Science.gov

Sample records for optical model evaluation

  1. Optical Storage Performance Modeling and Evaluation.

    ERIC Educational Resources Information Center

    Behera, Bailochan; Singh, Harpreet

    1990-01-01

    Evaluates different types of storage media for long-term archival storage of large amounts of data. Existing storage media are reviewed, including optical disks, optical tape, magnetic storage, and microfilm; three models are proposed based on document storage requirements; performance analysis is considered; and cost effectiveness is discussed.…

  2. Optical CD metrology model evaluation and refining for manufacturing

    NASA Astrophysics Data System (ADS)

    Wang, S.-B.; Huang, C. L.; Chiu, Y. H.; Tao, H. J.; Mii, Y. J.

    2009-03-01

    Optical critical dimension (OCD) metrology has been well-accepted as standard inline metrology tool in semiconductor manufacturing since 65nm technology node for its un-destructive and versatile advantage. Many geometry parameters can be obtained in a single measurement with good accuracy if model is well established and calibrated by transmission electron microscopy (TEM). However, in the viewpoint of manufacturing, there is no effective index for model quality and, based on that, for model refining. Even, when device structure becomes more complicated, like strained silicon technology, there are more parameters required to be determined in the afterward measurement. The model, therefore, requires more attention to be paid to ensure inline metrology reliability. GOF (goodness-of-fitting), one model index given by a commercial OCD metrology tool, for example, is not sensitive enough while correlation and sensitivity coefficient, the other two indexes, are evaluated under metrology tool noise only and not directly related to inline production measurement uncertainty. In this article, we will propose a sensitivity matrix for measurement uncertainty estimation in which each entry is defined as the correlation coefficient between the corresponding two floating parameters and obtained by linearization theorem. The uncertainty is estimated in combination of production line variation and found, for the first time, much larger than that by metrology tool noise alone that indicates model quality control is critical for nanometer device production control. The uncertainty, in comparison with production requirement, also serves as index for model refining either by grid size rescaling or structure model modification. This method is verified by TEM measurement and, in the final, a flow chart for model refining is proposed.

  3. Dedicated spectrometers based on diffractive optics: design, modelling and evaluation

    NASA Astrophysics Data System (ADS)

    Løvhaugen, O.; Johansen, I.-R.; Bakke, K. A. H.; Fismen, B. G.; Nicolas, S.

    The described design of diffractive optical elements for low cost IR-spectrometers gives a built-in wavelength reference and allows 'spectral arithmetic' to be implemented in the optical performance of the DOE. The diffractive element combines the function of the lenses and the grating and eliminates the need for alignment of those components in the standard scanned grating spectrometer design. The element gives out a set of foci, each with one spectral component, which are scanned across a detector, thus relaxing the demands for scan angle control. It can thus be regarded as an alternative solution to a beam splitter and band pass filter instrument. Software tools have been designed to ease the adaptation of the design to different applications. To model the performance of the spectrometers we have implemented a scalar Rayleigh-Sommerfeldt diffraction model. The gold-coated elements are produced by injection moulding using a compact disc (CD) moulding technique and mould inlays mastered by e-beam lithography. The optimized selection of wavelength bands and the classification of the measured signal use a combination of principal component analysis and robust statistical methods. Typical applications will be material characterization of recycled plastics and gas monitoring. Spectrometers for two different applications have been built and tested. Comparisons between the design goals and the measured performance have been made and show good agreements.

  4. ModelE2-TOMAS development and evaluation using aerosol optical depths, mass and number concentrations

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Adams, P. J.; Shindell, D. T.

    2014-09-01

    The TwO-Moment Aerosol Sectional microphysics model (TOMAS) has been integrated into the state-of-the-art general circulation model, GISS ModelE2. TOMAS has the flexibility to select a size resolution as well as the lower size cutoff. A computationally efficient version of TOMAS is used here, which has 15 size bins covering 3 nm to 10 μm aerosol dry diameter. For each bin, it simulates the total aerosol number concentration and mass concentrations of sulphate, pure elementary carbon (hydrophobic), mixed elemental carbon (hydrophilic), hydrophobic organic matter, hydrophilic organic matter, sea salt, mineral dust, ammonium, and aerosol-associated water. This paper provides a detailed description of the ModelE2-TOMAS model and evaluates the model against various observations including aerosol precursor gas concentrations, aerosol mass and number concentrations, and aerosol optical depths. Additionally, global budgets in ModelE2-TOMAS are compared with those of other global aerosol models, and the TOMAS model is compared to the default aerosol model in ModelE2, which is a bulk aerosol model. Overall, the ModelE2-TOMAS predictions are within the range of other global aerosol model predictions, and the model has a reasonable agreement with observations of sulphur species and other aerosol components as well as aerosol optical depth. However, ModelE2-TOMAS (as well as the bulk aerosol model) cannot capture the observed vertical distribution of sulphur dioxide over the Pacific Ocean possibly due to overly strong convective transport. The TOMAS model successfully captures observed aerosol number concentrations and cloud condensation nuclei concentrations. Anthropogenic aerosol burdens in the bulk aerosol model running in the same host model as TOMAS (ModelE2) differ by a few percent to a factor of 2 regionally, mainly due to differences in aerosol processes including deposition, cloud processing, and emission parameterizations. Larger differences are found for naturally

  5. Optical modeling and physical performances evaluations for the JT-60SA ECRF antenna

    SciTech Connect

    Platania, P. Figini, L.; Farina, D.; Micheletti, D.; Moro, A.; Sozzi, C.; Isayama, A.; Kobayashi, T.; Moriyama, S.

    2015-12-10

    The purpose of this work is the optical modeling and physical performances evaluations of the JT-60SA ECRF launcher system. The beams have been simulated with the electromagnetic code GRASP® and used as input for ECCD calculations performed with the beam tracing code GRAY, capable of modeling propagation, absorption and current drive of an EC Gaussion beam with general astigmatism. Full details of the optical analysis has been taken into account to model the launched beams. Inductive and advanced reference scenarios has been analysed for physical evaluations in the full poloidal and toroidal steering ranges for two slightly different layouts of the launcher system.

  6. Optical modeling and physical performances evaluations for the JT-60SA ECRF antenna

    NASA Astrophysics Data System (ADS)

    Platania, P.; Figini, L.; Farina, D.; Isayama, A.; Kobayashi, T.; Micheletti, D.; Moriyama, S.; Moro, A.; Sozzi, C.

    2015-12-01

    The purpose of this work is the optical modeling and physical performances evaluations of the JT-60SA ECRF launcher system. The beams have been simulated with the electromagnetic code GRASP® and used as input for ECCD calculations performed with the beam tracing code GRAY, capable of modeling propagation, absorption and current drive of an EC Gaussion beam with general astigmatism. Full details of the optical analysis has been taken into account to model the launched beams. Inductive and advanced reference scenarios has been analysed for physical evaluations in the full poloidal and toroidal steering ranges for two slightly different layouts of the launcher system.

  7. Solar optical codes evaluation for modeling and analyzing complex solar receiver geometries

    NASA Astrophysics Data System (ADS)

    Yellowhair, Julius; Ortega, Jesus D.; Christian, Joshua M.; Ho, Clifford K.

    2014-09-01

    Solar optical modeling tools are valuable for modeling and predicting the performance of solar technology systems. Four optical modeling tools were evaluated using the National Solar Thermal Test Facility heliostat field combined with flat plate receiver geometry as a benchmark. The four optical modeling tools evaluated were DELSOL, HELIOS, SolTrace, and Tonatiuh. All are available for free from their respective developers. DELSOL and HELIOS both use a convolution of the sunshape and optical errors for rapid calculation of the incident irradiance profiles on the receiver surfaces. SolTrace and Tonatiuh use ray-tracing methods to intersect the reflected solar rays with the receiver surfaces and construct irradiance profiles. We found the ray-tracing tools, although slower in computation speed, to be more flexible for modeling complex receiver geometries, whereas DELSOL and HELIOS were limited to standard receiver geometries such as flat plate, cylinder, and cavity receivers. We also list the strengths and deficiencies of the tools to show tool preference depending on the modeling and design needs. We provide an example of using SolTrace for modeling nonconventional receiver geometries. The goal is to transfer the irradiance profiles on the receiver surfaces calculated in an optical code to a computational fluid dynamics code such as ANSYS Fluent. This approach eliminates the need for using discrete ordinance or discrete radiation transfer models, which are computationally intensive, within the CFD code. The irradiance profiles on the receiver surfaces then allows for thermal and fluid analysis on the receiver.

  8. Evaluating the representation of aerosol optical properties using an online coupled model over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Palacios-Peña, Laura; Baró, Rocío; Guerrero-Rascado, Juan Luis; Alados-Arboledas, Lucas; Brunner, Dominik; Jiménez-Guerrero, Pedro

    2017-01-01

    The effects of atmospheric aerosol particles on the Earth's climate mainly depend on their optical, microphysical and chemical properties, which modify the Earth's radiative budget. The aerosol radiative effects can be divided into direct and semi-direct effects, produced by the aerosol-radiation interactions (ARIs), and indirect effects, produced by aerosol-cloud interactions (ACIs). In this sense the objective of this work is to assess whether the inclusion of aerosol radiative feedbacks in the online coupled WRF-Chem model improves the modelling outputs over the Iberian Peninsula (IP) and surrounding water areas. For this purpose, the methodology is based on the evaluation of modelled aerosol optical properties under different simulation scenarios. The evaluated data come from two WRF-Chem simulations for the IP differing in the inclusion/no-inclusion of ARIs and ACIs (RF/NRF simulations). The case studies cover two episodes with different aerosol types over the IP in 2010, namely a Saharan dust outbreak and a forest fire episode. The evaluation uses observational data from AERONET (Aerosol Robotic Network) stations and MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, including aerosol optical depth (AOD) and Ångström exponent (AE). Experimental data of aerosol vertical distribution from the EARLINET (European Aerosol Research Lidar Network) Granada station are used for checking the models. The results indicate that for the spatial distribution the best-represented variable is AOD and the largest improvements when including the aerosol radiative feedbacks are found for the vertical distribution. In the case of the dust outbreak, a slight improvement (worsening) is produced over the areas with medium (high/low) levels of AOD(-9 % / +12 % of improvement) when including the aerosol radiative feedbacks. For the wildfire episode, improvements of AOD representation (up to 11 %) over areas further away from emission sources are estimated

  9. The Synthesis and Evaluation of Third-Order Optical Nonlinearities of Model Compounds Containing Benzothiazole, Benzimidazole and Benzoxazole Moieties.

    DTIC Science & Technology

    1991-02-01

    AD-A235 622 WL-TR-91-4015 THE SYNTHESIS AND EVALUATION OF THIRD-ORDER OPTICAL NONLINEARITIES OF MODEL COMPOUNDS CONTAINING BENZOTHIAZOLE ...Nonlinearities of Model Compounds Containing Benzothiazole , Benzimidazole, and Benzoxazole Moieties 12 PERSONAL AUTHOR(S) Bruce A. Reinhardt, Marilyn R...necessary and identify by block number) FIELD GROUP SUB-GROUP nonlinear optical properties benzothiazole u/ 03 degenerate four-wave mixing benzimidazole 21

  10. New earth system model for optical performance evaluation of space instruments.

    PubMed

    Ryu, Dongok; Kim, Sug-Whan; Breault, Robert P

    2017-03-06

    In this study, a new global earth system model is introduced for evaluating the optical performance of space instruments. Simultaneous imaging and spectroscopic results are provided using this global earth system model with fully resolved spatial, spectral, and temporal coverage of sub-models of the Earth. The sun sub-model is a Lambertian scattering sphere with a 6-h scale and 295 lines of solar spectral irradiance. The atmospheric sub-model has a 15-layer three-dimensional (3D) ellipsoid structure. The land sub-model uses spectral bidirectional reflectance distribution functions (BRDF) defined by a semi-empirical parametric kernel model. The ocean is modeled with the ocean spectral albedo after subtracting the total integrated scattering of the sun-glint scatter model. A hypothetical two-mirror Cassegrain telescope with a 300-mm-diameter aperture and 21.504 mm × 21.504-mm focal plane imaging instrument is designed. The simulated image results are compared with observational data from HRI-VIS measurements during the EPOXI mission for approximately 24 h from UTC Mar. 18, 2008. Next, the defocus mapping result and edge spread function (ESF) measuring result show that the distance between the primary and secondary mirror increases by 55.498 μm from the diffraction-limited condition. The shift of the focal plane is determined to be 5.813 mm shorter than that of the defocused focal plane, and this result is confirmed through the estimation of point spread function (PSF) measurements. This study shows that the earth system model combined with an instrument model is a powerful tool that can greatly help the development phase of instrument missions.

  11. Microvascular anastomosis in rodent model evaluated by Fourier domain Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Tong, Dedi; Zhu, Shan; Wu, Lehao; Ibrahim, Zuhaib; Lee, WP Andrew; Brandacher, Gerald; Kang, Jin U.

    2014-03-01

    Vascular and microvascular anastomosis are critical components of reconstructive microsurgery, vascular surgery and transplant surgery. Imaging modality that provides immediate, real-time in-depth view and 3D structure and flow information of the surgical site can be a great valuable tool for the surgeon to evaluate surgical outcome following both conventional and innovative anastomosis techniques, thus potentially increase the surgical success rate. Microvascular anastomosis for vessels with outer diameter smaller than 1.0 mm is extremely challenging and effective evaluation of the outcome is very difficult if not impossible using computed tomography (CT) angiograms, magnetic resonance (MR) angiograms and ultrasound Doppler. Optical coherence tomography (OCT) is a non-invasive high-resolution (micron level), high-speed, 3D imaging modality that has been adopted widely in biomedical and clinical applications. Phaseresolved Doppler OCT that explores the phase information of OCT signals has been shown to be capable of characterizing dynamic blood flow clinically. In this work, we explore the capability of Fourier domain Doppler OCT as an evaluation tool to detect commonly encountered post-operative complications that will cause surgical failure and to confirm positive result with surgeon's observation. Both suture and cuff based techniques were evaluated on the femoral artery and vein in the rodent model.

  12. Developments in optical system evaluation, spatial modeling, chemometrics and applications with atomic spectroscopy

    NASA Astrophysics Data System (ADS)

    Rider, Michael Eugene

    1998-11-01

    High temperature plasma emission sources have spatial characteristics. The Abel inversion calculates radial responses from lateral measurements of cylindrically symmetric emission sources. This dissertation presents three aspects of making spatial measurements: (1) Evaluation of an optical setup; (2) New numerically exact routine for improved spatial modeling; and (3) Radial and lateral measurements. Optical ray tracing software was been used for critical evaluation of the design of a unique imaging spectrometer. Position, area, and angles of view are calculated as a function of position of a translating lens and the optical properties of the quartz tube. The translating lens imaging spectrometer is compared to the more common alternative of moving the source or detector and found to perform comparatively well. A new Abel inversion technique, based on numerical improvements in a matrix-based algorithm, is described. The new approach (Mabel) combines exact computation of area terms for the Abel inversion with matrix calculation capabilities present in the MATLAB TM computational environment to generate radial profiles from lateral scans of the plasma with the best accuracy possible. Results of four 1000 ring Mabel inversions are presented. Comparisons between Mabel and two other numerical methods are made for test cases commonly cited in literature and for test cases having radial and lateral profiles with analytic solutions. The effects of noise propagation and of incomplete viewing of the plasma are also presented. Temperature is one of the most fundamental characteristic of high temperature plasmas. Lateral and radial temperatures measured from different views result in different values for a given plasma emission source. Four radial temperature profiles were used to generate radial intensities of five different wavelengths on the basis of a Boltzmann distribution of energies at each temperature. Forward Mabel transforms were performed on the radial intensities

  13. Evaluation of a Micro-Optical Coherence Tomography for the Corneal Endothelium in an Animal Model

    PubMed Central

    Ang, Marcus; Konstantopoulos, Aris; Goh, Gwendoline; Htoon, Hla M.; Seah, Xinyi; Lwin, Nyein Chan; Liu, Xinyu; Chen, Si; Liu, Linbo; Mehta, Jodhbir S.

    2016-01-01

    Recent developments in optical coherence tomography (OCT) systems for the cornea have limited resolution or acquisition speed. In this study we aim to evaluate the use of a ‘micro-OCT’ (μOCT ~1 μm axial resolution) compared to existing imaging modalities using animal models of corneal endothelial disease. We used established cryoinjury and bullous keratopathy models in Sprague Dawley rats comparing ex vivo μOCT imaging in normal and diseased eyes to (1) histology; (2) in vivo confocal microscopy (IVCM); and (3) scanning electron microscopy (SEM). Qualitative and quantitative comparisons amongst imaging modalities were performed using mean endothelial cell circularity [(4π × Area)/Perimeter2] with coefficient of variation (COV). We found that μOCT imaging was able to delineate endothelial cells (with nuclei), detect inflammatory cells, and corneal layers with histology-like resolution, comparable to existing imaging modalities. The mean endothelial cell circularity score was 0.88 ± 0.03, 0.87 ± 0.04 and 0.88 ± 0.05 (P = 0.216) for the SEM, IVCM and μOCT respectively, with SEM producing homogenous endothelial cell images (COV = 0.028) compared to the IVCM (0.051) and μOCT (0.062). In summary, our preliminary study suggests that the μOCT may be useful for achieving non-contact, histology-like images of the cornea for endothelial cell evaluation, which requires further development for in vivo imaging. PMID:27416929

  14. Performance evaluation and channel modeling of MIMO free space optical communication system

    NASA Astrophysics Data System (ADS)

    Deng, Tianping; Lu, Yimin; Lu, Gang; Peng, Kai

    2005-11-01

    Free space optical communication systems represent one of the most promising approaches for addressing the emerging broadband access market, it can provide high bandwidth with no physical contact, but are hampered by signal fading effects due to particulate scattering caused by atmospheric turbulence. In this paper, we propose a new channel model of MIMO free space optical communication system. The physics meaning of this model is very clear, and its format is very simple. Mathematic results show that MIMO is a very effective way for intensity fluctuation reduction induced by turbulence, thus reduce the bit-error-rate of the system.

  15. Modeling optical behavior of birefringent biological tissues for evaluation of quantitative polarized light microscopy

    NASA Astrophysics Data System (ADS)

    van Turnhout, Mark C.; Kranenbarg, Sander; van Leeuwen, Johan L.

    2009-09-01

    Quantitative polarized light microscopy (qPLM) is a popular tool for the investigation of birefringent architectures in biological tissues. Collagen, the most abundant protein in mammals, is such a birefringent material. Interpretation of results of qPLM in terms of collagen network architecture and anisotropy is challenging, because different collagen networks may yield equal qPLM results. We created a model and used the linear optical behavior of collagen to construct a Jones or Mueller matrix for a histological cartilage section in an optical qPLM train. Histological sections of tendon were used to validate the basic assumption of the model. Results show that information on collagen densities is needed for the interpretation of qPLM results in terms of collagen anisotropy. A parameter that is independent of the optical system and that measures collagen fiber anisotropy is introduced, and its physical interpretation is discussed. With our results, we can quantify which part of different qPLM results is due to differences in collagen densities and which part is due to changes in the collagen network. Because collagen fiber orientation and anisotropy are important for tissue function, these results can improve the biological and medical relevance of qPLM results.

  16. Fiber optic light-scattering measurement system for evaluation of embryo viability: model experiment

    NASA Astrophysics Data System (ADS)

    Itoh, Harumi; Arai, Tsunenori; Kikuchi, Makoto

    1996-05-01

    We evaluated the particle density detectability and particle size detectivity of our fiber-optic light-scattering measurement system. In order to prevent the multiple pregnancy on current in vitro fertilization-embryo transfer, we have aimed to develop a new quantitative and non- invasive method to select a single viable human embryo. We employed the measurement of mitochondria localization in an embryo, which may have the correlation with development ability. We applied the angular distribution measurement of the light-scattering intensity from the embryo to obtain the information originated from the mitochondria. The latex spheres with a diameter of 1.0 micrometers were used to simulate the scattering intensity of the mitochondria. The measurement probes of our system consisted of two fibers for illumination and sensing. They were arranged at a right angle to a microscope optical axis to measure the angular distribution of the light-scattering intensity. We observed that the light-scattering intensity increased monotonically in the range from 106 to 1010 particles per ml. Since the mitochondria density in a human embryo corresponded to 2.5 X 107 per ml in the measurement chamber, we may measure the mitochondria density in the human embryo. The angular dependence of light-scattering intensity changed with the sphere diameters. This result showed the possibility of the selective measurement of the mitochondria density in the embryo in spite of the presence of the other cell organelle. We think that our light-scattering measurement system might be applicable to the evaluation method for the embryo viability.

  17. Computational Ion Optics Design Evaluations

    NASA Technical Reports Server (NTRS)

    Malone, Shane P.; Soulas, George C.

    2004-01-01

    Ion optics computational models are invaluable tools in the design of ion optics systems. In this study a new computational model developed by an outside vendor for use at the NASA Glenn Research Center (GRC) is presented. This computational model is a gun code that has been modified to model the plasma sheaths both upstream and downstream of the ion optics. The model handles multiple species (e.g. singly and doubly-charged ions) and includes a charge-exchange model to support erosion estimations. The model uses commercially developed solid design and meshing software to allow high flexibility in ion optics geometric configurations. The results from this computational model are applied to the NEXT project to investigate the effects of crossover impingement erosion seen during the 2000-hour wear test.

  18. Evaluation of the in vivo and ex vivo optical properties in a mouse ear model.

    PubMed

    Salomatina, E; Yaroslavsky, A N

    2008-06-07

    Determination of in vivo optical properties is a challenging problem. Absorption and scattering measured ex vivo are often used for in vivo applications. To investigate the validity of this approach, we have obtained and compared the optical properties of mouse ears in vivo and ex vivo in the spectral range from 370 to 1650 nm. Integrating sphere spectrophotometry in combination with the inverse Monte Carlo technique was employed to determine absorption coefficients, mu(a), scattering coefficients, mu(s), and anisotropy factors, g. Two groups of mice were used for the study. The first group was measured in vivo and ex vivo within 5-10 min post mortem. The second group was measured in vivo and ex vivo every 24 h for up to 72 h after sacrifice. Between the measurements the tissues were kept at 4 degrees C wrapped in a gauze moistened with saline solution. Then the specimens were frozen at -25 degrees C for 40 min, thawed and measured again. The results indicate that the absorption coefficients determined in vivo and ex vivo within 5-10 min post mortem differed considerably only in the spectral range dominated by hemoglobin. These changes can be attributed to rapid deoxygenation of tissue and blood post mortem. Absorption coefficients determined ex vivo up to 72 h post mortem decreased gradually with time in the spectral regions dominated by hemoglobin and water, which can be explained by the continuing loss of blood. Absorption properties of the frozen-thawed ex vivo tissues showed increase in oxygenation, which is likely caused by the release of hemoglobin from hemolyzed erythrocytes. Scattering of the ex vivo tissues decreased gradually with time in the entire spectral range due to the continuing loss of blood and partial cell damage. Anisotropy factors did not change considerably.

  19. Evaluation of the in vivo and ex vivo optical properties in a mouse ear model

    NASA Astrophysics Data System (ADS)

    Salomatina, E.; Yaroslavsky, A. N.

    2008-06-01

    Determination of in vivo optical properties is a challenging problem. Absorption and scattering measured ex vivo are often used for in vivo applications. To investigate the validity of this approach, we have obtained and compared the optical properties of mouse ears in vivo and ex vivo in the spectral range from 370 to 1650 nm. Integrating sphere spectrophotometry in combination with the inverse Monte Carlo technique was employed to determine absorption coefficients, μa, scattering coefficients, μs, and anisotropy factors, g. Two groups of mice were used for the study. The first group was measured in vivo and ex vivo within 5-10 min post mortem. The second group was measured in vivo and ex vivo every 24 h for up to 72 h after sacrifice. Between the measurements the tissues were kept at 4 °C wrapped in a gauze moistened with saline solution. Then the specimens were frozen at -25 °C for 40 min, thawed and measured again. The results indicate that the absorption coefficients determined in vivo and ex vivo within 5-10 min post mortem differed considerably only in the spectral range dominated by hemoglobin. These changes can be attributed to rapid deoxygenation of tissue and blood post mortem. Absorption coefficients determined ex vivo up to 72 h post mortem decreased gradually with time in the spectral regions dominated by hemoglobin and water, which can be explained by the continuing loss of blood. Absorption properties of the frozen-thawed ex vivo tissues showed increase in oxygenation, which is likely caused by the release of hemoglobin from hemolyzed erythrocytes. Scattering of the ex vivo tissues decreased gradually with time in the entire spectral range due to the continuing loss of blood and partial cell damage. Anisotropy factors did not change considerably.

  20. Use of Optical Coherence Tomography and Electroretinography to Evaluate Retinal Pathology in a Mouse Model of Autoimmune Uveitis

    PubMed Central

    Chen, Jun; Qian, Haohua; Horai, Reiko; Chan, Chi-Chao; Caspi, Rachel R.

    2013-01-01

    Experimental autoimmune uveoretinitis (EAU) in mice is a model for human autoimmune uveitis. Longitudinal follow-up is only possible by non-invasive techniques, but the information obtained by visual fundus examination can be limited. We therefore evaluated the efficacy of optical coherence tomography (OCT) and electroretinography (ERG) to monitor pathological and functional changes of the retina in vivo. OCT imaging and ERG recording as a measure of visual function were compared with visual fundoscopic imaging and histology findings in the same mouse. Our results showed that OCT imaging of the retina was well correlated with clinical and histological observations in mice during EAU. However, OCT imaging was more sensitive than fundoscopic imaging in detecting the cell infiltrates at the early phase of disease onset. Furthermore, by allowing multi-layer cross- and horizontal-sectional visualizations of retinal lesions longitudinally in a noninvasive fashion, OCT added information that could not be obtained by fundoscopic and histological examinations. Lastly, retinal thickness obtained by OCT imaging provided a key indicator reflecting disease activity, which showed a close association with visual dysfunction as measured by ERG recordings in EAU mice. Thus, our findings demonstrate that OCT is a highly sensitive and reliable technique, and a valuable method for the semi-quantitative evaluation of retinal inflammation in vivo in the mouse. PMID:23691112

  1. Evaluation of prostatic optical properties and tissue response to photodynamic therapy in a canine model

    NASA Astrophysics Data System (ADS)

    Shetty, Sugandh D.; Chen, Qun; Schultz, Daniel; Wilson, Brian C.; Patterson, Michael S.; Hetzel, Fred W.; Cerny, Joseph C.

    1994-03-01

    A new modality of interstitial therapy to treat prostate cancer using photodynamic principles has been studied in a canine model. The effect of interstitial application of monochromatic light from an argon pumped dye laser at 630 nm was studied in a canine model. No significant hyperthermia was seen during the treatment. A concentric zone around the treatment fiber was seen during the treatment. A concentric zone around the treatment fiber was seen in PDT treated dogs and the maximum size was 18 mm. The data suggests that PDT may be clinically applicable in achieving tissue necrosis using interstitial light application in a solid organ like prostate.

  2. Evaluation of flow velocities after carotid artery stenting through split spectrum Doppler optical coherence tomography and computational fluid dynamics modeling

    PubMed Central

    Vuong, Barry; Genis, Helen; Wong, Ronnie; Ramjist, Joel; Jivraj, Jamil; Farooq, Hamza; Sun, Cuiru; Yang, Victor X.D.

    2014-01-01

    Hemodynamics plays a critical role in the development of atherosclerosis, specifically in regions of curved vasculature such as bifurcations exhibiting irregular blood flow profiles. Carotid atherosclerotic disease can be intervened by stent implantation, but this may result in greater alterations to local blood flow and consequently further complications. This study demonstrates the use of a variant of Doppler optical coherence tomography (DOCT) known as split spectrum DOCT (ssDOCT) to evaluate hemodynamic patterns both before and after stent implantation in the bifurcation junction in the internal carotid artery (ICA). Computational fluid dynamics (CFD) models were constructed to simulate blood velocity profiles and compared to the findings achieved through ssDOCT images. Both methods demonstrated noticeable alterations in hemodynamic patterns following stent implantation, with features such as slow velocity regions at the neck of the bifurcation and recirculation zones at the stent struts. Strong correlation between CFD models and ssDOCT images demonstrate the potential of ssDOCT imaging in the optimization of stent implantation in the clinical setting. PMID:25574447

  3. Evaluation of flow velocities after carotid artery stenting through split spectrum Doppler optical coherence tomography and computational fluid dynamics modeling.

    PubMed

    Vuong, Barry; Genis, Helen; Wong, Ronnie; Ramjist, Joel; Jivraj, Jamil; Farooq, Hamza; Sun, Cuiru; Yang, Victor X D

    2014-12-01

    Hemodynamics plays a critical role in the development of atherosclerosis, specifically in regions of curved vasculature such as bifurcations exhibiting irregular blood flow profiles. Carotid atherosclerotic disease can be intervened by stent implantation, but this may result in greater alterations to local blood flow and consequently further complications. This study demonstrates the use of a variant of Doppler optical coherence tomography (DOCT) known as split spectrum DOCT (ssDOCT) to evaluate hemodynamic patterns both before and after stent implantation in the bifurcation junction in the internal carotid artery (ICA). Computational fluid dynamics (CFD) models were constructed to simulate blood velocity profiles and compared to the findings achieved through ssDOCT images. Both methods demonstrated noticeable alterations in hemodynamic patterns following stent implantation, with features such as slow velocity regions at the neck of the bifurcation and recirculation zones at the stent struts. Strong correlation between CFD models and ssDOCT images demonstrate the potential of ssDOCT imaging in the optimization of stent implantation in the clinical setting.

  4. Models of optical absorption in amorphous semiconductors at the absorption edge — A review and re-evaluation

    NASA Astrophysics Data System (ADS)

    Ibrahim, A.; Al-Ani, S. K. J.

    1994-08-01

    Davis-Mott and Tauc models of optical absorption at the absorption edge in the high absorption coefficient region (104cm-1) are carefully reviewed with regard to their theoretical foundations, assumptions, mathematical derivations, and results. The full implications of these models are exploited, and it is found that the Davis-Mott model for negligible matrix elements between localised states could account for the cubic power law behaviour of with photon energy of some amorphous semiconductors such as a-Si. A fractional power law to find the optical band gapE opt, of the form [αħω ∝ (ħω-E opt)r; 2≤r≤3] based on Davis-Mott model is proposed in which the indexr can be a function of disorder. The Tauc model has further been extended to the case of negligible matrix elements between localised states, in which the same square power law forα vs.ħω with the same meaning of the optical gap as in the original Tauc model has resulted. A consideration of the case of unequal matrix elements for those transitions between localised states and those between extended states is also included. The meaning ofE opt has been re-assessed and it is emphasized that it is an extrapolation of delocalised states to the zero of the density of states rather than a threshold energy for the onset of some kind of optical transitions.

