Zoom microscope objective using electrowetting lenses.
Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua
2016-02-08
We report a zoom microscope objective which can achieve continuous zoom change and correct the aberrations dynamically. The objective consists of three electrowetting liquid lenses and two glass lenses. The magnification is changed by applying voltages on the three electrowetting lenses. Besides, the three electrowetting liquid lenses can play a role to correct the aberrations. A digital microscope based on the proposed objective is demonstrated. We analyzed the properties of the proposed objective. In contrast to the conventional objectives, the proposed objective can be tuned from ~7.8 × to ~13.2 × continuously. For our objective, the working distance is fixed, which means no movement parts are needed to refocus or change its magnification. Moreover, the zoom objective can be dynamically optimized for a wide range of wavelength. Using such an objective, the fabrication tolerance of the optical system is larger than that of a conventional system, which can decrease the fabrication cost. The proposed zoom microscope objective cannot only take place of the conventional objective, but also has potential application in the 3D microscopy.
Microscopic Image of Martian Surface Material on a Silicone Substrate
NASA Technical Reports Server (NTRS)
2008-01-01
[figure removed for brevity, see original site] Click on image for larger version of Figure 1 This image taken by the Optical Microscope on NASA's Phoenix Mars Lander shows soil sprinkled from the lander's Robot Arm scoop onto a silicone substrate. The substrate was then rotated in front of the microscope. This is the first sample collected and delivered for instrumental analysis onboard a planetary lander since NASA's Viking Mars missions of the 1970s. It is also the highest resolution image yet seen of Martian soil. The image is dominated by fine particles close to the resolution of the microscope. These particles have formed clumps, which may be a smaller scale version of what has been observed by Phoenix during digging of the surface material. The microscope took this image during Phoenix's Sol 17 (June 11), or the 17th Martian day after landing. The scale bar is 1 millimeter (0.04 inch). Zooming in on the Martian Soil In figure 1, three zoomed-in portions are shown with an image of Martian soil particles taken by the Optical Microscope on NASA's Phoenix Mars Lander. The left zoom box shows a composite particle. The top of the particle has a green tinge, possibly indicating olivine. The bottom of the particle has been reimaged at a different focus position in black and white (middle zoom box), showing that this is a clump of finer particles. The right zoom box shows a rounded, glassy particle, similar to those which have also been seen in an earlier sample of airfall dust collected on a surface exposed during landing. The shadows at the bottom of image are of the beams of the Atomic Force Microscope. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Animated Optical Microscope Zoom in from Phoenix Launch to Martian Surface
NASA Technical Reports Server (NTRS)
2008-01-01
[figure removed for brevity, see original site] Click on image for animation This animated camera view zooms in from NASA's Phoenix Mars Lander launch site all the way to Phoenix's Microscopy and Electrochemistry and C Eonductivity Analyzer (MECA) aboard the spacecraft on the Martian surface. The final frame shows the soil sample delivered to MECA as viewed through the Optical Microscope (OM) on Sol 17 (June 11, 2008), or the 17th Martian day. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Extended Area Exit Pupil Viewer.
1985-08-01
viewing to normal Zoom-500 stereomicroscope viewing. Previous EAEP viewers typically have incorporated a spinning lenticular screen and associated...is uncorrected spherical aberration and astigmatism that limit image resolution. The complex optical path in the microscope also makes it inefficient
Figl, Michael; Ede, Christopher; Hummel, Johann; Wanschitz, Felix; Ewers, Rolf; Bergmann, Helmar; Birkfellner, Wolfgang
2005-11-01
Ever since the development of the first applications in image-guided therapy (IGT), the use of head-mounted displays (HMDs) was considered an important extension of existing IGT technologies. Several approaches to utilizing HMDs and modified medical devices for augmented reality (AR) visualization were implemented. These approaches include video-see through systems, semitransparent mirrors, modified endoscopes, and modified operating microscopes. Common to all these devices is the fact that a precise calibration between the display and three-dimensional coordinates in the patient's frame of reference is compulsory. In optical see-through devices based on complex optical systems such as operating microscopes or operating binoculars-as in the case of the system presented in this paper-this procedure can become increasingly difficult since precise camera calibration for every focus and zoom position is required. We present a method for fully automatic calibration of the operating binocular Varioscope M5 AR for the full range of zoom and focus settings available. Our method uses a special calibration pattern, a linear guide driven by a stepping motor, and special calibration software. The overlay error in the calibration plane was found to be 0.14-0.91 mm, which is less than 1% of the field of view. Using the motorized calibration rig as presented in the paper, we were also able to assess the dynamic latency when viewing augmentation graphics on a mobile target; spatial displacement due to latency was found to be in the range of 1.1-2.8 mm maximum, the disparity between the true object and its computed overlay represented latency of 0.1 s. We conclude that the automatic calibration method presented in this paper is sufficient in terms of accuracy and time requirements for standard uses of optical see-through systems in a clinical environment.
Electro-optically actuated liquid-lens zoom
NASA Astrophysics Data System (ADS)
Pütsch, O.; Loosen, P.
2012-06-01
Progressive miniaturization and mass market orientation denote a challenge to the design of dynamic optical systems such as zoom-lenses. Two working principles can be identified: mechanical actuation and application of active optical components. Mechanical actuation changes the focal length of a zoom-lens system by varying the axial positions of optical elements. These systems are limited in speed and often require complex coupled movements. However, well established optical design approaches can be applied. In contrast, active optical components change their optical properties by varying their physical structure by means of applying external electric signals. An example are liquidlenses which vary their curvatures to change the refractive power. Zoom-lenses benefit from active optical components in two ways: first, no moveable structures are required and second, fast response characteristics can be realized. The precommercial development of zoom-lenses demands simplified and cost-effective system designs. However the number of efficient optical designs for electro-optically actuated zoom-lenses is limited. In this paper, the systematic development of an electro-optically actuated zoom-lens will be discussed. The application of aberration polynomials enables a better comprehension of the primary monochromatic aberrations at the lens elements during a change in magnification. This enables an enhanced synthesis of the system behavior and leads to a simplified zoom-lens design with no moving elements. The change of focal length is achieved only by varying curvatures of targeted integrated electro-optically actuated lenses.
Zoom system without moving element by using two liquid crystal lenses with spherical electrode
NASA Astrophysics Data System (ADS)
Yang, Ren-Kai; Lin, Chia-Ping; Su, Guo-Dung J.
2017-08-01
A traditional zoom system is composed of several elements moving relatively toward other components to achieve zooming. Unlike tradition system, an electrically control zoom system with liquid crystal (LC) lenses is demonstrated in this paper. To achieve zooming, we apply two LC lenses whose optical power is controlled by voltage to replace two moving lenses in traditional zoom system. The mechanism of zoom system is to use two LC lenses to form a simple zoom system. We found that with such spherical electrodes, we could operate LC lens at voltage range from 31V to 53 V for 3X tunability in optical power. For each LC lens, we use concave spherical electrode which provide lower operating voltage and great tunability in optical power, respectively. For such operating voltage and compact size, this zoom system with zoom ratio approximate 3:1 could be applied to mobile phone, camera and other applications.
Optical zoom system realized by lateral shift of Alvarez freeform lenses
NASA Astrophysics Data System (ADS)
Hou, Changlun; Xin, Qing; Zang, Yue
2018-04-01
We present and characterize an optical zoom system with lateral movement of an Alvarez freeform lens for imaging. Mathematical analysis for determining the required freeform surfaces is presented, and optical simulations are performed to confirm and refine the expected zooming behavior. A 3 × optical zoom system that was equivalent to a photographic objective lens with focal length ranging from 34.5 to 103.5 mm and field of view ranging from 60 deg to 22.4 deg is developed by using two pairs of Alvarez lenses and conventional aspheric lenses. The optical performances of the Alvarez zoom system are demonstrated experimentally.
Wick, David V.
2005-12-20
An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.
Design of large zoom for visible and infrared optical system in hemisphere space
NASA Astrophysics Data System (ADS)
Xing, Yang-guang; Li, Lin; Zhang, Juan
2018-01-01
In the field of space optical, the application of advanced optical instruments for related target detection and identification has become an advanced technology in modern optics. In order to complete the task of search in wide field of view and detailed investigation in small field of view, it is inevitable to use the structure of the zoom system to achieve a better observation for important targets. The innovation of this paper lies in using the zoom optical system in space detection, which achieve firstly military needs of searched target in the large field of view and recognized target in the small field of view. At the same time, this paper also completes firstly the design of variable focus optical detection system in the range of hemisphere space, the zoom optical system is working in the range of visible and infrared wavelengths, the perspective angle reaches 360 ° and the zoom ratio of the visible system is up to 15. The visible system has a zoom range of 60-900 mm, a detection band of 0.48-0.70μm, and a F-number of 2.0 to 5.0. The infrared system has a zoom range of 150 900mm, a detection band of 8-12μm, and a F-number of 1.2 to 3.0. The MTF of the visible zoom system is above 0.4 at spatial frequency of 45 lp / mm, and the infrared zoom system is above 0.4 at spatial frequency of 11 lp / mm. The design results show that the system has a good image quality.
Optimal power distribution for minimizing pupil walk in a 7.5X afocal zoom lens
NASA Astrophysics Data System (ADS)
Song, Wanyue; Zhao, Yang; Berman, Rebecca; Bodell, S. Yvonne; Fennig, Eryn; Ni, Yunhui; Papa, Jonathan C.; Yang, Tianyi; Yee, Anthony J.; Moore, Duncan T.; Bentley, Julie L.
2017-11-01
An extensive design study was conducted to find the best optimal power distribution and stop location for a 7.5x afocal zoom lens that controls the pupil walk and pupil location through zoom. This afocal zoom lens is one of the three components in a VIS-SWIR high-resolution microscope for inspection of photonic chips. The microscope consists of an afocal zoom, a nine-element objective and a tube lens and has diffraction limited performance with zero vignetting. In this case, the required change in object (sample) size and resolution is achieved by the magnification change of the afocal component. This creates strict requirements for both the entrance and exit pupil locations of the afocal zoom to couple the two sides successfully. The first phase of the design study looked at conventional four group zoom lenses with positive groups in the front and back and the stop at a fixed location outside the lens but resulted in significant pupil walk. The second phase of the design study focused on several promising unconventional four-group power distribution designs with moving stops that minimized pupil walk and had an acceptable pupil location (as determined by the objective and tube lens).
Electrically optofluidic zoom system with a large zoom range and high-resolution image.
Li, Lei; Yuan, Rong-Ying; Wang, Jin-Hui; Wang, Qiong-Hua
2017-09-18
We report an electrically controlled optofluidic zoom system which can achieve a large continuous zoom change and high-resolution image. The zoom system consists of an optofluidic zoom objective and a switchable light path which are controlled by two liquid optical shutters. The proposed zoom system can achieve a large tunable focal length range from 36mm to 92mm. And in this tuning range, the zoom system can correct aberrations dynamically, thus the image resolution is high. Due to large zoom range, the proposed imaging system incorporates both camera configuration and telescope configuration into one system. In addition, the whole system is electrically controlled by three electrowetting liquid lenses and two liquid optical shutters, therefore, the proposed system is very compact and free of mechanical moving parts. The proposed zoom system has potential to take place of conventional zoom systems.
Martian Dust Collected by Phoenix's Arm
NASA Technical Reports Server (NTRS)
2008-01-01
This image from NASA's Phoenix Lander's Optical Microscope shows particles of Martian dust lying on the microscope's silicon substrate. The Robotic Arm sprinkled a sample of the soil from the Snow White trench onto the microscope on July 2, 2008, the 38th Martian day, or sol, of the mission after landing. Subsequently, the Atomic Force Microscope, or AFM, zoomed in one of the fine particles, creating the first-ever image of a particle of Mars' ubiquitous fine dust, the most highly magnified image ever seen from another world. The Atomic Force Microscope was developed by a Swiss-led consortium in collaboration with Imperial College London. The AFM is part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.To zoom or not to zoom: do we have enough pixels?
NASA Astrophysics Data System (ADS)
Youngworth, Richard N.; Herman, Eric
2015-09-01
Common lexicon in imaging systems includes the frequently used term digital zoom. Of course this term is somewhat of a misnomer as there is no actual zooming in such systems. Instead, digital zoom describes the zoom effect that comes with an image rewriting or reprinting that perhaps can be more accurately described as cropping and enlarging an image (a pixel remapping) for viewing. If done properly, users of the overall hybrid digital-optical system do not know the methodology employed. Hence the essential question, pondered and manipulated since the advent of mature digital image science, really becomes "do we have enough pixels to avoid optical zoom." This paper discusses known imaging factors for hybrid digital-optical systems, most notably resolution considerations. The paper is fundamentally about communication, and thereby includes information useful to the greater consumer, technical, and business community who all have an interest in understanding the key technical details that have driven the amazing technology and development of zoom systems.
Design, fabrication, and testing of duralumin zoom mirror with variable thickness
NASA Astrophysics Data System (ADS)
Hui, Zhao; Xie, Xiaopeng; Xu, Liang; Ding, Jiaoteng; Shen, Le; Liu, Meiying; Gong, Jie
2016-10-01
Zoom mirror is a kind of active optical component that can change its curvature radius dynamically. Normally, zoom mirror is used to correct the defocus and spherical aberration caused by thermal lens effect to improve the beam quality of high power solid-state laser since that component was invented. Recently, the probable application of zoom mirror in realizing non-moving element optical zoom imaging in visible band has been paid much attention. With the help of optical leveraging effect, the slightly changed local optical power caused by curvature variation of zoom mirror could be amplified to generate a great alteration of system focal length without moving elements involved in, but in this application the shorter working wavelength and higher surface figure accuracy requirement make the design and fabrication of such a zoom mirror more difficult. Therefore, the key to realize non-moving element optical zoom imaging in visible band lies in zoom mirror which could provide a large enough saggitus variation while still maintaining a high enough surface figure. Although the annular force based actuation could deform a super-thin mirror having a constant thickness to generate curvature variation, it is quite difficult to maintain a high enough surface figure accuracy and this phenomenon becomes even worse when the diameter and the radius-thickness ratio become bigger. In this manuscript, by combing the pressurization based actuation with a variable thickness mirror design, the purpose of obtaining large saggitus variation and maintaining quite good surface figure accuracy at the same time could be achieved. A prototype zoom mirror with diameter of 120mm and central thickness of 8mm is designed, fabricated and tested. Experimental results demonstrate that the zoom mirror having an initial surface figure accuracy superior to 1/50λ could provide at least 21um saggitus variation and after finishing the curvature variation its surface figure accuracy could still be superior to 1/20λ, which proves that the effectiveness of the theoretical design.
The Zoom Lens: A Case Study in Geometrical Optics.
ERIC Educational Resources Information Center
Cheville, Alan; Scepanovic, Misa
2002-01-01
Introduces a case study on a motion picture company considering the purchase of a newly developed zoom lens in which students act as the engineers designing the zoom lens based on the criteria of company's specifications. Focuses on geometrical optics. Includes teaching notes and classroom management strategies. (YDS)
Common Aperture Techniques for Imaging Electro-Optical Sensors (CATIES).
1980-02-01
milliradians ) at the 5.33:1 zoom point. The zoom optics contain five elements with two moveable air -spaced doublets for accomplishing the zoom function...included in the electrical and optical design but due to funding limitations, system safety requirements during the testing phase and lack of long-term...determined during the system testing phase to be conducted by the Air Force. Limited electronic signal processing (split screen and video mix) was
Structural design of off-axis aspheric surface reflective zoom optical system
NASA Astrophysics Data System (ADS)
Zhang, Ke; Chang, Jun; Song, Haiping; Niu, Yajun
2018-01-01
Designed an off-axis aspheric reflective zoom optical system, and produced a prototype. The system consists of three aspheric reflective lens, the zoom range is 30mm { 90mm. This system gave up the traditional structure of zoom cam, the lens moved using linear guide rail driven by motor, the positioning precision of which was 0.01mm. And introduced the design of support frames of each lens. The practice tests verified the rationality of the prototype structure design.
Optimization design of periscope type 3X zoom lens design for a five megapixel cellphone camera
NASA Astrophysics Data System (ADS)
Sun, Wen-Shing; Tien, Chuen-Lin; Pan, Jui-Wen; Chao, Yu-Hao; Chu, Pu-Yi
2016-11-01
This paper presents a periscope type 3X zoom lenses design for a five megapixel cellphone camera. The configuration of optical system uses the right angle prism in front of the zoom lenses to change the optical path rotated by a 90° angle resulting in the zoom lenses length of 6 mm. The zoom lenses can be embedded in mobile phone with a thickness of 6 mm. The zoom lenses have three groups with six elements. The half field of view is varied from 30° to 10.89°, the effective focal length is adjusted from 3.142 mm to 9.426 mm, and the F-number is changed from 2.8 to 5.13.
A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability.
Hasan, Md Mehedi; Alam, Mohammad Wajih; Wahid, Khan A; Miah, Sayem; Lukong, Kiven Erique
2016-01-01
This paper describes the development of a prototype of a low-cost digital fluorescent microscope built from commercial off-the-shelf (COTS) components. The prototype was tested to detect malignant tumor cells taken from a living organism in a preclinical setting. This experiment was accomplished by using Alexa Fluor 488 conjugate dye attached to the cancer cells. Our prototype utilizes a torch along with an excitation filter as a light source for fluorophore excitation, a dichroic mirror to reflect the excitation and pass the emitted green light from the sample under test and a barrier filter to permit only appropriate wavelength. The system is designed out of a microscope using its optical zooming property and an assembly of exciter filter, dichroic mirror and transmitter filter. The microscope is connected to a computer or laptop through universal serial bus (USB) that allows real-time transmission of captured florescence images; this also offers real-time control of the microscope. The designed system has comparable features of high-end commercial fluorescent microscopes while reducing cost, power, weight and size.
A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability
Hasan, Md. Mehedi; Wahid, Khan A.; Miah, Sayem; Lukong, Kiven Erique
2016-01-01
This paper describes the development of a prototype of a low-cost digital fluorescent microscope built from commercial off-the-shelf (COTS) components. The prototype was tested to detect malignant tumor cells taken from a living organism in a preclinical setting. This experiment was accomplished by using Alexa Fluor 488 conjugate dye attached to the cancer cells. Our prototype utilizes a torch along with an excitation filter as a light source for fluorophore excitation, a dichroic mirror to reflect the excitation and pass the emitted green light from the sample under test and a barrier filter to permit only appropriate wavelength. The system is designed out of a microscope using its optical zooming property and an assembly of exciter filter, dichroic mirror and transmitter filter. The microscope is connected to a computer or laptop through universal serial bus (USB) that allows real-time transmission of captured florescence images; this also offers real-time control of the microscope. The designed system has comparable features of high-end commercial fluorescent microscopes while reducing cost, power, weight and size. PMID:27977709
Design of a variable-focal-length optical system
NASA Technical Reports Server (NTRS)
Ricks, D.; Shannon, R. R.
1984-01-01
Requirements to place an entire optical system with a variable focal length ranging from 20 to 200 cm within a overall length somewhat less than 100 cm placed severe restrictions on the design of a zoom lens suitable for use on a comet explorer. The requirements of a wavelength range of 0.4 to 1.0 microns produced even greater limitations on the possibilities for a design that included a catadioptric (using mirrors and glass) front and followed by a zooming refractive portion. Capabilities available commercial zoom lenses as well as patents of optical systems are reviewed. Preliminary designs of the refractive optics zoom lens and the catadioptric system are presented and evaluated. Of the two, the latter probably has the best chance of success, so long as the shortest focal lengths are not really needed.
Optical design of laser zoom projective lens with variable total track
NASA Astrophysics Data System (ADS)
He, Yulan; Xiao, Xiangguo; Lu, Feng; Li, Yuan; Han, Kunye; Wang, Nanxi; Qiang, Hua
2017-02-01
In order to project the laser command information to the proper distance , so a laser zoom projective lens with variable total track optical system is designed in the carrier-based aircraft landing system. By choosing the zoom structure, designing of initial structure with PW solution, correcting and balancing the aberration, a large variable total track with 35 × zoom is carried out. The size of image is invariable that is φ25m, the distance of projective image is variable from 100m to 3500m. Optical reverse design, the spot is less than 8μm, the MTF is near the diffraction limitation, the value of MTF is bigger than 0.4 at 50lp/mm.
Optical zoom lens module using MEMS deformable mirrors for portable device
NASA Astrophysics Data System (ADS)
Lu, Jia-Shiun; Su, Guo-Dung J.
2012-10-01
The thickness of the smart phones in today's market is usually below than 10 mm, and with the shrinking of the phone volume, the difficulty of its production of the camera lens has been increasing. Therefore, how to give the imaging device more functionality in the smaller space is one of the interesting research topics for today's mobile phone companies. In this paper, we proposed a thin optical zoom system which is combined of micro-electromechanical components and reflective optical architecture. By the adopting of the MEMS deformable mirrors, we can change their radius of curvature to reach the optical zoom in and zoom out. And because we used the all-reflective architecture, so this system has eliminated the considerable chromatic aberrations in the absence of lenses. In our system, the thickness of the zoom system is about 11 mm. The smallest EFL (effective focal length) is 4.61 mm at a diagonal field angle of 52° and f/# of 5.24. The longest EFL of the module is 9.22 mm at a diagonal field angle of 27.4 with f/# of 5.03.°
Optical design of an athermalised dual field of view step zoom optical system in MWIR
NASA Astrophysics Data System (ADS)
Kucukcelebi, Doruk
2017-08-01
In this paper, the optical design of an athermalised dual field of view step zoom optical system in MWIR (3.7μm - 4.8μm) is described. The dual field of view infrared optical system is designed based on the principle of passive athermalization method not only to achieve athermal optical system but also to keep the high image quality within the working temperature between -40°C and +60°C. The infrared optical system used in this study had a 320 pixel x 256 pixel resolution, 20μm pixel pitch size cooled MWIR focal plane array detector. In this study, the step zoom mechanism, which has the axial motion due to consisting of a lens group, is considered to simplify mechanical structure. The optical design was based on moving a single lens along the optical axis for changing the optical system's field of view not only to reduce the number of moving parts but also to athermalize for the optical system. The optical design began with an optimization process using paraxial optics when first-order optics parameters are determined. During the optimization process, in order to reduce aberrations, such as coma, astigmatism, spherical and chromatic aberrations, aspherical surfaces were used. As a result, athermalised dual field of view step zoom optical design is proposed and the performance of the design using proposed method was verified by providing the focus shifts, spot diagrams and MTF analyzes' plots.
Chen, Ting; Dailey, Seth H; Naze, Sawyer A; Jiang, Jack J
2012-04-01
Microsurgical equipment has greatly advanced since the inception of the microscope into the operating room. These advancements have allowed for superior surgical precision and better post-operative results. This study focuses on the use of the Leica HM500 head-mounted microscope for the operating phonosurgeon. The head-mounted microscope has an optical zoom from 2× to 9× and provides a working distance from 300 mm to 700 mm. The headpiece, with its articulated eyepieces, adjusts easily to head shape and circumference, and offers a focus function, which is either automatic or manually controlled. We performed five microlaryngoscopic operations utilizing the head-mounted microscope with successful results. By creating a more ergonomically favorable operating posture, a surgeon may be able to obtain greater precision and success in phonomicrosurgery. Phonomicrosurgery requires the precise manipulation of long-handled cantilevered instruments through the narrow bore of a laryngoscope. The head-mounted microscope shortens the working distance compared with a stand microscope, thereby increasing arm stability, which may improve surgical precision. Also, the head-mounted design permits flexibility in head position, enabling operator comfort, and delaying musculoskeletal fatigue. A head-mounted microscope decreases the working distance and provides better ergonomics in laryngoscopic microsurgery. These advances provide the potential to promote precision in phonomicrosurgery. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.
Gradient Index Optics at DARPA
2013-11-01
four efforts were selected for further development and demonstration: fluidic adaptive zoom lenses, foveated imaging, photon sieves, and nanolayer...2-4 1. Fluidic Adaptive Zoom Lenses... gastropod mollusks. In simple optical systems such as the fish lens, the focal length is a function of the wavelength of light. This distortion is called
Optics of wide-angle panoramic viewing system-assisted vitreous surgery.
Chalam, Kakarla V; Shah, Vinay A
2004-01-01
The purpose of the article is to describe the optics of the contact wide-angle lens system with stereo-reinverter for vitreous surgery. A panoramic viewing system is made up of two components; an indirect ophthalmoscopy lens system for fundus image viewing, which is placed on the patient's cornea as a contact lens, and a separate removable prism system for reinversion of the image mounted on the microscope above the zooming system. The system provides a 104 degrees field of view in a phakic emmetropic eye with minification, which can be magnified by the operating microscope. It permits a binocular stereoptic view even through a small pupil (3 mm) or larger. In an air-filled phakic eye, field of view increases to approximately 130 degrees. The obtained image of the patient's fundus is reinverted to form true, erect, stereoscopic image by the reinversion system. In conclusion, this system permits wide-angle panoramic view of the surgical field. The contact lens neutralizes the optical irregularities of the corneal surface and allows improved visualization in eyes with irregular astigmatism induced by corneal scars. Excellent visualization is achieved in complex clinical situations such as miotic pupils, lenticular opacities, and in air-filled phakic eyes.
Lan, Gongpu; Mauger, Thomas F.; Li, Guoqiang
2015-01-01
We report on the theory and design of adaptive objective lens for ultra broadband near infrared light imaging with large dynamic optical depth scanning range by using an embedded tunable lens, which can find wide applications in deep tissue biomedical imaging systems, such as confocal microscope, optical coherence tomography (OCT), two-photon microscopy, etc., both in vivo and ex vivo. This design is based on, but not limited to, a home-made prototype of liquid-filled membrane lens with a clear aperture of 8mm and the thickness of 2.55mm ~3.18mm. It is beneficial to have an adaptive objective lens which allows an extended depth scanning range larger than the focal length zoom range, since this will keep the magnification of the whole system, numerical aperture (NA), field of view (FOV), and resolution more consistent. To achieve this goal, a systematic theory is presented, for the first time to our acknowledgment, by inserting the varifocal lens in between a front and a back solid lens group. The designed objective has a compact size (10mm-diameter and 15mm-length), ultrabroad working bandwidth (760nm - 920nm), a large depth scanning range (7.36mm in air) — 1.533 times of focal length zoom range (4.8mm in air), and a FOV around 1mm × 1mm. Diffraction-limited performance can be achieved within this ultrabroad bandwidth through all the scanning depth (the resolution is 2.22 μm - 2.81 μm, calculated at the wavelength of 800nm with the NA of 0.214 - 0.171). The chromatic focal shift value is within the depth of focus (field). The chromatic difference in distortion is nearly zero and the maximum distortion is less than 0.05%. PMID:26417508
NASA Astrophysics Data System (ADS)
Izatt, Susan D.; Choma, Michael A.; Israel, Steven; Wessells, Robert J.; Bodmer, Rolf; Izatt, Joseph A.
2005-03-01
Real time in vivo optical coherence tomography (OCT) imaging of the adult fruit fly Drosophila melanogaster heart using a newly designed OCT microscope allows accurate assessment of cardiac anatomy and function. D. melanogaster has been used extensively in genetic research for over a century, but in vivo evaluation of the heart has been limited by available imaging technology. The ability to assess phenotypic changes with micrometer-scale resolution noninvasively in genetic models such as D. melanogaster is needed in the advancing fields of developmental biology and genetics. We have developed a dedicated small animal OCT imaging system incorporating a state-of-the-art, real time OCT scanner integrated into a standard stereo zoom microscope which allows for simultaneous OCT and video imaging. System capabilities include A-scan, B-scan, and M-scan imaging as well as automated 3D volumetric acquisition and visualization. Transverse and sagittal B-mode scans of the four chambered D. melanogaster heart have been obtained with the OCT microscope and are consistent with detailed anatomical studies from the literature. Further analysis by M-mode scanning is currently under way to assess cardiac function as a function of age and sex by determination of shortening fraction and ejection fraction. These studies create control cardiac data on the wild type D. melanogaster, allowing subsequent evaluation of phenotypic cardiac changes in this model after regulated genetic mutation.
Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift.
She, Alan; Zhang, Shuyan; Shian, Samuel; Clarke, David R; Capasso, Federico
2018-02-01
Focal adjustment and zooming are universal features of cameras and advanced optical systems. Such tuning is usually performed longitudinally along the optical axis by mechanical or electrical control of focal length. However, the recent advent of ultrathin planar lenses based on metasurfaces (metalenses), which opens the door to future drastic miniaturization of mobile devices such as cell phones and wearable displays, mandates fundamentally different forms of tuning based on lateral motion rather than longitudinal motion. Theory shows that the strain field of a metalens substrate can be directly mapped into the outgoing optical wavefront to achieve large diffraction-limited focal length tuning and control of aberrations. We demonstrate electrically tunable large-area metalenses controlled by artificial muscles capable of simultaneously performing focal length tuning (>100%) as well as on-the-fly astigmatism and image shift corrections, which until now were only possible in electron optics. The device thickness is only 30 μm. Our results demonstrate the possibility of future optical microscopes that fully operate electronically, as well as compact optical systems that use the principles of adaptive optics to correct many orders of aberrations simultaneously.
Solutions on a high-speed wide-angle zoom lens with aspheric surfaces
NASA Astrophysics Data System (ADS)
Yamanashi, Takanori
2012-10-01
Recent development in CMOS and digital camera technology has accelerated the business and market share of digital cinematography. In terms of optical design, this technology has increased the need to carefully consider pixel pitch and characteristics of the imager. When the field angle at the wide end, zoom ratio, and F-number are specified, choosing an appropriate zoom lens type is crucial. In addition, appropriate power distributions and lens configurations are required. At points near the wide end of a zoom lens, it is known that an aspheric surface is an effective means to correct off-axis aberrations. On the other hand, optical designers have to focus on manufacturability of aspheric surfaces and perform required analysis with respect to the surface shape. Centration errors aside, it is also important to know the sensitivity to aspheric shape errors and their effect on image quality. In this paper, wide angle cine zoom lens design examples are introduced and their main characteristics are described. Moreover, technical challenges are pointed out and solutions are proposed.
An Electrically Tunable Zoom System Using Liquid Lenses
Li, Heng; Cheng, Xuemin; Hao, Qun
2015-01-01
A four-group stabilized zoom system using two liquid lenses and two fixed lens groups is proposed. We describe the design principle, realization, and the testing of a 5.06:1 zoom system. The realized effective focal length (EFL) range is 6.93 mm to 35.06 mm, and the field of view (FOV) range is 8° to 40°. The system can zoom fast when liquid lens 1’s (L1’s) optical power take the value from 0.0087 mm−1 to 0.0192 mm−1 and liquid lens 2’s (L2’s) optical power take the value from 0.0185 mm−1 to −0.01 mm−1. Response time of the realized zoom system was less than 2.5 ms, and the settling time was less than 15 ms.The analysis of elements’ parameters and the measurement of lens performance not only verify the design principle further, but also show the zooming process by the use of two liquid lenses. The system is useful for motion carriers e.g., robot, ground vehicle, and unmanned aerial vehicles considering that it is fast, reliable, and miniature. PMID:26729124
Bifocal liquid lens zoom objective for mobile phone applications
NASA Astrophysics Data System (ADS)
Wippermann, F. C.; Schreiber, P.; Bräuer, A.; Craen, P.
2007-02-01
Miniaturized camera systems are an integral part of today's mobile phones which recently possess auto focus functionality. Commercially available solutions without moving parts have been developed using the electrowetting technology. Here, the contact angle of a drop of a conductive or polar liquid placed on an insulating substrate can be influenced by an electric field. Besides the compensation of the axial image shift due to different object distances, mobile phones with zoom functionality are desired as a next evolutionary step. In classical mechanically compensated zoom lenses two independently driven actuators combined with precision guides are needed leading to a delicate, space consuming and expansive opto-mechanical setup. Liquid lens technology based on the electrowetting effect gives the opportunity to built adaptive lenses without moving parts thus simplifying the mechanical setup. However, with the recent commercially available liquid lens products a completely motionless and continuously adaptive zoom system with market relevant optical performance is not feasible. This is due to the limited change in optical power the liquid lenses can provide and the dispersion of the used materials. As an intermediate step towards a continuously adjustable and motionless zoom lens we propose a bifocal system sufficient for toggling between two effective focal lengths without any moving parts. The system has its mechanical counterpart in a bifocal zoom lens where only one lens group has to be moved. In a liquid lens bifocal zoom two groups of adaptable liquid lenses are required for adjusting the effective focal length and keeping the image location constant. In order to overcome the difficulties in achromatizing the lens we propose a sequential image acquisition algorithm. Here, the full color image is obtained from a sequence of monochrome images (red, green, blue) leading to a simplified optical setup.
Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses
NASA Astrophysics Data System (ADS)
Kim, Baek-Chul; Kim, Hyunseok; Nguyen, H. C.; Cho, M. S.; Lee, Y.; Nam, Jae-Do; Choi, Hyouk Ryeol; Koo, J. C.; Jeong, H.-S.
2008-03-01
The objective of the present work is to demonstrate the efficiency and feasibility of NBR (Nitrile Butadiene Rubber) based conducting polymer actuator that is fabricated into a micro zoon lens driver. Unlike the traditional conducting polymer that normally operates in a liquid, the proposed actuator successfully provides fairly effective driving performance for the zoom lens system in a dry environment. And this paper is including the experiment results for an efficiency improvement. The result suggested by an experiment was efficient in micro optical zoom lens system. In addition, the developed design method of actuator was given consideration to design the system.
Ultrathin zoom telescopic objective.
Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua
2016-08-08
We report an ultrathin zoom telescopic objective that can achieve continuous zoom change and has reduced compact volume. The objective consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens undertakes the main part of the focal power of the lens system. Due to a multiple-fold design, the optical path is folded in a lens with the thickness of ~1.98mm. The electrowetting liquid lenses constitute a zoom part. Based on the proposed objective, an ultrathin zoom telescopic camera is demonstrated. We analyze the properties of the proposed objective. The aperture of the proposed objective is ~15mm. The total length of the system is ~18mm with a tunable focal length ~48mm to ~65mm. Compared with the conventional zoom telescopic objective, the total length has been largely reduced.
Design of a zoom lens without motorized optical elements
NASA Astrophysics Data System (ADS)
Peng, Runling; Chen, Jiabi; Zhu, Cheng; Zhuang, Songlin
2007-05-01
A novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two double-liquid variable-focus lenses. The liquid lenses, made out of two immiscible liquids, are based on the principle of electrowetting: an effect controlling the wetting properties of a liquid on a solid by modifying the applied voltage at the solid-liquid interface. The structure and principle of the lens system are introduced in this paper. Detailed calculations and simulation examples are presented to show that this zoom lens system appears viable as the next-generation zoom lens.
Design of a zoom lens without motorized optical elements.
Peng, Runling; Chen, Jiabi; Zhu, Cheng; Zhuang, Songlin
2007-05-28
A novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two double-liquid variable-focus lenses. The liquid lenses, made out of two immiscible liquids, are based on the principle of electrowetting: an effect controlling the wetting properties of a liquid on a solid by modifying the applied voltage at the solid-liquid interface. The structure and principle of the lens system are introduced in this paper. Detailed calculations and simulation examples are presented to show that this zoom lens system appears viable as the next-generation zoom lens.
Stereomicroscopic study of the human tooth caries: clinical and morphological correlations
NASA Astrophysics Data System (ADS)
Oancea, Roxana; Vasile, Liliana; Marchese, Cristian; Sava-Rosianu, Ruxandra
2012-06-01
Objectives: Stereomicroscopy allows a three-dimensional study of the images and of laterality at superior quality in comparison with other methods. Those advantages are given by the large examination fields and the wide work distances. The adding of the clinical and morphological data at the results gathered with stereomicroscopy and the stereo micrometry is useful in order to appreciate the deepness and the widening of the carious process, and the necessity to reconsider the therapeutically strategy. Materials and methods: During 2009-2011 the study material was represented by 10 surgically removed impacted third molars, and by 20 premolars extracted for orthodontic purposes, with closed and macroscopically apparently integer surfaces. 13 premolars with different degrees of carious affectation and periodontal lesions, which were surgically extracted without trauma, were also selected. The in situ measurements at the occlusal site were realized through the utilization of a fluorescent laser device - DIAGNOdent. The basic principles in stereomicroscopy stood at the base of the obliquely and circularly coaxial illumination techniques, one with optical alignment adjustment of the optical microscope and mechanical adjustment for the optimal illumination and micrometry. The Olympus Microscope SZ ×7 and an Olympus camera with 2,5 × digital zoom and a 3× optical zoom has been used to study the samples in stereomicroscopy and through polarized light it. Results: The DiagnoDent measured the following data: out of 43 apparently healthy teeth, 18 presented values between 2 and 13 (D1), 13 showed values between 14 and 24 (D2), 12 measured values over 24 (D3). After the histological examination in stereomicroscopy and in the polarized light: 25 teeth were healthy, 10 presented caries extended in dental enamel and 8 presented dentinal caries. Stereomicroscopy has allowed the morphological study, the color absorption, the appreciation of the lesions' deepness and substance loss that is very useful in grading the progression of the carious lesion. Conclusions: The stereomicroscopic study correlated with clinical and morphological data allowed to appreciate the extent of tissue involved in the carious process, but also the understanding of the enamel, dentine and cement matrix demineralization process, in proximity with the morpho-embryological markings of the human tooth structure.
Varo-achro-phobia: the fear of broad spectrum zoom optics
NASA Astrophysics Data System (ADS)
Vogel, Steven; Pollica, Naomi
2015-05-01
Today's battlefield is evolving at light speed. Our war fighters are being tasked with highly complex missions requiring the very best technology our industry can offer. The demand for advanced ISR platforms is challenging designers and engineers in the optics industry to push the envelope and develop wider band solutions to support multiple and broadband sensor platforms. Recently, significant attention has been directed towards the development of optical systems that enable simultaneous operation in the visible and shortwave infrared spectral wavebands. This paper will present a review of the evolution of StingRay Optics' GhostSight™ continuous zoom optics that offer broad chromatic imaging capabilities from the visible through the shortwave infrared spectrum.
CFRP variable curvature mirror used for realizing non-moving-element optical zoom imaging
NASA Astrophysics Data System (ADS)
Zhao, Hui; Fan, Xuewu; Pang, Zhihai; Ren, Guorui; Wang, Wei; Xie, Yongjie; Ma, Zhen; Du, Yunfei; Su, Yu; Wei, Jingxuan
2014-12-01
In recent years, how to eliminate moving elements while realizing optical zoom imaging has been paid much attention. Compared with the conventional optical zooming techniques, removing moving elements would bring in many benefits such as reduction in weight, volume and power cost and so on. The key to implement non-moving-element optical zooming lies in the design of variable curvature mirror (VCM). In order to obtain big enough optical magnification, the VCM should be capable of generating a large variation of saggitus. Hence, the mirror material should not be brittle, in other words the corresponding ultimate strength should be high enough to ensure that mirror surface would not be broken during large curvature variation. Besides that, the material should have a not too big Young's modulus because in this case less force is required to generate a deformation. Among all available materials, for instance SiC, Zerodur and et.al, CFRP (carbon fiber reinforced polymer) satisfies all these requirements and many related research have proven this. In this paper, a CFRP VCM is designed, fabricated and tested. With a diameter of 100mm, a thickness of 2mm and an initial curvature radius of 1740mm, this component could change its curvature radius from 1705mm to 1760mm, which correspond to a saggitus variation of nearly 23μm. The work reported further proves the suitability of CFRP in constructing variable curvature mirror which could generate a large variation of saggitus.
Design of a novel Hyper-spectral riflescope system
NASA Astrophysics Data System (ADS)
Huang, YunHan; Fu, YueGang
2016-10-01
Hyper-spectral imaging involves many research areas, such as optics, spectroscopy, mechanical, microelectronics, and computers, etc. Hyper-spectral imaging system has an irreplaceable role in the detection field. At present, due to the improvement of camouflage technology, characteristic of target in battlefield becomes more complex and the targets became more and more difficult to be detected, According to this phenomenon the author designed a novel hyper-spectral riflescope optical system. In general, the riflescope optical system is composed of two parts front object lens and zoom relay system. Firstly, dispersion characteristics of the typical optical glasses varies during band 400nm 1 000nm, the author derived apochromatic theory that suitable to the front system and relay system without using special glass, and make a example to testify its correctness. In general, the zoom mode of relay system lens is different from the objective lens system, so we should take consideration of them separately. Secondly, based on the above theory, the articles designed a hyper-spectral riflescope system, which has a continuous zoom curve, zoom ratio is 4 times and the F number of the system is 4.8;Full field of view varies during 1.8° 7.2°.Structure of the system is relatively compact, and has not used special glass, eventually the article give the schematic of system MTF and zoom curves of relay movable parts. the curve is smooth and can be applied to practical engineering. The author adopt ZEMAX design software to analyses the results .Design result shows that, in the visible and near-infrared wavelengths, the MTF of imaging system at 60lp / mm during all bands are greater than 0.3, which prove the correctness of the design theory and good performance of system.
Design study for a 16x zoom lens system for visible surveillance camera
NASA Astrophysics Data System (ADS)
Vella, Anthony; Li, Heng; Zhao, Yang; Trumper, Isaac; Gandara-Montano, Gustavo A.; Xu, Di; Nikolov, Daniel K.; Chen, Changchen; Brown, Nicolas S.; Guevara-Torres, Andres; Jung, Hae Won; Reimers, Jacob; Bentley, Julie
2015-09-01
*avella@ur.rochester.edu Design study for a 16x zoom lens system for visible surveillance camera Anthony Vella*, Heng Li, Yang Zhao, Isaac Trumper, Gustavo A. Gandara-Montano, Di Xu, Daniel K. Nikolov, Changchen Chen, Nicolas S. Brown, Andres Guevara-Torres, Hae Won Jung, Jacob Reimers, Julie Bentley The Institute of Optics, University of Rochester, Wilmot Building, 275 Hutchison Rd, Rochester, NY, USA 14627-0186 ABSTRACT High zoom ratio zoom lenses have extensive applications in broadcasting, cinema, and surveillance. Here, we present a design study on a 16x zoom lens with 4 groups (including two internal moving groups), designed for, but not limited to, a visible spectrum surveillance camera. Fifteen different solutions were discovered with nearly diffraction limited performance, using PNPX or PNNP design forms with the stop located in either the third or fourth group. Some interesting patterns and trends in the summarized results include the following: (a) in designs with such a large zoom ratio, the potential of locating the aperture stop in the front half of the system is limited, with ray height variations through zoom necessitating a very large lens diameter; (b) in many cases, the lens zoom motion has significant freedom to vary due to near zero total power in the middle two groups; and (c) we discuss the trade-offs between zoom configuration, stop location, packaging factors, and zoom group aberration sensitivity.
Holographic zoom system based on spatial light modulator and liquid device
NASA Astrophysics Data System (ADS)
Wang, Di; Li, Lei; Liu, Su-Juan; Wang, Qiong-Hua
2018-02-01
In this paper, two holographic zoom systems are proposed based on the programmability of spatial light modulator (SLM) and zoom characteristics of liquid lens. An active optical zoom system is proposed in which the zoom module is composed of a liquid lens and an SLM. By controlling the focal lengths of the liquid lens and the encoded digital lens on the SLM, we can change the magnification of an image without mechanical moving parts and keep the output plane stationary. Then a color holographic zoom system based on a liquid lens is proposed. The system processes the color separation of the original object for red, green, and blue components and generated three holograms respectively. A new hologram with specific reconstructed distance can be generated by combing the hologram of the digital lens with the hologram of the image. By controlling the focal lengths of the liquid lens and the encoded digital lens on the SLM, we can change the magnification of the reconstructed image.
Chromatic correction for a VIS-SWIR zoom lens using optical glasses
NASA Astrophysics Data System (ADS)
Zhao, Yang; Williams, Daniel J. L.; McCarthy, Peter; Visconti, Anthony J.; Bentley, Julie L.; Moore, Duncan T.
2015-09-01
With the advancement in sensors, hyperspectral imaging in short wave infrared (SWIR 0.9 μm to 1.7 μm) now has wide applications, including night vision, haze-penetrating imaging, etc. Most conventional optical glasses can be material candidates for designing in the SWIR as they transmit up to 2.2 μm. However, since SWIR is in the middle of the glasses' major absorption wavebands in UV and IR, the flint glasses in SWIR are less dispersive than in the visible spectrum. As a result, the glass map in the SWIR is highly compressed, with crowns and flints all clustering together. Thus correcting for chromatic aberration is more challenging in the SWIR, since the Abbé number ratio of the same glass combination is reduced. Conventionally, fluorides, such as CaF2 and BaF2, are widely used in designing SWIR system due to their unique dispersion properties, even though they are notorious for poor manufacturability or even high toxicity. For lens elements in a zoom system, the ray bundle samples different sections of the each lens aperture as the lens zooms. This creates extra uncertainty in correcting chromatic aberrations. This paper focuses on using only commercially available optical glasses to color-correct a 3X dual-band zoom lens system in the VIS-SWIR. The design tools and techniques are detailed in terms of material selections to minimize the chromatic aberrations in such a large spectrum band and all zoom positions. Examples are discussed for designs with different aperture stop locations, which considerably affect the material choices.
Förster, Erik; Bohnert, Patrick; Kraus, Matthias; Kilper, Roland; Müller, Ute; Buchmann, Martin; Brunner, Robert
2016-11-20
This paper presents the conception and implementation of a variable diameter ring-cutting system for a CO2 laser with a working wavelength of 10.6 μm. The laser-cutting system is adapted to an observation zoom microscope for combined use and is applicable for the extraction of small circular areas from polymer films, such as forensic adhesive tapes in a single shot. As an important characteristic for our application, the variable diameter ring-cutting system provides telecentricity in the target area. Ring diameters are continuously tunable between 500 μm and 2 mm. A minimum width of less than 20 μm was found for the ring profile edge. The basic characteristics of the system, including telecentricity, were experimentally evaluated and demonstrated by cutting experiments on different polymer tapes and further exemplary samples.
Design of laser afocal zoom expander system
NASA Astrophysics Data System (ADS)
Jiang, Lian; Zeng, Chun-Mei; Hu, Tian-Tian
2018-01-01
Laser afocal zoom expander system due to the beam diameter variable, can be used in the light sheet illumination microscope to observe the samples of different sizes. Based on the principle of afocal zoom system, the laser collimation and beam expander system with a total length of less than 110mm, 6 pieces of spherical lens and a beam expander ratio of 10 is designed by using Zemax software. The system is focused on laser with a wavelength of 532nm, divergence angle of less than 4mrad and incident diameter of 4mm. With the combination of 6 spherical lens, the beam divergence angle is 0.4mrad at the maximum magnification ratio, and the RMS values at different rates are less than λ/4. This design is simple in structure and easy to process and adjust. It has certain practical value.
Thales Angenieux: 42 years of cine 35 mm zoom leadership
NASA Astrophysics Data System (ADS)
Debize, Jacques
2004-02-01
Since the early years of zoom optics, Angenieux has been involved in cine 8 mm, 16 mm and 35 mm. Among more than twenty different zoom lenses, four of them have been milestones in this field, technical progresses being sanctified by two Oscars in 1964 and 1990. From 1960 to 2002 Angenieux has created first the 4 x 35 LA2, the first four times mechanically compensated zoom lens for cine 35 mm in the world, secondary the 10 x 25 T2, the first ten times mechanically compensated zoom lens for cine 35 mm in the world, then the 10 x 25 HR, the top level of quality for its category and finally the 12 x 24 Optimo with all characteristics and performances greatly increased. This leadership has been reached thanks to computers and in-house softwares but also thanks to new manufacturing processes.
Mechanically assisted liquid lens zoom system for mobile phone cameras
NASA Astrophysics Data System (ADS)
Wippermann, F. C.; Schreiber, P.; Bräuer, A.; Berge, B.
2006-08-01
Camera systems with small form factor are an integral part of today's mobile phones which recently feature auto focus functionality. Ready to market solutions without moving parts have been developed by using the electrowetting technology. Besides virtually no deterioration, easy control electronics and simple and therefore cost-effective fabrication, this type of liquid lenses enables extremely fast settling times compared to mechanical approaches. As a next evolutionary step mobile phone cameras will be equipped with zoom functionality. We present first order considerations for the optical design of a miniaturized zoom system based on liquid-lenses and compare it to its mechanical counterpart. We propose a design of a zoom lens with a zoom factor of 2.5 considering state-of-the-art commercially available liquid lens products. The lens possesses auto focus capability and is based on liquid lenses and one additional mechanical actuator. The combination of liquid lenses and a single mechanical actuator enables extremely short settling times of about 20ms for the auto focus and a simplified mechanical system design leading to lower production cost and longer life time. The camera system has a mechanical outline of 24mm in length and 8mm in diameter. The lens with f/# 3.5 provides market relevant optical performance and is designed for an image circle of 6.25mm (1/2.8" format sensor).
Active Optical Zoom for Tracking
2008-09-01
optical system. 2. Current Setup Deformable Flat Two Deformable Flat Figure 1. Zemax lens design layout and experimental layout on the...optical bench. Figure 1 is a ZEMAX design and setup on the optical bench of two Deformable Mirrors (DMs) from OKO technologies. These mirrors have
Zooming in on vibronic structure by lowest-value projection reconstructed 4D coherent spectroscopy
NASA Astrophysics Data System (ADS)
Harel, Elad
2018-05-01
A fundamental goal of chemical physics is an understanding of microscopic interactions in liquids at and away from equilibrium. In principle, this microscopic information is accessible by high-order and high-dimensionality nonlinear optical measurements. Unfortunately, the time required to execute such experiments increases exponentially with the dimensionality, while the signal decreases exponentially with the order of the nonlinearity. Recently, we demonstrated a non-uniform acquisition method based on radial sampling of the time-domain signal [W. O. Hutson et al., J. Phys. Chem. Lett. 9, 1034 (2018)]. The four-dimensional spectrum was then reconstructed by filtered back-projection using an inverse Radon transform. Here, we demonstrate an alternative reconstruction method based on the statistical analysis of different back-projected spectra which results in a dramatic increase in sensitivity and at least a 100-fold increase in dynamic range compared to conventional uniform sampling and Fourier reconstruction. These results demonstrate that alternative sampling and reconstruction methods enable applications of increasingly high-order and high-dimensionality methods toward deeper insights into the vibronic structure of liquids.
NASA Technical Reports Server (NTRS)
2004-01-01
15 April 2004 This close-up image of a penny shows the degree to which the microscopic imager on the Mars Exploration Rover Spirit can zoom in on a target. The penny is seen exactly as it would be on Mars if it were placed under the microscopic imager. This picture was taken by the imager during testing at JPL. [figure removed for brevity, see original site] Spirit's Microscopic Vision Demonstrated This close-up image of a penny shows the power of the microscopic imager onboard the Mars Exploration Rover Spirit to see fine details. The picture was taken by the imager during testing at JPL.ERIC Educational Resources Information Center
Poitras, Adrian W., Ed.
1973-01-01
The following items are discussed: Digital Counters and Readout Devices, Automatic Burette Outfits, Noise Exposure System, Helium-Cadmium Laser, New pH Buffers and Flip-Top Dispenser, Voltage Calibrator Transfer Standard, Photomicrographic Stereo Zoom Microscope, Portable pH Meter, Micromanipulators, The Snuffer, Electronic Top-Loading Balances,…
Complete description of the optical path difference of a novel spectral zooming imaging spectrometer
NASA Astrophysics Data System (ADS)
Li, Jie; Wu, Haiying; Qi, Chun
2018-03-01
A complete description of the optical path difference of a novel spectral zooming imaging spectrometer (SZIS) is presented. SZIS is designed based on two identical Wollaston prisms with an adjustable air gap. Thus, interferogram with arbitrary spectral resolution and great reduction of spectral image size can be conveniently formed to adapt to different application requirements. Ray tracing modeling in arbitrary incidence with a quasi-parallel-plate approximation scheme is proposed to analyze the optical path difference of SZIS. In order to know the characteristics of the apparatus, exact calculations of the corresponding spectral resolution and field of view are both derived and analyzed in detail. We also present a comparison of calculation and experiment to prove the validity of the theory.
Miniaturized unified imaging system using bio-inspired fluidic lens
NASA Astrophysics Data System (ADS)
Tsai, Frank S.; Cho, Sung Hwan; Qiao, Wen; Kim, Nam-Hyong; Lo, Yu-Hwa
2008-08-01
Miniaturized imaging systems have become ubiquitous as they are found in an ever-increasing number of devices, such as cellular phones, personal digital assistants, and web cameras. Until now, the design and fabrication methodology of such systems have not been significantly different from conventional cameras. The only established method to achieve focusing is by varying the lens distance. On the other hand, the variable-shape crystalline lens found in animal eyes offers inspiration for a more natural way of achieving an optical system with high functionality. Learning from the working concepts of the optics in the animal kingdom, we developed bio-inspired fluidic lenses for a miniature universal imager with auto-focusing, macro, and super-macro capabilities. Because of the enormous dynamic range of fluidic lenses, the miniature camera can even function as a microscope. To compensate for the image quality difference between the central vision and peripheral vision and the shape difference between a solid-state image sensor and a curved retina, we adopted a hybrid design consisting of fluidic lenses for tunability and fixed lenses for aberration and color dispersion correction. A design of the world's smallest surgical camera with 3X optical zoom capabilities is also demonstrated using the approach of hybrid lenses.
Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate.
Ee, Ho-Seok; Agarwal, Ritesh
2016-04-13
A mechanically reconfigurable metasurface that can continuously tune the wavefront is demonstrated in the visible frequency range by changing the lattice constant of a complex Au nanorod array fabricated on a stretchable polydimethylsiloxane substrate. It is shown that the anomalous refraction angle of visible light at 632.8 nm interacting with the tunable metasurface can be adjusted from 11.4° to 14.9° by stretching the substrate by ∼30%. An ultrathin flat 1.7× zoom lens whose focal length can continuously be changed from 150 to 250 μm is realized, which also demonstrates the potential of utilizing metasurfaces for reconfigurable flat optics.
Continuous zoom antenna for mobile visible light communication.
Zhang, Xuebin; Tang, Yi; Cui, Lu; Bai, Tingzhu
2015-11-10
In this paper, we design a continuous zoom antenna for mobile visible light communication (VLC). In the design, a right-angle reflecting prism was adopted to fold the space optical path, thus decreasing the antenna thickness. The surface of each lens in the antenna is spherical, and the system cost is relatively low. Simulation results indicated that the designed system achieved the following performance: zoom ratio of 2.44, field of view (FOV) range of 18°-48°, system gain of 16.8, and system size of 18 mm×6 mm. Finally, we established an indoor VLC system model in a room the size of 5 m ×5 m ×3 m and compared the detection results of the zoom antenna and fixed-focus antenna obtained in a multisource communication environment, a mobile VLC environment, and a multiple-input multiple-output communication environment. The simulation results indicated that the continuous zoom antenna could realize large FOV and high gain. Moreover, the system showed improved stability, mobility, and environmental applicability.
