management, and fibre gyroscopes for applications ranging from those requiring low cost and mass production (such as industrial robots and in agricultural machinery) to the most exotic and highest performance for space applications. The articles in this special feature exemplify the principal themes of the subject: enabling technologies, application-specific developments and systems considerations. In recent years, perhaps the most important—indeed, dominant—enabling technologies have been based on structuring of fibres: longitudinally, as in Bragg gratings, or transversely, using the science of metamaterials to produce microstructured fibres (e.g. photonic crystal fibres). In-fibre gratings continue to provide new types of sensor based on wavelength encoding, or for wavelength control for specialized sources or detection techniques. Microstructured fibres, meanwhile, provide materials with dispersion characteristics unattainable with conventional materials, as well as otherwise unfeasible physical characteristics that can be tailored to specific sensing applications. Examples of these types of technologies can be found in the following articles. The fields of application of optical fibre sensors, even if restricted to those presented at the conference, would be too lengthy to enumerate here. However, in this issue there are examples from medicine, transport, chemical sensing and electric power distribution, amongst others. An important advantage conferred by optical fibre sensors is the ability with which they can be multiplexed to form large arrays, interrogated via a single fibre, a topic that forms the subject of a number of papers in the issue. Lastly, as fibre sensors become the technology of choice in widespread applications, the issue of formal measurement standards begins to become important, and it is evidence of the maturity of the field that the subject is addressed in one of the papers published here: optical fibre sensors can now surely be said to have progressed from the physics laboratory to become a mainstream engineering reality.
Optically induced metastability in Cu(In,Ga)Se 2
Jensen, S. A.; Kanevce, A.; Mansfield, L. M.; ...
2017-10-23
Cu(In,Ga)Se 2 (CIGS) is presently the most efficient thin-film photovoltaic technology with efficiencies exceeding 22%. An important factor impacting the efficiency is metastability, where material changes occur over timescales of up to weeks during light exposure. A previously proposed (V Se -V Cu ) divacancy model presents a widely accepted explanation. We present experimental evidence for the optically induced metastability transition and expand the divacancy model with first-principles calculations. Using photoluminescence excitation spectroscopy, we identify a sub-bandgap optical transition that severely deteriorates the carrier lifetime. This is in accordance with the expanded divacancy model, which predicts that states below themore » conduction band are responsible for the metastability change. We determine the density–capture cross-section product of the induced lifetime-limiting states and evaluate their impact on device performance. The experimental and theoretical findings presented can allow assessment of metastability characteristics of leading thin-film photovoltaic technologies.« less
Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties.
Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu
2016-01-14
By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.
Synchronized femtosecond laser pulse switching system based nano-patterning technology
NASA Astrophysics Data System (ADS)
Sohn, Ik-Bu; Choi, Hun-Kook; Yoo, Dongyoon; Noh, Young-Chul; Sung, Jae-Hee; Lee, Seong-Ku; Ahsan, Md. Shamim; Lee, Ho
2017-07-01
This paper demonstrates the design and development of a synchronized femtosecond laser pulse switching system and its applications in nano-patterning of transparent materials. Due to synchronization, we are able to control the location of each irradiated laser pulse in any kind of substrate. The control over the scanning speed and scanning step of the laser beam enables us to pattern periodic micro/nano-metric holes, voids, and/or lines in various materials. Using the synchronized laser system, we pattern synchronized nano-holes on the surface of and inside various transparent materials including fused silica glass and polymethyl methacrylate to replicate any image or pattern on the surface of or inside (transparent) materials. We also investigate the application areas of the proposed synchronized femtosecond laser pulse switching system in a diverse field of science and technology, especially in optical memory, color marking, and synchronized micro/nano-scale patterning of materials.
Status and applications of diamond and diamond-like materials: An emerging technology
NASA Technical Reports Server (NTRS)
1990-01-01
Recent discoveries that make possible the growth of crystalline diamond by chemical vapor deposition offer the potential for a wide variety of new applications. This report takes a broad look at the state of the technology following from these discoveries in relation to other allied materials, such as high-pressure diamond and cubic boron nitride. Most of the potential defense, space, and commercial applications are related to diamond's hardness, but some utilize other aspects such as optical or electronic properties. The growth processes are reviewed, and techniques for characterizing the resulting materials' properties are discussed. Crystalline diamond is emphasized, but other diamond-like materials (silicon carbide, amorphous carbon containing hydrogen) are also examined. Scientific, technical, and economic problem areas that could impede the rapid exploitation of these materials are identified. Recommendations are presented covering broad areas of research and development.
Tao, Hu; Hwang, Suk-Won; Marelli, Benedetto; An, Bo; Moreau, Jodie E.; Yang, Miaomiao; Brenckle, Mark A.; Kim, Stanley; Kaplan, David L.; Rogers, John A.; Omenetto, Fiorenzo G.
2014-01-01
A paradigm shift for implantable medical devices lies at the confluence between regenerative medicine, where materials remodel and integrate in the biological milieu, and technology, through the use of recently developed material platforms based on biomaterials and bioresorbable technologies such as optics and electronics. The union of materials and technology in this context enables a class of biomedical devices that can be optically or electronically functional and yet harmlessly degrade once their use is complete. We present here a fully degradable, remotely controlled, implantable therapeutic device operating in vivo to counter a Staphylococcus aureus infection that disappears once its function is complete. This class of device provides fully resorbable packaging and electronics that can be turned on remotely, after implantation, to provide the necessary thermal therapy or trigger drug delivery. Such externally controllable, resorbable devices not only obviate the need for secondary surgeries and retrieval, but also have extended utility as therapeutic devices that can be left behind at a surgical or suturing site, following intervention, and can be externally controlled to allow for infection management by either thermal treatment or by remote triggering of drug release when there is retardation of antibiotic diffusion, deep infections are present, or when systemic antibiotic treatment alone is insufficient due to the emergence of antibiotic-resistant strains. After completion of function, the device is safely resorbed into the body, within a programmable period. PMID:25422476
Tao, Hu; Hwang, Suk-Won; Marelli, Benedetto; An, Bo; Moreau, Jodie E; Yang, Miaomiao; Brenckle, Mark A; Kim, Stanley; Kaplan, David L; Rogers, John A; Omenetto, Fiorenzo G
2014-12-09
A paradigm shift for implantable medical devices lies at the confluence between regenerative medicine, where materials remodel and integrate in the biological milieu, and technology, through the use of recently developed material platforms based on biomaterials and bioresorbable technologies such as optics and electronics. The union of materials and technology in this context enables a class of biomedical devices that can be optically or electronically functional and yet harmlessly degrade once their use is complete. We present here a fully degradable, remotely controlled, implantable therapeutic device operating in vivo to counter a Staphylococcus aureus infection that disappears once its function is complete. This class of device provides fully resorbable packaging and electronics that can be turned on remotely, after implantation, to provide the necessary thermal therapy or trigger drug delivery. Such externally controllable, resorbable devices not only obviate the need for secondary surgeries and retrieval, but also have extended utility as therapeutic devices that can be left behind at a surgical or suturing site, following intervention, and can be externally controlled to allow for infection management by either thermal treatment or by remote triggering of drug release when there is retardation of antibiotic diffusion, deep infections are present, or when systemic antibiotic treatment alone is insufficient due to the emergence of antibiotic-resistant strains. After completion of function, the device is safely resorbed into the body, within a programmable period.
NASA Astrophysics Data System (ADS)
Naik, Ramakanta; Sahoo, Pragyan Paramita; Sripan, C.; Ganesan, R.
2016-12-01
Amorphous chalcogenide semiconducting materials are playing a pivotal role in modern technology. Such type of materials are very sensitive to electromagnetic radiations which is useful for infrared optics. In the present report, Bi doped in As40S60 thin films (As40S60, Bi06As40S54) of 800 nm thickness were prepared by thermal evaporation method. The Bi06As40S54 thin film is subjected to laser irradiation for photo induced study. The X-ray diffraction study reveals no structural change due to laser irradiation. The optical parameters are affected by both Bi addition and laser irradiation which brings a change in the transmitivity and absorption coefficient. The indirect optical band gap is found to be increased by 0.08 eV with laser irradiation with the decrease in disorderness. The Tauc parameter and Urbach energy which measures the degree of disorderness changes with Bi doping and irradiation. The refractive index is modified by the illumination process which is useful for optical applications. The optical property change is well supported by the X-ray photoelectron core level spectra.
NASA Astrophysics Data System (ADS)
Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.
2017-09-01
Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.
NASA Astrophysics Data System (ADS)
Weiss, J. R. M.; Lamprecht, T.; Meier, N.; Dangel, R.; Horst, F.; Jubin, D.; Beyeler, R.; Offrein, B. J.
2010-02-01
We report on the co-packaging of electrical CMOS transceiver and VCSEL chip arrays on a flexible electrical substrate with optical polymer waveguides. The electro-optical components are attached to the substrate edge and butt-coupled to the waveguides. Electrically conductive silver-ink connects them to the substrate at an angle of 90°. The final assembly contacts the surface of a package laminate with an integrated compressible connector. The module can be folded to save space, requires only a small footprint on the package laminate and provides short electrical high-speed signal paths. With our approach, the electro-optical package becomes a compact electro-optical module with integrated polymer waveguides terminated with either optical connectors (e.g., at the card edge) or with an identical assembly for a second processor on the board. Consequently, no costly subassemblies and connectors are needed, and a very high integration density and scalability to virtually arbitrary channel counts and towards very high data rates (20+ Gbps) become possible. Future cost targets of much less than US$1 per Gbps will be reached by employing standard PCB materials and technologies that are well established in the industry. Moreover, our technology platform has both electrical and optical connectivity and functionality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boussaa, S. Anas, E-mail: sabiha.anas@gmail.com; Kheloufi, A.; Kefaifi, A.
Raw materials are essential for the functioning of modern societies, and access to these raw materials is vital to the world economy. Sustainable development, both globally level, raises important new challenges associated with access and efficient use of raw materials. High purity quartz, is consider as a critical raw material and it is a rare commodity that only forms under geological conditions where a narrow set of chemical and physical parameters is fulfilled. When identified and following special beneficiation techniques, high purity quartz obtains very attractive prices and is applied in high technology sectors that currently are under rapid expansionmore » such as photovoltaic solar cells, silicon metal - oxide wafers in the semiconductor industry and long distance optical fibers that are used in communication networks. Crystalline silicon remains the principal material for photovoltaic technology. Metallurgical silicon is produced industrially by the reduction of silica with carbon in an electric arc furnace at temperatures higher than 2000 °C in the hottest parts, by a reaction that can be written ideally as: SiO{sub 2} + 2C = Si + 2CO. The aim of this study has been to test experimental methods for investigating the various physical and chemical proprieties of Hoggar quartz with different techniques: X Ray Fluorescence, infra-red spectroscopy, Scanning Electron Microscopy, Optic Microscopy, Carbon Analyzer and Vickers Hardness. The results show finally that the quartz has got good result in purity but need enrichment for the photovoltaic application.« less
Surface contamination analysis technology team overview
NASA Astrophysics Data System (ADS)
Burns, H. Dewitt, Jr.
1996-11-01
The surface contamination analysis technology (SCAT) team was originated as a working roup of NASA civil service, Space Shuttle contractor, and university groups. Participating members of the SCAT Team have included personnel from NASA Marshall Space Flight Center's Materials and Processes Laboratory and Langley Research Center's Instrument Development Group; contractors-Thiokol Corporation's Inspection Technology Group, AC Engineering support contractor, Aerojet, SAIC, and Lockheed MArtin/Oak Ridge Y-12 support contractor and Shuttle External Tank prime contractor; and the University of Alabama in Huntsville's Center for Robotics and Automation. The goal of the SCAT team as originally defined was to develop and integrate a multi-purpose inspection head for robotic application to in-process inspection of contamination sensitive surfaces. One area of interest was replacement of ozone depleting solvents currently used for surface cleanliness verification. The team approach brought together the appropriate personnel to determine what surface inspection techniques were applicable to multi-program surface cleanliness inspection. Major substrates of interest were chosen to simulate space shuttle critical bonding surface or surfaces sensitive to contamination such as fuel system component surfaces. Inspection techniques evaluated include optically stimulated electron emission or photoelectron emission; Fourier transform infrared spectroscopy; near infrared fiber optic spectroscopy; and, ultraviolet fluorescence. Current plans are to demonstrate an integrated system in MSFC's Productivity Enhancement Complex within five years from initiation of this effort in 1992. Instrumentation specifications and designs developed under this effort include a portable diffuse reflectance FTIR system built by Surface Optics Corporation and a third generation optically stimulated electron emission system built by LaRC. This paper will discuss the evaluation of the various techniques on a number of substrate materials contaminated with hydrocarbons, silicones, and fluorocarbons. Discussion will also include standards development for instrument calibration and testing.
Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis
NASA Astrophysics Data System (ADS)
Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; Hartig, K. C.; Phillips, M. C.
2018-06-01
Rapid, in-field, and non-contact isotopic analysis of solid materials is extremely important to a large number of applications, such as nuclear nonproliferation monitoring and forensics, geochemistry, archaeology, and biochemistry. Presently, isotopic measurements for these and many other fields are performed in laboratory settings. Rapid, in-field, and non-contact isotopic analysis of solid material is possible with optical spectroscopy tools when combined with laser ablation. Laser ablation generates a transient vapor of any solid material when a powerful laser interacts with a sample of interest. Analysis of atoms, ions, and molecules in a laser-produced plasma using optical spectroscopy tools can provide isotopic information with the advantages of real-time analysis, standoff capability, and no sample preparation requirement. Both emission and absorption spectroscopy methods can be used for isotopic analysis of solid materials. However, applying optical spectroscopy to the measurement of isotope ratios from solid materials presents numerous challenges. Isotope shifts arise primarily due to variation in nuclear charge distribution caused by different numbers of neutrons, but the small proportional nuclear mass differences between nuclei of various isotopes lead to correspondingly small differences in optical transition wavelengths. Along with this, various line broadening mechanisms in laser-produced plasmas and instrumental broadening generated by the detection system are technical challenges frequently encountered with emission-based optical diagnostics. These challenges can be overcome by measuring the isotope shifts associated with the vibronic emission bands from molecules or by using the techniques of laser-based absorption/fluorescence spectroscopy to marginalize the effect of instrumental broadening. Absorption and fluorescence spectroscopy probe the ground state atoms existing in the plasma when it is cooler, which inherently provides narrower lineshapes, as opposed to emission spectroscopy which requires higher plasma temperatures to be able to detect thermally excited emission. Improvements in laser and detection systems and spectroscopic techniques have allowed for isotopic measurements to be carried out at standoff distances under ambient atmospheric conditions, which have expanded the applicability of optical spectroscopy-based isotopic measurements to a variety of scientific fields. These technological advances offer an in-situ measurement capability that was previously not available. This review will focus on isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing knowledge/technological gaps identified from the current literature and suggestions for the future work.
Refractive index measurement based on confocal method
NASA Astrophysics Data System (ADS)
An, Zhe; Xu, XiPing; Yang, JinHua; Qiao, Yang; Liu, Yang
2017-10-01
The development of transparent materials is closed to optoelectronic technology. It plays an increasingly important role in various fields. It is not only widely used in optical lens, optical element, optical fiber grating, optoelectronics, but also widely used in the building material, pharmaceutical industry with vessel, aircraft windshield and daily wear glasses.Regard of solving the problem of refractive index measurement in optical transparent materials. We proposed that using the polychromatic confocal method to measuring the refractive index of transparent materials. In this article, we describes the principle of polychromatic confocal method for measuring the refractive index of glass,and sketched the optical system and its optimization. Then we establish the measurement model of the refractive index, and set up the experimental system. In this way, the refractive index of the glass has been calibrated for refractive index experiment. Due to the error in the experimental process, we manipulated the experiment data to compensate the refractive index measurement formula. The experiment taking the quartz glass for instance. The measurement accuracy of the refractive index of the glass is +/-1.8×10-5. This method is more practical and accurate, especially suitable for non-contact measurement occasions, which environmental requirements is not high. Environmental requirements are not high, the ordinary glass production line up to the ambient temperature can be fully adapted. There is no need for the color of the measured object that you can measure the white and a variety of colored glass.
Technology Assessment of Laser-Assisted Materials Processing in Space
NASA Technical Reports Server (NTRS)
Nagarathnam, Karthik; Taminger, Karen M. B.
2001-01-01
Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, shock processing, and surface treatments. These attributes are attractive for the supportability of longer-term missions in space due to the multi-functionality of a single tool and the variety of materials that can be processed. However, current laser technology also has drawbacks for space-based applications, specifically size, power efficiency, lack of robustness, and problems processing highly reflective materials. A review of recent laser developments will be used to show how these issues may be reduced and indicate where further improvement is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. With the advent of recent breakthroughs in diode-pumped solid-state lasers and fiber optic technologies, the potential to perform multiple processing techniques is increasing significantly. Lasers with suitable wavelengths and beam properties have tremendous potential for supporting future space missions to the moon, Mars and beyond.
Optical coherence tomography and confocal microscopy investigations of dental prostheses
NASA Astrophysics Data System (ADS)
Negrutiu, Meda L.; Sinescu, Cosmin; Hughes, Michael; Bradu, Adrian; Rominu, Mihai; Todea, Carmen; Dobre, George; Podoleanu, Adrian
2008-09-01
Dental prostheses are very complex systems, heterogenous in structure, made up from various materials, with different physical properties. An essential question mark is on the physical, chemical and mechanical compatibility between these materials. They have to satisfy high stress requirements as well as esthetic challenges. The masticatory stress may induce fractures of the prostheses, which may be triggered by initial materials defects or by alterations of the technological process. The failures of dental prostheses lead to functional, esthetic and phonetic disturbances which finally render the prosthetic treatment inefficient. The purpose of this study is to evaluate the capability of en-face optical coherence tomography as a possible non-invasive high resolution method in supplying the necessary information on the material defects of dental prostheses and microleakage at prosthetic interfaces. C-scan and B-scan OCT images as well as confocal images are acquired from a large range of samples. Gaps between the dental interfaces and material defects are clearly exposed. We conclude that OCT can successfully be used as a noninvasive analysis method.
NASA Astrophysics Data System (ADS)
Ni, Wei-Tou; Han, Sen; Jin, Tao
2016-11-01
With the LIGO announcement of the first direct detection of gravitational waves (GWs), the GW Astronomy was formally ushered into our age. After one-hundred years of theoretical investigation and fifty years of experimental endeavor, this is a historical landmark not just for physics and astronomy, but also for industry and manufacturing. The challenge and opportunity for industry is precision and innovative manufacturing in large size - production of large and homogeneous optical components, optical diagnosis of large components, high reflectance dielectric coating on large mirrors, manufacturing of components for ultrahigh vacuum of large volume, manufacturing of high attenuating vibration isolation system, production of high-power high-stability single-frequency lasers, production of high-resolution positioning systems etc. In this talk, we address the requirements and methods to satisfy these requirements. Optical diagnosis of large optical components requires large phase-shifting interferometer; the 1.06 μm Phase Shifting Interferometer for testing LIGO optics and the recently built 24" phase-shifting Interferometer in Chengdu, China are examples. High quality mirrors are crucial for laser interferometric GW detection, so as for ring laser gyroscope, high precision laser stabilization via optical cavities, quantum optomechanics, cavity quantum electrodynamics and vacuum birefringence measurement. There are stringent requirements on the substrate materials and coating methods. For cryogenic GW interferometer, appropriate coating on sapphire or silicon are required for good thermal and homogeneity properties. Large ultrahigh vacuum components and high attenuating vibration system together with an efficient metrology system are required and will be addressed. For space interferometry, drag-free technology and weak-light manipulation technology are must. Drag-free technology is well-developed. Weak-light phase locking is demonstrated in the laboratories while weak-light manipulation technology still needs developments.
Capabilities of the Materials Contamination Team at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Burns, H. D.; Finckenor, M. M.; Boothe, R. E.; Albyn, K. C.; Finchum, C. A.
2003-01-01
The Materials Contamination Team of the Environmental Effects Group, Materials, Processes, and Manufacturing Department, has been recognized for its contribution to space flight, including space transportation, space science and flight projects, such as the reusable solid rocket motor, Chandra X-Ray Observatory, and the International Space Station. The Materials Contamination Team s realm of responsibility encompasses all phases of hardware development including design, manufacturing, assembly, test, transportation, launch-site processing, on-orbit exposure, return, and refurbishment if required. Contamination is a concern in the Space Shuttle with sensitivity bondlines and reactive fluid (liquid oxygen) compatibility as well as for sensitive optics, particularly spacecraft such as Hubble Space Telescope and Chandra X-Ray Observatory. The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The team of engineers and technicians also develop and evaluates new surface cleanliness inspection technologies. Databases are maintained by the team for proces! materials as well as outgassing and optical compatibility test results for specific environments.
NASA Astrophysics Data System (ADS)
Geyl, R.; Leplan, H.; Ruch, E.
2017-09-01
In this paper Safran-Reosc wants to share with the space community its recent work performed in the domain of space optics. Our main topic is a study about the advantages that freeform optical surfaces can offer to advanced space optics in term of compactness or performances. We have separated smart and extreme freeform in our design exploration work. Our second topic is to answer about the immediate question following: can we manufacture and test these freeform optics? We will therefore present our freeform optics capability, report recent achievement in extreme aspheric optics polishing and introduce to the industrialisation process of large off axis optics polishing for the ESO Extremely Large Telescope primary mirror segments. Thirdly we present our R-SiC polishing layer technology for SiC material. This technique has been developed to reduce costs, risks and schedule in the manufacturing of advanced SiC optics for Vis and IR applications.
Scanning holographic optical tweezers.
Shaw, L A; Panas, Robert M; Spadaccini, C M; Hopkins, J B
2017-08-01
The aim of this Letter is to introduce a new optical tweezers approach, called scanning holographic optical tweezers (SHOT), which drastically increases the working area (WA) of the holographic-optical tweezers (HOT) approach, while maintaining tightly focused laser traps. A 12-fold increase in the WA is demonstrated. The SHOT approach achieves its utility by combining the large WA of the scanning optical tweezers (SOT) approach with the flexibility of the HOT approach for simultaneously moving differently structured optical traps in and out of the focal plane. This Letter also demonstrates a new heuristic control algorithm for combining the functionality of the SOT and HOT approaches to efficiently allocate the available laser power among a large number of traps. The proposed approach shows promise for substantially increasing the number of particles that can be handled simultaneously, which would enable optical tweezers additive fabrication technologies to rapidly assemble microgranular materials and structures in reasonable build times.
Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics
NASA Astrophysics Data System (ADS)
Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal
2016-08-01
The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics.
CESIC: a new technology for lightweight and cost effective space instrument structures and mirrors
NASA Astrophysics Data System (ADS)
Devilliers, Christophe; Kroedel, Matthias R.
2005-08-01
For some years Alcatel Space has been interested in the development of a new material to produce lightweight, stiff, stable and cost effective structures and mirrors for space instrument. Cesic from ECM has been selected for its intrinsic properties (high specific modulus, high conductivity, quite low thermal expansion coefficient and high fracture toughness for a ceramic material), added to ample manufacturing capabilities. Under ESA responsibility, a flight representative optical bench of Cesic has been designed, manufactured and tested. The optical bench has been submitted with success to intensive vibration tests up to 80 g on shaker without problem and was tested down to 30 K showing very high stability. Cesic is also envisaged for large and lightweight space telescope mirrors. Coatings on the Cesic substrate have been developed and qualified for the most stringent optical needs. To prove the lightweight capability, a large Cesic mirror D=950 mm with an area mass of less than 25 kg/m2 has been designed, sized again launch loads and WFE performance, and then manufactured. Cesic is also envisaged for large future focal plane holding a large number of detectors assuring high stability thanks to its high thermal conductivity. A full size Cesic focal plane has been already successfully built and tested. Based on these successful results, Alcatel Space is now in position to propose for space projects this technology mastered in common with ECM both for mirrors and structures with new innovative concepts thanks to the manufacturing capabilities of this technology.