  5. A study of optical modeling and evaluation of color rendering property of a dual-phosphor system (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Yu; Lin, Michael; Yang, Tsung-Hsun; Chung, Te-Yuan; Lee, Xuan-Hao; Sun, Ching-Cherng

    2016-09-01

    In this thesis, on the basis of the phosphor optical models, green and red phosphor mixture optical model has been well established. Under some specific green to red phosphor doping proportions, this model can be utilized to simulate the chromatic properties, spatial CCT distributions, and packaging efficiency. There are some benefits of applying the phosphor optical model, one is that the confusion about mixture or layer phosphor configuration can perform better could be solved. Another is that the comparison and analysis of these phosphor configurations can be made not only in experiment but also in simulation, and will be more details to be discuss in the simulation. There are several types of packaging structures in high color quality applications. Consequently, the importance of phosphor optical model cannot be overestimated. After few steps above and with the help of experimental analysis and optimized in simulation, a packaging structure with high color quality and high efficiency has been approved. Finally, this light source with high performance will be utilized in the luminaire to improve the color and energy saving properties.

  6. Models of optical quantum computing

    NASA Astrophysics Data System (ADS)

    Krovi, Hari

    2017-03-01

    I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.

  7. Using optical coherence tomography for the longitudinal noninvasive evaluation of epidermal thickness in a murine model of chronic skin inflammation

    PubMed Central

    Silver, Rachel; Helms, Amy; Fu, Wen; Wang, Hui; Diaconu, Doina; Loyd, Candace M.; Rollins, Andrew M.; Ward, Nicole L.

    2012-01-01

    Background Noninvasive methods are desirable for longitudinal studies examining drug efficacy and disease resolution defined as decreases in epidermal thickness in mouse models of psoriasiform skin disease. This would eliminate the need for either sacrificing animals or collecting serial skin biopsies to evaluate changes in disease progression during an individual study. Quantification of epidermal thickness using Optical Coherence Tomography (OCT) provides an alternative to traditional histology techniques. Methods Using the KC-Tie2 doxycycline-repressible psoriasiform skin disease mouse model, OCT imaging was completed on diseased back skin of adult KC-Tie2 (n=3-4) and control (n=3-4) mice, followed immediately by the surgical excision of the same region for histological analyses. Animals were then treated with doxycycline to suppress transgene expression and reverse the skin disease and additional OCT images and tissues were collected 2 and 4 weeks following. Epidermal thickness was measured using OCT and histology. Results OCT and histology both demonstrated KC-Tie2 mice had significantly thicker epidermis (~4-fold; p<0.0001) than control animals. By two weeks following gene repression, decreases in epidermal thickness were observed using both OCT and histology, and were sustained through 4 weeks. Correlation analyses between histology and OCT values at all time points and in all animals revealed high significance (R2=0.78); with correlation being highest in KC-Tie2 mice (R2=0.92) compared to control animals (R2=0.16). Conclusion Noninvasive OCT imaging provided similar values as those collected using standard histological measures in thick skin of KC-Tie2 mice but became less reliable in thinner control mouse skin, possibly reflecting limitations in resolution of OCT. Future advances in resolution of OCT may improve and allow greater accuracy of epidermal thickness measurements. PMID:22092854

  8. Evaluation of aerosol optical depth and aerosol models from MODIS and VIIRS retrieval algorithms over North China Plain

    NASA Astrophysics Data System (ADS)

    Wang, J.; Zhu, J.; Xia, X.; Chen, H.; Zhang, J.; Xu, X.; Oo, M. M.; Holz, R.; Levy, R. C.

    2015-12-01

    After the launch of Suomi National Polar-orbiting Partnership (S-NPP) equipped with the Visible Infrared Imaging Radiometer Suit (VIIRS) instrument in late 2011, the aerosol products of VIIRS have received much attention. Currently there are two aerosol products of VIIRS by using different algorithms: VIIRS Environment Data Record data (VIIRS_EDR) and aerosol products by applying MODIS-like algorithm to VIIRS (VIIRS_ML). In this study, the aerosol optical depth (AOD) at 550nm and properties of aerosol models used in the two VIIRS algorithms (VIIRS_EDR and VIIRS_ML) are compared respectively with their corresponding quantities retrieved from the ground-based Sunphotometer measurements (CE318) during May 2012-March 2014 at three sites over North China Plain (NCP): metropolis-Beijing, suburban-XiangHe and regional background site-Xinglong. The results show that the VIIRS_EDR AOD has a positive mean bias (MB) of 0.04-0.06 and the root mean square error (RMSE) of 0.22-0.24 in NCP region. Among three sites, the largest MB (0.10-0.15) and RMSE (0.27-0.30) are observed in Beijing. The results of evaluation of VIIRS_ML for each site and quality flags analysis are similar to VIIRS_EDR, but in general the VIIRS_ML AOD shows better than VIIRS_EDR except for the MB (0.13-0.14). The model comparisons show that the occurrence percentages of both dust and clean urban aerosol in VIIRS_EDR (82% for Beijing, 73% for XiangHe and 50% for Xinglong) are significantly larger than that for CE318, the latter shows the polluted urban aerosol is the dominant aerosol especially for Beijing (67%) and XiangHe (59%) sites. The values of Single Scattering albedo (SSA) from VIIRS_EDR are higher than from CE318 in all aerosol modes, with a positive bias of 0.03-0.06 for fine mode, 0.18-0.22 for coarse model and 0.03-0.08 for total modes and the aerosol microphysical properties used in the VIIRS_EDR algorithm for AOD retrieval show a large difference with the counterparts from CE318 inversion results

  9. Optical cochlear implant: evaluation of insertion forces of optical fibres in a cochlear model and of traumata in human temporal bones.

    PubMed

    Balster, Sven; Wenzel, Gentiana I; Warnecke, Athanasia; Steffens, Melanie; Rettenmaier, Alexander; Zhang, Kaiyin; Lenarz, Thomas; Reuter, Guenter

    2014-02-01

    Optical stimulation for hearing restoration is developing as an alternative therapy to electrical stimulation. For a more frequency-specific activation of the auditory system, light-guiding fibres need to be inserted into the coiled cochlea. To enable insertion with minimal trauma, glass fibres embedded in silicone were used as models. Thus, glass fibres of varying core/cladding diameter with and without silicon coating (single as well as in bundles) were inserted into a human scala tympani (ST) model. Insertion cochlear model force measurements were performed, and the thinner glass fibres that showed low insertion forces in the model were inserted into cadaveric human temporal bones. Silicone-coated glass fibres with different core/cladding diameters and bundle sizes could be inserted up to a maximum depth of 20 mm. Fibres with a core/cladding diameter of 50/55 μm break during insertion deeper than 7-15 mm into the ST model, whereas thinner fibres (20/25 μm) could be inserted in the model without breakage and in human temporal bones without causing trauma to the inner ear structures. The insertion forces of silicone-coated glass fibres are comparable to those measured with conventional cochlear implant (CI) electrodes. As demonstrated in human temporal bones, a minimal traumatic implantation of an optical CI may be considered feasible.

  10. Aerosol Optical Depth over Europe: Evaluation of the CALIOPE air quality modelling system with direct-sun AERONET observations

    NASA Astrophysics Data System (ADS)

    Basart, Sara; Pay, María. Teresa; Pérez, Carlos; Cuevas, Emilio; Jorba, Oriol; Piot, Matthias; María Baldasano, Jose

    2010-05-01

    In the frame of the CALIOPE project (Baldasano et al., 2008), the Barcelona Supercomputing Center (BSC-CNS) currently operates a high-resolution air quality forecasting system based on daily photochemical forecasts in Europe (12km x 12km resolution) with the WRF-ARW/HERMES/CMAQ modelling system (http://www.bsc.es/caliope) and desert dust forecasts over Southern Europe with BSC-DREAM8b (Pérez et al., 2006; http://www.bsc.es/projects/earthscience/DREAM). High resolution simulations and forecasts are possible through their implementation on MareNostrum supercomputer at BSC-CNS. As shown in previous air quality studies (e.g. Rodríguez et al., 2001; Jiménez-Guerrero et al., 2008), the contribution of desert dust on particulate matter levels in Southern Europe is remarkable due to its proximity to African desert dust sources. When considering only anthropogenic emissions (Baldasano et al., 2008) and the current knowledge about aerosol physics and chemistry, chemistry-transport model simulations underestimate the PM10 concentrations by 30-50%. As a first approach, the natural dust contribution from BSC-DREAM8b is on-line added to the anthropogenic aerosol output of CMAQ. The aim of the present work is the quantitative evaluation of the WRF-ARW/HERMES/ CMAQ/BSC-DREAM8b forecast system to simulate the Aerosol Optical Depth (AOD) over Europe. The performance of the modelled AOD has been quantitatively evaluated with discrete and categorical (skill scores) statistics by a comparison to direct-sun AERONET observations for 2004. The contribution of different types of aerosols will be analyzed by means of the O'Neill fine mode AOD products (O'Neill et al., 2001). A previous aerosol characterization of AERONET data was performed (Basart et al., 2009) in order to discriminate the different aerosol source contributions within the study region. The results indicate a remarkable improvement in the discrete and skill-scores evaluation (accuracy, critical success index and

  11. Extended optical model for fission

    DOE PAGES

    Sin, M.; Capote, R.; Herman, M. W.; ...

    2016-03-07

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier ismore » used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.« less

  12. Extended optical model for fission

    SciTech Connect

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-07

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier is used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.

  13. Extended optical model for fission

    NASA Astrophysics Data System (ADS)

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-01

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier is used for U,235234(n ,f ) , while a double-humped fission barrier is used for 238U(n ,f ) and 239Pu(n ,f ) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n ,f ) reactions. The 239Pu(n ,f ) reaction can be calculated in the complete damping approximation. Calculated cross sections for U,238235(n ,f ) and 239Pu(n ,f ) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. The extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.

  14. Evaluation of optical remote sensing parameters to improve modeling of gross primary productivity in a heterogeneous agricultural area

    NASA Astrophysics Data System (ADS)

    Schickling, A.; Damm, A.; Schween, J.; Rascher, U.; Crewell, S.; Wahner, A.

    2011-12-01

    Terrestrial photosynthesis greatly determines plant mediated exchange processes in the vegetation atmosphere system and substantially influences patterns in atmospheric carbon dioxide (CO2) concentrations and water vapor. Therefore, an accurate quantification of photosynthetic CO2 uptake, commonly referred to as gross primary productivity (GPP), is a key parameter to distinguish those atmospheric patterns on various spatio-temporal scales. Remote sensing (RS) offers the unique possibility to determine GPP at different spatial scales ranging from the local to the global scale. Attempts to estimate GPP from RS data focus on the light use efficiency (LUE) concept of Monteith which relates GPP to the absorbed photosynthetically active radiation and the efficiency of plant canopies to utilize the absorbed radiation for photosynthesis. To reliably predict GPP on different spatio-temporal scales LUE has to be linked to optical RS parameters which detect changes in photosynthetic efficiency due to environmental conditions. In this study we evaluated two optical RS parameters, namely the sun-induced fluorescence (Fs) and the photochemical reflectance index (PRI), for their potential to serve as a proxy for LUE. The parameters were derived from two ASD FieldSpec spectrometers which were operated in parallel. During several days one instrument was installed on the ground above the vegetation canopy of either a winter wheat or a sugar beet field. The second instrument was operated from a small research aircraft continuously crossing the observation sites at low altitude (< 300 m). GPP was calculated on a diurnal basis including optical parameters in Monteith's LUE concept. The calculated GPP was compared to simultaneously acquired GPP data from eddy covariance measurements. The diurnal behavior of calculated and measured GPP corresponded well indicating that optical RS parameters are able to track the diurnal response of physiological regulation of photosynthesis to changing

  15. Electro-optics laboratory evaluation: Deutsch optical waveguide connectors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A description of a test program evaluating the performance of an optical waveguide connector system is presented. Both quality and effectiveness of connections made in an optical fiber, performance of the equipment used and applicability of equipment and components to field conditions are reviewed.

  16. Optical parametric evaluation model for a broadband high resolution spectrograph at E-ELT (E-ELT HIRES)

    NASA Astrophysics Data System (ADS)

    Genoni, M.; Riva, M.; Pariani, G.; Aliverti, M.; Moschetti, M.

    2016-08-01

    We present the details of a paraxial parametric model of a high resolution spectrograph which can be used as a tool, characterized by good approximation and reliability, at a system engineering level. This model can be exploited to perform a preliminary evaluation of the different parameters as long as different possible architectures of high resolution spectrograph like the one under design for the E-ELT (for the moment called E-ELT HIRES in order to avoid wrong association with the HIRES spectrograph at Keck telescope). The detailed equations flow concerning the first order effects of all the spectrograph components is described; in addition a comparison with the data of a complete physical ESPRESSO spectrograph model is presented as a model proof.

  17. Evaluation models and evaluation use

    PubMed Central

    Contandriopoulos, Damien; Brousselle, Astrid

    2012-01-01

    The use of evaluation results is at the core of evaluation theory and practice. Major debates in the field have emphasized the importance of both the evaluator’s role and the evaluation process itself in fostering evaluation use. A recent systematic review of interventions aimed at influencing policy-making or organizational behavior through knowledge exchange offers a new perspective on evaluation use. We propose here a framework for better understanding the embedded relations between evaluation context, choice of an evaluation model and use of results. The article argues that the evaluation context presents conditions that affect both the appropriateness of the evaluation model implemented and the use of results. PMID:23526460

  18. Honeywell FLASH fiber optic motherboard evaluations

    NASA Astrophysics Data System (ADS)

    Stange, Kent

    1996-10-01

    The use of fiber optic data transmission media can make significant contributions in achieving increasing performance and reduced life cycle cost requirements placed on commercial and military transport aircraft. For complete end-to-end fiber optic transmission, photonics technologies and techniques need to be understood and applied internally to the aircraft line replaceable units as well as externally on the interconnecting aircraft cable plant. During a portion of the Honeywell contribution to Task 2A on the Fly- by-Light Advanced System Hardware program, evaluations were done on a fiber optic transmission media implementation internal to a Primary Flight Control Computer (PFCC). The PFCC internal fiber optic transmission media implementation included a fiber optic backplane, an optical card-edge connector, and an optical source/detector coupler/installation. The performance of these optical media components were evaluated over typical aircraft environmental stresses of temperature, vibration, and humidity. These optical media components represent key technologies to the computer end-to-end fiber optic transmission capability on commercial and military transport aircraft. The evaluations and technical readiness assessments of these technologies will enable better perspectives on productization of fly-by-light systems requiring their utilizations.

  19. Optical Detection System Model.

    DTIC Science & Technology

    1982-04-01

    cases the wavelength 7 II TABLE 2 SAMPLE CONTENTS OF OPTICAL MATERIAL FILE ODSOPT.INP SRF2 3.000 0.120 13.000 9.000 0.120 0.100 0.130 0.600 0.200 0.850...N THESE ARE THE AVAILABLE FILTER TYPES: CORNING VYCOR SILICA MGF2 SRF2 VYC7905 INFRASIL SAPPHIRE MGO 1102 CDISE CBS CDTE SE ZNSE CAF2 DIAMOND

  20. Evaluation of SUNY satellite-to-irradiance model performance using ECMWF GEMS daily aerosol optical depth reanalysis data

    NASA Astrophysics Data System (ADS)

    Itterly, Kyle F.

    The current version of the State University of New York (SUNY) radiative transfer model (RTM) uses climatological monthly averages derived from a National Renewable Energy Labs (NREL) gridded dataset to parameterize aerosol optical depth (AOD), water vapor and ozone. This is mostly due to the limited availability of high spatially and temporally resolved observations. Several global chemical transport models are analyzed and compared in depth to determine which daily AOD dataset should be implemented into the SUNY Model. After thorough comparison, the chemical transport model chosen was the Global and regional Earth-system Monitoring using satellite and in-situ data (GEMS) model developed by the European Center for Medium Range Weather Forecasts (ECMWF). Using daily AOD values instead of monthly climatological values, the SUNY Model better captures events of extreme aerosol loadings, which greatly improves the accuracy in calculations of direct normal irradiance (DNI) and to a lesser extent, global horizontal irradiance (GHI). In clear-sky conditions with the sun directly overhead, a change in AOD from 0.1 to 0.5 is found to cause a 55% (20%) decrease in DNI (GHI) for Desert Rock, Nevada in January. A calibration scheme is applied to the daily GEMS AOD reanalysis data. For each site, the monthly means of the GEMS daily AOD are corrected by a factor to match the currently used monthly climatological AOD in order to avoid large errors caused by changing the magnitude of the monthly average AOD. The performance of the SUNY model improved significantly for many of the stations analyzed in this work after applying the daily-calibrated GEMS AOD. The Root Mean Squared Error (RMSE) was the most notable statistical improvement, which measures the model’s precision compared to the observed measurements from a ground station, and many other statistical improvements are also evident. All 7 SURFRAD locations showed improvements in DNI RMSE after using the calibrated GEMS

  1. Optical Evaluation of a Refractive Secondary Concentrator

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Wong, Wayne A.; Skowronski, Timothy J.

    1999-01-01

    Refractive secondary concentrators are being considered for solar thermal applications because of their ability to archive maximum efficiency through the use of total internal reflection for the concentration and distribution of solar energy. A prototype refractive secondary concentrator was built based on ray tracing analysis to demonstrate this collection and distribution concept. The design included a conical secondary concentrator and a faceted extractor. The objective of this effort was to functionally evaluate the performance of the refractive secondary concentrator/extractor prototype and to compare the results with modeling. Most of the light was found to exit the refractive secondary concentrator through the extractor. In addition, the degree of attenuation encountered by the light as it passed through the refractive secondary concentrator was of interest. Quantifying optical output and validating the modeling will provide further understanding of the efficiency of the prototype and will provide insight for additional design and materials selection activities.

  2. Optical-Microphysical Cirrus Model

    NASA Technical Reports Server (NTRS)

    Reichardt, J.; Reichardt, S.; Lin, R.-F.; Hess, M.; McGee, T. J.; Starr, D. O.

    2008-01-01

    A model is presented that permits the simulation of the optical properties of cirrus clouds as measured with depolarization Raman lidars. It comprises a one-dimensional cirrus model with explicit microphysics and an optical module that transforms the microphysical model output to cloud and particle optical properties. The optical model takes into account scattering by randomly oriented or horizontally aligned planar and columnar monocrystals and polycrystals. Key cloud properties such as the fraction of plate-like particles and the number of basic crystals per polycrystal are parameterized in terms of the ambient temperature, the nucleation temperature, or the mass of the particles. The optical-microphysical model is used to simulate the lidar measurement of a synoptically forced cirrostratus in a first case study. It turns out that a cirrus cloud consisting of only monocrystals in random orientation is too simple a model scenario to explain the observations. However, good agreement between simulation and observation is reached when the formation of polycrystals or the horizontal alignment of monocrystals is permitted. Moreover, the model results show that plate fraction and morphological complexity are best parameterized in terms of particle mass, or ambient temperature which indicates that the ambient conditions affect cirrus optical properties more than those during particle formation. Furthermore, the modeled profiles of particle shape and size are in excellent agreement with in situ and laboratory studies, i.e., (partly oriented) polycrystalline particles with mainly planar basic crystals in the cloud bottom layer, and monocrystals above, with the fraction of columns increasing and the shape and size of the particles changing from large thin plates and long columns to small, more isometric crystals from cloud center to top. The findings of this case study corroborate the microphysical interpretation of cirrus measurements with lidar as suggested previously.

  3. Acoustic Models of Optical Mirrors

    ERIC Educational Resources Information Center

    Mayer, V. V.; Varaksina, E. I.

    2014-01-01

    Students form a more exact idea of the action of optical mirrors if they can observe the wave field being formed during reflection. For this purpose it is possible to organize model experiments with flexural waves propagating in thin elastic plates. The direct and round edges of the plates are used as models of plane, convex and concave mirrors.…

  4. Acoustic Models of Optical Mirrors

    ERIC Educational Resources Information Center

    Mayer, V. V.; Varaksina, E. I.

    2014-01-01

    Students form a more exact idea of the action of optical mirrors if they can observe the wave field being formed during reflection. For this purpose it is possible to organize model experiments with flexural waves propagating in thin elastic plates. The direct and round edges of the plates are used as models of plane, convex and concave mirrors.…

  5. Optical Path Difference Evaluation of Laser-Soldered Optical Components

    NASA Astrophysics Data System (ADS)

    Burkhardt, T.; Hornaff, M.; Burkhardt, D.; Beckert, E.

    2015-12-01

    We present Solderjet Bumping, a laser-based soldering process, as an all inorganic joining technique for optical materials and mechanical support structures. The adhesive-free bonding process enables the low-stress assembly of fragile and sensitive components for advanced optical systems. Our process addresses high demanding applications, e.g. under high energetic radiation (short wavelengths of 280 nm and below and/or high intensities), for vacuum operation, and for harsh environmental conditions. Laser-based soldering allows the low stress assembly of aligned sub-cells as key components for high quality optical systems. The evaluation of the optical path difference in fused silica and the radiation resistant LAK9G15 glass components after soldering and environmental testing shows the potential of the technique.

  6. Evaluation of Hologram Optical Elements

    DTIC Science & Technology

    1975-06-01

    SUMMARY This report is the third in a series th?c cover the investigation of the properties and applications of holo- graphic optics. This type of...Design gy 6.2. Fabrication 97 7. Single Hologram Element Properties 101 7.1. Selection of Study Parameters 101 7.2. Case 1: Q...the Important Cases to be Analyzed in the Single Hologram Element Properties Study. . .106 14 mammiammtii . •MMaWaaaiuuia ttttmrngUdttt^Mi

  7. Modeling an optical micromachine probe

    SciTech Connect

    Mittas, A.; Dickey, F.M.; Holswade, S.C.

    1997-08-01

    Silicon micromachines are fabricated using Surface Micro-Machining (SMM) techniques. Silicon micromachines include engines that consist of orthogonally oriented linear comb drive actuators mechanically connected to a rotating gear. These gears are as small a 50-{micro}m in diameter and can be driven at rotation rates exceeding 300,000-rpm. Measuring and analyzing microengine performance is basic to micromachine development and system applications. Optical techniques offer the potential for measuring long term statistical performance data and transient responses needed to optimize designs and manufacturing techniques. The authors describe the modeling of an optical probe developed at Sandia National Laboratories. Experimental data will be compared with output from the model.

  8. An evaluation of uncertainty in the aerosol optical properties as represented by satellites and an ensemble of chemistry-climate coupled models over Europe

    NASA Astrophysics Data System (ADS)

    Palacios-Peña, Laura; Baró, Rocío; Jiménez-Guerrero, Pedro

    2016-04-01

    The changes in Earth's climate are produced by forcing agents such as greenhouse gases, clouds and atmospheric aerosols. The latter modify the Earth's radiative budget due to their optical, microphysical and chemical properties, and are considered to be the most uncertain forcing agent. There are two main approaches to the study of aerosols: (1) ground-based and remote sensing observations and (2) atmospheric modelling. With the aim of characterizing the uncertainties associated with these approaches, and estimating the radiative forcing caused by aerosols, the main objective of this work is to assess the representation of aerosol optical properties by different remote sensing sensors and online-coupled chemistry-climate models and to determine whether the inclusion of aerosol radiative feedbacks in this type of models improves the modelling outputs over Europe. Two case studies have been selected under the framework of the EuMetChem COST Action ES1004, when important aerosol episodes during 2010 over Europe took place: a Russian wildfires episode and a Saharan desert dust outbreak covering most of Europe. Model data comes from an ensemble of regional air quality-climate simulations performed by the working group 2 of EuMetChem, that investigates the importance of different processes and feedbacks in on-line coupled chemistry-climate models. These simulations are run for three different configurations for each model, differing in the inclusion (or not) of aerosol-radiation and aerosol-cloud interactions. The remote sensing data comes from three different sensors, MODIS (Moderate Resolution Imaging Spectroradiometer), OMI (Ozone Monitoring Instrument) and SeaWIFS (Sea-viewing Wide Field-of-view Sensor). The evaluation has been performed by using classical statistical metrics, comparing modelled and remotely sensed data versus a ground-based instrument network (AERONET). The evaluated variables are aerosol optical depth (AOD) and the Angström exponent (AE) at

  9. Improved AWG Fourier optics model.

    PubMed

    Molina-Fernández, I; Wangüemert-Pérez, J

    2004-10-04

    In this paper we present an improved Fourier Optics model to calculate the transmission characteristics between any arbitrary pair of input/output ports (IOPs) of an Arrayed Waveguide Grating (AWG). In this model the input and output sections of the AWG are modeled using the same approximations, thus removing some reciprocity-related inconsistencies present in previously existing models. The expressions which summarize the model are compact and easily interpretable. Simple quasi-analytical expressions are also derived under the Gaussian approximation of the mode field profiles.

  10. Socio-optics: optical knowledge applied in modeling social phenomena

    NASA Astrophysics Data System (ADS)

    Chisleag, Radu; Chisleag Losada, Ioana-Roxana

    2011-05-01

    The term "Socio-optics" (as a natural part of Socio-physics), is rather not found in literature or at Congresses. In Optics books, there are not made references to optical models applied to explain social phenomena, in spite of Optics relying on the duality particle-wave which seems convenient to model relationships among society and its members. The authors, who have developed a few models applied to explain social phenomena based on knowledge in Optics, along with a few other models applying, in Social Sciences, knowledge from other branches of Physics, give their own examples of such optical models, f. e., of relationships among social groups and their sub-groups, by using kowledge from partially coherent optical phenomena or to explain by tunnel effect, the apparently impossible penetration of social barriers by individuals. They consider that the term "Socio-optics" may come to life. There is mentioned the authors' expertise in stimulating Socio-optics approach by systematically asking students taken courses in Optics to find applications of the newly got Wave and Photon Optics knowledge, to model social and even everyday life phenomena, eventually engaging in such activities other possibly interested colleagues.

  11. Comprehensive Evaluation of Peripheral Nerve Regeneration in the Acute Healing Phase Using Tissue Clearing and Optical Microscopy in a Rodent Model

    PubMed Central

    Keating, Cameron P.; Senthil-Kumar, Prabhu; Zhao, Jie; Randolph, Mark A.; Winograd, Jonathan M.; Evans, Conor L.

    2014-01-01

    Peripheral nerve injury (PNI), a common injury in both the civilian and military arenas, is usually associated with high healthcare costs and with patients enduring slow recovery times, diminished quality of life, and potential long-term disability. Patients with PNI typically undergo complex interventions but the factors that govern optimal response are not fully characterized. A fundamental understanding of the cellular and tissue-level events in the immediate postoperative period is essential for improving treatment and optimizing repair. Here, we demonstrate a comprehensive imaging approach to evaluate peripheral nerve axonal regeneration in a rodent PNI model using a tissue clearing method to improve depth penetration while preserving neural architecture. Sciatic nerve transaction and end-to-end repair were performed in both wild type and thy-1 GFP rats. The nerves were harvested at time points after repair before undergoing whole mount immunofluorescence staining and tissue clearing. By increasing the optic depth penetration, tissue clearing allowed the visualization and evaluation of Wallerian degeneration and nerve regrowth throughout entire sciatic nerves with subcellular resolution. The tissue clearing protocol did not affect immunofluorescence labeling and no observable decrease in the fluorescence signal was observed. Large-area, high-resolution tissue volumes could be quantified to provide structural and connectivity information not available from current gold-standard approaches for evaluating axonal regeneration following PNI. The results are suggestive of observed behavioral recovery in vivo after neurorrhaphy, providing a method of evaluating axonal regeneration following repair that can serve as an adjunct to current standard outcomes measurements. This study demonstrates that tissue clearing following whole mount immunofluorescence staining enables the complete visualization and quantitative evaluation of axons throughout nerves in a PNI model

  12. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

    DOE PAGES

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; ...

    2016-05-30

    In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat flux profiles on the receivermore » and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.« less

  13. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

    SciTech Connect

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; Ho, Clifford; Yellowhair, Julius; Dutta, Pradip

    2016-05-30

    In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat flux profiles on the receiver and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.

  14. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

    SciTech Connect

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; Ho, Clifford; Yellowhair, Julius; Dutta, Pradip

    2016-05-30

    In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat flux profiles on the receiver and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.

  15. Optical signature modeling at FOI

    NASA Astrophysics Data System (ADS)

    Nelsson, C.; Hermansson, P.; Nyberg, S.; Persson, A.; Persson, R.; Sjökvist, S.; Winzell, T.

    2006-09-01

    Computer programs for prediction of optical signatures of targets and backgrounds are valuable tools for signature assessment and signature management. Simulations make it possible to study optical signatures from targets and backgrounds under conditions where measured signatures are missing or incomplete. Several applications may be identified: Increase understanding, Design and assessment of low signature concepts, Assessment of tactics, Design and assessment of sensor systems, Duel simulations of EW, and Signature awareness. FOI (the Swedish Defence Research Agency) study several methods and modeling programs for detailed physically based prediction of the optical signature of targets in backgrounds. The most important commercial optical signature prediction programs available at FOI are CAMEO-SIM, RadThermIR, and McCavity. The main tasks of the work have been: Assembly of a database of input data, Gain experience of different computer programs, In-house development of complementary algorithms and programs, and Validation and assessment of the simulation results. This paper summarizes the activities and the results obtained. Some application examples will be given as well as results from validations. The test object chosen is the MTLB which is a tracked armored vehicle. It has been used previously at FOI for research purposes and therefore measurement data is available.

  16. Subjective evaluation of a novel method of dose reduction by optical re-exposure of conventional radiographs - a multi-observer region of interest evaluation in an animal model.