NASA Astrophysics Data System (ADS)
Gao, Xiang; Shao, Wenquan; Ji, Hongwei
2010-10-01
Kevlar fiber-reinforced epoxy (KFRE) composites are widely used in the fields of aerospace, weapon, shipping, and civil industry, due to their outstanding capabilities. In this paper, mechanical properties and damage behaviors of KFRE laminate (02/902) were tested and studied under tension condition. To precisely measure the tensile mechanical properties of the material and investigate its micro-scale damage evolution, a micro-image measuring system with in-situ tensile device was designed. The measuring system, by which the in-situ tensile test can be carried out and surface morphology evolution of the tensile specimen can be visually monitored and recorded during the process of loading, includes an ultra-long working distance zoom microscope and a in-situ tensile loading device. In this study, a digital image correlation method (DICM) was used to calculate the deformation of the tensile specimen under different load levels according to the temporal series images captured by an optical microscope and CCD camera. Then, the elastic modulus and Poisson's ratio of the KFRE was obtained accordingly. The damage progresses of the KFRE laminates were analyzed. Experimental results indicated that: (1) the KFRE laminate (02/902) is almost elastic, its failure mode is brittle tensile fracture.(2) Mechanical properties parameters of the material are as follows: elastic modulus is 14- 16GPa, and tensile ultimate stress is 450-480 Mpa respectively. (3) The damage evolution of the material is that cracks appear in epoxy matrix firstly, then, with the increasing of the tensile loading, matrix cracks add up and extend along a 45° angle direction with tensile load. Furthermore, decohesion between matrix and fibers as well as delamination occurs. Eventually, fibers break and the material is damaged.
Mechatronic design of a fully integrated camera for mini-invasive surgery.
Zazzarini, C C; Patete, P; Baroni, G; Cerveri, P
2013-06-01
This paper describes the design features of an innovative fully integrated camera candidate for mini-invasive abdominal surgery with single port or transluminal access. The apparatus includes a CMOS imaging sensor, a light-emitting diode (LED)-based unit for scene illumination, a photodiode for luminance detection, an optical system designed according to the mechanical compensation paradigm, an actuation unit for enabling autofocus and optical zoom, and a control logics based on microcontroller. The bulk of the apparatus is characterized by a tubular shape with a diameter of 10 mm and a length of 35 mm. The optical system, composed of four lens groups, of which two are mobile, has a total length of 13.46 mm and an effective focal length ranging from 1.61 to 4.44 mm with a zoom factor of 2.75×, with a corresponding angular field of view ranging from 16° to 40°. The mechatronics unit, devoted to move the zoom and the focus lens groups, is implemented adopting miniature piezoelectric motors. The control logics implements a closed-loop mechanism, between the LEDs and photodiode, to attain automatic control light. Bottlenecks of the design and some potential issues of the realization are discussed. A potential clinical scenario is introduced.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Liu, Pengfei; Wei, Xiaona; Zhuang, Songlin; Yang, Bo
2010-11-01
Liquid lens is a novel optical device which can implement active zooming. With liquid lens, zoom camera can be designed with more miniature size and simpler structure than before. It is thought that the micro zoom system with liquid lens has a very wide potential applications in many fields, in which the volume and weight of the system are critically limited, such as endoscope, mobile, PDA and so on. There are mainly three types of tunable-focus liquid lens: liquid crystal lens, electrowetting effect based liquid lens and liquid-filled membrane lens. Comparing with the other two kinds of liquid lens, the liquid-filled membrane lens has the advantages of simple structure, flexible aperture and high zooming efficiency. But its membrane surface will have an initial shape deformation caused by the gravity when the aperture of the lens is at large size, which will lead to the wave front aberration and the imaging quality impairing. In this paper, the initial deformation of the lens caused by the gravity was simulated based on the theory of Elastic Mechanics, which was calculated by the Finite Element Analysis method. The relationship between the diameter of the lens and the wave front aberration caused by the gravity was studied. And the Optical path difference produced by different liquid density was also analyzed.
An all-silicone zoom lens in an optical imaging system
NASA Astrophysics Data System (ADS)
Zhao, Cun-Hua
2013-09-01
An all-silicone zoom lens is fabricated. A tunable metal ringer is fettered around the side edge of the lens. A nylon rope linking a motor is tied, encircling the notch in the metal ringer. While the motor is operating, the rope can shrink or release to change the focal length of the lens. A calculation method is developed to obtain the focal length and the zoom ratio. The testing is carried out in succession. The testing values are compared with the calculated ones, and they tally with each other well. Finally, the imaging performance of the all-silicone lens is demonstrated. The all-silicone lens has potential uses in cellphone cameras, notebook cameras, micro monitor lenses, etc.
Photographic zoom fisheye lens design for DSLR cameras
NASA Astrophysics Data System (ADS)
Yan, Yufeng; Sasian, Jose
2017-09-01
Photographic fisheye lenses with fixed focal length for cameras with different sensor formats have been well developed for decades. However, photographic fisheye lenses with variable focal length are rare on the market due in part to the greater design difficulty. This paper presents a large aperture zoom fisheye lens for DSLR cameras that produces both circular and diagonal fisheye imaging for 35-mm sensors and diagonal fisheye imaging for APS-C sensors. The history and optical characteristics of fisheye lenses are briefly reviewed. Then, a 9.2- to 16.1-mm F/2.8 to F/3.5 zoom fisheye lens design is presented, including the design approach and aberration control. Image quality and tolerance performance analysis for this lens are also presented.
A reflection polarizations zoom metasurfaces
NASA Astrophysics Data System (ADS)
Yang, Fulong; Wang, Xiaoyan
2017-02-01
Based on generalized Snell's law, we propose a dual-polarity zoom metasurfaces operating electromagnetic wave in the reflection geometry. The metasurfaces is constructed by two identical ultrathin metal-backed dielectric slabs with metallic Jerusalem cross patterns on the other sides to form a triangular region. The normally incident waves are totally reflected, but the reflection phases of both x- and y-polarized waves are controlled independently. According to the classical theory of optical imaging, the reflection electromagnetic wave phases were obtained in the different polarizations and focus. Each subwavelength units size were determined with the reflection coefficient of the basic unit, the polarizations zoom metasurfaces was designed in the way. The full-wave simulations are in good agreement with theoretical analysis in microwave lengths.
Cerveri, Pietro; Zazzarini, Cynthia Corinna; Patete, Paolo; Baroni, Guido
2014-06-01
The goal of the study was to investigate the feasibility of a novel miniaturized optical system for endoscopy. Fostering the mechanical compensation paradigm, the modeled optical system, composed by 14 lenses, separated in 4 different sets, had a total length of 15.55mm, an effective focal length ranging from 1.5 to 4.5mm with a zoom factor of about 2.8×, and an angular field of view up to 56°. Predicted maximum lens travel was less than 3.5mm. The consistency of the image plane height across the magnification range testified the zoom capability. The maximum predicted achromatic astigmatism, transverse spherical aberration, longitudinal spherical aberration and relative distortion were less than or equal to 25μm, 15μm, 35μm and 12%, respectively. Tests on tolerances showed that the manufacturing and opto-mechanics mounting are critical as little deviations from design dramatically decrease the optical performances. However, recent micro-fabrication technology can guarantee tolerances close to nominal design. A closed-loop actuation unit, devoted to move the zoom and the focus lens sets, was implemented adopting miniaturized squiggle piezo-motors and magnetic position encoders based on Hall effect. Performance results, using a prototypical test board, showed a positioning accuracy of less than 5μm along a lens travel path of 4.0mm, which was in agreement with the lens set motion features predicted by the analysis. In conclusion, this study demonstrated the feasibility of the optical design and the viability of the actuation approach while tolerances must be carefully taken into account. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
High quality adaptive optics zoom with adaptive lenses
NASA Astrophysics Data System (ADS)
Quintavalla, M.; Santiago, F.; Bonora, S.; Restaino, S.
2018-02-01
We present the combined use of large aperture adaptive lens with large optical power modulation with a multi actuator adaptive lens. The Multi-actuator Adaptive Lens (M-AL) can correct up to the 4th radial order of Zernike polynomials, without any obstructions (electrodes and actuators) placed inside its clear aperture. We demonstrated that the use of both lenses together can lead to better image quality and to the correction of aberrations of adaptive optics optical systems.
New long-zoom lens for 4K super 35mm digital cameras
NASA Astrophysics Data System (ADS)
Thorpe, Laurence J.; Usui, Fumiaki; Kamata, Ryuhei
2015-05-01
The world of television production is beginning to adopt 4K Super 35 mm (S35) image capture for a widening range of program genres that seek both the unique imaging properties of that large image format and the protection of their program assets in a world anticipating future 4K services. Documentary and natural history production in particular are transitioning to this form of production. The nature of their shooting demands long zoom lenses. In their traditional world of 2/3-inch digital HDTV cameras they have a broad choice in portable lenses - with zoom ranges as high as 40:1. In the world of Super 35mm the longest zoom lens is limited to 12:1 offering a telephoto of 400mm. Canon was requested to consider a significantly longer focal range lens while severely curtailing its size and weight. Extensive computer simulation explored countless combinations of optical and optomechanical systems in a quest to ensure that all operational requests and full 4K performance could be met. The final lens design is anticipated to have applications beyond entertainment production, including a variety of security systems.
Wide-field Imaging System and Rapid Direction of Optical Zoom (WOZ)
2010-09-25
commercial software packages: SolidWorks, COMSOL Multiphysics, and ZEMAX optical design. SolidWorks is a computer aided design package, which as a live...interface to COMSOL. COMSOL is a finite element analysis/partial differential equation solver. ZEMAX is an optical design package. Both COMSOL and... ZEMAX have live interfaces to MatLab. Our initial investigations have enabled a model in SolidWorks to be updated in COMSOL, an FEA calculation
Isik, Nimet
2016-04-01
Multi-element electrostatic aperture lens systems are widely used to control electron or charged particle beams in many scientific instruments. By means of applied voltages, these lens systems can be operated for different purposes. In this context, numerous methods have been performed to calculate focal properties of these lenses. In this study, an artificial neural network (ANN) classification method is utilized to determine the focused/unfocused charged particle beam in the image point as a function of lens voltages for multi-element electrostatic aperture lenses. A data set for training and testing of ANN is taken from the SIMION 8.1 simulation program, which is a well known and proven accuracy program in charged particle optics. Mean squared error results of this study indicate that the ANN classification method provides notable performance characteristics for electrostatic aperture zoom lenses.
CNOP testimony on their understanding of training programs in optics
NASA Astrophysics Data System (ADS)
Lasagesse, Laétitia
2005-10-01
Within the National Commission for Training in Optics & Photonics (CNOP), the state of play in education for optics has been compiled at national level from primary & secondary level to University and technological training levels. Partners from CNOP propose to: - Present the www.optra.net Website webmastered by Opticsvalley, on which a list of optics training in Europe is available- Zoom in on Professional diplomas such as CQPM "optician de précision", CQPM "monteur de précision"- Present the existing baccalaureat (French A Level) concerning Optics - ...
Dual FOV infrared lens design with the laser common aperture optics
NASA Astrophysics Data System (ADS)
Chang, Wei-jun; Zhang, Xuan-zhi; Luan, Ya-dong; Zhang, Bo
2015-02-01
With the demand of autonomous precision guidance of air defense missile, the system scheme of the IR imaging/Ladar dual-mode seeker with a common aperture was proposed, and the optical system used in was designed. The system had a common receiving aperture, and its structure was very compact, so it could meet the requirement for the miniaturization of the seeker. Besides, it also could meet the demands of a wide field of view for searching target, and the demands for accurately recognizing and tracking the target at the same time. In order to increase the narrow FOV tracking performance, the dual FOV infrared optical used the zooming mode which some components flip in or out the optical system to firm the target signal. The dual FOV optics are divided into the zooming part, with dual variable focal length, and the reimaging part which was chosen in such a way to minimize the objective lens while maintaining 100% cold shield efficiency. The final infrared optics including 4°×3°(NFOV) and 16°×12°(WFOV) was designed. The NFOV lens composed of two common IR/Ladar lens, three relay lens, a beam splitter and two reflective fold mirrors, while WFOV lens increased two lens such as Germanium and Silicon. The common IR/Ladar lens ZnS and ZnSe could refractive the IR optics and Laser optics. The beam splitter which refractived IR optics and reflected Laser optics was located in the middle of Germanium and Silicon. The designed optical system had good image quality, and fulfilled the performance requirement of seeker system.
Parametric spectro-temporal analyzer (PASTA) for ultrafast optical performance monitoring
NASA Astrophysics Data System (ADS)
Zhang, Chi; Wong, Kenneth K. Y.
2013-12-01
Ultrafast optical spectrum monitoring is one of the most challenging tasks in observing ultrafast phenomena, such as the spectroscopy, dynamic observation of the laser cavity, and spectral encoded imaging systems. However, conventional method such as optical spectrum analyzer (OSA) spatially disperses the spectrum, but the space-to-time mapping is realized by mechanical rotation of a grating, so are incapable of operating at high speed. Besides the spatial dispersion, temporal dispersion provided by dispersive fiber can also stretches the spectrum in time domain in an ultrafast manner, but is primarily confined in measuring short pulses. In view of these constraints, here we present a real-time spectrum analyzer called parametric spectro-temporal analyzer (PASTA), which is based on the time-lens focusing mechanism. It achieves a 100-MHz frame rate and can measure arbitrary waveforms. For the first time, we observe the dynamic spectrum of an ultrafast swept-source: Fourier domain mode-locked (FDML) laser, and the spectrum evolution of a laser cavity during its stabilizing process. In addition to the basic single-lens structure, the multi-lens configurations (e.g. telescope or wide-angle scope) will provide a versatile operating condition, which can zoom in to achieve 0.05-nm resolution and zoom out to achieve 10-nm observation range, namely 17 times zoom in/out ratio. In view of the goal of achieving spectrum analysis with fine accuracy, PASTA provides a promising path to study the real-time spectrum of some dynamic phenomena and non-repetitive events, with orders of magnitude enhancement in the frame rate over conventional OSAs.
Mikš, Antonín; Novák, Pavel
2018-05-10
In this article, we analyze the problem of the paraxial design of an active optical element with variable focal length, which maintains the positions of its principal planes fixed during the change of its optical power. Such optical elements are important in the process of design of complex optical systems (e.g., zoom systems), where the fixed position of principal planes during the change of optical power is essential for the design process. The proposed solution is based on the generalized membrane tunable-focus fluidic lens with several membrane surfaces.
NASA Astrophysics Data System (ADS)
Pomares, Jorge; Felicetti, Leonard; Pérez, Javier; Emami, M. Reza
2018-02-01
An image-based servo controller for the guidance of a spacecraft during non-cooperative rendezvous is presented in this paper. The controller directly utilizes the visual features from image frames of a target spacecraft for computing both attitude and orbital maneuvers concurrently. The utilization of adaptive optics, such as zooming cameras, is also addressed through developing an invariant-image servo controller. The controller allows for performing rendezvous maneuvers independently from the adjustments of the camera focal length, improving the performance and versatility of maneuvers. The stability of the proposed control scheme is proven analytically in the invariant space, and its viability is explored through numerical simulations.
Stereomicroscopic evaluation of the joint cartilage and bone tissue in osteoporosis
NASA Astrophysics Data System (ADS)
Vasile, Liliana; Torok, Rodica; Deleanu, Bogdan; Marchese, Cristian; Valeanu, Adina; Bodea, Rodica
2012-06-01
Aim of the study. Assessment by stereomicroscopy of the severity of lesions in osteoporotic bone at both sexes and to correlate micro-and macro-bone fracture due to low bone density values with the disease evolution. Material and method: The study material consists of fragments of bone from the femoral head, vertebral bone, costal and iliac crest biopsy obtained from patients aged over 70 years, female and male, treated in the County Hospital of Timisoara, Department of Orthopedics. For the purpose of studying the samples in stereomicroscopy and trough polarized light it has been used the Olympus Microscope SZ ×7 and an Olympus camera with 2,5 × digital zoom and a 3× optical zoom in the Vest Politechnic Univesity. Results and discussions: Subchondral bone presents osteolysis associated with a osteoporotic bone transformation. Pseudocystic chondrolisis was noted in the osteoarticular cartilage, in addition with areas of hemorrhagic postfractural necrosis. The osteoporotic bone exhibits ischemic necrosis and focal hemorrhagic necrosis adjacent fracture. Microporosity pattern of the bone observed by stereomicroscopy correspond to the spongy bone osteoporosis images. Morphometry of the bone spiculi reveals length of 154.88 and 498.32 μ. In men we found a greater thickness of bone trabeculi compared with bone texture porosity in women. The subchondral bone supports and fulfills an important role in transmitting forces from the overlying articular cartilage inducing the bone resorbtion. The femoral head fracture may be the final event of many accumulated bone microcracks. Conclusions: Bone fragility depends not only of the spongy bone but also of the cortical bone properties. Osteolysis produced by loss of balance in the process of remodeling in favor of bone resorption leads to the thinning of the subchondral bone at both sexes.
Cine-servo lens technology for 4K broadcast and cinematography
NASA Astrophysics Data System (ADS)
Nurishi, Ryuji; Wakazono, Tsuyoshi; Usui, Fumiaki
2015-09-01
Central to the rapid evolution of 4K image capture technology in the past few years, deployment of large-format cameras with Super35mm Single Sensors is increasing in TV production for diverse shows such as dramas, documentaries, wildlife, and sports. While large format image capture has been the standard in the cinema world for quite some time, the recent experiences within the broadcast industry have revealed a variety of requirement differences for large format lenses compared to those of the cinema industry. A typical requirement for a broadcast lens is a considerably higher zoom ratio in order to avoid changing lenses in the middle of a live event, which is mostly not the case for traditional cinema productions. Another example is the need for compact size, light weight, and servo operability for a single camera operator shooting in a shoulder-mount ENG style. On the other hand, there are new requirements that are common to both worlds, such as smooth and seamless change in angle of view throughout the long zoom range, which potentially offers new image expression that never existed in the past. This paper will discuss the requirements from the two industries of cinema and broadcast, while at the same time introducing the new technologies and new optical design concepts applied to our latest "CINE-SERVO" lens series which presently consists of two models, CN7x17KAS-S and CN20x50IAS-H. It will further explain how Canon has realized 4K optical performance and fast servo control while simultaneously achieving compact size, light weight and high zoom ratio, by referring to patent-pending technologies such as the optical power layout, lens construction, and glass material combinations.
Wide-Field Imaging System and Rapid Direction of Optical Zoom (WOZ)
2011-03-25
COMSOL Multiphysics, and ZEMAX optical design. The multiphysics design tool is nearing completion. We have demonstrated the ability to create a model in...and mechanical modeling to calculate the deformation resulting from the applied voltages. Finally, the deformed surface can be exported to ZEMAX via...MatLab. From ZEMAX , various analyses can be conducted to determine important parameters such as focal point, aberrations, and wavefront distortion
Wide-field Imaging System and Rapid Direction of Optical Zoom (WOZ)
2010-12-24
The modeling tools are based on interaction between three commercial software packages: SolidWorks, COMSOL Multiphysics, and ZEMAX optical design...deformation resulting from the applied voltages. Finally, the deformed surface can be exported to ZEMAX via MatLab. From ZEMAX , various analyses can...results to extract from ZEMAX to support the optimization remains to be determined. Figure 1 shows the deformation calculated using a model of an
Design of two-DMD based zoom MW and LW dual-band IRSP using pixel fusion
NASA Astrophysics Data System (ADS)
Pan, Yue; Xu, Xiping; Qiao, Yang
2018-06-01
In order to test the anti-jamming ability of mid-wave infrared (MWIR) and long-wave infrared (LWIR) dual-band imaging system, a zoom mid-wave (MW) and long-wave (LW) dual-band infrared scene projector (IRSP) based on two-digital micro-mirror device (DMD) was designed by using a projection method of pixel fusion. Two illumination systems, which illuminate the two DMDs directly with Kohler telecentric beam respectively, were combined with projection system by a spatial layout way. The distances of projection entrance pupil and illumination exit pupil were also analyzed separately. MWIR and LWIR virtual scenes were generated respectively by two DMDs and fused by a dichroic beam combiner (DBC), resulting in two radiation distributions in projected image. The optical performance of each component was evaluated by ray tracing simulations. Apparent temperature and image contrast were demonstrated by imaging experiments. On the basis of test and simulation results, the aberrations of optical system were well corrected, and the quality of projected image meets test requirements.
Peng, Hanchuan; Tang, Jianyong; Xiao, Hang; Bria, Alessandro; Zhou, Jianlong; Butler, Victoria; Zhou, Zhi; Gonzalez-Bellido, Paloma T; Oh, Seung W; Chen, Jichao; Mitra, Ananya; Tsien, Richard W; Zeng, Hongkui; Ascoli, Giorgio A; Iannello, Giulio; Hawrylycz, Michael; Myers, Eugene; Long, Fuhui
2014-07-11
Three-dimensional (3D) bioimaging, visualization and data analysis are in strong need of powerful 3D exploration techniques. We develop virtual finger (VF) to generate 3D curves, points and regions-of-interest in the 3D space of a volumetric image with a single finger operation, such as a computer mouse stroke, or click or zoom from the 2D-projection plane of an image as visualized with a computer. VF provides efficient methods for acquisition, visualization and analysis of 3D images for roundworm, fruitfly, dragonfly, mouse, rat and human. Specifically, VF enables instant 3D optical zoom-in imaging, 3D free-form optical microsurgery, and 3D visualization and annotation of terabytes of whole-brain image volumes. VF also leads to orders of magnitude better efficiency of automated 3D reconstruction of neurons and similar biostructures over our previous systems. We use VF to generate from images of 1,107 Drosophila GAL4 lines a projectome of a Drosophila brain.
NASA Astrophysics Data System (ADS)
Rogers, P. J.; Fischer, R. E.
1983-01-01
Topics considered include: optical system requirements, analysis, and system engineering; optical system design using microcomputers and minicomputers; optical design theory and computer programs; optical design methods and computer programs; optical design methods and philosophy; unconventional optical design; diffractive and gradient index optical system design; optical production and system integration; and optical systems engineering. Particular attention is given to: stray light control as an integral part of optical design; current and future directions of lens design software; thin-film technology in the design and production of optical systems; aspherical lenses in optical scanning systems; the application of volume phase holograms to avionic displays; the effect of lens defects on thermal imager performance; and a wide angle zoom for the Space Shuttle.
NASA Astrophysics Data System (ADS)
Silva, Marina Piacenti da; Silva, Deisy Mara da; Ribeiro-Silva, Alfredo; Poletti, Martin Eduardo
2012-05-01
The aim of this work is to investigate microscopic correlations between trace elements in breast human tissues. A synchrotron X-ray fluorescence microprobe system (μ-XRF) was used to obtain two-dimensional distribution of trace element Ca, Fe, Cu and Zn in normal (6 samples) and malignant (14 samples) breast tissues. The experiment was performed in X-ray Fluorescence beam line at Laboratório Nacional de Luz Síncrotron (LNLS), Campinas, Brazil. The white microbeam was generated with a fine conical capillary with a 20 μm output diameter. The samples were supported on a XYZ table. An optical microscope with motorized zoom was used for sample positioning and choice the area to be scanned. Automatic two-dimensional scans were programmed and performed with steps of 30 μm in each direction (x, y) on the selected area. The fluorescence signals were recorded using a Si(Li) detector, positioned at 90 degrees with respect to the incident beam, with a collection time of 10 s per point. The elemental maps obtained from each sample were overlap to observe correlation between trace elements. Qualitative results showed that the pairs of elements Ca-Zn and Fe-Cu could to be correlated in malignant breast tissues. Quantitative results, achieved by Spearman correlation tests, indicate that there is a spatial correlation between these pairs of elements (p < 0.001) suggesting the importance of these elements in metabolic processes associated with the development of the tumor.
Application and System Design of Elastomer Based Optofluidic Lenses
NASA Astrophysics Data System (ADS)
Savidis, Nickolaos
Adaptive optic technology has revolutionized real time correction of wavefront aberrations. Optofluidic based applied optic devices have offered an opportunity to produce flexible refractive lenses in the correction of wavefronts. Fluidic lenses have superiority relative to their solid lens counterparts in their capabilities of producing tunable optical systems, that when synchronized, can produce real time variable systems with no moving parts. We have developed optofluidic fluidic lenses for applications of applied optical devices, as well as ophthalmic optic devices. The first half of this dissertation discusses the production of fluidic lenses as optical devices. In addition, the design and testing of various fluidic systems made with these components are evaluated. We begin with the creation of spherical or defocus singlet fluidic lenses. We then produced zoom optical systems with no moving parts by synchronizing combinations of these fluidic spherical lenses. The variable power zoom system incorporates two singlet fluidic lenses that are synchronized. The coupled device has no moving parts and has produced a magnification range of 0.1 x to 10 x or a 20 x magnification range. The chapter after fluidic zoom technology focuses on producing achromatic lens designs. We offer an analysis of a hybrid diffractive and refractive achromat that offers discrete achromatized variable focal lengths. In addition, we offer a design of a fully optofluidic based achromatic lens. By synchronizing the two membrane surfaces of the fluidic achromat we develop a design for a fluidic achromatic lens. The second half of this dissertation discusses the production of optofluidic technology in ophthalmic applications. We begin with an introduction to an optofluidic phoropter system. A fluidic phoropter is designed through the combination of a defocus lens with two cylindrical fluidic lenses that are orientated 45° relative to each other. Here we discuss the designs of the fluidic cylindrical lens coupled with a previously discussed defocus singlet lens. We then couple this optofluidic phoropter with relay optics and Shack-Hartmann wavefront sensing technology to produce an auto-phoropter device. The auto-phoropter system combines a refractometer designed Shack-Hartmann wavefront sensor with the compact refractive fluidic lens phoropter. This combination allows for the identification and control of ophthalmic cylinder, cylinder axis, as well as refractive error. The closed loop system of the fluidic phoropter with refractometer enables for the creation of our see-through auto-phoropter system. The design and testing of several generations of transmissive see-through auto-phoropter devices are presented in this section.
SPIDER: Next Generation Chip Scale Imaging Sensor Update
NASA Astrophysics Data System (ADS)
Duncan, A.; Kendrick, R.; Ogden, C.; Wuchenich, D.; Thurman, S.; Su, T.; Lai, W.; Chun, J.; Li, S.; Liu, G.; Yoo, S. J. B.
2016-09-01
The Lockheed Martin Advanced Technology Center (LM ATC) and the University of California at Davis (UC Davis) are developing an electro-optical (EO) imaging sensor called SPIDER (Segmented Planar Imaging Detector for Electro-optical Reconnaissance) that seeks to provide a 10x to 100x size, weight, and power (SWaP) reduction alternative to the traditional bulky optical telescope and focal-plane detector array. The substantial reductions in SWaP would reduce cost and/or provide higher resolution by enabling a larger-aperture imager in a constrained volume. Our SPIDER imager replaces the traditional optical telescope and digital focal plane detector array with a densely packed interferometer array based on emerging photonic integrated circuit (PIC) technologies that samples the object being imaged in the Fourier domain (i.e., spatial frequency domain), and then reconstructs an image. Our approach replaces the large optics and structures required by a conventional telescope with PICs that are accommodated by standard lithographic fabrication techniques (e.g., complementary metal-oxide-semiconductor (CMOS) fabrication). The standard EO payload integration and test process that involves precision alignment and test of optical components to form a diffraction limited telescope is, therefore, replaced by in-process integration and test as part of the PIC fabrication, which substantially reduces associated schedule and cost. This paper provides an overview of performance data on the second-generation PIC for SPIDER developed under the Defense Advanced Research Projects Agency (DARPA)'s SPIDER Zoom research funding. We also update the design description of the SPIDER Zoom imaging sensor and the second-generation PIC (high- and low resolution versions).
NASA Astrophysics Data System (ADS)
Li, Yan; Li, Lin; Huang, Yi-Fan; Du, Bao-Lin
2009-07-01
This paper analyses the dynamic residual aberrations of a conformal optical system and introduces adaptive optics (AO) correction technology to this system. The image sharpening AO system is chosen as the correction scheme. Communication between MATLAB and Code V is established via ActiveX technique in computer simulation. The SPGD algorithm is operated at seven zoom positions to calculate the optimized surface shape of the deformable mirror. After comparison of performance of the corrected system with the baseline system, AO technology is proved to be a good way of correcting the dynamic residual aberration in conformal optical design.
Study of optical design of three-dimensional digital ophthalmoscopes.
Fang, Yi-Chin; Yen, Chih-Ta; Chu, Chin-Hsien
2015-10-01
This study primarily involves using optical zoom structures to design a three-dimensional (3D) human-eye optical sensory system with infrared and visible light. According to experimental data on two-dimensional (2D) and 3D images, human-eye recognition of 3D images is substantially higher (approximately 13.182%) than that of 2D images. Thus, 3D images are more effective than 2D images when they are used at work or in high-recognition devices. In the optical system design, infrared and visible light wavebands were incorporated as light sources to perform simulations. The results can be used to facilitate the design of optical systems suitable for 3D digital ophthalmoscopes.
Intelligent Optical Systems Using Adaptive Optics
NASA Technical Reports Server (NTRS)
Clark, Natalie
2012-01-01
Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.
The Scanning Optical Microscope: An Overview
NASA Astrophysics Data System (ADS)
Kino, G. S.; Corte, T. R.; Xiao, G. Q.
1988-07-01
In the last few years there has been a resurgence in research on optical microscopes. One reason stems from the invention of the acoustic microscope by Quate and Lemons,1 and the realization that some of the same principles could be applied to the optical microscope. The acoustic microscope has better transverse definition for the same wavelength than the standard optical microscope and at the same time has far better range definition. Consequently, Kompfner, who was involved with the work on the early acoustic microscope, decided to try out similar scanning microscope principles with optics, and started a group with Wilson and Sheppard to carry out such research at Oxford.2 Sometime earlier, Petran et a13 had invented the tandem scanning microscope which used many of the same principles. Now, in our laboratory at Stanford, these ideas on the tandem scanning microscope and the scanning optical microscope are converging. Another aspect of this work, which stems from the earlier experience with the acoustic microscope, involves measurement of both phase and amplitude of the optical beam. It is also possible to use scanned optical microscopy for other purposes. For instance, an optical beam can be used to excite electrons and holes in semiconductors, and the generated current can be measured. By scanning the optical beam over the semiconductor, an image can be obtained of the regions where there is strong or weak electron hole generation. This type of microscope is called OBIC (Optical Beam Induced Current). A second application involves fluorescent imaging of biological materials. Here we have the excellent range definition of a scanning optical microscope which eliminates unwanted glare from regions of the material where the beam is unfocused.3 A third application is focused on the heating effect of the light beam. With such a system, images can be obtained which are associated with changes in the thermal properties of a material, changes in recombination rates in semiconductors, and differences in material properties associated with either acoustic or thermal effects.4,5 Thus, the range of scanning optical microscopy applications is very large. In the main, the most important applications have been to semiconductors and to biology.
Variable curvature mirror having variable thickness: design and fabrication
NASA Astrophysics Data System (ADS)
Zhao, Hui; Xie, Xiaopeng; Xu, Liang; Ding, Jiaoteng; Shen, Le; Gong, Jie
2017-10-01
Variable curvature mirror (VCM) can change its curvature radius dynamically and is usually used to correct the defocus and spherical aberration caused by thermal lens effect to improve the output beam quality of high power solid-state laser. Recently, the probable application of VCM in realizing non-moving element optical zoom imaging in visible band has been paid much attention. The basic requirement for VCM lies in that it should provide a large enough saggitus variation and still maintains a high enough surface figure at the same time. Therefore in this manuscript, by combing the pressurization based actuation with a variable thickness mirror design, the purpose of obtaining large saggitus variation and maintaining quite good surface figure accuracy at the same time could be achieved. A prototype zoom mirror with diameter of 120mm and central thickness of 8mm is designed, fabricated and tested. Experimental results demonstrate that the zoom mirror having an initial surface figure accuracy superior to 1/80λ could provide bigger than 36um saggitus variation and after finishing the curvature variation its surface figure accuracy could still be superior to 1/40λ with the spherical aberration removed, which proves that the effectiveness of the theoretical design.
Design and experimental validation of novel 3D optical scanner with zoom lens unit
NASA Astrophysics Data System (ADS)
Huang, Jyun-Cheng; Liu, Chien-Sheng; Chiang, Pei-Ju; Hsu, Wei-Yan; Liu, Jian-Liang; Huang, Bai-Hao; Lin, Shao-Ru
2017-10-01
Optical scanners play a key role in many three-dimensional (3D) printing and CAD/CAM applications. However, existing optical scanners are generally designed to provide either a wide scanning area or a high 3D reconstruction accuracy from a lens with a fixed focal length. In the former case, the scanning area is increased at the expense of the reconstruction accuracy, while in the latter case, the reconstruction performance is improved at the expense of a more limited scanning range. In other words, existing optical scanners compromise between the scanning area and the reconstruction accuracy. Accordingly, the present study proposes a new scanning system including a zoom-lens unit, which combines both a wide scanning area and a high 3D reconstruction accuracy. In the proposed approach, the object is scanned initially under a suitable low-magnification setting for the object size (setting 1), resulting in a wide scanning area but a poor reconstruction resolution in complicated regions of the object. The complicated regions of the object are then rescanned under a high-magnification setting (setting 2) in order to improve the accuracy of the original reconstruction results. Finally, the models reconstructed after each scanning pass are combined to obtain the final reconstructed 3D shape of the object. The feasibility of the proposed method is demonstrated experimentally using a laboratory-built prototype. It is shown that the scanner has a high reconstruction accuracy over a large scanning area. In other words, the proposed optical scanner has significant potential for 3D engineering applications.
Eye-gaze control of the computer interface: Discrimination of zoom intent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, J.H.; Schryver, J.C.
1993-10-01
An analysis methodology and associated experiment were developed to assess whether definable and repeatable signatures of eye-gaze characteristics are evident, preceding a decision to zoom-in, zoom-out, or not to zoom at a computer interface. This user intent discrimination procedure can have broad application in disability aids and telerobotic control. Eye-gaze was collected from 10 subjects in a controlled experiment, requiring zoom decisions. The eye-gaze data were clustered, then fed into a multiple discriminant analysis (MDA) for optimal definition of heuristics separating the zoom-in, zoom-out, and no-zoom conditions. Confusion matrix analyses showed that a number of variable combinations classified at amore » statistically significant level, but practical significance was more difficult to establish. Composite contour plots demonstrated the regions in parameter space consistently assigned by the MDA to unique zoom conditions. Peak classification occurred at about 1200--1600 msec. Improvements in the methodology to achieve practical real-time zoom control are considered.« less
Kato, Yoshiteru; Nakashima, Yasuhiko; Shino, Naoki; Sasaki, Koichi; Hosokawa, Akihiro; Ishihara, Hiroshi
2010-04-01
The purpose of this article is to study a detailed mechanism of printing when film-coated tablets were irradiated by UV laser at a wavelength of 355 nm. Hydroxypropylmethylcellulose (HPMC) film containing titanium dioxide (TiO(2)) and the film not containing TiO(2) and TiO(2) powder were lirradiated by the UV laser and estimated by the morphological observation by zoom stereo microscope, thermogravimetric analysis (TGA), total color difference (dE), X-ray powder diffraction (XRD), and dispersive Raman microscopy. In the case of the film containing TiO(2), the film showed a visible change in its color from white to gray by the UV laser irradiation. By zoom stereo microscope, it was found that the entire UV laser-irradiated area was not grayed uniformly, but many black particles, whose diameter was about 2 microm, were observed on the film. When TiO(2) powder was irradiated by the UV laser, a visible change in its color from white to gray was observed similar to the case of the film containing TiO(2). There were many black particles locally in the UV laser-treated TiO(2) powder by the morphological observation, and these black particles, agglomerates of the grayed oxygen-defected TiO(2), were associated with the visible change of the TiO(2). It was found that the film-coated tablets were printed utilizing the formation of the black particles by the agglomeration of the grayed oxygen-defected TiO(2) by the UV laser irradiation.
International Lens Design Conference, Monterey, CA, June 11-14, 1990, Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, G.N.
1990-01-01
The present conference on lens design encompasses physical and geometrical optics, diffractive optics, the optimization of optical design, software packages, ray tracing, the use of artificial intelligence, the achromatization of materials, zoom optics, microoptics and GRIN lenses, and IR lens design. Specific issues addressed include diffraction-performance calculations in lens design, the optimization of the optical transfer function, a rank-down method for automatic lens design, applications of quadric surfaces, the correction of aberrations by using HOEs in UV and visible imaging systems, and an all-refractive telescope for intersatellite communications. Also addressed are automation techniques for optics manufacturing, all-reflective phased-array imaging telescopes,more » the thermal aberration analysis of a Nd:YAG laser, the analysis of illumination systems, athermalized FLIR optics, and the design of array systems using shared symmetry.« less
Potts, Lisa G; Kolb, Kelly A
2014-04-01
Difficulty understanding speech in the presence of background noise is a common report among cochlear implant (CI) recipients. Several speech-processing options designed to improve speech recognition, especially in noise, are currently available in the Cochlear Nucleus CP810 speech processor. These include adaptive dynamic range optimization (ADRO), autosensitivity control (ASC), Beam, and Zoom. The purpose of this study was to evaluate CI recipients' speech-in-noise recognition to determine which currently available processing option or options resulted in best performance in a simulated restaurant environment. Experimental study with one study group. The independent variable was speech-processing option, and the dependent variable was the reception threshold for sentences score. Thirty-two adult CI recipients. Eight processing options were tested: Beam, Beam + ASC, Beam + ADRO, Beam + ASC + ADRO, Zoom, Zoom + ASC, Zoom + ADRO, and Zoom + ASC + ADRO. Participants repeated Hearing in Noise Test sentences presented at a 0° azimuth, with R-Space restaurant noise presented from a 360° eight-loudspeaker array at 70 dB sound pressure level. A one-way repeated-measures analysis of variance was used to analyze differences in Beam options, Zoom options, and Beam versus Zoom options. Among the Beam options, Beam + ADRO was significantly poorer than Beam only, Beam + ASC, and Beam + ASC + ADRO. A 1.6-dB difference was observed between the best (Beam only) and poorest (Beam + ADRO) options. Among the Zoom options, Zoom only and Zoom + ADRO were significantly poorer than Zoom + ASC. A 2.2-dB difference was observed between the best (Zoom + ASC) and poorest (Zoom only) options. The comparison between Beam and Zoom options showed one significant difference, with Zoom only significantly poorer than Beam only. No significant difference was found between the other Beam and Zoom options (Beam + ASC vs Zoom + ASC, Beam + ADRO vs Zoom + ADRO, and Beam + ASC + ADRO vs Zoom + ASC + ADRO). The best processing option varied across subjects, with an almost equal number of participants performing best with a Beam option (n = 15) compared with a Zoom option (n = 17). There were no significant demographic or audiological moderating variables for any option. The results showed no significant differences between adaptive directionality (Beam) and fixed directionality (Zoom) when ASC was active in the R-Space environment. This finding suggests that noise-reduction processing is extremely valuable in loud semidiffuse environments in which the effectiveness of directional filtering might be diminished. However, there was no significant difference between the Beam-only and Beam + ASC options, which is most likely related to the additional noise cancellation performed by the Beam option (i.e., two-stage directional filtering and noise cancellation). In addition, the processing options with ADRO resulted in the poorest performances. This could be related to how the CI recipients were programmed or the loud noise level used in this study. The best processing option varied across subjects, but the majority performed best with directional filtering (Beam or Zoom) in combination with ASC. Therefore in a loud semidiffuse environment, the use of either Beam + ASC or Zoom + ASC is recommended. American Academy of Audiology.
Expert system for generating initial layouts of zoom systems with multiple moving lens groups
NASA Astrophysics Data System (ADS)
Cheng, Xuemin; Wang, Yongtian; Hao, Qun; Sasián, José M.
2005-01-01
An expert system is developed for the automatic generation of initial layouts for the design of zoom systems with multiple moving lens groups. The Gaussian parameters of the zoom system are optimized using the damped-least-squares method to achieve smooth zoom cam curves, with the f-number of each lens group in the zoom system constrained to a rational value. Then each lens group is selected automatically from a database according to its range of f-number, field of view, and magnification ratio as it is used in the zoom system. The lens group database is established from the results of analyzing thousands of zoom lens patents. Design examples are given, which show that the scheme is a practical approach to generate starting points for zoom lens design.
NASA Astrophysics Data System (ADS)
Park, Nam In; Kim, Seon Man; Kim, Hong Kook; Kim, Ji Woon; Kim, Myeong Bo; Yun, Su Won
In this paper, we propose a video-zoom driven audio-zoom algorithm in order to provide audio zooming effects in accordance with the degree of video-zoom. The proposed algorithm is designed based on a super-directive beamformer operating with a 4-channel microphone system, in conjunction with a soft masking process that considers the phase differences between microphones. Thus, the audio-zoom processed signal is obtained by multiplying an audio gain derived from a video-zoom level by the masked signal. After all, a real-time audio-zoom system is implemented on an ARM-CORETEX-A8 having a clock speed of 600 MHz after different levels of optimization are performed such as algorithmic level, C-code, and memory optimizations. To evaluate the complexity of the proposed real-time audio-zoom system, test data whose length is 21.3 seconds long is sampled at 48 kHz. As a result, it is shown from the experiments that the processing time for the proposed audio-zoom system occupies 14.6% or less of the ARM clock cycles. It is also shown from the experimental results performed in a semi-anechoic chamber that the signal with the front direction can be amplified by approximately 10 dB compared to the other directions.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2010-06-29
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2009-11-10
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2007-12-11
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2010-07-13
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2009-10-27
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Research on surface free energy of electrowetting liquid zoom lens
NASA Astrophysics Data System (ADS)
Zhao, Cunhua; Lu, Gaoqi; Wei, Daling; Hong, Xinhua; Cui, Dongqing; Gao, Changliu
2011-08-01
Zoom imaging systems have the tendencies of miniaturization or complication so the traditional glass / plastic lenses can't meet the needs. Therefore, a new method, liquid lens is put forward which realizes zoom by changing the shape of liquid surface. liquid zoom lenses have many merits such as smaller volume, lighter weight, controlled zoom, faster response, higher transmission, lower energy consumption and so on. Liquid zoom lenses have wide applications in mobile phones, digital cameras and other small imaging system. The electrowetting phenomenon was reviewed firstly and then the influence of the exerted voltage to the contact angle was analysed in electrowetting effect. At last, the surface free energy of cone-type double liquid zoom lens was researched via the energy minimization principle. The research of surface free energy offers important theoretic dependence for designing liquid zoom lens.
Chen, Xiaodong; Ren, Liqiang; Zheng, Bin; Liu, Hong
2013-01-01
The conventional optical microscopes have been used widely in scientific research and in clinical practice. The modern digital microscopic devices combine the power of optical imaging and computerized analysis, archiving and communication techniques. It has a great potential in pathological examinations for improving the efficiency and accuracy of clinical diagnosis. This chapter reviews the basic optical principles of conventional microscopes, fluorescence microscopes and electron microscopes. The recent developments and future clinical applications of advanced digital microscopic imaging methods and computer assisted diagnosis schemes are also discussed.
Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.
Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C
2015-02-01
We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of <100 nm. In order to demonstrate the spatiotemporal magnetic imaging capability of this microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.
The Scanning Optical Microscope.
ERIC Educational Resources Information Center
Sheppard, C. J. R.
1978-01-01
Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.
Sub-micron materials characterization using near-field optics
NASA Astrophysics Data System (ADS)
Blodgett, David Wesley
1998-12-01
High-resolution sub-surface materials characterization and inspection are critical in the microelectronics and thin films industries. To this end, a technique is described that couples the bulk property measurement capabilities of high-frequency ultrasound with the high-resolution surface imaging capabilities of the near-field optical microscope. Sensing bulk microstructure variations in the material, such as grain boundaries, requires a detection footprint smaller than the variation itself. The near-field optical microscope, with the ability to exceed the diffraction limit in optical resolution, meets this requirement. Two apertureless near-field optical microscopes, on-axis and off-axis illumination, have been designed and built. Near-field and far-field approach curves for both microscopes are presented. The sensitivity of the near-field approach curve was 8.3 muV/nm. Resolution studies for the near-field microscope indicate optical resolutions on the order of 50 nm, which exceeds the diffraction limit. The near-field microscope has been adapted to detect both contact-transducer-generated and laser-generated ultrasound. The successful detection of high-frequency ultrasound with the near-field optical microscope demonstrates the potential of this technique.
A method for fast automated microscope image stitching.
Yang, Fan; Deng, Zhen-Sheng; Fan, Qiu-Hong
2013-05-01
Image stitching is an important technology to produce a panorama or larger image by combining several images with overlapped areas. In many biomedical researches, image stitching is highly desirable to acquire a panoramic image which represents large areas of certain structures or whole sections, while retaining microscopic resolution. In this study, we develop a fast normal light microscope image stitching algorithm based on feature extraction. At first, an algorithm of scale-space reconstruction of speeded-up robust features (SURF) was proposed to extract features from the images to be stitched with a short time and higher repeatability. Then, the histogram equalization (HE) method was employed to preprocess the images to enhance their contrast for extracting more features. Thirdly, the rough overlapping zones of the images preprocessed were calculated by phase correlation, and the improved SURF was used to extract the image features in the rough overlapping areas. Fourthly, the features were corresponded by matching algorithm and the transformation parameters were estimated, then the images were blended seamlessly. Finally, this procedure was applied to stitch normal light microscope images to verify its validity. Our experimental results demonstrate that the improved SURF algorithm is very robust to viewpoint, illumination, blur, rotation and zoom of the images and our method is able to stitch microscope images automatically with high precision and high speed. Also, the method proposed in this paper is applicable to registration and stitching of common images as well as stitching the microscope images in the field of virtual microscope for the purpose of observing, exchanging, saving, and establishing a database of microscope images. Copyright © 2013 Elsevier Ltd. All rights reserved.
[Whole slide imaging technology: from digitization to online applications].
Ameisen, David; Le Naour, Gilles; Daniel, Christel
2012-11-01
As e-health becomes essential to modern care, whole slide images (virtual slides) are now an important clinical, teaching and research tool in pathology. Virtual microscopy consists of digitizing a glass slide by acquiring hundreds of tiles of regions of interest at different zoom levels and assembling them into a structured file. This gigapixel image can then be remotely viewed over a terminal, exactly the way pathologists use a microscope. In this article, we will first describe the key elements of this technology, from the acquisition, using a scanner or a motorized microscope, to the broadcasting of virtual slides through a local or distant viewer over an intranet or Internet connection. As virtual slides are now commonly used in virtual classrooms, clinical data and research databases, we will highlight the main issues regarding its uses in modern pathology. Emphasis will be made on quality assurance policies, standardization and scaling. © 2012 médecine/sciences – Inserm / SRMS.
SPIDER: Next Generation Chip Scale Imaging Sensor
NASA Astrophysics Data System (ADS)
Duncan, Alan; Kendrick, Rick; Thurman, Sam; Wuchenich, Danielle; Scott, Ryan P.; Yoo, S. J. B.; Su, Tiehui; Yu, Runxiang; Ogden, Chad; Proiett, Roberto
The LM Advanced Technology Center and UC Davis are developing an Electro-Optical (EO) imaging sensor called SPIDER (Segmented Planar Imaging Detector for Electro-optical Reconnaissance) that provides a 10x to 100x size, weight, and power (SWaP) reduction alternative to the traditional bulky optical telescope and focal plane detector array. The substantial reductions in SWaP would reduce cost and/or provide higher resolution by enabling a larger aperture imager in a constrained volume. The SPIDER concept consists of thousands of direct detection white-light interferometers densely packed onto Photonic Integrated Circuits (PICs) to measure the amplitude and phase of the visibility function at spatial frequencies that span the full synthetic aperture. In other words, SPIDER would sample the object being imaged in the Fourier domain (i.e., spatial frequency domain), and then digitally reconstruct an image. The conventional approach for imaging interferometers requires complex mechanical delay lines to form the interference fringes. This results in designs that are not traceable to more than a few simultaneous spatial frequency measurements. SPIDER seeks to achieve this traceability by employing micron-=scale optical waveguides and nanophotonic structures fabricated on a PIC with micron-scale packing density to form the necessary interferometers. Prior LM IRAD and DARPA/NASA CRAD-funded SPIDER risk reduction experiments, design trades, and simulations have matured the SPIDER imager concept to a TRL 3 level. Current funding under the DARPA SPIDER Zoom program is maturing the underlying PIC technology for SPIDER to the TRL 4 level. This is done by developing and fabricating a second-generation PIC that is fully traceable to the multiple layers and low-power phase modulators required for higher-dimension waveguide arrays that are needed for higher field-of-view sensors. Our project also seeks to extend the SPIDER concept to add a zoom capability that would provide simultaneous low-resolution, large field-of-view and steerable high-resolution, narrow field-of-view imaging modes. A proof of concept demo is being designed to validate this capability. Finally, data collected by this project would be used to benchmark and increase the fidelity of our SPIDER image simulations and enhance our ability to predict the performance of existing and future SPIDER sensor design variations. These designs and their associated performance characteristics could then be evaluated as candidates for future mission opportunities to identify specific transition paths. This paper provides an overview of performance data on the first-generation PIC for SPIDER developed under DARPA SeeMe program funding. We provide a design description of the SPICER Zoom imaging sensor and the second-generation PIC (high- and low-resolution versions) currently under development on the DARPA SPIDER Zoom effort. Results of performance simulations and design trades are presented. Unique low-cost payload applications for future SSA missions are also discussed.
Park, J H; Garipov, G K; Jeon, J A; Khrenov, B A; Kim, J E; Kim, M; Kim, Y K; Lee, C-H; Lee, J; Na, G W; Nam, S; Park, I H; Park, Y-S
2008-12-08
We introduce a novel telescope consisting of a pinhole-like camera with rotatable MEMS micromirrors substituting for pinholes. The design is ideal for observations of transient luminous phenomena or fast-moving objects, such as upper atmospheric lightning and bright gamma ray bursts. The advantage of the MEMS "obscura telescope" over conventional cameras is that it is capable both of searching for events over a wide field of view, and fast zooming to allow detailed investigation of the structure of events. It is also able to track the triggering object to investigate its space-time development, and to center the interesting portion of the image on the photodetector array. We present the proposed system and the test results for the MEMS obscura telescope which has a field of view of 11.3 degrees, sixteen times zoom-in and tracking within 1 ms. (c) 2008 Optical Society of America
Microscope collision protection apparatus
DeNure, Charles R.
2001-10-23
A microscope collision protection apparatus for a remote control microscope which protects the optical and associated components from damage in the event of an uncontrolled collision with a specimen, regardless of the specimen size or shape. In a preferred embodiment, the apparatus includes a counterbalanced slide for mounting the microscope's optical components. This slide replaces the rigid mounts on conventional upright microscopes with a precision ball bearing slide. As the specimen contacts an optical component, the contacting force will move the slide and the optical components mounted thereon. This movement will protect the optical and associated components from damage as the movement causes a limit switch to be actuated, thereby stopping all motors responsible for the collision.
NASA Astrophysics Data System (ADS)
Uesu, Y.; Kurimura, S.; Yamamoto, Y.
1995-04-01
Applied is a microscope to observations of 90 deg ferroelectric domain structure in BaTiO3 and inverted periodically are ferroelectric domains in LiTaO3. It is founded that the second harmonic generation microscope gives information which cannot be obtained by ordinary optical microscopes. The developed nonlinear optical microscope builds two dimensional second harmonic image of a specimen with inhomogenous distribution of d(sub ijk) and applied the microscope to observations of inhomogeneity in some nonlinear-optical organic microcrystals.
NASA Technical Reports Server (NTRS)
Fischer, Robert E. (Editor); Rogers, Philip J. (Editor)
1986-01-01
The present conference considers topics in the fields of optical systems design software, the design and analysis of optical systems, illustrative cases of advanced optical system design, the integration of optical designs into greater systems, and optical fabrication and testing techniques. Attention is given to an extended range diffraction-based merit function for lens design optimization, an assessment of technologies for stray light control and evaluation, the automated characterization of IR systems' spatial resolution, a spectrum of design techniques based on aberration theory, a three-field IR telescope, a large aperture zoom lens for 16-mm motion picture cameras, and the use of concave holographic gratings as monochomators. Also discussed are the use of aspherics in optical systems, glass choice procedures for periscope design, the fabrication and testing of unconventional optics, low mass mirrors for large optics, and the diamond grinding of optical surfaces on aspheric lens molds.
Ultrasonographic analysis in vitro of parietal thickness of lower limb varicose veins.
Bruschi, E; Como, G; Zuiani, C; Segatto, E; Rocco, M; Biasi, G; Bazzocchi, M
2006-09-01
The aim of this study was to evaluate the ability of ultrasound (US) to measure the parietal thickness of varicose veins. In a blind in vitro analysis, 28 great saphenous veins, obtained after stripping surgery from 28 patients with chronic venous insufficiency, were examined with a digital US scanner ATL-HDI5000, linear 5-1 to 2-MHz broadband probe, compound imaging technique and analogic-digital zooming. We obtained one to three progressive measurements for each vein wall (total 67 parietal thicknesses). The samples, fixed in formalin, were sent to the pathology laboratory: sections were obtained at the same level of the sonographic planes, and images were obtained by digital camera mounted on an optical microscope. Measurements obtained at histology were considered as the gold standard. K-statistic was applied to compare sonographic and histologic measurements. Considering only the hypoechoic wall portion, 29/29 (100%) diagnoses of hypotrophy (K=0.91), 19/22 (86%) diagnoses of normotrophy (K=0,47) and 12/16 (75%) diagnoses of hypertrophy (K=0.7) were obtained by sonography. In our preliminary experience, the in vitro study of varicose veins allows precise, at least morphological, detection of hypotrophic walls. If these preliminary data are confirmed in vivo, sonography could be used to discriminate patients eligible for conservative treatment instead of surgery.
Surface Inspection Tool for Optical Detection of Surface Defects
NASA Technical Reports Server (NTRS)
Nurge, Mark; Youngquist, Robert; Dyer, Dustin
2013-01-01
The Space Shuttle Orbiter windows were damaged both by micrometeor impacts and by handling, and required careful inspection before they could be reused. The launch commit criteria required that no defect be deeper than a critical depth. The shuttle program used a refocus microscope to perform a quick pass/fail determination, and then followed up with mold impressions to better quantify any defect. However, the refocus microscope is slow and tedious to use due to its limited field of view, only focusing on one small area of glass at a time. Additionally, the unit is bulky and unable to be used in areas with tight access, such as defects near the window frame or on the glass inside the Orbiter due to interference with the dashboard. The surface inspection tool is a low-profile handheld instrument that provides two digital video images on a computer for monitoring surface defects. The first image is a wide-angle view to assist the user in locating defects. The second provides an enlarged view of a defect centered in the window of the first image. The focus is adjustable for each of the images. However, the enlarged view was designed to have a focal plane with a short depth. This allows the user to get a feel for the depth of different parts of the defect under inspection as the focus control is varied. A light source is also provided to illuminate the defect, precluding the need for separate lighting tools. The software provides many controls to adjust image quality, along with the ability to zoom digitally the images and to capture and store them for later processing.
Robust feedback zoom tracking for digital video surveillance.
Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong
2012-01-01
Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance.