NASA Astrophysics Data System (ADS)
Mareeswaran, S.; Asaithambi, T.
2016-10-01
Now a day's crystals are the pillars of current technology. Crystals are applied in various fields like fiber optic communications, electronic industry, photonic industry, etc. Crystal growth is an interesting and innovative field in the subject of physics, chemistry, material science, metallurgy, chemical engineering, mineralogy and crystallography. In recent decades optically good quality of pure and metal doped KDP crystals have been grown by gel growth method in room temperature and its characterizations were studied. Gel method is a very simple and one of the easiest methods among the various crystal growth methods. Potassium dihydrogen phosphate KH2PO4 (KDP) continues to be an interesting material both academically and technologically. KDP is a delegate of hydrogen bonded materials which possess very good electrical and nonlinear optical properties in addition to interesting electro-optic properties. We made an attempt to grow pure and titanium oxide doped KDP crystals with various doping concentrations (0.002, 0.004, 0.006, 0.008 and 0.010) using gel method. The grown crystals were collected after 20 days. We get crystals with good quality and shaped crystals. The dc electrical conductivity (resistance, capacitance and dielectric constant) values of the above grown crystals were measured at two different frequencies (1KHz and 100 Hz) with a temperature range of 500C to 1200C using simple two probe setup with Q band digital LCR meter present in our lab. The electrical conductivity increases with the increase of temperature. Dielectric constants value of titanium oxide doped KDP crystal was slightly decreased compared with pure KDP crystals. Results were discussed in details.
Material platforms for spin-based photonic quantum technologies
NASA Astrophysics Data System (ADS)
Atatüre, Mete; Englund, Dirk; Vamivakas, Nick; Lee, Sang-Yun; Wrachtrup, Joerg
2018-05-01
A central goal in quantum optics and quantum information science is the development of quantum networks to generate entanglement between distributed quantum memories. Experimental progress relies on the quality and efficiency of the light-matter quantum interface connecting the quantum states of photons to internal states of quantum emitters. Quantum emitters in solids, which have properties resembling those of atoms and ions, offer an opportunity for realizing light-matter quantum interfaces in scalable and compact hardware. These quantum emitters require a material platform that enables stable spin and optical properties, as well as a robust manufacturing of quantum photonic circuits. Because no emitter system is yet perfect and different applications may require different properties, several light-matter quantum interfaces are being developed in various platforms. This Review highlights the progress in three leading material platforms: diamond, silicon carbide and atomically thin semiconductors.
Belt-MRF for large aperture mirrors.
Ren, Kai; Luo, Xiao; Zheng, Ligong; Bai, Yang; Li, Longxiang; Hu, Haixiang; Zhang, Xuejun
2014-08-11
With high-determinacy and no subsurface damage, Magnetorheological Finishing (MRF) has become an important tool in fabricating high-precision optics. But for large mirrors, the application of MRF is restricted by its small removal function and low material removal rate. In order to improve the material removal rate, shorten the processing cycle, we proposed a new MRF concept, named Belt-MRF to expand the application of MRF to large mirrors and made a prototype with a large remove function, using a belt instead of a very large polishing wheel to expand the polishing length. A series of experimental results on Silicon carbide (SiC) and BK 7 specimens and fabrication simulation verified that the Belt-MRF has high material removal rates, stable removal function and high convergence efficiency which makes it a promising technology for processing large aperture optical elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britten, J
WET-ETCH FIGURING (WEF) is an automated method of precisely figuring optical materials by the controlled application of aqueous etchant solution. This technology uses surface-tension-gradient-driven flow to confine and stabilize a wetted zone of an etchant solution or other aqueous processing fluid on the surface of an object. This wetted zone can be translated on the surface in a computer-controlled fashion for precise spatial control of the surface reactions occurring (e.g. chemical etching). WEF is particularly suitable for figuring very thin optical materials because it applies no thermal or mechanical stress to the material. Also, because the process is stress-free themore » workpiece can be monitored during figuring using interferometric metrology, and the measurements obtained can be used to control the figuring process in real-time--something that cannot be done with traditional figuring methods.« less
Porous silicon and diatoms micro-shells: an example of inverse biomimetic
NASA Astrophysics Data System (ADS)
De Tommasi, Edoardo; Rea, Ilaria; Rendina, Ivo; De Stefano, Luca
2011-05-01
Porous silicon (PSi) is by far a very useful technological platform for optical monitoring of chemical and biological substances and due to its peculiar physical and morphological properties it is worldwide used in sensing experiments. On the other hand, we have discovered a natural material, the micro-shells of marine diatoms, ubiquitous unicellular algae, which are made of hydrated amorphous silica, but, most of all, show geometrical structures made of complex patterns of pores which are surprisingly similar to those of porous silicon. Moreover, under laser irradiation, this material is photoluminescent and the photoluminescence is very sensitive to the surrounding atmosphere, which means that the material can act as a transducer. Starting from our experience on PSi devices, we explore the optical and photonic properties of marine diatoms micro-shells in a sort of inverse biomimicry.
High throughput light absorber discovery, Part 1: An algorithm for automated tauc analysis
Suram, Santosh K.; Newhouse, Paul F.; Gregoire, John M.
2016-09-23
High-throughput experimentation provides efficient mapping of composition-property relationships, and its implementation for the discovery of optical materials enables advancements in solar energy and other technologies. In a high throughput pipeline, automated data processing algorithms are often required to match experimental throughput, and we present an automated Tauc analysis algorithm for estimating band gap energies from optical spectroscopy data. The algorithm mimics the judgment of an expert scientist, which is demonstrated through its application to a variety of high throughput spectroscopy data, including the identification of indirect or direct band gaps in Fe 2O 3, Cu 2V 2O 7, and BiVOmore » 4. Here, the applicability of the algorithm to estimate a range of band gap energies for various materials is demonstrated by a comparison of direct-allowed band gaps estimated by expert scientists and by automated algorithm for 60 optical spectra.« less
Optical mounts for harsh environments
NASA Astrophysics Data System (ADS)
Mimovich, Mark E.; Griffee, Jonathan C.; Goodding, James C.
2009-08-01
Development and testing of a lightweight-kinematic optical mount with integrated passive vibration-and-shock mitigation technologies and simple / robust optical alignment functionality is presented. Traditionally, optical mounts are designed for use in laboratory environments where the thermal-mechanical environments are carefully controlled to preserve beam path conditions and background disturbances are minimized to facilitate precise optically based measurements. Today's weapon and surveillance systems, however, have optical sensor suites where static and dynamic alignment performance in the presence of harsh operating environments is required to nearly the same precision and where the system cannot afford the mass of laboratory-grade stabilized mounting systems. Jitter and alignment stability is particularly challenging for larger optics operating within moving vehicles and aircraft where high shock and significant temperature excursions occur. The design intent is to have the mount be suitable for integration into existing defense and security optical systems while also targeting new commercial and military components for improved structural dynamic and thermal distortion performance. A mount suitable for moderate-sized optics and an integrated disturbance-optical metrology system are described. The mount design has performance enhancements derived from the integration of proven aerospace mechanical vibration and shock mitigation technologies (i.e. multi-axis passive isolation and integral damping), precision alignment adjustment and lock-out functionality, high dimensional stability materials and design practices which provide benign optical surface figure errors under harsh thermal-mechanical loading. Optical jitter, alignment, and wave-front performance testing of an eight-inch-aperture optical mount based on this design approach are presented to validate predicted performance improvements over an existing commercial off-the-shelf (COTS) design.
High reflectance coatings for space applications in the EUV
NASA Technical Reports Server (NTRS)
Keski-Kuha, Ritva A. M.; Gum, Jeffrey S.; Osantowski, John F.; Fleetwood, Charles M.
1993-01-01
Advances in optical coating and materials technology have made possible the development of instruments with substantially improved efficiency and made possible to consider more complex optical designs in the EUV. The importance of recent developments in chemical vapor deposited silicon carbide (CVD-SiC), SiC films and multilayer coatings is discussed in the context of EUV instrumentation design. The EUV performance of these coatings as well as some strengths and problem areas for their use in space will be addressed.
1994-01-01
kET/T1T 2 ) (solid lines). clusters of guest molecules with local concentrations exceeding the average value of about 1 pentacene /(50 ,A) in the highest...that the transport topology of singlet excitation energy is determined by the local distribu- tions of pentacene guests in the crystal. A singlet...Pullman, USA S. Miyata (co-chair), Tokyo University of Technology and Agriculture, Tokyo, Japan Local Organizing Committee F. Charra (secretary) P.-A
Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing
NASA Astrophysics Data System (ADS)
Chen, Hui; Buric, Michael; Ohodnicki, Paul R.; Nakano, Jinichiro; Liu, Bo; Chorpening, Benjamin T.
2018-03-01
The potential to use single-crystal sapphire optical fiber as an alternative to silica optical fibers for sensing in high-temperature, high-pressure, and chemically aggressive harsh environments has been recognized for several decades. A key technological barrier to the widespread deployment of harsh environment sensors constructed with sapphire optical fibers has been the lack of an optical cladding that is durable under these conditions. However, researchers have not yet succeeded in incorporating a high-temperature cladding process into the typical fabrication process for single-crystal sapphire fibers, which generally involves seed-initiated fiber growth from the molten oxide state. While a number of advances in fabrication of a cladding after fiber-growth have been made over the last four decades, none have successfully transitioned to a commercial manufacturing process. This paper reviews the various strategies and techniques for fabricating an optically clad sapphire fiber which have been proposed and explored in published research. The limitations of current approaches and future prospects for sapphire fiber cladding are discussed, including fabrication methods and materials. The aim is to provide an understanding of the past research into optical cladding of sapphire fibers and to assess possible material systems for future research on this challenging problem for harsh environment sensors.
Epitaxial approaches to long-wavelength vertical-cavity lasers
NASA Astrophysics Data System (ADS)
Hall, Eric Michael
The success of short-wavelength (850 nm) vertical-cavity surface-emitting lasers (VCSELs) as low-cost components in fiber optic networks has created a strong demand for similar low-cost devices at longer wavelengths (1.3--1.55mum), which are even more important in telecommunications systems. Extending the success of VCSELs to these longer wavelengths, however, has been slowed by the absence of a mature technology that incorporates all of the necessary components on one substrate without sacrificing the inexpensive and manufacturable nature of VCSELs. Although InAlGaAs active regions on InP substrates have been developed extensively, the other components of vertical-cavity lasers, especially epitaxially-grown distributed Bragg reflectors (DBRs), are less mature on these substrates. This thesis examines the materials and technologies that enable long-wavelength VCSELs to be grown in a single, epitaxial, lattice-matched step on InP substrates. The advantages and shortcomings of each material system are identified and the impact on devices examined. Additionally, processing technologies that rely on the properties of these materials are developed. From these studies, a InP-based, lattice-matched VCSEL design is presented that utilizes AlGaAsSb for high reflectivity DBRs, InAlGaAs for high quality active regions, InP for heat and current spreading, and a materials selective etch for electrical and optical confinement. In short, the design avoids the shortcomings of each material system while emphasizing the advantages. The resulting devices, showing low threshold currents, high efficiencies and powers, and high operating temperatures, not only validate this approach but demonstrate that such lattice-matched, InP-based devices may be a low-cost, manufacturable answer to this long-wavelength VCSEL demand.