    PubMed

    Paech, A; Schulz, A P; Seide, K; Faschingbauer, M; Jürgens, Ch

    2008-12-01

    A procedure previously been described that has an effect on the image quality and radiation dose of conventional radiographs already at the time of acquisition [Paech A, Schulz AP, Hahlbrauck B, Kiene J, Wenzl ME, Jürgens C. Physical evaluation of a new technique for X-ray dose reduction: measurement of signal-to-noise ratio and modulation transfer function in an animal model. Physica Medica 23 (2007):33-40]. This development is using X-ray sensitization by optical re-exposure. Aim of this study was to establish if the results of optical re-exposure measured with SNR and MTF also meant that the subjective quality of 50% dose-reduced and re-exposed radiographs of bony structures was equal or better than conventional full dose radiographs of the same area. Freshly slaughtered anterior shoulders of lambs served as the animal model. A comminuted fracture in the middle of the shaft was artificially produced. After taking a normal exposed reference image, dose-reduced, five underexposed images were prepared. These underexposed X-rays were then optically re-exposed for a defined period of time before development. The subjective changes in the image quality (information loss or gain) of the images were compared to the reference image and evaluated by 16 physicians with large experience in diagnosis of orthopedic radiographs. The evaluation of the observers scoring showed a significant decrease in the subjective image quality regarding the detail recognition in all images apart from the images re-exposed for 60s. In conclusion, there is a possibility of reducing the collective radiation dose whilst keeping a high degree of diagnostic reliability. Film sensitization provides a technically simple and inexpensive procedure, which can be easily integrated into common film development processes and could considerably reduce patient radiation exposure as well as improve image quality and thus detail recognition.

  17. Adaptive optical antennas: design and evaluation

    NASA Astrophysics Data System (ADS)

    Weyrauch, Thomas; Vorontsov, Mikhail A.; Carhart, Gary W.; Simonova, Galina V.; Beresnev, Leonid A.; Polnau, Ernst E.

    2007-09-01

    We present the design and evaluation of compact adaptive optical antennas with apertures diameters of 16 mm and 100 mm for 5Gbit/s-class free-space optical communication systems. The antennas provide a bi-directional optically transparent link between fiber-optical wavelength-division multiplex systems and allow for mitigation of atmospheric-turbulence induced wavefront phase distortions with adaptive optics components. Beam steering is implemented in the antennas either with mirrors on novel tip/tilt platforms or a fiber-tip positioning system, both enabling operation bandwidths of more than 1 kHz. Bimorph piezoelectric actuated deformable mirrors are used for low-order phase-distortion compensation. An imaging system is integrated in the antennas for coarse pointing and tracking. Beam steering and wavefront control is based on blind maximization of the received signal level using a stochastic parallel gradient descent algorithm. The adaptive optics control architecture allowed the use of feedback signals provided locally within each transceiver system and remotely by the opposite transceiver system via an RF link. First atmospheric compensation results from communication experiments over a 250 m near-ground propagation path are presented.

  18. Evaluation of the usefulness of three-dimensional optical coherence tomography in a guinea pig model of endolymphatic hydrops induced by surgical obliteration of the endolymphatic duct

    NASA Astrophysics Data System (ADS)

    Cho, Nam Hyun; Lee, Jang Woo; Cho, Jin-ho; Kim, Jeehyun; Jang, Jeong Hun; Jung, Woonggyu

    2015-03-01

    Optical coherence tomography (OCT) has advanced significantly over the past two decades and is currently used extensively to monitor the internal structures of organs, particularly in ophthalmology and dermatology. We used ethylenediamine tetra-acetic acid (EDTA) to decalcify the bony walls of the cochlea and investigated the inner structures by deep penetration of light into the cochlear tissue using OCT on a guinea pig model of endolymphatic hydrops (EH), induced by surgical obliteration of the endolymphatic duct. The structural and functional changes associated with EH were identified using OCT and auditory brainstem response tests, respectively. We also evaluated structural alterations in the cochlea using three-dimensional reconstruction of the OCT images, which clearly showed physical changes in the cochlear structures. Furthermore, we found significant anatomical variations in the EH model and conducted graphical analysis by strial atrophy for comparison. The physical changes included damage to and flattening of the organ of Corti-evidence of Reissner's membrane distention-and thinning of the lateral wall. These results indicate that observation of EDTA-decalcified cochlea using OCT is significant in examination of gradual changes in the cochlear structures that are otherwise not depicted by hematoxylin and eosin staining.

  19. Mathmatical modeling for diffractive optics

    NASA Technical Reports Server (NTRS)

    Dobson, David; Cox, J. Allen

    1993-01-01

    We consider a 'diffractive optic' to be a biperiodic surface separating two half-spaces, each having constant constitutive parameters; within a unit cell of the periodic surface and across the transition zone between the two half-spaces, the constitutive parameters can be a continuous, complex-valued function. Mathematical models for diffractive optics have been developed, and implemented as numerical codes, both for the 'direct' problem and for the 'inverse' problem. In problems of the 'direct' class, the diffractive optic is specified, and the full set of Maxwell's equations is cast in a variational form and solved numerically by a finite element approach. This approach is well-posed in the sense that existence and uniqueness of the solution can be proved and specific convergence conditions can be derived. An example of a metallic grating at a Wood anomaly is presented as a case where other approaches are known to have convergence problems. In problems of the 'inverse' class, some information about the diffracted field (e.g., the far-field intensity) is given, and the problem is to find the periodic structure in some optimal sense. Two approaches are described: phase reconstruction in the far-field approximation; and relaxed optimal design based on the Helmholtz equation. Practical examples are discussed for each approach to the inverse problem, including array generators in the far-field case and antireflective structures for the relaxed optimal design.

  20. LISA Optics Model: Early Results

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Scherr, Larry

    2003-01-01

    The Laser Interferometer Space Antenna (LISA) optics model is used to generate a synthetic data stream in the absence of gravitational waves. The simulation has the spacecraft in moving in their respective Keplerian orbits. The pointing of the spacecraft and station keeping about the proof masses is accomplished using a control scheme, which minimizes the disturbance on the proof masses in the sensitive direction. The resulting data stream gives an indication of the magnitude of instrumental noise due to pointing jitter and motions of the spacecraft with respect to the proof masses. Computational details are presented and the results discussed.

  1. Optical and control modeling for adaptive beam-combining experiments

    SciTech Connect

    Gruetzner, J.K.; Tucker, S.D.; Neal, D.R.; Bentley, A.E.; Simmons-Potter, K.

    1995-08-01

    The development of modeling algorithms for adaptive optics systems is important for evaluating both performance and design parameters prior to system construction. Two of the most critical subsystems to be modeled are the binary optic design and the adaptive control system. Since these two are intimately related, it is beneficial to model them simultaneously. Optic modeling techniques have some significant limitations. Diffraction effects directly limit the utility of geometrical ray-tracing models, and transform techniques such as the fast fourier transform can be both cumbersome and memory intensive. The authors have developed a hybrid system incorporating elements of both ray-tracing and fourier transform techniques. In this paper they present an analytical model of wavefront propagation through a binary optic lens system developed and implemented at Sandia. This model is unique in that it solves the transfer function for each portion of a diffractive optic analytically. The overall performance is obtained by a linear superposition of each result. The model has been successfully used in the design of a wide range of binary optics, including an adaptive optic for a beam combining system consisting of an array of rectangular mirrors, each controllable in tip/tilt and piston. Wavefront sensing and the control models for a beam combining system have been integrated and used to predict overall systems performance. Applicability of the model for design purposes is demonstrated with several lens designs through a comparison of model predictions with actual adaptive optics results.

  2. Optical signal splitting and chirping device modeling

    NASA Astrophysics Data System (ADS)

    Vinogradova, Irina L.; Andrianova, Anna V.; Meshkov, Ivan K.; Sultanov, Albert Kh.; Abdrakhmanova, Guzel I.; Grakhova, Elizaveta P.; Ishmyarov, Arsen A.; Yantilina, Liliya Z.; Kutlieva, Gulnaz R.

    2017-04-01

    This article examines the devices for optical signal splitting and chirping device modeling. Models with splitting and switching functions are taken into consideration. The described device for optical signal splitting and chirping represents interferential splitter with profiled mixer which provides allocation of correspondent spectral component from ultra wide band frequency diapason, and signal phase shift for aerial array (AA) directive diagram control. This paper proposes modeling for two types of devices for optical signal splitting and chirping: the interference-type optical signal splitting and chirping device and the long-distance-type optical signal splitting and chirping device.

  3. Evaluation of ITER MSE Viewing Optics

    SciTech Connect

    Allen, S; Lerner, S; Morris, K; Jayakumar, J; Holcomb, C; Makowski, M; Latkowski, J; Chipman, R

    2007-03-26

    image that then was relayed out of the port plug with more ideal (dielectric) mirrors. Engineering models of the optics, port plug, and neutral beam geometry were also created, using the CATIA ITER models. Two video conference calls with the USIPO provided valuable design guidelines, such as the minimum distance of the first optic from the plasma. A second focus of the project was the calibration of the system. Several different techniques are proposed, both before and during plasma operation. Fixed and rotatable polarizers would be used to characterize the system in the no-plasma case. Obtaining the full modulation spectrum from the polarization analyzer allows measurement of polarization effects and also MHD plasma phenomena. Light from neutral beam interaction with deuterium gas (no plasma) has been found useful to determine the wavelength of each spatial channel. The status of the optical design for the edge (upper) and core (lower) systems is included in the following figure. Several issues should be addressed by a follow-on study, including whether the optical labyrinth has sufficient neutron shielding and a detailed polarization characterization of actual mirrors.

  4. Modeling the Laser Interferometer Space Antenna Optics

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Pedersen, Trace R.; McNamara, Paul

    2005-01-01

    Creating an optical model of the Laser Interferometer Space antenna which can be used to predict optical sensitivities and set tolerances sufficiently well such that picometer level displacements can be reliably seen poses certain challenges. In part, because the distances between key optical elements, the proof masses, are constantly changing, at speeds of meters/second, the separation between them is about 5 million kilometers and a contributing factor to optical jitter is the self-gravity of the spacecraft. A discussion of the current state and future approach(s) to the creation of such an optical model will be presented.

  5. Evaluating bio-optical models to determine chlorophyll a from hyper spectral data in the turbid coastal waters of South Carolina

    NASA Astrophysics Data System (ADS)

    Hames, J. B.; Ali, K.

    2013-12-01

    Millions of people visit the beaches of South Carolina every year and the increasing utilization of the coastal waters is leading to the deterioration of water quality and the marine ecosystem. Ecological stress on these environments is reflected by the increase in the frequency and severity of Harmful Algal Blooms (HABs). This was evident during recent summer seasons particularly in the shallow nearshore waters of Long Bay, South Carolina, an open coast embayment on the South Atlantic Bight. These aspects threaten human and marine life. The early detection of HABs in the coastal waters requires more efficient and accurate monitoring tools. Remote sensing provides synoptic view of the entire Long Bay waters at high temporal coverage and allows resource managers to effectively map and monitor algal bloom development, near real time. Various remote sensing (RS) algorithms have been developed but were mostly calibrated to low resolution global data and or other specific sites. In the summer of 2013, a suite of measurements and water samples were collected from 15 locations along the nearshore waters of Long Bay using the Grice Laboratory R/V. In this study, we evaluate the efficiency of 10 bio-optical blue-green and NIR-red based RS models applied to GER 1500 hyper spectral reflectance data to predict chlorophyll a, a proxy for phytoplankton density, in the Long Bay waters of SC. Efficiency of the algorithms performance in the study site were tested through a least squares regression and residual analysis. Results show that among the selected suite of algorithms the blue green models by Darecki and Stramski (2004) produced R2 of 0.68 with RMSE=0.39μg/l, Oc4v4 model by O'Reilly et al. (2000) gave R2 of 0.62 with RMSE=0.73ug/l, and the Oc2v4 also by O'Reilly et al (2000) gave R2 of 0.69 with RMSE=0.65. Among the NIR-red models, Moses et al (2009) two-band algorithm produced R2 of 0.75 and RMSE=1.79, and the three-band version generated R2 of 0.81 and RMSE=2.25ug

  6. Optical models of the human eye.

    PubMed

    Atchison, David A; Thibos, Larry N

    2016-03-01

    Optical models of the human eye have been used in visual science for purposes such as providing a framework for explaining optical phenomena in vision, for predicting how refraction and aberrations are affected by change in ocular biometry and as computational tools for exploring the limitations imposed on vision by the optical system of the eye. We address the issue of what is understood by optical model eyes, discussing the 'encyclopaedia' and 'toy train' approaches to modelling. An extensive list of purposes of models is provided. We discuss many of the theoretical types of optical models (also schematic eyes) of varying anatomical accuracy, including single, three and four refracting surface variants. We cover the models with lens structure in the form of nested shells and gradient index. Many optical eye models give accurate predictions only for small angles and small fields of view. If aberrations and image quality are important to consider, such 'paraxial' model eyes must be replaced by 'finite model' eyes incorporating features such as aspheric surfaces, tilts and decentrations, wavelength-dependent media and curved retinas. Many optical model eyes are population averages and must become adaptable to account for age, gender, ethnicity, refractive error and accommodation. They can also be customised for the individual when extensive ocular biometry and optical performance data are available. We consider which optical model should be used for a particular purpose, adhering to the principle that the best model is the simplest fit for the task. We provide a glimpse into the future of optical models of the human eye. This review is interwoven with historical developments, highlighting the important people who have contributed so richly to our understanding of visual optics.

  7. Optic Disc Localization Using Directional Models.

    PubMed

    Wu, Xiangqian; Dai, Baisheng; Bu, Wei

    2016-07-13

    Reliable localization of the optic disc (OD) is important for retinal image analysis and ophthalmic pathology screening. This paper presents a novel method to automatically localize ODs in retinal fundus images based on directional models. According to the characteristics of retina vessel networks, such as their origin at the OD and parabolic shape of the main vessels, a global directional model, named the relaxed bi-parabola directional model (R-BPDM), is firstly built. In this model the main vessels are modeled by using two parabolas with a shared vertex and different parameters. Then a local directional model, named the disc directional model (DDM), is built to characterize the local vessel convergence in the OD as well as the shape and the brightness of the OD. Finally, the global and the local directional models are integrated to form a hybrid directional model, which can exploit the advantages of the global and local models for highly accurate OD localization. The proposed method is evaluated on nine publicly available databases, and achieves an accuracy of 100% for each database, which demonstrates the effectiveness of the proposed OD localization method.

  8. A computer program to evaluate optical systems

    NASA Technical Reports Server (NTRS)

    Innes, D.

    1972-01-01

    A computer program is used to evaluate a 25.4 cm X-ray telescope at a field angle of 20 minutes of arc by geometrical analysis. The object is regarded as a point source of electromagnetic radiation, and the optical surfaces are treated as boundary conditions in the solution of the electromagnetic wave propagation equation. The electric field distribution is then determined in the region of the image and the intensity distribution inferred. A comparison of wave analysis results and photographs taken through the telescope shows excellent agreement.

  9. Optical models of the molecular atmosphere

    NASA Technical Reports Server (NTRS)

    Zuev, V. E.; Makushkin, Y. S.; Mitsel, A. A.; Ponomarev, Y. N.; Rudenko, V. P.; Firsov, K. M.

    1986-01-01

    The use of optical and laser methods for performing atmospheric investigations has stimulated the development of the optical models of the atmosphere. The principles of constructing the optical models of molecular atmosphere for radiation with different spectral composition (wideband, narrowband, and monochromatic) are considered in the case of linear and nonlinear absorptions. The example of the development of a system which provides for the modeling of the processes of optical-wave energy transfer in the atmosphere is presented. Its physical foundations, structure, programming software, and functioning were considered.

  10. The EMEFS model evaluation

    SciTech Connect

    Barchet, W.R. ); Dennis, R.L. ); Seilkop, S.K. ); Banic, C.M.; Davies, D.; Hoff, R.M.; Macdonald, A.M.; Mickle, R.E.; Padro, J.; Puckett, K. ); Byun, D.; McHenry, J.N.

    1991-12-01

    The binational Eulerian Model Evaluation Field Study (EMEFS) consisted of several coordinated data gathering and model evaluation activities. In the EMEFS, data were collected by five air and precipitation monitoring networks between June 1988 and June 1990. Model evaluation is continuing. This interim report summarizes the progress made in the evaluation of the Regional Acid Deposition Model (RADM) and the Acid Deposition and Oxidant Model (ADOM) through the December 1990 completion of a State of Science and Technology report on model evaluation for the National Acid Precipitation Assessment Program (NAPAP). Because various assessment applications of RADM had to be evaluated for NAPAP, the report emphasizes the RADM component of the evaluation. A protocol for the evaluation was developed by the model evaluation team and defined the observed and predicted values to be used and the methods by which the observed and predicted values were to be compared. Scatter plots and time series of predicted and observed values were used to present the comparisons graphically. Difference statistics and correlations were used to quantify model performance. 64 refs., 34 figs., 6 tabs.

  11. Application of Peterson's stray light model to complex optical instruments

    NASA Astrophysics Data System (ADS)

    Fray, S.; Goepel, M.; Kroneberger, M.

    2016-07-01

    Gary L. Peterson (Breault Research Organization) presented a simple analytical model for in- field stray light evaluation of axial optical systems. We exploited this idea for more complex optical instruments of the Meteosat Third Generation (MTG) mission. For the Flexible Combined Imager (FCI) we evaluated the in-field stray light of its three-mirroranastigmat telescope, while for the Infrared Sounder (IRS) we performed an end-to-end analysis including the front telescope, interferometer and back telescope assembly and the cold optics. A comparison to simulations will be presented. The authors acknowledge the support by ESA and Thales Alenia Space through the MTG satellites program.

  12. Integrated modeling of advanced optical systems

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.; Needels, Laura; Levine, B. Martin

    1993-01-01

    This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.

  13. Guidelines for Model Evaluation.

    DTIC Science & Technology

    1979-01-01

    by a decisionmaker. The full-scale evaluation of a complex model can be an expensive, time- consuming effort requiring diverse talents and skills...relative to PIES, were documented in a report to the Congress. 2/ An important side- effect of that document was that a foundation was laid for model...while for model evaluation there are no generally accepted standards or methods. Hence, GAO perceives the need to expand upon the lessons learned in

  14. Climate models and model evaluation

    SciTech Connect

    Gates, W.L.

    1994-12-31

    This brief overview addresses aspects of the nature, uses, evaluation and limitations of climate models. A comprehensive global modeling capability has been achieved only for the physical climate system, which is characterized by processes that serve to transport and exchange momentum, heat and moisture within and between the atmosphere, ocean and land surface. The fundamental aim of climate modeling, and the justification for the use of climate models, is the need to achieve a quantitative understanding of the operation of the climate system and to exploit any potential predictability that may exist.

  15. Evaluations of fiber optic sensors for interior applications

    SciTech Connect

    Sandoval, M.W.; Malone, T.P.

    1996-02-01

    This report addresses the testing and evaluation of commercial fiber optic intrusion detection systems in interior applications. The applications include laying optical fiber cable above suspended ceilings to detect removal of ceiling tiles, embedding optical fibers inside a tamper or item monitoring blanket that could be placed over an asset, and installing optical fibers on a door to detect movement or penetration. Detection capability of the fiber optic sensors as well as nuisance and false alarm information were focused on during the evaluation. Fiber optic sensor processing, system components, and system setup are described.

  16. Measuring optical properties of a blood vessel model using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Levitz, David; Hinds, Monica T.; Tran, Noi; Vartanian, Keri; Hanson, Stephen R.; Jacques, Steven L.

    2006-02-01

    In this paper we develop the concept of a tissue-engineered optical phantom that uses engineered tissue as a phantom for calibration and optimization of biomedical optics instrumentation. With this method, the effects of biological processes on measured signals can be studied in a well controlled manner. To demonstrate this concept, we attempted to investigate how the cellular remodeling of a collagen matrix affected the optical properties extracted from optical coherence tomography (OCT) images of the samples. Tissue-engineered optical phantoms of the vascular system were created by seeding smooth muscle cells in a collagen matrix. Four different optical properties were evaluated by fitting the OCT signal to 2 different models: the sample reflectivity ρ and attenuation parameter μ were extracted from the single scattering model, and the scattering coefficient μ s and root-mean-square scattering angle θ rms were extracted from the extended Huygens-Fresnel model. We found that while contraction of the smooth muscle cells was clearly evident macroscopically, on the microscopic scale very few cells were actually embedded in the collagen. Consequently, no significant difference between the cellular and acellular samples in either set of measured optical properties was observed. We believe that further optimization of our tissue-engineering methods is needed in order to make the histology and biochemistry of the cellular samples sufficiently different from the acellular samples on the microscopic level. Once these methods are optimized, we can better verify whether the optical properties of the cellular and acellular collagen samples differ.

  17. Models of the optical properties of solids

    NASA Astrophysics Data System (ADS)

    Tropf, William J.; Thomas, Michael E.

    1992-12-01

    Physically-based optical property models of solids are a convenient means of representing the complex index of refraction as a function of frequency and temperature. This modeling approach is especially convenient considering the wide spread use of personal computers and the uncomplicated mathematical form of the models. Models provide a convenient method of cataloging measurements and interpolated between measurements. Several useful models covering absorption and scattering phenomena are presented. Together, these models allow prediction of optical properties over the spectral range from microwaves to the electronic band gap. Temperature dependence of the optical properties cover a more restricted range, but some models predict optical properties from liquid helium to melting temperatures. We have developed an optical properties code incorporating the following models: the classical (one- phonon) oscillator model, our multi-phonon model, the Urbach tail and weak absorption tail models, free-carrier model, and an empirical scatter model. These models require measured parameters which are given for common materials. Comparisons of model calculations of the refractive index, the absorption coefficient, and scattering coefficient to experimental data are presented.

  18. Optical Hall effect-model description: tutorial.

    PubMed

    Schubert, Mathias; Kühne, Philipp; Darakchieva, Vanya; Hofmann, Tino

    2016-08-01

    The optical Hall effect is a physical phenomenon that describes the occurrence of magnetic-field-induced dielectric displacement at optical wavelengths, transverse and longitudinal to the incident electric field, and analogous to the static electrical Hall effect. The electrical Hall effect and certain cases of the optical Hall effect observations can be explained by extensions of the classic Drude model for the transport of electrons in metals. The optical Hall effect is most useful for characterization of electrical properties in semiconductors. Among many advantages, while the optical Hall effect dispenses with the need of electrical contacts, electrical material properties such as effective mass and mobility parameters, including their anisotropy as well as carrier type and density, can be determined from the optical Hall effect. Measurement of the optical Hall effect can be performed within the concept of generalized ellipsometry at an oblique angle of incidence. In this paper, we review and discuss physical model equations, which can be used to calculate the optical Hall effect in single- and multiple-layered structures of semiconductor materials. We define the optical Hall effect dielectric function tensor, demonstrate diagonalization approaches, and show requirements for the optical Hall effect tensor from energy conservation. We discuss both continuum and quantum approaches, and we provide a brief description of the generalized ellipsometry concept, the Mueller matrix calculus, and a 4×4 matrix algebra to calculate data accessible by experiment. In a follow-up paper, we will discuss strategies and approaches for experimental data acquisition and analysis.

  19. Evaluating the stria content in optical glasses

    NASA Astrophysics Data System (ADS)

    Doladugina, V. S.

    2004-12-01

    This paper discusses previously unpublished results of a large collaborative project carried out by Russian and German specialists on the study of the stria content of glasses with the purpose of estimating the possibility of creating a unified standard corresponding to world requirements. A comparison of the techniques existing in the USSR and the German Democratic Republic in 1981-82 in the form of GOST [State Standard] 3521-82 and TGL 21790 did not lead to a positive result, and it was impossible to create a unified document on the evaluation and monitoring of the stria content of uncolored optical glasses. The causes of the situation thus created are explained, and possible ways of solving this problem are considered.

  20. Evaluating Subsurface Damage in Optical Glasses

    NASA Astrophysics Data System (ADS)

    Lee, Y.

    2011-02-01

    Hard brittle materials (e.g. glasses and ceramics) increasingly appeal to general interests because of their excellent physical, mechanical and chemical properties such as super hardness and strength at extreme temperature and chemical stability. The precision manufacturing of these materials is primarily achieved by grinding and polishing, which generally employs abrasives to wear the materials. With this manufacturing technology, the materials are removed due principally to the fracture of brittle materials, which will leave a cracked layer on the surface of manufactured components, namely subsurface damage (SSD). The subsurface damage affects the strength, performance and lifetime of components. As a result, investigation into the subsurface damage is needed. A host of characterizing techniques have been developed during the past several decades. These techniques based on different mechanisms provide researchers with invaluable information on the subsurface damage in various materials. In this article the typical SSD evaluation techniques are reviewed, which are regularly used in optical workshops or laboratories.

  1. Modeling of silica nanowires for optical sensing.

    PubMed

    Lou, Jingyi; Tong, Limin; Ye, Zhizhen

    2005-03-21

    Based on evanescent-wave guiding properties of nanowire waveguides, we propose to use single-mode subwavelength-diameter silica nanowires for optical sensing. Phase shift of the guided mode caused by index change is obtained by solving Maxwell's equation, and is used as a criterion for sensitivity estimation. Nanowire sensor employing a wire-assembled Mach-Zehnder structure is modeled. The result shows that optical nanowires, especially those fabricated by taper drawing of optical fibers, are promising for developing miniaturized optical sensors with high sensitivity.

  2. Optical Turbulence Characterization by WRF model above Ngari

    NASA Astrophysics Data System (ADS)

    Wang, H.; Yao, Y.

    2013-09-01

    Atmospheric optical turbulence modeling and forecast for astronomy is a relatively recent discipline, but has played important roles in site survey for astronomical observatories and optimization of large telescope observing tables, and in the applications of adaptive optics technique and atmospheric optical transportation. The numerical approach, by use of meteorological parameters and according to parameterization of optical turbulence, can provide all the optical turbulence parameters related, such as Cn2 profile, coherent length, coherent time, seeing, isoplanatic angle, and outer scale of turbulence. This is particularly interesting for searching new sites without the long and expensive site testing campaigns with instruments. Earlier site survey results by National Astronomical Observatories of China site survey team imply that the south-west Tibet, Ngari, is one of the world best IR and sub-mm sites. For searching the best site in Ngari area of hundreds of kilometers, numerical approach by Weather and Research Forecasting (WRF) model had been used to evaluate the climatology of the optical turbulence. The WRF model is configured over a domain 200km×200km with 1km horizontal resolution and 65 vertical levels from ground to the model top(10millibars) in 2010. The initial and boundary conditions for the model are given by the 1°x1°NCEP Global Final Analysis data. The distribution and seasonal variation of optical turbulence parameters over this area are presented. The field investigation for the potential good site are also given.

  3. Optical Thromboelastography to evaluate whole blood coagulation

    PubMed Central

    Hajjarian, Zeinab; Tripathi, Markandey M.; Nadkarni, Seemantini K.

    2015-01-01

    Measurement of blood viscoelasticity during clotting provides a direct metric of haemostatic conditions. Therefore, technologies that quantify blood viscoelasticity at the point-of-care are invaluable for diagnosing coagulopathies. We present a new approach, Optical Thromboelastography (OTEG) that measures the viscoelastic properties of coagulating blood by evaluating temporal laser speckle fluctuations, reflected from a few blood drops. During coagulation, platelet-fibrin clot formation restricts the mean square displacements (MSD) of scatterers and decelerates speckle fluctuations. Cross-correlation analysis of speckle frames provides the speckle intensity temporal autocorrelation, g2(t), from which MSD is deduced and the viscoelastic modulus of blood is estimated. Our results demonstrate a close correspondence between blood viscoelasticity evaluated by OTEG and mechanical rheometry. Spatio-temporal speckle analyses yield 2-dimensional maps of clot viscoelasticity, enabling the identification of micro-clot formation at distinct rates in normal and coagulopathic specimens. These findings confirm the unique capability of OTEG for the rapid evaluation of patients’ coagulation status and highlight the potential for point-of-care use. Spatial maps of blood viscoelasticity index, G, during clotting obtained from a normal patient (top row) and a hypo-coagulable patient with low levels of clotting factors (bottom row) at 0, 1, 14, and 30 minutes after kaolin activation. Micro-clots of significant G values appear at early times (~1 min) and continue to progress to form a large blood clot over 30 min in the normal patient. In contrast, in the hypo-coagulable sample, micro-clots of comparable G are only visible at 14 min and the extent and overall clot strength is considerably reduced compared to the normal patient even at 30 min. Scale bars are 100 μm long. These results demonstrate the high sensitivity and spatial resolution of OTEG for detecting incipient micro

  4. New Optical Evaluation Approach for Parabolic Trough Collectors: First-Principle OPTical Intercept Calculation

    SciTech Connect

    Zhu, G.; Lewandowski, A.

    2012-11-01

    A new analytical method -- First-principle OPTical Intercept Calculation (FirstOPTIC) -- is presented here for optical evaluation of trough collectors. It employs first-principle optical treatment of collector optical error sources and derives analytical mathematical formulae to calculate the intercept factor of a trough collector. A suite of MATLAB code is developed for FirstOPTIC and validated against theoretical/numerical solutions and ray-tracing results. It is shown that FirstOPTIC can provide fast and accurate calculation of intercept factors of trough collectors. The method makes it possible to carry out fast evaluation of trough collectors for design purposes. The FirstOPTIC techniques and analysis may be naturally extended to other types of CSP technologies such as linear-Fresnel collectors and central-receiver towers.

  5. Integrated Assessment Model Evaluation

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; Clarke, L.; Edmonds, J. A.; Weyant, J. P.

    2012-12-01

    Integrated assessment models of climate change (IAMs) are widely used to provide insights into the dynamics of the coupled human and socio-economic system, including emission mitigation analysis and the generation of future emission scenarios. Similar to the climate modeling community, the integrated assessment community has a two decade history of model inter-comparison, which has served as one of the primary venues for model evaluation and confirmation. While analysis of historical trends in the socio-economic system has long played a key role in diagnostics of future scenarios from IAMs, formal hindcast experiments are just now being contemplated as evaluation exercises. Some initial thoughts on setting up such IAM evaluation experiments are discussed. Socio-economic systems do not follow strict physical laws, which means that evaluation needs to take place in a context, unlike that of physical system models, in which there are few fixed, unchanging relationships. Of course strict validation of even earth system models is not possible (Oreskes etal 2004), a fact borne out by the inability of models to constrain the climate sensitivity. Energy-system models have also been grappling with some of the same questions over the last quarter century. For example, one of "the many questions in the energy field that are waiting for answers in the next 20 years" identified by Hans Landsberg in 1985 was "Will the price of oil resume its upward movement?" Of course we are still asking this question today. While, arguably, even fewer constraints apply to socio-economic systems, numerous historical trends and patterns have been identified, although often only in broad terms, that are used to guide the development of model components, parameter ranges, and scenario assumptions. IAM evaluation exercises are expected to provide useful information for interpreting model results and improving model behavior. A key step is the recognition of model boundaries, that is, what is inside

  6. Vehicle-Mounted Optical Sensing: An Objective Means for Evaluating Turf Quality.

    PubMed

    Bell, G. E.; Martin, D. L.; Wiese, S. G.; Dobson, D. D.; Smith, M. W.; Stone, M. L.; Solie, J. B.