NASA Astrophysics Data System (ADS)
Quintavalla, M.; Pozzi, P.; Verhaegen, Michelle; Bijlsma, Hielke; Verstraete, Hans; Bonora, S.
2018-02-01
Adaptive Optics (AO) has revealed as a very promising technique for high-resolution microscopy, where the presence of optical aberrations can easily compromise the image quality. Typical AO systems however, are almost impossible to implement on commercial microscopes. We propose a simple approach by using a Multi-actuator Adaptive Lens (MAL) that can be inserted right after the objective and works in conjunction with an image optimization software allowing for a wavefront sensorless correction. We presented the results obtained on several commercial microscopes among which a confocal microscope, a fluorescence microscope, a light sheet microscope and a multiphoton microscope.
Arakawa, Mototaka; Shikama, Joe; Yoshida, Koki; Nagaoka, Ryo; Kobayashi, Kazuto; Saijo, Yoshifumi
2015-09-01
Biomechanics of the cell has been gathering much attention because it affects the pathological status in atherosclerosis and cancer. In the present study, an ultrasound microscope system combined with optical microscope for characterization of a single cell with multiple ultrasound parameters was developed. The central frequency of the transducer was 375 MHz and the scan area was 80 × 80 μm with up to 200 × 200 sampling points. An inverted optical microscope was incorporated in the design of the system, allowing for simultaneous optical observations of cultured cells. Two-dimensional mapping of multiple ultrasound parameters, such as sound speed, attenuation, and acoustic impedance, as well as the thickness, density, and bulk modulus of specimen/cell under investigation, etc., was realized by the system. Sound speed and thickness of a 3T3-L1 fibroblast cell were successfully obtained by the system. The ultrasound microscope system combined with optical microscope further enhances our understanding of cellular biomechanics.
Limits of agreement between the optical pachymeter and a noncontact specular microscope.
Ogbuehi, Kelechi C; Almubrad, Turki M
2005-07-01
To determine the limits of agreement between central corneal thickness (CCT) measurements made with the slit lamp-attached optical pachymeter and the SP2000P noncontact specular microscope. Triplicate readings for CCT were obtained for each of 130 (right) eyes of 130 patients, using the slit lamp-attached optical pachymeter and then the SP2000P noncontact specular microscope. The average CCT measured by each method was compared. Subsequently, the mean difference between both sets of measurements was assessed, and the 95% confidence interval (limits of agreement) between both techniques was determined. The mean +/- SD CCT measured by the optical pachymeter was 543 +/- 34 microm and 532 +/- 34 microm for the specular microscope. We found a statistically significant (P < 0.001) mean bias of 10 mum between CCT values measured with both types of equipment, with the optical pachymeter returning the higher values. The coefficient of variation was 6.3% for the optical pachymeter and 6.4% for the specular microscope. The right eye CCT measurements made by the optical pachymeter are, on average, 10 mum thicker than those made with the SP2000P specular microscope, which suggests that both pieces of equipment cannot be used interchangeably to monitor CCT changes in patients. Excluding left eye measurements, the reliability of the optical pachymeter is identical to that of the noncontact specular microscope.
Li, Kun; Li, Zhipeng; Yang, Qichang
2016-01-01
The high energy consumption of a plant factory is the biggest issue in its rapid expansion, especially for lighting electricity, which has been solved to a large extent by light-emitting diodes (LED). However, the remarkable potential for further energy savings remains to be further investigated. In this study, an optical system applied just below the LED was designed. The effects of the system on the growth and photosynthesis of butterhead lettuce (Lactuca sativa var. capitata) were examined, and the performance of the optical improvement in energy savings was evaluated by comparison with the traditional LED illumination mode. The irradiation patterns used were LED with zoom lenses (Z-LED) and conventional non-lenses LED (C-LED). The seedlings in both treatments were exposed to the same light environment over the entire growth period. The improvement saved over half of the light source electricity, while prominently lowering the temperature. Influenced by this, the rate of photosynthesis sharply decreased, causing reductions in plant yield and nitrate content, while having no negative effects on morphological parameters and photosynthetic pigment contents. Nevertheless, the much higher light use efficiency of Z-LEDs makes this system a better approach to illumination in a plant factory with artificial lighting.
Li, Kun; Li, Zhipeng; Yang, Qichang
2016-01-01
The high energy consumption of a plant factory is the biggest issue in its rapid expansion, especially for lighting electricity, which has been solved to a large extent by light-emitting diodes (LED). However, the remarkable potential for further energy savings remains to be further investigated. In this study, an optical system applied just below the LED was designed. The effects of the system on the growth and photosynthesis of butterhead lettuce (Lactuca sativa var. capitata) were examined, and the performance of the optical improvement in energy savings was evaluated by comparison with the traditional LED illumination mode. The irradiation patterns used were LED with zoom lenses (Z-LED) and conventional non-lenses LED (C-LED). The seedlings in both treatments were exposed to the same light environment over the entire growth period. The improvement saved over half of the light source electricity, while prominently lowering the temperature. Influenced by this, the rate of photosynthesis sharply decreased, causing reductions in plant yield and nitrate content, while having no negative effects on morphological parameters and photosynthetic pigment contents. Nevertheless, the much higher light use efficiency of Z-LEDs makes this system a better approach to illumination in a plant factory with artificial lighting. PMID:26904062
Designing Computer-Based Learning Contents: Influence of Digital Zoom on Attention
ERIC Educational Resources Information Center
Glaser, Manuela; Lengyel, Dominik; Toulouse, Catherine; Schwan, Stephan
2017-01-01
In the present study, we investigated the role of digital zoom as a tool for directing attention while looking at visual learning material. In particular, we analyzed whether minimal digital zoom functions similarly to a rhetorical device by cueing mental zooming of attention accordingly. Participants were presented either static film clips, film…
Imaging Schwarzschild multilayer X-ray microscope
NASA Technical Reports Server (NTRS)
Hoover, Richard B.; Baker, Phillip C.; Shealy, David L.; Core, David B.; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.; Kerstetter, Ted
1993-01-01
We have designed, analyzed, fabricated, and tested Schwarzschild multilayer X-ray microscopes. These instruments use flow-polished Zerodur mirror substrates which have been coated with multilayers optimized for maximum reflectivity at normal incidence at 135 A. They are being developed as prototypes for the Water Window Imaging X-Ray Microscope. Ultrasmooth mirror sets of hemlite grade sapphire have been fabricated and they are now being coated with multilayers to reflect soft X-rays at 38 A, within the biologically important 'water window'. In this paper, we discuss the fabrication of the microscope optics and structural components as well as the mounting of the optics and assembly of the microscopes. We also describe the optical alignment, interferometric and visible light testing of the microscopes, present interferometrically measured performance data, and provide the first results of optical imaging tests.
Robust Feedback Zoom Tracking for Digital Video Surveillance
Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong
2012-01-01
Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called “trace curve”, which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance. PMID:22969388
NASA Astrophysics Data System (ADS)
Gualda, G. A. R.; Gravley, D. M.; Harmon, L. J.; Tramontano, S.; Luchetti, A. C. F.; Nardy, A.
2015-12-01
Paraná-Etendeka volcanism led to the opening of the Atlantic Ocean during the early Cretaceous. Most Paraná research has focused on the regional scale geochemistry and geochronology. Complementarily, we have taken a physical volcanological approach to elucidate the styles and locations of silicic eruptions with a focus on extrusive vs. explosive varieties, and an ultimate goal to characterise the crustal magmatic conditions. Through satellite to microscopic observations we can zoom from volcanic edifice and deposit morphologies, remarkably preserved in the Mesozoic landscape, to primary microscopic textures. Lava domes appear in clusters with high relief and are surrounded by lower flat-topped terraces comprised of multiple tabular-shaped packages with conspicuous horizontal jointing. Joint thickness coincides with layering from mm-scale laminations to larger lens-shaped blobs up to 20 cm thick and more than a metre long. These layered deposits appear to be compressed and/or stretched into the finer laminations and grade up into the fatter lens-shaped blobs. In other regions, extensive plateaus dominate the landscape with flat-lying flow packages continuous over 10's of kilometres and possibly further. Rheomorphism is evident in places with sub-parallel joints that grade up into a zone of deformation where curvilinear to overturned joint patterns reflect lateral forcing in a more ductile flow regime. Microscopically the blobs and surrounding matrix are almost indistinguishable except for subtle differences in spherulite textures, zonal alteration and distribution of crystal sizes. Although our research is relatively nascent, our observations suggest eruptions may have ranged from edifice building effusive ones to more explosive ones, albeit possibly relatively low fire fountains feeding hybridised lava/pyroclastic flows. Some of these flows are extensive, tens to possibly hundreds of kilometres long, consistent with high eruption rates of hot magma. These interpretations are consistent with published temperatures as hot as 1050 degrees for these silicic magmas. Preliminary work focusing on glass compositions and coexisting phase assemblages within the blobs reveals that silicic magmas resided in the shallow crust prior to eruption.
Science 101: How Does an Electron Microscope Work?
ERIC Educational Resources Information Center
Robertson, Bill
2013-01-01
Contrary to popular opinion, electron microscopes are not used to look at electrons. They are used to look for structure in things that are too small to observe with an optical microscope, or to obtain images that are magnified much more than is obtainable with an optical microscope. To understand how electron microscopes work, it will help to go…
Adaptive optical microscope for brain imaging in vivo
NASA Astrophysics Data System (ADS)
Wang, Kai
2017-04-01
The optical heterogeneity of biological tissue imposes a major limitation to acquire detailed structural and functional information deep in the biological specimens using conventional microscopes. To restore optimal imaging performance, we developed an adaptive optical microscope based on direct wavefront sensing technique. This microscope can reliably measure and correct biological samples induced aberration. We demonstrated its performance and application in structural and functional brain imaging in various animal models, including fruit fly, zebrafish and mouse.
Kanter, Rosabeth Moss
2011-03-01
Zoom buttons on digital devices let us examine images from many viewpoints. They also provide an apt metaphor for modes of strategic thinking. Some people prefer to see things up close, others from afar. Both perspectives have virtues. But they should not be fixed positions, says Harvard Business School's Kanter. To get a complete picture, leaders need to zoom in and zoom out. A close-in perspective is often found in relationship-intensive settings. It brings details into sharp focus and makes opportunities look large and compelling. But it can have significant downsides. Leaders who prefer to zoom in tend to create policies and systems that depend too much on politics and favors. They can focus too closely on personal status and on turf protection. And they often miss the big picture. When leaders zoom out, they can see events in context and as examples of general trends. They are able to make decisions based on principles. Yet a far-out perspective also has traps. Leaders can be so high above the fray that they don't recognize emerging threats. Having zoomed out to examine all possible routes, they may fail to notice when the moment is right for action on one path. They may also seem too remote and aloof to their staffs. The best leaders can zoom in to examine problems and then zoom out to look for patterns and causes. They don't divide the world into extremes-idiosyncratic or structural, situational or strategic, emotional or contextual. The point is not to choose one over the other but to learn to move across a continuum of perspectives.
Aberration design of zoom lens systems using thick lens modules.
Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi
2014-12-20
A systematic approach for the aberration design of a zoom lens system using a thick lens module is presented. Each component is treated as a thick lens module at the beginning of the design. A thick lens module refers to a thick lens component with a real lens structure, like lens materials, lens curvatures, lens thicknesses, and lens interval distances. All nine third-order aberrations of a thick lens component are considered during the design. The relationship of component aberrations in different zoom positions can be approximated from the aberration shift. After minimizing the aberrations of the zoom lens system, the nine third-order aberrations of every lens component can be determined. Then the thick lens structure of every lens component can be determined after optimization according to their first-order properties and third-order aberration targets. After a third optimization for minimum practical third-order aberrations of a zoom lens system, the aberration design using the thick lens module is complete, which provides a practical zoom lens system with thick lens structures. A double-sided telecentric zoom lens system is designed using the thick lens module in this paper, which shows that this method is practical for zoom lens design.
NASA Astrophysics Data System (ADS)
Durand, Yannig; Woehl, Jörg C.; Viellerobe, Bertrand; Göhde, Wolfgang; Orrit, Michel
1999-02-01
Due to the weakness of the fluorescence signal from a single fluorophore, a scanning near-field optical microscope for single molecule spectroscopy requires a very efficient setup for the collection and detection of emitted photons. We have developed a home-built microscope for operation in a l-He cryostat which uses a solid parabolic mirror in order to optimize the fluorescence collection efficiency. This microscope works with Al-coated, tapered optical fibers in illumination mode. The tip-sample separation is probed by an optical shear-force detection. First results demonstrate the capability of the microscope to image single molecules and achieve a topographical resolution of a few nanometers vertically and better than 50 nm laterally.
Frost, William N; Wang, Jean; Brandon, Christopher J
2007-05-15
Optical recording studies of invertebrate neural networks with voltage-sensitive dyes seldom employ conventional intracellular electrodes. This may in part be due to the traditional reliance on compound microscopes for such work. While such microscopes have high light-gathering power, they do not provide depth of field, making working with sharp electrodes difficult. Here we describe a hybrid microscope design, with switchable compound and stereo objectives, that eases the use of conventional intracellular electrodes in optical recording experiments. We use it, in combination with a voltage-sensitive dye and photodiode array, to identify neurons participating in the swim motor program of the marine mollusk Tritonia. This microscope design should be applicable to optical recording studies in many preparations.
NASA Astrophysics Data System (ADS)
Zhao, Cunhua; Liang, Huiqin; Cui, Dongqing; Hong, Xinhua; Wei, Daling; Gao, Changliu
2011-08-01
In the ultralight or ultrathin applied domain of zoom lens, the traditional glass / plastic lens is limited for manufacture technology or cost. Therefore, a liquid lens was put forward to solve the problems. The liquid zoom lens has the merits of lower cost, smaller volume, quicker response, lower energy consumption, continuous zoom and higher accuracy. In liquid zoom lens the precise focal length is obtained by the contact angle changing to affect the curvature radius of interface. In our works, the relations of the exerted voltage, the contact angle, the curvature radius and the focal length were researched and accurately calculated. The calculation of the focal length provides an important theoretical basis for instructing the design of liquid zoom lens.
Detection of fungal hyphae using smartphone and pocket magnifier: going cellular.
Agarwal, Tushar; Bandivadekar, Pooja; Satpathy, Gita; Sharma, Namrata; Titiyal, Jeewan S
2015-03-01
The aim of this study was to detect fungal hyphae in a corneal scraping sample using a cost-effective assembly of smartphone and pocket magnifier. In this case report, a tissue sample was obtained by conventional corneal scraping from a clinically suspicious case of mycotic keratitis. The smear was stained with Gram stain, and a 10% potassium hydroxide mount was prepared. It was imaged using a smartphone coupled with a compact pocket magnifier and integrated light-emitting diode assembly at point-of-care. Photographs of multiple sections of slides were viewed using smartphone screen and pinch-to-zoom function. The same slides were subsequently screened under a light microscope by an experienced microbiologist. The scraping from the ulcer was also inoculated on blood agar and Sabouraud dextrose agar. Smartphone-based digital imaging revealed the presence of gram-positive organism with hyphae. Examination under a light microscope also yielded similar findings. Fusarium was cultured from the corneal scraping, confirming the diagnosis of mycotic keratitis. The patient responded to topical 5% natamycin therapy, with resolution of the ulcer after 4 weeks. Smartphones can be successfully used as novel point-of-care, cost-effective, reliable microscopic screening tools.
OmniBird: a miniature PTZ NIR sensor system for UCAV day/night autonomous operations
NASA Astrophysics Data System (ADS)
Yi, Steven; Li, Hui
2007-04-01
Through a SBIR funding from NAVAIR, we have successfully developed an innovative, miniaturized, and lightweight PTZ UCAV imager called OmniBird for UCAV taxiing. The proposed OmniBird will be able to fit in a small space. The designed zoom capability allows it to acquire focused images for targets ranging from 10 to 250 feet. The innovative panning mechanism also allows the system to have a field of view of +/- 100 degrees within the provided limited spacing (6 cubic inches). The integrated optics, camera sensor, and mechanics solution will allow the OmniBird to stay optically aligned and shock-proof under harsh environments.
X-ray laser microscope apparatus
Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.
1990-01-01
A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.
Wei, Hai-Zhen; Jiang, Shao-Yong; Zhu, Zhi-Yong; Yang, Tao; Yang, Jing-Hong; Yan, Xiong; Wu, He-Pin; Yang, Tang-Li
2015-10-01
A new, feasible procedure for high-precision bromine isotope analysis using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is described. With a combination of HR mass resolution mode and accurate optimization of the Zoom Optics parameters (Focus Quad: -1.30; Zoom Quad: 0.00), the challenging problem of the isobaric interferences ((40)Ar(38)ArH(+) and (40)Ar(40)ArH(+)) in the measurement of bromine isotopes ((79)Br(+), (81)Br(+)) has been effectively solved. The external reproducibility of the measured (81)Br/(79)Br ratios in the selected standard reference materials ranged from ±0.03‰ to ±0.14‰, which is superior to or equivalent to the best results from previous contributions. The effect of counter cations on the Br(+) signal intensity and the instrumental-induced mass bias was evaluated as the loss of HBr aerosol in nebulizer and potential diffusive isotope fractionations. Copyright © 2015 Elsevier B.V. All rights reserved.
Microscopic Mechanism and Kinetics of Ice Formation at Complex Interfaces: Zooming in on Kaolinite
2016-01-01
Most ice in nature forms because of impurities which boost the exceedingly low nucleation rate of pure supercooled water. However, the microscopic details of ice nucleation on these substances remain largely unknown. Here, we have unraveled the molecular mechanism and the kinetics of ice formation on kaolinite, a clay mineral playing a key role in climate science. We find that the formation of ice at strong supercooling in the presence of this clay is about 20 orders of magnitude faster than homogeneous freezing. The critical nucleus is substantially smaller than that found for homogeneous nucleation and, in contrast to the predictions of classical nucleation theory (CNT), it has a strong two-dimensional character. Nonetheless, we show that CNT describes correctly the formation of ice at this complex interface. Kaolinite also promotes the exclusive nucleation of hexagonal ice, as opposed to homogeneous freezing where a mixture of cubic and hexagonal polytypes is observed. PMID:27269363
Ice crystal growth in a dynamic thermal diffusion chamber
NASA Technical Reports Server (NTRS)
Keller, V. W.
1980-01-01
Ice crystals were grown in a supersaturated environment produced by a dynamic thermal diffusion chamber, which employed two horizontal plates separated by a distance of 2.5 cm. Air was circulated between and along the 1.2 m length of the plates past ice crystals which nucleated and grew from a fiber suspended vertically between the two plates. A zoom stereo microscope with a magnification which ranged from 3X to 80X and both 35 mm still photographs and 16 mm time lapse cine films taken through the microscope were used to study the variation of the shape and linear growth rate of ice crystals as a function of the ambient temperature, the ambient supersaturation, and the forced ventilation velocity. The ambient growth conditions were varied over the range of temperature 0 to -40 C, over the range of supersaturation 4% to 50% with respect to ice, and over the range of forced ventilation velocities 0 cm/s to 20 cm/s.
Recent technology and usage of plastic lenses in image taking objectives
NASA Astrophysics Data System (ADS)
Yamaguchi, Susumu; Sato, Hiroshi; Mori, Nobuyoshi; Kiriki, Toshihiko
2005-09-01
Recently, plastic lenses produced by injection molding are widely used in image taking objectives for digital cameras, camcorders, and mobile phone cameras, because of their suitability for volume production and ease of obtaining an advantage of aspherical surfaces. For digital camera and camcorder objectives, it is desirable that there is no image point variation with the temperature change in spite of employing several plastic lenses. At the same time, due to the shrinking pixel size of solid-state image sensor, there is now a requirement to assemble lenses with high accuracy. In order to satisfy these requirements, we have developed 16 times compact zoom objective for camcorder and 3 times class folded zoom objectives for digital camera, incorporating cemented plastic doublet consisting of a positive lens and a negative lens. Over the last few years, production volumes of camera-equipped mobile phones have increased substantially. Therefore, for mobile phone cameras, the consideration of productivity is more important than ever. For this application, we have developed a 1.3-mega pixels compact camera module with macro function utilizing the advantage of a plastic lens that can be given mechanically functional shape to outer flange part. Its objective consists of three plastic lenses and all critical dimensions related to optical performance can be determined by high precise optical elements. Therefore this camera module is manufactured without optical adjustment in automatic assembling line, and achieves both high productivity and high performance. Reported here are the constructions and the technical topics of image taking objectives described above.
Frost, William N.; Wang, Jean; Brandon, Christopher J.
2007-01-01
Optical recording studies of invertebrate neural networks with voltage-sensitive dyes seldom employ conventional intracellular electrodes. This may in part be due to the traditional reliance on compound microscopes for such work. While such microscopes have high light-gathering power, they do not provide depth of field, making working with sharp electrodes difficult. Here we describe a hybrid microscope design, with switchable compound and stereo objectives, that eases the use of conventional intracellular electrodes in optical recording experiments. We use it, in combination with a voltage-sensitive dye and photodiode array, to identify neurons participating in the swim motor program of the marine mollusk Tritonia. This microscope design should be applicable to optical recording studies in many preparations. PMID:17306887
Solar System Visualization (SSV) Project
NASA Technical Reports Server (NTRS)
Todd, Jessida L.
2005-01-01
The Solar System Visualization (SSV) project aims at enhancing scientific and public understanding through visual representations and modeling procedures. The SSV project's objectives are to (1) create new visualization technologies, (2) organize science observations and models, and (3) visualize science results and mission Plans. The SSV project currently supports the Mars Exploration Rovers (MER) mission, the Mars Reconnaissance Orbiter (MRO), and Cassini. In support of the these missions, the SSV team has produced pan and zoom animations of large mosaics to reveal details of surface features and topography, created 3D animations of science instruments and procedures, formed 3-D anaglyphs from left and right stereo pairs, and animated registered multi-resolution mosaics to provide context for microscopic images.
MTF measurements on real time for performance analysis of electro-optical systems
NASA Astrophysics Data System (ADS)
Stuchi, Jose Augusto; Signoreto Barbarini, Elisa; Vieira, Flavio Pascoal; dos Santos, Daniel, Jr.; Stefani, Mário Antonio; Yasuoka, Fatima Maria Mitsue; Castro Neto, Jarbas C.; Linhari Rodrigues, Evandro Luis
2012-06-01
The need of methods and tools that assist in determining the performance of optical systems is actually increasing. One of the most used methods to perform analysis of optical systems is to measure the Modulation Transfer Function (MTF). The MTF represents a direct and quantitative verification of the image quality. This paper presents the implementation of the software, in order to calculate the MTF of electro-optical systems. The software was used for calculating the MTF of Digital Fundus Camera, Thermal Imager and Ophthalmologic Surgery Microscope. The MTF information aids the analysis of alignment and measurement of optical quality, and also defines the limit resolution of optical systems. The results obtained with the Fundus Camera and Thermal Imager was compared with the theoretical values. For the Microscope, the results were compared with MTF measured of Microscope Zeiss model, which is the quality standard of ophthalmological microscope.
Nanodiamond Landmarks for Subcellular Multimodal Optical and Electron Imaging
Zurbuchen, Mark A.; Lake, Michael P.; Kohan, Sirus A.; Leung, Belinda; Bouchard, Louis-S.
2013-01-01
There is a growing need for biolabels that can be used in both optical and electron microscopies, are non-cytotoxic, and do not photobleach. Such biolabels could enable targeted nanoscale imaging of sub-cellular structures, and help to establish correlations between conjugation-delivered biomolecules and function. Here we demonstrate a sub-cellular multi-modal imaging methodology that enables localization of inert particulate probes, consisting of nanodiamonds having fluorescent nitrogen-vacancy centers. These are functionalized to target specific structures, and are observable by both optical and electron microscopies. Nanodiamonds targeted to the nuclear pore complex are rapidly localized in electron-microscopy diffraction mode to enable “zooming-in” to regions of interest for detailed structural investigations. Optical microscopies reveal nanodiamonds for in-vitro tracking or uptake-confirmation. The approach is general, works down to the single nanodiamond level, and can leverage the unique capabilities of nanodiamonds, such as biocompatibility, sensitive magnetometry, and gene and drug delivery. PMID:24036840
Evaluation of a completely robotized neurosurgical operating microscope.
Kantelhardt, Sven R; Finke, Markus; Schweikard, Achim; Giese, Alf
2013-01-01
Operating microscopes are essential for most neurosurgical procedures. Modern robot-assisted controls offer new possibilities, combining the advantages of conventional and automated systems. We evaluated the prototype of a completely robotized operating microscope with an integrated optical coherence tomography module. A standard operating microscope was fitted with motors and control instruments, with the manual control mode and balance preserved. In the robot mode, the microscope was steered by a remote control that could be fixed to a surgical instrument. External encoders and accelerometers tracked microscope movements. The microscope was additionally fitted with an optical coherence tomography-scanning module. The robotized microscope was tested on model systems. It could be freely positioned, without forcing the surgeon to take the hands from the instruments or avert the eyes from the oculars. Positioning error was about 1 mm, and vibration faded in 1 second. Tracking of microscope movements, combined with an autofocus function, allowed determination of the focus position within the 3-dimensional space. This constituted a second loop of navigation independent from conventional infrared reflector-based techniques. In the robot mode, automated optical coherence tomography scanning of large surface areas was feasible. The prototype of a robotized optical coherence tomography-integrated operating microscope combines the advantages of a conventional manually controlled operating microscope with a remote-controlled positioning aid and a self-navigating microscope system that performs automated positioning tasks such as surface scans. This demonstrates that, in the future, operating microscopes may be used to acquire intraoperative spatial data, volume changes, and structural data of brain or brain tumor tissue.
Rastogi, Ravi; Pawluk, Dianne T V
2013-01-01
An increasing amount of information content used in school, work, and everyday living is presented in graphical form. Unfortunately, it is difficult for people who are blind or visually impaired to access this information, especially when many diagrams are needed. One problem is that details, even in relatively simple visual diagrams, can be very difficult to perceive using touch. With manually created tactile diagrams, these details are often presented in separate diagrams which must be selected from among others. Being able to actively zoom in on an area of a single diagram so that the details can be presented at a reasonable size for exploration purposes seems a simpler approach for the user. However, directly using visual zooming methods have some limitations when used haptically. Therefore, a new zooming method is proposed to avoid these pitfalls. A preliminary experiment was performed to examine the usefulness of the algorithm compared to not using zooming. The results showed that the number of correct responses improved with the developed zooming algorithm and participants found it to be more usable than not using zooming for exploration of a floor map.
Dong, Biqin; Li, Hao; Zhang, Zhen; Zhang, Kevin; Chen, Siyu; Sun, Cheng; Zhang, Hao F
2015-01-01
Photoacoustic microscopy (PAM) is an attractive imaging tool complementary to established optical microscopic modalities by providing additional molecular specificities through imaging optical absorption contrast. While the development of optical resolution photoacoustic microscopy (ORPAM) offers high lateral resolution, the acoustically-determined axial resolution is limited due to the constraint in ultrasonic detection bandwidth. ORPAM with isometric spatial resolution along both axial and lateral direction is yet to be developed. Although recently developed sophisticated optical illumination and reconstruction methods offer improved axial resolution in ORPAM, the image acquisition procedures are rather complicated, limiting their capabilities for high-speed imaging and being easily integrated with established optical microscopic modalities. Here we report an isometric ORPAM based on an optically transparent micro-ring resonator ultrasonic detector and a commercial inverted microscope platform. Owing to the superior spatial resolution and the ease of integrating our ORPAM with established microscopic modalities, single cell imaging with extrinsic fluorescence staining, intrinsic autofluorescence, and optical absorption can be achieved simultaneously. This technique holds promise to greatly improve the accessibility of PAM to the broader biomedical researchers.
Generic distortion model for metrology under optical microscopes
NASA Astrophysics Data System (ADS)
Liu, Xingjian; Li, Zhongwei; Zhong, Kai; Chao, YuhJin; Miraldo, Pedro; Shi, Yusheng
2018-04-01
For metrology under optical microscopes, lens distortion is the dominant source of error. Previous distortion models and correction methods mostly rely on the assumption that parametric distortion models require a priori knowledge of the microscopes' lens systems. However, because of the numerous optical elements in a microscope, distortions can be hardly represented by a simple parametric model. In this paper, a generic distortion model considering both symmetric and asymmetric distortions is developed. Such a model is obtained by using radial basis functions (RBFs) to interpolate the radius and distortion values of symmetric distortions (image coordinates and distortion rays for asymmetric distortions). An accurate and easy to implement distortion correction method is presented. With the proposed approach, quantitative measurement with better accuracy can be achieved, such as in Digital Image Correlation for deformation measurement when used with an optical microscope. The proposed technique is verified by both synthetic and real data experiments.
NASA Astrophysics Data System (ADS)
Angénieux, J. P. L.
1987-06-01
Modern objective lenses for cinematography, television or photography, and particularly zoom lenses, are composed of several groups of lenses which are axially displaced during zooming and/or focusing. The number of these groups has increased recently as well as the complexity of their relative movements and functions. In this paper, we give a short history of zooming and focusing techniques ; we discuss the inconvenience of traditional solutions. We then introduce the concept of bidimensional law. We propose a systematic classification of possible lens-types according to the 4 possible types of group. We finally present a few types of lenses in the form of truth tables and parametered diagrams explaining which groups move and how during focusing and/or zooming.
Desai, Darshan B; Aldawsari, Mabkhoot Mudith S; Alharbi, Bandar Mohammed H; Sen, Sanchari; Grave de Peralta, Luis
2015-09-01
We show that various setups for optical microscopy which are commonly used in biomedical laboratories behave like efficient microscope condensers that are responsible for observed subwavelength resolution. We present a series of experiments and simulations that reveal how inclined illumination from such unexpected condensers occurs when the sample is perpendicularly illuminated by a microscope's built-in white-light source. In addition, we demonstrate an inexpensive add-on optical module that serves as an efficient and lightweight microscope condenser. Using such add-on optical module in combination with a low-numerical-aperture objective lens and Fourier plane imaging microscopy technique, we demonstrate detection of photonic crystals with a period nearly eight times smaller than the Rayleigh resolution limit.
Hyperlens-array-implemented optical microscopy
NASA Astrophysics Data System (ADS)
Iwanaga, Masanobu
2014-08-01
Limit of resolution of conventional optical microscopes has never reached below 100 nm under visible light illumination. We show that numerically designed high-transmittance hyperlens array (HLA) is implemented in an optical microscope and works in practice for achieving one-shot-recording optical images of in-situ placed objects with sub 50 nm resolution in lateral direction. Direct resolution test employing well-defined nanopatterns proves that the HLA-implemented imaging is super-resolution optical microscopy, which works even under nW/mm2 visible illumination for objects. The HLA implementation makes the resolution of conventional microscopes one-scale higher, leading to the 1/10 illumination wavelength range, that is, mesoscopic range.
Optical design and system characterization of an imaging microscope at 121.6 nm
NASA Astrophysics Data System (ADS)
Gao, Weichuan; Finan, Emily; Kim, Geon-Hee; Kim, Youngsik; Milster, Thomas D.
2018-03-01
We present the optical design and system characterization of an imaging microscope prototype at 121.6 nm. System engineering processes are demonstrated through the construction of a Schwarzschild microscope objective, including tolerance analysis, fabrication, alignment, and testing. Further improvements on the as-built system with a correction phase plate are proposed and analyzed. Finally, the microscope assembly and the imaging properties of the prototype are demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.
Plasmonic nanoparticle grating (PNG) structure of different periods has been fabricated by electron beam lithography using silver halide based transmission electron microscope film as a substrate. Conventional scanning electron microscope is used as a fabrication tool for electron beam lithography. Optical microscope and energy dispersive spectroscopy (EDS) have been used for its morphological and elemental characterization. Optical characterization is performed by UV-Vis absorption spectroscopic technique.
NASA Astrophysics Data System (ADS)
Ding, Kun; Chan, C. T.
2018-04-01
The calculation of optical force density distribution inside a material is challenging at the nanoscale, where quantum and nonlocal effects emerge and macroscopic parameters such as permittivity become ill-defined. We demonstrate that the microscopic optical force density of nanoplasmonic systems can be defined and calculated using the microscopic fields generated using a self-consistent hydrodynamics model that includes quantum, nonlocal, and retardation effects. We demonstrate this technique by calculating the microscopic optical force density distributions and the optical binding force induced by external light on nanoplasmonic dimers. This approach works even in the limit when the nanoparticles are close enough to each other so that electron tunneling occurs, a regime in which classical electromagnetic approach fails completely. We discover that an uneven distribution of optical force density can lead to a light-induced spinning torque acting on individual particles. The hydrodynamics method offers us an accurate and efficient approach to study optomechanical behavior for plasmonic systems at the nanoscale.
Intuitive tactile zooming for graphics accessed by individuals who are blind and visually impaired.
Rastogi, Ravi; Pawluk, T V Dianne; Ketchum, Jessica
2013-07-01
One possibility of providing access to visual graphics for those who are visually impaired is to present them tactually: unfortunately, details easily available to vision need to be magnified to be accessible through touch. For this, we propose an "intuitive" zooming algorithm to solve potential problems with directly applying visual zooming techniques to haptic displays that sense the current location of a user on a virtual diagram with a position sensor and, then, provide the appropriate local information either through force or tactile feedback. Our technique works by determining and then traversing the levels of an object tree hierarchy of a diagram. In this manner, the zoom steps adjust to the content to be viewed, avoid clipping and do not zoom when no object is present. The algorithm was tested using a small, "mouse-like" display with tactile feedback on pictures representing houses in a community and boats on a lake. We asked the users to answer questions related to details in the pictures. Comparing our technique to linear and logarithmic step zooming, we found a significant increase in the correctness of the responses (odds ratios of 2.64:1 and 2.31:1, respectively) and usability (differences of 36% and 19%, respectively) using our "intuitive" zooming technique.
Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation.
Werley, Christopher A; Chien, Miao-Ping; Cohen, Adam E
2017-12-01
The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our 'Firefly' microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology ('Optopatch') in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes.
Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation
Werley, Christopher A.; Chien, Miao-Ping; Cohen, Adam E.
2017-01-01
The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our ‘Firefly’ microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology (‘Optopatch’) in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes. PMID:29296505
Optical path difference microscopy with a Shack-Hartmann wavefront sensor.
Gong, Hai; Agbana, Temitope E; Pozzi, Paolo; Soloviev, Oleg; Verhaegen, Michel; Vdovin, Gleb
2017-06-01
In this Letter, we show that a Shack-Hartmann wavefront sensor can be used for the quantitative measurement of the specimen optical path difference (OPD) in an ordinary incoherent optical microscope, if the spatial coherence of the illumination light in the plane of the specimen is larger than the microscope resolution. To satisfy this condition, the illumination numerical aperture should be smaller than the numerical aperture of the imaging lens. This principle has been successfully applied to build a high-resolution reference-free instrument for the characterization of the OPD of micro-optical components and microscopic biological samples.
Design of small confocal endo-microscopic probe working under multiwavelength environment
NASA Astrophysics Data System (ADS)
Kim, Young-Duk; Ahn, MyoungKi; Gweon, Dae-Gab
2010-02-01
Recently, optical imaging system is widely used in medical purpose. By using optical imaging system specific diseases can be easily diagnosed at early stage because optical imaging system has high resolution performance and various imaging method. These methods are used to get high resolution image of human body and can be used to verify whether the cell is infected by virus. Confocal microscope is one of the famous imaging systems which is used for in-vivo imaging. Because most of diseases are accompanied with cellular level changes, doctors can diagnosis at early stage by observing the cellular image of human organ. Current research is focused in the development of endo-microscope that has great advantage in accessibility to human body. In this research, I designed small probe that is connected to confocal microscope through optical fiber bundle and work as endo-microscope. And this small probe is mainly designed to correct chromatic aberration to use various laser sources for both fluorescence type and reflection type confocal images. By using two kinds of laser sources at the same time we demonstrated multi-modality confocal endo-microscope.
Microscopy imaging device with advanced imaging properties
Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei
2015-11-24
Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.
Microscopy imaging device with advanced imaging properties
Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei
2016-10-25
Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.
Microscopy imaging device with advanced imaging properties
Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei
2016-11-22
Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.
Microscopy imaging device with advanced imaging properties
Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei
2017-04-25
Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.
Wachman, Elliot S; Geyer, Stanley J; Recht, Joel M; Ward, Jon; Zhang, Bill; Reed, Murray; Pannell, Chris
2014-05-01
An acousto-optic tunable filter (AOTF)-based multispectral imaging microscope system allows the combination of cellular morphology and multiple biomarker stainings on a single microscope slide. We describe advances in AOTF technology that have greatly improved spectral purity, field uniformity, and image quality. A multispectral imaging bright field microscope using these advances demonstrates pathology results that have great potential for clinical use.
Mathew, Manoj; Santos, Susana I C O; Zalvidea, Dobryna; Loza-Alvarez, Pablo
2009-07-01
In this work we propose and build a multimodal optical workstation that extends a commercially available confocal microscope (Nikon Confocal C1-Si) to include nonlinear/multiphoton microscopy and optical manipulation/stimulation tools such as nanosurgery. The setup allows both subsystems (confocal and nonlinear) to work independently and simultaneously. The workstation enables, for instance, nanosurgery along with simultaneous confocal and brightfield imaging. The nonlinear microscopy capabilities are added around the commercial confocal microscope by exploiting all the flexibility offered by this microscope and without need for any mechanical or electronic modification of the confocal microscope systems. As an example, the standard differential interference contrast condenser and diascopic detector in the confocal microscope are readily used as a forward detection mount for second harmonic generation imaging. The various capabilities of this workstation, as applied directly to biology, are demonstrated using the model organism Caenorhabditis elegans.
Nowak, Derek B; Lawrence, A J; Sánchez, Erik J
2010-12-10
We present the development of a versatile spectroscopic imaging tool to allow for imaging with single-molecule sensitivity and high spatial resolution. The microscope allows for near-field and subdiffraction-limited far-field imaging by integrating a shear-force microscope on top of a custom inverted microscope design. The instrument has the ability to image in ambient conditions with optical resolutions on the order of tens of nanometers in the near field. A single low-cost computer controls the microscope with a field programmable gate array data acquisition card. High spatial resolution imaging is achieved with an inexpensive CW multiphoton excitation source, using an apertureless probe and simplified optical pathways. The high-resolution, combined with high collection efficiency and single-molecule sensitive optical capabilities of the microscope, are demonstrated with a low-cost CW laser source as well as a mode-locked laser source.
Images from Phoenix's MECA Instruments
NASA Technical Reports Server (NTRS)
2008-01-01
The image on the upper left is from NASA's Phoenix Mars Lander's Optical Microscope after a sample informally called 'Sorceress' was delivered to its silicon substrate on the 38th Martian day, or sol, of the mission (July 2, 2008). A 3D representation of the same sample is on the right, as seen by Phoenix's Atomic Force Microscope. This is 100 times greater magnification than the view from the Optical Microscope, and the most highly magnified image ever seen from another world. The Optical Microscope and the Atomic Force Microscope are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument. The Atomic Force Microscope was developed by a Swiss-led consortium in collaboration with Imperial College London. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.NASA Astrophysics Data System (ADS)
Siebelmann, Sebastian; Steven, Philipp; Hos, Deniz; Hüttmann, Gereon; Lankenau, Eva; Bachmann, Björn; Cursiefen, Claus
2016-01-01
Boston keratoprosthesis (KPro) type I is a technique to treat patients with corneal diseases that are not amenable to conventional keratoplasty. Correct assembly and central implantation of the prosthesis are crucial for postoperative visual recovery. This study investigates the potential benefit of intraoperative optical coherence tomography (OCT) to monitor KPro surgery. Retrospective case series are presented for two patients who underwent Boston KPro type I implantation. The surgery in both patients was monitored intraoperatively using a commercially available intraoperative OCT (iOCT) device mounted on a surgical microscope. Microscope-integrated intraoperative OCT was able to evaluate the correct assembly and implantation of the KPro. All parts of the prosthesis were visible, and interfaces between the corneal graft and titanium backplate or anterior optics were clearly depictable. Moreover, iOCT visualized a gap between the backplate and graft in one case, and in the other case, a gap between the anterior optic and graft. Neither gap was visible with a conventional surgical microscope. The gap between the anterior optic and the graft could easily be corrected. Microscope-integrated iOCT delivers enhanced information, adding to the normal surgical microscope view during KPro surgery. Correct assembly can be controlled as well as the correct placement of the Boston KPro into the anterior chamber.
Design of a normal incidence multilayer imaging X-ray microscope
NASA Astrophysics Data System (ADS)
Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.
Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.
Who's Zooming Whom? Attunement to Animation in the Interface.
ERIC Educational Resources Information Center
Chui, Michael; Dillon, Andrew
1997-01-01
Two controlled experiments examined whether the animated zooming effect accompanying the opening or closing of a folder in the Apple Macintosh graphical user interface aids in the user's perception of which window corresponds to which folder. Results suggest users may become attuned to the informational content of the zooming effect with…
NASA Astrophysics Data System (ADS)
Schwenzer, S. P.; Tindle, A. G.; Anand, M.; Gibson, E. K.; Pearson, V. K.; Pemberton, D.; Pillinger, C.; Smith, C. L.; Whalley, P.; Kelley, S. P.
2011-12-01
Exploration is in itself a fascinating subject, and a strong draw to engaging the public in understanding science. Nearly two hundred years ago Charles Darwin took part in an exploration of the Earth, and more recently we have begun to explore the solar system and in particular the surface of Mars. The engagement is made easier if an element of exploration is involved in the public engagement, using modern internet and even mobile technologies. The Open University combines all those aspects in a series of virtual microscopes for Earth science that are freely available on the web, installed in museums, or built into its teaching material. The basis of the virtual microscope is a mosaic of several hundred microscopic images of each thin section taken in plane polarised light, between crossed polars and in reflected light, which are then assembled into three high resolution images. Rotation movies for selected points in the thin section illustrate changing optical properties such as birefringence. The user is able to pan and zoom around to explore the section, studying the mineralogy and rock texture, and view the rotation movies linked to points in the section to see the changing birefringence colours. We have created several collections of terrestrial rocks, mainly for teaching purposes, and outreach directly linked to exploration: Charles Darwin returned from the Voyage of the Beagle with a large variety of rock samples, and although thin sections were not being made at that time, they were created from his rocks in the late 19th century. The historic material is part of the "Darwin the Geologist" exhibition at the Sedgwick Museum in Cambridge. Our Darwin virtual microscope includes hand specimen illustrations and thin sections together with documentation and an interactive map allow internet users and museum visitors alike to have a close look at Darwin's rocks and study the petrology of them. Charles Darwin explored distant horizons on Earth in the 19th century; in the 20th century the Apollo astronauts set foot on the Moon, returning valuable rock samples to Earth. Through collaboration between NASA and the OU it became possible to show lunar samples as virtual thin sections. The Beagle II mission represented a new voyage, following Charles Darwin's footsteps, to horizons well beyond the Earth - on a journey to investigate the planet Mars. Although no samples have yet been returned from the red planet, we do have access to Martian meteorites. Like Moon rock samples, these meteorites are rare and very valuable. So, one way to make them accessible to the general public is via the internet using our virtual microscope technology. Within the framework of the EUROPLANET project, and in collaboration with the Natural History Museum in London we are making such meteorites freely available to all. We plan to extend this collection and make it openly accessible for teaching and outreach activities anywhere and any time. Our current microscopes are located at http://microscope.open.ac.uk.
Real-time near IR (1310 nm) imaging of CO2 laser ablation of enamel.
Darling, Cynthia L; Fried, Daniel
2008-02-18
The high-transparency of dental enamel in the near-IR (NIR) can be exploited for real-time imaging of ablation crater formation during drilling with lasers. NIR images were acquired with an InGaAs focal plane array and a NIR zoom microscope during drilling incisions in human enamel samples with a lambda=9.3-microm CO(2) laser operating at repetition rates of 50-300-Hz with and without a water spray. Crack formation, dehydration and thermal changes were observed during ablation. These initial images demonstrate the potential of NIR imaging to monitor laser-ablation events in real-time to provide information about the mechanism of ablation and to evaluate the potential for peripheral thermal and mechanical damage.
The attentional 'zoom-lens' in 8-month-old infants.
Ronconi, Luca; Franchin, Laura; Valenza, Eloisa; Gori, Simone; Facoetti, Andrea
2016-01-01
The spatial attention mechanisms of orienting and zooming cooperate to properly select visual information from the environment and plan eye movements accordingly. Despite the fact that orienting ability has been extensively studied in infancy, the zooming mechanism--namely, the ability to distribute the attentional resources to a small or large portion of the visual field--has never been tested before. The aim of the present study was to evaluate the attentional zooming abilities of 8-month-old infants. An eye-tracker device was employed to measure the saccadic latencies (SLs) at the onset of a visual target displayed at two eccentricities. The size of the more eccentric target was adjusted in order to counteract the effect of cortical magnification. Before the target display, attentional resources were automatically focused (zoom-in) or spread out (zoom-out) by using a small or large cue, respectively. Two different cue-target intervals were also employed to measure the time course of this attentional mechanism. The results showed that infants' SLs varied as a function of the cue size. Moreover, a clear time course emerged, demonstrating that infants can rapidly adjust the attentional focus size during a pre-saccadic temporal window. These findings could serve as an early marker for neurodevelopmental disorders associated with attentional zooming dysfunction such as autism and dyslexia. © 2015 John Wiley & Sons Ltd.
In Vivo Near Infrared Virtual Intraoperative Surgical Photoacoustic Optical Coherence Tomography
Lee, Donghyun; Lee, Changho; Kim, Sehui; Zhou, Qifa; Kim, Jeehyun; Kim, Chulhong
2016-01-01
Since its first implementation in otolaryngological surgery nearly a century ago, the surgical microscope has improved the accuracy and the safety of microsurgeries. However, the microscope shows only a magnified surface view of the surgical region. To overcome this limitation, either optical coherence tomography (OCT) or photoacoustic microscopy (PAM) has been independently combined with conventional surgical microscope. Herein, we present a near-infrared virtual intraoperative photoacoustic optical coherence tomography (NIR-VISPAOCT) system that combines both PAM and OCT with a conventional surgical microscope. Using optical scattering and absorption, the NIR-VISPAOCT system simultaneously provides surgeons with real-time comprehensive biological information such as tumor margins, tissue structure, and a magnified view of the region of interest. Moreover, by utilizing a miniaturized beam projector, it can back-project 2D cross-sectional PAM and OCT images onto the microscopic view plane. In this way, both microscopic and cross-sectional PAM and OCT images are concurrently displayed on the ocular lens of the microscope. To verify the usability of the NIR-VISPAOCT system, we demonstrate simulated surgeries, including in vivo image-guided melanoma resection surgery and in vivo needle injection of carbon particles into a mouse thigh. The proposed NIR-VISPAOCT system has potential applications in neurosurgery, ophthalmological surgery, and other microsurgeries. PMID:27731390
Carlson, Kristen; Chidley, Matthew; Sung, Kung-Bin; Descour, Michael; Gillenwater, Ann; Follen, Michele; Richards-Kortum, Rebecca
2005-04-01
For in vivo optical diagnostic technologies to be distributed to the developed and developing worlds, optical imaging systems must be constructed of inexpensive components. We present a fiber-optic confocal reflectance microscope with a cost-effective injection-molded plastic miniature objective lens for in vivo imaging of human tissues in near real time. The measured lateral resolution is less than 2.2 microm, and the measured axial resolution is 10 microm. Confocal images of ex vivo cervical tissue biopsies and in vivo human lip taken at 15 frames/s demonstrate the microscope's capability of imaging cell morphology and tissue architecture.
Teaching Shakespeare in the Digital Age: The eZoomBook Approach
ERIC Educational Resources Information Center
Evain, Christine; De Marco, Chris
2016-01-01
What collaborative process can teachers offer in order to stimulate their students' reading of and writing on Shakespeare's plays? How can new technologies contribute to facilitating the classroom experience? The eZoomBook (eZB) template was designed for teachers to create and share multi-level digital books called "eZoomBooks" that…
Analytical model of the optical vortex microscope.
Płocinniczak, Łukasz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz
2016-04-20
This paper presents an analytical model of the optical vortex scanning microscope. In this microscope the Gaussian beam with an embedded optical vortex is focused into the sample plane. Additionally, the optical vortex can be moved inside the beam, which allows fine scanning of the sample. We provide an analytical solution of the whole path of the beam in the system (within paraxial approximation)-from the vortex lens to the observation plane situated on the CCD camera. The calculations are performed step by step from one optical element to the next. We show that at each step, the expression for light complex amplitude has the same form with only four coefficients modified. We also derive a simple expression for the vortex trajectory of small vortex displacements.
Fibre-optic nonlinear optical microscopy and endoscopy.
Fu, L; Gu, M
2007-06-01
Nonlinear optical microscopy has been an indispensable laboratory tool of high-resolution imaging in thick tissue and live animals. Rapid developments of fibre-optic components in terms of growing functionality and decreasing size provide enormous opportunities for innovations in nonlinear optical microscopy. Fibre-based nonlinear optical endoscopy is the sole instrumentation to permit the cellular imaging within hollow tissue tracts or solid organs that are inaccessible to a conventional optical microscope. This article reviews the current development of fibre-optic nonlinear optical microscopy and endoscopy, which includes crucial technologies for miniaturized nonlinear optical microscopy and their embodiments of endoscopic systems. A particular attention is given to several classes of photonic crystal fibres that have been applied to nonlinear optical microscopy due to their unique properties for ultrashort pulse delivery and signal collection. Furthermore, fibre-optic nonlinear optical imaging systems can be classified into portable microscopes suitable for imaging behaving animals, rigid endoscopes that allow for deep tissue imaging with minimally invasive manners, and flexible endoscopes enabling imaging of internal organs. Fibre-optic nonlinear optical endoscopy is coming of age and a paradigm shift leading to optical microscope tools for early cancer detection and minimally invasive surgery.
NASA Technical Reports Server (NTRS)
Lauer, James L.; Abel, Phillip B.
1988-01-01
The characteristics of the scanning tunneling microscope and atomic force microscope (AFM) are briefly reviewed, and optical methods, mainly interferometry, of sufficient resolution to measure AFM deflections are discussed. The methods include optical resonators, laser interferometry, multiple-beam interferometry, and evanescent wave detection. Experimental results using AFM are reviewed.
Majima, K
1998-01-01
To examine the morphological changes of lens epithelial cells (LECs) occurring directly beneath and at regions contacting various intraocular lens (IOL) optic materials, human LECs were cultured on human anterior lens capsules and were further incubated upon placing above the cells lens optics made of polymethylmethacrylate, silicone, and soft acrylic material. Observations as to the morphological changes of LECs under phase-contrast microscope and scanning electron microscope were performed on the 14th day of incubation. Gatherings of LECs were observed at regions contacting the soft acrylic material under phase-contrast microscope, and gatherings of LECs were observed accurately at the same regions mentioned above under scanning electron microscope. On the other hand, LECs in contact with two other optic materials did not show morphological changes. The results suggest that LECs attached to and proliferated on not only the anterior lens capsules but also the soft acrylic IOL optics. The model used in this study may be useful in studying the relationship between cellular movement of LECs and IOL optic material.
Multiparallel Three-Dimensional Optical Microscopy
NASA Technical Reports Server (NTRS)
Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel
2010-01-01
Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.
Fast dictionary generation and searching for magnetic resonance fingerprinting.
Jun Xie; Mengye Lyu; Jian Zhang; Hui, Edward S; Wu, Ed X; Ze Wang
2017-07-01
A super-fast dictionary generation and searching (DGS) algorithm was developed for MR parameter quantification using magnetic resonance fingerprinting (MRF). MRF is a new technique for simultaneously quantifying multiple MR parameters using one temporally resolved MR scan. But it has a multiplicative computation complexity, resulting in a big burden of dictionary generating, saving, and retrieving, which can easily be intractable for any state-of-art computers. Based on retrospective analysis of the dictionary matching object function, a multi-scale ZOOM like DGS algorithm, dubbed as MRF-ZOOM, was proposed. MRF ZOOM is quasi-parameter-separable so the multiplicative computation complexity is broken into additive one. Evaluations showed that MRF ZOOM was hundreds or thousands of times faster than the original MRF parameter quantification method even without counting the dictionary generation time in. Using real data, it yielded nearly the same results as produced by the original method. MRF ZOOM provides a super-fast solution for MR parameter quantification.
Acoustical nanometre-scale vibrations of live cells detected by a near-field optical setup
NASA Astrophysics Data System (ADS)
Piga, Rosaria; Micheletto, Ruggero; Kawakami, Yoichi
2007-04-01
The Scanning Near-field Optical Microscope (SNOM) is able to detect tiny vertical movement on the cell membrane in the range of only 1 nanometer or less, about 3 orders of magnitude better than conventional optical microscopes. Here we show intriguing data of cell membrane nanometer-scale dynamics associated to different phenomena of the cell’s The Scanning Near-field Optical Microscope (SNOM) is able to detect tiny vertical movement on the cell membrane in the range of only 1 nanometer or less, about 3 orders of magnitude better than conventional optical microscopes. Here we show intriguing data of cell membrane nanometer-scale dynamics associated to different phenomena of the cell’s life, such as cell cycle and cell death, on rat pheochromocytoma line PC12. Working in culture medium with alive and unperturbed samples, we could detect nanometer-sized movements; Fourier components revealed a clear distinct behavior associated to regulation of neurite outgrowth and changes on morphology after necrotic stimulus.
Direct view zoom scope with single focal plane and adaptable reticle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagwell, Brett
A direct view telescopic sight includes objective lens, eyepiece, and prism erector assemblies. The objective lens assembly is mounted to receive light of an image from an object direction and direct the light along an optical path. The eyepiece assembly is mounted to receive the light along the optical path and to emit the light of the image along an eye-ward direction. The prism erector assembly is positioned between the objective lens and eyepiece assemblies and includes first and second prism elements through which the optical path passes. The first and second prism elements invert the image. A reticle elementmore » is disposed on or adjacent to a surface of one of the first or second prism elements to combine a reticle on the image. The image is brought into focus at only a single focal plane between the objective lens and eyepiece assemblies at a given time.« less
X-ray optics simulation and beamline design for the APS upgrade
NASA Astrophysics Data System (ADS)
Shi, Xianbo; Reininger, Ruben; Harder, Ross; Haeffner, Dean
2017-08-01
The upgrade of the Advanced Photon Source (APS) to a Multi-Bend Achromat (MBA) will increase the brightness of the APS by between two and three orders of magnitude. The APS upgrade (APS-U) project includes a list of feature beamlines that will take full advantage of the new machine. Many of the existing beamlines will be also upgraded to profit from this significant machine enhancement. Optics simulations are essential in the design and optimization of these new and existing beamlines. In this contribution, the simulation tools used and developed at APS, ranging from analytical to numerical methods, are summarized. Three general optical layouts are compared in terms of their coherence control and focusing capabilities. The concept of zoom optics, where two sets of focusing elements (e.g., CRLs and KB mirrors) are used to provide variable beam sizes at a fixed focal plane, is optimized analytically. The effects of figure errors on the vertical spot size and on the local coherence along the vertical direction of the optimized design are investigated.