Thin Crystal Film Polarizer for Display Application
NASA Astrophysics Data System (ADS)
Paukshto, Michael
2003-03-01
Optiva Inc. has pioneered the development of nano-thin crystalline film (TCF) optical coatings for use in information displays and other applications. TCF is a material based on water-based dichroic dye solutions. Disk-like dye molecules aggregate in a ``plane-to-plane" manner; this self-assembly results in formation of highly anisometric rod-like stacks. These stacks have an aspect ratio of approximately 200:1. At a certain threshold of dye concentration, a nematic ordering of the rod-like stacks appears. Such a system acquires polarizing properties according to the following mechanism. Flow-induced alignment is known to occur in the lyotropic systems in a shear flow. In our case, the material undergoes shear alignment while being coated onto a glass or plastic substrate. In the coated thin film, the long molecular stacks are oriented in the flow direction parallel to the flow direction and substrate plane. The planes of the dye molecules are perpendicular to the substrate plane with the optical transition oscillators lying in the molecule plane. After the coating, as the thin film dries, crystallization occurs due to water evaporation. In a dry film, the molecular planes maintain their orthogonal orientation with respect to the substrate surface. TCF is known to possess properties of an E-mode polarizer. TCF technology has now migrated out of the R stage into manufacturing and is currently being incorporated into new display products. This presentation will provide an overview of TCF technology. The first part of the presentation will describe material structure, optical properties and characterization, material processing and associated coating equipment. This will be followed by a presentation on optical modeling and simulation of display performance with TCF components. Comparisons of display performance will be made for exemplar configurations of a variety of LCDs, including TN, STN and AMLCD designs in both transmissive and reflective modes.
Raman spectroscopic instrumentation and plasmonic methods for material characterization
NASA Astrophysics Data System (ADS)
Tanaka, Kazuki
The advent of nanotechnology has led to incredible growth in how we consume, make and approach advanced materials. By exploiting nanoscale material properties, unique control of optical, thermal, mechanical, and electrical characteristics becomes possible. This thesis describes the development of a novel localized surface plasmon resonant (LSPR) color sensitive photosensor, based on functionalization of gold nanoparticles onto tianium dioxide nanowires and sensing by a metal-semiconducting nanowire-metal photodiode structure. This LSPR photosensor has been integrated into a system that incorporates Raman spectroscopy, microfluidics, optical trapping, and sorting flow cytometry into a unique material characterization system called the microfluidic optical fiber trapping Raman sorting flow cytometer (MOFTRSFC). Raman spectroscopy is utilized as a powerful molecular characterization technique used to analyze biological, mineralogical and nanomaterial samples. To combat the inherently weak Raman signal, plasmonic methods have been applied to exploit surface enhanced Raman scattering (SERS) and localized surface plasmon resonance (LSPR), increasing Raman intensity by up to 5 orders of magnitude. The resultant MOFTRSFC system is a prototype instrument that can effectively trap, analyze, and sort micron-sized dielectric particles and biological cells. Raman spectroscopy has been presented in several modalities, including the development of a portable near-infrared Raman spectrometer and other emerging technologies.
Ultrasonic grinding of optical materials
NASA Astrophysics Data System (ADS)
Cahill, Michael; Bechtold, Michael; Fess, Edward; Stephan, Thomas; Bechtold, Rob
2017-10-01
Hard ceramic optical materials such as sapphire, ALON, Spinel, PCA, or Silicon Carbide can present a significant challenge in manufacturing precision optical components due to their tough mechanical properties. These are also the same mechanical properties that make them desirable materials when used in harsh environments. Slow processing speeds, premature tool wear, and poor surface quality are common results of the tough mechanical properties of these materials. Often, as a preparatory stage for polishing, the finish of the ground surface greatly influences the polishing process and the resulting finished product. To overcome these challenges, OptiPro Systems has developed an ultrasonic assisted grinding technology, OptiSonic, which has been designed for the precision optics and ceramics industry. OptiSonic utilizes a custom tool holder designed to produce oscillations, in microns of amplitude, in line with the rotating spindle. A software package, IntelliSonic, is integral to the function of this platform. IntelliSonic can automatically characterize tooling during setup to identify and select the ideal resonant peak which to operate at. Then, while grinding, IntelliSonic continuously adjusts the output frequency for optimal grinding efficiency while in contact with the part. This helps maintain a highly consistent process under changing load conditions for a more precise surface. Utilizing a variety of instruments, tests have proven to show a reduction in force between tool and part by up to 50%, while increasing the surface quality and reducing tool wear. This paper will present the challenges associated with these materials and solutions created to overcome them.
Alternative technological development for RF hybridization
NASA Astrophysics Data System (ADS)
Antônio Finardi, Célio; da Fontoura Ponchet, André; Battesini Adamo, Cristina; Flacker, Alexander; Cotrin Teixeira, Ricardo; Panepucci, Roberto Ricardo
2017-03-01
The paper presents a technological solution for high frequency packaging platform evaluated up to 40 GHz. The main purpose of this development was to define an alternative hybrid technology that is more flexible and faster to prototype compared with thin film or multi chip module (MCM-D). The alternative technology also shows adequate performance for high bit rate solutions integrating optical and electronics blocks. This approach consists of a soft substrate (laminate material), plating processes (electroless Ni-P/Au, electrolytic Au) and lithography patterning. Ground coplanar waveguide was used for microwave structures with excellent ground planes connections due to easy via holes implementation. We present results of high frequency packaging of important RF blocks, such as integrated broadband bias-T, transimpedance amplifier ICs and silicon photonics optical modulators. The paper demonstrates a solution for high frequency hybridization that can be implemented with standard substrates, designed with any shape and with large numbers of metalized via holes and compatible with usual assembling techniques.
High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate
Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.
2017-01-01
Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices. PMID:28406177
Nanocoaxes for Optical and Electronic Devices
Rizal, Binod; Merlo, Juan M.; Burns, Michael J.; Chiles, Thomas C.; Naughton, Michael J.
2014-01-01
The evolution of micro/nanoelectronics technology, including the shrinking of devices and integrated circuit components, has included the miniaturization of linear and coaxial structures to micro/nanoscale dimensions. This reduction in the size of coaxial structures may offer advantages to existing technologies and benefit the exploration and development of new technologies. The reduction in the size of coaxial structures has been realized with various permutations between metals, semiconductors and dielectrics for the core, shield, and annulus. This review will focus on fabrication schemes of arrays of metal – nonmetal – metal nanocoax structures using non-template and template methods, followed by possible applications. The performance and scientific advantages associated with nanocoax-based optical devices including waveguides, negative refractive index materials, light emitting diodes, and photovoltaics are presented. In addition, benefits and challenges that accrue from the application of novel nanocoax structures in energy storage, electronic and sensing devices are summarized. PMID:25279400
Advanced optical technologies for space exploration
NASA Astrophysics Data System (ADS)
Clark, Natalie
2007-09-01
NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems
Advanced Optical Technologies for Space Exploration
NASA Technical Reports Server (NTRS)
Clark, Natalie
2007-01-01
NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.
The National Space Science and Technology Center (NSSTC)
NASA Technical Reports Server (NTRS)
2003-01-01
The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At full capacity, the NSSTC tops 200,000 square feet (18,580 square meters) and houses approximately 550 employees.
The National Space Science and Technology Center (NSSTC)
NASA Technical Reports Server (NTRS)
2002-01-01
The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA); Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. An arnex, scheduled for completion by summer 2002, will add an additional 80,000 square feet (7,432 square meters) to NSSTC nearly doubling the size of the core facility. At full capacity, the completed NSSTC will top 200,000 square feet (18,580 square meters) and house approximately 550 employees.
NASA Astrophysics Data System (ADS)
Nose, T.; Watanabe, Y.; Kon, A.; Ito, R.; Honma, M.
2018-02-01
Recently, millimeter-waves (MMWs) have become indispensable for application in next-generation high-speed wireless communication i.e., 5G, in addition to conventional applications such as in automobile collision avoidance radars and airport security inspection systems. Some manageable devices to control MMW propagation will be necessary with the development of this new technology field. We believe that liquid crystal (LC) devices are one of the major candidates for such applications because it is known that LC materials are excellent electro-optic materials. However, as the wavelength of MMWs is extremely longer than the optics region, extremely thick LC layers are necessary if we choose the quasioptic approach to attain LC MMW control devices. Therefore, we adopt a PDLC structure to attain the extremely thick LC layers by using porous (polymethyl methacrylate) PMMA materials, which can be easily obtained using a solvent consisting of a mixture of ethanol/water and a little heating. In this work, we focus on Fresnel lens, which is an important quasi-optic device for MMW application, to introduce a tunable property by using LC materials. Here, we adopt the thin film deposition method to obtain a porous PMMA matrix with the aim of obtaining final composite structure based on the Fresnel substrate. First, the fundamental material properties of porous PMMA are investigated to control the microscopic porous structure. Then, the LC-MMW Fresnel lens substrate is prepared using a 3D printer, and the fundamental MMW focusing properties of the prototype composite Fresnel structure are investigated.
Simulated Aging of Spacecraft External Materials on Orbit
NASA Astrophysics Data System (ADS)
Khatipov, S.
Moscow State Engineering Physics Institute (MIFI), in cooperation with Air Force Research Laboratory's Satellite Assessment Center (SatAC), the European Office of Aerospace Research and Development (EOARD), and the International Science and Technology Center (ISTC), has developed a database describing the changes in optical properties of materials used on the external surfaces of spacecraft due to space environmental factors. The database includes data acquired from tests completed under contract with the ISTC and EOARD, as well as from previous Russian materials studies conducted within the last 30 years. The space environmental factors studied are for those found in Low Earth Orbits (LEO) and Geosynchronous orbits (GEO), including electron irradiation at 50, 100, and 200 keV, proton irradiation at 50, 150, 300, and 500 keV, and ultraviolet irradiation equivalent to 1 sun-year. The material characteristics investigated were solar absorption (aS), spectral reflectance (rl), solar reflectance (rS), emissivity (e), spectral transmission coefficient (Tl), solar transmittance (TS), optical density (D), relative optical density (D/x), Bi-directional Reflectance Distribution Function (BRDF), and change of appearance and color in the visible wavelengths. The materials tested in the project were thermal control coatings (paints), multilayer insulation (films), and solar cells. The ability to predict changes in optical properties of spacecraft materials is important to increase the fidelity of space observation tools, better understand observation of space objects, and increase the longevity of spacecraft. The end goal of our project is to build semi-empirical mathematical models to predict the long-term effects of space aging as a function of time and orbit.
Optical characterization of the new nanocomposite SBMA/Eu(TTA)3(Ph3PO)2
NASA Astrophysics Data System (ADS)
Bordian, Olga; Verlan, Victor; Culeac, Ion; Iovu, Mihail; Zubareva, Vera; Nistor, Iurie
2015-02-01
We describe a new nanocomposite material based on the copolymer of styrene with butyl methacrylate (1:1) (SBMA), and coordinating compound of Europium(III) Eu(TTA)3(Ph3PO)2. The SBMA/Eu(TTA)3(Ph3PO)2 nanocomposite was prepared by a simple technology and can be obtained in the form of optical fibers, thin films and planar waveguides on various substrates with large area. Experimental results on optical transmission and photoluminescence spectroscopy are presented. The nanocomposite exhibits a strong photoluminescence emission in the range 560-750 nm, with the main photoluminescence band at 613 nm.
Ship Effect Measurements With Fiber Optic Neutron Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad
2010-08-10
The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize themore » muon contribution.« less
1998-08-31
NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. This image shows a lightweight replicated x-ray mirror with gold coatings applied.
1999-04-01
NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies to the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. Photograph shows J.R. Griffith inspecting a replicated x-ray mirror mandrel.
The role of science in treaty verification.
Gavron, Avigdor
2005-01-01
Technologically advanced nations are currently applying more science to treaty verification than ever before. Satellites gather a multitude of information relating to proliferation concerns using thermal imaging analysis, nuclear radiation measurements, and optical and radio frequency signals detection. Ground stations gather complementary signals such as seismic events and radioactive emissions. Export controls in many countries attempt to intercept materials and technical means that could be used for nuclear proliferation. Nevertheless, we have witnessed a plethora of nuclear proliferation episodes, that were undetected (or were belatedly detected) by these technologies--the Indian nuclear tests in 1998, the Libyan nuclear buildup, the Iranian enrichment program and the North Korea nuclear weapons program are some prime examples. In this talk, we will discuss some of the technologies used for proliferation detection. In particular, we will note some of the issues relating to nuclear materials control agreements that epitomize political difficulties as they impact the implementation of science and technology.