    2002-01-01

    Visual evaluation of turfgrass quality is a subjective process that requires experienced personnel. Optical sensing of plant reflectance provides objective, quantitative turf quality evaluation and requires no turf experience. This study was conducted to assess the accuracy of optical sensing for evaluating turf quality, to compare the rating consistency among human evaluators and optical sensing, and to develop a model that describes a relationship between optically sensed measurements and visual turf quality. Visual evaluations for turf color, texture, percent live cover (PLC), and optically sensed measurements were collected on the National Turfgrass Evaluation Program (NTEP) tall fescue (Festuca arundinacea Schreb) and creeping bentgrass (Agrostis palustris Huds.) trials at Stillwater, OK. Measurements were made monthly for 12 consecutive months from June 1999 through May 2000. Red (R) and near infrared (NIR) reflectance were collected with sensors and converted to normalized difference vegetative indices (NDVI). The NDVI were closely correlated with visual evaluations for turf color, moderately correlated with percent live cover (PLC), and independent of texture. Measurements of turf color and PLC were evaluated more consistently with optical sensors than by visual ratings. Normalized difference vegetation index (Y) could be reliably predicted by the following generalized model for turf color (X) and PLC (Z): Y = B(0) + B(1)log10X + B(2)Z(3). Optical sensing provided fast, reliable turf assessment and deserves consideration as a supplemental or replacement technique for evaluating turf quality.

  7. Optical Performance Modeling of FUSE Telescope Mirror

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Ohl, Raymond G.; Friedman, Scott D.; Moos, H. Warren

    2000-01-01

    We describe the Metrology Data Processor (METDAT), the Optical Surface Analysis Code (OSAC), and their application to the image evaluation of the Far Ultraviolet Spectroscopic Explorer (FUSE) mirrors. The FUSE instrument - designed and developed by the Johns Hopkins University and launched in June 1999 is an astrophysics satellite which provides high resolution spectra (lambda/Delta(lambda) = 20,000 - 25,000) in the wavelength region from 90.5 to 118.7 nm The FUSE instrument is comprised of four co-aligned, normal incidence, off-axis parabolic mirrors, four Rowland circle spectrograph channels with holographic gratings, and delay line microchannel plate detectors. The OSAC code provides a comprehensive analysis of optical system performance, including the effects of optical surface misalignments, low spatial frequency deformations described by discrete polynomial terms, mid- and high-spatial frequency deformations (surface roughness), and diffraction due to the finite size of the aperture. Both normal incidence (traditionally infrared, visible, and near ultraviolet mirror systems) and grazing incidence (x-ray mirror systems) systems can be analyzed. The code also properly accounts for reflectance losses on the mirror surfaces. Low frequency surface errors are described in OSAC by using Zernike polynomials for normal incidence mirrors and Legendre-Fourier polynomials for grazing incidence mirrors. The scatter analysis of the mirror is based on scalar scatter theory. The program accepts simple autocovariance (ACV) function models or power spectral density (PSD) models derived from mirror surface metrology data as input to the scatter calculation. The end product of the program is a user-defined pixel array containing the system Point Spread Function (PSF). The METDAT routine is used in conjunction with the OSAC program. This code reads in laboratory metrology data in a normalized format. The code then fits the data using Zernike polynomials for normal incidence

  8. Optical Turbulence Characterization by WRF model above Ali, Tibet

    NASA Astrophysics Data System (ADS)

    Wang, Hongshuai; Yao, Yongqiang; Liu, Liyong; Qian, Xuan; Yin, Jia

    2015-04-01

    Atmospheric optical turbulence modeling and forecast for astronomy is a relatively recent discipline, but has played important roles in site survey, optimization of large telescope observing tables, and in the applications of adaptive optics technique. The numerical approach, by using of meteorological parameters and parameterization of optical turbulence, can provide all the optical turbulence parameters related, such as C2n profile, coherent length, wavefront coherent time, seeing, isoplanatic angle, and so on. This is particularly interesting for searching new sites without the long and expensive site testing campaigns with instruments. Earlier site survey results by the site survey team of National Astronomical Observatories of China imply that the south-west Tibet, Ali, is one of the world best IR and sub-mm site. For searching the best site in Ali area, numerical approach by Weather and Research Forecasting (WRF) model had been used to evaluate the climatology of the optical turbulence. The WRF model is configured over a domain 200km×200km with 1km horizontal resolution and 65 vertical levels from ground to the model top(10millibars) in 2010. The initial and boundary conditions for the model are provided by the 1° × 1° Global Final Analysis data from NCEP. The distribution and seasonal variation of optical turbulence parameters over this area are presented.

  9. Development and evaluation of a genetic algorithm-based ocean color inversion model for simultaneously retrieving optical properties and bottom types in coral reef regions.

    PubMed

    Chang, Chih-Hua; Liu, Cheng-Chien; Chung, Hsiao-Wei; Lee, Long-Jeng; Yang, Wen-Chang

    2014-02-01

    This work presents a novel approach that integrates a shallow water semi-analytical (SSA) model and a genetic algorithm (GA) to retrieve water column inherent optical properties (IOPs) and identify bottom types simultaneously from measurement of subsurface remote sensing reflectance. This GA-SSA approach is designed based on the assumption that each pixel is homogeneous with regard to the bottom type when viewed at small (centimeter) scales, and it is validated against a synthetic data set (N=11,250) that consists of five types of bottom, three levels of bottom depth, 15 concentrations of chlorophyll-a (Chl-a), and a wide range of modeled IOP variations in clear and optically complex waters representing the coral reef environment. The results indicate that the GA-SSA approach is accurate and robust in the retrieval of IOPs and its success rate in identifying the real bottom type is limited by the level of Chl-a and bottom depth. When a pixel is homogeneous at a small scale, the maximum allowable concentrations for GA-SSA to perfectly identify all the five bottom types are 0.7  mg/m3 at 5 m bottom depth, 0.2  mg/m3 at 10 m, and 0.07  mg/m3 at 15 m. A promising 80% recognition rate of the benthic community is possible with GA-SSA when an underwater hyperspectral imager is deployed to examine the health status of coral reefs in a clean (Chl-a<1  mg/m3) and shallow (bottom depth<10  m) environment. Further study that collects field data for direct validation is required to ensure that the GA-SSA approach is also applicable in real coral reef regions.

  10. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    SciTech Connect

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injection strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant

  11. Stereological Evaluation of the Optic Nerve Volume in Alzheimer Disease.

    PubMed

    Kusbeci, Tuncay; Kusbeci, Ozge Yilmaz; Mas, Nuket Gocmen; Karabekir, Hamit Selim; Yavas, Guliz; Yucel, Aylin

    2015-07-01

    Optic nerve damage occurs in Alzheimer disease (AD) related to the loss of the retinal ganglion cells that contribute fibers to the optic nerve and reduction of the density of axons of the optic nerve. In this study the authors evaluated optic nerve volume changes and the relation between the cerebrum and optic nerve volumes in AD patients. The study evaluated the volumetric measurements of optic nerve by applying the stereological method on magnetic resonance images (MRI). It included age-matched study and control groups, which were composed of 20 patients with probable AD and 20 healthy subjects, respectively. MRIs were analyzed by using the point-counting approach holding Cavalieri principle. There were statistically significant optic nerve volume reduction and cerebral atrophy in AD patients when compared with the age-matched control subjects (P = 0.013, P < 0.001, respectively) but there was no correlation between the optic nerve volume and cerebral volume in AD patients (r = 0.326, P = 0.160). There was a difference between optic nerve volumes of AD and control subjects. The stereological evaluation of optic nerve volume is of importance for both clinicians and anatomists and it can provide valuable information in the evaluation of morphological changes of AD in vivo.

  12. CMAQ Model Evaluation Framework

    EPA Pesticide Factsheets

    CMAQ is tested to establish the modeling system’s credibility in predicting pollutants such as ozone and particulate matter. Evaluation of CMAQ has been designed to assess the model’s performance for specific time periods and for specific uses.

  13. VPPA weld model evaluation

    NASA Technical Reports Server (NTRS)

    Mccutcheon, Kimble D.; Gordon, Stephen S.; Thompson, Paul A.

    1992-01-01

    NASA uses the Variable Polarity Plasma Arc Welding (VPPAW) process extensively for fabrication of Space Shuttle External Tanks. This welding process has been in use at NASA since the late 1970's but the physics of the process have never been satisfactorily modeled and understood. In an attempt to advance the level of understanding of VPPAW, Dr. Arthur C. Nunes, Jr., (NASA) has developed a mathematical model of the process. The work described in this report evaluated and used two versions (level-0 and level-1) of Dr. Nunes' model, and a model derived by the University of Alabama at Huntsville (UAH) from Dr. Nunes' level-1 model. Two series of VPPAW experiments were done, using over 400 different combinations of welding parameters. Observations were made of VPPAW process behavior as a function of specific welding parameter changes. Data from these weld experiments was used to evaluate and suggest improvements to Dr. Nunes' model. Experimental data and correlations with the model were used to develop a multi-variable control algorithm for use with a future VPPAW controller. This algorithm is designed to control weld widths (both on the crown and root of the weld) based upon the weld parameters, base metal properties, and real-time observation of the crown width. The algorithm exhibited accuracy comparable to that of the weld width measurements for both aluminum and mild steel welds.

  14. Evaluating Health Risk Models

    PubMed Central

    2010-01-01

    SUMMARY Interest in targeted disease prevention has stimulated development of models that assign risks to individuals, using their personal covariates. We need to evaluate these models and quantify the gains achieved by expanding a model to include additional covariates. This paper reviews several performance measures and shows how they are related. Examples are used to show that appropriate performance criteria for a risk model depend upon how the model is used. Application of the performance measures to risk models for hypothetical populations and for US women at risk of breast cancer illustrate two additional points. First, model performance is constrained by the distribution of risk-determining covariates in the population. This complicates the comparison of two models when applied to populations with different covariate distributions. Second, all summary performance measures obscure model features of relevance to its utility for the application at hand, such as performance in specific subgroups of the population. In particular, the precision gained by adding covariates to a model can be small overall, but large in certain subgroups. We propose new ways to identify these subgroups and to quantify how much they gain by measuring the additional covariates. Those with largest gains could be targeted for cost-efficient covariate assessment. PMID:20623821

  15. Biophotonic Modelling of Cardiac Optical Imaging.

    PubMed

    Bishop, Martin J; Plank, Gernot

    2015-01-01

    Computational models have been recently applied to simulate and better understand the nature of fluorescent photon scattering and optical signal distortion during cardiac optical imaging. The goal of such models is both to provide a useful post-processing tool to facilitate a more accurate and faithful comparison between computational simulations of electrical activity and experiments, as well as providing essential insight into the mechanisms underlying this distortion, suggesting ways in which it may be controlled or indeed utilised to maximise the information derived from the recorded fluorescent signal. Here, we present different modelling methodologies developed and used in the field to simulate both the explicit processes involved in optical signal synthesis and the resulting consequences of the effects of photon scattering within the myocardium upon the optically-detected signal. We focus our attentions to two main types of modelling approaches used to simulate light transport in cardiac tissue, specifically continuous (reaction-diffusion) and discrete stochastic (Monte Carlo) methods. For each method, we provide both a summary of the necessary methodological details of such models, in addition to brief reviews of relevant application studies which have sought to apply these methods to elucidate important information regarding experimentally-recorded optical signals under different circumstances.

  16. Analysis of a Thin Optical Lens Model

    ERIC Educational Resources Information Center

    Ivchenko, Vladimir V.

    2011-01-01

    In this article a thin optical lens model is considered. It is shown that the limits of its applicability are determined not only by the ratio between the thickness of the lens and the modules of the radii of curvature, but above all its geometric type. We have derived the analytical criteria for the applicability of the model for different types…

  17. Automated Environmental Simulation Model Tor Analyzing Wound Fiber Optic Bobbins

    NASA Astrophysics Data System (ADS)

    Edwards, Eugene; Ruffin, Paul B.

    1987-01-01

    The life of optical fibers under stress for an extended period of time is limited by static fatigue caused by stress corrosion in the presence of moisture. In order to predict the life of wound optical fibers, it is necessary to accelerate the aging process by simulating the storage environment (stress, temperature, and humidity) in a short period of time. Existing environmental test systems have been proven useful in the simulation of the storage environment; however, the data is limited due to the manual mode of operation. An automated environmental simulation model is developed to control, collect, process, and analyze optical loss data while measuring temperature and humidity. The environmental conditions for optical fibers wound for various applications are simulated in order to understand the interrelationships between wound fiber parameters including spool composition/design, winding tension, adhesives, and fiber cable design. Experimental investigations are carried out to expose wound optical fiber to simulated environments while monitoring changes in the optical and mechanical characteristics of the fibers. Based on the preliminary results of the data obtained, the automated simulation system is proven acceptable for performing routine modeling and evaluations. The automated system is a valuable instrument to aid in the characterization of optical fibers.

  18. New Evaluated Semi-Empirical Formula Using Optical Model for 14-15 MeV ( n, t) Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Tel, E.; Durgu, C.; Aydın, A.; Bölükdemir, M. H.; Kaplan, A.; Okuducu, Ş.

    2009-12-01

    In the next century the world will face the need for new energy sources. Nuclear fusion can be one of the most attractive sources of energy from the viewpoint of safety and minimal environmental impact. Fusion will not produce CO2 or SO2 and thus will not contribute to global warming or acid rain. Achieving acceptable performance for a fusion power system in the areas of economics, safety and environmental acceptability, is critically dependent on performance of the blanket and diverter systems which are the primary heat recovery, plasma purification, and tritium breeding systems. Tritium self-sufficiency must be maintained for a commercial power plant. The hybrid reactor is a combination of the fusion and fission processes. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So working out the systematics of ( n, t) reaction cross-sections are of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at energies up to 20 MeV. In this study, we have calculated non-elastic cross-sections by using optical model for ( n, t) reactions at 14-15 MeV energy. We have investigated the excitation function character and reaction Q-values depending on the asymmetry term effect for the ( n, t) reaction cross-sections. We have obtained new coefficients for the ( n, t) reaction cross-sections. We have suggested semi-empirical formulas including optical model nonelastic effects by fitting two parameters for the ( n, t) reaction cross-sections at 14-15 MeV. We have discussed the odd-even effect and the pairing effect considering binding energy systematic of the nuclear shell model for the new experimental data and new cross-sections formulas ( n, t) reactions developed by Tel et al. We have determined a different parameter groups by the classification of nuclei into even-even, even-odd and odd-even for ( n, t) reactions cross-sections. The obtained cross-section formulas

  19. Evaluation of Retinal Nerve Fiber Layer in Patients with Idiopathic Optic Perineuritis using Optical Coherence Tomography

    PubMed Central

    Byon, Ik Soo; Jung, Jae Ho; Choi, Jae-Hwan; Seo, Je Hyun; Lee, Ji Eun; Choi, Hee-Young

    2015-01-01

    Abstract The aim of this study was to assess the effect of idiopathic Optic perineuritis on the retinal nerve fiber layer, and determine the ability of optical coherence tomography to evaluate retinal nerve fiber loss after idiopathic Optic perineuritis. Four patients were assessed in this study. In all cases, average retinal nerve fiber layer was significantly thinner in the affected eye in comparison with the normal reference value and with the value for the contralateral normal eye at 12 months after the onset of optic perineuritis. Our study revealed that retinal nerve fiber layer loss occurs in idiopathic optic nerve sheath inflammation. PMID:27928329

  20. Progress in Evaluating Quantitative Optical Gas Imaging

    EPA Science Inventory

    Development of advanced fugitive emission detection and assessment technologies that facilitate cost effective leak and malfunction mitigation strategies is an ongoing goal shared by industry, regulators, and environmental groups. Optical gas imaging (OGI) represents an importan...

  1. Progress in Evaluating Quantitative Optical Gas Imaging

    EPA Science Inventory

    Development of advanced fugitive emission detection and assessment technologies that facilitate cost effective leak and malfunction mitigation strategies is an ongoing goal shared by industry, regulators, and environmental groups. Optical gas imaging (OGI) represents an importan...

  2. Single-dose safety and pharmacokinetic evaluation of fluorocoxib A: pilot study of novel cyclooxygenase-2-targeted optical imaging agent in a canine model

    NASA Astrophysics Data System (ADS)

    Cekanova, Maria; Uddin, Md. Jashim; Legendre, Alfred M.; Galyon, Gina; Bartges, Joseph W.; Callens, Amanda; Martin-Jimenez, Tomas; Marnett, Lawrence J.

    2012-11-01

    We evaluated preclinical single-dose safety, pharmacokinetic properties, and specific uptake of the new optical imaging agent fluorocoxib A in dogs. Fluorocoxib A, N-[(5-carboxy-X-rhodaminyl)but-4-yl]-2-[1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetamide, selectively binds and inhibits the cyclooxygenase-2 (COX-2) enzyme, which is overexpressed in many cancers. Safety pilot studies were performed in research dogs following intravenous (i.v.) administration of 0.1 and 1 mg/kg fluorocoxib A. Blood and urine samples collected three days after administration of each dose of fluorocoxib A revealed no evidence of toxicity, and no clinically relevant adverse events were noted on physical examination of exposed dogs over that time period. Pharmacokinetic parameters were assessed in additional research dogs from plasma collected at several time points after i.v. administration of fluorocoxib A using high-performance liquid chromatography analysis. The pharmacokinetic studies using 1 mg/kg showed a peak of fluorocoxib A (92±28 ng/ml) in plasma collected at 0.5 h. Tumor specific uptake of fluorocoxib A was demonstrated using a dog diagnosed with colorectal cancer expressing COX-2. Our data support the safe single-dose administration and in vivo efficacy of fluorocoxib A, suggesting a high potential for successful translation to clinical use as an imaging agent for improved tumor detection in humans.

  3. Composite Load Model Evaluation

    SciTech Connect

    Lu, Ning; Qiao, Hong

    2007-09-30

    The WECC load modeling task force has dedicated its effort in the past few years to develop a composite load model that can represent behaviors of different end-user components. The modeling structure of the composite load model is recommended by the WECC load modeling task force. GE Energy has implemented this composite load model with a new function CMPLDW in its power system simulation software package, PSLF. For the last several years, Bonneville Power Administration (BPA) has taken the lead and collaborated with GE Energy to develop the new composite load model. Pacific Northwest National Laboratory (PNNL) and BPA joint force and conducted the evaluation of the CMPLDW and test its parameter settings to make sure that: • the model initializes properly, • all the parameter settings are functioning, and • the simulation results are as expected. The PNNL effort focused on testing the CMPLDW in a 4-bus system. An exhaustive testing on each parameter setting has been performed to guarantee each setting works. This report is a summary of the PNNL testing results and conclusions.

  4. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    DOE PAGES

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injectionmore » strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still

  5. Analytical model of the optical vortex microscope.

    PubMed

    Płocinniczak, Łukasz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2016-04-20

    This paper presents an analytical model of the optical vortex scanning microscope. In this microscope the Gaussian beam with an embedded optical vortex is focused into the sample plane. Additionally, the optical vortex can be moved inside the beam, which allows fine scanning of the sample. We provide an analytical solution of the whole path of the beam in the system (within paraxial approximation)-from the vortex lens to the observation plane situated on the CCD camera. The calculations are performed step by step from one optical element to the next. We show that at each step, the expression for light complex amplitude has the same form with only four coefficients modified. We also derive a simple expression for the vortex trajectory of small vortex displacements.

  6. Modeling of laser-induced damage and optic usage at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Liao, Zhi M.; Nostrand, Mike; Carr, Wren; Bude, Jeff; Suratwala, Tayyab I.

    2016-07-01

    Modeling of laser-induced optics damage has been introduced to benchmark existing optic usage at the National Ignition Facility (NIF) which includes the number of optics exchanged for damage repair. NIF has pioneered an optics recycle strategy to allow it to run the laser at capacity since fully commissioned in 2009 while keeping the cost of optics usage manageable. We will show how the damage model is being used to evaluate strategies to streamline our optics loop efficiency, as we strive to increase the laser shot rate without increasing operating costs.

  7. Evaluation of the Optic Nerve Head in Glaucoma

    PubMed Central

    Dubey, Suneeta

    2013-01-01

    ABSTRACT Glaucoma is an optic neuropathy leading to changes in the intrapaillary and parapaillary regions of the optic disk. Despite technological advances, clinical identification of optic nerve head characteristics remains the first step in diagnosis. Careful examination of the disk parameters including size, shape, neuroretinal rim shape and pallor; size of the optic cup in relation to the area of the disk; configuration and depth of the optic cup; ratios of cup-to-disk diameter and cup-to-disk area; presence and location of splinter-shaped hemorrhages; occurrence, size, configuration, and location of parapapillary chorioretinal atrophy; and visibility of the retinal nerve fiber layer (RNFL) is important to differentiate between the glaucomatous and nonglaucomatous optic neuropathy. How to cite this article: Gandhi M, Dubey S. Evaluation of the Optic Nerve Head in Glaucoma. J Current Glau Prac 2013;7(3):106-114. PMID:26997792

  8. Evaluation of the Optic Nerve Head in Glaucoma.

    PubMed

    Gandhi, Monica; Dubey, Suneeta

    2013-01-01

    Glaucoma is an optic neuropathy leading to changes in the intrapaillary and parapaillary regions of the optic disk. Despite technological advances, clinical identification of optic nerve head characteristics remains the first step in diagnosis. Careful examination of the disk parameters including size, shape, neuroretinal rim shape and pallor; size of the optic cup in relation to the area of the disk; configuration and depth of the optic cup; ratios of cup-to-disk diameter and cup-to-disk area; presence and location of splinter-shaped hemorrhages; occurrence, size, configuration, and location of parapapillary chorioretinal atrophy; and visibility of the retinal nerve fiber layer (RNFL) is important to differentiate between the glaucomatous and nonglaucomatous optic neuropathy. How to cite this article: Gandhi M, Dubey S. Evaluation of the Optic Nerve Head in Glaucoma. J Current Glau Prac 2013;7(3):106-114.

  9. Re-evaluating the treatment of acute optic neuritis

    PubMed Central

    Bennett, Jeffrey L; Nickerson, Molly; Costello, Fiona; Sergott, Robert C; Calkwood, Jonathan C; Galetta, Steven L; Balcer, Laura J; Markowitz, Clyde E; Vartanian, Timothy; Morrow, Mark; Moster, Mark L; Taylor, Andrew W; Pace, Thaddeus W W; Frohman, Teresa; Frohman, Elliot M

    2015-01-01

    Clinical case reports and prospective trials have demonstrated a reproducible benefit of hypothalamic-pituitary-adrenal (HPA) axis modulation on the rate of recovery from acute inflammatory central nervous system (CNS) demyelination. As a result, corticosteroid preparations and adrenocorticotrophic hormones are the current mainstays of therapy for the treatment of acute optic neuritis (AON) and acute demyelination in multiple sclerosis. Despite facilitating the pace of recovery, HPA axis modulation and corticosteroids have failed to demonstrate long-term benefit on functional recovery. After AON, patients frequently report visual problems, motion perception difficulties and abnormal depth perception despite ‘normal’ (20/20) vision. In light of this disparity, the efficacy of these and other therapies for acute demyelination require re-evaluation using modern, high-precision paraclinical tools capable of monitoring tissue injury. In no arena is this more amenable than AON, where a new array of tools in retinal imaging and electrophysiology has advanced our ability to measure the anatomic and functional consequences of optic nerve injury. As a result, AON provides a unique clinical model for evaluating the treatment response of the derivative elements of acute inflammatory CNS injury: demyelination, axonal injury and neuronal degeneration. In this article, we examine current thinking on the mechanisms of immune injury in AON, discuss novel technologies for the assessment of optic nerve structure and function, and assess current and future treatment modalities. The primary aim is to develop a framework for rigorously evaluating interventions in AON and to assess their ability to preserve tissue architecture, re-establish normal physiology and restore optimal neurological function. PMID:25355373

  10. Pragmatic geometric model evaluation

    NASA Astrophysics Data System (ADS)

    Pamer, Robert

    2015-04-01

    Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to

  11. Optical computing based on neuronal models

    NASA Astrophysics Data System (ADS)

    Farhat, Nabil H.

    1987-10-01

    Ever since the fit between what neural net models can offer (collective, iterative, nonlinear, robust, and fault-tolerant approach to information processing) and the inherent capabilities of optics (parallelism and massive interconnectivity) was first pointed out and the first optical associative memory demonstrated in 1985, work and interest in neuromorphic optical signal processing has been growing steadily. For example, work in optical associative memories is currently being conducted at several academic institutions (e.g., California Institute of Technology, University of Colorado, University of California-San Diego, Stanford University, University of Rochester, and the author's own institution the University of Pennsylvania) and at several industrial and governmental laboratories (e.g., Hughes Research Laboratories - Malibu, the Naval Research Laboratory, and the Jet Propulsion Laboratory). In these efforts, in addition to the vector matrix multiplication with thresholding and feedback scheme utilized in early implementations, an arsenal of sophisticated optical tools such as holographic storage, phase conjugate optics, and wavefront modulation and mixing are being drawn on to realize associative memory functions.

  12. Crowded optic nerve head evaluation with optical coherence tomography in anterior ischemic optic neuropathy.

    PubMed

    Moghimi, S; Afzali, M; Akbari, M; Ebrahimi, K B; Khodabande, A; Yazdani-Abyaneh, A R; Ghafouri, S N H; Coh, P; Okhravi, S; Fard, M A

    2017-04-07

    PurposeTo characterize the optic nerve head (ONH) structure in patients with non-arteritic anterior ischemic optic neuropathy (NAION) compared to healthy control subjects using spectral domain optical coherence tomography (SD-OCT) via the enhanced depth imaging method.MethodsIn this prospective, cross-sectional, comparative study, we assessed 66 eyes of 33 patients with unilateral NAION and 31 eyes of 31 healthy normal subjects in an academic institution. The peripapillary nerve fiber layer thickness, disc area, and quantitative parameters of the ONH structures, including the Bruch's membrane opening (BMO) area, anterior laminar depth, and prelaminar thickness and depth were compared between the three groups.ResultsLinear mixed model analysis after adjusting for age, sex, and axial length showed that the BMO area was similar in eyes with NAION (1.89±0.33 mm(2)), their fellow eyes (1.85±0.35 mm(2)), and control eyes (1.88±0.37 mm(2); all P>0.99). Anterior laminar depth was also similar in the three groups. The mean prelaminar tissue thickness of the NAION eyes was 445±176 μm, which was thinner than the prelaminar tissue of their unaffected fellow eyes (mean, 539±227 μm, P=0.004), but both were thicker than the prelaminar tissue of the normal subjects (mean 243±145 μm, P=0.001 and P<0.001, respectively).ConclusionsThe thick prelaminar thickness is associated with unilateral NAION in the affected and unaffected eyes.Eye advance online publication, 7 April 2017; doi:10.1038/eye.2017.56.

  13. Spacecraft Optical and Thermal Model

    DTIC Science & Technology

    1975-03-01

    105,295 105,295 101,222 101,222 101,222 ♦ a defined as percent of incident solar energy absorbed by surface e defined as total hemispherical...full spacecraft. Actual solar cells and reflecting mirrors were also installed on the model in order to accurately reproduce the’r unique spectral... eclipse periods, temperature excursions are large and transient data is significant. UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAOEfWh«. D.t. Bnl

  14. Evaluation of optical properties for real photonic crystal fiber based on total variation in wavelet domain

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Wang, Xin; Lou, Shuqin; Lian, Zhenggang; Zhao, Tongtong

    2016-09-01

    An evaluation method based on the total variation model (TV) in wavelet domain is proposed for modeling optical properties of real photonic crystal fibers (PCFs). The TV model in wavelet domain is set up to suppress the noise of the original image effectively and rebuild the cross section images of real PCFs with high accuracy. The optical properties of three PCFs are evaluated, including two kinds of PCFs that supplied from the Crystal Fiber A/S and a homemade side-leakage PCF, by using the combination of the proposed model and finite element method. Numerical results demonstrate that the proposed method can obtain high noise suppression ratio and effectively reduce the noise of cross section images of PCFs, which leads to an accurate evaluation of optical properties of real PCFs. To the best of our knowledge, it is the first time to denoise the cross section images of PCFs with the TV model in the wavelet domain.

  15. Optical Computing Based on Neuronal Models

    DTIC Science & Technology

    1988-05-01

    walking, and cognition are far too complex for existing sequential digital computers. Therefore new architectures, hardware, and algorithms modeled...collective behavior, and iterative processing into optical processing and artificial neurodynamical systems. Another intriguing promise of neural nets is...with architectures, implementations, and programming; and material research s -7- called for. Our future research in neurodynamics will continue to

  16. Evaluation of Optical Disk Jukebox Software.

    ERIC Educational Resources Information Center

    Ranade, Sanjay; Yee, Fonald

    1989-01-01

    Discusses software that is used to drive and access optical disk jukeboxes, which are used for data storage. Categories of the software are described, user categories are explained, the design of implementation approaches is discussed, and representative software products are reviewed. (eight references) (LRW)

  17. Optical Performance Models for FDDI Links

    NASA Astrophysics Data System (ADS)

    Kimball, Robert M.

    1990-01-01

    A loss budget model to predict optical performance of Fiber Distributed Data Interface (FDDI) type networks in the premises distribution environment has been developed. This model tailors existing statistical loss budget models to the FDDI standard. It is expected that as FDDI becomes popular, fiber based distribution systems will become common. When designing a fiber distribution system it is important to understand the constraints placed on link performance by the cable plant. To determine these constraints, the model is examined numerically using a large range of initial conditions. The total link length is used as the dependent variable. This set of initial conditions corresponds to an ensemble of possible link configurations. These link configurations are studied in the context of the premises distribution environment. The model is extended to include the use of optical bypass switches. Laboratory measurement data is presented to verify the accuracy of the bypass switch model. The extended model, including the bypass switch, is examined numerically for a similar set of initial conditions. These constraints are applied to the use of bypass switches in wiring closets, between floors, and at the work location. Distance limitations are determined for FDDI links utilizing optical bypass switches.