Federal Aviation Administration - Graphic TFR's
NAVAJO CITY, NM, Saturday, May 26, 2018 through Tuesday, June 26, 2018 UTC New zoom to 8/4424 05/26/2018 8/4423 ZAB NM HAZARDS QUEEN, NM, Saturday, May 26, 2018 through Tuesday, June 26, 2018 UTC New zoom ZHU TX SECURITY Corpus Christi, TX, Tuesday, May 29, 2018 through Wednesday, May 30, 2018 Local zoom
Measuring Roughnesses Of Optical Surfaces
NASA Technical Reports Server (NTRS)
Coulter, Daniel R.; Al-Jumaily, Gahnim A.; Raouf, Nasrat A.; Anderson, Mark S.
1994-01-01
Report discusses use of scanning tunneling microscopy and atomic force microscopy to measure roughnesses of optical surfaces. These techniques offer greater spatial resolution than other techniques. Report notes scanning tunneling microscopes and atomic force microscopes resolve down to 1 nm.
Hard X-Ray Scanning Microscope with Multilayer Laue Lens Nanofocusing Optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazaretski, Evgeny
Evgeny Nazaretski, a physicist at Brookhaven Lab’s National Synchrotron Light Source II, spearheaded the development of a one-of-a-kind x-ray microscope with novel nanofocusing optics called multilayer Laue lenses.
The optics of microscope image formation.
Wolf, David E
2013-01-01
Although geometric optics gives a good understanding of how the microscope works, it fails in one critical area, which is explaining the origin of microscope resolution. To accomplish this, one must consider the microscope from the viewpoint of physical optics. This chapter describes the theory of the microscope-relating resolution to the highest spatial frequency that a microscope can collect. The chapter illustrates how Huygens' principle or construction can be used to explain the propagation of a plane wave. It is shown that this limit increases with increasing numerical aperture (NA). As a corollary to this, resolution increases with decreasing wavelength because of how NA depends on wavelength. The resolution is higher for blue light than red light. Resolution is dependent on contrast, and the higher the contrast, the higher the resolution. This last point relates to issues of signal-to-noise and dynamic range. The use of video and new digital cameras has necessitated redefining classical limits such as those of Rayleigh's criterion. Copyright © 2007 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang
2016-10-01
We report a new method, polarization parameters indirect microscopic imaging with a high transmission infrared light source, to detect the morphology and component of human skin. A conventional reflection microscopic system is used as the basic optical system, into which a polarization-modulation mechanics is inserted and a high transmission infrared light source is utilized. The near-field structural characteristics of human skin can be delivered by infrared waves and material coupling. According to coupling and conduction physics, changes of the optical wave parameters can be calculated and curves of the intensity of the image can be obtained. By analyzing the near-field polarization parameters in nanoscale, we can finally get the inversion images of human skin. Compared with the conventional direct optical microscope, this method can break diffraction limit and achieve a super resolution of sub-100nm. Besides, the method is more sensitive to the edges, wrinkles, boundaries and impurity particles.
X-ray microtomography experiments using a diffraction tube and a focusing multilayer-mirror
NASA Astrophysics Data System (ADS)
Gurker, N.; Nell, R.; Backfrieder, W.; Kandutsch, J.; Sarg, K.; Prevrhal, S.; Nentwich, C.
1994-10-01
A first-generation (i.e. translate-rotate) micro X-ray transmission computed tomography system has been developed, which utilizes a standard 2.2 kW long-fine-focus diffraction tube with Cu-anode as the X-ray source, a spherical W/C multilayer-mirror to condense and spectrally select the CuKα-radiation (8.04 keV) from the tube and a scintillation counter to detect the X-ray photons; in the present configuration the optical system demagnifies the original source size in the direction parallel to the imaged object slice by a factor of 5, where a small slit captures the radiation and thus gives an intense microscopic (pseudo-) source of monochromatic X-radiation in close vicinity of the scanned specimen. The system provides tomographic images of small objects (up to 25 mm in diameter) reconstructed as 128 × 128 matrices with resolutions between ˜ 20 and 200 μm in ≥ 10 min. The software package which is available for image reconstruction includes filtered backprojection, correcting backprojection (ART, MART) and a new type of weighted backprojection, which turns out to be a simplified version of MART (SMART). A dedicated scan- and reconstruction-procedure demonstrates the feasibility to image selected regions-of-interest within the investigated specimen slice with (up to 1 order of magnitude) higher spatial resolution than their surroundings without major artefacts (Zoom-CT). The hard-and software-components of this CT-system are discussed, several examples are given and perspectives of further development are outlined.
Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.
Hayashi, Shinichi; Okada, Yasushi
2015-05-01
Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
HIGH TEMPERATURE MICROSCOPE AND FURNACE
Olson, D.M.
1961-01-31
A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.
NASA Technical Reports Server (NTRS)
Rice, J. W., Jr.; Smith, P. H.; Marshall, J. R.
1999-01-01
The first microscopic sedimentological studies of the Martian surface will commence with the landing of the Mars Polar Lander (MPL) December 3, 1999. The Robotic Arm Camera (RAC) has a resolution of 25 um/p which will permit detailed micromorphological analysis of surface and subsurface materials. The Robotic Ann will be able to dig up to 50 cm below the surface. The walls of the trench will also be inspected by RAC to look for evidence of stratigraphic and / or sedimentological relationships. The 2001 Mars Lander will build upon and expand the sedimentological research begun by the RAC on MPL. This will be accomplished by: (1) Macroscopic (dm to cm): Descent Imager, Pancam, RAC; (2) Microscopic (mm to um RAC, MECA Optical Microscope (Figure 2), AFM This paper will focus on investigations that can be conducted by the RAC and MECA Optical Microscope.
Hard X-Ray Scanning Microscope with Multilayer Laue Lens Nanofocusing Optics
Nazaretski, Evgeny
2018-06-13
Evgeny Nazaretski, a physicist at Brookhaven Labâs National Synchrotron Light Source II, spearheaded the development of a one-of-a-kind x-ray microscope with novel nanofocusing optics called multilayer Laue lenses.
ERIC Educational Resources Information Center
Keogh, Jayne; Garrick, Barbara
2011-01-01
The media regularly present negative news articles about teachers and teaching. This paper focuses particularly on one such news article. Using reflective analytic practices, first we zoom in to conduct a detailed analysis of the text. We find that complex and contradictory moral categories of teachers are assembled within and through the text. We…
Coaxial fundus camera for opthalmology
NASA Astrophysics Data System (ADS)
de Matos, Luciana; Castro, Guilherme; Castro Neto, Jarbas C.
2015-09-01
A Fundus Camera for ophthalmology is a high definition device which needs to meet low light illumination of the human retina, high resolution in the retina and reflection free image1. Those constraints make its optical design very sophisticated, but the most difficult to comply with is the reflection free illumination and the final alignment due to the high number of non coaxial optical components in the system. Reflection of the illumination, both in the objective and at the cornea, mask image quality, and a poor alignment make the sophisticated optical design useless. In this work we developed a totally axial optical system for a non-midriatic Fundus Camera. The illumination is performed by a LED ring, coaxial with the optical system and composed of IR of visible LEDs. The illumination ring is projected by the objective lens in the cornea. The Objective, LED illuminator, CCD lens are coaxial making the final alignment easily to perform. The CCD + capture lens module is a CCTV camera with autofocus and Zoom built in, added to a 175 mm focal length doublet corrected for infinity, making the system easily operated and very compact.
A compact CCD-monitored atomic force microscope with optical vision and improved performances.
Mingyue, Liu; Haijun, Zhang; Dongxian, Zhang
2013-09-01
A novel CCD-monitored atomic force microscope (AFM) with optical vision and improved performances has been developed. Compact optical paths are specifically devised for both tip-sample microscopic monitoring and cantilever's deflection detecting with minimized volume and optimal light-amplifying ratio. The ingeniously designed AFM probe with such optical paths enables quick and safe tip-sample approaching, convenient and effective tip-sample positioning, and high quality image scanning. An image stitching method is also developed to build a wider-range AFM image under monitoring. Experiments show that this AFM system can offer real-time optical vision for tip-sample monitoring with wide visual field and/or high lateral optical resolution by simply switching the objective; meanwhile, it has the elegant performances of nanometer resolution, high stability, and high scan speed. Furthermore, it is capable of conducting wider-range image measurement while keeping nanometer resolution. Copyright © 2013 Wiley Periodicals, Inc.
Optical anisotropy of the human cornea determined with a polarizing microscope.
Bone, Richard A; Draper, Grenville
2007-12-01
We have investigated the optical anisotropy of the human cornea using a polarizing microscope normally used for optical mineralogy studies. The central part of the cornea was removed from 14 eyes (seven donors). With the sample placed on the microscope stage, we consistently observed hyperbolic isogyres characteristic of a negative biaxial material. The angle between the optic axes, generally similar in both eyes, ranged from 12 degrees to 40 degrees (mean+/-SD=31 degrees +/-8 degrees ). The optic axial plane always inclined downward in the nasal direction at 1 degrees -45 degrees below the horizontal (mean+/-SD=22+/-13 degrees ). The retardance produced by the corneas was estimated to be less than 200 nm. In conclusion, the human cornea possesses the anisotropy of a negative biaxial material. Both the angle between the optic axes and the retardance were fairly constant among the majority of samples, suggestive of uniformity in corneal structure.
Ponti, Giovanni; Muscatello, Umberto; Sgantzos, Markos
2015-01-01
For a long period the scientists did not recognized the potentialities of the compound microscope in medicine. Only few scientists recognized the potentialities of the microscope for the medicine; among them G. Campani who proposed the utilization of his microscope to investigate the skin lesions directly on the patient. The proposal was illustrated in a letter Acta Eruditorum of 1686. The recent development of optical techniques, capable of providing in-focus images of an object from different planes with high spatial resolution, significantly increased the diagnostic potential of the microscope directly on the patient.
Design of an imaging microscope for soft X-ray applications
NASA Astrophysics Data System (ADS)
Hoover, Richard B.; Shealy, David L.; Gabardi, David R.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.
1988-01-01
An imaging soft X-ray microscope with a spatial resolution of 0.1 micron and normal incidence multilayer optics is discussed. The microscope has a Schwarzschild configuration, which consists of two concentric spherical mirrors with radii of curvature which minimize third-order spherical aberration, coma, and astigmatism. The performance of the Stanford/MSFC Cassegrain X-ray telescope and its relevance to the present microscope are addressed. A ray tracing analysis of the optical system indicates that diffraction-limited performance can be expected for an object height of 0.2 mm.
Sub-25-nm laboratory x-ray microscopy using a compound Fresnel zone plate.
von Hofsten, Olov; Bertilson, Michael; Reinspach, Julia; Holmberg, Anders; Hertz, Hans M; Vogt, Ulrich
2009-09-01
Improving the resolution in x-ray microscopes is of high priority to enable future applications in nanoscience. However, high-resolution zone-plate optics often have low efficiency, which makes implementation in laboratory microscopes difficult. We present a laboratory x-ray microscope based on a compound zone plate. The compound zone plate utilizes multiple diffraction orders to achieve high resolution while maintaining reasonable efficiency. We analyze the illumination conditions necessary for this type of optics in order to suppress stray light and demonstrate microscopic imaging resolving 25 nm features.
Classification of Salmonella serotypes with hyperspectral microscope imagery
USDA-ARS?s Scientific Manuscript database
Previous research has demonstrated an optical method with acousto-optic tunable filter (AOTF) based hyperspectral microscope imaging (HMI) had potential for classifying gram-negative from gram-positive foodborne pathogenic bacteria rapidly and nondestructively with a minimum sample preparation. In t...
Internal scanning method as unique imaging method of optical vortex scanning microscope
NASA Astrophysics Data System (ADS)
Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz
2018-06-01
The internal scanning method is specific for the optical vortex microscope. It allows to move the vortex point inside the focused vortex beam with nanometer resolution while the whole beam stays in place. Thus the sample illuminated by the focused vortex beam can be scanned just by the vortex point. We show that this method enables high resolution imaging. The paper presents the preliminary experimental results obtained with the first basic image recovery procedure. A prospect of developing more powerful tools for topography recovery with the optical vortex scanning microscope is discussed shortly.
High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum
NASA Astrophysics Data System (ADS)
Steidtner, Jens; Pettinger, Bruno
2007-10-01
An optical microscope based on tip-enhanced optical processes that can be used for studies on adsorbates as well as thin layers and nanostructures is presented. The microscope provides chemical and topographic informations with a resolution of a few nanometers and can be employed in ultrahigh vacuum as well as gas phase. The construction involves a number of improvements compared to conventional instruments. The central idea is to mount, within an UHV system, an optical platform with all necessary optical elements to a rigid frame that also carries the scanning tunneling microscope unit and to integrate a high numerical aperture parabolic mirror between the scanning probe microscope head and the sample. The parabolic mirror serves to focus the incident light and to collect a large fraction of the scattered light. The first experimental results of Raman measurements on silicon samples as well as brilliant cresyl blue layers on single crystalline gold and platinum surfaces in ultrahigh vacuum are presented. For dye adsorbates a Raman enhancement of ˜106 and a net signal gain of up to 4000 was observed. The focus diameter (˜λ/2) was measured by Raman imaging the focal region on a Si surface. The requirements of the parabolic mirror in terms of alignment accuracy were experimentally determined as well.
U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Ramprashad; Joshi, Vineet V.; Rhodes, Mark A.
2016-10-01
The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.
U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Ramprashad; Joshi, Vineet V.; Rhodes, Mark A.
2016-03-30
The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.
Examining the Usability of Touch Screen Gestures for Older and Younger Adults.
Gao, Qin; Sun, Qiqi
2015-08-01
We examined the usability issues associated with four touch screen gestures (clicking, dragging, zooming, and rotating) among older and younger users. It is especially important to accommodate older users' characteristics to ensure the accessibility of information and services that are important to their quality of life. Forty older and 40 younger participants completed four experiments, each of which focused on one gesture. The effects of age, type of touch screen (surface acoustic wave vs. optical), inclination angle (30°, 45°, 60°, and 75°), and user interface factors (clicking: button size and spacing; dragging: dragging direction and distance; zooming: design of zooming gesture; rotating: design of rotating gesture) on user performance and satisfaction were examined. Button sizes that are larger than 15.9 × 9.0 mm led to better performance and higher satisfaction. The effect of spacing was significant only when the button size was notably small or large. Rightward and downward dragging were preferred to leftward and upward dragging, respectively. The younger participants favored direct manipulation gestures using multiple fingers, whereas the older participants preferred the click-to design. The older participants working with large inclination angles of 60° to 75° reported a higher level of satisfaction than the older participants working with smaller angles. We proposed a set of design guidelines for touch screen user interfaces and discussed implications for the selection of appropriate technology and the configuration of the workspace. The implications are useful for the design of large touch screen applications, such as desktop computers, information kiosks, and health care support systems. © 2015, Human Factors and Ergonomics Society.
Micropaleontological studies of lunar and terrestrial precambrian materials
NASA Technical Reports Server (NTRS)
Schope, J. W.
1974-01-01
Optical microscopic and scanning electron microscopic studies of rock chips and dust returned by Apollo 14, 15, 16, and 17 are analyzed along with optical microscopic studies of petrographic thin sections of breccias and basalts returned by Apollo 14, 15, and 16. Results show no evidence of modern or fossil lunar organisms. The lunar surface is now, and apparently has been throughout the geologic past, inimical to known biologic systems.
Drace, Kevin; Couch, Brett; Keeling, Patrick J.
2012-01-01
The ability to effectively use a microscope to observe microorganisms is a crucial skill required for many disciplines within biology, especially general microbiology and cell biology. A basic understanding of the optical properties of light microscopes is required for students to use microscopes effectively, but this subject can also be a challenge to make personally interesting to students. To explore basic optical principles of magnification and resolving power in a more engaging and hands-on fashion, students constructed handmade lenses and microscopes based on Antony van Leeuwenhoek’s design using simple materials—paper, staples, glass, and adhesive putty. Students determined the power of their lenses using a green laser pointer to magnify a copper grid of known size, which also allowed students to examine variables affecting the power and resolution of a lens such as diameter, working distance, and wavelength of light. To assess the effectiveness of the laboratory’s learning objectives, four sections of a general microbiology course were given a brief pre-activity assessment quiz to determine their background knowledge on the subject. One week after the laboratory activity, students were given the same quiz (unannounced) under similar conditions. Students showed significant gains in their understanding of microscope optics. PMID:23653781
Stemmer, A
1995-04-01
The design of a scanned-cantilever-type force microscope is presented which is fully integrated into an inverted high-resolution video-enhanced light microscope. This set-up allows us to acquire thin optical sections in differential interference contrast (DIC) or polarization while the force microscope is in place. Such a hybrid microscope provides a unique platform to study how cell surface properties determine, or are affected by, the three-dimensional dynamic organization inside the living cell. The hybrid microscope presented in this paper has proven reliable and versatile for biological applications. It is the only instrument that can image a specimen by force microscopy and high-power DIC without having either to translate the specimen or to remove the force microscope. Adaptation of the design features could greatly enhance the suitability of other force microscopes for biological work.
ZebraZoom: an automated program for high-throughput behavioral analysis and categorization
Mirat, Olivier; Sternberg, Jenna R.; Severi, Kristen E.; Wyart, Claire
2013-01-01
The zebrafish larva stands out as an emergent model organism for translational studies involving gene or drug screening thanks to its size, genetics, and permeability. At the larval stage, locomotion occurs in short episodes punctuated by periods of rest. Although phenotyping behavior is a key component of large-scale screens, it has not yet been automated in this model system. We developed ZebraZoom, a program to automatically track larvae and identify maneuvers for many animals performing discrete movements. Our program detects each episodic movement and extracts large-scale statistics on motor patterns to produce a quantification of the locomotor repertoire. We used ZebraZoom to identify motor defects induced by a glycinergic receptor antagonist. The analysis of the blind mutant atoh7 revealed small locomotor defects associated with the mutation. Using multiclass supervised machine learning, ZebraZoom categorized all episodes of movement for each larva into one of three possible maneuvers: slow forward swim, routine turn, and escape. ZebraZoom reached 91% accuracy for categorization of stereotypical maneuvers that four independent experimenters unanimously identified. For all maneuvers in the data set, ZebraZoom agreed with four experimenters in 73.2–82.5% of cases. We modeled the series of maneuvers performed by larvae as Markov chains and observed that larvae often repeated the same maneuvers within a group. When analyzing subsequent maneuvers performed by different larvae, we found that larva–larva interactions occurred as series of escapes. Overall, ZebraZoom reached the level of precision found in manual analysis but accomplished tasks in a high-throughput format necessary for large screens. PMID:23781175
NASA Astrophysics Data System (ADS)
Putnam, Nicole Marie
In order to study the limits of spatial vision in normal human subjects, it is important to look at and near the fovea. The fovea is the specialized part of the retina, the light-sensitive multi-layered neural tissue that lines the inner surface of the human eye, where the cone photoreceptors are smallest (approximately 2.5 microns or 0.5 arcmin) and cone density reaches a peak. In addition, there is a 1:1 mapping from the photoreceptors to the brain in this central region of the retina. As a result, the best spatial sampling is achieved in the fovea and it is the retinal location used for acuity and spatial vision tasks. However, vision is typically limited by the blur induced by the normal optics of the eye and clinical tests of foveal vision and foveal imaging are both limited due to the blur. As a result, it is unclear what the perceptual benefit of extremely high cone density is. Cutting-edge imaging technology, specifically Adaptive Optics Scanning Laser Ophthalmoscopy (AOSLO), can be utilized to remove this blur, zoom in, and as a result visualize individual cone photoreceptors throughout the central fovea. This imaging combined with simultaneous image stabilization and targeted stimulus delivery expands our understanding of both the anatomical structure of the fovea on a microscopic scale and the placement of stimuli within this retinal area during visual tasks. The final step is to investigate the role of temporal variables in spatial vision tasks since the eye is in constant motion even during steady fixation. In order to learn more about the fovea, it becomes important to study the effect of this motion on spatial vision tasks. This dissertation steps through many of these considerations, starting with a model of the foveal cone mosaic imaged with AOSLO. We then use this high resolution imaging to compare anatomical and functional markers of the center of the normal human fovea. Finally, we investigate the role of natural and manipulated fixational eye movements in foveal vision, specifically looking at a motion detection task, contrast sensitivity, and image fading.
Microscopic theory of linear light scattering from mesoscopic media and in near-field optics.
Keller, Ole
2005-08-01
On the basis of quantum mechanical response theory a microscopic propagator theory of linear light scattering from mesoscopic systems is presented. The central integral equation problem is transferred to a matrix equation problem by discretization in transitions between pairs of (many-body) energy eigenstates. The local-field calculation which appears from this approach is valid down to the microscopic region. Previous theories based on the (macroscopic) dielectric constant concept make use of spatial (geometrical) discretization and cannot in general be trusted on the mesoscopic length scale. The present theory can be applied to light scattering studies in near-field optics. After a brief discussion of the macroscopic integral equation problem a microscopic potential description of the scattering process is established. In combination with the use of microscopic electromagnetic propagators the formalism allows one to make contact to the macroscopic theory of light scattering and to the spatial photon localization problem. The quantum structure of the microscopic conductivity response tensor enables one to establish a clear physical picture of the origin of local-field phenomena in mesoscopic and near-field optics. The Huygens scalar propagator formalism is revisited and its generality in microscopic physics pointed out.
Water window imaging x ray microscope
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Inventor)
1992-01-01
A high resolution x ray microscope for imaging microscopic structures within biological specimens has an optical system including a highly polished primary and secondary mirror coated with identical multilayer coatings, the mirrors acting at normal incidence. The coatings have a high reflectivity in the narrow wave bandpass between 23.3 and 43.7 angstroms and have low reflectivity outside of this range. The primary mirror has a spherical concave surface and the secondary mirror has a spherical convex surface. The radii of the mirrors are concentric about a common center of curvature on the optical axis of the microscope extending from the object focal plane to the image focal plane. The primary mirror has an annular configuration with a central aperture and the secondary mirror is positioned between the primary mirror and the center of curvature for reflecting radiation through the aperture to a detector. An x ray filter is mounted at the stage end of the microscope, and film sensitive to x rays in the desired band width is mounted in a camera at the image plane of the optical system. The microscope is mounted within a vacuum chamber for minimizing the absorption of x rays in air from a source through the microscope.
Highly Sophisticated Virtual Laboratory Instruments in Education
NASA Astrophysics Data System (ADS)
Gaskins, T.
2006-12-01
Many areas of Science have advanced or stalled according to the ability to see what can not normally be seen. Visual understanding has been key to many of the world's greatest breakthroughs, such as discovery of DNAs double helix. Scientists use sophisticated instruments to see what the human eye can not. Light microscopes, scanning electron microscopes (SEM), spectrometers and atomic force microscopes are employed to examine and learn the details of the extremely minute. It's rare that students prior to university have access to such instruments, or are granted full ability to probe and magnify as desired. Virtual Lab, by providing highly authentic software instruments and comprehensive imagery of real specimens, provides them this opportunity. Virtual Lab's instruments let explorers operate virtual devices on a personal computer to examine real specimens. Exhaustive sets of images systematically and robotically photographed at thousands of positions and multiple magnifications and focal points allow students to zoom in and focus on the most minute detail of each specimen. Controls on each Virtual Lab device interactively and smoothly move the viewer through these images to display the specimen as the instrument saw it. Users control position, magnification, focal length, filters and other parameters. Energy dispersion spectrometry is combined with SEM imagery to enable exploration of chemical composition at minute scale and arbitrary location. Annotation capabilities allow scientists, teachers and students to indicate important features or areas. Virtual Lab is a joint project of NASA and the Beckman Institute at the University of Illinois at Urbana- Champaign. Four instruments currently compose the Virtual Lab suite: A scanning electron microscope and companion energy dispersion spectrometer, a high-power light microscope, and a scanning probe microscope that captures surface properties to the level of atoms. Descriptions of instrument operating principles and uses are also part of Virtual Lab. The Virtual Lab software and its increasingly rich collection of specimens are free to anyone. This presentation describes Virtual Lab and its uses in formal and informal education.
Local heat treatment of high strength steels with zoom-optics and 10kW-diode laser
NASA Astrophysics Data System (ADS)
Baumann, Markus; Krause, Volker; Bergweiler, Georg; Flaischerowitz, Martin; Banik, Janko
2012-03-01
High strength steels enable new solutions for weight optimized car bodies without sacrificing crash safety. However, cold forming of these steels is limited due to the need of high press capacity, increased tool wear, and limitations in possible geometries. One can compensate for these drawbacks by local heat treatment of the blanks. In high-deformation areas the strength of the material is reduced and the plasticity is increased by diode laser irradiation. Local heat treatment with diode laser radiation could also yield key benefits for the applicability of press hardened parts. High strength is not desired all over the part. Joint areas or deformation zones for requested crash properties require locally reduced strength. In the research project "LOKWAB" funded by the German Federal Ministry of Education and Research (BMBF), heat treatment of high strength steels was investigated in cooperation with Audi, BMW, Daimler, ThyssenKrupp, Fraunhofer- ILT, -IWU and others. A diode laser with an output power of 10 kW was set up to achieve acceptable process speed. Furthermore a homogenizing zoom-optics was developed, providing a rectangular focus with homogeneous power density. The spot size in x- and y-direction can be changed independently during operation. With pyrometer controlled laser power the surface temperature is kept constant, thus the laser treated zone can be flexibly adapted to the needs. Deep-drawing experiments show significant improvement in formability. With this technique, parts can be manufactured, which can conventionally only be made of steel with lower strength. Locally reduced strength of press hardened serial parts was demonstrated.
Common aperture multispectral spotter camera: Spectro XR
NASA Astrophysics Data System (ADS)
Petrushevsky, Vladimir; Freiman, Dov; Diamant, Idan; Giladi, Shira; Leibovich, Maor
2017-10-01
The Spectro XRTM is an advanced color/NIR/SWIR/MWIR 16'' payload recently developed by Elbit Systems / ELOP. The payload's primary sensor is a spotter camera with common 7'' aperture. The sensor suite includes also MWIR zoom, EO zoom, laser designator or rangefinder, laser pointer / illuminator and laser spot tracker. Rigid structure, vibration damping and 4-axes gimbals enable high level of line-of-sight stabilization. The payload's list of features include multi-target video tracker, precise boresight, strap-on IMU, embedded moving map, geodetic calculations suite, and image fusion. The paper describes main technical characteristics of the spotter camera. Visible-quality, all-metal front catadioptric telescope maintains optical performance in wide range of environmental conditions. High-efficiency coatings separate the incoming light into EO, SWIR and MWIR band channels. Both EO and SWIR bands have dual FOV and 3 spectral filters each. Several variants of focal plane array formats are supported. The common aperture design facilitates superior DRI performance in EO and SWIR, in comparison to the conventionally configured payloads. Special spectral calibration and color correction extend the effective range of color imaging. An advanced CMOS FPA and low F-number of the optics facilitate low light performance. SWIR band provides further atmospheric penetration, as well as see-spot capability at especially long ranges, due to asynchronous pulse detection. MWIR band has good sharpness in the entire field-of-view and (with full HD FPA) delivers amount of detail far exceeding one of VGA-equipped FLIRs. The Spectro XR offers level of performance typically associated with larger and heavier payloads.
Automatic source camera identification using the intrinsic lens radial distortion
NASA Astrophysics Data System (ADS)
Choi, Kai San; Lam, Edmund Y.; Wong, Kenneth K. Y.
2006-11-01
Source camera identification refers to the task of matching digital images with the cameras that are responsible for producing these images. This is an important task in image forensics, which in turn is a critical procedure in law enforcement. Unfortunately, few digital cameras are equipped with the capability of producing watermarks for this purpose. In this paper, we demonstrate that it is possible to achieve a high rate of accuracy in the identification by noting the intrinsic lens radial distortion of each camera. To reduce manufacturing cost, the majority of digital cameras are equipped with lenses having rather spherical surfaces, whose inherent radial distortions serve as unique fingerprints in the images. We extract, for each image, parameters from aberration measurements, which are then used to train and test a support vector machine classifier. We conduct extensive experiments to evaluate the success rate of a source camera identification with five cameras. The results show that this is a viable approach with high accuracy. Additionally, we also present results on how the error rates may change with images captured using various optical zoom levels, as zooming is commonly available in digital cameras.
Cho, Nam Hyun; Jang, Jeong Hun; Jung, Woonggyu; Kim, Jeehyun
2014-01-01
We developed an augmented-reality system that combines optical coherence tomography (OCT) with a surgical microscope. By sharing the common optical path in the microscope and OCT, we could simultaneously acquire OCT and microscope views. The system was tested to identify the middle-ear and inner-ear microstructures of a mouse. Considering the probability of clinical application including otorhinolaryngology, diseases such as middle-ear effusion were visualized using in vivo mouse and OCT images simultaneously acquired through the eyepiece of the surgical microscope during surgical manipulation using the proposed system. This system is expected to realize a new practical area of OCT application. PMID:24787787
(Gene sequencing by scanning molecular exciton microscopy)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
This report details progress made in setting up a laboratory for optical microscopy of genes. The apparatus including a fluorescence microscope, a scanning optical microscope, various spectrometers, and supporting computers is described. Results in developing photon and exciton tips, and in preparing samples are presented. (GHH)
Chidley, Matthew D; Carlson, Kristen D; Richards-Kortum, Rebecca R; Descour, Michael R
2006-04-10
The design, analysis, assembly methods, and optical-bench test results for a miniature injection-molded plastic objective lens used in a fiber-optic confocal reflectance microscope are presented. The five-lens plastic objective was tested as a stand-alone optical system before its integration into a confocal microscope for in vivo imaging of cells and tissue. Changing the spacing and rotation of the individual optical elements can compensate for fabrication inaccuracies and improve performance. The system performance of the miniature objective lens is measured by use of an industry-accepted slanted-edge modulation transfer function (MTF) metric. An estimated Strehl ratio of 0.61 and a MTF value of 0.66 at the fiber-optic bundle Nyquist frequency have been obtained. The optical bench testing system is configured to permit interactive optical alignment during testing to optimize performance. These results are part of an effort to demonstrate the manufacturability of low-cost, high-performance biomedical optics for high-resolution in vivo imaging. Disposable endoscopic microscope objectives could help in vivo confocal microscopy technology mature to permit wide-scale clinical screening and detection of early cancers and precancerous lesions.
Atmospheric scanning electron microscope for correlative microscopy.
Morrison, Ian E G; Dennison, Clare L; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara; Yarwood, Andrew; O'Toole, Peter J
2012-01-01
The JEOL ClairScope is the first truly correlative scanning electron and optical microscope. An inverted scanning electron microscope (SEM) column allows electron images of wet samples to be obtained in ambient conditions in a biological culture dish, via a silicon nitride film window in the base. A standard inverted optical microscope positioned above the dish holder can be used to take reflected light and epifluorescence images of the same sample, under atmospheric conditions that permit biochemical modifications. For SEM, the open dish allows successive staining operations to be performed without moving the holder. The standard optical color camera used for fluorescence imaging can be exchanged for a high-sensitivity monochrome camera to detect low-intensity fluorescence signals, and also cathodoluminescence emission from nanophosphor particles. If these particles are applied to the sample at a suitable density, they can greatly assist the task of perfecting the correlation between the optical and electron images. Copyright © 2012 Elsevier Inc. All rights reserved.
Wide spectral range confocal microscope based on endlessly single-mode fiber.
Hubbard, R; Ovchinnikov, Yu B; Hayes, J; Richardson, D J; Fu, Y J; Lin, S D; See, P; Sinclair, A G
2010-08-30
We report an endlessly single mode, fiber-optic confocal microscope, based on a large mode area photonic crystal fiber. The microscope confines a very broad spectral range of excitation and emission wavelengths to a single spatial mode in the fiber. Single-mode operation over an optical octave is feasible. At a magnification of 10 and λ = 900 nm, its resolution was measured to be 1.0 μm (lateral) and 2.5 μm (axial). The microscope's use is demonstrated by imaging single photons emitted by individual InAs quantum dots in a pillar microcavity.
Generation-3 programmable array microscope (PAM) with digital micro-mirror device (DMD)
NASA Astrophysics Data System (ADS)
De Beule, Pieter A. A.; de Vries, Anthony H. B.; Arndt-Jovin, Donna J.; Jovin, Thomas M.
2011-03-01
We report progress on the construction of an optical sectioning programmable array microscope (PAM) implemented with a digital micro-mirror device (DMD) spatial light modulator (SLM) utilized for both fluorescence illumination and detection. The introduction of binary intensity modulation at the focal plane of a microscope objective in a computer controlled pixilated mode allows the recovery of an optically sectioned image. Illumination patterns can be changed very quickly, in contrast to static Nipkow disk or aperture correlation implementations, thereby creating an optical system that can be optimized to the optical specimen in a convenient manner, e.g. for patterned photobleaching, photobleaching reduction, or spatial superresolution. We present a third generation (Gen-3) dual path PAM module incorporating the 25 kHz binary frame rate TI 1080p DMD and a newly developed optical system that offers diffraction limited imaging with compensation of tilt angle distortion.
Geographic Data Display Implementation
1977-06-01
display to be either multiplied or divided by the magnification factor (normally 1.5). The result is a change of extent around the cursor as seen in... Products printer and a 200-card- per-minute card reader with the Interdata 4 (1-4). The 1-4 with its 64K of core is the applications machine connected...storing these values in the CURSTA array. 57 ZOOM IN FUNCTION KEY ZOOM OUT FUNCTION KEY ZMINTP ZMOUTP SET ZOOM OUT MAG FACTOR ZOMTOP SET
Moon illusion and spiral aftereffect: illusions due to the loom-zoom system?
Hershenson, M
1982-12-01
The moon illusion and the spiral aftereffect are illusions in which apparent size and apparent distance vary inversely. Because this relationship is exactly opposite to that predicted by the static size--distance invariance hypothesis, the illusions have been called "paradoxical." The illusions may be understood as products of a loom-zoom system, a hypothetical visual subsystem that, in its normal operation, acts according to its structural constraint, the constancy axiom, to produce perceptions that satisfy the constraints of stimulation, the kinetic size--distance invariance hypothesis. When stimulated by its characteristic stimulus of symmetrical expansion or contraction, the loom-zoom system produces the perception of a rigid object moving in depth. If this system is stimulated by a rotating spiral, a negative motion-aftereffect is produced when rotation ceases. If fixation is then shifted to a fixed-sized disc, the aftereffect process alters perceived distance and the loom-zoom system alters perceived size such that the disc appears to expand and approach or to contract and recede, depending on the direction of rotation of the spiral. If the loom-zoom system is stimulated by a moon-terrain configuration, the equidistance tendency produces a foreshortened perceived distance for the moon as an inverse function of elevation and acts in conjunction with the loom-zoom system to produce the increased perceived size of the moon.
Assessment of a liquid lens enabled in vivo optical coherence microscope.
Murali, Supraja; Meemon, Panomsak; Lee, Kye-Sung; Kuhn, William P; Thompson, Kevin P; Rolland, Jannick P
2010-06-01
The optical aberrations induced by imaging through skin can be predicted using formulas for Seidel aberrations of a plane-parallel plate. Knowledge of these aberrations helps to guide the choice of numerical aperture (NA) of the optics we can use in an implementation of Gabor domain optical coherence microscopy (GD-OCM), where the focus is the only aberration adjustment made through depth. On this basis, a custom-designed, liquid-lens enabled dynamic focusing optical coherence microscope operating at 0.2 NA is analyzed and validated experimentally. As part of the analysis, we show that the full width at half-maximum metric, as a characteristic descriptor for the point spread function, while commonly used, is not a useful metric for quantifying resolution in non-diffraction-limited systems. Modulation transfer function (MTF) measurements quantify that the liquid lens performance is as predicted by design, even when accounting for the effect of gravity. MTF measurements in a skinlike scattering medium also quantify the performance of the microscope in its potential applications. To guide the fusion of images across the various focus positions of the microscope, as required in GD-OCM, we present depth of focus measurements that can be used to determine the effective number of focusing zones required for a given goal resolution. Subcellular resolution in an onion sample, and high-definition in vivo imaging in human skin are demonstrated with the custom-designed and built microscope.
Zooming to the centre of the Milky Way - GigaGalaxy Zoom phase 2
NASA Astrophysics Data System (ADS)
2009-09-01
The second of three images of ESO's GigaGalaxy Zoom project has just been released online. It is a new and wonderful 340-million-pixel vista of the central parts of our home galaxy as seen from ESO's Paranal Observatory with an amateur telescope. This 34 by 20-degree wide image provides us with a view as experienced by amateur astronomers around the world. However, its incredible beauty and appeal owe much to the quality of the observing site and the skills of Stéphane Guisard, the world-renowned astrophotographer, who is also an ESO engineer. This second image directly benefits from the quality of Paranal's sky, one of the best on the planet, where ESO's Very Large Telescope is located. In addition, Guisard has drawn on his professional expertise as an optical engineer specialising in telescopes, a rare combination in the world of astrophotographers. Guisard, as head of the optical engineering team at Paranal, is responsible for ensuring that the Very Large Telescope has the best optical performance possible. To create this stunning, true-colour mosaic of the Galactic Centre region, Guisard assembled about 1200 individual images, totalling more than 200 hours of exposure time, collected over 29 nights, during Guisard's free time, while working during the day at Paranal [1]. The image shows the region spanning the sky from the constellation of Sagittarius (the Archer) to Scorpius (the Scorpion). The very colourful Rho Ophiuchi and Antares region is a prominent feature to the right, although much darker areas, such as the Pipe and Snake nebulae also stand out. The dusty lane of our Milky Way runs obliquely through the image, dotted with remarkable bright, reddish nebulae, such as the Lagoon and the Trifid Nebulae, as well as NGC 6357 and NGC 6334. This dark lane also hosts the very centre of our Galaxy, where a supermassive black hole is lurking. "The area I have depicted in this image is an incredibly rich region of the sky, and the one I find most beautiful," says Guisard. This gorgeous starscape is the second of three extremely high resolution images featured in the GigaGalaxy Zoom project, launched by ESO as part of the International Year of Astronomy 2009 (IYA2009). The project allows stargazers to explore and experience the Universe as it is seen with the unaided eye from the darkest and best viewing locations in the world. GigaGalaxy Zoom features a web tool that allows users to take a breathtaking dive into our Milky Way. With this tool users can learn more about many different and exciting objects in the image, such as multicoloured nebulae and exploding stars, just by clicking on them. In this way, the project seeks to link the sky we can all see with the deep, "hidden" cosmos that astronomers study on a daily basis. The wonderful quality of the images is a testament to the splendour of the night sky at ESO's sites in Chile, which are the most productive astronomical observatories in the world. The third GigaGalaxy Zoom image will be revealed next week, on 28 September 2009. Notes [1] The image was obtained from Cerro Paranal, home of ESO's Very Large Telescope, by observing with a 10-cm Takahashi FSQ106Ed f/3.6 telescope and a SBIG STL CCD camera, using a NJP160 mount. The images were collected through three different filters (B, V and R) and then stitched together. This mosaic was assembled from 52 different sky fields made from about 1200 individual images totalling 200 hours exposure time, with the final image having a size of 24 403 x 13 973 pixels. More information As part of the IYA2009, ESO is participating in several remarkable outreach activities, in line with its world-leading rank in the field of astronomy. ESO is hosting the IYA2009 Secretariat for the International Astronomical Union, which coordinates the Year globally. ESO is one of the Organisational Associates of IYA2009, and was also closely involved in the resolution submitted to the United Nations (UN) by Italy, which led to the UN's 62nd General Assembly proclaiming 2009 the International Year of Astronomy. In addition to a wide array of activities planned both at the local and international level, ESO is leading three of the twelve global Cornerstone Projects. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky". A native of France, Guisard has worked for ESO in Chile since 1994, and is now the head Optics Engineer for ESO's Very Large Telescope (VLT). He is in charge of the optical alignment of the Paranal telescopes, as well as maintaining and improving the image quality of these telescopes and their active optics. Stéphane spends most of his free time photographing the night sky, enjoying the same crystal clear skies as the VLT. His fantastic astronomical images and time-lapse movies have been used in many books and TV programmes. Stéphane Guisard is also a photographer for The World At Night (TWAN).
Nanoscale Optical Imaging and Spectroscopy from Visible to Mid-Infrared
2015-11-13
field characterization of nanoscale materials, it also complements the near- field scanning optical microscope currently available in the PI’s lab...field scanning optical microscope currently available in the PI’s lab. This equipment will begin making major impacts on at least three current DoD...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6
Microscopic Engine Powered by Critical Demixing
NASA Astrophysics Data System (ADS)
Schmidt, Falko; Magazzù, Alessandro; Callegari, Agnese; Biancofiore, Luca; Cichos, Frank; Volpe, Giovanni
2018-02-01
We experimentally demonstrate a microscopic engine powered by the local reversible demixing of a critical mixture. We show that, when an absorbing microsphere is optically trapped by a focused laser beam in a subcritical mixture, it is set into rotation around the optical axis of the beam because of the emergence of diffusiophoretic propulsion. This behavior can be controlled by adjusting the optical power, the temperature, and the criticality of the mixture.
Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application
NASA Astrophysics Data System (ADS)
Liu, Zhihai; Guo, Chengkai; Yang, Jun; Yuan, Libo
2006-12-01
A novel single tapered fiber optical tweezers is proposed and fabricated by heating and drawing technology. The microscopic particle tapping performance of this special designed tapered fiber probe is demonstrated and investigated. The distribution of the optical field emerging from the tapered fiber tip is numerically calculated based on the beam propagation method. The trapping force FDTD analysis results, both axial and transverse, are also given.
USDA-ARS?s Scientific Manuscript database
The acquisition of hyperspectral microscopic images containing both spatial and spectral data has shown potential for the early and rapid optical classification of foodborne pathogens. A hyperspectral microscope with a metal halide light source and acousto-optical tunable filter (AOTF) collects 89 ...
USDA-ARS?s Scientific Manuscript database
Hyperspectral microscope imaging (HMI) method, which provides both spatial and spectral characteristics of samples, can be effective for foodborne pathogen detection. The acousto-optic tunable filter (AOTF)-based HMI method can be used to characterize spectral properties of biofilms formed by Salmon...
Ilev, Ilko; Waynant, Ronald; Gannot, Israel; Gandjbakhche, Amir
2007-09-01
A novel fiber-optic confocal approach for ultrahigh depth-resolution (
Zhang, Yu Shrike; Chang, Jae-Byum; Alvarez, Mario Moisés; Trujillo-de Santiago, Grissel; Aleman, Julio; Batzaya, Byambaa; Krishnadoss, Vaishali; Ramanujam, Aishwarya Aravamudhan; Kazemzadeh-Narbat, Mehdi; Chen, Fei; Tillberg, Paul W; Dokmeci, Mehmet Remzi; Boyden, Edward S; Khademhosseini, Ali
2016-03-15
To date, much effort has been expended on making high-performance microscopes through better instrumentation. Recently, it was discovered that physical magnification of specimens was possible, through a technique called expansion microscopy (ExM), raising the question of whether physical magnification, coupled to inexpensive optics, could together match the performance of high-end optical equipment, at a tiny fraction of the price. Here we show that such "hybrid microscopy" methods--combining physical and optical magnifications--can indeed achieve high performance at low cost. By physically magnifying objects, then imaging them on cheap miniature fluorescence microscopes ("mini-microscopes"), it is possible to image at a resolution comparable to that previously attainable only with benchtop microscopes that present costs orders of magnitude higher. We believe that this unprecedented hybrid technology that combines expansion microscopy, based on physical magnification, and mini-microscopy, relying on conventional optics--a process we refer to as Expansion Mini-Microscopy (ExMM)--is a highly promising alternative method for performing cost-effective, high-resolution imaging of biological samples. With further advancement of the technology, we believe that ExMM will find widespread applications for high-resolution imaging particularly in research and healthcare scenarios in undeveloped countries or remote places.
Paraxial ray solution for liquid-filled variable focus lenses
NASA Astrophysics Data System (ADS)
Wang, Lihui; Oku, Hiromasa; Ishikawa, Masatoshi
2017-12-01
We propose a general solution for determining the cardinal points and effective focal length of a liquid-filled variable focus lens to aid in understanding the dynamic behavior of the lens when the focal length is changed. A prototype of a variable focus lens was fabricated and used to validate the solution. A simplified solution was also presented that can be used to quickly and conveniently calculate the performance of the lens. We expect that the proposed solutions will improve the design of optical systems that contain variable focus lenses, such as machine vision systems with zoom and focus functions.
A pragmatic guide to multiphoton microscope design
Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff
2016-01-01
Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429
NASA Astrophysics Data System (ADS)
de Thomaz, A. A.; Almeida, D. B.; Faustino, W. M.; Jacob, G. J.; Fontes, A.; Barbosa, L. C.; Cesar, C. L.; Stahl, C. V.; Santos-Mallet, J. R.; Gomes, S. A. O.; Feder, D.
2008-08-01
One of the fundamental goals in biology is to understand the interplay between biomolecules of different cells. This happen, for example, in the first moments of the infection of a vector by a parasite that results in the adherence to the cell walls. To observe this kind of event we used an integrated Optical Tweezers and Confocal Microscopy tool. This tool allow us to use the Optical Tweezers to trigger the adhesion of the Trypanosoma cruzi and Trypanosoma rangeli parasite to the intestine wall cells and salivary gland of the Rhodnius prolixus vector and to, subsequently observe the sequence of events by confocal fluorescence microscopy under optical forces stresses. We kept the microorganism and vector cells alive using CdSe quantum dot staining. Besides the fact that Quantum Dots are bright vital fluorescent markers, the absence of photobleaching allow us to follow the events in time for an extended period. By zooming to the region of interested we have been able to acquire confocal images at the 2 to 3 frames per second rate.
Design of a normal incidence multilayer imaging x-ray microscope.
Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W
1989-01-01
Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.
Augmented microscopy with near-infrared fluorescence detection
NASA Astrophysics Data System (ADS)
Watson, Jeffrey R.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael; Anton, Rein; Romanowski, Marek
2015-03-01
Near-infrared (NIR) fluorescence has become a frequently used intraoperative technique for image-guided surgical interventions. In procedures such as cerebral angiography, surgeons use the optical surgical microscope for the color view of the surgical field, and then switch to an electronic display for the NIR fluorescence images. However, the lack of stereoscopic, real-time, and on-site coregistration adds time and uncertainty to image-guided surgical procedures. To address these limitations, we developed the augmented microscope, whereby the electronically processed NIR fluorescence image is overlaid with the anatomical optical image in real-time within the optical path of the microscope. In vitro, the augmented microscope can detect and display indocyanine green (ICG) concentrations down to 94.5 nM, overlaid with the anatomical color image. We prepared polyacrylamide tissue phantoms with embedded polystyrene beads, yielding scattering properties similar to brain matter. In this model, 194 μM solution of ICG was detectable up to depths of 5 mm. ICG angiography was then performed in anesthetized rats. A dynamic process of ICG distribution in the vascular system overlaid with anatomical color images was observed and recorded. In summary, the augmented microscope demonstrates NIR fluorescence detection with superior real-time coregistration displayed within the ocular of the stereomicroscope. In comparison to other techniques, the augmented microscope retains full stereoscopic vision and optical controls including magnification and focus, camera capture, and multiuser access. Augmented microscopy may find application in surgeries where the use of traditional microscopes can be enhanced by contrast agents and image guided delivery of therapeutics, including oncology, neurosurgery, and ophthalmology.
Sluder, Greenfield; Nordberg, Joshua J
2013-01-01
This chapter provides information on how microscopes work and discusses some of the microscope issues to be considered in using a video camera on the microscope. There are two types of microscopes in use today for research in cell biology-the older finite tube-length (typically 160mm mechanical tube length) microscopes and the infinity optics microscopes that are now produced. The objective lens forms a magnified, real image of the specimen at a specific distance from the objective known as the intermediate image plane. All objectives are designed to be used with the specimen at a defined distance from the front lens element of the objective (the working distance) so that the image formed is located at a specific location in the microscope. Infinity optics microscopes differ from the finite tube-length microscopes in that the objectives are designed to project the image of the specimen to infinity and do not, on their own, form a real image of the specimen. Three types of objectives are in common use today-plan achromats, plan apochromats, and plan fluorite lenses. The concept of mounting video cameras on the microscope is also presented in the chapter. Copyright © 2003 Elsevier Inc. All rights reserved.
2017-05-05
results of this project there are: (1) the investigation of the effect of phonons on the optical properties of solid state emitters. A microscopic ...In what follows we list the main results and undergoing research. 2. Results 2.1 Microscopic modeling...fluorescent markers for biological measurements. Here, we present a first-‐principles microscopic description
A spiral motion piezoelectric micromotor for autofocus and auto zoom in a medical endoscope
NASA Astrophysics Data System (ADS)
Chen, Xi; Chen, Zhijiang; Li, Xiaotian; Shan, Liang; Sun, Wanchen; Wang, Xiguang; Xie, Tianyu; Dong, Shuxiang
2016-02-01
We report a hollow type piezoelectric micromotor made of a PZT ceramic/metal composite cylinder with sizes of only 3.6 mm in diameter and 3.0 mm in length aiming at medical endoscope application. The hollow piezoelectric stator of the micromotor, acting as a nut, can excite E02-mode traveling wave along its circumferential direction, and a hollow rotor with a fine lens inside, acting as a screw, is driven to produce a spiral motion along its axis direction inside the hollow stator via the traveling wave. The features of the developed micromotors are its hollow, fine structure and submicrometer step resolution, ensuring that the optical path passes in a narrow and limited space and that the optical focal length is tuned precisely inside the endoscope, which is meaningful in medical diagnosis.
Beltran-Parrazal, Luis; Morgado-Valle, Consuelo; Serrano, Raul E; Manzo, Jorge; Vergara, Julio L
2014-03-30
One of the limitations when establishing an electrophysiology setup, particularly in low resource settings, is the high cost of microscopes. The average cost for a microscope equipped with the optics for infrared (IR) contrast or microfluorometry is $40,000. We hypothesized that optical elements and features included in commercial microscopes are not necessary to IR video-visualize neurons or for microfluorometry. We present instructions for building a low-cost epifluorescence upright microscope suitable for visualized patch-clamp recording and fluorescence detection using mostly catalog-available parts. This microscope supports applications such as visualized whole-cell recording using IR oblique illumination (IR-OI), or more complex applications such as microfluorometry using a photodiode. In both IR-OI and fluorescence, actual resolution measured with 2-μm latex beads is close to theoretical resolution. The lack of movable parts to switch configurations ensures stability when doing intracellular recording. The low cost is a significant advantage of this microscope compared to existent custom-built microscopes. The cost of the simplest configuration with IR-OI is ∼$2000, whereas the cost of the configuration with epifluorescence is ∼$5000. Since this design does not use pieces discarded from commercial microscopes, it is completely reproducible. We suggest that this microscope is a viable alternative for doing in vitro electrophysiology and microfluorometry in low-resource settings. Characteristics such as an open box design, easy assembly, and low-cost make this microscope a useful instrument for science education and teaching for topics such as optics, biology, neuroscience, and for scientific "hands-on" workshops. Copyright © 2014 Elsevier B.V. All rights reserved.
Apertureless near-field scanning optical microscope working with or without laser source.
Formanek, F; De Wilde, Y; Aigouy, L; Chen, Y
2004-01-01
An apertureless near-field scanning optical microscope (ANSOM), used indifferent configurations, is presented. Our versatile home-made setup, based on a sharp tungsten tip glued onto a quartz tuning fork and working in tapping mode, allows to perform imaging over a broad spectral range. We have recorded optical images in the visible (wavelength, lambda = 655 nm) and in the infrared (lambda = 10.6 microm), proving that the setup routinely achieves an optical resolution of <50 nm regardless of the illumination wavelength. We have also shown optical images recorded in the visible (lambda = 655 nm) in an inverted configuration where the tip does not perturb the focused spot of the illumination laser. Approach curves as well as image profiles have revealed that on demodulating the optical signal at higher harmonics, we can obtain an effective probe sharpening which results in an improvement of the resolution. Finally, we have presented optical images recorded in the infrared without any illumination, that is, the usual laser source is replaced by a simple heating of the sample. This has shown that the ANSOM can be used as a near-field thermal optical microscope (NTOM) to probe the near field generated by the thermal emission of the sample.
NASA Astrophysics Data System (ADS)
Ye, Shiwei; Takahashi, Satoru; Michihata, Masaki; Takamasu, Kiyoshi
2018-05-01
The quality control of microgrooves is extremely crucial to ensure the performance and stability of microstructures and improve their fabrication efficiency. This paper introduces a novel optical inspection method and a modified Linnik microscopic interferometer measurement system to detect the depth of microgrooves with a width less than the diffraction limit. Using this optical method, the depth of diffraction-limited microgrooves can be related to the near-field optical phase difference, which cannot be practically observed but can be computed from practical far-field observations. Thus, a modified Linnik microscopic interferometer system based on three identical objective lenses and an optical path reversibility principle were developed. In addition, experiments for standard grating microgrooves on the silicon surface were carried out to demonstrate the feasibility and repeatability of the proposed method and developed measurement system.
ZOOM Lite: next-generation sequencing data mapping and visualization software
Zhang, Zefeng; Lin, Hao; Ma, Bin
2010-01-01
High-throughput next-generation sequencing technologies pose increasing demands on the efficiency, accuracy and usability of data analysis software. In this article, we present ZOOM Lite, a software for efficient reads mapping and result visualization. With a kernel capable of mapping tens of millions of Illumina or AB SOLiD sequencing reads efficiently and accurately, and an intuitive graphical user interface, ZOOM Lite integrates reads mapping and result visualization into a easy to use pipeline on desktop PC. The software handles both single-end and paired-end reads, and can output both the unique mapping result or the top N mapping results for each read. Additionally, the software takes a variety of input file formats and outputs to several commonly used result formats. The software is freely available at http://bioinfor.com/zoom/lite/. PMID:20530531
A methodology for coupling a visual enhancement device to human visual attention
NASA Astrophysics Data System (ADS)
Todorovic, Aleksandar; Black, John A., Jr.; Panchanathan, Sethuraman
2009-02-01
The Human Variation Model views disability as simply "an extension of the natural physical, social, and cultural variability of mankind." Given this human variation, it can be difficult to distinguish between a prosthetic device such as a pair of glasses (which extends limited visual abilities into the "normal" range) and a visual enhancement device such as a pair of binoculars (which extends visual abilities beyond the "normal" range). Indeed, there is no inherent reason why the design of visual prosthetic devices should be limited to just providing "normal" vision. One obvious enhancement to human vision would be the ability to visually "zoom" in on objects that are of particular interest to the viewer. Indeed, it could be argued that humans already have a limited zoom capability, which is provided by their highresolution foveal vision. However, humans still find additional zooming useful, as evidenced by their purchases of binoculars equipped with mechanized zoom features. The fact that these zoom features are manually controlled raises two questions: (1) Could a visual enhancement device be developed to monitor attention and control visual zoom automatically? (2) If such a device were developed, would its use be experienced by users as a simple extension of their natural vision? This paper details the results of work with two research platforms called the Remote Visual Explorer (ReVEx) and the Interactive Visual Explorer (InVEx) that were developed specifically to answer these two questions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-31
This report details progress made in setting up a laboratory for optical microscopy of genes. The apparatus including a fluorescence microscope, a scanning optical microscope, various spectrometers, and supporting computers is described. Results in developing photon and exciton tips, and in preparing samples are presented. (GHH)
Schwertner, M; Booth, M J; Neil, M A A; Wilson, T
2004-01-01
Confocal or multiphoton microscopes, which deliver optical sections and three-dimensional (3D) images of thick specimens, are widely used in biology. These techniques, however, are sensitive to aberrations that may originate from the refractive index structure of the specimen itself. The aberrations cause reduced signal intensity and the 3D resolution of the instrument is compromised. It has been suggested to correct for aberrations in confocal microscopes using adaptive optics. In order to define the design specifications for such adaptive optics systems, one has to know the amount of aberrations present for typical applications such as with biological samples. We have built a phase stepping interferometer microscope that directly measures the aberration of the wavefront. The modal content of the wavefront is extracted by employing Zernike mode decomposition. Results for typical biological specimens are presented. It was found for all samples investigated that higher order Zernike modes give only a small contribution to the overall aberration. Therefore, these higher order modes can be neglected in future adaptive optics sensing and correction schemes implemented into confocal or multiphoton microscopes, leading to more efficient designs.