Light scattering techniques for the characterization of optical components
NASA Astrophysics Data System (ADS)
Hauptvogel, M.; Schröder, S.; Herffurth, T.; Trost, M.; von Finck, A.; Duparré, A.; Weigel, T.
2017-11-01
The rapid developments in optical technologies generate increasingly higher and sometimes completely new demands on the quality of materials, surfaces, components, and systems. Examples for such driving applications are the steadily shrinking feature sizes in semiconductor lithography, nanostructured functional surfaces for consumer optics, and advanced optical systems for astronomy and space applications. The reduction of surface defects as well as the minimization of roughness and other scatter-relevant irregularities are essential factors in all these areas of application. Quality-monitoring for analysing and improving those properties must ensure that even minimal defects and roughness values can be detected reliably. Light scattering methods have a high potential for a non-contact, rapid, efficient, and sensitive determination of roughness, surface structures, and defects.
Optimization of electro-optical parameters of LCD for advertising systems
NASA Astrophysics Data System (ADS)
Olifierczuk, Marek; Zielinski, Jerzy; Klosowicz, Stanislaw J.
1998-02-01
The analysis of the optimization of negative image twisted nematic LCD is presented. Theoretical considerations are confirmed by experimental results. The effect of material parameters and technology on the contrast ratio and display dynamics is given. The effect in TN display with black dye is presented.
The Dag Hammarskjold Library Reaches Out to the World.
ERIC Educational Resources Information Center
Chepesiuk, Ron
1998-01-01
Describes services offered at the Dag Hammarskjold Library at the United Nations (UN). Highlights include adopting new technology for a virtual library; the international law collection which is now accessible through the World Wide Web; UN depository libraries; material available on the Internet; the Optical Disk System, a storage/retrieval…
Temperature-Dependent Refractive Index of Cleartran® ZnS to Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Leviton, Doug; Frey, Brad
2013-01-01
First, let's talk about the CHARMS facility at NASA's Goddard Space Flight Center: Cryogenic, High-Accuracy Refraction Measuring System (CHARMS); design features for highest accuracy and precision; technologies we rely on; data products and examples; optical materials for which we've measured cryogenic refractive index.
VIS: Technology for Multicultural Teacher Education.
ERIC Educational Resources Information Center
Bruning, Merribeth J.
1992-01-01
Video Information Systems (VIS) is fiber optics network that connects campus classrooms to VIS central library. Remotely controlled by instructors, VIS incorporates use of number of audiovisual materials and can be used in cross-cultural training in which visual aids assist in showing cultural differences. VIS assists in education of future…
The Cutting Edge: Satellite Chamber, Lasers Spur LC Preservation Effort.
ERIC Educational Resources Information Center
Brandehoff, Susan E.
1982-01-01
Describes efforts to preserve important library materials at the Library of Congress through the use of two new technologies: a patented deacidification process in which books are placed in a vacuum chamber, and the use of optical disc recording techniques to miniaturize and store print and nonprint images. (JL)
Flexible Substrates Comparison for Pled Technology
NASA Astrophysics Data System (ADS)
Nenna, G.; Miscioscia, R.; Tassini, P.; Minarini, C.; Vacca, P.; Valentino, O.
2008-08-01
Flexible substrate displays are critical to organic electronics, e-paper's and e-ink's development. Many different types of materials are under investigation, including glass, polymer films and metallic foils. In this work we report a comparison study of polymer films as flexible substrates for polymer light emitting diodes (PLEDs) technology. The selected polymer substrates are two thermoplastic semi-crystalline polymers (PET and PEN) and a high Tg material that cannot be melt processed (PAR). Firstly, the chosen films were characterized in morphology and optical properties with the aim to confirm their suitability for optoelectronic applications. Transmittance was analysed by UV-Vis spectrophotometry and roughness by a surface profilometer. Finally, the surface energy of substrates (untreated and after UV-ozone treatment) was estimated by contact angle measurements in order to evaluate their wettability for active materials deposition.
Liquid helium free cryogenic mechanical property test system with optical windows
NASA Astrophysics Data System (ADS)
Zhang, H. C.; Huang, C. J.; Huang, R. J.; Li, L. F.
2017-12-01
Digital image correlation (DIC) is a non-contact optical method for the in-plane displacement and strain measurement, which has been widely accepted and applied in mechanical property analysis owing to its simple experimental steps, high accuracy and large range of measurement. However, it has been rarely used in cryogenic mechanical test since the opaque design of cryostats and the interaction of optics with liquid coolants (liquid nitrogen or liquid helium). In the present work, a liquid helium free cryogenic mechanical property test system cooled by G-M cryocoolers, with a continuous, tunable environmental temperature from room temperature down to around 20 K, was developed and tested. Quartz optical windows, which are compatible with 2D DIC technology, were designed and manufactured on both inner and outer vacuum chambers. The cryogenic test system with optical windows satisfies well for mechanical tests of materials and takes advantage of both being compatible with DIC technology and getting rid of the use of expensive liquid helium. Surface displacement and strain field of Ti6Al4V under uniaxial tension were studied at 20 K by using this system. The results obtained by DIC method agree well with those obtained by extensometers at cryogenic temperatures.
Optical Waveguides Written in Silicon with Femtosecond Laser
NASA Astrophysics Data System (ADS)
Pavlov, Ihor; Tokel, Onur; Pavlova, Svitlana; Kadan, Viktor; Makey, Ghaith; Turnali, Ahmed; Ilday, Omer
Silicon is one of the most widely used materials in modern technology, ranging from electronics and Si-photonics to microfluidic and sensor applications. Despite the long history of Si-based devices, and the strong demand for opto-electronical integration, 3D Si laser processing technology is still challenging. Recently, nanosecond-pulsed laser was used to fabricate embedded holographic elements in Si. However, until now, there was no demonstration of femtosecond-laser-written optical elements inside Si. In this paper, we present optical waveguides written deep inside Si with 1.5 um femtosecond laser. The laser beam, with 2 uJ pulse energy and 350 fs pulse duration focused inside Si sample, produces permanent modification of Si. By moving the lens along the beam direction we were able to produce optical waveguides up to 5 mm long. The diameter of the waveguide is measured to be 10 um. The waveguides were characterized with both optical shadowgraphy and far field imaging after CW light coupling. We observed nearly single mode propagation of light inside of the waveguide. The obtained difference of refractive index inside of the waveguide, is 2.5*10-4. TUBITAK Grant 113M930, TUBITAK Grant 114F256.
Current use and potential of additive manufacturing for optical applications
NASA Astrophysics Data System (ADS)
Brunelle, Matthew; Ferralli, Ian; Whitsitt, Rebecca; Medicus, Kate
2017-10-01
Additive manufacturing, or 3D printing, has become widely used in recent years for the creation of both prototype and end-use parts. Because the parts are created in a layer-by-layer manner, the flexibility of additive manufacturing is unparalleled and has opened the design space to enable features like undercuts and internal channels which cannot exist on traditional, subtractively manufactured parts. This flexibility can also be leveraged for optical applications. This paper outlines some of the current uses of 3D printing in the optical manufacturing process at Optimax. Several materials and additive technologies are utilized, including polymer printing through fused deposition modeling, which creates parts by depositing a softened thermoplastic filament in a layerwise fashion. Stereolithography, which uses light to cure layers of a photopolymer resin, will also be discussed. These technologies are used to manufacture functional prototypes, fixtures, sealed housings, and other components. Additionally, metal printing through selective laser melting, which uses a laser to melt metal powder layers into a dense solid, will be discussed due to the potential to manufacture thermally stable opticalmechanical assembly frameworks and functional optics. Examples of several additively manufactured optical components will be shown.
Capabilities of the Materials Contamination Team at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Burns, Howard; Albyn, Keith; Edwards, David; Boothe, Richard; Finchum, Charles; Finckenor, Miria
2003-01-01
The Materials Contamination Team at the Marshall Space Flight Center (MSFC) has been recognized for its contributions supporting the National Aeronautics and Space Administration (NASA) spacecraft development programs. These programs include the Reusable Solid Rocket Motor (RSRM), Chandra X-Ray Observatory, and the International Space Station (ISS). The Environmental Effects Group, with the Materials Contamination Team and the Space Environmental Effects Team has been an integral part of NASA's success by the testing, evaluation, and qualification of materials, hardware, and processes. This paper focuses on the capabilities of the Materials Contamination Team. The Materials Contamination Team's realm of responsibility includes establishing contamination control during all phases of hardware development, including design, manufacturing, assembly, test, transportation, launch site processing, on-orbit exposure, return, and refurbishment. The team continues its mission of reducing the risk of equipment failure due to molecular or particulate contamination. Contamination is a concern in the Space Shuttle with sensitive bond-lines and reactive fluid (liquid oxygen) compatibility as well as for spacecraft with sensitive optics, such as Hubble Space Telescope and Chandra X-ray Observatory. The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection, identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The optically stimulated electron emission (OSEE) system, the Ultraviolet (UV) fluorescence (UVF) surface contamination detection, and the Surface Optics Corporation 400 (SOC 400) portable hand-held Fourier Transform Infrared (FTIR) spectrometer are state-of-the-art tools for in-process molecular contamination detection. The team of engineers and technicians also develop contamination calibration standards and evaluate new surface cleanliness inspection technologies. The team utilizes facilities for on-orbit simulation testing of materials for outgassing and molecular film deposition characteristics in the presence of space environmental effects, such as Atomic Oxygen (AO) and UV radiation exposure. The Materials Contamination Team maintains databases for process materials as well as outgassing and optical compatibility test results for specific environments.
Active optical system for advanced 3D surface structuring by laser remelting
NASA Astrophysics Data System (ADS)
Pütsch, O.; Temmler, A.; Stollenwerk, J.; Willenborg, E.; Loosen, P.
2015-03-01
Structuring by laser remelting enables completely new possibilities for designing surfaces since material is redistributed but not wasted. In addition to technological advantages, cost and time benefits yield from shortened process times, the avoidance of harmful chemicals and the elimination of subsequent finishing steps such as cleaning and polishing. The functional principle requires a completely new optical machine technology that maintains the spatial and temporal superposition and manipulation of three different laser beams emitted from two laser sources of different wavelength. The optical system has already been developed and demonstrated for the processing of flat samples of hot and cold working steel. However, since particularly the structuring of 3D-injection molds represents an application example of high innovation potential, the optical system has to take into account the elliptical beam geometry that occurs when the laser beams irradiate a curved surface. To take full advantage of structuring by remelting for the processing of 3D surfaces, additional optical functionality, called EPS (elliptical pre-shaping) has to be integrated into the existing set-up. The development of the beam shaping devices not only requires the analysis of the mechanisms of the beam projection but also a suitable optical design. Both aspects are discussed in this paper.
Advancements in non-contact metrology of asphere and diffractive optics
NASA Astrophysics Data System (ADS)
DeFisher, Scott
2017-11-01
Advancements in optical manufacturing technology allow optical designers to implement steep aspheric or high departure surfaces into their systems. Measuring these surfaces with profilometers or CMMs can be difficult due to large surface slopes or sharp steps in the surface. OptiPro has developed UltraSurf to qualify the form and figure of steep aspheric and diffractive optics. UltraSurf is a computer controlled, non-contact coordinate measuring machine. It incorporates five air-bearing axes, linear motors, high-resolution feedback, and a non-contact probe. The measuring probe is scanned over the optical surface while maintaining perpendicularity and a constant focal offset. Multiple probe technologies are available on UltraSurf. Each probe has strengths and weaknesses relative to the material properties, surface finish, and figure error of an optical component. The measuring probes utilize absolute distance to resolve step heights and diffractive surface patterns. The non-contact scanning method avoids common pitfalls with stylus contact instruments. Advancements in measuring speed and precision has enabled fast and accurate non-contact metrology of diffractive and steep aspheric surfaces. The benefits of data sampling with twodimensional profiles and three-dimensional topography maps will be presented. In addition, accuracy, repeatability, and machine qualification will be discussed with regards to aspheres and diffractive surfaces.