  18. Stress Optical Coefficient, Test Methodology, and Glass Standard Evaluation

    DTIC Science & Technology

    2016-05-01

    modification of an ASTM testing procedure for determining stress optical coefficient is described. Stress optical coefficient data for several types of glasses...Tables iv Acknowledgments v 1. Introduction 1 2. Photoelasticity 2 3. ASTM Testing 3 4. SOC Experimental Evaluation 4 5. New Method for Evaluation...beams adapted from the ASTM standard. The glass beams used are to have a width b) of 20–30 mm, thickness d) of 6–10 mm, and a length within the

  19. THE ATMOSPHERIC MODEL EVALUATION TOOL

    EPA Science Inventory

    This poster describes a model evaluation tool that is currently being developed and applied for meteorological and air quality model evaluation. The poster outlines the framework and provides examples of statistical evaluations that can be performed with the model evaluation tool...

  20. THE ATMOSPHERIC MODEL EVALUATION TOOL

    EPA Science Inventory

    This poster describes a model evaluation tool that is currently being developed and applied for meteorological and air quality model evaluation. The poster outlines the framework and provides examples of statistical evaluations that can be performed with the model evaluation tool...

  1. Optical performance simulation of free-form optics for an eye implant based on a measurement data enhanced model.

    PubMed

    Sieber, Ingo; Li, Likai; Gengenbach, Ulrich; Beckert, Erik; Steinkopf, Ralf; Yi, Allen Y

    2016-08-20

    This paper describes the application of a modeling approach for precise optical performance prediction of free-form optics-based subsystems on a demonstration model of an eye implant. The simulation model is enhanced by surface data measured on the free-form lens parts. The manufacturing of the free-form lens parts is realized by two different manufacturing processes: ultraprecision diamond machining and microinjection molding. Evaluation of both processes is conducted by a simulation of the optical performance on the basis of their surface measurement comparisons with the nominal geometry. The simulation results indicate that improvements from the process optimization of microinjection molding were obtained for the best manufacturing accuracy.

  2. Air Mass Considerations in Fog Optical Modeling.

    DTIC Science & Technology

    1981-02-01

    military forces are increasingly relying on new sophis - ticated weapons systems which employ electro-optical (EO) sensors or systems in their principles of...infrared extinction coefficients. Several authors (Stewart,10 Turner et all’) have shown that models which depend upon visibility alone can lead to...Extinction by Fog, TR-77-9, Technology Laboratory, Physical Science Directorate, Redstone Arsenal, AL 11R. E. Turner et al, 1978, Model Development for E-O

  3. Numerical model for thermal parameters in optical materials

    NASA Astrophysics Data System (ADS)

    Sato, Yoichi; Taira, Takunori

    2016-04-01

    Thermal parameters of optical materials, such as thermal conductivity, thermal expansion, temperature coefficient of refractive index play a decisive role for the thermal design inside laser cavities. Therefore, numerical value of them with temperature dependence is quite important in order to develop the high intense laser oscillator in which optical materials generate excessive heat across mode volumes both of lasing output and optical pumping. We already proposed a novel model of thermal conductivity in various optical materials. Thermal conductivity is a product of isovolumic specific heat and thermal diffusivity, and independent modeling of these two figures should be required from the viewpoint of a clarification of physical meaning. Our numerical model for thermal conductivity requires one material parameter for specific heat and two parameters for thermal diffusivity in the calculation of each optical material. In this work we report thermal conductivities of various optical materials as Y3Al5O12 (YAG), YVO4 (YVO), GdVO4 (GVO), stoichiometric and congruent LiTaO3, synthetic quartz, YAG ceramics and Y2O3 ceramics. The dependence on Nd3+-doping in laser gain media in YAG, YVO and GVO is also studied. This dependence can be described by only additional three parameters. Temperature dependence of thermal expansion and temperature coefficient of refractive index for YAG, YVO, and GVO: these are also included in this work for convenience. We think our numerical model is quite useful for not only thermal analysis in laser cavities or optical waveguides but also the evaluation of physical properties in various transparent materials.

  4. Optical models for silicon solar cells

    SciTech Connect

    Marshall, T.; Sopori, B.

    1995-08-01

    Light trapping is an important design feature for high-efficiency silicon solar cells. Because light trapping can considerably enhance optical absorption, a thinner substrate can be used which, in turn, can lower the bulk carrier recombination and concommitantly increase open-circuit voltage, and fill factor of the cell. The basic concepts of light trapping are similar to that of excitation of an optical waveguide, where a prism or a grating structure increases the phase velocity of the incoming optical wave such that waves propagated within the waveguide are totally reflected at the interfaces. Unfortunately, these concepts break down because the entire solar cell is covered with such a structure, making it necessary to develop new analytical approaches to deal with incomplete light trapping in solar cells. This paper describes two models that analyze light trapping in thick and thin solar cells.

  5. Instruction manual, Optical Effects Module, Model OEM

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Optical Effects Module Model OEM-1, a laboratory prototype instrument designed for the automated measurement of radiation transmission and scattering through optical samples, is described. The system comprises two main components: the Optical Effects Module Enclosure (OEME) and the Optical Effects Module Electronic Controller and Processor (OEMCP). The OEM is designed for operation in the near UV at approximately 2540A, corresponding to the most intense spectral line activated by the mercury discharge lamp used for illumination. The radiation from this source is detected in transmission and reflection through a number of selectable samples. The basic objective of this operation is to monitor in real time the accretion of possible contamination on the surface of these samples. The optical samples are exposed outside of the OEME proper to define exposure conditions and to separate exposure and measurement environments. Changes in the transmissivity of the sample are attributable to surface contamination or to bulk effects due to radiation. Surface contamination will increase radiation scattering due to Rayleigh-Gans effect or to other phenomena, depending on the characteristics size of the particulate contaminants. Thus, also scattering from the samples becomes a part of the measurement program.

  6. An optical model for composite nuclear scattering

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Townsend, L. W.

    1981-01-01

    The optical model of composite particle scattering is considered and compared to the accuracies of other models. A nonrelativistic Schroedinger equation with two-body potentials is used for the scattering of a single particle by an energy-dependent local potential. The potential for the elastic channel is composed of matrix elements of a single scattering operator taken between the ground states of the projectile and the target; the coherent amplitude is considered as dominating the scattering in the forward direction. A multiple scattering series is analytically explored and formally summed by the solution of an equivalent Schroedinger equation. Cross sections of nuclear scattering are then determined for He-4 and C-12 nuclei at 3.6 GeV/nucleus and O-16 projectiles at 2.1 GeV/nucleus, and the optical model approximations are found to be consistently lower and more accurate than approximations made by use of Glauber's theory.

  7. Aero-optical predictions using wall-modeled LES

    NASA Astrophysics Data System (ADS)

    Kamel, Mohammed; Wang, Kan; Wang, Meng

    2014-11-01

    The accuracy of LES with wall-modeling for predicting aero-optical distortions is evaluated in turbulent boundary layers and flow over a cylindrical turret by comparing results with those from previous wall-resolved LES and experiments. For turbulent boundary-layer flows at Mach 0.5 and momentum-thickness Reynolds numbers up to 31000, the velocity statistics in the majority of the logarithmic layer and the wake region are well predicted with an equilibrium stress-balance model, but the level of density fluctuations and hence optical wavefront distortions are over-predicted. The causes for the over-prediction and model improvement are investigated. When wall-modeled LES is applied to compute the turbulent flow over a cylindrical turret with a flat window at Mach 0.5 and the experimental Reynolds number of 5 . 6 ×105 based on the cylinder radius, both the flow statistics and optical distortions induced by the separated shear layer agree well with experimental measurements and previous wall-resolved LES results at a lower Reynolds number. The incorporation of the pressure gradient effect in wall-model equations is shown to improve the prediction of the fluctuating density field and optical distortions. Supported by HEL-JTO through AFOSR Grant FA9550-13-1-0001.

  8. BioVapor Model Evaluation

    EPA Science Inventory

    General background on modeling and specifics of modeling vapor intrusion are given. Three classical model applications are described and related to the problem of petroleum vapor intrusion. These indicate the need for model calibration and uncertainty analysis. Evaluation of Bi...

  9. BioVapor Model Evaluation

    EPA Science Inventory

    General background on modeling and specifics of modeling vapor intrusion are given. Three classical model applications are described and related to the problem of petroleum vapor intrusion. These indicate the need for model calibration and uncertainty analysis. Evaluation of Bi...

  10. Environmental simulation evaluation of SSiC brazed optical mirrors

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Ma, Zhen; Chen, Jian; Chen, Zhongming; Liu, Xuejian; Huang, Zhengren

    2014-09-01

    Sintered silicon carbide (SSiC) is becoming one of the most important materials for the optical mirrors due to its excellent specific stiffness (E/ρ) and demission stability (λ/α). However, it is difficult to fabricate the monolithic structure SSiC optical mirror with demission of larger than Φ1.5m because of process limitation. Joining of SSiC segments (brazing) provide a good solution to prepare large size mirror optics. However, compared with the uniform properties of the monolithic structure SSiC optical mirror, the brazed mirror is composed of two materials (SSiC segments and brazing material), so the performance of optical grinding and reliability of brazed optical mirrors become the focus. In this paper, the Φ300mm and Φ600mm brazed optical mirrors was used to evaluate the reliability of different conditions. Three kinds of environmental simulation tests, including thermal stability, thermal circle and random vibration were carried out. The evaluation results show that the temperature and vibration has no obvious effects on the surface figure (RMS) of the brazed optical mirrors.

  11. Performance evaluation of fiber optic components in nuclear plant environments

    SciTech Connect

    Hastings, M.C.; Miller, D.W.; James, R.W.

    1996-03-01

    Over the past several years, the Electric Power Research Institute (EPRI) has funded several projects to evaluate the performance of commercially available fiber optic cables, connective devices, light sources, and light detectors under environmental conditions representative of normal and abnormal nuclear power plant operating conditions. Future projects are planned to evaluate commercially available fiber optic sensors and to install and evaluate performance of instrument loops comprised of fiber optic components in operating nuclear power plant applications. The objective of this research is to assess the viability of fiber optic components for replacement and upgrade of nuclear power plant instrument systems. Fiber optic instrument channels offer many potential advantages: commercial availability of parts and technical support, small physical size and weight, immunity to electromagnetic interference, relatively low power requirements, and high bandwidth capabilities. As existing nuclear power plants continue to replace and upgrade I&C systems, fiber optics will offer a low-cost alternative technology which also provides additional information processing capabilities. Results to date indicate that fiber optics are a viable technology for many nuclear applications, both inside and outside of containments. This work is funded and manage& under the Operations & Maintenance Cost Control research target of EPRI`s Nuclear Power Group. The work is being performed by faculty and students in the Mechanical and Nuclear Engineering Departments and the staff of the Nuclear Reactor Laboratory of the Ohio State University.

  12. RxGen General Optical Model Prescription Generator

    NASA Technical Reports Server (NTRS)

    Sigrist, Norbert

    2012-01-01

    RxGen is a prescription generator for JPL's in-house optical modeling software package called MACOS (Modeling and Analysis for Controlled Optical Systems), which is an expert optical analysis software package focusing on modeling optics on dynamic structures, deformable optics, and controlled optics. The objectives of RxGen are to simplify and automate MACOS prescription generations, reducing errors associated with creating such optical prescriptions, and improving user efficiency without requiring MACOS proficiency. RxGen uses MATLAB (a high-level language and interactive environment developed by MathWorks) as the development and deployment platform, but RxGen can easily be ported to another optical modeling/analysis platform. Running RxGen within the modeling environment has the huge benefit that variations in optical models can be made an integral part of the modeling state. For instance, optical prescription parameters determined as external functional dependencies, optical variations by controlling the in-/exclusion of optical components like sub-systems, and/or controlling the state of all components. Combining the mentioned capabilities and flexibilities with RxGen's optical abstraction layer completely eliminates the hindering aspects for requiring proficiency in writing/editing MACOS prescriptions, allowing users to focus on the modeling aspects of optical systems, i.e., increasing productivity and efficiency. RxGen provides significant enhancements to MACOS and delivers a framework for fast prototyping as well as for developing very complex controlled optical systems.

  13. Evaluation Theory, Models, and Applications

    ERIC Educational Resources Information Center

    Stufflebeam, Daniel L.; Shinkfield, Anthony J.

    2007-01-01

    "Evaluation Theory, Models, and Applications" is designed for evaluators and students who need to develop a commanding knowledge of the evaluation field: its history, theory and standards, models and approaches, procedures, and inclusion of personnel as well as program evaluation. This important book shows how to choose from a growing…

  14. Re-evaluation of literature values of silver optical constants.

    PubMed

    Jiang, Yajie; Pillai, Supriya; Green, Martin A

    2015-02-09

    Silver has unique optical properties for topical applications such as plasmonics. The two most widely used silver optical data sets are the Palik handbook compilation and that determined by Johnson and Christy. Unfortunately these are inconsistent making realistic modelling of the likely performance of silver in optical applications difficult, with modelling producing either highly optimistic or very pessimistic results, depending on application. By critical examination and duplication of the original experiments leading to the widely accepted literature values, we show that both data sets have drawbacks and conclude that there is a need for an improved data set for realistic simulation of experimentally obtainable properties.

  15. A Thermo-Optic Propagation Modeling Capability.

    SciTech Connect

    Schrader, Karl; Akau, Ron

    2014-10-01

    A new theoretical basis is derived for tracing optical rays within a finite-element (FE) volume. The ray-trajectory equations are cast into the local element coordinate frame and the full finite-element interpolation is used to determine instantaneous index gradient for the ray-path integral equation. The FE methodology (FEM) is also used to interpolate local surface deformations and the surface normal vector for computing the refraction angle when launching rays into the volume, and again when rays exit the medium. The method is implemented in the Matlab(TM) environment and compared to closed- form gradient index models. A software architecture is also developed for implementing the algorithms in the Zemax(TM) commercial ray-trace application. A controlled thermal environment was constructed in the laboratory, and measured data was collected to validate the structural, thermal, and optical modeling methods.

  16. Optical Imaging and Radiometric Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Ha, Kong Q.; Fitzmaurice, Michael W.; Moiser, Gary E.; Howard, Joseph M.; Le, Chi M.

    2010-01-01

    OPTOOL software is a general-purpose optical systems analysis tool that was developed to offer a solution to problems associated with computational programs written for the James Webb Space Telescope optical system. It integrates existing routines into coherent processes, and provides a structure with reusable capabilities that allow additional processes to be quickly developed and integrated. It has an extensive graphical user interface, which makes the tool more intuitive and friendly. OPTOOL is implemented using MATLAB with a Fourier optics-based approach for point spread function (PSF) calculations. It features parametric and Monte Carlo simulation capabilities, and uses a direct integration calculation to permit high spatial sampling of the PSF. Exit pupil optical path difference (OPD) maps can be generated using combinations of Zernike polynomials or shaped power spectral densities. The graphical user interface allows rapid creation of arbitrary pupil geometries, and entry of all other modeling parameters to support basic imaging and radiometric analyses. OPTOOL provides the capability to generate wavefront-error (WFE) maps for arbitrary grid sizes. These maps are 2D arrays containing digital sampled versions of functions ranging from Zernike polynomials to combination of sinusoidal wave functions in 2D, to functions generated from a spatial frequency power spectral distribution (PSD). It also can generate optical transfer functions (OTFs), which are incorporated into the PSF calculation. The user can specify radiometrics for the target and sky background, and key performance parameters for the instrument s focal plane array (FPA). This radiometric and detector model setup is fairly extensive, and includes parameters such as zodiacal background, thermal emission noise, read noise, and dark current. The setup also includes target spectral energy distribution as a function of wavelength for polychromatic sources, detector pixel size, and the FPA s charge

  17. Polarization of protons in the optical model

    NASA Astrophysics Data System (ADS)

    Berezhnoy, Yu. A.; Mikhailyuk, V. P.

    2017-02-01

    A development of the optical model for the description of hadron-nucleus scattering is proposed. When describing the behaviour of observables for elastic proton scattering from 40Ca nuclei at the energy of 200 MeV the second Born approximation is used. Analytical expressions for the scattering amplitudes as well as for the differential cross section and polarization observables were obtained. The observables calculated in this approach are in reasonable agreement with the available experimental data.

  18. Integrated Modeling Activities for the James Webb Space Telescope: Optical Jitter Analysis

    NASA Technical Reports Server (NTRS)

    Hyde, T. Tupper; Ha, Kong Q.; Johnston, John D.; Howard, Joseph M.; Mosier, Gary E.

    2004-01-01

    This is a continuation of a series of papers on the integrated modeling activities for the James Webb Space Telescope(JWST). Starting with the linear optical model discussed in part one, and using the optical sensitivities developed in part two, we now assess the optical image motion and wavefront errors from the structural dynamics. This is often referred to as "jitter: analysis. The optical model is combined with the structural model and the control models to create a linear structural/optical/control model. The largest jitter is due to spacecraft reaction wheel assembly disturbances which are harmonic in nature and will excite spacecraft and telescope structural. The structural/optic response causes image quality degradation due to image motion (centroid error) as well as dynamic wavefront error. Jitter analysis results are used to predict imaging performance, improve the structural design, and evaluate the operational impact of the disturbance sources.

  19. Field Evaluation of Anti-Biofouling Compounds on Optical Instrumentation

    NASA Technical Reports Server (NTRS)

    McLean, Scott; Schofield, Bryan; Zibordi, Giuseppe; Lewis, Marlon; Hooker, Stanford; Weidemann, Alan

    1997-01-01

    Biofouling has been a serious question in the stability of optical measurements in the ocean, particularly in moored and drifting buoy applications. Many investigators coat optical surfaces with various compounds to reduce the amount of fouling; to our knowledge, however, there are no objective, in-situ comparative testing of these compounds to evaluate their effectiveness with respect to optical stability relative to untreated controls. We have tested a wide range of compounds at in-situ locations in Halifax Harbour and in the Adriatic Sea on passive optical sensors. Compounds tested include a variety of TBT formulations, antifungal agents, and low-friction silicone-based compounds; time-scales of up to four months were evaluated. The results of these experiments are discussed.

  20. Field Evaluation of Anti-Biofouling Compounds on Optical Instrumentation

    NASA Technical Reports Server (NTRS)

    McLean, Scott; Schofield, Bryan; Zibordi, Giuseppe; Lewis, Marlon; Hooker, Stanford; Weidemann, Alan

    1997-01-01

    Biofouling has been a serious question in the stability of optical measurements in the ocean, particularly in moored and drifting buoy applications. Many investigators coat optical surfaces with various compounds to reduce the amount of fouling; to our knowledge, however, there are no objective, in-situ comparative testing of these compounds to evaluate their effectiveness with respect to optical stability relative to untreated controls. We have tested a wide range of compounds at in-situ locations in Halifax Harbour and in the Adriatic Sea on passive optical sensors. Compounds tested include a variety of TBT formulations, antifungal agents, and low-friction silicone-based compounds; time-scales of up to four months were evaluated. The results of these experiments are discussed.

  1. Star testing: a novel evaluation of intraocular lens optical quality

    PubMed Central

    Mitchell, L; Molteno, A C B; Bevin, T H; Sanderson, G

    2006-01-01

    Background Despite the importance of optical quality of an intraocular lens (IOL) on visual outcomes following cataract surgery, objective data on their optical quality are not readily available, and manufacturing standards are industry regulated. The star test is a classic test of optical quality based on examination of the Airy disc and expanded diffraction rings of a point source of light, used mainly for telescope and microscope objectives. Methods A physical model eye cell allowed star testing of IOLs under conditions similar to the optical environment in which they operate. 18 IOLs were tested and results compared to actual images produced by these lenses in the model eye cell. Quantitative measures of star testing performance were developed. Results The optical performance of the IOLs varied, some performing very poorly. Most lenses (13/17) performed better in reverse orientation, while aberrations induced by the haptics of foldable IOLs were also detected. There was excellent correlation between actual images formed and star testing parameters. Conclusion Star testing IOLs was a novel biomedical application of a centuries old, inexpensive method. A concerning variation of optical quality was found, suggesting IOL optical performance data should be more readily available. Independent, authority mandated IOL optical quality standards should be developed, and results readily available to ophthalmologists. PMID:16622088

  2. Model of Polarization Selectivity of the Intermediate Filament Optical Channels.

    PubMed

    Khmelinskii, Igor; Zueva, Lidia; Inyushin, Michael; Makarov, Vladimir

    2015-08-01

    Recently we have analyzed light transmission and spectral selectivity by optical channels in Müller cells and other transparent cells, proposing a model of their structure, formed by specialized intermediate filaments [1,2]. Our model represents each optical channel by an axially symmetric tube with conductive walls. Presently, we analyze the planar polarization selectivity in long nanostructures, using the previously developed approach extended to structures of the elliptic cross-section. We find that the output light polarization angle depends on the a/b ratio, with a and b the semiaxes of the ellipse. Experimental tests used a Cr nano-strip device to evaluate the transmitted light polarization. The model adapted to the experimental geometry provided an accurate fit of the experimental results.

  3. Modeling discrete modulators for optical correlation

    NASA Astrophysics Data System (ADS)

    Knopp, Jerome

    1995-08-01

    The practical calculation of optical correlation filters in correlators that use spatial light modulators with discrete elements is based on the assumption that the image on the input modulator can be modeled as a modulated 2D comb function or 'bed of nails'. A 2D discrete Fourier transform (DFT) is used to calculate a filter that is also modeled as a modulated bed of nails. The sample values in the comb array are assigned to pixel values in the filter. This approach actually gives fairly good qualitative results in modeling correlation behavior. However, it cannot account in detail for the finite size of pixel elements. The DFT approach has problems when modeling modulators whose pixels' center positions cannot be aligned with corresponding sample values. A modified DFT algorithm and an interpolation scheme for modeling these situations is given. As a practical application of the method, we look at modeling an optical correlator whose pixels are not centered at positions that correspond the DFT sample values.

  4. Evaluation of Coexisting Optic Nerve Head Drusen and Glaucoma with Optical Coherence Tomography

    PubMed Central

    Roh, Shiyoung; Noecker, Robert J.; Schuman, Joel S.

    2010-01-01

    Objective Optic nerve head drusen often make evaluation of the nerve head difficult to interpret. In addition, visual field defects are known to occur in patients with optic disk drusen, resembling glaucomatous damage. The authors report two cases of coincident optic nerve head drusen and glaucoma, in which the use of optical coherence tomography (OCT) in evaluating the nerve fiber layer was beneficial. Participants Two patients with both optic nerve head drusen and glaucoma, one with primary open angle glaucoma, the other with pseudoexfoliation glaucoma were evaluated. Both patients had asymmetric optic disk drusen, with clinically visible drusen only in one eye. intervention Ophthalmologic examination, color and red-free photography, automated Humphrey visual field testing and OCT were performed. Results Nerve fiber layer loss as measured by OCT was found to be greater than expected by the appearance of the optic nerve head and red-free photography, with visual fields consistent with findings in case 1. In case 2, visual fields were full, despite nerve fiber layer thinning seen by OCT and red-free photography. Conclusions There can be significant nerve fiber layer thinning in patients with both glaucoma and optic disk drusen, despite the appearance of the optic nerve head in these patients. The cup margin may be obscured by the drusen, giving rise to a falsely full-appearing disk. In such cases, OCT may provide a useful means to quantitatively measure the nerve fiber layer thickness and to aid in the management of these patients by detecting nerve fiber layer thinning earlier than would otherwise be possible. PMID:9224467

  5. Revisiting the CALIOP Mineral Dust Optical Model

    NASA Astrophysics Data System (ADS)

    Winker, D. M.; Omar, A. H.; Liu, Z.

    2013-12-01

    The standard aerosol extinction retrieval applied to CALIOP observations relies heavily on a priori values of the lidar ratio (the ratio of extinction to 180-degree backscatter) for each of several aerosol types. The original CALIOP aerosol models were developed over 10 years ago, based on a combination of Aeronet retrievals, measurements from ground-based lidars, and theoretical scattering calculations. Both prior to and since the launch of CALIPSO, a number of studies using a variety of approaches have shown lidar ratios of around 40 sr for mineral dust. Ground-based Raman lidar measurements in Europe and Morroco, on the other hand, have consistently shown higher values of 50 to 60 sr. Reasons for this inconsistency have not been clearly identified, but may be due to geographical variability, mixtures of dust with fine-mode aerosol, multiple scattering effects on the CALIOP retrieval, other retrieval artifacts, or a combination of these. The simplest explanation for the difference between ground-based Raman and space-based retrievals of dust lidar ratio would be multiple scattering effects on the CALIOP signals. We have taken advantage of improvements in scattering codes and of recent field campaigns to re-evaluate the CALIOP optical model for mineral dust and to revisit multiple scattering effects. The original scattering phase functions used to predict multiple scattering were based on Dipole-Dipole Approximation (DDA) calculations of size-shape mixtures of irregular dust particles. At the time, the DDA calculations were limited to particles of less than 2 um diameter. Using current T-matrix codes, we are now able to compute scattering from particles as large as 10 um diameter. Applying T-matrix scattering calculations to spheroidal particles with size distributions consistent with those measured during the SAMUM campaign in Morroco, we find multiple scattering effects are similar to those predicted from the original DDA calculations. Thus multiple scattering

  6. Optoelectronic device simulation: Optical modeling for semiconductor optical amplifiers and solid state lighting

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Xue (Michael)

    2006-07-01

    transparency carrier densities; the differential gain is assumed constant accordingly. This assumption is only valid for wavelengths close to the gain peak wavelength. As a result, high accuracy for wideband wavelength conversion is not guaranteed. We proposed a steady state numerical model of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers. In this model, a new model of the gain coefficient developed by Connelly was applied, which also includes the internal loss variation with the electron carrier density. Each physical variable, such as the carrier density, gain coefficient, differential gain, and internal loss, spatially varies across the SOA cavity and is numerically calculated throughout the device. This model can predicts wavelength-dependent characteristics of a wavelength converter of the SOA in both large and small signal regimes. Some key performance factors of SOA wavelength converters, such as selection of pump and probe wavelengths and power, length of SOA cavities, conversion efficiency and bandwidth, system performance difference between up and down conversions can be modeled and optimized using this numerical model. Most LED modeling techniques are based on optical ray tracing to predict the light extraction efficiency, and the light extraction efficiency is a critical parameter to evaluate LEDs. Here, we proposed a hybrid method to simulate the lighting efficiency of LED chips, where both guided wave theory and geometric optical ray tracing are applied. Guided wave optics is used to identify guided modes and leakage modes inside the LED active layer, and its device structure can be optimized to increase leakage modes so that the lighting extraction efficiency is improved. On the other hand, Monte Carlo optical ray tracing is used to quantitatively determine optical extraction efficiency. Moreover, this method can model the light distribution and far-field illumination pattern. Both single wavelength LEDs and dual

  7. Modeling of Fabry-Perot collection optics

    SciTech Connect

    Frank, A.M.

    1984-07-16

    The purpose of these calculations was to determine whether the collection optics of the Fabry-Perot velocimeter could be improved by conversion to a relay system. In this study the optical design code ACCOS5 was used to model both the current system and a relay. The ACCOS5 printouts are given. Spot diagrams of 1000 rays each were computed from four locations for each of the two configurations. These include source points on axis and 150 ..mu..m off axis for the system both in focus and with the object advanced 40 mm towards the objective. The back focus (BF) of both systems is optimized by the program for best paraxial focus. The distance was then fixed for the 40 mm defocused case.

  8. Applied grinding wheel performance evaluation for optical fabrication

    SciTech Connect

    Piscotty, M.A.; Taylor, J.S.; Blaedel, K.L.

    1996-06-11

    We are collaborating with the Center for Optics Manufacturing (Rochester NY) to develop fine diamond grinding wheels for spherical grinding of glass optics. A standardized method for evaluating wheel performance includes in-process acoustic emission (AE). This paper includes recent AE measurements taken during the evaluation of several fine diamond grinding wheels and discusses how this new information might relate to the physical performance of the wheels. An interesting observation is also reported on the surface topography of worn bronze wheels using an interferometric profiler.

  9. Evanescent Field Based Photoacoustics: Optical Property Evaluation at Surfaces

    PubMed Central

    Goldschmidt, Benjamin S.; Rudy, Anna M.; Nowak, Charissa A.; Tsay, Yowting; Whiteside, Paul J. D.; Hunt, Heather K.

    2016-01-01

    Here, we present a protocol to estimate material and surface optical properties using the photoacoustic effect combined with total internal reflection. Optical property evaluation of thin films and the surfaces of bulk materials is an important step in understanding new optical material systems and their applications. The method presented can estimate thickness, refractive index, and use absorptive properties of materials for detection. This metrology system uses evanescent field-based photoacoustics (EFPA), a field of research based upon the interaction of an evanescent field with the photoacoustic effect. This interaction and its resulting family of techniques allow the technique to probe optical properties within a few hundred nanometers of the sample surface. This optical near field allows for the highly accurate estimation of material properties on the same scale as the field itself such as refractive index and film thickness. With the use of EFPA and its sub techniques such as total internal reflection photoacoustic spectroscopy (TIRPAS) and optical tunneling photoacoustic spectroscopy (OTPAS), it is possible to evaluate a material at the nanoscale in a consolidated instrument without the need for many instruments and experiments that may be cost prohibitive. PMID:27500652

  10. In-flight evaluation of an optical head motion tracker

    NASA Astrophysics Data System (ADS)

    Tawada, Kazuho

    2009-05-01

    We have presented a new approach for Optical HMT (Head Motion Tracker) last year (Proc. SPIE 6955, 69550A1-11, 2008) [1]. In existing Magnetic HMT, it is inevitable to conduct pre-mapping in order to obtain sufficient accuracy because of magnetic field's distortion caused by metallic material around HMT, such as cockpit and helmet. Optical HMT is commonly known as mapping-free tracker; however, it has some disadvantages on accuracy, stability against sunlight conditions, in terms of comparison with Magnetic HMT. We have succeeded to develop new Optical HMT, which can overcome particular disadvantages by integration with two area cameras, LED markers, image processing techniques and inertial sensors with simple algorithm in laboratory level environment. We have also reported some experimental results conducted in laboratory, which proves good accuracy even in the sunlight condition. This time, we show actual performance of the Optical HMT in flight condition, including evaluation of stability against sunlight. Shimadzu Corp. and JAXA (Japan Aerospace Exploration Agency) is conducting joint research named SAVERH (Situation Awareness and Visual Enhancer for Rescue Helicopter) [2] that aims at inventing method of presenting suitable information to the pilot to support search and rescue missions by helicopters. The Optical HMT has been evaluated through a series of flight evaluation in SAVERH and demonstrated the operation concept.