Gabr, Hesham; Chen, Xi; Zevallos-Carrasco, Oscar M; Viehland, Christian; Dandrige, Alexandria; Sarin, Neeru; Mahmoud, Tamer H; Vajzovic, Lejla; Izatt, Joseph A; Toth, Cynthia A
2018-01-10
To evaluate the use of live volumetric (4D) intraoperative swept-source microscope-integrated optical coherence tomography in vitrectomy for proliferative diabetic retinopathy complications. In this prospective study, we analyzed a subgroup of patients with proliferative diabetic retinopathy complications who required vitrectomy and who were imaged by the research swept-source microscope-integrated optical coherence tomography system. In near real time, images were displayed in stereo heads-up display facilitating intraoperative surgeon feedback. Postoperative review included scoring image quality, identifying different diabetic retinopathy-associated pathologies and reviewing the intraoperatively documented surgeon feedback. Twenty eyes were included. Indications for vitrectomy were tractional retinal detachment (16 eyes), combined tractional-rhegmatogenous retinal detachment (2 eyes), and vitreous hemorrhage (2 eyes). Useful, good-quality 2D (B-scans) and 4D images were obtained in 16/20 eyes (80%). In these eyes, multiple diabetic retinopathy complications could be imaged. Swept-source microscope-integrated optical coherence tomography provided surgical guidance, e.g., in identifying dissection planes under fibrovascular membranes, and in determining residual membranes and traction that would benefit from additional peeling. In 4/20 eyes (20%), acceptable images were captured, but they were not useful due to high tractional retinal detachment elevation which was challenging for imaging. Swept-source microscope-integrated optical coherence tomography can provide important guidance during surgery for proliferative diabetic retinopathy complications through intraoperative identification of different complications and facilitation of intraoperative decision making.
Shen, Liangbo; Carrasco-Zevallos, Oscar; Keller, Brenton; Viehland, Christian; Waterman, Gar; Hahn, Paul S.; Kuo, Anthony N.; Toth, Cynthia A.; Izatt, Joseph A.
2016-01-01
Intra-operative optical coherence tomography (OCT) requires a display technology which allows surgeons to visualize OCT data without disrupting surgery. Previous research and commercial intrasurgical OCT systems have integrated heads-up display (HUD) systems into surgical microscopes to provide monoscopic viewing of OCT data through one microscope ocular. To take full advantage of our previously reported real-time volumetric microscope-integrated OCT (4D MIOCT) system, we describe a stereoscopic HUD which projects a stereo pair of OCT volume renderings into both oculars simultaneously. The stereoscopic HUD uses a novel optical design employing spatial multiplexing to project dual OCT volume renderings utilizing a single micro-display. The optical performance of the surgical microscope with the HUD was quantitatively characterized and the addition of the HUD was found not to substantially effect the resolution, field of view, or pincushion distortion of the operating microscope. In a pilot depth perception subject study, five ophthalmic surgeons completed a pre-set dexterity task with 50.0% (SD = 37.3%) higher success rate and in 35.0% (SD = 24.8%) less time on average with stereoscopic OCT vision compared to monoscopic OCT vision. Preliminary experience using the HUD in 40 vitreo-retinal human surgeries by five ophthalmic surgeons is reported, in which all surgeons reported that the HUD did not alter their normal view of surgery and that live surgical maneuvers were readily visible in displayed stereoscopic OCT volumes. PMID:27231616
Development of HiLo Microscope and its use in In-Vivo Applications
NASA Astrophysics Data System (ADS)
Patel, Shreyas J.
The functionality of achieving optical sectioning in biomedical research is invaluable as it allows for visualization of a biological sample at different depths while being free of background scattering. Most current microscopy techniques that offer optical sectioning, unfortunately, require complex instrumentation and thus are generally costly. HiLo microscopy, on the other hand, offers the same functionality and advantage at a relatively low cost. Hence, the work described in this thesis involves the design, build, and application of a HiLo microscope. More specifically, a standalone HiLo microscope was built in addition to implementing HiLo microscopy on a standard fluorescence microscope. In HiLo microscopy, optical sectioning is achieved by acquiring two different types of images per focal plane. One image is acquired under uniform illumination and the other is acquired under speckle illumination. These images are processed using an algorithm that extracts in-focus information and removes features and glare that occur as a result of background fluorescence. To show the benefits of the HiLo microscopy, several imaging experiments on various samples were performed under a HiLo microscope and compared against a traditional fluorescence microscope and a confocal microscope, which is considered the gold standard in optical imaging. In-vitro and ex-vivo imaging was performed on a set of pollen grains, and optically cleared mouse brain and heart slices. Each of these experiments showed great reduction in background scattering at different depths under HiLo microscopy. More importantly, HiLo imaging of optically cleared heart slice demonstrated emergence of different vasculature at different depths. Reduction of out-of-focus light increased the spatial resolution and allowed better visualization of capillary vessels. Furthermore, HiLo imaging was tested in an in-vivo model of a rodent dorsal window chamber model. When imaging the same sample under confocal microscope, the results were comparable between the two modalities. Additionally, a method of achieving blood flow maps at different depth using a combination of HiLo and LSI imaging is also discussed. The significance of this combined technique could help categorize blood flow to particular depths; this can help improve outcomes of medical treatments such pulse dye laser and photodynamic therapy treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santamaria, L.; Siller, H. R.; Garcia-Ortiz, C. E., E-mail: cegarcia@cicese.mx
In this work, we present an alternative optical method to determine the probe-sample separation distance in a scanning near-field optical microscope. The experimental method is based in a Lloyd’s mirror interferometer and offers a measurement precision deviation of ∼100 nm using digital image processing and numerical analysis. The technique can also be strategically combined with the characterization of piezoelectric actuators and stability evaluation of the optical system. It also opens the possibility for the development of an automatic approximation control system valid for probe-sample distances from 5 to 500 μm.
Proper alignment of the microscope.
Rottenfusser, Rudi
2013-01-01
The light microscope is merely the first element of an imaging system in a research facility. Such a system may include high-speed and/or high-resolution image acquisition capabilities, confocal technologies, and super-resolution methods of various types. Yet more than ever, the proverb "garbage in-garbage out" remains a fact. Image manipulations may be used to conceal a suboptimal microscope setup, but an artifact-free image can only be obtained when the microscope is optimally aligned, both mechanically and optically. Something else is often overlooked in the quest to get the best image out of the microscope: Proper sample preparation! The microscope optics can only do its job when its design criteria are matched to the specimen or vice versa. The specimen itself, the mounting medium, the cover slip, and the type of immersion medium (if applicable) are all part of the total optical makeup. To get the best results out of a microscope, understanding the functions of all of its variable components is important. Only then one knows how to optimize these components for the intended application. Different approaches might be chosen to discuss all of the microscope's components. We decided to follow the light path which starts with the light source and ends at the camera or the eyepieces. To add more transparency to this sequence, the section up to the microscope stage was called the "Illuminating Section", to be followed by the "Imaging Section" which starts with the microscope objective. After understanding the various components, we can start "working with the microscope." To get the best resolution and contrast from the microscope, the practice of "Koehler Illumination" should be understood and followed by every serious microscopist. Step-by-step instructions as well as illustrations of the beam path in an upright and inverted microscope are included in this chapter. A few practical considerations are listed in Section 3. Copyright © 2013 Elsevier Inc. All rights reserved.
Three-dimensional automated nanoparticle tracking using Mie scattering in an optical microscope.
Gineste, J-M; Macko, P; Patterson, E A; Whelan, M P
2011-08-01
The forward scattering of light in a conventional inverted optical microscope by nanoparticles ranging in diameter from 10 to 50nm has been used to automatically and quantitatively identify and track their location in three-dimensions with a temporal resolution of 200ms. The standard deviation of the location of nominally stationary 50-nm-diameter nanoparticles was found to be about 50nm along the light path and about 5nm in the plane perpendicular to the light path. The method is based on oscillating the microscope objective along the light path using a piezo actuator and acquiring images with the condenser aperture closed to a minimum to enhance the effects of diffraction. Data processing in the time and spatial domains allowed the location of particles to be obtained automatically so that the technique has potential applications both in the processing of nanoparticles and in their use in a variety of fields including nanobiotechnology, pharmaceuticals and food processing where a simple optical microscope maybe preferred for a variety of reasons. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Zuo, Chao; Sun, Jiasong; Feng, Shijie; Hu, Yan; Chen, Qian
2016-03-01
Programmable colored illumination microscopy (PCIM) has been proposed as a flexible optical staining technique for microscopic contrast enhancement. In this method, we replace the condenser diaphragm of a conventional microscope with a programmable thin film transistor-liquid crystal display (TFT-LCD). By displaying different patterns on the LCD, numerous established imaging modalities can be realized, such as bright field, dark field, phase contrast, oblique illumination, and Rheinberg illuminations, which conventionally rely on intricate alterations in the respective microscope setups. Furthermore, the ease of modulating both the color and the intensity distribution at the aperture of the condenser opens the possibility to combine multiple microscopic techniques, or even realize completely new methods for optical color contrast staining, such as iridescent dark-field and iridescent phase-contrast imaging. The versatility and effectiveness of PCIM is demonstrated by imaging of several transparent colorless specimens, such as unstained lung cancer cells, diatom, textile fibers, and a cryosection of mouse kidney. Finally, the potentialities of PCIM for RGB-splitting imaging with stained samples are also explored by imaging stained red blood cells and a histological section.
NASA Astrophysics Data System (ADS)
Kuhlmann, Andreas V.; Houel, Julien; Brunner, Daniel; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.; Warburton, Richard J.
2013-07-01
Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 107 and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920-980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.
Optical Simulation and Fabrication of Pancharatnam (Geometric) Phase Devices from Liquid Crystals
NASA Astrophysics Data System (ADS)
Gao, Kun
Pancharatnam made clear the concept of a phase-only device based on changes in the polarization state of light. A device of this type is sometimes called a circular polarization grating because of the polarization states of interfering light beams used to fabricate it by polarization holography. Here, we will call it a Pancharatnam (geometric) phase device to emphasize the fact that the phase of diffracted light does not have a discontinuous periodic profile but changes continuously. In this dissertation, using simulations and experiments, we have successfully demonstrated a 90% diffraction efficiency based on the Pancharatnam phase deflector (PPD) with the dual-twist structure. Unlike the conventional Pancharatnam phase deflector (c-PPD) limited to small diffraction angles, our work demonstrates that a device with a structural periodicity near the wavelength of light is highly efficient at deflecting light to large angles. Also, from a similar fabrication procedure, we have made an ultra-compact non-mechanical zoom lens system based on the Pancharatnam phase lens (PPL) with a low f-number and high efficiency. The wavelength dependence on the image quality is evaluated and shown to be satisfactory from red light to near-infrared machine vision systems. A demonstration device is shown with a 4x zoom ratio at a 633 nm wavelength. The unique characteristic of these devices is made possible through the use of azo-dye photoalignment materials to align a liquid crystal polymer (reactive mesogens). Furthermore, the proposed dual-twist design and fabrication opens the possibility for making a high-efficiency beam-steering device, a lens with an f-number less than 1.0, as well as a wide range of other potential applications in the optical and display industry. The details of simulation, fabrication, and characterization of these devices are shown in this dissertation.
Variable Magnification With Kirkpatrick-Baez Optics for Synchrotron X-Ray Microscopy
Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; Pedulla, Joseph; Macrander, Albert
2006-01-01
We describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Köhler illumination). We demonstrate the distinction with a Kirkpatrick-Baez microscope consisting of short focal length multilayer mirrors operating at an energy of 8 keV. In addition to realizing improvements in the resolution of the optics, the synchrotron radiation microscope is not limited to the usual single magnification at a fixed image plane. Higher magnification images are produced by projection in the limit of geometrical optics with a collimated beam. However, in distinction to the common method of placing the sample behind the optical source of a diverging beam, we describe the situation in which the sample is located in the collimated beam before the optical element. The ultimate limits of this magnification result from diffraction by the specimen and are determined by the sample position relative to the focal point of the optic. We present criteria by which the diffraction is minimized. PMID:27274930
NASA Astrophysics Data System (ADS)
Tsai, Chun-Wei; Lyu, Bo-Han; Wang, Chen; Hung, Cheng-Chieh
2017-05-01
We have already developed multi-function and easy-to-use modulation software that was based on LabVIEW system. There are mainly four functions in this modulation software, such as computer generated holograms (CGH) generation, CGH reconstruction, image trimming, and special phase distribution. Based on the above development of CGH modulation software, we could enhance the performance of liquid crystal on silicon - spatial light modulator (LCoSSLM) as similar as the diffractive optical element (DOE) and use it on various adaptive optics (AO) applications. Through the development of special phase distribution, we are going to use the LCoS-SLM with CGH modulation software into AO technology, such as optical microscope system. When the LCOS-SLM panel is integrated in an optical microscope system, it could be placed on the illumination path or on the image forming path. However, LCOS-SLM provides a program-controllable liquid crystal array for optical microscope. It dynamically changes the amplitude or phase of light and gives the obvious advantage, "Flexibility", to the system
Li, Hui; Cui, Quan; Zhang, Zhihong; Luo, Qingming
2015-01-01
Background The nonlinear optical microscopy has become the current state-of-the-art for intravital imaging. Due to its advantages of high resolution, superior tissue penetration, lower photodamage and photobleaching, as well as intrinsic z-sectioning ability, this technology has been widely applied in immunoimaging for a decade. However, in terms of monitoring immune events in native physiological environment, the conventional nonlinear optical microscope system has to be optimized for live animal imaging. Generally speaking, three crucial capabilities are desired, including high-speed, large-area and multicolor imaging. Among numerous high-speed scanning mechanisms used in nonlinear optical imaging, polygon scanning is not only linearly but also dispersion-freely with high stability and tunable rotation speed, which can overcome disadvantages of multifocal scanning, resonant scanner and acousto-optical deflector (AOD). However, low frame rate, lacking large-area or multicolor imaging ability make current polygonbased nonlinear optical microscopes unable to meet the requirements of immune event monitoring. Methods We built up a polygon-based nonlinear optical microscope system which was custom optimized for immunoimaging with high-speed, large-are and multicolor imaging abilities. Results Firstly, we validated the imaging performance of the system by standard methods. Then, to demonstrate the ability to monitor immune events, migration of immunocytes observed by the system based on typical immunological models such as lymph node, footpad and dorsal skinfold chamber are shown. Finally, we take an outlook for the possible advance of related technologies such as sample stabilization and optical clearing for more stable and deeper intravital immunoimaging. Conclusions This study will be helpful for optimizing nonlinear optical microscope to obtain more comprehensive and accurate information of immune events. PMID:25694951
Queiroz, Polyane Mazucatto; Santaella, Gustavo Machado; Capelozza, Ana Lúcia Alvares; Rosalen, Pedro Luiz; Freitas, Deborah Queiroz; Haiter-Neto, Francisco
2018-04-01
This study evaluated the image quality and the diagnosis of root fractures when using the Zoom Reconstruction tool (J Morita, Kyoto, Japan). A utility wax phantom with a metal sample inside was used for objective evaluation, and a mandible with 27 single-rooted teeth (with and without obturation and with and without vertical or horizontal fractures) was used for diagnostic evaluation. The images were acquired in 3 protocols: protocol 1, field of view (FOV) of 4 × 4 cm and a voxel size of 0.08 mm; protocol 2, FOV of 10 × 10 cm and a voxel size of 0.2 mm; and protocol 3, Zoom Reconstruction of images from protocol 2 (FOV of 4 × 4 cm and a voxel size of 0.08 mm). The objective evaluation was achieved by measuring the image noise, and the diagnosis of fractures was performed by 3 evaluators. The area under the receiver operating characteristic curve was used to calculate accuracy, and analysis of variance compared the accuracy and image quality of the protocols. Regarding quality, protocol 1 was superior to protocol 2 (P < .0001) and Zoom Reconstruction (P < .0001). Additionally, images of protocol 2 presented less noise than the Zoom Reconstruction image (P < .0001); however, for diagnosis, Zoom Reconstruction was superior in relation to protocol 2 (P = .011) and did not differ from protocol 1 (P = .228) for the diagnosis of a vertical root fracture in filled teeth. The Zoom Reconstruction tool allows better accuracy for vertical root fracture detection in filled teeth, making it possible to obtain a higher-resolution image from a lower-resolution examination without having to expose the patient to more radiation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Microscopic Studies of Quantum Phase Transitions in Optical Lattices
NASA Astrophysics Data System (ADS)
Bakr, Waseem S.
2011-12-01
In this thesis, I report on experiments that microscopically probe quantum phase transitions of ultracold atoms in optical lattices. We have developed a "quantum gas microscope" that allowed, for the first time, optical imaging and manipulation of single atoms in a quantum-degenerate gas on individual sites of an optical lattice. This system acts as a quantum simulator of strongly correlated materials, which are currently the subject of intense research because of the technological potential of high--T c superconductors and spintronic materials. We have used our microscope to study the superfluid to Mott insulator transition in bosons and a magnetic quantum phase transition in a spin system. In our microscopic study of the superfluid-insulator transition, we have characterized the on-site number statistics in a space- and time-resolved manner. We observed Mott insulators with fidelities as high as 99%, corresponding to entropies of 0.06kB per particle. We also measured local quantum dynamics and directly imaged the shell structure of the Mott insulator. I report on the first quantum magnetism experiments in optical lattices. We have realized a quantum Ising chain in a magnetic field, and observed a quantum phase transition between a paramagnet and antiferromagnet. We achieved strong spin interactions by encoding spins in excitations of a Mott insulator in a tilted lattice. We detected the transition by measuring the total magnetization of the system across the transition using in-situ measurements as well as the Neel ordering in the antiferromagnetic state using noise-correlation techniques. We characterized the dynamics of domain formation in the system. The spin mapping introduced opens up a new path to realizing more exotic states in optical lattices including spin liquids and quantum valence bond solids. As our system sizes become larger, simulating their physics on classical computers will require exponentially larger resources because of entanglement build-up near a quantum phase transition. We have demonstrated a quantum simulator in which all degrees of freedom can be read out microscopically, allowing the simulation of quantum many-body systems with manageable resources. More generally, the ability to image and manipulate individual atoms in optical lattices opens an avenue towards scalable quantum computation.
NASA Technical Reports Server (NTRS)
Mungas, Greg S.; Gursel, Yekta; Sepulveda, Cesar A.; Anderson, Mark; La Baw, Clayton; Johnson, Kenneth R.; Deans, Matthew; Beegle, Luther; Boynton, John
2008-01-01
Conducting high resolution field microscopy with coupled laser spectroscopy that can be used to selectively analyze the surface chemistry of individual pixels in a scene is an enabling capability for next generation robotic and manned spaceflight missions, civil, and military applications. In the laboratory, we use a range of imaging and surface preparation tools that provide us with in-focus images, context imaging for identifying features that we want to investigate at high magnification, and surface-optical coupling that allows us to apply optical spectroscopic analysis techniques for analyzing surface chemistry particularly at high magnifications. The camera, hand lens, and microscope probe with scannable laser spectroscopy (CHAMP-SLS) is an imaging/spectroscopy instrument capable of imaging continuously from infinity down to high resolution microscopy (resolution of approx. 1 micron/pixel in a final camera format), the closer CHAMP-SLS is placed to a feature, the higher the resultant magnification. At hand lens to microscopic magnifications, the imaged scene can be selectively interrogated with point spectroscopic techniques such as Raman spectroscopy, microscopic Laser Induced Breakdown Spectroscopy (micro-LIBS), laser ablation mass-spectrometry, Fluorescence spectroscopy, and/or Reflectance spectroscopy. This paper summarizes the optical design, development, and testing of the CHAMP-SLS optics.
Structured illumination 3D microscopy using adaptive lenses and multimode fibers
NASA Astrophysics Data System (ADS)
Czarske, Jürgen; Philipp, Katrin; Koukourakis, Nektarios
2017-06-01
Microscopic techniques with high spatial and temporal resolution are required for in vivo studying biological cells and tissues. Adaptive lenses exhibit strong potential for fast motion-free axial scanning. However, they also lead to a degradation of the achievable resolution because of aberrations. This hurdle can be overcome by digital optical technologies. We present a novel High-and-Low-frequency (HiLo) 3D-microscope using structured illumination and an adaptive lens. Uniform illumination is used to obtain optical sectioning for the high-frequency (Hi) components of the image, and nonuniform illumination is needed to obtain optical sectioning for the low-frequency (Lo) components of the image. Nonuniform illumination is provided by a multimode fiber. It ensures robustness against optical aberrations of the adaptive lens. The depth-of-field of our microscope can be adjusted a-posteriori by computational optics. It enables to create flexible scans, which compensate for irregular axial measurement positions. The adaptive HiLo 3D-microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 microns and sub-micron lateral resolution over the full scanning range. In result, volumetric measurements with high temporal and spatial resolution are provided. Demonstration measurements of zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are presented.
Vokes, David E.; Jackson, Ryan; Guo, Shuguang; Perez, Jorge A.; Su, Jianping; Ridgway, James M.; Armstrong, William B.; Chen, Zhongping; Wong, Brian J. F.
2014-01-01
Objectives Optical coherence tomography (OCT) is a new imaging modality that uses near-infrared light to produce cross-sectional images of tissue with a resolution approaching that of light microscopy. We have previously reported use of OCT imaging of the vocal folds (VFs) during direct laryngoscopy with a probe held in contact or near-contact with the VFs. This aim of this study was to develop and evaluate a novel OCT system integrated with a surgical microscope to allow hands-free OCT imaging of the VFs, which could be performed simultaneously with microscopic visualization. Methods We performed a prospective evaluation of a new method of acquiring OCT images of the VFs. Results An OCT system was successfully integrated with a surgical microscope to permit noncontact OCT imaging of the VFs of 10 patients. With this novel device we were able to identify VF epithelium and lamina propria; however, the resolution was reduced compared to that achieved with the standard contact or near-contact OCT. Conclusions Optical coherence tomography is able to produce high-resolution images of vocal fold mucosa to a maximum depth of 1.6 mm. It may be used in the diagnosis of VF lesions, particularly early squamous cell carcinoma, in which OCT can show disruption of the basement membrane. Mounting the OCT device directly onto the operating microscope allows hands-free noncontact OCT imaging and simultaneous conventional microscopic visualization of the VFs. However, the lateral resolution of the OCT microscope system is 50 µm, in contrast to the conventional handheld probe system (10 µm). Although such images at this resolution are still useful clinically, improved resolution would enhance the system’s performance, potentially enabling real-time OCT-guided microsurgery of the larynx. PMID:18700431
Synthetic aperture radar correlator phase histories
NASA Technical Reports Server (NTRS)
1977-01-01
This report supplements the design of the following subsystems: (1) zoom azimuth telescope, zooming range from 3X to 6X. (2) range curvature correcting lenses. (3) Sphero-cylindrical shift lens. (4) Auxiliary lenses (tilted cylinder and matching lens).
2008-05-24
This animation zooms in on the area on Mars where NASA Phoenix Mars Lander will touchdown on May 25, 2008. The image was taken by the High Resolution Imaging Science Experiment HiRISE camera on NASA Mars Reconnaissance Orbiter.
Portable and cost-effective pixel super-resolution on-chip microscope for telemedicine applications.
Bishara, Waheb; Sikora, Uzair; Mudanyali, Onur; Su, Ting-Wei; Yaglidere, Oguzhan; Luckhart, Shirley; Ozcan, Aydogan
2011-01-01
We report a field-portable lensless on-chip microscope with a lateral resolution of <1 μm and a large field-of-view of ~24 mm(2). This microscope is based on digital in-line holography and a pixel super-resolution algorithm to process multiple lensfree holograms and obtain a single high-resolution hologram. In its compact and cost-effective design, we utilize 23 light emitting diodes butt-coupled to 23 multi-mode optical fibers, and a simple optical filter, with no moving parts. Weighing only ~95 grams, we demonstrate the performance of this field-portable microscope by imaging various objects including human malaria parasites in thin blood smears.
Optics of high-performance electron microscopes*
Rose, H H
2008-01-01
During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described. PMID:27877933
Review on Microstructure Analysis of Metals and Alloys Using Image Analysis Techniques
NASA Astrophysics Data System (ADS)
Rekha, Suganthini; Bupesh Raja, V. K.
2017-05-01
The metals and alloys find vast application in engineering and domestic sectors. The mechanical properties of the metals and alloys are influenced by their microstructure. Hence the microstructural investigation is very critical. Traditionally the microstructure is studied using optical microscope with suitable metallurgical preparation. The past few decades the computers are applied in the capture and analysis of the optical micrographs. The advent of computer softwares like digital image processing and computer vision technologies are a boon to the analysis of the microstructure. In this paper the literature study of the various developments in the microstructural analysis, is done. The conventional optical microscope is complemented by the use of Scanning Electron Microscope (SEM) and other high end equipments.
The zoom lens of attention: Simulating shuffled versus normal text reading using the SWIFT model
Schad, Daniel J.; Engbert, Ralf
2012-01-01
Assumptions on the allocation of attention during reading are crucial for theoretical models of eye guidance. The zoom lens model of attention postulates that attentional deployment can vary from a sharp focus to a broad window. The model is closely related to the foveal load hypothesis, i.e., the assumption that the perceptual span is modulated by the difficulty of the fixated word. However, these important theoretical concepts for cognitive research have not been tested quantitatively in eye movement models. Here we show that the zoom lens model, implemented in the SWIFT model of saccade generation, captures many important patterns of eye movements. We compared the model's performance to experimental data from normal and shuffled text reading. Our results demonstrate that the zoom lens of attention might be an important concept for eye movement control in reading. PMID:22754295
Joint demosaicking and zooming using moderate spectral correlation and consistent edge map
NASA Astrophysics Data System (ADS)
Zhou, Dengwen; Dong, Weiming; Chen, Wengang
2014-07-01
The recently published joint demosaicking and zooming algorithms for single-sensor digital cameras all overfit the popular Kodak test images, which have been found to have higher spectral correlation than typical color images. Their performance perhaps significantly degrades on other datasets, such as the McMaster test images, which have weak spectral correlation. A new joint demosaicking and zooming algorithm is proposed for the Bayer color filter array (CFA) pattern, in which the edge direction information (edge map) extracted from the raw CFA data is consistently used in demosaicking and zooming. It also moderately utilizes the spectral correlation between color planes. The experimental results confirm that the proposed algorithm produces an excellent performance on both the Kodak and McMaster datasets in terms of both subjective and objective measures. Our algorithm also has high computational efficiency. It provides a better tradeoff among adaptability, performance, and computational cost compared to the existing algorithms.
NASA Technical Reports Server (NTRS)
Spencer, Dwight C.
1996-01-01
Hoover et. al. built and tested two imaging Schwarzschild multilayer microscopes. These instruments were constructed as prototypes for the "Water Window Imaging X-Ray Microscope," which is a doubly reflecting, multilayer x-ray microscope configured to operate within the "water window." The "water window" is the narrow region of the x-ray spectrum between the K absorption edges of oxygen (lamda = 23.3 Angstroms) and of carbon (lamda = 43.62 Angstroms), where water is relatively highly transmissive and carbon is highly absorptive. This property of these materials, thus permits the use of high resolution multilayer x-ray microscopes for producing high contrast images of carbon-based structures within the aqueous physiological environments of living cells. We report the design, fabrication and testing of multilayer optics that operate in this regime.
Hyperspectral microscope for in vivo imaging of microstructures and cells in tissues
Demos,; Stavros, G [Livermore, CA
2011-05-17
An optical hyperspectral/multimodal imaging method and apparatus is utilized to provide high signal sensitivity for implementation of various optical imaging approaches. Such a system utilizes long working distance microscope objectives so as to enable off-axis illumination of predetermined tissue thereby allowing for excitation at any optical wavelength, simplifies design, reduces required optical elements, significantly reduces spectral noise from the optical elements and allows for fast image acquisition enabling high quality imaging in-vivo. Such a technology provides a means of detecting disease at the single cell level such as cancer, precancer, ischemic, traumatic or other type of injury, infection, or other diseases or conditions causing alterations in cells and tissue micro structures.
NASA Astrophysics Data System (ADS)
Malone, Joseph D.; El-Haddad, Mohamed T.; Leeburg, Kelsey C.; Terrones, Benjamin D.; Tao, Yuankai K.
2018-02-01
Limited visualization of semi-transparent structures in the eye remains a critical barrier to improving clinical outcomes and developing novel surgical techniques. While increases in imaging speed has enabled intraoperative optical coherence tomography (iOCT) imaging of surgical dynamics, several critical barriers to clinical adoption remain. Specifically, these include (1) static field-of-views (FOVs) requiring manual instrument-tracking; (2) high frame-rates require sparse sampling, which limits FOV; and (3) small iOCT FOV also limits the ability to co-register data with surgical microscopy. We previously addressed these limitations in image-guided ophthalmic microsurgery by developing microscope-integrated multimodal intraoperative swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography. Complementary en face images enabled orientation and coregistration with the widefield surgical microscope view while OCT imaging enabled depth-resolved visualization of surgical instrument positions relative to anatomic structures-of-interest. In addition, we demonstrated novel integrated segmentation overlays for augmented-reality surgical guidance. Unfortunately, our previous system lacked the resolution and optical throughput for in vivo retinal imaging and necessitated removal of cornea and lens. These limitations were predominately a result of optical aberrations from imaging through a shared surgical microscope objective lens, which was modeled as a paraxial surface. Here, we present an optimized intraoperative spectrally encoded coherence tomography and reflectometry (iSECTR) system. We use a novel lens characterization method to develop an accurate model of surgical microscope objective performance and balance out inherent aberrations using iSECTR relay optics. Using this system, we demonstrate in vivo multimodal ophthalmic imaging through a surgical microscope
Li, Xinjian; Cao, Vania Y; Zhang, Wenyu; Mastwal, Surjeet S; Liu, Qing; Otte, Stephani; Wang, Kuan Hong
2017-11-01
In vivo optical imaging of neural activity provides important insights into brain functions at the single-cell level. Cranial windows and virally delivered calcium indicators are commonly used for imaging cortical activity through two-photon microscopes in head-fixed animals. Recently, head-mounted one-photon microscopes have been developed for freely behaving animals. However, minimizing tissue damage from the virus injection procedure and maintaining window clarity for imaging can be technically challenging. We used a wide-diameter glass pipette at the cortical surface for infusing the viral calcium reporter AAV-GCaMP6 into the cortex. After infusion, the scalp skin over the implanted optical window was sutured to facilitate postoperative recovery. The sutured scalp was removed approximately two weeks later and a miniature microscope was attached above the window to image neuronal activity in freely moving mice. We found that cortical surface virus infusion efficiently labeled neurons in superficial layers, and scalp skin suturing helped to maintain the long-term clarity of optical windows. As a result, several hundred neurons could be recorded in freely moving animals. Compared to intracortical virus injection and open-scalp postoperative recovery, our methods minimized tissue damage and dura overgrowth underneath the optical window, and significantly increased the experimental success rate and the yield of identified neurons. Our improved cranial surgery technique allows for high-yield calcium imaging of cortical neurons with head-mounted microscopes in freely behaving animals. This technique may be beneficial for other optical applications such as two-photon microscopy, multi-site imaging, and optogenetic modulation. Published by Elsevier B.V.
Evaluation of modified portable digital camera for screening of diabetic retinopathy.
Chalam, Kakarla V; Brar, Vikram S; Keshavamurthy, Ravi
2009-01-01
To describe a portable wide-field noncontact digital camera for posterior segment photography. The digital camera has a compound lens consisting of two optical elements (a 90-dpt and a 20-dpt lens) attached to a 7.2-megapixel camera. White-light-emitting diodes are used to illuminate the fundus and reduce source reflection. The camera settings are set to candlelight mode, the optic zoom standardized to x2.4 and the focus is manually set to 3.0 m. The new technique provides quality wide-angle digital images of the retina (60 degrees ) in patients with dilated pupils, at a fraction of the cost of established digital fundus photography. The modified digital camera is a useful alternative technique to acquire fundus images and provides a tool for screening posterior segment conditions, including diabetic retinopathy in a variety of clinical settings.
In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope.
Maitland, Kristen C; Gillenwater, Ann M; Williams, Michelle D; El-Naggar, Adel K; Descour, Michael R; Richards-Kortum, Rebecca R
2008-11-01
The purpose of this study was to determine whether in vivo images of oral mucosa obtained with a fiber optic confocal reflectance microscope could be used to differentiate normal and neoplastic tissues. We imaged 20 oral sites in eight patients undergoing surgery for squamous cell carcinoma. Normal and abnormal areas within the oral cavity were identified clinically, and real-time videos of each site were obtained in vivo using a fiber optic confocal reflectance microscope. Following imaging, each site was biopsied and submitted for histopathologic examination. We identified distinct features, such as nuclear irregularity and spacing, which can be used to qualitatively differentiate between normal and abnormal tissue. Representative confocal images of normal, pre-neoplastic, and neoplastic oral tissue are presented. Previous work using much larger microscopes has demonstrated the ability of confocal reflectance microscopy to image cellular and tissue architecture in situ. New advances in technology have enabled miniaturization of imaging systems for in vivo use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhlmann, Andreas V.; Houel, Julien; Warburton, Richard J.
Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 10{sup 7} and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dotmore » emission range (920–980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.« less
Sensing of Streptococcus mutans by microscopic imaging ellipsometry
NASA Astrophysics Data System (ADS)
Khaleel, Mai Ibrahim; Chen, Yu-Da; Chien, Ching-Hang; Chang, Yia-Chung
2017-05-01
Microscopic imaging ellipsometry is an optical technique that uses an objective and sensing procedure to measure the ellipsometric parameters Ψ and Δ in the form of microscopic maps. This technique is well known for being noninvasive and label-free. Therefore, it can be used to detect and characterize biological species without any impact. Microscopic imaging ellipsometry was used to measure the optical response of dried Streptococcus mutans cells on a glass substrate. The ellipsometric Ψ and Δ maps were obtained with the Optrel Multiskop system for specular reflection in the visible range (λ=450 to 750 nm). The Ψ and Δ images at 500, 600, and 700 nm were analyzed using three different theoretical models with single-bounce, two-bounce, and multibounce light paths to obtain the optical constants and height distribution. The obtained images of the optical constants show different aspects when comparing the single-bounce analysis with the two-bounce or multibounce analysis in detecting S. mutans samples. Furthermore, the height distributions estimated by two-bounce and multibounce analyses of S. mutans samples were in agreement with the thickness values measured by AFM, which implies that the two-bounce and multibounce analyses can provide information complementary to that obtained by a single-bounce light path.
Eye-gaze determination of user intent at the computer interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, J.H.; Schryver, J.C.
1993-12-31
Determination of user intent at the computer interface through eye-gaze monitoring can significantly aid applications for the disabled, as well as telerobotics and process control interfaces. Whereas current eye-gaze control applications are limited to object selection and x/y gazepoint tracking, a methodology was developed here to discriminate a more abstract interface operation: zooming-in or out. This methodology first collects samples of eve-gaze location looking at controlled stimuli, at 30 Hz, just prior to a user`s decision to zoom. The sample is broken into data frames, or temporal snapshots. Within a data frame, all spatial samples are connected into a minimummore » spanning tree, then clustered, according to user defined parameters. Each cluster is mapped to one in the prior data frame, and statistics are computed from each cluster. These characteristics include cluster size, position, and pupil size. A multiple discriminant analysis uses these statistics both within and between data frames to formulate optimal rules for assigning the observations into zooming, zoom-out, or no zoom conditions. The statistical procedure effectively generates heuristics for future assignments, based upon these variables. Future work will enhance the accuracy and precision of the modeling technique, and will empirically test users in controlled experiments.« less
Jonnal, Ravi S; Kocaoglu, Omer P; Zawadzki, Robert J; Liu, Zhuolin; Miller, Donald T; Werner, John S
2016-07-01
Optical coherence tomography (OCT) has enabled "virtual biopsy" of the living human retina, revolutionizing both basic retina research and clinical practice over the past 25 years. For most of those years, in parallel, adaptive optics (AO) has been used to improve the transverse resolution of ophthalmoscopes to foster in vivo study of the retina at the microscopic level. Here, we review work done over the last 15 years to combine the microscopic transverse resolution of AO with the microscopic axial resolution of OCT, building AO-OCT systems with the highest three-dimensional resolution of any existing retinal imaging modality. We surveyed the literature to identify the most influential antecedent work, important milestones in the development of AO-OCT technology, its applications that have yielded new knowledge, research areas into which it may productively expand, and nascent applications that have the potential to grow. Initial efforts focused on demonstrating three-dimensional resolution. Since then, many improvements have been made in resolution and speed, as well as other enhancements of acquisition and postprocessing techniques. Progress on these fronts has produced numerous discoveries about the anatomy, function, and optical properties of the retina. Adaptive optics OCT continues to evolve technically and to contribute to our basic and clinical knowledge of the retina. Due to its capacity to reveal cellular and microscopic detail invisible to clinical OCT systems, it is an ideal companion to those instruments and has the demonstrable potential to produce images that can guide the interpretation of clinical findings.
Optical analysis of a compound quasi-microscope for planetary landers
NASA Technical Reports Server (NTRS)
Wall, S. D.; Burcher, E. E.; Huck, F. O.
1974-01-01
A quasi-microscope concept, consisting of facsimile camera augmented with an auxiliary lens as a magnifier, was introduced and analyzed. The performance achievable with this concept was primarily limited by a trade-off between resolution and object field; this approach leads to a limiting resolution of 20 microns when used with the Viking lander camera (which has an angular resolution of 0.04 deg). An optical system is analyzed which includes a field lens between camera and auxiliary lens to overcome this limitation. It is found that this system, referred to as a compound quasi-microscope, can provide improved resolution (to about 2 microns ) and a larger object field. However, this improvement is at the expense of increased complexity, special camera design requirements, and tighter tolerances on the distances between optical components.
Enabling Interactive Measurements from Large Coverage Microscopy
Bajcsy, Peter; Vandecreme, Antoine; Amelot, Julien; Chalfoun, Joe; Majurski, Michael; Brady, Mary
2017-01-01
Microscopy could be an important tool for characterizing stem cell products if quantitative measurements could be collected over multiple spatial and temporal scales. With the cells changing states over time and being several orders of magnitude smaller than cell products, modern microscopes are already capable of imaging large spatial areas, repeat imaging over time, and acquiring images over several spectra. However, characterizing stem cell products from such large image collections is challenging because of data size, required computations, and lack of interactive quantitative measurements needed to determine release criteria. We present a measurement web system consisting of available algorithms, extensions to a client-server framework using Deep Zoom, and the configuration know-how to provide the information needed for inspecting the quality of a cell product. The cell and other data sets are accessible via the prototype web-based system at http://isg.nist.gov/deepzoomweb. PMID:28663600
A new computerized moving stage for optical microscopes
NASA Astrophysics Data System (ADS)
Hatiboglu, Can Ulas; Akin, Serhat
2004-06-01
Measurements of microscope stage movements in the x and y directions are of importance for some stereological methods. Traditionally, the length of stage movements is measured with differing precision and accuracy using a suitable motorized stage, a microscope and software. Such equipment is generally expensive and not readily available in many laboratories. One other challenging problem is the adaptability to available microscope systems which weakens the possibility of the equipment to be used with any kind of light microscope. This paper describes a simple and cheap programmable moving stage that can be used with the available microscopes in the market. The movements of the stage are controlled by two servo-motors and a controller chip via a Java-based image processing software. With the developed motorized stage and a microscope equipped with a CCD camera, the software allows complete coverage of the specimens with minimum overlap, eliminating the optical strain associated with counting hundreds of images through an eyepiece, in a quick and precise fashion. The uses and the accuracy of the developed stage are demonstrated using thin sections obtained from a limestone core plug.
Enhancing the performance of the light field microscope using wavefront coding.
Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc
2014-10-06
Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective's back focal plane and at the microscope's native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.
Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990
NASA Astrophysics Data System (ADS)
Lorenzen, Manfred; Campbell, Duncan R.; Johnson, Craig W.
1991-03-01
Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner array for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.
Scanning optical microscope with long working distance objective
Cloutier, Sylvain G.
2010-10-19
A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.
Experimental stress–strain analysis of tapered silica optical fibers with nanofiber waist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holleis, S.; Hoinkes, T.; Wuttke, C.
2014-04-21
We experimentally determine tensile force–elongation diagrams of tapered optical fibers with a nanofiber waist. The tapered optical fibers are produced from standard silica optical fibers using a heat and pull process. Both, the force–elongation data and scanning electron microscope images of the rupture points indicate a brittle material. Despite the small waist radii of only a few hundred nanometers, our experimental data can be fully explained by a nonlinear stress–strain model that relies on material properties of macroscopic silica optical fibers. This is an important asset when it comes to designing miniaturized optical elements as one can rely on themore » well-founded material characteristics of standard optical fibers. Based on this understanding, we demonstrate a simple and non-destructive technique that allows us to determine the waist radius of the tapered optical fiber. We find excellent agreement with independent scanning electron microscope measurements of the waist radius.« less
Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenzen, M.; Campbell, D.R.; Johnson, C.W.
1991-01-01
Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner arraymore » for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.« less
[Effect of Ti bonder on the bond strength between porcelain and titanium].
Yao, Hai; Luo, Xiao-ping
2009-12-01
To investigate the influence of GC Initial Ti Bonder on bond strength between Vita Titankeramik porcelain and titanium. Forty titanium samples were prepared and randomly assigned to 4 groups with 10 samples in each group. Samples in each group were subjected to one of the following surface treatments, burnishing (Group B), sandblasting (Group S), firing GC Initial Ti Bonder after burnishing (Group BG) and firing GC Initial Ti Bonder after sandblasting (Group SG). Vita Titankeramik porcelain were fired on the surface of each sample in the middle. Three-point bending tests were conducted on each sample according to the ISO 9693. The fracture patterns of all specimens were recorded using zoom stereo microscope (ZSM) and the fracture surfaces were observed under scanning electron microscope (SEM). With fired GC Initial Ti Bonder, the bond strength of Vita Titankeramik porcelain to titanium in Group BG and Group SG were (32.72 +/- 4.46) and (34.25 +/- 6.52) MPa respectively, which reach the ISO 9693 standard for clinical use and were significantly higher than those in Group B [(20.70 +/- 3.15) MPa] and Group S [(23.92 +/- 5.02) MPa]. GC Initial Ti Bonder can significantly improve bond strength between Vita Titankeramik porcelain and titanium.
Aqueous carrier waveguide in a flow cytometer
Mariella, Jr., Raymond P.; van den Engh, Gerrit; Northrup, M. Allen
1995-01-01
The liquid of a flow cytometer itself acts as an optical waveguide, thus transmitting the light to an optical filter/detector combination. This alternative apparatus and method for detecting scattered light in a flow cytometer is provided by a device which views and detects the light trapped within the optical waveguide formed by the flow stream. A fiber optic or other light collecting device is positioned within the flow stream. This provides enormous advantages over the standard light collection technique which uses a microscope objective. The signal-to-noise ratio is greatly increased over that for right-angle-scattered light collected by a microscope objective, and the alignment requirements are simplified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attota, Ravikiran, E-mail: Ravikiran.attota@nist.gov; Dixson, Ronald G.
We experimentally demonstrate that the three-dimensional (3-D) shape variations of nanometer-scale objects can be resolved and measured with sub-nanometer scale sensitivity using conventional optical microscopes by analyzing 4-D optical data using the through-focus scanning optical microscopy (TSOM) method. These initial results show that TSOM-determined cross-sectional (3-D) shape differences of 30 nm–40 nm wide lines agree well with critical-dimension atomic force microscope measurements. The TSOM method showed a linewidth uncertainty of 1.22 nm (k = 2). Complex optical simulations are not needed for analysis using the TSOM method, making the process simple, economical, fast, and ideally suited for high volume nanomanufacturing process monitoring.
Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator.
MacDonald, A J R; Popowich, G G; Hauer, B D; Kim, P H; Fredrick, A; Rojas, X; Doolin, P; Davis, J P
2015-01-01
We have developed a system for tapered fiber measurements of optomechanical resonators inside a dilution refrigerator, which is compatible with both on- and off-chip devices. Our apparatus features full three-dimensional control of the taper-resonator coupling conditions enabling critical coupling, with an overall fiber transmission efficiency of up to 70%. Notably, our design incorporates an optical microscope system consisting of a coherent bundle of 37,000 optical fibers for real-time imaging of the experiment at a resolution of ∼1 μm. We present cryogenic optical and optomechanical measurements of resonators coupled to tapered fibers at temperatures as low as 9 mK.
Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus
2013-09-09
Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.
Mitigation of cross-beam energy transfer: Implication of two-state focal zooming on OMEGA
NASA Astrophysics Data System (ADS)
Froula, D. H.; Kessler, T. J.; Igumenshchev, I. V.; Betti, R.; Goncharov, V. N.; Huang, H.; Hu, S. X.; Hill, E.; Kelly, J. H.; Meyerhofer, D. D.; Shvydky, A.; Zuegel, J. D.
2013-08-01
Cross-beam energy transfer (CBET) during OMEGA low-adiabat cryogenic experiments reduces the hydrodynamic efficiency by ˜35%, which lowers the calculated one-dimensional (1-D) yield by a factor of 7. CBET can be mitigated by reducing the diameter of the laser beams relative to the target diameter. Reducing the diameter of the laser beams by 30%, after a sufficient conduction zone has been generated (two-state zooming), is predicted to maintain low-mode uniformity while recovering 90% of the kinetic energy lost to CBET. A radially varying phase plate is proposed to implement two-state zooming on OMEGA. A beam propagating through the central half-diameter of the phase plate will produce a large spot, while a beam propagating through the outer annular region of the phase plate will produce a narrower spot. To generate the required two-state near-field laser-beam profile, a picket driver with smoothing by spectral dispersion (SSD) would pass through an apodizer, forming a beam of half the standard diameter. A second main-pulse driver would co-propagate without SSD through its own apodizer, forming a full-diameter annular beam. Hydrodynamic simulations, using the designed laser spots produced by the proposed zooming scheme on OMEGA, show that implementing zooming will increase the implosion velocity by 25% resulting in a 4.5× increase in the 1-D neutron yield. Demonstrating zooming on OMEGA would validate a viable direct-drive CBET mitigation scheme and help establish a pathway to hydrodynamically equivalent direct-drive-ignition implosions by increasing the ablation pressure (1.6×), which will allow for more stable implosions at ignition-relevant velocities.
Design and analysis of a fast, two-mirror soft-x-ray microscope
NASA Technical Reports Server (NTRS)
Shealy, D. L.; Wang, C.; Jiang, W.; Jin, L.; Hoover, R. B.
1992-01-01
During the past several years, a number of investigators have addressed the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft-x-ray applications using multilayer coatings. Some of these systems have demonstrated diffraction limited resolution for small numerical apertures. Rigorously aplanatic, two-aspherical mirror Head microscopes can provide near diffraction limited resolution for very large numerical apertures. The relationships between the numerical aperture, mirror radii and diameters, magnifications, and total system length for Schwarzschild microscope configurations are summarized. Also, an analysis of the characteristics of the Head-Schwarzschild surfaces will be reported. The numerical surface data predicted by the Head equations were fit by a variety of functions and analyzed by conventional optical design codes. Efforts have been made to determine whether current optical substrate and multilayer coating technologies will permit construction of a very fast Head microscope which can provide resolution approaching that of the wavelength of the incident radiation.
Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode.
Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A
2007-09-03
We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated.
Schmidt, Roman; Engelhardt, Johann; Lang, Marion
2013-01-01
Optical microscopy has become a key technology in the life sciences today. Its noninvasive nature provides access to the interior of intact and even living cells, where specific molecules can be precisely localized by fluorescent tagging. However, the attainable 3D resolution of an optical microscope has long been hampered by a comparatively poor resolution along the optic axis. By coherent focusing through two objective lenses, 4Pi microscopy improves the axial resolution by three- to fivefold. This primer is intended as a starting point for the design and operation of a 4Pi microscope of type A.
Park, Kyoung-Duck; Park, Doo Jae; Lee, Seung Gol; Choi, Geunchang; Kim, Dai-Sik; Byeon, Clare Chisu; Choi, Soo Bong; Jeong, Mun Seok
2014-02-21
A resonant shift and a decrease of resonance quality of a tuning fork attached to a conventional fiber optic probe in the vicinity of liquid is monitored systematically while varying the protrusion length and immersion depth of the probe. Stable zones where the resonance modification as a function of immersion depth is minimized are observed. A wet near-field scanning optical microscope (wet-NSOM) is operated for a sample within water by using such a stable zone.
Solid state optical microscope
Young, I.T.
1983-08-09
A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.
Solid-state optical microscope
Young, I.T.
1981-01-07
A solid state optical microscope is described wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. Means for scanning in one of two orthogonal directions are provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.
Solid state optical microscope
Young, Ian T.
1983-01-01
A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.
Shape oscillations of microparticles on an optical microscope stage.
Zhu, Z M; Apfel, R E
1985-11-01
A modulated acoustic radiation pressure technique to produce quadrupole shape oscillations of drops ranging in diameter from 50-220 micron has been used by us. These drops have been suspended by acoustic levitation in a small chamber mounted on a stage of an optical microscope, which allowed easy viewing. The fission of drops and the deformation of sea urchin eggs were also observed.
Joint Services Electronics Program Annual Progress Report.
1987-10-15
polarizability of free carriers in the semiconductor perturb the index of refraction which can be detected in a Nomarski -type optical interferometer. For...interferomters. However, the charge probe relies on a different physical effect and operates by interferometrically detecting the phase change induced in an... Nomarski microscope systems. These techniques will be applied, eventually, in our real-time V.. scanning optical microscope described below. Recently
USDA-ARS?s Scientific Manuscript database
An acousto-optic tunable filter-based hyperspectral microscope imaging method has potential for identification of foodborne pathogenic bacteria from microcolony rapidly with a single cell level. We have successfully developed the method to acquire quality hyperspectral microscopic images from variou...
Gigliotta, Onofrio; Bartolomeo, Paolo; Miglino, Orazio
2015-09-01
Mainstream approaches to modelling cognitive processes have typically focused on (1) reproducing their neural underpinning, without regard to sensory-motor systems and (2) producing a single, ideal computational model. Evolutionary robotics is an alternative possibility to bridge the gap between neural substrate and behavior by means of a sensory-motor apparatus, and a powerful tool to build a population of individuals rather than a single model. We trained 4 populations of neurorobots, equipped with a pan/tilt/zoom camera, and provided with different types of motor control in order to perform a cancellation task, often used to tap spatial cognition. Neurorobots' eye movements were controlled by (a) position, (b) velocity, (c) simulated muscles and (d) simulated muscles with fixed level of zoom. Neurorobots provided with muscle and velocity control showed better performances than those controlled in position. This is an interesting result since muscle control can be considered a particular type of position control. Finally, neurorobots provided with muscle control and zoom outperformed those without zooming ability.
Martin, G. T.; Yoon, S. S.; Mott, K. E.
1991-01-01
Schistosomiasis, a group of parasitic diseases caused by Schistosoma parasites, is associated with water resources development and affects more than 200 million people in 76 countries. Depending on the species of parasite involved, disease of the liver, spleen, gastrointestinal or urinary tract, or kidneys may result. A computer-assisted teaching package has been developed by WHO for use in the training of public health workers involved in schistosomiasis control. The package consists of the software, ZOOM, and a schistosomiasis information file, Dr Schisto, and uses hypermedia technology to link pictures and text. ZOOM runs on the IBM-PC and IBM-compatible computers, is user-friendly, requires a minimal hardware configuration, and can interact with the user in English, French, Spanish or Portuguese. The information files for ZOOM can be created or modified by the instructor using a word processor, and thus can be designed to suit the need of students. No programming knowledge is required to create the stacks. PMID:1786618
Zoom-climb altitude maximization of the F-4C and F-15 aircraft for stratospheric sampling missions
NASA Technical Reports Server (NTRS)
Hague, D. S.; Merz, A. W.; Page, W. A.
1976-01-01
Some predictions indicate that byproducts of aerosol containers may lead to a modification of the ultraviolet-radiation shielding properties of the upper atmosphere. NASA currently monitors atmospheric properties to 70,000 feet using U-2 aircraft. Testing is needed at about 100,000 feet for adequate monitoring of possible aerosol contaminants during the next decade. To study this problem the F-4C and F-15 aircraft were analyzed to determine their maximum altitude ability in zoom-climb maneuvers. These trajectories must satisfy realistic dynamic pressure and Mach number constraints. Maximum altitudes obtained for the F4-C are above 90,000 feet, and for the F-15 above 100,000 feet. Sensitivities of the zoom-climb altitudes were found with respect to several variables including vehicle thrust, initial weight, stratospheric winds and the constraints. A final decision on aircraft selection must be based on mission modification costs and operational considerations balanced against their respective zoom altitude performance capabilities.
Salas, Matthias; Augustin, Marco; Felberer, Franz; Wartak, Andreas; Laslandes, Marie; Ginner, Laurin; Niederleithner, Michael; Ensher, Jason; Minneman, Michael P; Leitgeb, Rainer A; Drexler, Wolfgang; Levecq, Xavier; Schmidt-Erfurth, Ursula; Pircher, Michael
2018-04-01
Imaging of the human retina with high resolution is an essential step towards improved diagnosis and treatment control. In this paper, we introduce a compact, clinically user-friendly instrument based on swept source optical coherence tomography (SS-OCT). A key feature of the system is the realization of two different operation modes. The first operation mode is similar to conventional OCT imaging and provides large field of view (FoV) images (up to 45° × 30°) of the human retina and choroid with standard resolution. The second operation mode enables it to optically zoom into regions of interest with high transverse resolution using adaptive optics (AO). The FoV of this second operation mode (AO-OCT mode) is 3.0° × 2.8° and enables the visualization of individual retinal cells such as cone photoreceptors or choriocapillaris. The OCT engine is based on an akinetic swept source at 1060 nm and provides an A-scan rate of 200 kHz. Structural as well as angiographic information can be retrieved from the retina and choroid in both operational modes. The capabilities of the prototype are demonstrated in healthy and diseased eyes.