Investigation of improving MEMS-type VOA reliability
NASA Astrophysics Data System (ADS)
Hong, Seok K.; Lee, Yeong G.; Park, Moo Y.
2003-12-01
MEMS technologies have been applied to a lot of areas, such as optical communications, Gyroscopes and Bio-medical components and so on. In terms of the applications in the optical communication field, MEMS technologies are essential, especially, in multi dimensional optical switches and Variable Optical Attenuators(VOAs). This paper describes the process for the development of MEMS type VOAs with good optical performance and improved reliability. Generally, MEMS VOAs have been fabricated by silicon micro-machining process, precise fibre alignment and sophisticated packaging process. Because, it is composed of many structures with various materials, it is difficult to make devices reliable. We have developed MEMS type VOSs with many failure mode considerations (FMEA: Failure Mode Effect Analysis) in the initial design step, predicted critical failure factors and revised the design, and confirmed the reliability by preliminary test. These predicted failure factors were moisture, bonding strength of the wire, which wired between the MEMS chip and TO-CAN and instability of supplied signals. Statistical quality control tools (ANOVA, T-test and so on) were used to control these potential failure factors and produce optimum manufacturing conditions. To sum up, we have successfully developed reliable MEMS type VOAs with good optical performances by controlling potential failure factors and using statistical quality control tools. As a result, developed VOAs passed international reliability standards (Telcodia GR-1221-CORE).
Investigation of improving MEMS-type VOA reliability
NASA Astrophysics Data System (ADS)
Hong, Seok K.; Lee, Yeong G.; Park, Moo Y.
2004-01-01
MEMS technologies have been applied to a lot of areas, such as optical communications, Gyroscopes and Bio-medical components and so on. In terms of the applications in the optical communication field, MEMS technologies are essential, especially, in multi dimensional optical switches and Variable Optical Attenuators(VOAs). This paper describes the process for the development of MEMS type VOAs with good optical performance and improved reliability. Generally, MEMS VOAs have been fabricated by silicon micro-machining process, precise fibre alignment and sophisticated packaging process. Because, it is composed of many structures with various materials, it is difficult to make devices reliable. We have developed MEMS type VOSs with many failure mode considerations (FMEA: Failure Mode Effect Analysis) in the initial design step, predicted critical failure factors and revised the design, and confirmed the reliability by preliminary test. These predicted failure factors were moisture, bonding strength of the wire, which wired between the MEMS chip and TO-CAN and instability of supplied signals. Statistical quality control tools (ANOVA, T-test and so on) were used to control these potential failure factors and produce optimum manufacturing conditions. To sum up, we have successfully developed reliable MEMS type VOAs with good optical performances by controlling potential failure factors and using statistical quality control tools. As a result, developed VOAs passed international reliability standards (Telcodia GR-1221-CORE).
2004-04-15
Marshall Space Flight Center's researchers have conducted suborbital experiments with ZBLAN, an optical material capable of transmitting 100 times more signal and information than silica fibers. The next step is to process ZBLAN in a microgravity environment to stop the formation of crystallites, small crystals caused by a chemical imbalances. Scientists want to find a way to make ZBLAN an amorphous (without an internal shape) material. Producing a material such as this will have far-reaching implications on advanced communications, medical and manufacturing technologies using lasers, and a host of other products well into the 21st century.
Optomechanical performance of 3D-printed mirrors with embedded cooling channels and substructures
NASA Astrophysics Data System (ADS)
Mici, Joni; Rothenberg, Bradley; Brisson, Erik; Wicks, Sunny; Stubbs, David M.
2015-09-01
Advances in 3D printing technology allow for the manufacture of topologically complex parts not otherwise feasible through conventional manufacturing methods. Maturing metal and ceramic 3D printing technologies are becoming more adept at printing complex shapes, enabling topologically intricate mirror substrates. One application area that can benefit from additive manufacturing is reflective optics used in high energy laser (HEL) systems that require materials with a low coefficient of thermal expansion (CTE), high specific stiffness, and (most importantly) high thermal conductivity to effectively dissipate heat from the optical surface. Currently, the limits of conventional manufacturing dictate the topology of HEL optics to be monolithic structures that rely on passive cooling mechanisms and high reflectivity coatings to withstand laser damage. 3D printing enables the manufacture of embedded cooling channels in metallic mirror substrates to allow for (1) active cooling and (2) tunable structures. This paper describes the engineering and analysis of an actively cooled composite optical structure to demonstrate the potential of 3D printing on the improvement of optomechanical systems.
NASA Astrophysics Data System (ADS)
Nardello, Marco; Centro, Sandro
2017-09-01
TwinFocus® is a CPV solution that adopts quasi-parabolic, off axis mirrors, to obtain a concentration of 760× on 3J solar cells (Azur space technology) with 44% efficiency. The adoption of this optical solution allows for a cheap, lightweight and space efficient system. In particular, the addition of a secondary optics to the mirror, grants an efficient use of space, with very low thicknesses and a compact modular design. Materials are recyclable and allow for reduction of weights to a minimum level. The product is realized through the cooperation of leading edge industries active in automotive lighting and plastic materials molding. The produced prototypes provide up to 27.6% efficiency according to tests operated on the field with non-optimal spectral conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, C.B.
1982-01-01
Progress in lasers is discussed. The subjects addressed include: excimer lasers, surface spectroscopy, modern laser spectroscopy, free electron lasers, cavities and propagation, lasers in medicine, X-ray and gamma ray lasers, laser spectroscopy of small molecules and clusters, optical bistability, excitons, nonlinear optics in the X-ray and gamma ray regions, collective atomic phenomena, tunable IR lasers, far IR/submillimeter lasers, and laser-assisted collisions. Also treated are: special applications, multiphoton processes in atoms and small molecules, nuclear pumped lasers, material processing and applications, polarization, high energy lasers, laser chemistry, IR molecular lasers, laser applications of collision and dissociation phenomena, solid state laser materials,more » phase conjugation, advances in laser technology for fusion, metal vapor lasers, picosecond phenomena, laser ranging and geodesy, and laser photochemistry of complex molecules.« less
Moderate high power 1 to 20μs and kHz Ho:YAG thin disk laser pulses for laser lithotripsy
NASA Astrophysics Data System (ADS)
Renz, Günther
2015-02-01
An acousto-optically or self-oscillation pulsed thin disk Ho:YAG laser system at 2.1 μm with an average power in the 10 W range will be presented for laser lithotripsy. In the case of cw operation the thin disk Ho:YAG is either pumped with InP diode stacks or with a thulium fiber laser which leads to a laser output power of 20 W at an optical-to-optical efficiency of 30%. For the gain switched mode of operation a modulated Tm-fiber laser is used to produce self-oscillation pulses. A favored pulse lengths for uric acid stone ablation is known to be at a few μs pulse duration which can be delivered by the thin disk laser technology. In the state of the art laser lithotripter, stone material is typically ablated with 250 to 750 μs pulses at 5 to 10 Hz and with pulse energies up to a few Joule. The ablation mechanism is performed in this case by vaporization into stone dust and fragmentation. With the thin disk laser technology, 1 to 20 μs-laser pulses with a repetition rate of a few kHz and with pulse energies in the mJ-range are available. The ablation mechanism is in this case due to a local heating of the stone material with a decomposition of the crystalline structure into calcium carbonate powder which can be handled by the human body. As a joint process to this thermal effect, imploding water vapor bubbles between the fiber end and the stone material produce sporadic shock waves which help clear out the stone dust and biological material.
NASA Astrophysics Data System (ADS)
Culshaw, Brian; Ecke, Wolfgang; Jones, Julian; Tatam, Ralph; Willsch, Reinhardt
2010-09-01
Welcome to our special issue on fibre optic sensors. Fibre optic sensors were first suggested in the patent literature in the mid 1960s as an innovative means for making measurements. This proposed a surface finish measurement tool with high precision and resulted in an instrument that remains available today. Much has happened since, with significant innovation in the techniques through which light propagating whilst guided in a fibre can be unambiguously, repeatedly and predictably modulated in response to an external phenomenon. The technique offers not only the precision mentioned earlier but also inherent electromagnetic immunity, the capability to sense at long distances, light weight, small size and a multiplicity of network architectures, all of which can be interrogated from a single point. Even so, fibre sensors is a niche technology, attractive only when its very special features offer substantial user benefit. There are, however, many such niches exemplified in the electrical power supply industry, in gyroscopes for navigational instruments, in hydrophones and geophones. Then there are the distributed sensing architectures that enable useful measurements of pressure, strain and temperature fields affecting the optical properties of the fibre itself to map these parameter fields as a function of position along lengths of fibre to many tens of kilometres. The fibre sensing concept spawned its own research community, and the international conference on Optical Fibre Sensors first appeared in 1983 in London then emerged into a series travelling from Europe to the Americas and into the Asia-Pacific region. The 20th in the series took place in Edinburgh at the end of 2009 and this special issue of Measurement Science and Technology presents extended versions of some of the papers that first appeared at the conference. The science and technology of fibre sensing have evolved significantly over the history of the conference, drawing on developments in optical communications, material science and data management along the way. This is, of course, the year commemorating half a century of the laser. Arguably, laser technology, most notably semiconductor lasers, has made the major contribution to fibre optic sensors, and precision-controlled laser sources are now effectively taken for granted within the fibre sensor community. We have also drawn on innovation in fibre communications: the fibre itself, the Bragg grating and the fibre amplifier—and more recently on material systems like photonic crystal fibres, biophotonics and nanostructures. In this issue you will find some examples of the intriguing research that exemplifies the best of current fibre sensor technology. The issue gives some impression of the many facets—scientific, technological and applications—that fibre sensors have on offer. It also exemplifies a truly international community which is brought together through the conference series. The next OFS meeting takes place in Ottawa, Canada on 15-19 May 2011 (see www.ofs21.org/), followed in the autumn of 2012 by an event in Beijing. We look forward to seeing you there.
NASA Astrophysics Data System (ADS)
De Sanctis, Adolfo; Mehew, Jake D.; Alkhalifa, Saad; Tate, Callum P.; White, Ashley; Woodgate, Adam R.; Craciun, Monica F.; Russo, Saverio
2018-02-01
Two-dimensional materials offer a novel platform for the development of future quantum technologies. However, the electrical characterisation of topological insulating states, non-local resistance, and bandgap tuning in atomically thin materials can be strongly affected by spurious signals arising from the measuring electronics. Common-mode voltages, dielectric leakage in the coaxial cables, and the limited input impedance of alternate-current amplifiers can mask the true nature of such high-impedance states. Here, we present an optical isolator circuit which grants access to such states by electrically decoupling the current-injection from the voltage-sensing circuitry. We benchmark our apparatus against two state-of-the-art measurements: the non-local resistance of a graphene Hall bar and the transfer characteristic of a WS2 field-effect transistor. Our system allows the quick characterisation of novel insulating states in two-dimensional materials with potential applications in future quantum technologies.