  11. Utility of Digital Stereo Images for Optic Disc Evaluation

    PubMed Central

    Ying, Gui-shuang; Pearson, Denise J.; Bansal, Mayank; Puri, Manika; Miller, Eydie; Alexander, Judith; Piltz-Seymour, Jody; Nyberg, William; Maguire, Maureen G.; Eledath, Jayan; Sawhney, Harpreet

    2010-01-01

    Purpose. To assess the suitability of digital stereo images for optic disc evaluations in glaucoma. Methods. Stereo color optic disc images in both digital and 35-mm slide film formats were acquired contemporaneously from 29 subjects with various cup-to-disc ratios (range, 0.26–0.76; median, 0.475). Using a grading scale designed to assess image quality, the ease of visualizing optic disc features important for glaucoma diagnosis, and the comparative diameters of the optic disc cup, experienced observers separately compared the primary digital stereo images to each subject's 35-mm slides, to scanned images of the same 35-mm slides, and to grayscale conversions of the digital images. Statistical analysis accounted for multiple gradings and comparisons and also assessed image formats under monoscopic viewing. Results. Overall, the quality of primary digital color images was judged superior to that of 35-mm slides (P < 0.001), including improved stereo (P < 0.001), but the primary digital color images were mostly equivalent to the scanned digitized images of the same slides. Color seemingly added little to grayscale optic disc images, except that peripapillary atrophy was best seen in color (P < 0.0001); both the nerve fiber layer (P < 0.0001) and the paths of blood vessels on the optic disc (P < 0.0001) were best seen in grayscale. The preference for digital over film images was maintained under monoscopic viewing conditions. Conclusions. Digital stereo optic disc images are useful for evaluating the optic disc in glaucoma and allow the application of advanced image processing applications. Grayscale images, by providing luminance distinct from color, may be informative for assessing certain features. PMID:20505199

  12. The simulation of adaptive optical image even and pulse noise and research of image quality evaluation

    NASA Astrophysics Data System (ADS)

    Wen, Changli; Xu, Yuannan; Xu, Rong; Liu, Changhai; Men, Tao; Niu, Wei

    2013-09-01

    As optical image becomes more and more important in adaptive optics area, and adaptive optical telescopes play a more and more important role in the detection system on the ground, and the images we get are so many that we need find a suitable method to choose good quality images automatically in order to save human power, people pay more and more attention in image's evaluation methods and their characteristics. According to different image degradation model, the applicability of different image's quality evaluation method will be different. Researchers have paid most attention in how to improve or build new method to evaluate degraded images. Now we should change our way to take some research in the models of degradation of images, the reasons of image degradation, and the relations among different degraded images and different image quality evaluation methods. In this paper, we build models of even noise and pulse noise based on their definition and get degraded images using these models, and we take research in six kinds of usual image quality evaluation methods such as square error method, sum of multi-power of grey scale method, entropy method, Fisher function method, Sobel method, and sum of grads method, and we make computer software for these methods to use easily to evaluate all kinds of images input. Then we evaluate the images' qualities with different evaluation methods and analyze the results of six kinds of methods, and finally we get many important results. Such as the characteristics of every method for evaluating qualities of degraded images of even noise, the characteristics of every method for evaluating qualities of degraded images of pulse noise, and the best method to evaluate images which affected by tow kinds of noise both and the characteristics of this method. These results are important to image's choosing automatically, and this will help we to manage the images we get through adaptive optical telescopes base on the ground.

  13. Bond models in linear and nonlinear optics

    NASA Astrophysics Data System (ADS)

    Aspnes, D. E.

    2015-08-01

    Bond models, also known as polarizable-point or mechanical models, have a long history in optics, starting with the Clausius-Mossotti relation but more accurately originating with Ewald's largely forgotten work in 1912. These models describe macroscopic phenomena such as dielectric functions and nonlinear-optical (NLO) susceptibilities in terms of the physics that takes place in real space, in real time, on the atomic scale. Their strengths lie in the insights that they provide and the questions that they raise, aspects that are often obscured by quantum-mechanical treatments. Statics versions were used extensively in the late 1960's and early 1970's to correlate NLO susceptibilities among bulk materials. Interest in NLO applications revived with the 2002 work of Powell et al., who showed that a fully anisotropic version reduced by more than a factor of 2 the relatively large number of parameters necessary to describe secondharmonic- generation (SHG) data for Si(111)/SiO2 interfaces. Attention now is focused on the exact physical meaning of these parameters, and to the extent that they represent actual physical quantities.

  14. Modelling the optical spectrum of Romano's star

    NASA Astrophysics Data System (ADS)

    Maryeva, O.; Abolmasov, P.

    2012-01-01

    We consider the luminous blue variable (LBV) star V532 in M33, also known as Romano's star, in two different spectral states: in the optical minimum of 2007/2008 and during a local brightening in 2005. Optical spectra of low and moderate resolution are modelled using the non-local thermodynamic equilibrium model atmosphere code CMFGEN. All the observed properties of the object in the minimum are well described by a late WN (nitrogen-sequence Wolf-Rayet) star model with a relatively high hydrogen abundance (H/He = 1.9), while the spectrum during the outburst corresponds to the spectral class WN11 and is similar to the spectrum of P Cyg. The atmosphere is enriched in nitrogen by about a factor of 6 in both states. Most of the heavy-element abundances are consistent with the chemical composition of M33. Bolometric luminosity is shown to vary between the two states by a factor of ˜1.5. This makes V532 another example of an LBV that shows variations in its bolometric luminosity during an outburst. Based in part on data collected at the Subaru telescope and obtained from the SMOKA, which is operated by the Astronomy Data Center, National Astronomical Observatory of Japan, while other data were taken from the archive of the Special Astrophysical Observatory (SAO) of the Russian Academy of Sciences (RAS).

  15. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT

    SciTech Connect

    Matenine, Dmitri Mascolo-Fortin, Julia; Goussard, Yves

    2015-11-15

    Purpose: The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. Methods: This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. Results: The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. Conclusions: The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can

  16. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT.

    PubMed

    Matenine, Dmitri; Mascolo-Fortin, Julia; Goussard, Yves; Després, Philippe

    2015-11-01

    The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can potentially improve the rendering of

  17. Optical Model and Cross Section Uncertainties

    SciTech Connect

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  18. Fractional-order variational optical flow model for motion estimation.

    PubMed

    Chen, Dali; Sheng, Hu; Chen, YangQuan; Xue, Dingyü

    2013-05-13

    A new class of fractional-order variational optical flow models, which generalizes the differential of optical flow from integer order to fractional order, is proposed for motion estimation in this paper. The corresponding Euler-Lagrange equations are derived by solving a typical fractional variational problem, and the numerical implementation based on the Grünwald-Letnikov fractional derivative definition is proposed to solve these complicated fractional partial differential equations. Theoretical analysis reveals that the proposed fractional-order variational optical flow model is the generalization of the typical Horn and Schunck (first-order) variational optical flow model and the second-order variational optical flow model, which provides a new idea for us to study the optical flow model and has an important theoretical implication in optical flow model research. The experiments demonstrate the validity of the generalization of differential order.

  19. Evaluation of the Malvern optical particle monitor. [Volumetric size distribution

    SciTech Connect

    Anderson, R. J.; Johnson, E.

    1983-07-01

    The Malvern 2200/3300 Particle Sizer is a laser-based optical particle sizing device which utilizes the principle of Fraunhofer Diffraction as the means of particle size measurement. The instrument is designed to analyze particle sizes in the range of 1 to 1800 microns diameter through a selection of lenses for the receiving optics. It is not a single-particle counter but rather an ensemble averager over the distribution of particles present in the measuring volume. Through appropriate measurement techniques, the instrument can measure the volumetric size distribution of: solids in gas or liquid suspension; liquid droplets in gas or other immiscible liquids; and, gas bubbles in liquid. (Malvern Handbook, Version 1.5). This report details a limited laboratory evaluation of the Malvern system to determine its operational characteristics, limitations, and accuracy. This investigation focused on relatively small particles in the range of 5 to 150 microns. Primarily, well characterized particles of coal in a coal and water mixture were utilized, but a selection of naturally occurring, industrially generated, and standard samples (i.e., glass beads) wer also tested. The characteristic size parameter from the Malvern system for each of these samples was compared with the results of a Coulter particle counter (Model TA II) analysis to determine the size measurement accuracy. Most of the particulate samples were suspended in a liquid media (water or isoton, plus a dispersant) for the size characterization. Specifically, the investigations contained in this report fall into four categories: (a) Sample-to-lense distance and sample concentration studies, (b) studies testing the applicability to aerosols, (c) tests of the manufacturer supplied software, and (d) size measurement comparisons with the results of Coulter analysis. 5 references, 15 figures, 2 tables.

  20. Parallel optical evaluation of double-exposure records in optical metrology.

    PubMed

    Arnold, W; Hinsch, K D

    1989-02-15

    The evaluation of double-exposure records in optical metrology (speckle photography or particle image velocimetry) is simplified by using two-step optical processing that is performed on many interrogation areas simultaneously by a 2-D array of narrow focused light beams. A first application of this procedure to the original record, if dimensioned properly, produces an array of small nonoverlapping Young's fringe systems. The photographic record of these patterns is subjected to the same operation once more, each beam illuminating precisely one pattern. The resulting output is an array of autocorrelation functions that are a direct representation of the displacement field since the spacing of respective side peaks gives the displacement. A single whole-field interrogation of the array of fringe systems produces an optical representation of accumulated displacement values thus rendering the statistics of the displacement field. The required matrix of light beams is generated by holographic optical elements.

  1. Assessment of some optical model potentials in predicting neutron cross sections

    SciTech Connect

    Kumar, A.; Young, P.G.; Chadwick, M.B.

    1998-03-01

    Optical model potential parameters play an important role in the evaluation of nuclear data for applied purposes. The IAEA Coordinated Research Program on {open_quotes}Reference Input Parameter Library for Evaluation of Nuclear Data for Application in Nuclear Technology{close_quotes} aims to release a reference input file of various types of parameters for the evaluation of nuclear cross sections using nuclear model codes. Included in the parameter files are a collection of optical model potentials that are available in the literature to evaluate these cross sections. As part of this research program we assess the applicability of these potentials over a range of target mass and projectile energy.

  2. Statistical model for free-space optical coherent communications using adaptive optics

    NASA Astrophysics Data System (ADS)

    Anzuola, Esdras; Gladysz, Szymon

    2016-10-01

    In this paper we present a new model for describing the turbulence-induced fading that uses the representation of the phase in the aperture plane as a collection of random "cells". This model serves as input to calculate the probability density function of fading intensity. The model has two parameters: phase variance and number of wavefront cells . We derive expressions for the signal-to-noise ratio in the presence of atmospheric turbulence and adaptive optics compensation. We estimate symbol error probabilities for M-ary phase shift keying and evaluate the performance of coherent receivers as a function of the normalized aperture and the number of actuators on the deformable mirror or the number of compensated modes. We perform numerical simulations of the fading intensity for different uncompensated and compensated scenarios and we compare the results with the proposed model.

  3. Small form factor optical fiber connector evaluation for harsh environments

    NASA Astrophysics Data System (ADS)

    Ott, Melanie N.; Thomes, W. Joe, Jr.; Chuska, Richard F.; Switzer, Robert; Blair, Diana E.

    2011-09-01

    For the past decade NASA programs have utilized the Diamond AVIM connector for optical fiber assemblies on space flight instrumentation. These connectors have been used in communications, sensing and LIDAR systems where repeatability and high performance are required. Recently Diamond has released a smaller form factor optical fiber connector called the "Mini-AVIM" which although more compact still includes the tight tolerances and the ratcheting feature of the heritage AVIM. NASA Goddard Space Flight Center Photonics Group in the Parts, Packaging and Assembly Technologies Office has been performing evaluations of this connector to determine how it compares to the performance of the AVIM connector and to assess its feasibility for harsh environmental applications. Vibration and thermal testing were performed on the Mini-AVIM with both multi-mode and single-mode optical fiber using insitu optical transmission monitoring. Random vibration testing was performed using typical launch condition profiles for most NASA missions but extended to 35 Grms, which is much higher than most requirements. Thermal testing was performed incrementally up to a range of -55°C to +125°C. The test results include both unjacketed fiber and cabled assembly evaluations. The data presented here indicate that the Mini-AVIM provides a viable option for small form factor applications that require a high performance optical fiber connector.

  4. Evaluating Causal Models.

    ERIC Educational Resources Information Center

    Watt, James H., Jr.

    Pointing out that linear causal models can organize the interrelationships of a large number of variables, this paper contends that such models are particularly useful to mass communication research, which must by necessity deal with complex systems of variables. The paper first outlines briefly the philosophical requirements for establishing a…

  5. Modeling, simulation, and estimation of optical turbulence

    NASA Astrophysics Data System (ADS)

    Formwalt, Byron Paul

    This dissertation documents three new contributions to simulation and modeling of optical turbulence. The first contribution is the formalization, optimization, and validation of a modeling technique called successively conditioned rendering (SCR). The SCR technique is empirically validated by comparing the statistical error of random phase screens generated with the technique. The second contribution is the derivation of the covariance delineation theorem, which provides theoretical bounds on the error associated with SCR. It is shown empirically that the theoretical bound may be used to predict relative algorithm performance. Therefore, the covariance delineation theorem is a powerful tool for optimizing SCR algorithms. For the third contribution, we introduce a new method for passively estimating optical turbulence parameters, and demonstrate the method using experimental data. The technique was demonstrated experimentally, using a 100 m horizontal path at 1.25 m above sun-heated tarmac on a clear afternoon. For this experiment, we estimated C2n ≈ 6.01 · 10-9 m-23 , l0 ≈ 17.9 mm, and L0 ≈ 15.5 m.

  6. Nanoscale depth reconstruction from defocus: within an optical diffraction model.

    PubMed

    Wei, Yangjie; Wu, Chengdong; Dong, Zaili

    2014-10-20

    Depth from defocus (DFD) based on optical methods is an effective method for depth reconstruction from 2D optical images. However, due to optical diffraction, optical path deviation occurs, which results in blurring imaging. Blurring, in turn, results in inaccurate depth reconstructions using DFD. In this paper, a nanoscale depth reconstruction method using defocus with optical diffraction is proposed. A blurring model is proposed by considering optical diffraction, leading to a much higher accuracy in depth reconstruction. Firstly, Fresnel diffraction in an optical system is analyzed, and a relationship between intensity distribution and depth information is developed. Secondly, a blurring imaging model with relative blurring and heat diffusion is developed through curving fitting of a numerical model. In this way, a new DFD method with optical diffraction is proposed. Finally, experimental results show that this new algorithm is more effective for depth reconstruction on the nanoscale.

  7. Optical SED models of galaxy mergers

    NASA Astrophysics Data System (ADS)

    Snyder, Gregory F.; Cox, T. J.; Hayward, Christopher C.; Hernquist, Lars; Jonsson, Patrik

    2012-08-01

    I discuss recent work in which we construct models of poststarburst galaxies by combining fully three-dimensional hydrodynamic simulations of galaxy mergers with radiative transfer calculations of dust attenuation. The poststarburst signatures can occur shortly after a bright starburst phase in gas-rich mergers, and thus offer a unique opportunity to study the formation of bulges and the effects of feedback. Several additional applications of spatially-resolved spectroscopic models of interacting galaxies include multi-wavelength studies of AGN/starburst diagnostics, mock integral field unit data to interpret the evolution of ULIRGs, and the `Green Valley'. Optical spectra of simulated major gas-rich galaxy mergers can be found at http://www.cfa.harvard.edu/~gsnyder

  8. Model Program Evaluations. Fact Sheet

    ERIC Educational Resources Information Center

    Arkansas Safe Schools Initiative Division, 2002

    2002-01-01

    There are probably thousands of programs and courses intended to prevent or reduce violence in this nation's schools. Evaluating these many programs has become a problem or goal in itself. There are now many evaluation programs, with many levels of designations, such as model, promising, best practice, exemplary and noteworthy. "Model program" is…

  9. Evaluation of whole blood coagulation process by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Xiangqun; Lin, Jia

    2010-11-01

    This study was to investigate the feasibility of using optical coherence tomography (OCT) to evaluate whole blood coagulation process. Attenuation coefficients and 1/e light penetration depth (D1/e) against time of human whole blood during in vitro clot formation under static were measured from the OCT profiles of reflectance vs depth. The results obtained clearly showed that the optical parameters are able to identify three stages during the in vitro blood clotting process. It is concluded that D1/e measured by OCT is a potential parameter to quantify and follow the liquid-gel transition of blood during clotting.

  10. Zero Length Intrastation Fiber Optics Links Test and Evaluation Program.

    DTIC Science & Technology

    1981-05-01

    WOirCS (Continue on, ev- icb. it r .~53r’Od Idern~f b’ lock r-urmher) Fiber Optics Digital Transmissic-, Analoo Transmission 20. AtiSTRACT (Cowfou. am...typified Defcnse Communications Systems (DCS) transmission node between DCS digital multir!exers and radios. The intent being to evaluate fiber optics...1920 under the technical dircction of the US Army Comunication Electronics Engi’-Vring In*’allation h\\keN)J (USACJEIA). Supplei.,ental testing ’.ws

  11. Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells

    SciTech Connect

    Chang Yiren; Hsu Long; Chi Sien

    2006-06-01

    Since their invention in 1986, optical tweezers have become a popular manipulation and force measurement tool in cellular and molecular biology. However, until recently there has not been a sophisticated model for optical tweezers on trapping cells in the ray-optics regime. We present a model for optical tweezers to calculate the optical force upon a spherically symmetric multilayer sphere representing a common biological cell. A numerical simulation of this model shows that not only is the magnitude of the optical force upon a Chinese hamster ovary cell significantly three times smaller than that upon a polystyrene bead of the same size, but the distribution of the optical force upon a cell is also much different from that upon a uniform particle, and there is a 30% difference in the optical trapping stiffness of these two cases. Furthermore, under a small variant condition for the refractive indices of any adjacent layers of the sphere, this model provides a simple approximation to calculate the optical force and the stiffness of an optical tweezers system.

  12. Tuning sum rules with window functions for optical constant evaluation

    NASA Astrophysics Data System (ADS)

    Rodríguez-de Marcos, Luis V.; Méndez, José A.; Larruquert, Juan I.

    2016-07-01

    Sum rules are a useful tool to evaluate the global consistency of a set of optical constants. We present a procedure to spectrally tune sum rules to evaluate the local consistency of optical constants. It enables enhancing the weight of a desired spectral range within the sum-rule integral. The procedure consists in multiplying the complex refractive index with an adapted function, which is named window function. Window functions are constructed through integration of Lorentz oscillators. The asymptotic decay of these window functions enables the derivation of a multiplicity of sum rules akin to the inertial sum rule, along with one modified version of f-sum rule. This multiplicity of sum rules combined with the free selection of the photon energy range provides a double way to tune the spectral contribution within the sum rule. Window functions were applied to reported data of SrF2 and of Al films in order to check data consistency over the spectrum. The use of window functions shows that the optical constants of SrF2 are consistent in a broad spectrum. Regarding Al, some spectral ranges are seen to present a lower consistency, even though the standard sum rules with no window function did not detect inconsistencies. Hence window functions are expected to be a helpful tool to evaluate the local consistency of optical constants.

  13. Optical Calibration Process Developed for Neural-Network-Based Optical Nondestructive Evaluation Method

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2004-01-01

    A completely optical calibration process has been developed at Glenn for calibrating a neural-network-based nondestructive evaluation (NDE) method. The NDE method itself detects very small changes in the characteristic patterns or vibration mode shapes of vibrating structures as discussed in many references. The mode shapes or characteristic patterns are recorded using television or electronic holography and change when a structure experiences, for example, cracking, debonds, or variations in fastener properties. An artificial neural network can be trained to be very sensitive to changes in the mode shapes, but quantifying or calibrating that sensitivity in a consistent, meaningful, and deliverable manner has been challenging. The standard calibration approach has been difficult to implement, where the response to damage of the trained neural network is compared with the responses of vibration-measurement sensors. In particular, the vibration-measurement sensors are intrusive, insufficiently sensitive, and not numerous enough. In response to these difficulties, a completely optical alternative to the standard calibration approach was proposed and tested successfully. Specifically, the vibration mode to be monitored for structural damage was intentionally contaminated with known amounts of another mode, and the response of the trained neural network was measured as a function of the peak-to-peak amplitude of the contaminating mode. The neural network calibration technique essentially uses the vibration mode shapes of the undamaged structure as standards against which the changed mode shapes are compared. The published response of the network can be made nearly independent of the contaminating mode, if enough vibration modes are used to train the net. The sensitivity of the neural network can be adjusted for the environment in which the test is to be conducted. The response of a neural network trained with measured vibration patterns for use on a vibration isolation

  14. Optical Calibration Process Developed for Neural-Network-Based Optical Nondestructive Evaluation Method

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2004-01-01

    A completely optical calibration process has been developed at Glenn for calibrating a neural-network-based nondestructive evaluation (NDE) method. The NDE method itself detects very small changes in the characteristic patterns or vibration mode shapes of vibrating structures as discussed in many references. The mode shapes or characteristic patterns are recorded using television or electronic holography and change when a structure experiences, for example, cracking, debonds, or variations in fastener properties. An artificial neural network can be trained to be very sensitive to changes in the mode shapes, but quantifying or calibrating that sensitivity in a consistent, meaningful, and deliverable manner has been challenging. The standard calibration approach has been difficult to implement, where the response to damage of the trained neural network is compared with the responses of vibration-measurement sensors. In particular, the vibration-measurement sensors are intrusive, insufficiently sensitive, and not numerous enough. In response to these difficulties, a completely optical alternative to the standard calibration approach was proposed and tested successfully. Specifically, the vibration mode to be monitored for structural damage was intentionally contaminated with known amounts of another mode, and the response of the trained neural network was measured as a function of the peak-to-peak amplitude of the contaminating mode. The neural network calibration technique essentially uses the vibration mode shapes of the undamaged structure as standards against which the changed mode shapes are compared. The published response of the network can be made nearly independent of the contaminating mode, if enough vibration modes are used to train the net. The sensitivity of the neural network can be adjusted for the environment in which the test is to be conducted. The response of a neural network trained with measured vibration patterns for use on a vibration isolation

  15. Contact stresses modeling at the Panda-type fiber single-layer winding and evaluation of their impact on the fiber optic properties

    NASA Astrophysics Data System (ADS)

    Lesnikova, Yu I.; Smetannikov, O. Yu; Trufanov, A. N.; Trufanov, N. A.

    2017-02-01

    The impact of contact transverse forces on the birefringence of the single-mode polarization-maintaining Panda-type fiber is numerically modeled. It has been established that with a single-row power winding on a cylindrical mandrel, the fiber tension at winding is the principal factor that influences birefringence. When coiling the fiber based on the local defect microbending, the birefringence at the microbending point differs from that of the free fiber by 1.3%.

  16. General MACOS Interface for Modeling and Analysis for Controlled Optical Systems

    NASA Technical Reports Server (NTRS)

    Sigrist, Norbert; Basinger, Scott A.; Redding, David C.

    2012-01-01

    The General MACOS Interface (GMI) for Modeling and Analysis for Controlled Optical Systems (MACOS) enables the use of MATLAB as a front-end for JPL s critical optical modeling package, MACOS. MACOS is JPL s in-house optical modeling software, which has proven to be a superb tool for advanced systems engineering of optical systems. GMI, coupled with MACOS, allows for seamless interfacing with modeling tools from other disciplines to make possible integration of dynamics, structures, and thermal models with the addition of control systems for deformable optics and other actuated optics. This software package is designed as a tool for analysts to quickly and easily use MACOS without needing to be an expert at programming MACOS. The strength of MACOS is its ability to interface with various modeling/development platforms, allowing evaluation of system performance with thermal, mechanical, and optical modeling parameter variations. GMI provides an improved means for accessing selected key MACOS functionalities. The main objective of GMI is to marry the vast mathematical and graphical capabilities of MATLAB with the powerful optical analysis engine of MACOS, thereby providing a useful tool to anyone who can program in MATLAB. GMI also improves modeling efficiency by eliminating the need to write an interface function for each task/project, reducing error sources, speeding up user/modeling tasks, and making MACOS well suited for fast prototyping.

  17. Analytical model for a polymer optical fiber under dynamic bending

    NASA Astrophysics Data System (ADS)

    Leal Junior, Arnaldo G.; Frizera, Anselmo; Pontes, Maria José

    2017-08-01

    Advantages such as sensibility in bending, high fracture toughness, and high sensibility in strain enable the application of polymer optical fibers as sensors for strain, temperature, level, and for angle measurements. In order to enhance the sensor design, this paper presents an analytical model for a side polished polymer optical fiber under dynamic bending. Differently from analytical models that use only the geometrical optics approach with no correction for the stress-optical effects, here the refractive index is corrected at every bending angle to consider the stress-optical effects observed polymer optical fibers. Furthermore, the viscoelastic response of the polymer is also considered. The model is validated in quasi-static and dynamic tests for a polymer optical fiber curvature sensor. Results show good agreement between the model and the experiments.

  18. Experimental qualification by extensive evaluation of fibre optic strain sensors

    NASA Astrophysics Data System (ADS)

    Schilder, Constanze; Kusche, Nadine; Schukar, Vivien G.; Münzenberger, Sven; Habel, Wolfgang R.

    2013-09-01

    Fibre optic strain sensors used in practical applications have to provide reliable measurements. Therefore, the applied sensor and the sensor systems must be validated experimentally. This can be achieved with facilities which use physically independent measurement systems in order to avoid the influences caused by the application of a reference sensor. This paper describes the testing methods of the specially developed validation facility KALFOS for the qualification and evaluation of surface-applied strain sensors. For reliable sensor results, the performance of fibre optic strain patches with and without FBG under combined thermal and mechanical loading was investigated. Additionally, the strain gauge factor of the fibre optic strain patches with FBG was determined experimentally and compared to the specified strain gauge factor. These results will be the basis for the development of guidelines and standards concerning the application of the sensors.

  19. Laboratory evaluation of Fecker and Loral optical IR PWI systems

    NASA Technical Reports Server (NTRS)

    Gorstein, M.; Hallock, J. N.; Houten, M.; Mcwilliams, I. G.

    1971-01-01

    A previous flight test of two electro-optical pilot warning indicators, using a flashing xenon strobe and silicon detectors as cooperative elements, pointed out several design deficiencies. The present laboratory evaluation program corrected these faults and calibrated the sensitivity of both systems in azimuth elevation and range. The laboratory tests were performed on an optical bench and consisted of three basic components: (1) a xenon strobe lamp whose output is monitored at the indicator detector to give pulse to pulse information on energy content at the receiver; (2) a strobe light attenuating optical system which is calibrated photometrically to provide simulated range; and (3) a positioning table on which the indicator system under study is mounted and which provides spatial location coordinates for all data points. The test results for both systems are tabulated.

  20. Optical modeling of the wide-field imaging interferometry testbed

    NASA Astrophysics Data System (ADS)

    Thompson, Anita K.; Martino, Anthony J.; Rinehart, Stephen A.; Leisawitz, David T.; Leviton, Douglas B.; Frey, Bradley J.

    2006-06-01

    The technique of wide field imaging for optical/IR interferometers for missions like Space Infrared Interferometric (SPIRIT), Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Terrestrial Planet Finder (TPF-I)/DARWIN has been demonstrated through the Wide-field Imaging Interferometry Testbed (WIIT). In this paper, we present an optical model of the WIIT testbed using the commercially available optical modeling and analysis software FRED. Interferometric results for some simple source targets are presented for a model with ideal surfaces and compared with theoretical closed form solutions. Measured surface deformation data of all mirror surfaces in the form of Zernike coefficients are then added to the optical model compared with results of some simple source targets to laboratory test data. We discuss the sources of error and approximations in the current FRED optical model. Future plans to refine the optical model are also be discussed.

  1. Estimation of partial optical path length in the brain in subject-specific head models for near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Kotaro; Kurihara, Kazuki; Kawaguchi, Hiroshi; Obata, Takayuki; Ito, Hiroshi; Okada, Eiji

    2016-04-01

    Three-dimensional head models with the structures constructed from the MR head images of 40 volunteers were constructed to analyze light propagation in the subject-specific head models. The mean optical path length in the head and the partial optical path length in the brain at 13 fiducial points for each volunteer were estimated to evaluate the intersubject and spatial variability in the optical path lengths. Although the intersubject variability in the optical path lengths is very high, the spatial variability in the average of the mean optical path length and partial optical path length is similar to the previously reported data. The mean optical path length in the head increases, whereas the partial optical path length in the brain decreases with an increase in the depth of the brain surface. The partial optical path length is highly correlated with the depth of the brain surface in comparison to the mean optical path length in the head.

  2. Dynamic ray tracing for modeling optical cell manipulation.

    PubMed

    Sraj, Ihab; Szatmary, Alex C; Marr, David W M; Eggleton, Charles D

    2010-08-02

    Current methods for predicting stress distribution on a cell surface due to optical trapping forces are based on a traditional ray optics scheme for fixed geometries. Cells are typically modeled as solid spheres as this facilitates optical force calculation. Under such applied forces however, real and non-rigid cells can deform, so assumptions inherent in traditional ray optics methods begin to break down. In this work, we implement a dynamic ray tracing technique to calculate the stress distribution on a deformable cell induced by optical trapping. Here, cells are modeled as three-dimensional elastic capsules with a discretized surface with associated hydrodynamic forces calculated using the Immersed Boundary Method. We use this approach to simulate the transient deformation of spherical, ellipsoidal and biconcave capsules due to external optical forces induced by a single diode bar optical trap for a range of optical powers.

  3. Optical modeling of Fresnel zoneplate microscopes

    SciTech Connect

    Naulleau, Patrick; Mochi, Iacopo; Goldberg, Kenneth A.

    2011-04-06

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modeling software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes rou tinely used in the synchrotron community.

  4. Optical modeling of Fresnel zoneplate microscopes.

    PubMed

    Naulleau, Patrick P; Mochi, Iacopo; Goldberg, Kenneth A

    2011-07-10

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modeling software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes routinely used in the synchrotron community.

  5. Optical modeling of Fresnel zoneplate microscopes

    SciTech Connect

    Naulleau, Patrick P.; Mochi, Iacopo; Goldberg, Kenneth A.

    2011-07-10

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modeling software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes routinely used in the synchrotron community.

  6. Non-rotational aspherical models of the human optical system

    NASA Astrophysics Data System (ADS)

    Giovanzana, S.; Kasprzak, H. T.; Pałucki, B.; Ţălu, Ş.