Salas, Matthias; Augustin, Marco; Felberer, Franz; Wartak, Andreas; Laslandes, Marie; Ginner, Laurin; Niederleithner, Michael; Ensher, Jason; Minneman, Michael P.; Leitgeb, Rainer A.; Drexler, Wolfgang; Levecq, Xavier; Schmidt-Erfurth, Ursula; Pircher, Michael
2018-01-01
Imaging of the human retina with high resolution is an essential step towards improved diagnosis and treatment control. In this paper, we introduce a compact, clinically user-friendly instrument based on swept source optical coherence tomography (SS-OCT). A key feature of the system is the realization of two different operation modes. The first operation mode is similar to conventional OCT imaging and provides large field of view (FoV) images (up to 45° × 30°) of the human retina and choroid with standard resolution. The second operation mode enables it to optically zoom into regions of interest with high transverse resolution using adaptive optics (AO). The FoV of this second operation mode (AO-OCT mode) is 3.0° × 2.8° and enables the visualization of individual retinal cells such as cone photoreceptors or choriocapillaris. The OCT engine is based on an akinetic swept source at 1060 nm and provides an A-scan rate of 200 kHz. Structural as well as angiographic information can be retrieved from the retina and choroid in both operational modes. The capabilities of the prototype are demonstrated in healthy and diseased eyes. PMID:29675326
Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu
2015-01-01
Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications. PMID:26525841
Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu
2015-11-03
Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications.
NASA Astrophysics Data System (ADS)
Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu
2015-11-01
Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications.
NASA Astrophysics Data System (ADS)
Abeytunge, Sanjeewa; Larson, Bjorg A.; Peterson, Gary; Rajadhyaksha, Milind; Murray, Melissa
2017-02-01
Confocal microscopy is in clinical use to diagnose skin cancers in the United States and in Europe. Potentially, this technology may provide bed-side pathology in breast cancer surgery during tumor removal. Initial studies have described major findings of invasive breast cancers as seen on fluorescence confocal microscopy. In many of these studies the region of interest (ROI) used in the analysis was user-selected and small (typically 15 square-mm). Although these important findings open exploration into rapid pathology, further development and implementation in a surgical setting will require examination of large specimens in a blinded fashion that will address the needs of typical surgical settings. In post surgery pathology viewing, pathologists inspect the entire pathology section with a low (2X) magnification objective lens initially and then zoomed in to ROIs with higher magnification lenses (10X to 40X) magnifications to further investigate suspected regions. In this study we explore the possibility of implementation in a typical surgical setting with a new microscope, termed confocal strip-mosaicking microscope (CSM microscope), which images an area of 400 square-mm (2 cm x 2 cm) of tissue with cellular level resolution in 10 minutes. CSM images of 34 human breast tissue specimens from 18 patients were blindly analyzed by a board-certified pathologist and correlated with the corresponding standard fixed histopathology. Invasive tumors and benign tissue were clearly identified in CSM images. Thirty specimens were concordant for images-to-histopathology correlation while four were discordant. Preliminary results from on-going work to molecularly target tumor margin will also be presented.
Telescopic multi-resolution augmented reality
NASA Astrophysics Data System (ADS)
Jenkins, Jeffrey; Frenchi, Christopher; Szu, Harold
2014-05-01
To ensure a self-consistent scaling approximation, the underlying microscopic fluctuation components can naturally influence macroscopic means, which may give rise to emergent observable phenomena. In this paper, we describe a consistent macroscopic (cm-scale), mesoscopic (micron-scale), and microscopic (nano-scale) approach to introduce Telescopic Multi-Resolution (TMR) into current Augmented Reality (AR) visualization technology. We propose to couple TMR-AR by introducing an energy-matter interaction engine framework that is based on known Physics, Biology, Chemistry principles. An immediate payoff of TMR-AR is a self-consistent approximation of the interaction between microscopic observables and their direct effect on the macroscopic system that is driven by real-world measurements. Such an interdisciplinary approach enables us to achieve more than multiple scale, telescopic visualization of real and virtual information but also conducting thought experiments through AR. As a result of the consistency, this framework allows us to explore a large dimensionality parameter space of measured and unmeasured regions. Towards this direction, we explore how to build learnable libraries of biological, physical, and chemical mechanisms. Fusing analytical sensors with TMR-AR libraries provides a robust framework to optimize testing and evaluation through data-driven or virtual synthetic simulations. Visualizing mechanisms of interactions requires identification of observable image features that can indicate the presence of information in multiple spatial and temporal scales of analog data. The AR methodology was originally developed to enhance pilot-training as well as `make believe' entertainment industries in a user-friendly digital environment We believe TMR-AR can someday help us conduct thought experiments scientifically, to be pedagogically visualized in a zoom-in-and-out, consistent, multi-scale approximations.
Measurement of the Resolution of the Optical Microscope.
ERIC Educational Resources Information Center
Bowlt, C.
1983-01-01
Outlines procedures demonstrating that the aperture of a microscope objective limits resolving power and then, by using ancillary measurements made with a calibrated graticule in the microscope eyepiece, that the experimentally determined value for the maximum resolving power of a given objective is close to the value predicted by theory. (JN)
ERIC Educational Resources Information Center
Thorn, Courtney; Rye, James; Walls, Holly
2017-01-01
Photography is a creative art that continues to advance through technological innovations. Smart phones have made photography a nearly daily occurance, and people have become quite accustomed to zooming in and taking photos. This article explains how elementary teachers can harness a much "bigger" technology application--GigaPan--to help…
Colomb, Tristan; Dürr, Florian; Cuche, Etienne; Marquet, Pierre; Limberger, Hans G; Salathé, René-Paul; Depeursinge, Christian
2005-07-20
We present a digital holographic microscope that permits one to image polarization state. This technique results from the coupling of digital holographic microscopy and polarization digital holography. The interference between two orthogonally polarized reference waves and the wave transmitted by a microscopic sample, magnified by a microscope objective, is recorded on a CCD camera. The off-axis geometry permits one to reconstruct separately from this single hologram two wavefronts that are used to image the object-wave Jones vector. We applied this technique to image the birefringence of a bent fiber. To evaluate the precision of the phase-difference measurement, the birefringence induced by internal stress in an optical fiber is measured and compared to the birefringence profile captured by a standard method, which had been developed to obtain high-resolution birefringence profiles of optical fibers.
Scholl, A; Marcus, M A; Doran, A; Nasiatka, J R; Young, A T; MacDowell, A A; Streubel, R; Kent, N; Feng, J; Wan, W; Padmore, H A
2018-05-01
Aberration correction by an electron mirror dramatically improves the spatial resolution and transmission of photoemission electron microscopes. We will review the performance of the recently installed aberration corrector of the X-ray Photoemission Electron Microscope PEEM-3 and show a large improvement in the efficiency of the electron optics. Hartmann testing is introduced as a quantitative method to measure the geometrical aberrations of a cathode lens electron microscope. We find that aberration correction leads to an order of magnitude reduction of the spherical aberrations, suggesting that a spatial resolution of below 100 nm is possible at 100% transmission of the optics when using x-rays. We demonstrate this improved performance by imaging test patterns employing element and magnetic contrast. Published by Elsevier B.V.
A colinear backscattering Mueller matrix microscope for reflection Muller matrix imaging
NASA Astrophysics Data System (ADS)
Chen, Zhenhua; Yao, Yue; Zhu, Yuanhuan; Ma, Hui
2018-02-01
In a recent attempt, we developed a colinear backscattering Mueller matrix microscope by adding polarization state generator (PSG) and polarization state analyzer (PSA) into the illumination and detection optical paths of a commercial metallurgical microscope. It is found that specific efforts have to be made to reduce the artifacts due to the intrinsic residual polarizations of the optical system, particularly the dichroism due to the 45 degrees beam splitter. In this paper, we present a new calibration method based on numerical reconstruction of the instrument matrix to remove the artifacts introduced by beam splitter. Preliminary tests using a mirror as a standard sample show that the maximum Muller matrix element error of the colinear backscattering Muller matrix microscope can be reduced to a few percent.
The construction and characterization of optical traps for manipulating microscopic particles
NASA Astrophysics Data System (ADS)
Thompson, Tiffany; Behringer, Ernest
2011-04-01
Optical traps use tightly focused laser light to manipulate microscopic particles and have applications in nanofabrication, characterizing DNA, and in vitro fertilization [1]. We will describe the design, construction, and characterization of an optical trap that is capable of trapping and imaging 3 μm polystyrene spheres using a 12 mW HeNe laser. The design was based on previous work [2,3] describing how to build affordable optical traps. We will discuss trapping forces and their calibration. [4pt] [1] D.G. Grier, "A Revolution in Optical Manipulation," Nature 424, 810-816 (2003). [0pt] [2] S.P. Smith et al., "Inexpensive optical tweezers for undergraduate laboratories," Am. J. Phys. 67 (1), 26-35 (1999).[0pt] [3] J. Bechhoefer et al., "Faster, cheaper, safer optical tweezers for the undergraduate laboratory," Am. J. Phys. 70 (4), 393-400 (2001).
Jonnal, Ravi S.; Kocaoglu, Omer P.; Zawadzki, Robert J.; Liu, Zhuolin; Miller, Donald T.; Werner, John S.
2016-01-01
Purpose Optical coherence tomography (OCT) has enabled “virtual biopsy” of the living human retina, revolutionizing both basic retina research and clinical practice over the past 25 years. For most of those years, in parallel, adaptive optics (AO) has been used to improve the transverse resolution of ophthalmoscopes to foster in vivo study of the retina at the microscopic level. Here, we review work done over the last 15 years to combine the microscopic transverse resolution of AO with the microscopic axial resolution of OCT, building AO-OCT systems with the highest three-dimensional resolution of any existing retinal imaging modality. Methods We surveyed the literature to identify the most influential antecedent work, important milestones in the development of AO-OCT technology, its applications that have yielded new knowledge, research areas into which it may productively expand, and nascent applications that have the potential to grow. Results Initial efforts focused on demonstrating three-dimensional resolution. Since then, many improvements have been made in resolution and speed, as well as other enhancements of acquisition and postprocessing techniques. Progress on these fronts has produced numerous discoveries about the anatomy, function, and optical properties of the retina. Conclusions Adaptive optics OCT continues to evolve technically and to contribute to our basic and clinical knowledge of the retina. Due to its capacity to reveal cellular and microscopic detail invisible to clinical OCT systems, it is an ideal companion to those instruments and has the demonstrable potential to produce images that can guide the interpretation of clinical findings. PMID:27409507
Integrated Micro-Optics for Microfluidic Detection.
Kazama, Yuto; Hibara, Akihide
2016-01-01
A method of embedding micro-optics into a microfluidic device was proposed and demonstrated. First, the usefulness of embedded right-angle prisms was demonstrated in microscope observation. Lateral-view microscopic observation of an aqueous dye flow in a 100-μm-sized microchannel was demonstrated. Then, the embedded right-angle prisms were utilized for multi-beam laser spectroscopy. Here, crossed-beam thermal lens detection of a liquid sample was applied to glucose detection.
Optical Interferometric Micrometrology
NASA Technical Reports Server (NTRS)
Abel, Phillip B.; Lauer, James R.
1989-01-01
Resolutions in angstrom and subangstrom range sought for atomic-scale surface probes. Experimental optical micrometrological system built to demonstrate calibration of piezoelectric transducer to displacement sensitivity of few angstroms. Objective to develop relatively simple system producing and measuring translation, across surface of specimen, of stylus in atomic-force or scanning tunneling microscope. Laser interferometer used to calibrate piezoelectric transducer used in atomic-force microscope. Electronic portion of calibration system made of commercially available components.
NASA Astrophysics Data System (ADS)
Miao, Qin; Rahn, J. Richard; Tourovskaia, Anna; Meyer, Michael G.; Neumann, Thomas; Nelson, Alan C.; Seibel, Eric J.
2009-11-01
The practice of clinical cytology relies on bright-field microscopy using absorption dyes like hematoxylin and eosin in the transmission mode, while the practice of research microscopy relies on fluorescence microscopy in the epi-illumination mode. The optical projection tomography microscope is an optical microscope that can generate 3-D images of single cells with isometric high resolution both in absorption and fluorescence mode. Although the depth of field of the microscope objective is in the submicron range, it can be extended by scanning the objective's focal plane. The extended depth of field image is similar to a projection in a conventional x-ray computed tomography. Cells suspended in optical gel flow through a custom-designed microcapillary. Multiple pseudoprojection images are taken by rotating the microcapillary. After these pseudoprojection images are further aligned, computed tomography methods are applied to create 3-D reconstruction. 3-D reconstructed images of single cells are shown in both absorption and fluorescence mode. Fluorescence spatial resolution is measured at 0.35 μm in both axial and lateral dimensions. Since fluorescence and absorption images are taken in two different rotations, mechanical error may cause misalignment of 3-D images. This mechanical error is estimated to be within the resolution of the system.
Noise induced chaos in optically driven colloidal rings.
NASA Astrophysics Data System (ADS)
Roichman, Yael; Zaslavsky, George; Grier, David G.
2007-03-01
Given a constant flux of energy, many driven dissipative systems rapidly organize themselves into configurations that support steady state motion. Examples include swarming of bacterial colonies, convection in shaken sandpiles, and synchronization in flowing traffic. How simple objects interacting in simple ways self-organize generally is not understood, mainly because so few of the available experimental systems afford the necessary access to their microscopic degrees of freedom. This talk introduces a new class of model driven dissipative systems typified by three colloidal spheres circulating around a ring-like optical trap known as an optical vortex. By controlling the interplay between hydrodynamic interactions and fixed disorder we are able to drive a transition from a previously predicted periodic steady state to fully developed chaos. In addition, by tracking both microscopic trajectories and macroscopic collective fluctuations the relation between the onset of microscopic weak chaos and the evolution of space-time self-similarity in macroscopic transport properties is revealed. In a broader scope, several optical vortices can be coupled to create a large dissipative system where each building block has internal degrees of freedom. In such systems the little understood dynamics of processes like frustration and jamming, fluctuation-dissipation relations and the propagation of collective motion can be tracked microscopically.
Aqueous carrier waveguide in a flow cytometer
Mariella, R.P. Jr.; Engh, G. van den; Northrup, M.A.
1995-12-12
The liquid of a flow cytometer itself acts as an optical waveguide, thus transmitting the light to an optical filter/detector combination. This alternative apparatus and method for detecting scattered light in a flow cytometer is provided by a device which views and detects the light trapped within the optical waveguide formed by the flow stream. A fiber optic or other light collecting device is positioned within the flow stream. This provides enormous advantages over the standard light collection technique which uses a microscope objective. The signal-to-noise ratio is greatly increased over that for right-angle-scattered light collected by a microscope objective, and the alignment requirements are simplified. 6 figs.
Cortesi, Marilisa; Bandiera, Lucia; Pasini, Alice; Bevilacqua, Alessandro; Gherardi, Alessandro; Furini, Simone; Giordano, Emanuele
2017-01-01
Quantifying gene expression at single cell level is fundamental for the complete characterization of synthetic gene circuits, due to the significant impact of noise and inter-cellular variability on the system's functionality. Commercial set-ups that allow the acquisition of fluorescent signal at single cell level (flow cytometers or quantitative microscopes) are expensive apparatuses that are hardly affordable by small laboratories. A protocol that makes a standard optical microscope able to acquire quantitative, single cell, fluorescent data from a bacterial population transformed with synthetic gene circuitry is presented. Single cell fluorescence values, acquired with a microscope set-up and processed with custom-made software, are compared with results that were obtained with a flow cytometer in a bacterial population transformed with the same gene circuitry. The high correlation between data from the two experimental set-ups, with a correlation coefficient computed over the tested dynamic range > 0.99, proves that a standard optical microscope- when coupled with appropriate software for image processing- might be used for quantitative single-cell fluorescence measurements. The calibration of the set-up, together with its validation, is described. The experimental protocol described in this paper makes quantitative measurement of single cell fluorescence accessible to laboratories equipped with standard optical microscope set-ups. Our method allows for an affordable measurement/quantification of intercellular variability, whose better understanding of this phenomenon will improve our comprehension of cellular behaviors and the design of synthetic gene circuits. All the required software is freely available to the synthetic biology community (MUSIQ Microscope flUorescence SIngle cell Quantification).
Sung, Kung-Bin; Liang, Chen; Descour, Michael; Collier, Tom; Follen, Michele; Richards-Kortum, Rebecca
2002-10-01
We have built a fiber-optic confocal reflectance microscope capable of imaging human tissues in near real time. Miniaturization of the objective lens and the mechanical components for positioning and axially scanning the objective enables the device to be used in inner organs of the human body. The lateral resolution is 2 micrometers and axial resolution is 10 micrometers. Confocal images of fixed tissue biopsies and the human lip in vivo have been obtained at 15 frames/s without any fluorescent stains. Both cell morphology and tissue architecture can be appreciated from images obtained with this microscope.
Real-time near-IR imaging of laser-ablation crater evolution in dental enamel
NASA Astrophysics Data System (ADS)
Darling, Cynthia L.; Fried, Daniel
2007-02-01
We have shown that the enamel of the tooth is almost completely transparent near 1310-nm in the near-infrared and that near-IR (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue and for observing defects in the interior of the tooth. Lasers are now routinely used for many applications in dentistry including the ablation of dental caries. The objective of this study was to test the hypothesis that real-time NIR imaging can be used to monitor laser-ablation under varying conditions to assess peripheral thermal and transient-stress induced damage and to measure the rate and efficiency of ablation. Moreover, NIR imaging may have considerable potential for monitoring the removal of demineralized areas of the tooth during cavity preparations. Sound human tooth sections of approximately 3-mm thickness were irradiated by a CO II laser under varying conditions with and without a water spray. The incision area in the interior of each sample was imaged using a tungsten-halogen lamp with band-pass filter centered at 131--nm combined with an InGaAs focal plane array with a NIR zoom microscope in transillumination. Due to the high transparency of enamel at 1310-nm, laser-incisions were clearly visible to the dentin-enamel junction and crack formation, dehydration and irreversible thermal changes were observed during ablation. This study showed that there is great potential for near-IR imaging to monitor laser-ablation events in real-time to: assess safe laser operating parameters by imaging thermal and stress-induced damage, elaborate the mechanisms involved in ablation such as dehydration, and monitor the removal of demineralized enamel.
Real-Time Nanoscopy by Using Blinking Enhanced Quantum Dots
Watanabe, Tomonobu M.; Fukui, Shingo; Jin, Takashi; Fujii, Fumihiko; Yanagida, Toshio
2010-01-01
Superresolution optical microscopy (nanoscopy) is of current interest in many biological fields. Superresolution optical fluctuation imaging, which utilizes higher-order cumulant of fluorescence temporal fluctuations, is an excellent method for nanoscopy, as it requires neither complicated optics nor illuminations. However, it does need an impractical number of images for real-time observation. Here, we achieved real-time nanoscopy by modifying superresolution optical fluctuation imaging and enhancing the fluctuation of quantum dots. Our developed quantum dots have higher blinking than commercially available ones. The fluctuation of the blinking improved the resolution when using a variance calculation for each pixel instead of a cumulant calculation. This enabled us to obtain microscopic images with 90-nm and 80-ms spatial-temporal resolution by using a conventional fluorescence microscope without any optics or devices. PMID:20923631
Two-probe atomic-force microscope manipulator and its applications.
Zhukov, A A; Stolyarov, V S; Kononenko, O V
2017-06-01
We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.
SIL-STED microscopy technique enhancing super-resolution of fluorescence microscopy
NASA Astrophysics Data System (ADS)
Park, No-Cheol; Lim, Geon; Lee, Won-sup; Moon, Hyungbae; Choi, Guk-Jong; Park, Young-Pil
2017-08-01
We have characterized a new type STED microscope which combines a high numerical aperture (NA) optical head with a solid immersion lens (SIL), and we call it as SIL-STED microscope. The advantage of a SIL-STED microscope is that its high NA of the SIL makes it superior to a general STED microscope in lateral resolution, thus overcoming the optical diffraction limit at the macromolecular level and enabling advanced super-resolution imaging of cell surface or cell membrane structure and function Do. This study presents the first implementation of higher NA illumination in a STED microscope limiting the fluorescence lateral resolution to about 40 nm. The refractive index of the SIL which is made of material KTaO3 is about 2.23 and 2.20 at a wavelength of 633 nm and 780 nm which are used for excitation and depletion in STED imaging, respectively. Based on the vector diffraction theory, the electric field focused by the SILSTED microscope is numerically calculated so that the numerical results of the point dispersion function of the microscope and the expected resolution could be analyzed. For further investigation, fluorescence imaging of nano size fluorescent beads is fulfilled to show improved performance of the technique.
Müllenbroich, M Caroline; Silvestri, Ludovico; Onofri, Leonardo; Costantini, Irene; Hoff, Marcel Van't; Sacconi, Leonardo; Iannello, Giulio; Pavone, Francesco S
2015-10-01
Comprehensive mapping and quantification of neuronal projections in the central nervous system requires high-throughput imaging of large volumes with microscopic resolution. To this end, we have developed a confocal light-sheet microscope that has been optimized for three-dimensional (3-D) imaging of structurally intact clarified whole-mount mouse brains. We describe the optical and electromechanical arrangement of the microscope and give details on the organization of the microscope management software. The software orchestrates all components of the microscope, coordinates critical timing and synchronization, and has been written in a versatile and modular structure using the LabVIEW language. It can easily be adapted and integrated to other microscope systems and has been made freely available to the light-sheet community. The tremendous amount of data routinely generated by light-sheet microscopy further requires novel strategies for data handling and storage. To complete the full imaging pipeline of our high-throughput microscope, we further elaborate on big data management from streaming of raw images up to stitching of 3-D datasets. The mesoscale neuroanatomy imaged at micron-scale resolution in those datasets allows characterization and quantification of neuronal projections in unsectioned mouse brains.
The contributions of Otto Scherzer (1909-1982) to the development of the electron microscope.
Marko, Michael; Rose, Harald
2010-08-01
Otto Scherzer was one of the pioneers of theoretical electron optics. He was coauthor of the first comprehensive book on electron optics and was the first to understand that round electron lenses could not be combined to correct aberrations, as is the case in light optics. He subsequently was the first to describe several alternative means to correct spherical and chromatic aberration of electron lenses. These ideas were put into practice by his laboratory and students at Darmstadt and their successors, leading to the fully corrected electron microscopes now in operation.
Development of Nomarski microscopy for quantitative determination of surface topography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, J. S.; Gordon, R. L.; Lessor, D. L.
1979-01-01
The use of Nomarski differential interference contrast (DIC) microscopy has been extended to provide nondestructive, quantitative analysis of a sample's surface topography. Theoretical modeling has determined the dependence of the image intensity on the microscope's optical components, the sample's optical properties, and the sample's surface orientation relative to the microscope. Results include expressions to allow the inversion of image intensity data to determine sample surface slopes. A commercial Nomarski system has been modified and characterized to allow the evaluation of the optical model. Data have been recorded with smooth, planar samples that verify the theoretical predictions.
Remote Histology Learning from Static versus Dynamic Microscopic Images
ERIC Educational Resources Information Center
Mione, Sylvia; Valcke, Martin; Cornelissen, Maria
2016-01-01
Histology is the study of microscopic structures in normal tissue sections. Curriculum redesign in medicine has led to a decrease in the use of optical microscopes during practical classes. Other imaging solutions have been implemented to facilitate remote learning. With advancements in imaging technologies, learning material can now be digitized.…
Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy
Brooker, Gary; Siegel, Nisan; Wang, Victor; Rosen, Joseph
2011-01-01
Fresnel Incoherent Correlation Holography (FINCH) enables holograms and 3D images to be created from incoherent light with just a camera and spatial light modulator (SLM). We previously described its application to microscopic incoherent fluorescence wherein one complex hologram contains all the 3D information in the microscope field, obviating the need for scanning or serial sectioning. We now report experiments which have led to the optimal optical, electro-optic, and computational conditions necessary to produce holograms which yield high quality 3D images from fluorescent microscopic specimens. An important improvement from our previous FINCH configurations capitalizes on the polarization sensitivity of the SLM so that the same SLM pixels which create the spherical wave simulating the microscope tube lens, also pass the plane waves from the infinity corrected microscope objective, so that interference between the two wave types at the camera creates a hologram. This advance dramatically improves the resolution of the FINCH system. Results from imaging a fluorescent USAF pattern and a pollen grain slide reveal resolution which approaches the Rayleigh limit by this simple method for 3D fluorescent microscopic imaging. PMID:21445140
Fazel, Akbar; Aalai, Shima; Rismanchian, Mansour
2009-08-01
Macro-design influences the initial stability of implant and reduces micromotions. The aim of this study was to determine and compare micromotions and stress distribution in the bone around immediately loaded Maestro and Xive implants using finite element analysis. In this experimental study, accurate, clear photos were prepared of Xive and Maestro implants 12 and 13 mm long and 4 and 3.8 mm in diameter, respectively, using a Nikon Digital Camera with a resolution 5.24-megapixels with 8x Optical Zoom and 4x Digital Zoom. After accurate measurements, 3-D models of the implants inside the lower mandible (D2) were processed in Solidworks Version 2003 environment and transferred into Ansys for finite element analysis. After loading of 500 N angled at 70 degrees from the horizontal plane, the micromotion of the implant and Von Misses stresses around the bone were measured. The measured micromotion in Maestro implant was 148 mum and that in Xive was 284 mum. Stress distribution in the bone surrounding Maestro implant was better than Xive, but maximum stress surrounding Xive implants (30 MPa) was lower than Maestro (33 MPa). Based on the results obtained in the present study, maximum micromotion in maestro was less than that in Xive implants. This finding can guarantee the application of maestro implants for immediate loading.
Ultrathin zoom lens system based on liquid lenses
NASA Astrophysics Data System (ADS)
Li, Lei; Liu, Chao; Wang, Qiong-Hua
2015-07-01
In this paper, we propose an ultrathin zoom lens system based on liquid lenses. The proposed system consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens has several concentric surfaces. The annular folded lens is used to get the main power and correct aberrations. The three liquid lenses are used to change the focal length and correct aberration. An analysis of the proposed system is presented along with the design, fabrication, and testing of a prototype. All the elements in the proposed system are very thin, so the system is an ultrathin zoom lens system, which has potential application as lightweight, thin, high-quality imagers for aerospace, consumer, and military applications.
Chiral Nucleon-Nucleus Potentials at N3LO
NASA Astrophysics Data System (ADS)
Finelli, Paolo; Vorabbi, Matteo; Giusti, Carlotta
2018-03-01
Elastic scattering is probably one of the most relevant tools to study nuclear interactions. In this contribution we study the domain of applicability of microscopic two-body chiral potentials in the construction of an optical potential. A microscopic complex optical potential is derived and tested performing calculations on 16O at different energies. Good agreement with empirical data is obtained if a Lippmann-Schwinger cutoff at relatively high energies (above 500 MeV) is employed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henn, T.; Kiessling, T., E-mail: tobias.kiessling@physik.uni-wuerzburg.de; Ossau, W.
We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast “white light” supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables themore » investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naka, T., E-mail: naka@flab.phys.nagoya-u.ac.jp; Institute for Advanced Research, Nagoya University, Aichi 464-8602; Asada, T.
Analyses of nuclear emulsion detectors that can detect and identify charged particles or radiation as tracks have typically utilized optical microscope systems because the targets have lengths from several μm to more than 1000 μm. For recent new nuclear emulsion detectors that can detect tracks of submicron length or less, the current readout systems are insufficient due to their poor resolution. In this study, we developed a new system and method using an optical microscope system for rough candidate selection and the hard X-ray microscope system at SPring-8 for high-precision analysis with a resolution of better than 70 nm resolution.more » Furthermore, we demonstrated the analysis of submicron-length tracks with a matching efficiency of more than 99% and position accuracy of better than 5 μm. This system is now running semi-automatically.« less
Fractal evaluation of drug amorphicity from optical and scanning electron microscope images
NASA Astrophysics Data System (ADS)
Gavriloaia, Bogdan-Mihai G.; Vizireanu, Radu C.; Neamtu, Catalin I.; Gavriloaia, Gheorghe V.
2013-09-01
Amorphous materials are metastable, more reactive than the crystalline ones, and have to be evaluated before pharmaceutical compound formulation. Amorphicity is interpreted as a spatial chaos, and patterns of molecular aggregates of dexamethasone, D, were investigated in this paper by using fractal dimension, FD. Images having three magnifications of D were taken from an optical microscope, OM, and with eight magnifications, from a scanning electron microscope, SEM, were analyzed. The average FD for pattern irregularities of OM images was 1.538, and about 1.692 for SEM images. The FDs of the two kinds of images are less sensitive of threshold level. 3D images were shown to illustrate dependence of FD of threshold and magnification level. As a result, optical image of single scale is enough to characterize the drug amorphicity. As a result, the OM image at a single scale is enough to characterize the amorphicity of D.
High resolution tip-tilt positioning system for a next generation MLL-based x-ray microscope
Xu, Weihe; Schlossberger, Noah; Xu, Wei; ...
2017-11-15
Multilayer Laue lenses (MLLs) are x-ray focusing optics with the potential to focus hard x-rays down to a single nanometer level. In order to achieve point focus, an MLL microscope needs to have the capability to perform tip-tilt motion of MLL optics and to hold the angular position for an extended period of time. Here, we present a 2D tip-tilt system that can achieve an angular resolution of over 100 microdegree with a working range of 4°, by utilizing a combination of laser interferometer and mini retroreflector. The linear dimensions of the developed system are about 30 mm in allmore » directions, and the thermal dissipation of the system during operation is negligible. Compact design and high angular resolution make the developed system suitable for MLL optics alignment in the next generation of MLL-based x-ray microscopes.« less
High resolution tip-tilt positioning system for a next generation MLL-based x-ray microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Weihe; Schlossberger, Noah; Xu, Wei
Multilayer Laue lenses (MLLs) are x-ray focusing optics with the potential to focus hard x-rays down to a single nanometer level. In order to achieve point focus, an MLL microscope needs to have the capability to perform tip-tilt motion of MLL optics and to hold the angular position for an extended period of time. Here, we present a 2D tip-tilt system that can achieve an angular resolution of over 100 microdegree with a working range of 4°, by utilizing a combination of laser interferometer and mini retroreflector. The linear dimensions of the developed system are about 30 mm in allmore » directions, and the thermal dissipation of the system during operation is negligible. Compact design and high angular resolution make the developed system suitable for MLL optics alignment in the next generation of MLL-based x-ray microscopes.« less
Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes
NASA Technical Reports Server (NTRS)
Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.
2017-01-01
In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.
Enhancing the performance of the light field microscope using wavefront coding
Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc
2014-01-01
Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective’s back focal plane and at the microscope’s native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain. PMID:25322056
ERIC Educational Resources Information Center
Rosenfeld, Malke; Kelin, Daniel; Plows, Kate; Conarro, Ryan; Broderick, Debora
2014-01-01
When one says "writing about teaching artist practice," what exactly does that mean? In the first two sections (EJ1039315 and EJ1039319), the authors considered different ways to frame a story by either zooming in closely to a specific moment or zooming out to provide more context in an effort to address complex issues. The stories in…
Iberian Spanish "Macho": Vantages and Polysemy in Culturally Defined Meaning
ERIC Educational Resources Information Center
Grace, Caroline A.; Glaz, Adam
2010-01-01
This study explores some specific aspects of compatibility between cognitive models. Robert E. MacLaury's theory of vantages as arrangements of coordinates and Lakoff's concept of radial categories are mutually reinforcing to an analysis of semantic polysemy. Vantage Theory (VT) includes the notions of "zooming in" and "zooming out", allowing…
NASA Technical Reports Server (NTRS)
2008-01-01
[figure removed for brevity, see original site] Click on the image for movie of Zooming in on Landing Site This animation zooms in on the area on Mars where NASA's Phoenix Mars Lander will touchdown on May 25, 2008. The image was taken by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The first shot shows the spacecraft's landing ellipse in green, the area where Phoenix has a high probability of landing. It then zooms in to show the region's arctic terrain. This polar landscape is relatively free of rocks, with only about 1 to 2 rocks 1.5 meters (4.9 feet) or larger in an area about as big as two football fields. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace & Technologies Corp., Boulder, Colo.Genoviz Software Development Kit: Java tool kit for building genomics visualization applications.
Helt, Gregg A; Nicol, John W; Erwin, Ed; Blossom, Eric; Blanchard, Steven G; Chervitz, Stephen A; Harmon, Cyrus; Loraine, Ann E
2009-08-25
Visualization software can expose previously undiscovered patterns in genomic data and advance biological science. The Genoviz Software Development Kit (SDK) is an open source, Java-based framework designed for rapid assembly of visualization software applications for genomics. The Genoviz SDK framework provides a mechanism for incorporating adaptive, dynamic zooming into applications, a desirable feature of genome viewers. Visualization capabilities of the Genoviz SDK include automated layout of features along genetic or genomic axes; support for user interactions with graphical elements (Glyphs) in a map; a variety of Glyph sub-classes that promote experimentation with new ways of representing data in graphical formats; and support for adaptive, semantic zooming, whereby objects change their appearance depending on zoom level and zooming rate adapts to the current scale. Freely available demonstration and production quality applications, including the Integrated Genome Browser, illustrate Genoviz SDK capabilities. Separation between graphics components and genomic data models makes it easy for developers to add visualization capability to pre-existing applications or build new applications using third-party data models. Source code, documentation, sample applications, and tutorials are available at http://genoviz.sourceforge.net/.
The effect of mechanical drawing on optical and structural properties of nylon 6 fibres
NASA Astrophysics Data System (ADS)
El-Bakary, M. A.
2007-09-01
The Pluta polarizing double-refracting interference microscope was attached to a mechanical drawing device to study the effect of cold drawing on the optical and structural properties of nylon 6 fibres. The microscope was used in its two positions for determining the refractive indices and birefringence of fibres. Different applied stresses and strain rates were obtained using the mechanical-drawing device. The effect of the applied stresses on the optical and physical parameters was investigated. The resulting optical parameters were utilized to investigate the polarizability per unit volume, the optical orientation factor, the orientation angle and the average work per chain. The refractive index and birefringence profiles were measured. Relationships between the average work per chain and optical parameters at different strains rates were determined. An empirical formula was deduced for these fibres. Micro-interferograms are given for illustration.
Spatiotemporal polarization modulation microscopy with a microretarder array
NASA Astrophysics Data System (ADS)
Ding, Changqin; Ulcickas, James R. W.; Simpson, Garth J.
2018-02-01
A patterned microretarder array positioned in the rear conjugate plane of a microscope enables rapid polarizationdependent nonlinear optical microscopy. The pattern introduced to the array results in periodic modulation of the polarization-state of the incident light as a function of position within the field of view with no moving parts or active control. Introduction of a single stationary optical element and a fixed polarizer into the beam of a nonlinear optical microscope enabled nonlinear optical tensor recovery, which informs on local structure and orientation. Excellent agreement was observed between the measured and predicted second harmonic generation (SHG) of z-cut quartz, selected as a test system with well-established nonlinear optical properties. Subsequent studies of spatially varying samples further support the general applicability of this relatively simple strategy for detailed polarization analysis in both conventional and nonlinear optical imaging of structurally diverse samples.
Pastor, Géraldine; Jiménez-González, María; Plaza-García, Sandra; Beraza, Marta; Reese, Torsten
2017-06-01
A newly adapted zoomed ultrafast low-angle RARE (U-FLARE) sequence is described for abdominal imaging applications at 11.7 Tesla and compared with the standard echo-plannar imaging (EPI) and snapshot fast low angle shot (FLASH) methods. Ultrafast EPI and snapshot-FLASH protocols were evaluated to determine relaxation times in phantoms and in the mouse kidney in vivo. Owing to their apparent shortcomings, imaging artefacts, signal-to-noise ratio (SNR), and variability in the determination of relaxation times, these methods are compared with the newly implemented zoomed U-FLARE sequence. Snapshot-FLASH has a lower SNR when compared with the zoomed U-FLARE sequence and EPI. The variability in the measurement of relaxation times is higher in the Look-Locker sequences than in inversion recovery experiments. Respectively, the average T1 and T2 values at 11.7 Tesla are as follows: kidney cortex, 1810 and 29 ms; kidney medulla, 2100 and 25 ms; subcutaneous tumour, 2365 and 28 ms. This study demonstrates that the zoomed U-FLARE sequence yields single-shot single-slice images with good anatomical resolution and high SNR at 11.7 Tesla. Thus, it offers a viable alternative to standard protocols for mapping very fast parameters, such as T1 and T2, or dynamic processes in vivo at high field.
NASA Technical Reports Server (NTRS)
Follen, Gregory; auBuchon, M.
2000-01-01
Within NASA's High Performance Computing and Communication (HPCC) program, NASA Glenn Research Center is developing an environment for the analysis/design of aircraft engines called the Numerical Propulsion System Simulation (NPSS). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structures, and heat transfer along with the concept of numerical zooming between zero-dimensional to one-, two-, and three-dimensional component engine codes. In addition, the NPSS is refining the computing and communication technologies necessary to capture complex physical processes in a timely and cost-effective manner. The vision for NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Of the different technology areas that contribute to the development of the NPSS Environment, the subject of this paper is a discussion on numerical zooming between a NPSS engine simulation and higher fidelity representations of the engine components (fan, compressor, burner, turbines, etc.). What follows is a description of successfully zooming one-dimensional (row-by-row) high-pressure compressor analysis results back to a zero-dimensional NPSS engine simulation and a discussion of the results illustrated using an advanced data visualization tool. This type of high fidelity system-level analysis, made possible by the zooming capability of the NPSS, will greatly improve the capability of the engine system simulation and increase the level of virtual test conducted prior to committing the design to hardware.
Operating microscopes: past, present, and future.
Uluç, Kutluay; Kujoth, Gregory C; Başkaya, Mustafa K
2009-09-01
The operating microscope is a fixture of modern surgical facilities, and it is a critically important factor in the success of many of the most complex and difficult surgical interventions used in medicine today. The rise of this key surgical tool reflects advances in understanding the principles of optics and vision that have occurred over centuries. The development of reading spectacles in the late 13th century led to the construction of early compound microscopes in the 16th and 17th centuries by Lippershey, Janssen, Galileo, Hooke, and others. Perhaps surprisingly, Leeuwenhoek's simple microscopes of this era offered improved performance over his contemporaries' designs. The intervening years saw improvements that reduced the spherical and chromatic aberrations present in compound microscopes. By the late 19th century, Carl Zeiss and Ernst Abbe ushered the compound microscope into the beginnings of the modern era of commercial design and production. The introduction of the microscope into the operating room by Nylén in 1921 initiated a revolution in surgical practice that gained momentum throughout the 1950s with multiple refinements, the introduction of the Zeiss OPMI series, and Kurze's application of the microscope to neurosurgery in 1957. Many of the refinements of the last 50 years have greatly improved the handling and practical operation of the surgical microscope, considerations which are equally important to its optical performance. Today's sophisticated operating microscopes allow for advanced real-time angiographic and tumor imaging. In this paper the authors discuss what might be found in the operating rooms of tomorrow.
Shin, Dongsuk; Pierce, Mark C; Gillenwater, Ann M; Williams, Michelle D; Richards-Kortum, Rebecca R
2010-06-23
Early detection is an essential component of cancer management. Unfortunately, visual examination can often be unreliable, and many settings lack the financial capital and infrastructure to operate PET, CT, and MRI systems. Moreover, the infrastructure and expense associated with surgical biopsy and microscopy are a challenge to establishing cancer screening/early detection programs in low-resource settings. Improvements in performance and declining costs have led to the availability of optoelectronic components, which can be used to develop low-cost diagnostic imaging devices for use at the point-of-care. Here, we demonstrate a fiber-optic fluorescence microscope using a consumer-grade camera for in vivo cellular imaging. The fiber-optic fluorescence microscope includes an LED light, an objective lens, a fiber-optic bundle, and a consumer-grade digital camera. The system was used to image an oral cancer cell line labeled with 0.01% proflavine. A human tissue specimen was imaged following surgical resection, enabling dysplastic and cancerous regions to be evaluated. The oral mucosa of a healthy human subject was imaged in vivo, following topical application of 0.01% proflavine. The fiber-optic microscope resolved individual nuclei in all specimens and tissues imaged. This capability allowed qualitative and quantitative differences between normal and precancerous or cancerous tissues to be identified. The optical efficiency of the system permitted imaging of the human oral mucosa in real time. Our results indicate this device as a useful tool to assist in the identification of early neoplastic changes in epithelial tissues. This portable, inexpensive unit may be particularly appropriate for use at the point-of-care in low-resource settings.
Transmission electron microscope CCD camera
Downing, Kenneth H.
1999-01-01
In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.
Assessment of Petrological Microscopes.
ERIC Educational Resources Information Center
Mathison, Charter Innes
1990-01-01
Presented is a set of procedures designed to check the design, ergonomics, illumination, function, optics, accessory equipment, and image quality of a microscope being considered for purchase. Functions for use in a petrology or mineralogy laboratory are stressed. (CW)
Transmissive Nanohole Arrays for Massively-Parallel Optical Biosensing
2015-01-01
A high-throughput optical biosensing technique is proposed and demonstrated. This hybrid technique combines optical transmission of nanoholes with colorimetric silver staining. The size and spacing of the nanoholes are chosen so that individual nanoholes can be independently resolved in massive parallel using an ordinary transmission optical microscope, and, in place of determining a spectral shift, the brightness of each nanohole is recorded to greatly simplify the readout. Each nanohole then acts as an independent sensor, and the blocking of nanohole optical transmission by enzymatic silver staining defines the specific detection of a biological agent. Nearly 10000 nanoholes can be simultaneously monitored under the field of view of a typical microscope. As an initial proof of concept, biotinylated lysozyme (biotin-HEL) was used as a model analyte, giving a detection limit as low as 0.1 ng/mL. PMID:25530982
NASA Astrophysics Data System (ADS)
Staier, Florian; Eipel, Heinz; Matula, Petr; Evsikov, Alexei V.; Kozubek, Michal; Cremer, Christoph; Hausmann, Michael
2011-09-01
With the development of novel fluorescence techniques, high resolution light microscopy has become a challenging technique for investigations of the three-dimensional (3D) micro-cosmos in cells and sub-cellular components. So far, all fluorescence microscopes applied for 3D imaging in biosciences show a spatially anisotropic point spread function resulting in an anisotropic optical resolution or point localization precision. To overcome this shortcoming, micro axial tomography was suggested which allows object tilting on the microscopic stage and leads to an improvement in localization precision and spatial resolution. Here, we present a miniaturized device which can be implemented in a motor driven microscope stage. The footprint of this device corresponds to a standard microscope slide. A special glass fiber can manually be adjusted in the object space of the microscope lens. A stepwise fiber rotation can be controlled by a miniaturized stepping motor incorporated into the device. By means of a special mounting device, test particles were fixed onto glass fibers, optically localized with high precision, and automatically rotated to obtain views from different perspective angles under which distances of corresponding pairs of objects were determined. From these angle dependent distance values, the real 3D distance was calculated with a precision in the ten nanometer range (corresponding here to an optical resolution of 10-30 nm) using standard microscopic equipment. As a proof of concept, the spindle apparatus of a mature mouse oocyte was imaged during metaphase II meiotic arrest under different perspectives. Only very few images registered under different rotation angles are sufficient for full 3D reconstruction. The results indicate the principal advantage of the micro axial tomography approach for many microscopic setups therein and also those of improved resolutions as obtained by high precision localization determination.
Demonstration of a plenoptic microscope based on laser optical feedback imaging.
Glastre, Wilfried; Hugon, Olivier; Jacquin, Olivier; Guillet de Chatellus, Hugues; Lacot, Eric
2013-03-25
A new kind of plenoptic imaging system based on Laser Optical Feedback Imaging (LOFI) is presented and is compared to another previously existing device based on microlens array. Improved photometric performances, resolution and depth of field are obtained at the price of a slow point by point scanning. Main properties of plenoptic microscopes such as numerical refocusing on any curved surface or aberrations compensation are both theoretically and experimentally demonstrated with a LOFI-based device.
Pasricha, Neel D; Bhullar, Paramjit K; Shieh, Christine; Carrasco-Zevallos, Oscar M; Keller, Brenton; Izatt, Joseph A; Toth, Cynthia A; Freedman, Sharon F; Kuo, Anthony N
2017-02-14
The authors report the use of swept-source microscope-integrated optical coherence tomography (SS-MIOCT), capable of live four-dimensional (three-dimensional across time) intraoperative imaging, to directly visualize suture depth during lateral rectus resection. Key surgical steps visualized in this report included needle depth during partial and full-thickness muscle passes along with scleral passes. [J Pediatr Ophthalmol Strabismus. 2017;54:e1-e5.]. Copyright 2017, SLACK Incorporated.
Surface plasmon resonance microscopy: achieving a quantitative optical response
Peterson, Alexander W.; Halter, Michael; Plant, Anne L.; Elliott, John T.
2016-01-01
Surface plasmon resonance (SPR) imaging allows real-time label-free imaging based on index of refraction, and changes in index of refraction at an interface. Optical parameter analysis is achieved by application of the Fresnel model to SPR data typically taken by an instrument in a prism based configuration. We carry out SPR imaging on a microscope by launching light into a sample, and collecting reflected light through a high numerical aperture microscope objective. The SPR microscope enables spatial resolution that approaches the diffraction limit, and has a dynamic range that allows detection of subnanometer to submicrometer changes in thickness of biological material at a surface. However, unambiguous quantitative interpretation of SPR changes using the microscope system could not be achieved using the Fresnel model because of polarization dependent attenuation and optical aberration that occurs in the high numerical aperture objective. To overcome this problem, we demonstrate a model to correct for polarization diattenuation and optical aberrations in the SPR data, and develop a procedure to calibrate reflectivity to index of refraction values. The calibration and correction strategy for quantitative analysis was validated by comparing the known indices of refraction of bulk materials with corrected SPR data interpreted with the Fresnel model. Subsequently, we applied our SPR microscopy method to evaluate the index of refraction for a series of polymer microspheres in aqueous media and validated the quality of the measurement with quantitative phase microscopy. PMID:27782542
Das, Sudeep; Kummelil, Mathew Kurian; Kharbanda, Varun; Arora, Vishal; Nagappa, Somshekar; Shetty, Rohit; Shetty, Bhujang K
2016-05-01
To demonstrate the uses and applications of a microscope integrated intraoperative Optical Coherence Tomography in Micro Incision Cataract Surgery (MICS) and Femtosecond Laser Assisted Cataract Surgery (FLACS). Intraoperative real time imaging using the RESCAN™ 700 (Carl Zeiss Meditec, Oberkochen, Germany) was done for patients undergoing MICS as well as FLACS. The OCT videos were reviewed at each step of the procedure and the findings were noted and analyzed. Microscope Integrated Intraoperative Optical Coherence Tomography was found to be beneficial during all the critical steps of cataract surgery. We were able to qualitatively assess wound morphology in clear corneal incisions, in terms of subclinical Descemet's detachments, tears in the inner or outer wound lips, wound gaping at the end of surgery and in identifying the adequacy of stromal hydration, for both FLACS as well as MICS. It also enabled us to segregate true posterior polar cataracts from suspected cases intraoperatively. Deciding the adequate depth of trenching was made simpler with direct visualization. The final position of the intraocular lens in the capsular bag and the lack of bioadhesivity of hydrophobic acrylic lenses were also observed. Even though Microscope Integrated Intraoperative Optical Coherence Tomography is in its early stages for its application in cataract surgery, this initial assessment does show a very promising role for this technology in the future for cataract surgery both in intraoperative decision making as well as for training purposes.
another search. Multiple locations were found. Please select one of the following: Close Location Help Top view Zoom in shot of snow on the Big Island Summits 11/5/2007 (photo by Andrew Beavers (NWS)) Zoom in shot of snow on the Big Island Summits 11/5/2007 (photo by Andrew Beavers (NWS)) Click for larger view
NASA Astrophysics Data System (ADS)
Schnitzler, H.; Zimmer, Klaus-Peter
2008-09-01
Similar to human's binocular vision, stereomicroscopes are comprised of two optical paths under a convergence angle providing a full perspective insight into the world's microstructure. The numerical aperture of stereomicroscopes has continuously increased over the years, reaching the point where the lenses of left and right perspective paths touched each other. This constraint appeared as an upper limit for the resolution of stereomicroscopes, as the resolution of a stereomicroscope was deduced from the numerical apertures of the two equally sized perspective channels. We present the optical design and advances in resolution of the world's first asymmetrical stereomicroscope, which is a technological breakthrough in many aspects of stereomicroscopes. This unique approach uses a large numerical aperture and thus an, so far, unachievable high lateral resolution in the one path, and a small aperture in the other path, which provides a high depth of field ("Fusion Optics"). This new concept is a technical challenge for the optical design of the zoom system as well as for the common main objectives. Furthermore, the new concept makes use of the particular way in which perspective information by binocular vision is formed in the human's brain. In conjunction with a research project at the University of Zurich, Leica Microsystems consolidated the functionality of this concept in to a new generation of stereomicroscopes.
NASA Astrophysics Data System (ADS)
Hirigoyen, Flavien; Crocherie, Axel; Vaillant, Jérôme M.; Cazaux, Yvon
2008-02-01
This paper presents a new FDTD-based optical simulation model dedicated to describe the optical performances of CMOS image sensors taking into account diffraction effects. Following market trend and industrialization constraints, CMOS image sensors must be easily embedded into even smaller packages, which are now equipped with auto-focus and short-term coming zoom system. Due to miniaturization, the ray-tracing models used to evaluate pixels optical performances are not accurate anymore to describe the light propagation inside the sensor, because of diffraction effects. Thus we adopt a more fundamental description to take into account these diffraction effects: we chose to use Maxwell-Boltzmann based modeling to compute the propagation of light, and to use a software with an FDTD-based (Finite Difference Time Domain) engine to solve this propagation. We present in this article the complete methodology of this modeling: on one hand incoherent plane waves are propagated to approximate a product-use diffuse-like source, on the other hand we use periodic conditions to limit the size of the simulated model and both memory and computation time. After having presented the correlation of the model with measurements we will illustrate its use in the case of the optimization of a 1.75μm pixel.
Mudanyali, Onur; Erlinger, Anthony; Seo, Sungkyu; Su, Ting-Wei; Tseng, Derek; Ozcan, Aydogan
2009-12-14
Conventional optical microscopes image cells by use of objective lenses that work together with other lenses and optical components. While quite effective, this classical approach has certain limitations for miniaturization of the imaging platform to make it compatible with the advanced state of the art in microfluidics. In this report, we introduce experimental details of a lensless on-chip imaging concept termed LUCAS (Lensless Ultra-wide field-of-view Cell monitoring Array platform based on Shadow imaging) that does not require any microscope objectives or other bulky optical components to image a heterogeneous cell solution over an ultra-wide field of view that can span as large as approximately 18 cm(2). Moreover, unlike conventional microscopes, LUCAS can image a heterogeneous cell solution of interest over a depth-of-field of approximately 5 mm without the need for refocusing which corresponds to up to approximately 9 mL sample volume. This imaging platform records the shadows (i.e., lensless digital holograms) of each cell of interest within its field of view, and automated digital processing of these cell shadows can determine the type, the count and the relative positions of cells within the solution. Because it does not require any bulky optical components or mechanical scanning stages it offers a significantly miniaturized platform that at the same time reduces the cost, which is quite important for especially point of care diagnostic tools. Furthermore, the imaging throughput of this platform is orders of magnitude better than conventional optical microscopes, which could be exceedingly valuable for high-throughput cell-biology experiments.
Mudanyali, Onur; Erlinger, Anthony; Seo, Sungkyu; Su, Ting-Wei; Tseng, Derek; Ozcan, Aydogan
2009-01-01
Conventional optical microscopes image cells by use of objective lenses that work together with other lenses and optical components. While quite effective, this classical approach has certain limitations for miniaturization of the imaging platform to make it compatible with the advanced state of the art in microfluidics. In this report, we introduce experimental details of a lensless on-chip imaging concept termed LUCAS (Lensless Ultra-wide field-of-view Cell monitoring Array platform based on Shadow imaging) that does not require any microscope objectives or other bulky optical components to image a heterogeneous cell solution over an ultra-wide field of view that can span as large as ~18 cm2. Moreover, unlike conventional microscopes, LUCAS can image a heterogeneous cell solution of interest over a depth-of-field of ~5 mm without the need for refocusing which corresponds to up to ~9 mL sample volume. This imaging platform records the shadows (i.e., lensless digital holograms) of each cell of interest within its field of view, and automated digital processing of these cell shadows can determine the type, the count and the relative positions of cells within the solution. Because it does not require any bulky optical components or mechanical scanning stages it offers a significantly miniaturized platform that at the same time reduces the cost, which is quite important for especially point of care diagnostic tools. Furthermore, the imaging throughput of this platform is orders of magnitude better than conventional optical microscopes, which could be exceedingly valuable for high-throughput cell-biology experiments. PMID:20010542
Kamali, Tschackad; Považay, Boris; Kumar, Sunil; Silberberg, Yaron; Hermann, Boris; Werkmeister, René; Drexler, Wolfgang; Unterhuber, Angelika
2014-10-01
We demonstrate a multimodal optical coherence tomography (OCT) and online Fourier transform coherent anti-Stokes Raman scattering (FTCARS) platform using a single sub-12 femtosecond (fs) Ti:sapphire laser enabling simultaneous extraction of structural and chemical ("morphomolecular") information of biological samples. Spectral domain OCT prescreens the specimen providing a fast ultrahigh (4×12 μm axial and transverse) resolution wide field morphologic overview. Additional complementary intrinsic molecular information is obtained by zooming into regions of interest for fast label-free chemical mapping with online FTCARS spectroscopy. Background-free CARS is based on a Michelson interferometer in combination with a highly linear piezo stage, which allows for quick point-to-point extraction of CARS spectra in the fingerprint region in less than 125 ms with a resolution better than 4 cm(-1) without the need for averaging. OCT morphology and CARS spectral maps indicating phosphate and carbonate bond vibrations from human bone samples are extracted to demonstrate the performance of this hybrid imaging platform.
Design of pre-optics for laser guide star wavefront sensor for the ELT
NASA Astrophysics Data System (ADS)
Muslimov, Eduard; Dohlen, Kjetil; Neichel, Benoit; Hugot, Emmanuel
2017-12-01
In the present paper, we consider the optical design of a zoom system for the active refocusing in laser guide star wavefront sensors. The system is designed according to the specifications coming from the Extremely Large Telescope (ELT)-HARMONI instrument, the first-light, integral field spectrograph for the European (E)-ELT. The system must provide a refocusing of the laser guide as a function of telescope pointing and large decentring of the incoming beam. The system considers four moving lens groups, each of them being a doublet with one aspherical surface. The advantages and shortcomings of such a solution in terms of the component displacements and complexity of the surfaces are described in detail. It is shown that the system can provide the median value of the residual wavefront error of 13.8-94.3 nm and the maximum value <206 nm, while the exit pupil distortion is 0.26-0.36% for each of the telescope pointing directions.