NASA Astrophysics Data System (ADS)
1994-01-01
Summer School, 27 June to 8 July 1994, Viana do Castelo, Hotel do Parque, Portugal Optical fibres, with their extremely low transmission loss, untapped bandwidth and controllable dispersion, dominate a broad range of technologies in which applications must respond to the increasing constraints of today's specifications as well as envisage future requirements. Optical fibres dominate communications systems. In the area of sensors, fibre optics will be fully exploited for their immunity to EMI, their high sensitivity and their large dynamic range. The maturity of single mode optical technology has led to intensive R&D of a range of components based on the advantages of transmission characteristics and signal processing. Specifications and intercompatibility requests for the new generation of both analogue and digital fibre optical components and systems has created a demand for sophisticated measuring techniques based on unique and complex instruments. In recent years there has been a signification evolution in response to the explosion of applications and the tightening of specifications. These developments justify a concerted effort to focus on trends in optical fibre metrology and standards. Objective The objective of this school is to provide a progressive and comprehensive presentation of current issues concerning passive and active optical fibre characterization and measurement techniques. Passive fibre components support a variety of developments in optical fibre systems and will be discussed in terms of relevance and standards. Particular attention will be paid to devices for metrological purposes such as reference fibres and calibration artefacts. The characterization and testing of optical fibre amplifiers, which have great potential in telecommunications, data distribution networks and as a system part in instrumentation, will be covered. Methods of measurement and means of calibration with traceability will be discussed, together with the characterization requirements of the new generation of analogue and digital fibre optical systems, which require sophisticated measurement techniques employing complex instruments unique to optical measurements. The school will foster and enhance the interaction between material, devices, systems, and standards-oriented R&D communities, as well as between engineers concerned with design and manufacturers of systems and instrumentation. Topics Review of optical fibre communication technology and systems Measurement techniques for fibre characterization: Reliability and traceability Reference fibres and calibration artefacts Ribbon fibres Mechanical and environmental testing Fibre reliability Polarimetric measurements Passive components characterization: Splices and connectors Couplers, splitters, taps and WDMs Optical fibres and isolators WDM technologies and applications: WDM technologies Tunable optical filters Fibre amplifiers and sources: Performances and characterization Design and standards Nonlinear effects Subsystem design and standards: Design and fabrication techniques Performance degradation and reliability Evaluation of costs/performance/technology Sensors IR - optical fibres Plastic fibres Instrumentation Registration Participation free of charge for postgraduate students, with some grants available for travel and lodging expenses. All correspondence should be addressed to: Secretariat, Trends in Optical Fibre Metrology and Standards, a/c Prof. Olivério D D Soares, Centro de Ciências e Tecnologias Opticas, Lab. Fisica - Faculdade de Ciências, Praça Gomes Teixeira, P-4000 Porto, Portugal. Tel: 351-2-310290, 351-2-2001648; Fax: 351-2-319267.
NASA Astrophysics Data System (ADS)
Rendina, Ivo; Fazio, Eugenio; Ferraro, Pietro
2006-07-01
OMS'05 is the first international conference wholly dedicated to optical microsystems. It was organized by the European Optical Society (EOS) in the frame of its international topical meeting activity and was held in Italy, September 2005, amidst the wonderful scenery of the Island of Capri. A possible definition of an optical microsystem is a complex system, able to perform one or more sensing and actuation functions, where optical devices are integrated in a smart way with electronic, mechanical and sensing components by taking advantage of the progress in micro- and nano-technologies. The increasing interest in this field arises from the expected applications that would significantly improve the quality of life. The list of possibilities offered by the optical microsystem enabling technologies is very long and seems to increase day by day. We are not only thinking about the next generation of optical telecommunication networks and computers, but also about low-cost, compact microsystems for environmental monitoring, in order to improve safety in the avionic and automotive fields, medical diagnostics and proteomic/genomic studies, or just finding general applications in several industrial fields. The goal of the conference was to involve scientists and young researchers from the main public and private laboratories, giving them the opportunity to present new scientific results and compare their know-how in the exciting and emerging field of optical microsystems. We believe that we succeeded in this. More than 200 scientists from all over the world attended the conference. We had more than 100 oral presentations and approximately 20 from the keynote lectures and invited speeches. It was an opportunity to define the most recent progress carried out in the field and to outline the possible road-map leading to the expected results in the industrial and social fields. We strongly believe that research and technology are closely interconnected at present and cannot move forward separately. Thus, we wanted the meeting to encourage the cross-fertilization of ideas of all the people involved and active in the areas of optics, photonics, microelectronics and materials, by gathering together theoreticians, experimentalists and those interested in industrial applications. For these reasons the conference programme focused on fundamental as well as more applied topics. Photonic crystals, non-linear and quantum optics in micro-devices, nanophotonic-based devices, silicon-based optoelectronics and MOEMS, microsensors, biochips and the new characterization methods for materials and devices were among the hot topics of the conference. Special emphasis was also given to industrial applications and to technologies enabling the production of microsytems and their sub-components. In this special section of Journal of Optics A: Pure and Applied Optics, a series of interesting papers has been collected, reporting progress in the different aspects of microsystems design, production, characterization and testing. The papers embrace most of the various topics that were debated during the conference. We hope that these papers will not only report the most up-to-date research progress made in this field, but will also involve and stimulate everyone working in these areas to continue in the effort of developing more and better optical microsystems in the future. We would like to thank all the members of the Scientific and Industrial Committees for the high scientific content of the meeting and the European Optical Society for its support of the conference organization.
The total energy-momentum tensor for electromagnetic fields in a dielectric
NASA Astrophysics Data System (ADS)
Crenshaw, Michael E.
2017-08-01
Radiation pressure is an observable consequence of optically induced forces on materials. On cosmic scales, radiation pressure is responsible for the bending of the tails of comets as they pass near the sun. At a much smaller scale, optically induced forces are being investigated as part of a toolkit for micromanipulation and nanofabrication technology [1]. A number of practical applications of the mechanical effects of light-matter interaction are discussed by Qiu, et al. [2]. The promise of the nascent nanophotonic technology for manufacturing small, low-power, high-sensitivity sensors and other devices has likely motivated the substantial current interest in optical manipulation of materials at the nanoscale, see, for example, Ref. [2] and the references therein. While substantial progress toward optical micromanipulation has been achieved, e.g. optical tweezers [1], in this report we limit our consideration to the particular issue of optically induced forces on a transparent dielectric material. As a matter of electromagnetic theory, these forces remain indeterminate and controversial. Due to the potential applications in nanotechnology, the century-old debate regarding these forces, and the associated momentums, has ramped up considerably in the physics community. The energy-momentum tensor is the centerpiece of conservation laws for the unimpeded, inviscid, incompressible flow of non-interacting particles in the continuum limit in an otherwise empty volume. The foundations of the energy-momentum tensor and the associated tensor conservation theory come to electrodynamics from classical continuum dynamics by applying the divergence theorem to a Taylor series expansion of a property density field of a continuous flow in an otherwise empty volume. The dust tensor is a particularly simple example of an energy-momentum tensor that deals with particles of matter in the continuum limit in terms of the mass density ρm, energy density ρmc 2 , and momentum density ρmv. Newtonian fluids can behave very much like dust with the same energy-momentum tensor. The energy and momentum conservation properties of light propagating in the vacuum were long-ago cast in the energy-momentum tensor formalism in terms of the electromagnetic energy density and electromagnetic momentum density. However, extrapolating the tensor theory of energy-momentum conservation for propagation of light in the vacuum to propagation of light in a simple linear dielectric medium has proven to be problematic and controversial. A dielectric medium is not "otherwise empty" and it is typically assumed that optically induced forces accelerate and decelerate nanoscopic material constituents of the dielectric. The corresponding material energy-momentum tensor is added to the electromagnetic energy-momentum tensor to form the total energy-momentum tensor, thereby ensuring that the total energy and the total momentum of the thermodynamically closed system remain constant in time.
Polarization selective phase-change nanomodulator
Appavoo, Kannatassen; Haglund Jr., Richard F.
2014-01-01
Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume of only 0.002 µm3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. This architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements. PMID:25346427
Polarization selective phase-change nanomodulator
Appavoo, Kannatassen; Haglund Jr., Richard F.
2014-10-27
Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume ofmore » only 0.002 µm 3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. Lastly, this architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements.« less
The Development of Solar Sail Propulsion for NASA Science Missions to the Inner Solar System
NASA Technical Reports Server (NTRS)
Montgomery, Edward E, IV; Johnson, Charles Les
2004-01-01
This paper examines recent assessments of the technology challenges facing solar sails, identifies the systems and technologies needing development, and the approach employed by NASA's In-space Propulsion Program in NASA to achieve near term products that move this important technology from low technology readiness level (TRL) toward the goal of application to science missions in near earth space and beyond. The status of on-going efforts to design, build, and test ground demonstrators of alternate approaches to structures (inflatable versus rigid), membrane materials, optical shape sensing, and attitude control will be presented along with planned future investments.
Applications of Optical Microcavity Resonators in Analytical Chemistry
Wade, James H.; Bailey, Ryan C.
2018-01-01
Optical resonator sensors are an emerging class of analytical technologies that use recirculating light confined within a microcavity to sensitively measure the surrounding environment. Bolstered by advances in microfabrication, these devices can be configured for a wide variety of chemical or biomolecular sensing applications. The review begins with a brief description of optical resonator sensor operation followed by discussions regarding sensor design, including different geometries, choices of material systems, methods of sensor interrogation, and new approaches to sensor operation. Throughout, key recent developments are highlighted, including advancements in biosensing and other applications of optical sensors. Alternative sensing mechanisms and hybrid sensing devices are then discussed in terms of their potential for more sensitive and rapid analyses. Brief concluding statements offer our perspective on the future of optical microcavity sensors and their promise as versatile detection elements within analytical chemistry. PMID:27049629
NASA Astrophysics Data System (ADS)
Ding, Shulin; Wang, Guo Ping
2015-09-01
Classical nonlinear or quantum all-optical transistors are dependent on the value of input signal intensity or need extra co-propagating beams. In this paper, we present a kind of all-optical transistors constructed with parity-time (PT)-symmetric Y-junctions, which perform independently on the value of signal intensity in an unsaturated gain case and can also work after introducing saturated gain. Further, we show that control signal can switch the device from amplification of peaks in time to transformation of peaks to amplified troughs. By using these PT-symmetric Y-junctions with currently available materials and technologies, we can implement interesting logic functions such as NOT and XOR (exclusive OR) gates, implying potential applications of such structures in designing optical logic gates, optical switches, and signal transformations or amplifications.
Lemaillet, Paul; Bouchard, Jean-Pierre; Allen, David W
2015-07-01
The development of a national reference instrument dedicated to the measurement of the scattering and absorption properties of solid tissue-mimicking phantoms used as reference standards is presented. The optical properties of the phantoms are measured with a double-integrating sphere setup in the steady-state domain, coupled with an inversion routine of the adding-doubling procedure that allows for the computation of the uncertainty budget for the measurements. The results are compared to the phantom manufacturer's values obtained by a time-resolved approach. The results suggest that the agreement between these two independent methods is within the estimated uncertainties. This new reference instrument will provide optical biomedical research laboratories with reference values for absolute diffuse optical properties of phantom materials.
NASA Technical Reports Server (NTRS)
Talham, Daniel R.; Adair, James H.
1999-01-01
There is a growing need for inorganic anisotropic particles in a variety of materials science applications. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. While considerable progress has been made toward developing an understanding of the synthesis of powders composed of monodispersed, spherical particles, these efforts have not been transferred to the synthesis of anisotropic nanoparticles. The major objective of the program is to develop a fundamental understanding of the growth of anisotropic particles at organic templates, with emphasis on the chemical and structural aspects of layered organic assemblies that contribute to the formation of anisotropic inorganic particles.
2D metal profile detector using a polymeric fiber optic sensor
NASA Astrophysics Data System (ADS)
Hua, Wei-Shu; Hooks, Joshua R.; Erwin, Nicholas A.; Wu, Wen-Jong; Wang, Wei-Chih
2012-04-01
As sensors become integrated in more applications, interest in magnetostrictive sensor technology has blossomed. Magnetostrictive materials have many advantages and useful applications in daily life, such as high efficient coupling between elastic and polymer material, large displacement, magnetic field sensors, micro actuator and motion motor, etc. The purpose of this paper is to develop a metal sensor which is capable of detecting different geometries and shapes of metal objects. The main configuration is using a Mach-Zehnder fiber-optic interferometer coated with magnetostrictive material. The metal detector system is a novel design of metal detector, easy to fabricate and capable of high sensitivity. In our design, metal detection is made possible by disrupting the magnetic flux density that encompasses the magnetostriction sensor. In this paper, experimental setups are described and metal sensing results are presented. The results of detecting complex metal's geometry and metal's mapping results are discussed.