    2013-12-01

    The aim of this work was to define three-dimensional (3D) non-rotational aspherical parametric models for the human cornea and lens using computational geometry and CAD representations. The hyperbolic cosine based function is used for the cornea and a parametric model is used for lens modeling. Data analysis and visualization of 3D non-rotational models were made using the Rhinoceros CAD software and MATLAB software was used for numeric computation. We combined, implemented, and evaluated these models with a 3D ray-tracing in order to fully analyze the human eye model. It was found that 3D non-rotational aspherical models for the human eye could be more accurately modeled and rendered for analysis with finite element method. The objective of this study is to present and analyze mathematical models of the cornea and lens and to highlight the potential of optical applications of the eye models containing astigmatic surfaces, which are more close to the real eye than spherosymmetric eye models.

  7. A 4-D Climatology (1979-2009) of the Monthly Tropospheric Aerosol Optical Depth Distribution over the Mediterranean Region from a Comparative Evaluation and Blending of Remote Sensing and Model Products

    NASA Technical Reports Server (NTRS)

    Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I; Morcrette, J. J.; Solomon, F.; Szopa, S.; Dulac, F; Collins, W.; Ghan, S.; hide

    2013-01-01

    Since the 1980s several spaceborne sensors have been used to retrieve the aerosol optical depth (AOD) over the Mediterranean region. In parallel, AOD climatologies coming from different numerical model simulations are now also available, permitting to distinguish the contribution of several aerosol types to the total AOD. In this work, we perform a comparative analysis of this unique multiyear database in terms of total AOD and of its apportionment by the five main aerosol types (soil dust, seasalt, sulfate, black and organic carbon). We use 9 different satellite-derived monthly AOD products: NOAA/AVHRR, SeaWiFS (2 products), TERRA/MISR, TERRA/MODIS, AQUA/MODIS, ENVISAT/MERIS, PARASOL/POLDER and MSG/SEVIRI, as well as 3 more historical datasets: NIMBUS7/CZCS, TOMS (onboard NIMBUS7 and Earth- Probe) and METEOSAT/MVIRI. Monthly model datasets include the aerosol climatology from Tegen et al. (1997), the climate-chemistry models LMDz-OR-INCA and RegCM-4, the multi-model mean coming from the ACCMIP exercise, and the reanalyses GEMS and MACC. Ground-based Level- 2 AERONET AOD observations from 47 stations around the basin are used here to evaluate the model and satellite data. The sensor MODIS (on AQUA and TERRA) has the best average AOD scores over this region, showing a relevant spatio-temporal variability and highlighting high dust loads over Northern Africa and the sea (spring and summer), and sulfate aerosols over continental Europe (summer). The comparison also shows limitations of certain datasets (especially MERIS and SeaWiFS standard products). Models reproduce the main patterns of the AOD variability over the basin. The MACC reanalysis is the closest to AERONET data, but appears to underestimate dust over Northern Africa, where RegCM-4 is found closer to MODIS thanks to its interactive scheme for dust emissions. The vertical dimension is also investigated using the CALIOP instrument. This study confirms differences of vertical distribution between dust

  8. A 4-D Climatology (1979-2009) of the Monthly Tropospheric Aerosol Optical Depth Distribution over the Mediterranean Region from a Comparative Evaluation and Blending of Remote Sensing and Model Products

    SciTech Connect

    Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I.; Morcrette, J. -J.; Solmon, F.; Szopa, S.; Dulac, F.; Collins, W.; Ghan, Steven J.; Horowitz, L.; Lamarque, J.-F.; Lee, Y. H.; Naik, Vaishali; Nagashima, T.; Shindell, Drew; Skeie, R. B.

    2013-05-17

    Since the 1980s several spaceborne sensors have been used to retrieve the aerosol optical depth (AOD) over the Mediterranean region. In parallel, AOD climatologies coming from different numerical model simulations are now also available, permitting to distinguish the contribution of several aerosol types to the total AOD. In this work, we perform a comparative analysis of this unique multiyear database in terms of total AOD and of its apportionment by the five main aerosol types (soil dust, seasalt, sulfate, black and organic carbon). We use 9 different satellite-derived monthly AOD products: NOAA/AVHRR, SeaWiFS (2 products), TERRA/MISR, TERRA/MODIS, AQUA/MODIS, ENVISAT/MERIS, PARASOL/POLDER and MSG/SEVIRI, as well as 3 more historical datasets: NIMBUS7/CZCS, TOMS (onboard NIMBUS7 and Earth- Probe) and METEOSAT/MVIRI. Monthly model datasets include the aerosol climatology from Tegen et al. (1997), the climate-chemistry models LMDz-OR-INCA and RegCM-4, the multi-model mean coming from the ACCMIP exercise, and the reanalyses GEMS and MACC. Ground-based Level- 2 AERONET AOD observations from 47 stations around the basin are used here to evaluate the model and satellite data. The sensor MODIS (on AQUA and TERRA) has the best average AOD scores over this region, showing a relevant spatiotemporal variability and highlighting high dust loads over Northern Africa and the sea (spring and summer), and sulfate aerosols over continental Europe (summer). The comparison also shows limitations of certain datasets (especially MERIS and SeaWiFS standard products). Models reproduce the main patterns of the AOD variability over the basin. The MACC reanalysis is the closest to AERONET data, but appears to underestimate dust over Northern Africa, where RegCM-4 is found closer to MODIS thanks to its interactive scheme for dust emissions. The vertical dimension is also investigated using the CALIOP instrument. This study confirms differences of vertical distribution between dust aerosols

  9. Optical Evaluation for Biomimetic Microlens Array on PDMS Sheet

    NASA Astrophysics Data System (ADS)

    Monden, Kenji

    A simple technique is presented to evaluate optical property of biomimetic microlens array (BMA) as an antireflective surface on a polydimethylsiloxane (PDMS) sheet. The integration of these structures is done by a thermoforming process. We have only UV-VIS spectrophotometer for optical evaluation apparatus. The transmittance of the sheet is measured with angled sample holder. The 50 deg. transmittance of 270nm pitch BMA on PDMS sheet increases from 87 to 92% after the moth-eye structure is introduced. The transmittance of 350nm pitch BMA on PDMS sheet increases from 87 to 96% after the moth-eye structure is introduced. The transmittance increases with increasing pitch of BMA. The results obtained using UV-VIS spectrophotometer with handmade sample holder.

  10. Visual Evoked Potential Recording in a Rat Model of Experimental Optic Nerve Demyelination.

    PubMed

    You, Yuyi; Gupta, Vivek K; Chitranshi, Nitin; Reedman, Brittany; Klistorner, Alexander; Graham, Stuart L

    2015-07-29

    The visual evoked potential (VEP) recording is widely used in clinical practice to assess the severity of optic neuritis in its acute phase, and to monitor the disease course in the follow-up period. Changes in the VEP parameters closely correlate with pathological damage in the optic nerve. This protocol provides a detailed description about the rodent model of optic nerve microinjection, in which a partial demyelination lesion is produced in the optic nerve. VEP recording techniques are also discussed. Using skull implanted electrodes, we are able to acquire reproducible intra-session and between-session VEP traces. VEPs can be recorded on individual animals over a period of time to assess the functional changes in the optic nerve longitudinally. The optic nerve demyelination model, in conjunction with the VEP recording protocol, provides a tool to investigate the disease processes associated with demyelination and remyelination, and can potentially be employed to evaluate the effects of new remyelinating drugs or neuroprotective therapies.

  11. Evaluation of ERIM optically processed SEASAT SAR data

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Lyzenga, D. R. (Principal Investigator); Klooster, A., Jr.; Marks, J.

    1982-01-01

    The results of three studies on the radiometric and geometric properties of optically processed SEASAT SAR imagery are summarized. The accuracy with which the image scale can be predicted based upon a knowledge of the SAR platform and recording system parameters and the processor characteristics was evaluated. The considerations involved in making radiometric measurements from image films, the use of point targets for calibrating the effects of Doppler spectrum shifts on the radiometric calibration of the SAR image data over extended swath lengths was evaluated

  12. Choriocapillaris evaluation in choroideremia using optical coherence tomography angiography

    PubMed Central

    Gao, Simon S.; Patel, Rachel C.; Jain, Nieraj; Zhang, Miao; Weleber, Richard G.; Huang, David; Pennesi, Mark E.; Jia, Yali

    2016-01-01

    The choriocapillaris plays an important role in supporting the metabolic demands of the retina. Studies of the choriocapillaris in disease states with optical coherence tomography angiography (OCTA) have proven insightful. However, image artifacts complicate the identification and quantification of the choriocapillaris in degenerative diseases such as choroideremia. Here, we demonstrate a supervised machine learning approach to detect intact choriocapillaris based on training with results from an expert grader. We trained a random forest classifier to evaluate en face structural OCT and OCTA information along with spatial image features. Evaluation of the trained classifier using previously unseen data showed good agreement with manual grading. PMID:28101400

  13. Science Process Evaluation Model. Monograph.

    ERIC Educational Resources Information Center

    Small, Larry

    The goal of this monograph is to explain the evaluation program designed by Schaumburg Community Consolidated District 54, Schaumberg, Illinois. It discusses the process used in the development of the model, the product, the implication for classroom teachers and the effects of using an evaluation to assess science process skills. The process…

  14. Numerical modeling of LCD electro-optical performance

    NASA Astrophysics Data System (ADS)

    Woehler, Henning; Becker, Michael E.

    2002-06-01

    Realization of complex high information density LCDs and systematic optimization of their electro-optical and ergonomic performance would not be possible in the required time-frame without reliable numerical modeling of the electro-optical performance of such display devices. In this paper we outline the history of numerical LDC modeling starting with Berreman and van Doorn, finally arriving at modern state-of-the-art LCD-modeling in two and three dimensions. Numerical modeling of LCDs is carried out in two steps: first, the effect of the electrical field on the orientation of the liquid crystalline alignment has to be evaluated before the corresponding optical properties can be computed. Starting from LC-elasticity theory we present suitable numerical methods for computing various states of LC-deformation (stable, metastable, bistable, etc.) in one- dimensional problems Light propagation in layered anisotropic absorbing media is evaluated with methods that are based on Maxwell's equations (Berreman 4 X 4-matrix approach). This approach can be simplified to yield methods with reduced computing time and sufficient accuracy for many problems (e.g. extended Jones 2 X 2-matrix formalism). A finite element method with automatic mesh generation and refinement for computing accurate solutions in two- dimensional problems is presented and its application illustrated with examples (e.g. IPS-effect, VAN-cells, etc.). In two- and three-dimensional problems, i.e. in cells with lateral dimensions comparable to the cell thickness, a variety of different director configurations are possible for a given geometry and electrical driving and addressing, making the modeling more complicated. Moreover, local defects can occur, which should also be considered in the simulation. Suitable approaches for the director field calculation, i.e. the vector and the tensor approach, are discussed. The complexity of the problem increases considerably when a third dimension is added, e.g. the

  15. Uncertainty quantification for optical model parameters

    DOE PAGES

    Lovell, A. E.; Nunes, F. M.; Sarich, J.; ...

    2017-02-21

    Although uncertainty quantification has been making its way into nuclear theory, these methods have yet to be explored in the context of reaction theory. For example, it is well known that different parameterizations of the optical potential can result in different cross sections, but these differences have not been systematically studied and quantified. The purpose of our work is to investigate the uncertainties in nuclear reactions that result from fitting a given model to elastic-scattering data, as well as to study how these uncertainties propagate to the inelastic and transfer channels. We use statistical methods to determine a best fitmore » and create corresponding 95% confidence bands. A simple model of the process is fit to elastic-scattering data and used to predict either inelastic or transfer cross sections. In this initial work, we assume that our model is correct, and the only uncertainties come from the variation of the fit parameters. Here, we study a number of reactions involving neutron and deuteron projectiles with energies in the range of 5–25 MeV/u, on targets with mass A=12–208. We investigate the correlations between the parameters in the fit. The case of deuterons on 12C is discussed in detail: the elastic-scattering fit and the prediction of 12C(d,p)13C transfer angular distributions, using both uncorrelated and correlated χ2 minimization functions. The general features for all cases are compiled in a systematic manner to identify trends. This work shows that, in many cases, the correlated χ2 functions (in comparison to the uncorrelated χ2 functions) provide a more natural parameterization of the process. These correlated functions do, however, produce broader confidence bands. Further optimization may require improvement in the models themselves and/or more information included in the fit.« less

  16. Novel approach to dynamic modeling of active optical instruments

    NASA Astrophysics Data System (ADS)

    Wilhelm, Rainer; Johann, Ulrich A.

    1999-08-01

    The presented work is a versatile approach to time-dependent numerical modeling of active optical instruments. Based on a hybrid geometrical- and physical optics propagation code an optical modeling tool (OMT) has been developed. Mainly targeting at the simulation of astronomical telescopes it allows building linear and non-linear optical models for integration into dynamic end-to-end simulation environments with models for mechanical structure, control systems and various disturbances. The light propagation through an instrument is modeled by a sequence of polarization ray tracing and diffraction propagations. A radiometry algorithm based on a triangle grid interconnecting the rays computes the calibrated power flux. Recently the OMT has been implemented as an optical kernel within the End-to-End Model for the Very Large Telescope Interferometer (VLTI) developed at the European Southern Observatory. There it performs the dynamic computation of the electric field in the exit pupils of the VLTI including polarization, radiometry and diffraction effects.

  17. Evaluation of optic disc changes in severe myopia.

    PubMed

    Wang, T H; Lin, S Y; Shih, Y F; Huang, J K; Lin, L L; Hung, P T

    2000-07-01

    To evaluate the changes in the optic nerve head in highly myopic subjects by means of confocal laser scanning opthalmoscope. Using laser scanning and a three-dimensional image analysis system, we studied 114 young (21.4 +/- 1.4 years), highly myopic subjects with refractive errors greater than -8.0 D and a control group of 29 subjects (18.9 +/- 1.2 years) with myopia of -3.0 D or less. Measurements included cycloplegic refraction, corneal curvature, biometric axial length, and morphometric values of the optic disc obtained with a laser scanning disc analyzer. The optic disc area in highly myopic eyes was similar to that in mildly myopic eyes. However, regression analysis revealed that the optic disc area increased with axial length in subjects with severe myopia. The cup/disc ratio, the disc depth, the neuroretinal rim area, and the tilting of the disc were not significantly different between the severe and mild myopia groups. These findings may be useful in further investigations of myopic progression and of the mechanisms responsible for the development of myopic complications.

  18. Optic Nerve Inflammation and Demyelination in a Rodent Model of Nonarteritic Anterior Ischemic Optic Neuropathy

    PubMed Central

    Slater, Bernard J.; Vilson, Fernandino L.; Guo, Yan; Weinreich, Daniel; Hwang, Shelly; Bernstein, Steven L.

    2013-01-01

    Purpose. Optic nerve (ON) ischemia associated with nonarteric anterior ischemic optic neuropathy (NAION) results in axon and myelin damage. Myelin damage activates the intraneural Ras homolog A (RhoA), contributing to axonal regeneration failure. We hypothesized that increasing extrinsic macrophage activity after ON infarct would scavenge degenerate myelin and improve postischemic ON recovery. We used the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) to upregulate ON macrophage activity, and evaluated GM-CSF's effects after ON ischemia in the NAION rodent model (rAION). Methods. Following rAION induction, GM-CSF was administered via intraventricular injection. Retinal ganglion cell (RGC) stereologic analysis was performed 1 month postinduction. The retinae and optic nerve laminae of vehicle- and GM-CSF-treated animals were examined immunohistochemically and ultrastructurally using transmission electron microscopy (TEM). RhoA activity was analyzed using a rhotekin affinity immunoanalysis and densitometry. Isolated ONs were analyzed functionally ex vivo by compound action potential (CAP) analysis. Results. Rodent NAION produces ON postinfarct demyelination and myelin damage, functionally demonstrable by CAP analysis and ultrastructurally by TEM. Granulocyte-macrophage colony-stimulating factor increased intraneural inflammation, activating and recruiting endogenous microglia, with only a moderate amount of exogenous macrophage recruitment. Treatment with GM-CSF reduced postinfarct intraneural RhoA activity, but did not neuroprotect RGCs after rAION. Conclusions. Sudden ON ischemia results in previously unrecognized axonal demyelination, which may have a clinically important role in NAION-related functional defects and recovery. Granulocyte-macrophage colony-stimulating factor is not neuroprotective when administered directly to the optic nerve following ON ischemia, and does not improve axonal regeneration. It dramatically increases ON

  19. Evaluation of dermal fillers with noncontact optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Wang, Shang; Yee, Richard W.; Han, Zhaolong; Aglyamov, Salavat R.; Larin, Kirill V.

    2017-02-01

    Over 2 million dermal filler procedures are performed each year in the USA alone, and this figure is only expected to increase as the aging population continues to grow. Dermal filler treatments can last from a few months to years depending on the type of filler and its placement. Although adverse reactions are rare, they can be quite severe due to ischemic events and filler migration. Previously, techniques such as ultrasound or magnetic resonance imaging have been used to evaluate the filler injections. However, these techniques are not practical for real-time filler injection guidance due to limitations such as the physical presence of the transducer. In this work, we propose the use of optical coherence tomography (OCT) for image-guided dermal filler injections due to the high spatial and temporal resolution of OCT. In addition, we utilize a noncontact optical coherence elastography (OCE) technique, to evaluate the efficacy of the dermal filler injection. A grid of air-pulse OCE measurements was taken, and the dynamic response of the skin to the air-pulse was translated to the Young's modulus and shear viscosity. Our results show that OCT was able to visualize the dermal filler injection process, and that OCE was able to localize the dermal filler injection sites. Combined with functional techniques such as optical microangiography, and recent advanced in OCT hardware, OCT may be able to provide real-time injection guidance in 3D by visualizing blood vessels to prevent ischemic events.

  20. Evaluating UVA aerosol optical depth using a smartphone camera.

    PubMed

    Igoe, Damien P; Parisi, Alfio V; Carter, Brad

    2013-01-01

    This research evaluates a smartphone complementary metal oxide semiconductor (CMOS) image sensor's ability to detect and quantify incident solar UVA radiation and subsequently, aerosol optical depth at 340 and 380 nm. Earlier studies revealed that the consumer grade CMOS sensor has inherent UVA sensitivities, despite attenuating effects of the lens. Narrow bandpass and neutral density filters were used to protect the image sensor and to not allow saturation of the solar images produced. Observations were made on clear days, free from clouds. The results of this research demonstrate that there is a definable response to changing solar irradiance and aerosol optical depth can be measured within 5% and 10% error margins at 380 and 340 nm respectively. The greater relative error occurs at lower wavelengths (340 nm) due to increased atmospheric scattering effects, particularly at higher air masses and due to lower signal to noise ratio in the image sensor. The relative error for solar irradiance was under 1% for observations made at 380 nm. The results indicate that the smartphone image sensor, with additional external narrow bandpass and neutral density filters can be used as a field sensor to evaluate solar UVA irradiance and aerosol optical depth. © 2013 The American Society of Photobiology.

  1. GENOPTICS- A GENERAL OPTICAL SYSTEMS EVALUATION PROGRAM (DEC VAX VERSION)

    NASA Technical Reports Server (NTRS)

    Wilsom, M. E.

    1994-01-01

    The General Optical Systems Evaluation Program, GENOPTICS, was developed as an aid for the analysis and evaluation of optical systems that employ lenses, mirrors, diffraction gratings, and other geometrical surfaces. The GENOPTICS evaluation is performed by means of geometrical ray tracing based upon Snell's law. The GENOPTICS program can provide for the exact ray tracing of as many as 800 rays through as many as 40 surfaces. These surfaces may be planar, conic, toric, or polynomial shaped lenses, mirrors, and diffraction gratings. Each surface may be tilted about as many as three axes and may be decentered. Surfaces having bilateral symmetry may also be analyzed. GENOPTICS provides for user-oriented input and for a wide range of output for the evaluation of the optical system being analyzed. GENOPTICS provides a wide range of features for the optical system analyst. GENOPTICS performs paraxial ray tracing and computation of the third order aberrations including aspheric contribution. Graphical output can be generated for spot diagrams, radial energy distributions, and modulation transfer functions, for each object point and each color. Sag tables may be generated for any rotationally symmetric surface, with options to obtain the sag differences from a reference sphere in units of lengths or wavelengths. Statistics and plots of ray intercepts with any surface in the system may be obtained for use in vignetting analysis and beam distribution analysis. Afocal systems can be examined with image statistics generated in terms of tangents of angles with respect to the optical axis. For exact ray tracing, a ray pattern at the entrance pupil can be specified as a rectangular or polar grid, where each ray samples an equal amount of area, or as a pattern where each ray samples an equal amount of solid angle for a finite object. This latter pattern is useful in radiometric work. Input to GENOPTICS includes program control statements, system definition data, surface data, and

  2. GENOPTICS- A GENERAL OPTICAL SYSTEMS EVALUATION PROGRAM (DEC VAX VERSION)

    NASA Technical Reports Server (NTRS)

    Wilsom, M. E.

    1994-01-01

    The General Optical Systems Evaluation Program, GENOPTICS, was developed as an aid for the analysis and evaluation of optical systems that employ lenses, mirrors, diffraction gratings, and other geometrical surfaces. The GENOPTICS evaluation is performed by means of geometrical ray tracing based upon Snell's law. The GENOPTICS program can provide for the exact ray tracing of as many as 800 rays through as many as 40 surfaces. These surfaces may be planar, conic, toric, or polynomial shaped lenses, mirrors, and diffraction gratings. Each surface may be tilted about as many as three axes and may be decentered. Surfaces having bilateral symmetry may also be analyzed. GENOPTICS provides for user-oriented input and for a wide range of output for the evaluation of the optical system being analyzed. GENOPTICS provides a wide range of features for the optical system analyst. GENOPTICS performs paraxial ray tracing and computation of the third order aberrations including aspheric contribution. Graphical output can be generated for spot diagrams, radial energy distributions, and modulation transfer functions, for each object point and each color. Sag tables may be generated for any rotationally symmetric surface, with options to obtain the sag differences from a reference sphere in units of lengths or wavelengths. Statistics and plots of ray intercepts with any surface in the system may be obtained for use in vignetting analysis and beam distribution analysis. Afocal systems can be examined with image statistics generated in terms of tangents of angles with respect to the optical axis. For exact ray tracing, a ray pattern at the entrance pupil can be specified as a rectangular or polar grid, where each ray samples an equal amount of area, or as a pattern where each ray samples an equal amount of solid angle for a finite object. This latter pattern is useful in radiometric work. Input to GENOPTICS includes program control statements, system definition data, surface data, and

  3. Constitutive Modeling of the Mechanical Properties of Optical Fibers

    NASA Technical Reports Server (NTRS)

    Moeti, L.; Moghazy, S.; Veazie, D.; Cuddihy, E.

    1998-01-01

    Micromechanical modeling of the composite mechanical properties of optical fibers was conducted. Good agreement was obtained between the values of Young's modulus obtained by micromechanics modeling and those determined experimentally for a single mode optical fiber where the wave guide and the jacket are physically coupled. The modeling was also attempted on a polarization-maintaining optical fiber (PANDA) where the wave guide and the jacket are physically decoupled, and found not to applicable since the modeling required perfect bonding at the interface. The modeling utilized constituent physical properties such as the Young's modulus, Poisson's ratio, and shear modulus to establish bounds on the macroscopic behavior of the fiber.

  4. Constitutive Modeling of the Mechanical Properties of Optical Fibers

    NASA Technical Reports Server (NTRS)

    Moeti, L.; Moghazy, S.; Veazie, D.; Cuddihy, E.

    1998-01-01

    Micromechanical modeling of the composite mechanical properties of optical fibers was conducted. Good agreement was obtained between the values of Young's modulus obtained by micromechanics modeling and those determined experimentally for a single mode optical fiber where the wave guide and the jacket are physically coupled. The modeling was also attempted on a polarization-maintaining optical fiber (PANDA) where the wave guide and the jacket are physically decoupled, and found not to applicable since the modeling required perfect bonding at the interface. The modeling utilized constituent physical properties such as the Young's modulus, Poisson's ratio, and shear modulus to establish bounds on the macroscopic behavior of the fiber.

  5. Modeling propagation of coherent optical pulses through molecular vapor

    SciTech Connect

    Shore, B.W.; Eberly, J.H.

    1982-01-01

    Results of modeling the mutual coupling of coherent molecular response and coherent optical pulses during propagation are described. The propagation is treated numerically, with particular emphasis on both continuum and discrete behavior associated with the quasicontinuum model.

  6. Turnbull Blue Gel (TBG) evaluation as optical dosimeter

    NASA Astrophysics Data System (ADS)

    Borguezan Neto, E.; Batistuti, M. R.; Pavoni, J. F.; Bachmann, L.

    2017-05-01

    The radiochromic Turnbull Blue Gel (TBG) is sensitive to X- and γ-rays. When exposed to high-energy radiation, TBG can simulate biological tissues, so this gel has potential use in ionizing radiation dosimetry. After irradiation, the yellow TBG changes to the blue Turnbull Blue dye. This work aims to evaluate how TBG responds to exposure to ultraviolet, visible, and infrared radiation from the sun. The gel was irradiated with a solar simulator, which sensitized TBG and transformed it into the Turnbull Blue dye; a change in the optical absorption ensued. The fluence values delivered by the source did not provide a linear response, but it was still possible to use TBG as an optical dosimeter. In conclusion, TBG can be applied to detect solar radiation because it is sensitive enough to measure sun exposure values at time intervals of few minutes.

  7. Design and Performance Evaluation of Optical Ethernet Switching Architecture with Liquid Crystal on Silicon-Based Beam-Steering Technology

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Chou, H.-H.; Shiau, Yhi; Cheng, Shu-Ying

    2016-07-01

    A non-blocking optical Ethernet switching architecture with liquid crystal on a silicon-based beam-steering switch and optical output buffer strategies are proposed. For preserving service packet sequencing and fairness of routing sequence, priority and round-robin algorithms are adopted at the optical output buffer in this research. Four methods were used to implement tunable fiber delay modules for the optical output buffers to handle Ethernet packets with variable bit-rates. The results reported are based on the simulations performed to evaluate the proposed switching architecture with traffic analysis under a traffic model captured from a real-core network.

  8. Quantitative evaluation of registration methods for atlas-based diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Wu, Xue; Eggebrecht, Adam T.; Culver, Joseph P.; Zhan, Yuxuan; Basevi, Hector; Dehghani, Hamid

    2013-06-01

    In Diffuse Optical Tomography (DOT), an atlas-based model can be used as an alternative to a subject-specific anatomical model for recovery of brain activity. The main step of the generation of atlas-based subject model is the registration of atlas model to the subject head. The accuracy of the DOT then relies on the accuracy of registration method. In this work, 11 registration methods are quantitatively evaluated. The registration method with EEG 10/20 systems with 19 landmarks and non-iterative point to point algorithm provides approximately 1.4 mm surface error and is considered as the most efficient registration method.

  9. Evaluation of a IMU with optical fiber gyros in dynamic windtunnel tests

    NASA Astrophysics Data System (ADS)

    Takizawa, Minoru; Sasa, Shuichi; Nagayasu, Masahiko; Kajoka, Hiroshi; Iizuka, Toshio

    A study of dynamic windtunnel tests using a 5 percent cable-mounted model of the NAL spaceplane was carried out to identify aerodynamic parameters of the Spaceplane at National Aerospace Laboratory (NAL). In this study, an inertial measuring unit with optical fiber gyros, which will be installed on the model and will be used to measure angular rates about three axes of the model, has been developed and evaluated in dynamic windtunnel tests. It is reported that the IMU has been used effectively in the control system of the model; however, the accuracy, resolution, and frequency response of the OFG-3 were insufficient for the dynamic windtunnel tests.

  10. Modeling optical absorption for thermoreflectance measurements

    NASA Astrophysics Data System (ADS)

    Yang, Jia; Ziade, Elbara; Schmidt, Aaron J.

    2016-03-01

    Optical pump-probe techniques based on thermoreflectance, such as time domain thermoreflectance and frequency domain thermoreflectance (FDTR), have been widely used to characterize the thermal conductivity of thin films and the thermal conductance across interfaces. These techniques typically use a transducer layer to absorb the pump light and improve the thermoreflectance signal. The transducer, however, complicates the interpretation of the measured signal because the approximation that all the energy from the pump beam is deposited at the transducer surface is not always accurate. In this paper, we consider the effect of laser absorption in the top layer of a multilayer sample, and derive an analytical solution for the thermoreflectance signal in the diffusion regime based on volumetric heating. We analyze the measurement sensitivity to the pump absorption depth for transducers with different thermal conductivities, and investigate the additional effect of probe laser penetration depth on the measured signal. We validate our model using FDTR measurements on 490 nm thick amorphous silicon films deposited on fused silica and silicon substrates.

  11. Modeling optical absorption for thermoreflectance measurements

    SciTech Connect

    Yang, Jia; Ziade, Elbara; Schmidt, Aaron J.

    2016-03-07

    Optical pump-probe techniques based on thermoreflectance, such as time domain thermoreflectance and frequency domain thermoreflectance (FDTR), have been widely used to characterize the thermal conductivity of thin films and the thermal conductance across interfaces. These techniques typically use a transducer layer to absorb the pump light and improve the thermoreflectance signal. The transducer, however, complicates the interpretation of the measured signal because the approximation that all the energy from the pump beam is deposited at the transducer surface is not always accurate. In this paper, we consider the effect of laser absorption in the top layer of a multilayer sample, and derive an analytical solution for the thermoreflectance signal in the diffusion regime based on volumetric heating. We analyze the measurement sensitivity to the pump absorption depth for transducers with different thermal conductivities, and investigate the additional effect of probe laser penetration depth on the measured signal. We validate our model using FDTR measurements on 490 nm thick amorphous silicon films deposited on fused silica and silicon substrates.

  12. Optical laboratory solution and error model simulation of a linear time-varying finite element equation

    NASA Technical Reports Server (NTRS)

    Taylor, B. K.; Casasent, D. P.

    1989-01-01

    The use of simplified error models to accurately simulate and evaluate the performance of an optical linear-algebra processor is described. The optical architecture used to perform banded matrix-vector products is reviewed, along with a linear dynamic finite-element case study. The laboratory hardware and ac-modulation technique used are presented. The individual processor error-source models and their simulator implementation are detailed. Several significant simplifications are introduced to ease the computational requirements and complexity of the simulations. The error models are verified with a laboratory implementation of the processor, and are used to evaluate its potential performance.