Study of a quasi-microscope design for planetary landers
NASA Technical Reports Server (NTRS)
Giat, O.; Brown, E. B.
1973-01-01
The Viking Lander fascimile camera, in its present form, provides for a minimum object distance of 1.9 meters, at which distance its resolution of 0.0007 radian provides an object resolution of 1.33 millimeters. It was deemed desirable, especially for follow-on Viking missions, to provide means for examing Martian terrain at resolutions considerably higher than that now provided. This led to the concept of quasi-microscope, an attachment to be used in conjunction with the fascimile camera to convert it to a low power microscope. The results are reported of an investigation to consider alternate optical configurations for the quasi-microscope and to develop optical designs for the selected system or systems. Initial requirements included consideration of object resolutions in the range of 2 to 50 micrometers, an available field of view of the order of 500 pixels, and no significant modifications to the fascimile camera.
Mosaic of Commemorative Microscope Substrate
NASA Technical Reports Server (NTRS)
2008-01-01
Written by electron beam lithography in the Microdevices Laboratory of NASA's Jet Propulsion Laboratory, this Optical Microscope substrate helps the Phoenix Mars Mission science team learn how to assemble individual microscope images into a mosaic by aligning rows of text. Each line is about 0.1 millimeter tall, the average thickness of a human hair. Except for the Mogensen twins, the names are of babies born and team members lost during the original development of MECA (the Microscopy, Electrochemistry and Conductivity Analyzer) for the canceled 2001 Mars lander mission. The plaque also acknowledges the MECA 2001 principal investigator, now retired. This image was taken by the MECA Optical Microscope on Sol 111, or the 111th day of the Phoenix mission (Sept. 16, 2008). The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.A wide field-of-view microscope based on holographic focus grid
NASA Astrophysics Data System (ADS)
Wu, Jigang; Cui, Xiquan; Zheng, Guoan; Lee, Lap Man; Yang, Changhuei
2010-02-01
We have developed a novel microscope technique that can achieve wide field-of-view (FOV) imaging and yet possess resolution that is comparable to conventional microscope. The principle of wide FOV microscope system breaks the link between resolution and FOV magnitude of traditional microscopes. Furthermore, by eliminating bulky optical elements from its design and utilizing holographic optical elements, the wide FOV microscope system is more cost-effective. In our system, a hologram was made to focus incoming collimated beam into a focus grid. The sample is put in the focal plane and the transmissions of the focuses are detected by an imaging sensor. By scanning the incident angle of the incoming beam, the focus grid will scan across the sample and the time-varying transmission can be detected. We can then reconstruct the transmission image of the sample. The resolution of microscopic image is limited by the size of the focus formed by the hologram. The scanning area of each focus spot is determined by the separation of the focus spots and can be made small for fast imaging speed. We have fabricated a prototype system with a 2.4-mm FOV and 1-μm resolution. The prototype system was used to image onion skin cells for a demonstration. The preliminary experiments prove the feasibility of the wide FOV microscope technique, and the possibility of a wider FOV system with better resolution.
Analysis of slide exploration strategy of cytologists when reading digital slides
NASA Astrophysics Data System (ADS)
Pantanowitz, Liron; Parwani, Anil; Tseytlin, Eugene; Mello-Thoms, Claudia
2012-02-01
Cytology is the sub-domain of Pathology that deals mainly with the diagnosis of cellular changes caused by disease. Current clinical practice involves a cytotechnologist that manually screens glass slides containing fixed cytology material using a light microscope. Screened slides are then forwarded to a specialized pathologist, a cytopathologist, for microscopic review and final diagnostic interpretation. If no abnormalities are detected, the specimen is interpreted as "normal", otherwise the abnormalities are marked with a pen on the glass slide by the cytotechnologist and then are used to render a diagnosis. As Pathology is migrating towards a digital environment it is important to determine whether these crucial screening and diagnostic tasks can be performed as well using digital slides as the current practice with glass slides. The purpose of this work is to make this assessment, by using a set of digital slides depicting cytological materials of different disease processes in several organs, and then to analyze how different cytologists including cytotechnologists, cytopathologists and cytotechnology-trainees explored the digital slides. We will (1) collect visual search data from the cytologists as they navigate the digital slides, as well as record any electronic marks (annotations) made by the cytologists; (2) convert the dynamic visual search data into a static representation of the observers' exploration strategy using 'search maps'; and (3) determine slide coverage, per viewing magnification range, for each group. We have developed a virtual microscope to collect this data, and this interface allows for interactive navigation of the virtual slide (including panning and zooming), as well as annotation of reportable findings. Furthermore, all interactions with the interface are time stamped, which allows us to recreate the cytologists' search strategy.
When GIS zooms in: spatio-genetic maps of multipaternity in Armadillidium vulgare.
Bech, Nicolas; Depeux, Charlotte; Durand, Sylvine; Debenest, Catherine; Lafitte, Alexandra; Beltran-Bech, Sophie
2017-12-01
Geographic information system (GIS) tools are designed to illustrate, analyse and integrate geographic or spatial data, usually on a macroscopic scale. By contrast, genetic tools focus on a microscopic scale. Because in reality, landscapes have no predefined scale, our original study aims to develop a new approach, combining both cartographic and genetic approaches to explore microscopic landscapes. For this, we focused on Armadillidium vulgare, a terrestrial isopod model in which evolutionary pressures imposed by terrestrial life have led to the development of internal fertilisation and, consequently, to associated physiological changes. Among these, the emergence of internal receptacles, found in many taxa ranging from mammals to arthropods, allowed females to store sperm from several partners, enabling multipaternity. Among arthropods, terrestrial isopods like the polygynandrous A. vulgare present a female structure, the marsupium, in which fertilised eggs migrate and develop into mancae (larval stage). To test our innovative combined approach, we proposed different males to four independent females, and at the end of incubation in the marsupium, we mapped (using GIS methods) and genotyped (using 12 microsatellite markers) all the incubated mancae. This methodology permitted to obtain spatio-genetic maps describing heterozygosity and spatial distribution of mancae and of multipaternity within the marsupial landscape. We discussed the interest of this kind of multidisciplinary approach which could improve in this case our understanding of sexual selection mechanisms in this terrestrial crustacean. Beyond the interesting model-focused insights, the main challenge of this study was the transfer of GIS techniques to a microscopic scale and our results appear so as pioneers rendering GIS tools available for studies involving imagery whatever their study scale.
Microscope-on-Chip Using Micro-Channel and Solid State Image Sensors
NASA Technical Reports Server (NTRS)
Wang, Yu
2000-01-01
Recently, Jet Propulsion Laboratory has invented and developed a miniature optical microscope, microscope-on-chip using micro-channel and solid state image sensors. It is lightweight, low-power, fast speed instrument, it has no image lens, does not need focus adjustment, and the total mass is less than 100g. A prototype has been built and demonstrated at JPL.
The PC9A Filter Screening Tool
2016-02-01
conjunction with an optical microscope for identification of other important debris such as glass beads. The FST has now been installed at RAAF East...conservative screening limits need to be sent for detailed laboratory analysis. Laboratory analysis has traditionally involved a manual microscopic ...Electron Microscope with Energy Dispersive Spectroscopy (SEM EDS) to determine the composition and likely source. The Engine Maintenance Manual
A high-resolution multimode digital microscope system.
Salmon, Edward D; Shaw, Sidney L; Waters, Jennifer C; Waterman-Storer, Clare M; Maddox, Paul S; Yeh, Elaine; Bloom, Kerry
2013-01-01
This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae. Copyright © 1998 Elsevier Inc. All rights reserved.
Lange, M; Guénon, S; Lever, F; Kleiner, R; Koelle, D
2017-12-01
Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4 He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO 3 . The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.
NASA Astrophysics Data System (ADS)
Lange, M.; Guénon, S.; Lever, F.; Kleiner, R.; Koelle, D.
2017-12-01
Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO3. The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.
Miniature in vivo MEMS-based line-scanned dual-axis confocal microscope for point-of-care pathology
Yin, C.; Glaser, A.K.; Leigh, S. Y.; Chen, Y.; Wei, L.; Pillai, P. C. S.; Rosenberg, M. C.; Abeytunge, S.; Peterson, G.; Glazowski, C.; Sanai, N.; Mandella, M. J.; Rajadhyaksha, M.; Liu, J. T. C.
2016-01-01
There is a need for miniature optical-sectioning microscopes to enable in vivo interrogation of tissues as a real-time and noninvasive alternative to gold-standard histopathology. Such devices could have a transformative impact for the early detection of cancer as well as for guiding tumor-resection procedures. Miniature confocal microscopes have been developed by various researchers and corporations to enable optical sectioning of highly scattering tissues, all of which have necessitated various trade-offs in size, speed, depth selectivity, field of view, resolution, image contrast, and sensitivity. In this study, a miniature line-scanned (LS) dual-axis confocal (DAC) microscope, with a 12-mm diameter distal tip, has been developed for clinical point-of-care pathology. The dual-axis architecture has demonstrated an advantage over the conventional single-axis confocal configuration for reducing background noise from out-of-focus and multiply scattered light. The use of line scanning enables fast frame rates (16 frames/sec is demonstrated here, but faster rates are possible), which mitigates motion artifacts of a hand-held device during clinical use. We have developed a method to actively align the illumination and collection beams in a DAC microscope through the use of a pair of rotatable alignment mirrors. Incorporation of a custom objective lens, with a small form factor for in vivo clinical use, enables our device to achieve an optical-sectioning thickness and lateral resolution of 2.0 and 1.1 microns respectively. Validation measurements with reflective targets, as well as in vivo and ex vivo images of tissues, demonstrate the clinical potential of this high-speed optical-sectioning microscopy device. PMID:26977337
Distortion Correction for a Brewster Angle Microscope Using an Optical Grating.
Sun, Zhe; Zheng, Desheng; Baldelli, Steven
2017-02-21
A distortion-corrected Brewster angle microscope (DC-BAM) is designed, constructed, and tested based on the combination of an optical grating and a relay lens. Avoiding the drawbacks of most conventional BAM instruments, this configuration corrects the image propagation direction and consequently provides an image in focus over the entire field of view without any beam scanning or imaging reconstruction. This new BAM can be applied to both liquid and solid subphases with good spatial resolution in static and dynamic studies.
NASA Astrophysics Data System (ADS)
Dawson, Nathan J.; Andrews, James H.; Crescimanno, Michael
2013-12-01
A model for off-resonant microscopic cascading of (hyper)polarizabilities is developed using a self-consistent field approach to study mesoscopic systems of nonlinear polarizable atoms and molecules. We find enhancements in the higher-order susceptibilities resulting from geometrical and boundary orientation effects. We include an example of the dependence on excitation beam cross sectional structure and a simplified derivation of the microscopic cascading of the nonlinear-optical response in guest-host systems.
Stereoscopic 3D reconstruction using motorized zoom lenses within an embedded system
NASA Astrophysics Data System (ADS)
Liu, Pengcheng; Willis, Andrew; Sui, Yunfeng
2009-02-01
This paper describes a novel embedded system capable of estimating 3D positions of surfaces viewed by a stereoscopic rig consisting of a pair of calibrated cameras. Novel theoretical and technical aspects of the system are tied to two aspects of the design that deviate from typical stereoscopic reconstruction systems: (1) incorporation of an 10x zoom lens (Rainbow- H10x8.5) and (2) implementation of the system on an embedded system. The system components include a DSP running μClinux, an embedded version of the Linux operating system, and an FPGA. The DSP orchestrates data flow within the system and performs complex computational tasks and the FPGA provides an interface to the system devices which consist of a CMOS camera pair and a pair of servo motors which rotate (pan) each camera. Calibration of the camera pair is accomplished using a collection of stereo images that view a common chess board calibration pattern for a set of pre-defined zoom positions. Calibration settings for an arbitrary zoom setting are estimated by interpolation of the camera parameters. A low-computational cost method for dense stereo matching is used to compute depth disparities for the stereo image pairs. Surface reconstruction is accomplished by classical triangulation of the matched points from the depth disparities. This article includes our methods and results for the following problems: (1) automatic computation of the focus and exposure settings for the lens and camera sensor, (2) calibration of the system for various zoom settings and (3) stereo reconstruction results for several free form objects.
Brivio, F; Reverdito, C; Sacchi, G; Chiaretti, G; Milani, M
1992-08-20
An experimental analysis of InGaAsP injection lasers shows an unexpected decrease of the differential quantum efficiency as a function of injected current when optical power is fed back into the active cavity of a diode inserted into a long transmission line. To investigate the response of laser diodes to optical feedback, we base our analysis on a microscopic model, resulting in a set of coupled equations that include the microscopic parameters that characterize the material and the device. This description takes into account the nonlinear dependence of the interband carrier lifetime on the level of optical feedback. Good agreement between the analytical description and experimental data is obtained for threshold current and differential quantum efficiency as functions of the feedback ratio.
Microsphere-aided optical microscopy and its applications for super-resolution imaging
NASA Astrophysics Data System (ADS)
Upputuri, Paul Kumar; Pramanik, Manojit
2017-12-01
The spatial resolution of a standard optical microscope (SOM) is limited by diffraction. In visible spectrum, SOM can provide ∼ 200 nm resolution. To break the diffraction limit several approaches were developed including scanning near field microscopy, metamaterial super-lenses, nanoscale solid immersion lenses, super-oscillatory lenses, confocal fluorescence microscopy, techniques that exploit non-linear response of fluorophores like stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, etc. Recently, photonic nanojet generated by a dielectric microsphere was used to break the diffraction limit. The microsphere-approach is simple, cost-effective and can be implemented under a standard microscope, hence it has gained enormous attention for super-resolution imaging. In this article, we briefly review the microsphere approach and its applications for super-resolution imaging in various optical imaging modalities.
NASA Astrophysics Data System (ADS)
Granerød, Cecilie S.; Galeckas, Augustinas; Johansen, Klaus Magnus; Vines, Lasse; Prytz, Øystein
2018-04-01
The optical band gap of ZnO has been measured as a function of temperature using Electron Energy-Loss Spectroscopy (EELS) in a (Scanning) Transmission Electron Microscope ((S)TEM) from approximately 100 K up towards 1000 K. The band gap narrowing shows a close to linear dependency for temperatures above 250 K and is accurately described by Varshni, Bose-Einstein, Pässler and Manoogian-Woolley models. Additionally, the measured band gap is compared with both optical absorption measurements and photoluminescence data. STEM-EELS is here shown to be a viable technique to measure optical band gaps at elevated temperatures, with an available temperature range up to 1500 K and the benefit of superior spatial resolution.
Grepstad, Jon Olav; Kaspar, Peter; Solgaard, Olav; Johansen, Ib-Rune; Sudbø, Aasmund S
2012-03-26
A sensor designed to detect bio-molecules is presented. The sensor exploits a planar 2D photonic crystal (PC) membrane with sub-micron thickness and through holes, to induce high optical fields that allow detection of nano-particles smaller than the diffraction limit of an optical microscope. We report on our design and fabrication of a PC membrane with a nano-particle trapped inside. We have also designed and built an imaging system where an optical microscope and a CCD camera are used to take images of the PC membrane. Results show how the trapped nano-particle appears as a bright spot in the image. In a first experimental realization of the imaging system, single particles with a radius of 75 nm can be detected.
Integrin Alpha-v and HER2 in Breast Cancer Brain Metastasis
2015-10-01
ZOOM live cell imaging machine (ESSEN Bioscience; Figure 2). c. Interactions of αv integrin and HER2 in breast cancer brain metastases. We found...HCC1954 breast cancer cells. C) Real time live cell imaging of MM2BH cells treated with cilengitide (0, .3, 1, 3, and 10 µg/mL) using IncuCyte ZOOM
ERIC Educational Resources Information Center
Van Mele, Paul; Wanvoeke, Jonas; Akakpo, Cyriaque; Dacko, Rosaline Maiga; Ceesay, Mustapha; Beavogui, Louis; Soumah, Malick; Anyang, Robert
2010-01-01
Will African farmers watch and learn from videos featuring farmers in Bangladesh? Learning videos on rice seed management were made with rural women in Bangladesh. By using a new approach, called zooming-in, zooming-out, the videos were of regional relevance and locally appropriate. When the Africa Rice Center (AfricaRice) introduced them to…
Low-Rate Information Transmission (LRIT) - NOAA Satellite Information
bulletins and notices and an updated area where further explanations can be found. GOES-East Full Disk Image Viewed Using LRIT GOES-EAST full disk image viewed using LRIT. Zoomed In Portion of the LRIT Full Disk Image. A zoomed in portion of the LRIT full disk image. Contact Information: LRIT / EMWIN: Paul Seymour
Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio
2013-01-01
A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events. PMID:23823461
Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio
2013-01-01
A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.
Optical phase conjugation assisted scattering lens: variable focusing and 3D patterning
Ryu, Jihee; Jang, Mooseok; Eom, Tae Joong; Yang, Changhuei; Chung, Euiheon
2016-01-01
Variable light focusing is the ability to flexibly select the focal distance of a lens. This feature presents technical challenges, but is significant for optical interrogation of three-dimensional objects. Numerous lens designs have been proposed to provide flexible light focusing, including zoom, fluid, and liquid-crystal lenses. Although these lenses are useful for macroscale applications, they have limited utility in micron-scale applications due to restricted modulation range and exacting requirements for fabrication and control. Here, we present a holographic focusing method that enables variable light focusing without any physical modification to the lens element. In this method, a scattering layer couples low-angle (transverse wave vector) components into a full angular spectrum, and a digital optical phase conjugation (DOPC) system characterizes and plays back the wavefront that focuses through the scattering layer. We demonstrate micron-scale light focusing and patterning over a wide range of focal distances of 22–51 mm. The interferometric nature of the focusing scheme also enables an aberration-free scattering lens. The proposed method provides a unique variable focusing capability for imaging thick specimens or selective photoactivation of neuronal networks. PMID:27049442
Optical scanning tests of complex CMOS microcircuits
NASA Technical Reports Server (NTRS)
Levy, M. E.; Erickson, J. J.
1977-01-01
The new test method was based on the use of a raster-scanned optical stimulus in combination with special electrical test procedures. The raster-scanned optical stimulus was provided by an optical spot scanner, an instrument that combines a scanning optical microscope with electronic instrumentation to process and display the electric photoresponse signal induced in a device that is being tested.
Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices
Losavio, Bradley E.; Iyer, Vijay; Saggau, Peter
2009-01-01
We developed a two-photon microscope optimized for physiologically manipulating single neurons through their postsynaptic receptors. The optical layout fulfills the stringent design criteria required for high-speed, high-resolution imaging in scattering brain tissue with minimal photodamage. We detail the practical compensation of spectral and temporal dispersion inherent in fast laser beam scanning with acousto-optic deflectors, as well as a set of biological protocols for visualizing nearly diffraction-limited structures and delivering physiological synaptic stimuli. The microscope clearly resolves dendritic spines and evokes electrophysiological transients in single neurons that are similar to endogenous responses. This system enables the study of multisynaptic integration and will assist our understanding of single neuron function and dendritic computation. PMID:20059271
Multimodal nonlinear microscope based on a compact fiber-format laser source
NASA Astrophysics Data System (ADS)
Crisafi, Francesco; Kumar, Vikas; Perri, Antonio; Marangoni, Marco; Cerullo, Giulio; Polli, Dario
2018-01-01
We present a multimodal non-linear optical (NLO) laser-scanning microscope, based on a compact fiber-format excitation laser and integrating coherent anti-Stokes Raman scattering (CARS), stimulated Raman scattering (SRS) and two-photon-excitation fluorescence (TPEF) on a single platform. We demonstrate its capabilities in simultaneously acquiring CARS and SRS images of a blend of 6-μm poly(methyl methacrylate) beads and 3-μm polystyrene beads. We then apply it to visualize cell walls and chloroplast of an unprocessed fresh leaf of Elodea aquatic plant via SRS and TPEF modalities, respectively. The presented NLO microscope, developed in house using off-the-shelf components, offers full accessibility to the optical path and ensures its easy re-configurability and flexibility.
Microscope-integrated optical coherence tomography: A new surgical tool in vitreoretinal surgery.
Jayadev, Chaitra; Dabir, Supriya; Vinekar, Anand; Shah, Urmil; Vaid, Tania; Yadav, Naresh Kumar
2015-05-01
Optical coherence tomography (OCT) has revolutionized imaging of ocular structures and various disease conditions. Though it has been used in the clinic for some decades, the OCT has only recently found its way into the operating theater. Early attempts at intraoperative OCT, hand-held and microscope mounted, have already improved our understanding of the surgical pathology and the role it might play in surgical decision-making. The microscope-integrated OCT now allows seamless, high-resolution, real-time imaging of surgical maneuvers from the incision to wound closure. Visualization of instruments and intraoperative tissue manipulation are possible with this in vivo modality and, therefore, help improve the outcome of surgery. In this article, we describe the advantages it offers during various vitreoretinal procedures.
NASA Astrophysics Data System (ADS)
Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.
2014-06-01
Two-photon (2P) excitation of the second singlet (S) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.
Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R
2014-06-01
Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.
Coherent anti-Stokes Raman scattering spectroscope/microscope based on a widely tunable laser source
NASA Astrophysics Data System (ADS)
Dementjev, A.; Gulbinas, V.; Serbenta, A.; Kaucikas, M.; Niaura, G.
2010-03-01
We present a coherent anti-Stokes Raman scattering (CARS) microscope based on a robust and simple laser source. A picosecond laser operating in a cavity dumping regime at the 1 MHz repetition rate was used to pump a traveling wave optical parametric generator, which serves as a two-color excitation light source for the CARS microscope. We demonstrate the ability of the presented CARS microscope to measure CARS spectra and images by using several detection schemes.
Annular ring zoom system using two positive axicons
NASA Astrophysics Data System (ADS)
Dickey, Fred M.; Conner, Jacob D.
2011-10-01
The production of an annular ring of light with a variable diameter has applications in laser material processing and machining, particle manipulation, and corneal surgery. This can readily be accomplished using a positive and negative axicon pair. However, negative axicons are very expensive and difficult to obtain with small diameters. In this paper, we present a design of an annular ring zoom system using two positive axicons. One axicon is placed a distance before a primary lens that is greater than some prescribed minimum, and the second axicon is placed after the primary lens. The position of the second axicon determines the ring diameter. The ring diameter can be zoomed from some maximum design size to a zero diameter ring (spot). Experimental results from a developmental system will be presented.
Dual-mode optical microscope based on single-pixel imaging
NASA Astrophysics Data System (ADS)
Rodríguez, A. D.; Clemente, P.; Tajahuerce, E.; Lancis, J.
2016-07-01
We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD. Data to be displayed are geometrically transformed before written into a memory cell to cancel optical artifacts coming from the diamond-like shaped structure of the micromirror array. The 24-bit color depth of the display is fully exploited to increase the frame rate by a factor of 24, which makes the technique practicable for real samples. Our commercial DMD-based LED-illumination is cost effective and can be easily coupled as an add-on module for already existing inverted microscopes. The reflection and transmission information provided by our dual microscope complement each other and can be useful for imaging non-uniform samples and to prevent self-shadowing effects.
Lee, Changho; Kim, Kyungun; Han, Seunghoon; Kim, Sehui; Lee, Jun Hoon; Kim, Hong kyun; Kim, Chulhong; Jung, Woonggyu; Kim, Jeehyun
2014-01-01
Abstract. An intraoperative surgical microscope is an essential tool in a neuro- or ophthalmological surgical environment. Yet, it has an inherent limitation to classify subsurface information because it only provides the surface images. To compensate for and assist in this problem, combining the surgical microscope with optical coherence tomography (OCT) has been adapted. We developed a real-time virtual intraoperative surgical OCT (VISOCT) system by adapting a spectral-domain OCT scanner with a commercial surgical microscope. Thanks to our custom-made beam splitting and image display subsystems, the OCT images and microscopic images are simultaneously visualized through an ocular lens or the eyepiece of the microscope. This improvement helps surgeons to focus on the operation without distraction to view OCT images on another separate display. Moreover, displaying the OCT live images on the eyepiece helps surgeon’s depth perception during the surgeries. Finally, we successfully processed stimulated penetrating keratoplasty in live rabbits. We believe that these technical achievements are crucial to enhance the usability of the VISOCT system in a real surgical operating condition. PMID:24604471
Bishara, Waheb; Sikora, Uzair; Mudanyali, Onur; Su, Ting-Wei; Yaglidere, Oguzhan; Luckhart, Shirley; Ozcan, Aydogan
2011-04-07
We report a portable lensless on-chip microscope that can achieve <1 µm resolution over a wide field-of-view of ∼ 24 mm(2) without the use of any mechanical scanning. This compact on-chip microscope weighs ∼ 95 g and is based on partially coherent digital in-line holography. Multiple fiber-optic waveguides are butt-coupled to light emitting diodes, which are controlled by a low-cost micro-controller to sequentially illuminate the sample. The resulting lensfree holograms are then captured by a digital sensor-array and are rapidly processed using a pixel super-resolution algorithm to generate much higher resolution holographic images (both phase and amplitude) of the objects. This wide-field and high-resolution on-chip microscope, being compact and light-weight, would be important for global health problems such as diagnosis of infectious diseases in remote locations. Toward this end, we validate the performance of this field-portable microscope by imaging human malaria parasites (Plasmodium falciparum) in thin blood smears. Our results constitute the first-time that a lensfree on-chip microscope has successfully imaged malaria parasites.
Baghaie, Ahmadreza; Pahlavan Tafti, Ahmad; Owen, Heather A; D'Souza, Roshan M; Yu, Zeyun
2017-01-01
Scanning Electron Microscope (SEM) as one of the major research and industrial equipment for imaging of micro-scale samples and surfaces has gained extensive attention from its emerge. However, the acquired micrographs still remain two-dimensional (2D). In the current work a novel and highly accurate approach is proposed to recover the hidden third-dimension by use of multi-view image acquisition of the microscopic samples combined with pre/post-processing steps including sparse feature-based stereo rectification, nonlocal-based optical flow estimation for dense matching and finally depth estimation. Employing the proposed approach, three-dimensional (3D) reconstructions of highly complex microscopic samples were achieved to facilitate the interpretation of topology and geometry of surface/shape attributes of the samples. As a byproduct of the proposed approach, high-definition 3D printed models of the samples can be generated as a tangible means of physical understanding. Extensive comparisons with the state-of-the-art reveal the strength and superiority of the proposed method in uncovering the details of the highly complex microscopic samples.
A Journey Through a Leaf: Phenomics Analysis of Leaf Growth in Arabidopsis thaliana
Vanhaeren, Hannes; Gonzalez, Nathalie; Inzé, Dirk
2015-01-01
In Arabidopsis, leaves contribute to the largest part of the aboveground biomass. In these organs, light is captured and converted into chemical energy, which plants use to grow and complete their life cycle. Leaves emerge as a small pool of cells at the vegetative shoot apical meristem and develop into planar, complex organs through different interconnected cellular events. Over the last decade, numerous phenotyping techniques have been developed to visualize and quantify leaf size and growth, leading to the identification of numerous genes that contribute to the final size of leaves. In this review, we will start at the Arabidopsis rosette level and gradually zoom in from a macroscopic view on leaf growth to a microscopic and molecular view. Along this journey, we describe different techniques that have been key to identify important events during leaf development and discuss approaches that will further help unraveling the complex cellular and molecular mechanisms that underlie leaf growth. PMID:26217168
Volumetric Light-field Encryption at the Microscopic Scale
Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu
2017-01-01
We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale. PMID:28059149
Harrison, Thomas C; Sigler, Albrecht; Murphy, Timothy H
2009-09-15
We describe a simple and low-cost system for intrinsic optical signal (IOS) imaging using stable LED light sources, basic microscopes, and commonly available CCD cameras. IOS imaging measures activity-dependent changes in the light reflectance of brain tissue, and can be performed with a minimum of specialized equipment. Our system uses LED ring lights that can be mounted on standard microscope objectives or video lenses to provide a homogeneous and stable light source, with less than 0.003% fluctuation across images averaged from 40 trials. We describe the equipment and surgical techniques necessary for both acute and chronic mouse preparations, and provide software that can create maps of sensory representations from images captured by inexpensive 8-bit cameras or by 12-bit cameras. The IOS imaging system can be adapted to commercial upright microscopes or custom macroscopes, eliminating the need for dedicated equipment or complex optical paths. This method can be combined with parallel high resolution imaging techniques such as two-photon microscopy.
Ahn, Kang-Ho; Kim, Sun-Man; Jung, Hae-Jin; Lee, Mi-Jung; Eom, Hyo-Jin; Maskey, Shila; Ro, Chul-Un
2010-10-01
In this work, an analytical method for the characterization of the hygroscopic property, chemical composition, and morphology of individual aerosol particles is introduced. The method, which is based on the combined use of optical and electron microscopic techniques, is simple and easy to apply. An optical microscopic technique was used to perform the visual observation of the phase transformation and hygroscopic growth of aerosol particles on a single particle level. A quantitative energy-dispersive electron probe X-ray microanalysis, named low-Z particle EPMA, was used to perform a quantitative chemical speciation of the same individual particles after the measurement of the hygroscopic property. To validate the analytical methodology, the hygroscopic properties of artificially generated NaCl, KCl, (NH(4))(2)SO(4), and Na(2)SO(4) aerosol particles of micrometer size were investigated. The practical applicability of the analytical method for studying the hygroscopic property, chemical composition, and morphology of ambient aerosol particles is demonstrated.
Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina
Hausselt, Susanne E.; Breuninger, Tobias; Castell, Xavier; Denk, Winfried; Margolis, David J.; Detwiler, Peter B.
2009-01-01
Dendritic signals play an essential role in processing visual information in the retina. To study them in neurites too small for electrical recording, we developed an instrument that combines a multi-photon (MP) microscope with a through-the-objective high-resolution visual stimulator. An upright microscope was designed that uses the objective lens for both MP imaging and delivery of visual stimuli to functionally intact retinal explants or eyecup preparations. The stimulator consists of a miniature liquid-crystal-on-silicon display coupled into the optical path of an infrared-excitation laser-scanning microscope. A pair of custom-made dichroic filters allows light from the excitation laser and three spectral bands (‘colors’) from the stimulator to reach the retina, leaving two intermediate bands for fluorescence imaging. Special optics allow displacement of the stimulator focus relative to the imaging focus. Spatially resolved changes in calcium-indicator fluorescence in response to visual stimuli were recorded in dendrites of different types of mammalian retinal neurons. PMID:19023590
Enhanced optical coupling and Raman scattering via microscopic interface engineering
NASA Astrophysics Data System (ADS)
Thompson, Jonathan V.; Hokr, Brett H.; Kim, Wihan; Ballmann, Charles W.; Applegate, Brian E.; Jo, Javier A.; Yamilov, Alexey; Cao, Hui; Scully, Marlan O.; Yakovlev, Vladislav V.
2017-11-01
Spontaneous Raman scattering is an extremely powerful tool for the remote detection and identification of various chemical materials. However, when those materials are contained within strongly scattering or turbid media, as is the case in many biological and security related systems, the sensitivity and range of Raman signal generation and detection is severely limited. Here, we demonstrate that through microscopic engineering of the optical interface, the optical coupling of light into a turbid material can be substantially enhanced. This improved coupling facilitates the enhancement of the Raman scattering signal generated by molecules within the medium. In particular, we detect at least two-orders of magnitude more spontaneous Raman scattering from a sample when the pump laser light is focused into a microscopic hole in the surface of the sample. Because this approach enhances both the interaction time and interaction region of the laser light within the material, its use will greatly improve the range and sensitivity of many spectroscopic techniques, including Raman scattering and fluorescence emission detection, inside highly scattering environments.
Volumetric Light-field Encryption at the Microscopic Scale
NASA Astrophysics Data System (ADS)
Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu
2017-01-01
We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale.
Multiplicity of High-z Submillimeter Galaxies from Cosmological Simulations
NASA Astrophysics Data System (ADS)
Ball, David; Narayanan, Desika; Hopkins, Philip F.; Turk, Matthew
2015-01-01
Sub-millimeter galaxies (or SMG's) are some of the most luminous galaxies in the universe, yet are nearly invisible in the optical. Theorists have long struggled to simulate SMG's and accurately match their spectral properties and abundance to observations. Recent high-resolution observations, however, suggest that what were previously thought to be single sub-millimeter sources on the sky, may break up into multiple components when viewed with sufficient resolving power. Here, we present a combination of high-resolution cosmological hydrodynamic zoom simulations of massive galaxies in formation with a new dust radiative transfer package in order to understand this multiplicity in simulated SMGs. We find that multiplicity is a natural element of SMG formation as numerous subhalos bombard the central during its peak growth phase
NASA Astrophysics Data System (ADS)
Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Lynn, James; Freeman, David; Roberts, Jennifer; Dekany, Richard
2012-09-01
When commissioned in November 2008 at the Palomar 200 inch Hale Telescope, the Oxford SWIFT I and z band integral field spectrograph, fed by the adaptive optics system PALAO, provided a wide (3×) range of spatial resolutions: three plate scales of 235 mas, 160 mas, and 80 mas per spaxel over a contiguous field-of-view of 89×44 pixels. Depending on observing conditions and guide star brightness we can choose a seeing limited scale of 235 mas per spaxel, or 160 mas and 80 mas per spaxel for very bright guide star AO with substantial increase of enclosed energy. Over the last two years PALAO was upgraded to PALM-3000: an extreme, high-order adaptive optics system with two deformable mirrors with more than 3000 actuators, promising diffraction limited performance in SWIFT's wavelength range. In order to take advantage of this increased spatial resolution we upgraded SWIFT with new pre-optics allowing us to spatially Nyquist sample the diffraction limited PALM-3000 point spread function with 16 mas resolution, reducing the spaxel scale by another factor of 5×. We designed, manufactured, integrated and tested the new pre-optics in the first half of 2011 and commissioned it in December 2011. Here we present the opto-mechanical design and assembly of the new scale changing optics, as well as laboratory and on-sky commissioning results. In optimal observing conditions we achieve substantial Strehl ratios, delivering the near diffraction limited spatial resolution in the I and z bands.
Optical Tweezer Assembly and Calibration
NASA Technical Reports Server (NTRS)
Collins, Timothy M.
2004-01-01
An Optical Tweezer, as the name implies, is a useful tool for precision manipulation of micro and nano scale objects. Using the principle of electromagnetic radiation pressure, an optical tweezer employs a tightly focused laser beam to trap and position objects of various shapes and sizes. These devices can trap micrometer and nanometer sized objects. An exciting possibility for optical tweezers is its future potential to manipulate and assemble micro and nano sized sensors. A typical optical tweezer makes use of the following components: laser, mirrors, lenses, a high quality microscope, stage, Charge Coupled Device (CCD) camera, TV monitor and Position Sensitive Detectors (PSDs). The laser wavelength employed is typically in the visible or infrared spectrum. The laser beam is directed via mirrors and lenses into the microscope. It is then tightly focused by a high magnification, high numerical aperture microscope objective into the sample slide, which is mounted on a translating stage. The sample slide contains a sealed, small volume of fluid that the objects are suspended in. The most common objects trapped by optical tweezers are dielectric spheres. When trapped, a sphere will literally snap into and center itself in the laser beam. The PSD s are mounted in such a way to receive the backscatter after the beam has passed through the trap. PSD s used with the Differential Interference Contrast (DIC) technique provide highly precise data. Most optical tweezers employ lasers with power levels ranging from 10 to 100 miliwatts. Typical forces exerted on trapped objects are in the pico-newton range. When PSDs are employed, object movement can be resolved on a nanometer scale in a time range of milliseconds. Such accuracy, however, can only by utilized by calibrating the optical tweezer. Fortunately, an optical tweezer can be modeled accurately as a simple spring. This allows Hook s Law to be used. My goal this summer at NASA Glenn Research Center is the assembly and calibration of an optical tweezer setup in the Instrumentation and Controls Division (5520). I am utilizing a custom LabVIEW Virtual Instrument program for data collection and microscope stage control. Helping me in my assignment are the following people: Mentor Susan Wrbanek (5520), Dr. Baha Jassemnejad (UCO) and Technicians Ken Weiland (7650) and James Williams (7650). Without their help, my task would not be possible.
NASA Technical Reports Server (NTRS)
Follen, G.; Naiman, C.; auBuchon, M.
2000-01-01
Within NASA's High Performance Computing and Communication (HPCC) program, NASA Glenn Research Center is developing an environment for the analysis/design of propulsion systems for aircraft and space vehicles called the Numerical Propulsion System Simulation (NPSS). The NPSS focuses on the integration of multiple disciplines such as aerodynamics, structures, and heat transfer, along with the concept of numerical zooming between 0- Dimensional to 1-, 2-, and 3-dimensional component engine codes. The vision for NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Current "state-of-the-art" engine simulations are 0-dimensional in that there is there is no axial, radial or circumferential resolution within a given component (e.g. a compressor or turbine has no internal station designations). In these 0-dimensional cycle simulations the individual component performance characteristics typically come from a table look-up (map) with adjustments for off-design effects such as variable geometry, Reynolds effects, and clearances. Zooming one or more of the engine components to a higher order, physics-based analysis means a higher order code is executed and the results from this analysis are used to adjust the 0-dimensional component performance characteristics within the system simulation. By drawing on the results from more predictive, physics based higher order analysis codes, "cycle" simulations are refined to closely model and predict the complex physical processes inherent to engines. As part of the overall development of the NPSS, NASA and industry began the process of defining and implementing an object class structure that enables Numerical Zooming between the NPSS Version I (0-dimension) and higher order 1-, 2- and 3-dimensional analysis codes. The NPSS Version I preserves the historical cycle engineering practices but also extends these classical practices into the area of numerical zooming for use within a companies' design system. What follows here is a description of successfully zooming I-dimensional (row-by-row) high pressure compressor results back to a NPSS engine 0-dimension simulation and a discussion of the results illustrated using an advanced data visualization tool. This type of high fidelity system-level analysis, made possible by the zooming capability of the NPSS, will greatly improve the fidelity of the engine system simulation and enable the engine system to be "pre-validated" prior to commitment to engine hardware.
Suspension and simple optical characterization of two-dimensional membranes
NASA Astrophysics Data System (ADS)
Northeast, David B.; Knobel, Robert G.
2018-03-01
We report on a method for suspending two-dimensional crystal materials in an electronic circuit using an only photoresists and solvents. Graphene and NbSe2 are suspended tens of nanometers above metal electrodes with clamping diameters of several microns. The optical cavity formed from the membrane/air/metal structures enables a quick method to measure the number of layers and the gap separation using comparisons between the expected colour and optical microscope images. This characterization technique can be used with just an illuminated microscope with a digital camera which makes it adaptable to environments where other means of characterization are not possible, such as inside nitrogen glove boxes used in handling oxygen-sensitive materials.
Microscopic Optical Projection Tomography In Vivo
Meyer, Heiko; Ripoll, Jorge; Tavernarakis, Nektarios
2011-01-01
We describe a versatile optical projection tomography system for rapid three-dimensional imaging of microscopic specimens in vivo. Our tomographic setup eliminates the in xy and z strongly asymmetric resolution, resulting from optical sectioning in conventional confocal microscopy. It allows for robust, high resolution fluorescence as well as absorption imaging of live transparent invertebrate animals such as C. elegans. This system offers considerable advantages over currently available methods when imaging dynamic developmental processes and animal ageing; it permits monitoring of spatio-temporal gene expression and anatomical alterations with single-cell resolution, it utilizes both fluorescence and absorption as a source of contrast, and is easily adaptable for a range of small model organisms. PMID:21559481
Enhancement of graphene visibility on transparent substrates by refractive index optimization.
Gonçalves, Hugo; Alves, Luís; Moura, Cacilda; Belsley, Michael; Stauber, Tobias; Schellenberg, Peter
2013-05-20
Optical reflection microscopy is one of the main imaging tools to visualize graphene microstructures. Here is reported a novel method that employs refractive index optimization in an optical reflection microscope, which greatly improves the visibility of graphene flakes. To this end, an immersion liquid with a refractive index that is close to that of the glass support is used in-between the microscope lens and the support improving the contrast and resolution of the sample image. Results show that the contrast of single and few layer graphene crystals and structures can be enhanced by a factor of 4 compared to values commonly achieved with transparent substrates using optical reflection microscopy lacking refractive index optimization.
Dynamic-focusing microscope objective for optical coherence tomography
NASA Astrophysics Data System (ADS)
Murali, Supraja; Rolland, Jannick
2007-01-01
Optical Coherence Tomography (OCT) is a novel optical imaging technique that has assumed significant importance in bio-medical imaging in the last two decades because it is non-invasive and provides accurate, high resolution images of three dimensional cross-sections of body tissue, exceeding the capabilities of the current predominant imaging technique - ultrasound. In this paper, the application of high resolution OCT, known as optical coherence microscopy (OCM) is investigated for in vivo detection of abnormal skin pathology for the early diagnosis of cancer. A main challenge in OCM is maintaining invariant resolution throughout the sample. The technology presented is based on a dynamic focusing microscope imaging probe conceived for skin imaging and the detection of abnormalities in the epithelium. A novel method for dynamic focusing in the biological sample is presented using variable-focus lens technology to obtain three dimensional images with invariant resolution throughout the cross-section and depth of the sample is presented and discussed. A low coherence broadband source centered at near IR wavelengths is used to illuminate the sample. The design, analysis and predicted performance of the dynamic focusing microscope objective designed for dynamic three dimensional imaging at 5μm resolution for the chosen broadband spectrum is presented.
Trache, Andreea; Meininger, Gerald A
2005-01-01
A novel hybrid imaging system is constructed integrating atomic force microscopy (AFM) with a combination of optical imaging techniques that offer high spatial resolution. The main application of this instrument (the NanoFluor microscope) is the study of mechanotransduction with an emphasis on extracellular matrix-integrin-cytoskeletal interactions and their role in the cellular responses to changes in external chemical and mechanical factors. The AFM allows the quantitative assessment of cytoskeletal changes, binding probability, adhesion forces, and micromechanical properties of the cells, while the optical imaging applications allow thin sectioning of the cell body at the coverslip-cell interface, permitting the study of focal adhesions using total internal reflection fluorescence (TIRF) and internal reflection microscopy (IRM). Combined AFM-optical imaging experiments show that mechanical stimulation at the apical surface of cells induces a force-generating cytoskeletal response, resulting in focal contact reorganization on the basal surface that can be monitored in real time. The NanoFluor system is also equipped with a novel mechanically aligned dual camera acquisition system for synthesized Forster resonance energy transfer (FRET). The integrated NanoFluor microscope system is described, including its characteristics, applications, and limitations.
An improved apparatus of infrared videopupillography for monitoring pupil size
NASA Astrophysics Data System (ADS)
Huang, T.-.; Ko, M.-.; Ouyang, Y.; Chen, Y.-.; Sone, B.-.; Ou-Yang, M.; Chiou, J.-.
2014-10-01
The intraocular pressure (IOP) that can diagnose or track glaucoma generally because it is one of the physiology parameters that are associated with glaucoma. But IOP is not easy and consistence to be measured under different measure conditions. Besides, diabetes is associated with diabetic autonomic neuropathy (DAN). Pupil size response might provide an indirect means about neuronal pathways, so the abnormal pupil size may relate with DAN. Hence an infrared videopupillography is needed for tracking glaucoma and exploring the relation between pupil size and DAN. Our previous research proposed an infrared videopupillography to monitoring the pupil size of different light stimulus in dark room. And this portable infrared videopupillography contains a camera, a beam splitter, the visible-light LEDs for stimulating the eyes, and the infrared LEDs for lighting the eyes. It can be mounted on any eyeglass frame. But it can modulate only two dimensions, we cannot zoom in/out the eyes. Moreover, the eye diameter curves were not smooth and jagged because of the light spots, lone eyelashes, and blink. Therefore, we redesign the optical path of our device to have three dimension modulation. Then we can zoom in the eye to increase the eye resolution and to avoid the LED light spots. The light spot could be solved by defining the distance between IR LED and CCD. This device smaller volume and less prices of our previous videopupillography. We hope this new infrared videopupillography proposed in this paper can achieving early detection about autonomic neuropathy in the future.
Skucha-Nowak, Małgorzata; Machorowska-Pieniążek, Agnieszka; Tanasiewicz, Marta
2016-01-01
The aim of the infiltration technique is to penetrate demineralized enamel with a low viscosity resin. Icon® (DMG) is the first ever and so far the only dental infiltrant. Bacteriostaticity is one of the properties that should be inherent in dental infiltrants, but Icon lacks this feature. The aim of the preliminary study was to properly choose a dye which would allow us to assess the penetrating abilities of our own, experimental preparation with features of a dental infiltrant with bacteriostatic properties and to compare using an optical microscope the depth of infiltration of the designed experimental preparation with the infiltrant available on the market. The preparation is supposed to infiltrate decalcified human enamel and be assessed with an optical microscope. Eosin, neutral fuchsine and methylene blue were added to experimental preparation with dental infiltrant features and to Icon® (DMG) in order to assess the depth of penetration of the experimental solution into the decalcified layers of enamel. The experimental solution mixes well with eosin, neutral fuchsine, and methylene blue. During the preliminary study, the authors concluded that the experimental solution mixes well with methylene blue, neutral fuchsine, and eosin. An addition of eosin to a preparation which infiltrates inner, demineralized enamel layers, facilitates the assessment of such a preparation with an optical microscope. A designed experimental solution with the main ingredients, i.e., 2-hydroxyethyl methacrylate (HEMA) and tetraethylene glycol dimethacrylate (TEGDMA) with a ratio of 75% to 25% penetrates the demineralized (decalcified) inner parts of the enamel and polymerizes when exposed to light. In order to assess the infiltration of the experimental solution into the demineralized enamel layers, it is required to improve the measurement techniques that utilize optical microscopy.
Cartographic analyses of geographic information available on Google Earth Images
NASA Astrophysics Data System (ADS)
Oliveira, J. C.; Ramos, J. R.; Epiphanio, J. C.
2011-12-01
The propose was to evaluate planimetric accuracy of satellite images available on database of Google Earth. These images are referents to the vicinities of the Federal Univertisity of Viçosa, Minas Gerais - Brazil. The methodology developed evaluated the geographical information of three groups of images which were in accordance to the level of detail presented in the screen images (zoom). These groups of images were labeled to Zoom 1000 (a single image for the entire study area), Zoom 100 (formed by a mosaic of 73 images) and Zoom 100 with geometric correction (this mosaic is like before, however, it was applied a geometric correction through control points). In each group of image was measured the Cartographic Accuracy based on statistical analyses and brazilian's law parameters about planimetric mapping. For this evaluation were identified 22 points in each group of image, where the coordinates of each point were compared to the coordinates of the field obtained by GPS (Global Positioning System). The Table 1 show results related to accuracy (based on a threshold equal to 0.5 mm * mapping scale) and tendency (abscissa and ordinate) between the coordinates of the image and the coordinates of field. Table 1 The geometric correction applied to the Group Zoom 100 reduced the trends identified earlier, and the statistical tests pointed a usefulness of the data for a mapping at a scale of 1/5000 with error minor than 0.5 mm * scale. The analyses proved the quality of cartographic data provided by Google, as well as the possibility of reduce the divergences of positioning present on the data. It can be concluded that it is possible to obtain geographic information database available on Google Earth, however, the level of detail (zoom) used at the time of viewing and capturing information on the screen influences the quality cartographic of the mapping. Although cartographic and thematic potential present in the database, it is important to note that both the software as data distributed by Google Earth has policies for use and distribution.
Table 1 - PLANIMETRIC ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tongcang; Ota, Sadao; Kim, Jeongmin
This disclosure provides systems, methods, and apparatus related to optical microscopy. In one aspect, an apparatus includes a sample holder, a first objective lens, a plurality of optical components, a second objective lens, and a mirror. The apparatus may directly image a cross-section of a sample oblique to or parallel to the optical axis of the first objective lens, without scanning.
Environmental Integrity of Coating/Metal Interface
1989-03-01
occurred. For this explanation to be correct, microblisters would be optically detectable using a microscope with Nomarsky contrast or by examining the...polymer surface with an interferometric microscope. Both of these techniques have been tried, but neither of them was able to detect any surface
A simple optical tweezers for trapping polystyrene particles
NASA Astrophysics Data System (ADS)
Shiddiq, Minarni; Nasir, Zulfa; Yogasari, Dwiyana
2013-09-01
Optical tweezers is an optical trap. For decades, it has become an optical tool that can trap and manipulate any particle from the very small size like DNA to the big one like bacteria. The trapping force comes from the radiation pressure of laser light which is focused to a group of particles. Optical tweezers has been used in many research areas such as atomic physics, medical physics, biophysics, and chemistry. Here, a simple optical tweezers has been constructed using a modified Leybold laboratory optical microscope. The ocular lens of the microscope has been removed for laser light and digital camera accesses. A laser light from a Coherent diode laser with wavelength λ = 830 nm and power 50 mW is sent through an immersion oil objective lens with magnification 100 × and NA 1.25 to a cell made from microscope slides containing polystyrene particles. Polystyrene particles with size 3 μm and 10 μm are used. A CMOS Thorlabs camera type DCC1545M with USB Interface and Thorlabs camera lens 35 mm are connected to a desktop and used to monitor the trapping and measure the stiffness of the trap. The camera is accompanied by camera software which makes able for the user to capture and save images. The images are analyzed using ImageJ and Scion macro. The polystyrene particles have been trapped successfully. The stiffness of the trap depends on the size of the particles and the power of the laser. The stiffness increases linearly with power and decreases as the particle size larger.
An Improved Optical Tweezers Assay for Measuring the Force Generation of Single Kinesin Molecules
Nicholas, Matthew P.; Rao, Lu; Gennerich, Arne
2014-01-01
Numerous microtubule-associated molecular motors, including several kinesins and cytoplasmic dynein, produce opposing forces that regulate spindle and chromosome positioning during mitosis. The motility and force generation of these motors are therefore critical to normal cell division, and dysfunction of these processes may contribute to human disease. Optical tweezers provide a powerful method for studying the nanometer motility and piconewton force generation of single motor proteins in vitro. Using kinesin-1 as a prototype, we present a set of step-by-step, optimized protocols for expressing a kinesin construct (K560-GFP) in Escherichia coli, purifying it, and studying its force generation in an optical tweezers microscope. We also provide detailed instructions on proper alignment and calibration of an optical trapping microscope. These methods provide a foundation for a variety of similar experiments. PMID:24633799
Simulation study on compressive laminar optical tomography for cardiac action potential propagation
Harada, Takumi; Tomii, Naoki; Manago, Shota; Kobayashi, Etsuko; Sakuma, Ichiro
2017-01-01
To measure the activity of tissue at the microscopic level, laminar optical tomography (LOT), which is a microscopic form of diffuse optical tomography, has been developed. However, obtaining sufficient recording speed to determine rapidly changing dynamic activity remains major challenges. For a high frame rate of the reconstructed data, we here propose a new LOT method using compressed sensing theory, called compressive laminar optical tomography (CLOT), in which novel digital micromirror device-based illumination and data reduction in a single reconstruction are applied. In the simulation experiments, the reconstructed volumetric images of the action potentials that were acquired from 5 measured images with random pattern featured a wave border at least to a depth of 2.5 mm. Consequently, it was shown that CLOT has potential for over 200 fps required for the cardiac electrophysiological phenomena. PMID:28736675
Imaging arrangement and microscope
Pertsinidis, Alexandros; Chu, Steven
2015-12-15
An embodiment of the present invention is an imaging arrangement that includes imaging optics, a fiducial light source, and a control system. In operation, the imaging optics separate light into first and second tight by wavelength and project the first and second light onto first and second areas within first and second detector regions, respectively. The imaging optics separate fiducial light from the fiducial light source into first and second fiducial light and project the first and second fiducial light onto third and fourth areas within the first and second detector regions, respectively. The control system adjusts alignment of the imaging optics so that the first and second fiducial light projected onto the first and second detector regions maintain relatively constant positions within the first and second detector regions, respectively. Another embodiment of the present invention is a microscope that includes the imaging arrangement.
NASA Astrophysics Data System (ADS)
Suen, Ricky Wai
The work described in this thesis covers the conversion of HiLo image processing into MATLAB architecture and the use of speckle-illumination HiLo microscopy for use of ex-vivo and in-vivo imaging of thick tissue models. HiLo microscopy is a wide-field fluorescence imaging technique and has been demonstrated to produce optically sectioned images comparable to confocal in thin samples. The imaging technique was developed by Jerome Mertz and the Boston University Biomicroscopy Lab and has been implemented in our lab as a stand-alone optical setup and a modification to a conventional fluorescence microscope. Speckle-illumination HiLo microscopy combines two images taken under speckle-illumination and standard uniform-illumination to generate an optically sectioned image that reject out-of-focus fluorescence. The evaluated speckle contrast in the images is used as a weighting function where elements that move out-of-focus have a speckle contrast that decays to zero. The experiments shown here demonstrate the capability of our HiLo microscopes to produce optically-sectioned images of the microvasculature of ex-vivo and in-vivo thick tissue models. The HiLo microscope were used to image the microvasculature of ex-vivo mouse heart sections prepared for optical histology and the microvasculature of in-vivo rodent dorsal window chamber models. Studies in label-free surface profiling with HiLo microscopy is also presented.
Riffel, Philipp; Michaely, Henrik J; Morelli, John N; Paul, Dominik; Kannengiesser, Stephan; Schoenberg, Stefan O; Haneder, Stefan
2015-04-01
The purpose of this study was to evaluate the feasibility and technical quality of a zoomed three-dimensional (3D) turbo spin-echo (TSE) sampling perfection with application optimized contrasts using different flip-angle evolutions (SPACE) sequence of the lumbar spine. In this prospective feasibility study, nine volunteers underwent a 3-T magnetic resonance examination of the lumbar spine including 1) a conventional 3D T2-weighted (T2w) SPACE sequence with generalized autocalibrating partially parallel acquisition technique acceleration factor 2 and 2) a zoomed 3D T2w SPACE sequence with a reduced field of view (reduction factor 2). Images were evaluated with regard to image sharpness, signal homogeneity, and the presence of artifacts by two experienced radiologists. For quantitative analysis, signal-to-noise ratio (SNR) values were calculated. Image sharpness of anatomic structures was statistically significantly greater with zoomed SPACE (P < .0001), whereas the signal homogeneity was statistically significantly greater with conventional SPACE (cSPACE; P = .0003). There were no statistically significant differences in extent of artifacts. Acquisition times were 8:20 minutes for cSPACE and 6:30 minutes for zoomed SPACE. Readers 1 and 2 selected zSPACE as the preferred sequence in five of nine cases. In two of nine cases, both sequences were rated as equally preferred by both the readers. SNR values were statistically significantly greater with cSPACE. In comparison to a cSPACE sequences, zoomed SPACE imaging of the lumbar spine provides sharper images in conjunction with a 25% reduction in acquisition time. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
Bridging the scales in a eulerian air quality model to assess megacity export of pollution
NASA Astrophysics Data System (ADS)
Siour, G.; Colette, A.; Menut, L.; Bessagnet, B.; Coll, I.; Meleux, F.