NASA Astrophysics Data System (ADS)
1993-01-01
This meeting, organized by the Paul Scherrer Institute's Department of Applied Solid State Physics, will be held from 27 30 March 1994 at the Hotel Regina-Titlis, Engelberg, Switzerland. The aim is to bring together scientists from two important fields of current research and increasing industrial relevance. Optical metrology is a traditional discipline of applied optics which reached the nanometre scale a long time ago. Nanotechnology is setting new limits and represents a major challenge to metrology, as well as offering new opportunities to optics. The meeting is intended to help define a common future for optical metrology and nanotechnology. Topics to be covered include: nanometre position control and measuring techniques ultrahigh precision interferometry scanning probe microscopy (AFM, SNOM, etc.) surface modification by scanning probe methods precision surface fabrication and characterization nanolithography micro-optics, diffractive optics components, including systems and applications subwavelength optical structures synthetic optical materials structures and technologies for X-ray optics. For further information please contact: Jens Gobrecht (Secretary), Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland.Tel. (41)56992529; Fax (41) 5698 2635.
Composite materials for precision space reflector panels
NASA Technical Reports Server (NTRS)
Tompkins, Stephen S.; Funk, Joan G.; Bowles, David E.; Towell, Timothy W.; Connell, John W.
1992-01-01
One of the critical technology needs of large precision reflectors for future astrophysical and optical communications satellites lies in the area of structural materials. Results from a materials research and development program at NASA Langley Research Center to provide materials for these reflector applications are discussed. Advanced materials that meet the reflector panel requirements are identified, and thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared. A parabolic, graphite-phenolic honeycomb composite panel having a surface accuracy of 70.8 microinches rms and an areal weight of 1.17 lbm/sq ft was fabricated with T50/ERL1962 facesheets, a PAEI thermoplastic surface film, and Al and SiO(x) coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anheier, Norman C.; Suter, Jonathan D.; Qiao, Hong
2013-08-06
This report intends to support Department of Energy’s Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap and industry stakeholders by evaluating optical-based instrumentation and control (I&C) concepts for advanced small modular reactor (AdvSMR) applications. These advanced designs will require innovative thinking in terms of engineering approaches, materials integration, and I&C concepts to realize their eventual viability and deployability. The primary goals of this report include: 1. Establish preliminary I&C needs, performance requirements, and possible gaps for AdvSMR designs based on best available published design data. 2. Document commercial off-the-shelf (COTS) optical sensors, components, and materials in termsmore » of their technical readiness to support essential AdvSMR in-vessel I&C systems. 3. Identify technology gaps by comparing the in-vessel monitoring requirements and environmental constraints to COTS optical sensor and materials performance specifications. 4. Outline a future research, development, and demonstration (RD&D) program plan that addresses these gaps and develops optical-based I&C systems that enhance the viability of future AdvSMR designs. The development of clean, affordable, safe, and proliferation-resistant nuclear power is a key goal that is documented in the Nuclear Energy Research and Development Roadmap. This roadmap outlines RD&D activities intended to overcome technical, economic, and other barriers, which currently limit advances in nuclear energy. These activities will ensure that nuclear energy remains a viable component to this nation’s energy security.« less
Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang
2013-01-01
An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings. PMID:23881144
Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang
2013-07-23
An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings.
Fiber optics in composite materials: materials with nerves of glass
NASA Astrophysics Data System (ADS)
Measures, Raymond M.
1990-08-01
A Fiber Optic BasedSmart Structure wiipossess a structurally integrated optical microsensor system for determining its state. This built-in sensor system should, in real-time, be able to: evaluate the strain or deformation of a structure, monitor if its vibrating or subject to excessive loads, check its temperature and warn of the appearance of any hot spots. In addition a Smart Structure should maintain a vigilant survelliance over its structural integrity. The successful development of Smart StructureTechnolgy could lead to: aircraft that are safer, lighter, more efficient, easier to maintain and to service; pipelines, pressure vessels and storage tanks that constantly monitor their structuralintegrity and immediately issue an alert ifany problem is detected; space platforms that check forpressure leaks, unwanted vibration, excess thermal buildup, and deviation from some preassigned shape.This technology is particularly appropriate for composite materials where internal damage generated by: impacts, manufacturing flaws, excessive loading or fatigue could be detected and assessed. In service monitoring of structural loads, especially in regions like wing roots of aircraft, could be ofconsiderable benefit in helping to avoid structural overdesign and reduce weight. Structurally imbedded optical fibers sensors might also serve to monitor the cure state of composite thermosets during their fabrication and thereby contribute to improved quality control of these products.
Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties
Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Joshua Pfefer, T.
2016-01-01
Abstract. Established medical imaging technologies such as magnetic resonance imaging and computed tomography rely on well-validated tissue-simulating phantoms for standardized testing of device image quality. The availability of high-quality phantoms for optical-acoustic diagnostics such as photoacoustic tomography (PAT) will facilitate standardization and clinical translation of these emerging approaches. Materials used in prior PAT phantoms do not provide a suitable combination of long-term stability and realistic acoustic and optical properties. Therefore, we have investigated the use of custom polyvinyl chloride plastisol (PVCP) formulations for imaging phantoms and identified a dual-plasticizer approach that provides biologically relevant ranges of relevant properties. Speed of sound and acoustic attenuation were determined over a frequency range of 4 to 9 MHz and optical absorption and scattering over a wavelength range of 400 to 1100 nm. We present characterization of several PVCP formulations, including one designed to mimic breast tissue. This material is used to construct a phantom comprised of an array of cylindrical, hemoglobin-filled inclusions for evaluation of penetration depth. Measurements with a custom near-infrared PAT imager provide quantitative and qualitative comparisons of phantom and tissue images. Results indicate that our PVCP material is uniquely suitable for PAT system image quality evaluation and may provide a practical tool for device validation and intercomparison. PMID:26886681
Kinet, Damien; Mégret, Patrice; Goossen, Keith W.; Qiu, Liang; Heider, Dirk; Caucheteur, Christophe
2014-01-01
Nowadays, smart composite materials embed miniaturized sensors for structural health monitoring (SHM) in order to mitigate the risk of failure due to an overload or to unwanted inhomogeneity resulting from the fabrication process. Optical fiber sensors, and more particularly fiber Bragg grating (FBG) sensors, outperform traditional sensor technologies, as they are lightweight, small in size and offer convenient multiplexing capabilities with remote operation. They have thus been extensively associated to composite materials to study their behavior for further SHM purposes. This paper reviews the main challenges arising from the use of FBGs in composite materials. The focus will be made on issues related to temperature-strain discrimination, demodulation of the amplitude spectrum during and after the curing process as well as connection between the embedded optical fibers and the surroundings. The main strategies developed in each of these three topics will be summarized and compared, demonstrating the large progress that has been made in this field in the past few years. PMID:24763215
Fabrication of micromechanical and microoptical systems by two-photon polymerization
NASA Astrophysics Data System (ADS)
Reinhardt, Carsten; Ovsianikov, A.; Passinger, Sven; Chichkov, Boris N.
2007-01-01
The recently developed two-photon polymerisation technique is used for the fabrication of two- and three-dimensional structures in photosensitive inorganic-organic hybrid material (ORMOCER), in SU8 , and in positive tone resist with resolutions down to 100nm. In this contribution we present applications of this powerful technology for the realization of micromechanical systems and microoptical components. We will demonstrate results on the fabrication of complex movable three-dimensional micromechanical systems and microfluidic components which cannot be realized by other technologies. This approach of structuring photosensitive materials also provides unique possibilities for the fabrication of different microoptical components such as arbitrary shaped microlenses, microprisms, and 3D-photonic crystals with high optical quality.
The Road to Success in the Study of Nanophosphors and Nanotubes in Vietnam
NASA Astrophysics Data System (ADS)
Tran, Kim Anh
2009-04-01
I studied physics for three years in a bamboo hut in the forest. It was during the war and my school had fled Hanoi. I subsequently earned my bachelor's degree in physics from Hanoi University and my PhD from the Polish Academy of Science. I am now a member of the National Basic Research Program of Vietnam on Optical Properties of Photonic Materials at the Institute of Materials Science of the Vietnamese Academy of Science and Technology. In 2005 I received the National Award of Vietnam for Science and Technology. This is the story of how I came to love physics more at each step of my education and career.
2012-09-01
MSM) photodectors fabricated using black silicon-germanium on silicon substrate (Si1–xGex//Si) for I-V, optical response, external quantum ...material for Si for many applications in low-power and high-speed semiconductor device technologies (4, 5). It is a promising material for quantum well ...MSM-Metal Semiconductor Metal Photo-detector Using Black Silicon Germanium (SiGe) for Extended Wavelength Near Infrared Detection by Fred
2002-05-29
The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA); Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. An arnex, scheduled for completion by summer 2002, will add an additional 80,000 square feet (7,432 square meters) to NSSTC nearly doubling the size of the core facility. At full capacity, the completed NSSTC will top 200,000 square feet (18,580 square meters) and house approximately 550 employees.
2003-04-09
The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At full capacity, the NSSTC tops 200,000 square feet (18,580 square meters) and houses approximately 550 employees.
Holographic spectrum-splitting optical systems for solar photovoltaics
NASA Astrophysics Data System (ADS)
Zhang, Deming
Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle-wavelength selective filters that can function as ultra-light-trapping filters. Results from an experimental reflection hologram are used to model the absorption enhancement factor for a silicon solar cell and light-trapping filter. The result shows a significant improvement in current generation for thin-film silicon solar cells under typical operating conditions.
Technology review of flight crucial flight control systems (application of optical technology)
NASA Technical Reports Server (NTRS)
Rediess, H. A.; Buckley, E. C.
1984-01-01
The survey covers the various optical elements that are considered in a fly-by-light flight control system including optical sensors and transducers, optical data links, so-called optical actuators, and optical/electro-optical processing. It also addresses airframe installation, maintenance, and repair issues. Rather than an in-depth treatment of optical technology, the survey concentrates on technology readiness and the potential advantages/disadvantages of applying the technology. The information was assembled from open literature, personal interviews, and responses to a questionnaire distributed specifically for this survey. Not all of the information obtained was consistent, particularly with respect to technology readiness. The synthesis of information into the perception of the state-of-technology is presented.
Optical Technologies for UV Remote Sensing Instruments
NASA Technical Reports Server (NTRS)
Keski-Kuha, R. A. M.; Osantowski, J. F.; Leviton, D. B.; Saha, T. T.; Content, D. A.; Boucarut, R. A.; Gum, J. S.; Wright, G. A.; Fleetwood, C. M.; Madison, T. J.
1993-01-01
Over the last decade significant advances in technology have made possible development of instruments with substantially improved efficiency in the UV spectral region. In the area of optical coatings and materials, the importance of recent developments in chemical vapor deposited (CVD) silicon carbide (SiC) mirrors, SiC films, and multilayer coatings in the context of ultraviolet instrumentation design are discussed. For example, the development of chemically vapor deposited (CVD) silicon carbide (SiC) mirrors, with high ultraviolet (UV) reflectance and low scatter surfaces, provides the opportunity to extend higher spectral/spatial resolution capability into the 50-nm region. Optical coatings for normal incidence diffraction gratings are particularly important for the evolution of efficient extreme ultraviolet (EUV) spectrographs. SiC films are important for optimizing the spectrograph performance in the 90 nm spectral region. The performance evaluation of the flight optical components for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument, a spectroscopic instrument to fly aboard the Solar and Heliospheric Observatory (SOHO) mission, designed to study dynamic processes, temperatures, and densities in the plasma of the upper atmosphere of the Sun in the wavelength range from 50 nm to 160 nm, is discussed. The optical components were evaluated for imaging and scatter in the UV. The performance evaluation of SOHO/CDS (Coronal Diagnostic Spectrometer) flight gratings tested for spectral resolution and scatter in the DGEF is reviewed and preliminary results on resolution and scatter testing of Space Telescope Imaging Spectrograph (STIS) technology development diffraction gratings are presented.