2013-08-01
In Chemistry Transport Models (CTMs), spatial scale interactions are often represented through off-line coupling between large and small scale models. However, those nested configurations cannot give account of the impact of the local scale on its surroundings. This issue can be critical in areas exposed to air mass recirculation (sea breeze cells) or around regions with sharp pollutant emission gradients (large cities). Such phenomena can still be captured by the mean of adaptive gridding, two-way nesting or using model nudging, but these approaches remain relatively costly. We present here the development and the results of a simple alternative multi-scale approach making use of a horizontal stretched grid, in the Eulerian CTM CHIMERE. This method, called "stretching" or "zooming", consists in the introduction of local zooms in a single chemistry-transport simulation. It allows bridging online the spatial scales from the city (∼1 km resolution) to the continental area (∼50 km resolution). The CHIMERE model was run over a continental European domain, zoomed over the BeNeLux (Belgium, Netherlands and Luxembourg) area. We demonstrate that, compared with one-way nesting, the zooming method allows the expression of a significant feedback of the refined domain towards the large scale: around the city cluster of BeNeLuX, NO2 and O3 scores are improved. NO2 variability around BeNeLux is also better accounted for, and the net primary pollutant flux transported back towards BeNeLux is reduced. Although the results could not be validated for ozone over BeNeLux, we show that the zooming approach provides a simple and immediate way to better represent scale interactions within a CTM, and constitutes a useful tool for apprehending the hot topic of megacities within their continental environment.
NASA Astrophysics Data System (ADS)
Sensui, Takayuki
2012-10-01
Although digitalization has tripled consumer-class camera market scale, extreme reductions in prices of fixed-lens cameras has reduced profitability. As a result, a number of manufacturers have entered the market of the System DSC i.e. digital still camera with interchangeable lens, where large profit margins are possible, and many high ratio zoom lenses with image stabilization functions have been released. Quiet actuators are another indispensable component. Design with which there is little degradation in performance due to all types of errors is preferred for good balance in terms of size, lens performance, and the rate of quality to sub-standard products. Decentering, such as that caused by tilting, sensitivity of moving groups is especially important. In addition, image stabilization mechanisms actively shift lens groups. Development of high ratio zoom lenses with vibration reduction mechanism is confronted by the challenge of reduced performance due to decentering, making control over decentering sensitivity between lens groups everything. While there are a number of ways to align lenses (axial alignment), shock resistance and ability to stand up to environmental conditions must also be considered. Naturally, it is very difficult, if not impossible, to make lenses smaller and achieve a low decentering sensitivity at the same time. 4-group zoom construction is beneficial in making lenses smaller, but decentering sensitivity is greater. 5-group zoom configuration makes smaller lenses more difficult, but it enables lower decentering sensitivities. At Nikon, the most advantageous construction is selected for each lens based on specifications. The AF-S DX NIKKOR 18-200mm f/3.5-5.6G ED VR II and AF-S NIKKOR 28-300mm f/3.5-5.6G ED VR are excellent examples of this.
NASA Astrophysics Data System (ADS)
Wei, Linpeng; Chen, Ye; Yin, Chengbo; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T. C.
2017-04-01
Systemic delivery of 5-aminolevulinic acid leads to enhanced fluorescence image contrast in many tumors due to the increased accumulation of protoporphyrin IX (PpIX), a fluorescent porphyrin that is associated with tumor burden and proliferation. The value of PpIX-guided resection of malignant gliomas has been demonstrated in prospective randomized clinical studies in which a twofold greater extent of resection and improved progression-free survival have been observed. In low-grade gliomas and at the diffuse infiltrative margins of all gliomas, PpIX fluorescence is often too weak to be detected with current low-resolution surgical microscopes that are used in operating rooms. However, it has been demonstrated that high-resolution optical-sectioning microscopes are capable of detecting the sparse and punctate accumulations of PpIX that are undetectable via conventional low-power surgical fluorescence microscopes. To standardize the performance of high-resolution optical-sectioning devices for future clinical use, we have developed an imaging phantom and methods to ensure that the imaging of PpIX-expressing brain tissues can be performed reproducibly. Ex vivo imaging studies with a dual-axis confocal microscope demonstrate that these methods enable the acquisition of images from unsectioned human brain tissues that quantitatively and consistently correlate with images of histologically processed tissue sections.
Method to deterministically study photonic nanostructures in different experimental instruments.
Husken, B H; Woldering, L A; Blum, C; Vos, W L
2009-01-01
We describe an experimental method to recover a single, deterministically fabricated nanostructure in various experimental instruments without the use of artificially fabricated markers, with the aim to study photonic structures. Therefore, a detailed map of the spatial surroundings of the nanostructure is made during the fabrication of the structure. These maps are made using a series of micrographs with successively decreasing magnifications. The graphs reveal intrinsic and characteristic geometric features that can subsequently be used in different setups to act as markers. As an illustration, we probe surface cavities with radii of 65 nm on a silica opal photonic crystal with various setups: a focused ion beam workstation; a scanning electron microscope (SEM); a wide field optical microscope and a confocal microscope. We use cross-correlation techniques to recover a small area imaged with the SEM in a large area photographed with the optical microscope, which provides a possible avenue to automatic searching. We show how both structural and optical reflectivity data can be obtained from one and the same nanostructure. Since our approach does not use artificial grids or markers, it is of particular interest for samples whose structure is not known a priori, like samples created solely by self-assembly. In addition, our method is not restricted to conducting samples.
[Intraoperative Optical Coherence Tomography (MI-OCT) for the Treatment of Corneal Dystrophies].
Siebelmann, Sebastian; Matthaei, Mario; Heindl, Ludwig M; Bachmann, Björn O; Cursiefen, Claus
2018-06-01
The surgical treatment of corneal dystrophies develops rapidly as the use of lamellar corneal grafting techniques continue. While penetrating keratoplasty was the gold standard for treating a variety of dystrophies a few years ago, the affected layers of the cornea can, nowadays, be selectively replaced or ablated using laser technology. Of particular importance for these methods is optical coherence tomography, which has recently been integrated into surgical microscopes (MI-OCT). Literature overview from PubMed and Google.scholar.de supplemented with own imaging data. The MI-OCT enables the intraoperative real-time monitoring of different ophthalmic surgical procedures, such as deep anterior lamellar keratoplasty, Descemet's membrane endothelial keratoplasty, as well as minimally-invasive procedures, such as phototherapeutic keratectomy. In addition, it enables an evaluation of the cornea, but also of structures of the anterior chamber, in situations in which the cornea, for example, is clouded by an edema. Microscope-integrated, intraoperative optical coherence tomography (MI-OCT) represents a useful supplement to the normal surgical microscope. It is superior to the sole surgical microscope, especially in already severely clouded corneas, and represents a sensible supplement, especially for novel lamellar transplantation procedures. Prospective randomized trials are necessary to increase safety and efficacy when using MI-OCT for different indications. Georg Thieme Verlag KG Stuttgart · New York.
Light field creating and imaging with different order intensity derivatives
NASA Astrophysics Data System (ADS)
Wang, Yu; Jiang, Huan
2014-10-01
Microscopic image restoration and reconstruction is a challenging topic in the image processing and computer vision, which can be widely applied to life science, biology and medicine etc. A microscopic light field creating and three dimensional (3D) reconstruction method is proposed for transparent or partially transparent microscopic samples, which is based on the Taylor expansion theorem and polynomial fitting. Firstly the image stack of the specimen is divided into several groups in an overlapping or non-overlapping way along the optical axis, and the first image of every group is regarded as reference image. Then different order intensity derivatives are calculated using all the images of every group and polynomial fitting method based on the assumption that the structure of the specimen contained by the image stack in a small range along the optical axis are possessed of smooth and linear property. Subsequently, new images located any position from which to reference image the distance is Δz along the optical axis can be generated by means of Taylor expansion theorem and the calculated different order intensity derivatives. Finally, the microscopic specimen can be reconstructed in 3D form using deconvolution technology and all the images including both the observed images and the generated images. The experimental results show the effectiveness and feasibility of our method.
Truxal, Steven C; Huang, Nien-Tsu; Kurabayashi, Katsuo
2009-01-01
We report a microelectromechanical (MEMS) tunable optical filter and its integration in a fluorescence microscope for high speed on-chip spectral measurements. This integration allows for measurements of any fluorescence sample placed onto the microscope stage. We demonstrate the system capabilities by taking spectral measurements of multicolor fluorescent beads and fluorescently labeled cells passing through a microfluidic cytometer. The system has applications in biological studies where the measurement of multiple fluorescent peaks is restricted by the detection method's speed and sensitivity.
Electron microscopic and optical studies of prism faces of synthetic quartz
NASA Technical Reports Server (NTRS)
Buzek, B. C.; Vagh, A. S.
1977-01-01
Application of electron and optical microscopic techniques to the study of growth spirals on quartz crystal faces is described. Attention is centered on the centers of the spirals and on screw ledges; overhanging kinks are revealed on one side of the spiral centers. The possibility that these special features may have developed after growth of the crystals went to completion is explored. The conjecture is raised that such structures might result from adsorption of growth-inhibiting impurities at the center of the growth spiral on the quartz habit faces.
Laboratory-size three-dimensional water-window x-ray microscope with Wolter type I mirror optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohsuka, Shinji; The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202; Ohba, Akira
2016-01-28
We constructed a laboratory-size three-dimensional water-window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques. It consists of an electron-impact x-ray source emitting oxygen Kα x-rays, Wolter type I grazing incidence mirror optics, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit better than 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm-scale three-dimensional fine structures were resolved.
Artificial testing targets with controllable blur for adaptive optics microscopes
NASA Astrophysics Data System (ADS)
Hattori, Masayuki; Tamada, Yosuke; Murata, Takashi; Oya, Shin; Hasebe, Mitsuyasu; Hayano, Yutaka; Kamei, Yasuhiro
2017-08-01
This letter proposes a method of configuring a testing target to evaluate the performance of adaptive optics microscopes. In this method, a testing slide with fluorescent beads is used to simultaneously determine the point spread function and the field of view. The point spread function is reproduced to simulate actual biological samples by etching a microstructure on the cover glass. The fabrication process is simplified to facilitate an onsite preparation. The artificial tissue consists of solid materials and silicone oil and is stable for use in repetitive experiments.
Fast and Accurate Cell Tracking by a Novel Optical-Digital Hybrid Method
NASA Astrophysics Data System (ADS)
Torres-Cisneros, M.; Aviña-Cervantes, J. G.; Pérez-Careta, E.; Ambriz-Colín, F.; Tinoco, Verónica; Ibarra-Manzano, O. G.; Plascencia-Mora, H.; Aguilera-Gómez, E.; Ibarra-Manzano, M. A.; Guzman-Cabrera, R.; Debeir, Olivier; Sánchez-Mondragón, J. J.
2013-09-01
An innovative methodology to detect and track cells using microscope images enhanced by optical cross-correlation techniques is proposed in this paper. In order to increase the tracking sensibility, image pre-processing has been implemented as a morphological operator on the microscope image. Results show that the pre-processing process allows for additional frames of cell tracking, therefore increasing its robustness. The proposed methodology can be used in analyzing different problems such as mitosis, cell collisions, and cell overlapping, ultimately designed to identify and treat illnesses and malignancies.
Model wavefront sensor for adaptive confocal microscopy
NASA Astrophysics Data System (ADS)
Booth, Martin J.; Neil, Mark A. A.; Wilson, Tony
2000-05-01
A confocal microscope permits 3D imaging of volume objects by the inclusion of a pinhole in the detector path which eliminates out of focus light. This configuration is however very sensitive to aberrations induced by the specimen or the optical system and would therefore benefit from an adaptive optics approach. We present a wavefront sensor capable of measuring directly the Zernike components of an aberrated wavefront and show that it is particularly applicable to the confocal microscope since only those wavefronts originating in the focal region contribute to the measured aberration.
NASA Technical Reports Server (NTRS)
Patterson, John W.
1992-01-01
The objectives are to build and demonstrate a low cost and highly flexible TV microscope facility and then use it to view the motion of magnetic domain boundaries as the local magnetic field is varied. The expense of an optical microscope and the videocam adapters sold for them is largely avoided by using the facility described below. The equipment, supplies, and procedure are presented.
Yang, Xiaochen; Clements, Logan W; Luo, Ma; Narasimhan, Saramati; Thompson, Reid C; Dawant, Benoit M; Miga, Michael I
2017-07-01
Intraoperative soft tissue deformation, referred to as brain shift, compromises the application of current image-guided surgery navigation systems in neurosurgery. A computational model driven by sparse data has been proposed as a cost-effective method to compensate for cortical surface and volumetric displacements. We present a mock environment developed to acquire stereoimages from a tracked operating microscope and to reconstruct three-dimensional point clouds from these images. A reconstruction error of 1 mm is estimated by using a phantom with a known geometry and independently measured deformation extent. The microscope is tracked via an attached tracking rigid body that facilitates the recording of the position of the microscope via a commercial optical tracking system as it moves during the procedure. Point clouds, reconstructed under different microscope positions, are registered into the same space to compute the feature displacements. Using our mock craniotomy device, realistic cortical deformations are generated. When comparing our tracked microscope stereo-pair measure of mock vessel displacements to that of the measurement determined by the independent optically tracked stylus marking, the displacement error was [Formula: see text] on average. These results demonstrate the practicality of using tracked stereoscopic microscope as an alternative to laser range scanners to collect sufficient intraoperative information for brain shift correction.
Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara
2010-03-01
Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. (c) 2010 Elsevier Inc. All rights reserved.
Microscope-integrated optical coherence tomography for image-aided positioning of glaucoma surgery
NASA Astrophysics Data System (ADS)
Li, Xiqi; Wei, Ling; Dong, Xuechuan; Huang, Ping; Zhang, Chun; He, Yi; Shi, Guohua; Zhang, Yudong
2015-07-01
Most glaucoma surgeries involve creating new aqueous outflow pathways with the use of a small surgical instrument. This article reported a microscope-integrated, real-time, high-speed, swept-source optical coherence tomography system (SS-OCT) with a 1310-nm light source for glaucoma surgery. A special mechanism was designed to produce an adjustable system suitable for use in surgery. A two-graphic processing unit architecture was used to speed up the data processing and real-time volumetric rendering. The position of the surgical instrument can be monitored and measured using the microscope and a grid-inserted image of the SS-OCT. Finally, experiments were simulated to assess the effectiveness of this integrated system. Experimental results show that this system is a suitable positioning tool for glaucoma surgery.
A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy
NASA Astrophysics Data System (ADS)
Li, Hao; Yang, Haw
2018-03-01
This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.
Hyperspectral stimulated emission depletion microscopy and methods of use thereof
Timlin, Jerilyn A; Aaron, Jesse S
2014-04-01
A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").
A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy.
Li, Hao; Yang, Haw
2018-03-28
This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.
Asbestos Testing: Is the EPA Misleading You?
ERIC Educational Resources Information Center
Levins, Hoag
1983-01-01
Experts warn that only electron microscopes can see the smaller fibers of asbestos that are known to cause the most cancers, though the Environmental Protection Agency still endorses optical microscopes for asbestos removal verification. Asbestos testing methods are explained and sources of information are provided. (MLF)
Larson, Joshua; Kirk, Matt; Drier, Eric A.; O’Brien, William; MacKay, James F.; Friedman, Larry; Hoskins, Aaron
2015-01-01
Colocalization Single Molecule Spectroscopy (CoSMoS) has proven to be a useful method for studying the composition, kinetics, and mechanisms of complex cellular machines. Key to the technique is the ability to simultaneously monitor multiple proteins and/or nucleic acids as they interact with one another. Here we describe a protocol for constructing a CoSMoS micromirror Total Internal Reflection Fluorescence Microscope (mmTIRFM). Design and construction of a scientific microscope often requires a number of custom components and a significant time commitment. In our protocol, we have streamlined this process by implementation of a commercially available microscopy platform designed to accommodate the optical components necessary for a mmTIRFM. The mmTIRF system eliminates the need for machining custom parts by the end-user and facilitates optical alignment. Depending on the experience-level of the microscope builder, these time-savings and the following protocol can enable mmTIRF construction to be completed within two months. PMID:25188633
Larson, Joshua; Kirk, Matt; Drier, Eric A; O'Brien, William; MacKay, James F; Friedman, Larry J; Hoskins, Aaron A
2014-10-01
Colocalization single-molecule spectroscopy (CoSMoS) has proven to be a useful method for studying the composition, kinetics and mechanisms of complex cellular machines. Key to the technique is the ability to simultaneously monitor multiple proteins and/or nucleic acids as they interact with one another. Here we describe a protocol for constructing a CoSMoS micromirror total internal reflection fluorescence microscope (mmTIRFM). Design and construction of a scientific microscope often requires a number of custom components and a substantial time commitment. In our protocol, we have streamlined this process by implementation of a commercially available microscopy platform designed to accommodate the optical components necessary for an mmTIRFM. The mmTIRF system eliminates the need for machining custom parts by the end user and facilitates optical alignment. Depending on the experience level of the microscope builder, these time savings and the following protocol can enable mmTIRF construction to be completed within 2 months.
Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning.
Cheng, Li-Chung; Chang, Chia-Yuan; Lin, Chun-Yu; Cho, Keng-Chi; Yen, Wei-Chung; Chang, Nan-Shan; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen
2012-04-09
In this study, a microscope based on spatiotemporal focusing offering widefield multiphoton excitation has been developed to provide fast optical sectioning images. Key features of this microscope are the integrations of a 10 kHz repetition rate ultrafast amplifier featuring high instantaneous peak power (maximum 400 μJ/pulse at a 90 fs pulse width) and a TE-cooled, ultra-sensitive photon detecting, electron multiplying charge-coupled camera into a spatiotemporal focusing microscope. This configuration can produce multiphoton images with an excitation area larger than 200 × 100 μm² at a frame rate greater than 100 Hz (current maximum of 200 Hz). Brownian motions of fluorescent microbeads as small as 0.5 μm were observed in real-time with a lateral spatial resolution of less than 0.5 μm and an axial resolution of approximately 3.5 μm. Furthermore, second harmonic images of chicken tendons demonstrate that the developed widefield multiphoton microscope can provide high resolution z-sectioning for bioimaging.
Multifocal Fluorescence Microscope for Fast Optical Recordings of Neuronal Action Potentials
Shtrahman, Matthew; Aharoni, Daniel B.; Hardy, Nicholas F.; Buonomano, Dean V.; Arisaka, Katsushi; Otis, Thomas S.
2015-01-01
In recent years, optical sensors for tracking neural activity have been developed and offer great utility. However, developing microscopy techniques that have several kHz bandwidth necessary to reliably capture optically reported action potentials (APs) at multiple locations in parallel remains a significant challenge. To our knowledge, we describe a novel microscope optimized to measure spatially distributed optical signals with submillisecond and near diffraction-limit resolution. Our design uses a spatial light modulator to generate patterned illumination to simultaneously excite multiple user-defined targets. A galvanometer driven mirror in the emission path streaks the fluorescence emanating from each excitation point during the camera exposure, using unused camera pixels to capture time varying fluorescence at rates that are ∼1000 times faster than the camera’s native frame rate. We demonstrate that this approach is capable of recording Ca2+ transients resulting from APs in neurons labeled with the Ca2+ sensor Oregon Green Bapta-1 (OGB-1), and can localize the timing of these events with millisecond resolution. Furthermore, optically reported APs can be detected with the voltage sensitive dye DiO-DPA in multiple locations within a neuron with a signal/noise ratio up to ∼40, resolving delays in arrival time along dendrites. Thus, the microscope provides a powerful tool for photometric measurements of dynamics requiring submillisecond sampling at multiple locations. PMID:25650920
Zooming in on the cause of the perceptual load effect in the go/no-go paradigm.
Chen, Zhe; Cave, Kyle R
2016-08-01
Perceptual load theory (Lavie, 2005) claims that attentional capacity that is not used for the current task is allocated to irrelevant distractors. It predicts that if the attentional demands of the current task are high, distractor interference will be low. One particularly powerful demonstration of perceptual load effects on distractor processing relies on a go/no-go cue that is interpreted by either simple feature detection or feature conjunction (Lavie, 1995). However, a possible alternative interpretation of these effects is that the differential degree of distractor processing is caused by how broadly attention is allocated (attentional zoom) rather than to perceptual load. In 4 experiments, we show that when stimuli are arranged to equalize the extent of spatial attention across conditions, distractor interference varies little whether cues are defined by a simple feature or a conjunction, and that the typical perceptual load effect emerges only when attentional zoom can covary with perceptual load. These results suggest that attentional zoom can account for the differential degree of distractor processing traditionally attributed to perceptual load in the go/no-go paradigm. They also provide new insight into how different factors interact to control distractor interference. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Implementation of focal zooming on the Nike KrF laser
NASA Astrophysics Data System (ADS)
Kehne, D. M.; Karasik, M.; Aglitsky, Y.; Smyth, Z.; Terrell, S.; Weaver, J. L.; Chan, Y.; Lehmberg, R. H.; Obenschain, S. P.
2013-01-01
In direct drive inertial confinement laser fusion, a pellet containing D-T fuel is imploded by ablation arising from absorption of laser energy at its outer surface. For optimal coupling, the focal spot of the laser would continuously decrease to match the reduction in the pellet's diameter, thereby minimizing wasted energy. A krypton-fluoride laser (λ = 248 nm) that incorporates beam smoothing by induced spatial incoherence has the ability to produce a high quality focal profile whose diameter varies with time, a property known as focal zooming. A two-stage focal zoom has been demonstrated on the Nike laser at the Naval Research Laboratory. In the experiment, a 4.4 ns laser pulse was created in which the on-target focal spot diameter was 1.3 mm (full width at half maximum) for the first 2.4 ns and 0.28 mm for the final 2 ns. These two diameters appear in time-integrated focal plane equivalent images taken at several locations in the amplification chain. Eight of the zoomed output beams were overlapped on a 60 μm thick planar polystyrene target. Time resolved images of self-emission from the rear of the target show the separate shocks launched by the two corresponding laser focal diameters.
Implementation of focal zooming on the Nike KrF laser.
Kehne, D M; Karasik, M; Aglitsky, Y; Smyth, Z; Terrell, S; Weaver, J L; Chan, Y; Lehmberg, R H; Obenschain, S P
2013-01-01
In direct drive inertial confinement laser fusion, a pellet containing D-T fuel is imploded by ablation arising from absorption of laser energy at its outer surface. For optimal coupling, the focal spot of the laser would continuously decrease to match the reduction in the pellet's diameter, thereby minimizing wasted energy. A krypton-fluoride laser (λ = 248 nm) that incorporates beam smoothing by induced spatial incoherence has the ability to produce a high quality focal profile whose diameter varies with time, a property known as focal zooming. A two-stage focal zoom has been demonstrated on the Nike laser at the Naval Research Laboratory. In the experiment, a 4.4 ns laser pulse was created in which the on-target focal spot diameter was 1.3 mm (full width at half maximum) for the first 2.4 ns and 0.28 mm for the final 2 ns. These two diameters appear in time-integrated focal plane equivalent images taken at several locations in the amplification chain. Eight of the zoomed output beams were overlapped on a 60 μm thick planar polystyrene target. Time resolved images of self-emission from the rear of the target show the separate shocks launched by the two corresponding laser focal diameters.
To boldly glow ... applications of laser scanning confocal microscopy in developmental biology.
Paddock, S W
1994-05-01
The laser scanning confocal microscope (LSCM) is now established as an invaluable tool in developmental biology for improved light microscope imaging of fluorescently labelled eggs, embryos and developing tissues. The universal application of the LSCM in biomedical research has stimulated improvements to the microscopes themselves and the synthesis of novel probes for imaging biological structures and physiological processes. Moreover the ability of the LSCM to produce an optical series in perfect register has made computer 3-D reconstruction and analysis of light microscope images a practical option.
Electron Optics for Biologists: Physical Origins of Spherical Aberrations
ERIC Educational Resources Information Center
Geissler, Peter; Zadunaisky, Jose
1974-01-01
Reports on the physical origins of spherical aberrations in axially symmetric electrostatic lenses to convey the essentials of electon optics to those who must think critically about the resolution of the electron microscope. (GS)
Applied physics: Optical trapping for space mirrors.
McGloin, David
2014-02-27
Might it be possible to create mirrors for space telescopes, using nothing but microscopic particles held in place by light? A study that exploits a technique called optical binding provides a step towards this goal.
Microscopic theory of optical absorption in graphene enhanced by lattices of plasmonic nanoparticles
NASA Astrophysics Data System (ADS)
Mueller, Niclas S.; Reich, Stephanie
2018-06-01
We present a microscopic description of plasmon-enhanced optical absorption in graphene, which is based on perturbation theory. We consider the interaction of graphene with a lattice of plasmonic nanoparticles, as was previously realized experimentally. By using tight-binding wave functions for the electronic states of graphene and the dipole approximation for the plasmon, we obtain analytic expressions for the coupling matrix element and enhanced optical absorption. The plasmonic nanostructure induces nonvertical optical transitions in the band structure of graphene with selection rules for the momentum transfer that depend on the periodicity of the plasmonic lattice. The plasmon-mediated optical absorption leads to an anisotropic carrier population around the K point in phase space, which depends on the polarization pattern of the plasmonic near field in the graphene plane. Using Fourier optics, we draw a connection to a macroscopic approach, which is independent from graphene-specific parameters. Each Fourier component of the plasmonic near field corresponds to the momentum transfer of an optical transition. Both approaches lead to the same expression for the integrated optical absorption enhancement, which is relevant for the photocurrent enhancement in graphene-based optoelectronic devices.
Optical alignment using a CGH and an autostigmatic microscope
NASA Astrophysics Data System (ADS)
Parks, Robert E.
2017-08-01
We show how custom computer generated holograms (CGH) are used along with an autostigmatic microscope (ASM) to align both optical and mechanical components relative to the CGH. The patterns in the CGHs define points and lines in space when interrogated with the focus of the ASM. Once the ASM is aligned to the CGH, an optical or mechanical component such as a lens, a well-polished ball or a cylinder can be aligned to the ASM in 3 or 4 degrees of freedom and thus to the CGH. In this case we show how a CGH is used to make a fixture for cementing a doublet lens without the need for a rotary table or a precision vertical stage.
NASA Astrophysics Data System (ADS)
Subhash, Hrebesh M.; Wang, Ruikang K.; Chen, Fangyi; Nuttall, Alfred L.
2013-03-01
Most of the optical coherence tomographic (OCT) systems for high resolution imaging of biological specimens are based on refractive type microscope objectives, which are optimized for specific wave length of the optical source. In this study, we present the feasibility of using commercially available reflective type objective for high sensitive and high resolution structural and functional imaging of cochlear microstructures of an excised guinea pig through intact temporal bone. Unlike conventional refractive type microscopic objective, reflective objective are free from chromatic aberrations due to their all-reflecting nature and can support a broadband of spectrum with very high light collection efficiency.
Aligning Arrays of Lenses and Single-Mode Optical Fibers
NASA Technical Reports Server (NTRS)
Liu, Duncan
2004-01-01
A procedure now under development is intended to enable the precise alignment of sheet arrays of microscopic lenses with the end faces of a coherent bundle of as many as 1,000 single-mode optical fibers packed closely in a regular array (see Figure 1). In the original application that prompted this development, the precise assembly of lenses and optical fibers serves as a single-mode spatial filter for a visible-light nulling interferometer. The precision of alignment must be sufficient to limit any remaining wavefront error to a root-mean-square value of less than 1/10 of a wavelength of light. This wavefront-error limit translates to requirements to (1) ensure uniformity of both the lens and fiber arrays, (2) ensure that the lateral distance from the central axis of each lens and the corresponding optical fiber is no more than a fraction of a micron, (3) angularly align the lens-sheet planes and the fiber-bundle end faces to within a few arc seconds, and (4) axially align the lenses and the fiber-bundle end faces to within tens of microns of the focal distance. Figure 2 depicts the apparatus used in the alignment procedure. The beam of light from a Zygo (or equivalent) interferometer is first compressed by a ratio of 20:1 so that upon its return to the interferometer, the beam will be magnified enough to enable measurement of wavefront quality. The apparatus includes relay lenses that enable imaging of the arrays of microscopic lenses in a charge-coupled-device (CCD) camera that is part of the interferometer. One of the arrays of microscopic lenses is mounted on a 6-axis stage, in proximity to the front face of the bundle of optical fibers. The bundle is mounted on a separate stage. A mirror is attached to the back face of the bundle of optical fibers for retroreflection of light. When a microscopic lens and a fiber are aligned with each other, the affected portion of the light is reflected back by the mirror, recollimated by the microscopic lens, transmitted through the relay lenses and the beam compressor/expander, then split so that half goes to a detector and half to the interferometer. The output of the detector is used as a feedback control signal for the six-axis stage to effect alignment.
USDA-ARS?s Scientific Manuscript database
Optical method with hyperspectral microscope imaging (HMI) has potential for identification of foodborne pathogenic bacteria from microcolonies rapidly with a cell level. A HMI system that provides both spatial and spectral information could be an effective tool for analyzing spectral characteristic...
Development of an upconverting chelate assay
NASA Astrophysics Data System (ADS)
Xiao, Xudong; Haushalter, Jeanne P.; Kotz, Kenneth T.; Faris, Gregory W.
2005-04-01
We report progress on performing a cell-based assay for the detection of EGFR on cell surfaces by using upconverting chelates. An upconversion microscope has been developed for performing assays and testing optical response. A431 cells are labeled with europium DOTA and imaged using this upconverting microscope.
Templeton, Justin P.; Struebing, Felix L.; Lemmon, Andrew; Geisert, Eldon E.
2014-01-01
The present article introduces a new and easy to use counting application for the Apple iPad. The application “ImagePAD” takes advantage of the advanced user interface features offered by the Apple iOS® platform, simplifying the rather tedious task of quantifying features in anatomical studies. For example, the image under analysis can be easily panned and zoomed using iOS-supported multi-touch gestures without losing the spatial context of the counting task, which is extremely important for ensuring count accuracy. This application allows one to quantify up to 5 different types of objects in a single field and output the data in a tab-delimited format for subsequent analysis. We describe two examples of the use of the application: quantifying axons in the optic nerve of the C57BL/6J mouse and determining the percentage of cells labeled with NeuN or ChAT in the retinal ganglion cell layer. For the optic nerve, contiguous images at 60× magnification were taken and transferred onto an Apple iPad®. Axons were counted by tapping on the touch-sensitive screen using ImagePAD. Nine optic nerves were sampled and the number of axons in the nerves ranged from 38872 axons to 50196 axons with an average of 44846 axons per nerve (SD = 3980 axons). PMID:25281829
Photothermal camera port accessory for microscopic thermal diffusivity imaging
NASA Astrophysics Data System (ADS)
Escola, Facundo Zaldívar; Kunik, Darío; Mingolo, Nelly; Martínez, Oscar Eduardo
2016-06-01
The design of a scanning photothermal accessory is presented, which can be attached to the camera port of commercial microscopes to measure thermal diffusivity maps with micrometer resolution. The device is based on the thermal expansion recovery technique, which measures the defocusing of a probe beam due to the curvature induced by the local heat delivered by a focused pump beam. The beam delivery and collecting optics are built using optical fiber technology, resulting in a robust optical system that provides collinear pump and probe beams without any alignment adjustment necessary. The quasiconfocal configuration for the signal collection using the same optical fiber sets very restrictive conditions on the positioning and alignment of the optical components of the scanning unit, and a detailed discussion of the design equations is presented. The alignment procedure is carefully described, resulting in a system so robust and stable that no further alignment is necessary for the day-to-day use, becoming a tool that can be used for routine quality control, operated by a trained technician.
Tsuchiya, Y
2001-08-01
A concise theoretical treatment has been developed to describe the optical responses of a highly scattering inhomogeneous medium using functions of the photon path distribution (PPD). The treatment is based on the microscopic Beer-Lambert law and has been found to yield a complete set of optical responses by time- and frequency-domain measurements. The PPD is defined for possible photons having a total zigzag pathlength of l between the points of light input and detection. Such a distribution is independent of the absorption properties of the medium and can be uniquely determined for the medium under quantification. Therefore, the PPD can be calculated with an imaginary reference medium having the same optical properties as the medium under quantification except for the absence of absorption. One of the advantages of this method is that the optical responses, the total attenuation, the mean pathlength, etc are expressed by functions of the PPD and the absorption distribution.
Non linear optical investigations of silver nanoparticles synthesised by curcumin reduction
NASA Astrophysics Data System (ADS)
Dhanya, N. P.
2017-11-01
Metal nanoparticles have considerable applications in assorted fields like medicine, biology, photonics, metallurgy etc. Optical applications of Silver nanoparticles are of significant interest among researchers nowadays. In this paper, we report a single step chemical reduction of silver nanoparticles with Curcumin both as a reducing and stabilising agent at room temperature. Structural, plasmonic and non linear optical properties of the prepared nanoparticles are explored using Scanning Electron Microscope, Transmission Electron Microscope, UV absorption spectrometry, Spectroflurometry and Z scan. UV-Vis absorption studies affirm the Surface Plasmon Resonance (SPR) absorption and spectroflurometric studies announce the emission spectrum of the prepared silvernanoparticles at 520 nm. SEM and TEM images uphold the existence of uniform sized, spherical silvernanoparticles. Nonlinear optical studies are accomplished with the open aperture z scan technique in the nanosecond regime. The nonlinearity is in virtue of saturable absorption, two-photon absorption and excited state absorption. The marked nonlinearity and optical limiting of the Curcumin reduced silvernanoparticles enhances its photonic applications.
Improved Scanners for Microscopic Hyperspectral Imaging
NASA Technical Reports Server (NTRS)
Mao, Chengye
2009-01-01
Improved scanners to be incorporated into hyperspectral microscope-based imaging systems have been invented. Heretofore, in microscopic imaging, including spectral imaging, it has been customary to either move the specimen relative to the optical assembly that includes the microscope or else move the entire assembly relative to the specimen. It becomes extremely difficult to control such scanning when submicron translation increments are required, because the high magnification of the microscope enlarges all movements in the specimen image on the focal plane. To overcome this difficulty, in a system based on this invention, no attempt would be made to move either the specimen or the optical assembly. Instead, an objective lens would be moved within the assembly so as to cause translation of the image at the focal plane: the effect would be equivalent to scanning in the focal plane. The upper part of the figure depicts a generic proposed microscope-based hyperspectral imaging system incorporating the invention. The optical assembly of this system would include an objective lens (normally, a microscope objective lens) and a charge-coupled-device (CCD) camera. The objective lens would be mounted on a servomotor-driven translation stage, which would be capable of moving the lens in precisely controlled increments, relative to the camera, parallel to the focal-plane scan axis. The output of the CCD camera would be digitized and fed to a frame grabber in a computer. The computer would store the frame-grabber output for subsequent viewing and/or processing of images. The computer would contain a position-control interface board, through which it would control the servomotor. There are several versions of the invention. An essential feature common to all versions is that the stationary optical subassembly containing the camera would also contain a spatial window, at the focal plane of the objective lens, that would pass only a selected portion of the image. In one version, the window would be a slit, the CCD would contain a one-dimensional array of pixels, and the objective lens would be moved along an axis perpendicular to the slit to spatially scan the image of the specimen in pushbroom fashion. The image built up by scanning in this case would be an ordinary (non-spectral) image. In another version, the optics of which are depicted in the lower part of the figure, the spatial window would be a slit, the CCD would contain a two-dimensional array of pixels, the slit image would be refocused onto the CCD by a relay-lens pair consisting of a collimating and a focusing lens, and a prism-gratingprism optical spectrometer would be placed between the collimating and focusing lenses. Consequently, the image on the CCD would be spatially resolved along the slit axis and spectrally resolved along the axis perpendicular to the slit. As in the first-mentioned version, the objective lens would be moved along an axis perpendicular to the slit to spatially scan the image of the specimen in pushbroom fashion.
Microscope sterility during spine surgery.
Bible, Jesse E; O'Neill, Kevin R; Crosby, Colin G; Schoenecker, Jonathan G; McGirt, Matthew J; Devin, Clinton J
2012-04-01
Prospective study. Assess the contamination rates of sterile microscope drapes after spine surgery. The use of the operating microscope has become more prevalent in certain spine procedures, providing superior magnification, visualization, and illumination of the operative field. However, it may represent an additional source of bacterial contamination and increase the risk of developing a postoperative infection. This study included 25 surgical spine cases performed by a single spine surgeon that required the use of the operative microscope. Sterile culture swabs were used to obtain samples from 7 defined locations on the microscope drape after its use during the operation. The undraped technician's console was sampled in each case as a positive control, and an additional 25 microscope drapes were swabbed immediately after they were applied to the microscope to obtain negative controls. Swab samples were assessed for bacterial growth on 5% sheep blood Columbia agar plates using a semiquantitative technique. No growth was observed on any of the 25 negative control drapes. In contrast, 100% of preoperative and 96% of postoperative positive controls demonstrated obvious contamination. In the postoperative group, all 7 sites of evaluation were found to be contaminated with rates of 12% to 44%. Four of the 7 evaluated locations were found to have significant contamination rates compared with negative controls, including the shafts of the optic eyepieces on the main surgeon side (24%, P = 0.022), "forehead" portion on both the main surgeon (24%, P = 0.022) and assistant sides (28%, P = 0.010), and "overhead" portion of the drape (44%, P = 0.0002). Bacterial contamination of the operative microscope was found to be significant after spine surgery. Contamination was more common around the optic eyepieces, likely due to inadvertent touching of unsterile portions. Similarly, all regions above the eyepieces also have a propensity for contamination because of unknown contact with unsterile parts of the surgeon. Therefore, we believe that changing gloves after making adjustments to the optic eyepieces and avoid handling any portion of the drape above the eyepieces may decrease the risks of intraoperative contamination and possibly postoperative infection as well.
Ultra-high resolution water window x ray microscope optics design and analysis
NASA Technical Reports Server (NTRS)
Shealy, David L.; Wang, C.
1993-01-01
This project has been focused on the design and analysis of an ultra-high resolution water window soft-x-ray microscope. These activities have been accomplished by completing two tasks contained in the statement of work of this contract. The new results from this work confirm: (1) that in order to achieve resolutions greater than three times the wavelength of the incident radiation, it will be necessary to use spherical mirror surfaces and to use graded multilayer coatings on the secondary in order to accommodate the large variations of the angle of incidence over the secondary when operating the microscope at numerical apertures of 0.35 or greater; (2) that surface contour errors will have a significant effect on the optical performance of the microscope and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror; and (3) that tolerance analysis of the spherical Schwarzschild microscope has been shown that the water window operations will require 2-3 times tighter tolerances to achieve a similar performance of operations with 130 A radiation. These results have been included in a manuscript included in the appendix.
ERIC Educational Resources Information Center
Biermann, Mark L.; Biermann, Lois A. A.
1996-01-01
Discusses descriptions of the way in which an optical system controls the quantity of light that reaches a point on the image plane, a basic feature of optical imaging systems such as cameras, telescopes, and microscopes. (JRH)
Field of view advantage of conjugate adaptive optics in microscopy applications
Mertz, Jerome; Paudel, Hari; Bifano, Thomas G.
2015-01-01
The imaging performance of an optical microscope can be degraded by sample-induced aberrations. A general strategy to undo the effect of these aberrations is to apply wavefront correction with a deformable mirror (DM). In most cases the DM is placed conjugate to the microscope pupil, called pupil adaptive optics (AO). When the aberrations are spatially variant an alternative configuration involves placing the DM conjugate to the main source of aberrations, called conjugate AO. We provide a theoretical and experimental comparison of both configurations for the simplified case where spatially variant aberrations are produced by a well defined phase screen. We pay particular attention to the resulting correction field of view (FOV). Conjugate AO is found to provide a significant FOV advantage. While this result is well known in the astronomy community, our goal here is to recast it specifically for the optical microscopy community. PMID:25967343
Wang, Jiangtao; Li, Tianyi; Xia, Bingyu; Jin, Xiang; Wei, Haoming; Wu, Wenyun; Wei, Yang; Wang, Jiaping; Liu, Peng; Zhang, Lina; Li, Qunqing; Fan, Shoushan; Jiang, Kaili
2014-06-11
Here we present a simple yet powerful approach for the imaging of nanostructures under an optical microscope with the help of vapor condensation on their surfaces. Supersaturated water vapor will first form a nanometer-sized water droplet on the condensation nuclei on the surface of nanostructures, and then the water droplet will grow bigger and scatter more light to make the outline of the nanostructure be visible under dark-field optical microscope. This vapor-condensation-assisted (VCA) optical microscopy is applicable to a variety of nanostructures from ultralong carbon nanotubes to functional groups, generating images with contrast coming from the difference in density of the condensation sites, and does not induce any impurities to the specimens. Moreover, this low-cost and efficient technique can be conveniently integrated with other facilities, such as Raman spectroscope and so forth, which will pave the way for widespread applications.
Furukawa, Taichi; Kanamori, Satoshi; Fukuta, Masahiro; Nawa, Yasunori; Kominami, Hiroko; Nakanishi, Yoichiro; Sugita, Atsushi; Inami, Wataru; Kawata, Yoshimasa
2015-07-13
We fabricated a bright and thin Zn₂SiO₄ luminescent film to serve as a nanometric light source for high-spatial-resolution optical microscopy based on electron beam excitation. The Zn₂SiO₄ luminescent thin film was fabricated by annealing a ZnO film on a Si₃N₄ substrate at 1000 °C in N₂. The annealed film emitted bright cathodoluminescence compared with the as-deposited film. The film is promising for nano-imaging with electron beam excitation-assisted optical microscopy. We evaluated the spatial resolution of a microscope developed using this Zn₂SiO₄ luminescent thin film. This is the first report of the investigation and application of ZnO/Si₃N₄ annealed at a high temperature (1000 °C). The fabricated Zn₂SiO₄ film is expected to enable high-frame-rate dynamic observation with ultra-high resolution using our electron beam excitation-assisted optical microscopy.
The research progress of metrological 248nm deep ultraviolent microscope inspection device
NASA Astrophysics Data System (ADS)
Wang, Zhi-xin; Li, Qi; Gao, Si-tian; Shi, Yu-shu; Li, Wei; Li, Shi
2016-01-01
In lithography process, the precision of wafer pattern to a large extent depends on the geometric dimensioning and tolerance of photomasks when accuracy of lithography aligner is certain. Since the minimum linewidth (Critical Dimension) of the aligner exposing shrinks to a few tens of nanometers in size, one-tenth of tolerance errors in fabrication may lead to microchip function failure, so it is very important to calibrate these errors of photomasks. Among different error measurement instruments, deep ultraviolent (DUV) microscope because of its high resolution, as well as its advantages compared to scanning probe microscope restrained by measuring range and scanning electron microscope restrained by vacuum environment, makes itself the most suitable apparatus. But currently there is very few DUV microscope adopting 248nm optical system, means it can attain 80nm resolution; furthermore, there is almost no DUV microscope possessing traceable calibration capability. For these reason, the National Institute of Metrology, China is developing a metrological 248nm DUV microscope mainly consists of DUV microscopic components, PZT and air supporting stages as well as interferometer calibration framework. In DUV microscopic component, the Köhler high aperture transmit condenser, DUV splitting optical elements and PMT pinhole scanning elements are built. In PZT and air supporting stages, a novel PZT actuating flexural hinge stage nested separate X, Y direction kinematics and a friction wheel driving long range air supporting stage are researched. In interferometer framework, a heterodyne multi-pass interferometer measures XY axis translation and Z axis rotation through Zerodur mirror mounted on stage. It is expected the apparatus has the capability to calibrate one dimensional linewidths and two dimensional pitches ranging from 200nm to 50μm with expanded uncertainty below 20nm.
Highest Resolution Image of Dust and Sand Yet Acquired on Mars
NASA Technical Reports Server (NTRS)
2008-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Click on image for Figure 1Click on image for Figure 2Click on image for Figure 3 This mosaic of four side-by-side microscope images (one a color composite) was acquired by the Optical Microscope, a part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on NASA's Phoenix Mars Lander. Taken on the ninth Martian day of the mission, or Sol 9 (June 3, 2008), the image shows a 3 millimeter (0.12 inch) diameter silicone target after it has been exposed to dust kicked up by the landing. It is the highest resolution image of dust and sand ever acquired on Mars. The silicone substrate provides a sticky surface for holding the particles to be examined by the microscope. Martian Particles on Microscope's Silicone Substrate In figure 1, the particles are on a silcone substrate target 3 millimeters (0.12 inch) in diameter, which provides a sticky surface for holding the particles while the microscope images them. Blow-ups of four of the larger particles are shown in the center. These particles range in size from about 30 microns to 150 microns (from about one one-thousandth of an inch to six one-thousandths of an inch). Possible Nature of Particles Viewed by Mars Lander's Optical Microscope In figure 2, the color composite on the right was acquired to examine dust that had fallen onto an exposed surface. The translucent particle highlighted at bottom center is of comparable size to white particles in a Martian soil sample (upper pictures) seen two sols earlier inside the scoop of Phoenix's Robotic Arm as imaged by the lander's Robotic Arm Camera. The white particles may be examples of the abundant salts that have been found in the Martian soil by previous missions. Further investigations will be needed to determine the white material's composition and whether translucent particles like the one in this microscopic image are found in Martian soil samples. Scale of Phoenix Optical Microscope Images This set of pictures in figure 3 gives context for the size of individual images from the Optical Microscope on NASA's Mars Phoenix Lander. The picture in the upper left was taken on Mars by the Surface Stereo Imager on Phoenix. It shows a portion of the microscope's sample stage exposed to accept a sample. In this case, the sample was of dust kicked up by the spacecraft thrusters during landers. Later samples will include soil delivered by the Robotic Arm. The other pictures were taken on Earth. They show close-ups of circular substrates on which the microscopic samples rest when the microscope images them. Each circular substrate target is 3 millimeters (about one-tenth of an inch) in diameter. Each image taken by the microscope covers and area 2 millimeters by 1 millimeter (0.08 inch by 0.04 inch), the size of a large grain of sand. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Virtual k -Space Modulation Optical Microscopy
NASA Astrophysics Data System (ADS)
Kuang, Cuifang; Ma, Ye; Zhou, Renjie; Zheng, Guoan; Fang, Yue; Xu, Yingke; Liu, Xu; So, Peter T. C.
2016-07-01
We report a novel superresolution microscopy approach for imaging fluorescence samples. The reported approach, termed virtual k -space modulation optical microscopy (VIKMOM), is able to improve the lateral resolution by a factor of 2, reduce the background level, improve the optical sectioning effect and correct for unknown optical aberrations. In the acquisition process of VIKMOM, we used a scanning confocal microscope setup with a 2D detector array to capture sample information at each scanned x -y position. In the recovery process of VIKMOM, we first modulated the captured data by virtual k -space coding and then employed a ptychography-inspired procedure to recover the sample information and correct for unknown optical aberrations. We demonstrated the performance of the reported approach by imaging fluorescent beads, fixed bovine pulmonary artery endothelial (BPAE) cells, and living human astrocytes (HA). As the VIKMOM approach is fully compatible with conventional confocal microscope setups, it may provide a turn-key solution for imaging biological samples with ˜100 nm lateral resolution, in two or three dimensions, with improved optical sectioning capabilities and aberration correcting.
MOLA: Seasonal Snow Variations on Mars: Slow Flyover of the Martian North Pole
NASA Technical Reports Server (NTRS)
2001-01-01
MOLA: Seasonal Snow Variations on Mars: Slow Flyover of the Martian North Pole: False Color. This is a visualization of the topography near the Martian north pole as measured with the MOLA instrument. This particular animation shows a slow zoom to the surface of the pole, a flyover of the polar cap and a slow zoom out. The surface color is based on the elevation of the topography.
Optically sectioned in vivo imaging with speckle illumination HiLo microscopy
Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome
2011-01-01
We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish. PMID:21280920
Optically sectioned in vivo imaging with speckle illumination HiLo microscopy.
Lim, Daryl; Ford, Tim N; Chu, Kengyeh K; Mertz, Jerome
2011-01-01
We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.
Optically sectioned in vivo imaging with speckle illumination HiLo microscopy
NASA Astrophysics Data System (ADS)
Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome
2011-01-01
We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.
Thermal radiation scanning tunnelling microscopy
NASA Astrophysics Data System (ADS)
de Wilde, Yannick; Formanek, Florian; Carminati, Rémi; Gralak, Boris; Lemoine, Paul-Arthur; Joulain, Karl; Mulet, Jean-Philippe; Chen, Yong; Greffet, Jean-Jacques
2006-12-01
In standard near-field scanning optical microscopy (NSOM), a subwavelength probe acts as an optical `stethoscope' to map the near field produced at the sample surface by external illumination. This technique has been applied using visible, infrared, terahertz and gigahertz radiation to illuminate the sample, providing a resolution well beyond the diffraction limit. NSOM is well suited to study surface waves such as surface plasmons or surface-phonon polaritons. Using an aperture NSOM with visible laser illumination, a near-field interference pattern around a corral structure has been observed, whose features were similar to the scanning tunnelling microscope image of the electronic waves in a quantum corral. Here we describe an infrared NSOM that operates without any external illumination: it is a near-field analogue of a night-vision camera, making use of the thermal infrared evanescent fields emitted by the surface, and behaves as an optical scanning tunnelling microscope. We therefore term this instrument a `thermal radiation scanning tunnelling microscope' (TRSTM). We show the first TRSTM images of thermally excited surface plasmons, and demonstrate spatial coherence effects in near-field thermal emission.
Chai, Liuying; Zhang, Jianwei; Zhang, Lili; Chen, Tongsheng
2015-03-01
Spectral measurement of fluorescence resonance energy transfer (FRET), spFRET, is a widely used FRET quantification method in living cells today. We set up a spectrometer-microscope platform that consists of a miniature fiber optic spectrometer and a widefield fluorescence microscope for the spectral measurement of absolute FRET efficiency (E) and acceptor-to-donor concentration ratio (R(C)) in single living cells. The microscope was used for guiding cells and the spectra were simultaneously detected by the miniature fiber optic spectrometer. Moreover, our platform has independent excitation and emission controllers, so different excitations can share the same emission channel. In addition, we developed a modified spectral FRET quantification method (mlux-FRET) for the multiple donors and multiple acceptors FRET construct (mD∼nA) sample, and we also developed a spectra-based 2-channel acceptor-sensitized FRET quantification method (spE-FRET). We implemented these modified FRET quantification methods on our platform to measure the absolute E and R(C) values of tandem constructs with different acceptor/donor stoichiometries in single living Huh-7 cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Adelaide; De Beule, Pieter A. A., E-mail: pieter.de-beule@inl.int; Martins, Marco
Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discussmore » sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.« less
Fast digital zooming system using directionally adaptive image interpolation and restoration.
Kang, Wonseok; Jeon, Jaehwan; Yu, Soohwan; Paik, Joonki
2014-01-01
This paper presents a fast digital zooming system for mobile consumer cameras using directionally adaptive image interpolation and restoration methods. The proposed interpolation algorithm performs edge refinement along the initially estimated edge orientation using directionally steerable filters. Either the directionally weighted linear or adaptive cubic-spline interpolation filter is then selectively used according to the refined edge orientation for removing jagged artifacts in the slanted edge region. A novel image restoration algorithm is also presented for removing blurring artifacts caused by the linear or cubic-spline interpolation using the directionally adaptive truncated constrained least squares (TCLS) filter. Both proposed steerable filter-based interpolation and the TCLS-based restoration filters have a finite impulse response (FIR) structure for real time processing in an image signal processing (ISP) chain. Experimental results show that the proposed digital zooming system provides high-quality magnified images with FIR filter-based fast computational structure.
Electrowetting-actuated zoom lens with spherical-interface liquid lenses.
Peng, Runling; Chen, Jiabi; Zhuang, Songlin
2008-11-01
The interface shape of two immiscible liquids in a conical chamber is discussed. The analytical solution of the differential equation describing the interface shape shows that the interface shape is completely spherical when the density difference of two liquids is zero. On the basis of the spherical-interface shape and an energy-minimization method, explicit calculations and detailed analyses of an extended Young-type equation for the conical double-liquid lens are given. Finally, a novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two conical double-liquid variable-focus lenses. The structure and principle of the lens system are introduced in this paper. Taking finite objects as example, detailed calculations and simulation examples are presented to predict how two liquid lenses are related to meet the basic requirements of zoom lenses.
NASA Astrophysics Data System (ADS)
Sigal, Iliya; Gad, Raanan; Koletar, Margaret; Ringuette, Dene; Stefanovic, Bojana; Levi, Ofer
2016-03-01
Growing interest within the neurophysiology community in assessing healthy and pathological brain activity in animals that are awake and freely-behaving has triggered the need for optical systems that are suitable for such longitudinal studies. In this work we report label-free multi-modal imaging of cortical hemodynamics in the somatosensory cortex of awake, freely-behaving rats, using a novel head-mounted miniature optical microscope. The microscope employs vertical cavity surface emitting lasers (VCSELs) at three distinct wavelengths (680 nm, 795 nm, and 850 nm) to provide measurements of four hemodynamic markers: blood flow speeds, HbO, HbR, and total Hb concentration, across a > 2 mm field of view. Blood flow speeds are extracted using Laser Speckle Contrast Imaging (LSCI), while oxygenation measurements are performed using Intrinsic Optical Signal Imaging (IOSI). Longitudinal measurements on the same animal are made possible over the course of > 6 weeks using a chronic window that is surgically implanted into the skull. We use the device to examine changes in blood flow and blood oxygenation in superficial cortical blood vessels and tissue in response to drug-induced absence-like seizures, correlating motor behavior with changes in blood flow and blood oxygenation in the brain.
Quantitative high dynamic range beam profiling for fluorescence microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, T. J., E-mail: t.j.mitchell@dur.ac.uk; Saunter, C. D.; O’Nions, W.
2014-10-15
Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly withinmore » the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.« less
NASA Astrophysics Data System (ADS)
Zhang, Yu Shrike; Chang, Jae-Byum; Alvarez, Mario Moisés; Trujillo-de Santiago, Grissel; Aleman, Julio; Batzaya, Byambaa; Krishnadoss, Vaishali; Ramanujam, Aishwarya Aravamudhan; Kazemzadeh-Narbat, Mehdi; Chen, Fei; Tillberg, Paul W.; Dokmeci, Mehmet Remzi; Boyden, Edward S.; Khademhosseini, Ali
2016-03-01
To date, much effort has been expended on making high-performance microscopes through better instrumentation. Recently, it was discovered that physical magnification of specimens was possible, through a technique called expansion microscopy (ExM), raising the question of whether physical magnification, coupled to inexpensive optics, could together match the performance of high-end optical equipment, at a tiny fraction of the price. Here we show that such “hybrid microscopy” methods—combining physical and optical magnifications—can indeed achieve high performance at low cost. By physically magnifying objects, then imaging them on cheap miniature fluorescence microscopes (“mini-microscopes”), it is possible to image at a resolution comparable to that previously attainable only with benchtop microscopes that present costs orders of magnitude higher. We believe that this unprecedented hybrid technology that combines expansion microscopy, based on physical magnification, and mini-microscopy, relying on conventional optics—a process we refer to as Expansion Mini-Microscopy (ExMM)—is a highly promising alternative method for performing cost-effective, high-resolution imaging of biological samples. With further advancement of the technology, we believe that ExMM will find widespread applications for high-resolution imaging particularly in research and healthcare scenarios in undeveloped countries or remote places.