  13. Imaging quality evaluation method of pixel coupled electro-optical imaging system

    NASA Astrophysics Data System (ADS)

    He, Xu; Yuan, Li; Jin, Chunqi; Zhang, Xiaohui

    2017-09-01

    With advancements in high-resolution imaging optical fiber bundle fabrication technology, traditional photoelectric imaging system have become ;flexible; with greatly reduced volume and weight. However, traditional image quality evaluation models are limited by the coupling discrete sampling effect of fiber-optic image bundles and charge-coupled device (CCD) pixels. This limitation substantially complicates the design, optimization, assembly, and evaluation image quality of the coupled discrete sampling imaging system. Based on the transfer process of grayscale cosine distribution optical signal in the fiber-optic image bundle and CCD, a mathematical model of coupled modulation transfer function (coupled-MTF) is established. This model can be used as a basis for following studies on the convergence and periodically oscillating characteristics of the function. We also propose the concept of the average coupled-MTF, which is consistent with the definition of traditional MTF. Based on this concept, the relationships among core distance, core layer radius, and average coupled-MTF are investigated.

  14. Electrochemical and Optical Evaluation of Noble Metal-and Carbon-ITO Hybrid Optically Transparent Electrodes

    SciTech Connect

    Zudans, Imants; Paddock, Jean R.; Kuramitz, Hideki; Maghasi, Anne T.; Wansapura, Chamika M.; Conklin, Sean D.; Kaval, Necati; Shtoyko, Tanya; Monk, David J.; Bryan, Samuel A.; Hubler, Timothy L.; Richardson, John N.; Seliskar, Carl J.; Heineman, William R.

    2004-04-15

    Optically transparent hybrid electrodes were constructed by sputtering or thermally evaporating layers of varying thickness of Au, Pd, Pt, or C onto an existing conductive indium-tin oxide (ITO) layer on glass. These electrodes were characterized using UV-Vis spectroscopy and cyclic voltammetry; redox probes examined were potassium ferricyanide, tris-(2, 2'-bipyridyl)ruthenium(II) chloride, hydroquinone, and para-aminophenol (PAP). Each type of hybrid was evaluated and compared with other hybrids, as well as with bare ITO electrodes and commercially available Au, Pt, and glassy carbon disk electrodes. Our results indicated that these hybrid electrodes are reasonably robust, easy to prepare, and extend the capabilities of bare ITO surfaces with respect to the electrochemical response (especially for organic redox probes), while giving up little in the way of optical transparency. Because of these characteristics, hybrid electrodes should be especially suited to many spectroelectrochemical applications.

  15. On a Decomposition Model for Optical Flow

    NASA Astrophysics Data System (ADS)

    Abhau, Jochen; Belhachmi, Zakaria; Scherzer, Otmar

    In this paper we present a variational method for determining cartoon and texture components of the optical flow of a noisy image sequence. The method is realized by reformulating the optical flow problem first as a variational denoising problem for multi-channel data and then by applying decomposition methods. Thanks to the general formulation, several norms can be used for the decomposition. We study a decomposition for the optical flow into bounded variation and oscillating component in greater detail. Numerical examples demonstrate the capabilities of the proposed approach.

  16. Evaluation of the maximum speed of layer-by-layer heterodyne analysis of light scattering characteristics in volume optical media

    NASA Astrophysics Data System (ADS)

    Tverdokhleb, P. E.; Shchepetkin, Yu. A.

    2017-03-01

    A method of layer-by-layer heterodyne analysis of volume optical media is described. The results of a theoretical evaluation, computer modeling, and experimental investigation of the dependence of the maximum speed of the analysis on the parameters of the optical circuit and medium are given. The effect of the analysis speed on the resolution of the method along the thickness of the optical medium and on the pattern of the dependence of the output signal on the depth of the studied layer is evaluated. A method for increasing the maximum scanning speed is proposed. The obtained results are confirmed experimentally..

  17. Novel applications of the dispersive optical model

    NASA Astrophysics Data System (ADS)

    Dickhoff, W. H.; Charity, R. J.; Mahzoon, M. H.

    2017-03-01

    A review of recent developments of the dispersive optical model (DOM) is presented. Starting from the original work of Mahaux and Sartor, several necessary steps are developed and illustrated which increase the scope of the DOM allowing its interpretation as generating an experimentally constrained functional form of the nucleon self-energy. The method could therefore be renamed as the dispersive self-energy method. The aforementioned steps include the introduction of simultaneous fits of data for chains of isotopes or isotones allowing a data-driven extrapolation for the prediction of scattering cross sections and level properties in the direction of the respective drip lines. In addition, the energy domain for data was enlarged to include results up to 200 MeV where available. An important application of this work was implemented by employing these DOM potentials to the analysis of the (d, p) transfer reaction using the adiabatic distorted wave approximation. We review these calculations which suggest that physically meaningful results are easier to obtain by employing DOM ingredients as compared to the traditional approach which relies on a phenomenologically-adjusted bound-state wave function combined with a global (nondispersive) optical-model potential. Application to the exotic 132Sn nucleus also shows great promise for the extrapolation of DOM potentials towards the drip line with attendant relevance for the physics of FRIB. We note that the DOM method combines structure and reaction information on the same footing providing a unique approach to the analysis of exotic nuclei. We illustrate the importance of abandoning the custom of representing the non-local Hartree-Fock (HF) potential in the DOM by an energy-dependent local potential as it impedes the proper normalization of the solution of the Dyson equation. This important step allows for the interpretation of the DOM potential as representing the nucleon self-energy permitting the calculations of

  18. Acousto-optic back-projection: Physical-model-based sound field reconstruction from optical projections

    NASA Astrophysics Data System (ADS)

    Yatabe, Kohei; Ishikawa, Kenji; Oikawa, Yasuhiro

    2017-04-01

    As an alternative to microphones, optical techniques have been studied for measuring a sound field. They enable contactless and non-invasive acoustical observation by detecting density variation of medium caused by sound. Although they have important advantages comparing to microphones, they also have some disadvantages. Since sound affects light at every points on the optical path, the optical methods observe an acoustical quantity as spatial integration. Therefore, point-wise information of a sound field cannot be obtained directly. Ordinarily, the computed tomography (CT) method has been applied for reconstructing a sound field from optically measured data. However, the observation process of the optical methods have not been considered explicitly, which limits the accuracy of the reconstruction. In this paper, a physical-model-based sound field reconstruction method is proposed. It explicitly formulates the physical observation process so that a model mismatch of the conventional methods is eliminated.

  19. Advocacy Evaluation: A Model for Internal Evaluation Offices.

    ERIC Educational Resources Information Center

    Sonnichsen, Richard C.

    1988-01-01

    As evaluations are more often implemented by internal staff, internal evaluators must begin to assume decision-making and advocacy tasks. This advocacy evaluation concept is described using the Federal Bureau of Investigation evaluation staff as a model. (TJH)

  20. Optical modeling in Testbed Environment for Space Situational Awareness (TESSA).

    PubMed

    Nikolaev, Sergei

    2011-08-01

    We describe optical systems modeling in the Testbed Environment for Space Situational Awareness (TESSA) simulator. We begin by presenting a brief outline of the overall TESSA architecture and focus on components for modeling optical sensors. Both image generation and image processing stages are described in detail, highlighting the differences in modeling ground- and space-based sensors. We conclude by outlining the applicability domains for the TESSA simulator, including potential real-life scenarios.

  1. Very Large Optical Telescope (VLOT) integrated model enhancements

    NASA Astrophysics Data System (ADS)

    Dunn, Jennifer; Roberts, Scott C.; Fitzsimmons, Joeleff; Pazder, John; Veran, Jean-Pierre; Herriot, Glen; Smith, Malcolm J.

    2004-09-01

    The integrated modeling tools for Canada's 20-meter telescope model, VLOT, have advanced significantly in the last year. Specifically, the flexibility of the tool and the pre-processing and post-processing functions have been enhanced. Also, closed loop control of the primary mirror and feeding the optical displacements through an adaptive optics tool, have been developed. This paper details the enhancements made to the tool and discusses the future challenges of the integrated modeling team.

  2. Quantitative security evaluation of optical encryption using hybrid phase- and amplitude-modulated keys.

    PubMed

    Sarkadi, Tamás; Koppa, Pál

    2012-02-20

    In the increasing number of system approaches published in the field of optical encryption, the security level of the system is evaluated by qualitative and empirical methods. To quantify the security of the optical system, we propose to use the equivalent of the key length routinely used in algorithmic encryption. We provide a calculation method of the number of independent keys and deduce the binary key length for optical data encryption. We then investigate and optimize the key length of the combined phase- and amplitude-modulated key encryption in the holographic storage environment, which is one of the promising solutions for the security enhancement of single- and double-random phase-encoding encryption and storage systems. We show that a substantial growth of the key length can be achieved by optimized phase and amplitude modulation compared to phase-only encryption. We also provide experimental confirmation of the model results.

  3. Dual permeability FEM models for distributed fiber optic sensors development

    NASA Astrophysics Data System (ADS)

    Aguilar-López, Juan Pablo; Bogaard, Thom

    2017-04-01

    Fiber optic cables are commonly known for being robust and reliable mediums for transferring information at the speed of light in glass. Billions of kilometers of cable have been installed around the world for internet connection and real time information sharing. Yet, fiber optic cable is not only a mean for information transfer but also a way to sense and measure physical properties of the medium in which is installed. For dike monitoring, it has been used in the past for detecting inner core and foundation temperature changes which allow to estimate water infiltration during high water events. The DOMINO research project, aims to develop a fiber optic based dike monitoring system which allows to directly sense and measure any pore pressure change inside the dike structure. For this purpose, questions like which location, how many sensors, which measuring frequency and which accuracy are required for the sensor development. All these questions may be initially answered with a finite element model which allows to estimate the effects of pore pressure change in different locations along the cross section while having a time dependent estimation of a stability factor. The sensor aims to monitor two main failure mechanisms at the same time; The piping erosion failure mechanism and the macro-stability failure mechanism. Both mechanisms are going to be modeled and assessed in detail with a finite element based dual permeability Darcy-Richards numerical solution. In that manner, it is possible to assess different sensing configurations with different loading scenarios (e.g. High water levels, rainfall events and initial soil moisture and permeability conditions). The results obtained for the different configurations are later evaluated based on an entropy based performance evaluation. The added value of this kind of modelling approach for the sensor development is that it allows to simultaneously model the piping erosion and macro-stability failure mechanisms in a time

  4. [Nonarteritic ischemic optic neuropathy animal model and its treatment applications].

    PubMed

    Chuman, Hideki

    2014-04-01

    Nonarteritic ischemic optic neuropathy (NAION) is one of the most common acute unilaterally onset optic nerve diseases. One management problem in terms of NAION is the difficulty of differential diagnosis between NAION and anterior optic neuritis (ON). A second problem is that there is no established treatment for the acute stage of NAION. A third problem is that there is no preventive treatment for a subsequent attack on the fellow eye, estimated to occur in 15 to 25% of patients with NAION. For differentiation of acute NAION from anterior optic neuritis, we investigated the usefulness of laser speckle flowgraphy (LSFG). In the normal control group, the tissue blood flow did not significantly differ between the right and left eyes. In the NAION group, all 6 patients had 29.5% decreased mean blur rate (MBR), which correlates to optic disc blood flow, of the NAION eye compared with the unaffected eye. In the anterior ON group, all 6 cases had 15.9% increased MBR of the anterior ON eye compared with the unaffected eye. Thus, LSFG showed a difference of the underlying pathophysiology between NAION and anterior ON despite showing disc swelling in both groups and could be useful for differentiating both groups. For the treatment of acute stage of NAION, we tried to reproduce the rodent model of NAION (rNAION) developed by Bernstein and colleagues. To induce rNAION, after the administration of rose bengal(RB) (2.5 mM) into the tail vein of SD rats, the small vessels of the left optic nerve were photoactivated using a 514 nm argon green laser (RB-laser-induction). In the RB-laser-induction eyes, the capillaries within the optic disc were reduced markedly, the optic disc became swollen, and fluorescein angiography showed filling defect in the choroid and the optic disc at an early stage, followed by hyperfluorescence at a late stage. Electrophysiological evaluation revealed that visual evoked potential (VEP) amplitude was significantly decreased but an electroretinogram

  5. Evaluation of embolic deflection device using optical particle tracking.

    PubMed

    Ionita, Ciprian N; Bednarek, Daniel R; Rudin, Stephen

    2013-03-29

    Trans-aortic valve replacement is a new endovascular procedure which has started to be used routinely in cardiac interventional suites. During such procedures a stent-like device containing new aortic valves is placed over the damaged ones, possibly causing calcifications to be dislodged and released in arteries leading to stroke. To prevent such events, new devices are being developed to provide distal protection to the brain supplying arteries. Currently there is a need to evaluate such device efficacy in a repeatable manner. We are proposing and investigating such a method based on particle optical tracking. We simulated such protective devices using two porous screens (150 and 200 μm pore size) which were placed in an arterial bifurcation phantom connected to a clinically relevant flow loop. A mask was acquired and gold embolic particles (100-300μm) were injected at a steady rate using a motorized injector. Optical images with 2 ms exposure were acquired at 30 fps. Images were subtracted, thresholded and filtered using a 5×5 median filter. ROI's were drawn over the main and bifurcating arteries and a particle counting algorithm was used to estimate particle flow rates in each artery for each run. The unprotected and the two protected cases were evaluated. Before filter placement, the particle flow rate was 60 and 40 %, respectively, of the main artery. After the filter placement, the particle flow rate in the protected branch was 4% and 8% of the particle flow rate in the main artery. We present a method to assess the efficacy of such devices using an optical particle tracking and counting technique.

  6. Optical and structural modeling of disclination lattices in carbonaceous mesophases.

    PubMed

    Gupta, Gaurav; Hwang, Dae Kun; Rey, Alejandro D

    2005-01-15

    An integrated microstructural and optical model for carbonaceous mesophases is developed and used to explain the principles that govern the formation and stability of experimentally observed disclination lattices. The model is able to capture the orientation features of disclination lattices, including the type and location of disclination lines, and the orientation field in the mesophase matrix. The optical model based on reflection polarized optical microscopy is able to replicate all the details observed in actual observations. The typical brush figures have the proper distribution, orientation, and intensity. The computational predictions offer science-based routes to create and control desirable material architectures based on carbonaceous mesophase-carbon fiber composites.

  7. Evaluation of systems and components for hybrid optical firing sets

    SciTech Connect

    Landry, M.J.; Rupert, J.W.; Mittas, A.

    1989-06-01

    High-energy density light appears to be a unique energy form that may be used to enhance the nuclear safety of weapon systems. Hybrid optical firing sets (HOFS) utilize the weak-link/strong-link exclusion region concept for nuclear safety; this method is similar to present systems, but uses light to transmit power across the exclusion region barrier. This report describes the assembling, operating, and testing of fourteen HOFS. These firing sets were required to charge a capacitor-discharge unit to 2.0 and 2.5 kV (100 mJ) in less than 1 s. First, we describe the components, the measurement techniques used to evaluate the components, and the different characteristics of the measured components. Second, we describe the HOFS studied, the setups used for evaluating them, and the resulting characteristics. Third, we make recommendations for improving the overall performance and suggest the best HOFS for packaging. 36 refs., 145 figs., 14 tabs.

  8. Evaluation of microfluidic channels with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Czajkowski, J.; Prykäri, T.; Alarousu, E.; Lauri, J.; Myllylä, R.

    2010-11-01

    Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.

  9. Development of optical diagnostics for performance evaluation of arcjet thrusters

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1995-01-01

    Laser and optical emission-based measurements have been developed and implemented for use on low-power hydrogen arcjet thrusters and xenon-propelled electric thrusters. In the case of low power hydrogen arcjets, these laser induce fluorescence measurements constitute the first complete set of data that characterize the velocity and temperature field of such a device. The research performed under the auspices of this NASA grant includes laser-based measurements of atomic hydrogen velocity and translational temperature, ultraviolet absorption measurements of ground state atomic hydrogen, Raman scattering measurements of the electronic ground state of molecular hydrogen, and optical emission based measurements of electronically excited atomic hydrogen, electron number density, and electron temperature. In addition, we have developed a collisional-radiative model of atomic hydrogen for use in conjunction with magnetohydrodynamic models to predict the plasma radiative spectrum, and near-electrode plasma models to better understand current transfer from the electrodes to the plasma. In the final year of the grant, a new program aimed at developing diagnostics for xenon plasma thrusters was initiated, and results on the use of diode lasers for interrogating Hall accelerator plasmas has been presented at recent conferences.

  10. Dynamic viscoelastic models of human skin using optical elastography

    PubMed Central

    Kearney, Steven P.; Khan, Altaf; Dai, Zoujun; Royston, Thomas J.

    2015-01-01

    A novel technique for measuring in vivo human skin viscoelastic properties using optical elastography has been developed. The technique uses geometrically focused surface (GFS) waves that allow for wide bandwidth measurements of the wave field. An analytical solution for the case of a radiating annular disk surface source was fit to experimentally measured GFS waves, enabling an estimate of the frequency-dependent surface wavenumber, which can then be related to the dynamic shear modulus. Several viscoelastic models were then fit to the dynamic shear modulus dispersion curve. Viscoelastic models were evaluated based on their overall quality of fit and variability amongst healthy volunteers. An Ecoflex phantom was used to validate the procedure and results by comparison to similar studies using the same type of phantom. For skin results, it was found that the “α” parameters from the fractional models had the least variability, with coefficients of variability of 0.15, and 0.16. The best fitting models were the standard linear solid, and the fractional Voigt, with a mean fit correlation coefficient, R2, of 0.93, 0.89, respectively. This study has demonstrated the efficacy of this new method, and with larger studies the viscoelastic skin models could be used to identify various skin diseases and their response to treatment. PMID:26305137

  11. Evaluation of time-resolved multi-distance methods to retrieve absorption and reduced scattering coefficients of adult heads in vivo: Optical parameters dependences on geometrical structures of the models used to calculate reflectance

    NASA Astrophysics Data System (ADS)

    Tanifuji, T.

    2016-03-01

    Time-resolved multi-distance measurements are studied to retrieve absorption and reduced scattering coefficients of adult heads, which have enough depth sensitivity to determine the optical parameters in superficial tissues and brain separately. Measurements were performed by putting the injection and collection fibers on the left semi-sphere of the forehead, with the injection fiber placed toward the temporal region, and by moving the collection fiber between 10 and 60 mm from the central sulcus. It became clear that optical parameters of the forehead at all collection fibers were reasonably determined by selecting the appropriate visibility length of the geometrical head models, which is related to head surface curvature at each position.

  12. Fiber-optic interferometric sensors for measurements of pressure fluctuations: Experimental evaluation

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.; Soderman, P. T.

    1993-01-01

    This paper addresses an anechoic chamber evaluation of a fiber-optic interferometric sensor (fiber-optic microphone), which is being developed at NASA Ames Research Center for measurements of pressure fluctuations in wind tunnels.

  13. A novel rodent model of posterior ischemic optic neuropathy.

    PubMed

    Wang, Yan; Brown, Dale P; Duan, Yuanli; Kong, Wei; Watson, Brant D; Goldberg, Jeffrey L

    2013-02-01

    To develop a reliable, reproducible rat model of posterior ischemic optic neuropathy (PION) and study the cellular responses in the optic nerve and retina. Posterior ischemic optic neuropathy was induced in adult rats by photochemically induced ischemia. Retinal and optic nerve vasculature was examined by fluorescein isothiocyanate–dextran extravasation. Tissue sectioning and immunohistochemistry were used to investigate the pathologic changes. Retinal ganglion cell survival at different times after PION induction, with or without neurotrophic application, was quantified by fluorogold retrograde labeling. Optic nerve injury was confirmed after PION induction, including local vascular leakage, optic nerve edema, and cavernous degeneration. Immunostaining data revealed microglial activation and focal loss of astrocytes, with adjacent astrocytic hypertrophy. Up to 23%, 50%, and 70% retinal ganglion cell loss was observed at 1 week, 2 weeks, and 3 weeks, respectively, after injury compared with a sham control group. Experimental treatment by brain-derived neurotrophic factor and ciliary neurotrophic factor remarkably prevented retinal ganglion cell loss in PION rats. At 3 weeks after injury, more than 40% of retinal ganglion cells were saved by the application of neurotrophic factors. Rat PION created by photochemically induced ischemia is a reproducible and reliable animal model for mimicking the key features of human PION. The correspondence between the features of this rat PION model to those of human PION makes it an ideal model to study the pathophysiologic course of the disease, most of which remains to be elucidated. Furthermore, it provides an optimal model for testing therapeutic approaches for optic neuropathies.

  14. GENOPTICS- A GENERAL OPTICAL SYSTEMS EVALUATION PROGRAM (IBM VERSION)

    NASA Technical Reports Server (NTRS)

    Howell, B. J.

    1994-01-01

    The General Optical Systems Evaluation Program, GENOPTICS, was developed as an aid for the analysis and evaluation of optical systems that employ lenses, mirrors, diffraction gratings, and other geometrical surfaces. The GENOPTICS evaluation is performed by means of geometrical ray tracing based upon Snell's law. The GENOPTICS program can provide for the exact ray tracing of as many as 800 rays through as many as 40 surfaces. These surfaces may be planar, conic, toric, or polynomial shaped lenses, mirrors, and diffraction gratings. Each surface may be tilted about as many as three axes and may be decentered. Surfaces having bilateral symmetry may also be analyzed. GENOPTICS provides for user-oriented input and for a wide range of output for the evaluation of the optical system being analyzed. GENOPTICS provides a wide range of features for the optical system analyst. GENOPTICS performs axial ray tracing and computation of the third order aberrations including aspheric contribution. The program includes a quasi-automatic ray-surface intersection selection option. Graphical output can be generated for spot diagrams, radial energy distributions, and modulation transfer functions, for each object point and each color. Sag tables may be generated for any rotationally symmetric surface, with options to obtain the sag differences from a reference sphere in units of lengths or wavelengths. Statistics and plots of ray intercepts with any surface in the system may be obtained for use in vignetting analysis and beam distribution analysis. Afocal systems can be examined with image statistics generated in terms of tangents of angles with respect to the optical axis. For exact ray tracing, a ray pattern at the entrance pupil can be specified as a rectangular or polar grid, where each ray samples an equal amount of area, or as a pattern where each ray samples an equal amount of solid angle for a finite object. This latter pattern is useful in radiometric work. Input to GENOPTICS

  15. GENOPTICS- A GENERAL OPTICAL SYSTEMS EVALUATION PROGRAM (IBM VERSION)

    NASA Technical Reports Server (NTRS)

    Howell, B. J.

    1994-01-01

    The General Optical Systems Evaluation Program, GENOPTICS, was developed as an aid for the analysis and evaluation of optical systems that employ lenses, mirrors, diffraction gratings, and other geometrical surfaces. The GENOPTICS evaluation is performed by means of geometrical ray tracing based upon Snell's law. The GENOPTICS program can provide for the exact ray tracing of as many as 800 rays through as many as 40 surfaces. These surfaces may be planar, conic, toric, or polynomial shaped lenses, mirrors, and diffraction gratings. Each surface may be tilted about as many as three axes and may be decentered. Surfaces having bilateral symmetry may also be analyzed. GENOPTICS provides for user-oriented input and for a wide range of output for the evaluation of the optical system being analyzed. GENOPTICS provides a wide range of features for the optical system analyst. GENOPTICS performs axial ray tracing and computation of the third order aberrations including aspheric contribution. The program includes a quasi-automatic ray-surface intersection selection option. Graphical output can be generated for spot diagrams, radial energy distributions, and modulation transfer functions, for each object point and each color. Sag tables may be generated for any rotationally symmetric surface, with options to obtain the sag differences from a reference sphere in units of lengths or wavelengths. Statistics and plots of ray intercepts with any surface in the system may be obtained for use in vignetting analysis and beam distribution analysis. Afocal systems can be examined with image statistics generated in terms of tangents of angles with respect to the optical axis. For exact ray tracing, a ray pattern at the entrance pupil can be specified as a rectangular or polar grid, where each ray samples an equal amount of area, or as a pattern where each ray samples an equal amount of solid angle for a finite object. This latter pattern is useful in radiometric work. Input to GENOPTICS

  16. Modeling The Atmosphere As An Unguided Optical Communications Channel

    NASA Astrophysics Data System (ADS)

    Nuber, Raymond M.

    1989-07-01

    Due to the increasing number of applications for optical communications, methods such as computer simulation are needed for the performance analysis of these systems. The objective of this paper is to propose a system level model for simulating the Earth's atmosphere as an unguided optical communications channel. The major degradations in received optical intensity introduced by the atmosphere are scintillation, beam spreading, beam wander, and atmospheric transmissivity. The model presented here considers scintillation and beam wander to impose random fading in the received signal while beam spreading is a constant loss in intensity. Atmospheric transmissivity is treated as a filter-like channel transfer function. Relationships for the parameters of the model are given in terms of parameters which characterize the optical link. Also included is a description of an implementation of the model.

  17. Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors

    PubMed Central

    Yang, Aixia; Zhong, Bo; Wu, Shanlong; Liu, Qinhuo

    2017-01-01

    The radiometric capability of on-orbit sensors should be updated on time due to changes induced by space environmental factors and instrument aging. Some sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have onboard calibrators, which enable real-time calibration. However, most Chinese remote sensing satellite sensors lack onboard calibrators. Their radiometric calibrations have been updated once a year based on a vicarious calibration procedure, which has affected the applications of the data. Therefore, a full evaluation of the sensors’ radiometric capabilities is essential before quantitative applications can be made. In this study, a comprehensive procedure for evaluating the radiometric capability of several Chinese optical satellite sensors is proposed. In this procedure, long-term radiometric stability and radiometric accuracy are the two major indicators for radiometric evaluation. The radiometric temporal stability is analyzed by the tendency of long-term top-of-atmosphere (TOA) reflectance variation; the radiometric accuracy is determined by comparison with the TOA reflectance from MODIS after spectrally matching. Three Chinese sensors including the Charge-Coupled Device (CCD) camera onboard Huan Jing 1 satellite (HJ-1), as well as the Visible and Infrared Radiometer (VIRR) and Medium-Resolution Spectral Imager (MERSI) onboard the Feng Yun 3 satellite (FY-3) are evaluated in reflective bands based on this procedure. The results are reasonable, and thus can provide reliable reference for the sensors’ application, and as such will promote the development of Chinese satellite data. PMID:28117745

  18. Evaluation of the electro-optic direction sensor

    NASA Technical Reports Server (NTRS)

    Johnson, A. R.; Salomon, P. M.

    1973-01-01

    Evaluation of a no-moving-parts single-axis star tracker called an electro-optic direction sensor (EODS) concept is described and the results are given in detail. The work involved experimental evaluation of a breadboard sensor yielding results which would permit design of a prototype sensor for a specific application. The laboratory work included evaluation of the noise equivalent input angle of the sensor, demonstration of a technique for producing an acquisition signal, constraints on the useful field-of-view, and a qualitative evaluation of the effects of stray light. In addition, the potential of the silicon avalanche-type photodiode for this application was investigated. No benefit in noise figure was found, but the easily adjustable gain of the avalanche device was useful. The use of mechanical tuning of the modulating element to reduce voltage requirements was also explored. The predicted performance of EODS in both photomultiplier and solid state detector configurations was compared to an existing state-of-the-art star tracker.

  19. Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors.

    PubMed

    Yang, Aixia; Zhong, Bo; Wu, Shanlong; Liu, Qinhuo

    2017-01-22

    The radiometric capability of on-orbit sensors should be updated on time due to changes induced by space environmental factors and instrument aging. Some sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have onboard calibrators, which enable real-time calibration. However, most Chinese remote sensing satellite sensors lack onboard calibrators. Their radiometric calibrations have been updated once a year based on a vicarious calibration procedure, which has affected the applications of the data. Therefore, a full evaluation of the sensors' radiometric capabilities is essential before quantitative applications can be made. In this study, a comprehensive procedure for evaluating the radiometric capability of several Chinese optical satellite sensors is proposed. In this procedure, long-term radiometric stability and radiometric accuracy are the two major indicators for radiometric evaluation. The radiometric temporal stability is analyzed by the tendency of long-term top-of-atmosphere (TOA) reflectance variation; the radiometric accuracy is determined by comparison with the TOA reflectance from MODIS after spectrally matching. Three Chinese sensors including the Charge-Coupled Device (CCD) camera onboard Huan Jing 1 satellite (HJ-1), as well as the Visible and Infrared Radiometer (VIRR) and Medium-Resolution Spectral Imager (MERSI) onboard the Feng Yun 3 satellite (FY-3) are evaluated in reflective bands based on this procedure. The results are reasonable, and thus can provide reliable reference for the sensors' application, and as such will promote the development of Chinese satellite data.

  20. Integral ceramic superstructure evaluation using time domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Bradu, Adrian; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-02-01

    Optical Coherence Tomography (OCT) is a non-invasive low coherence interferometry technique that includes several technologies (and the corresponding devices and components), such as illumination and detection, interferometry, scanning, adaptive optics, microscopy and endoscopy. From its large area of applications, we consider in this paper a critical aspect in dentistry - to be investigated with a Time Domain (TD) OCT system. The clinical situation of an edentulous mandible is considered; it can be solved by inserting 2 to 6 implants. On these implants a mesostructure will be manufactured and on it a superstructure is needed. This superstructure can be integral ceramic; in this case materials defects could be trapped inside the ceramic layers and those defects could lead to fractures of the entire superstructure. In this paper we demonstrate that a TD-OCT imaging system has the potential to properly evaluate the presence of the defects inside the ceramic layers and those defects can be fixed before inserting the prosthesis inside the oral cavity. Three integral ceramic superstructures were developed by using a CAD/CAM technology. After the milling, the ceramic layers were applied on the core. All the three samples were evaluated by a TD-OCT system working at 1300 nm. For two of the superstructures evaluated, no defects were found in the most stressed areas. The third superstructure presented four ceramic defects in the mentioned areas. Because of those defects the superstructure may fracture. The integral ceramic prosthesis was send back to the dental laboratory to fix the problems related to the material defects found. Thus, TD-OCT proved to be a valuable method for diagnosing the ceramic defects inside the integral ceramic superstructures in order to prevent fractures at this level.

  1. Theoretical model of the modulation transfer function for fiber optic taper

    NASA Astrophysics Data System (ADS)

    Wang, Yaoxiang; Tian, Weijian; Bin, XiangLi

    2005-02-01

    Fiber optic taper has been used more and more widely as a relay optical component in the integrated taper assembly image intensified sensors for military and medical imaging application. In this paper, the transmission characteristic of energy in the taper is analyzed, and following the generalized definition of the modulation transfer function for sampled imaging system, a spatial averaged impulse response and a corresponding MTF component that are inherent in the sampling process of taper are deduced, and the mathematical model for evaluating the modulation transfer function of fiber optic taper is built. Finally, the dynamic and static modulation transfer function curves simulated by computer have been exhibited.

  2. Sequentially Executed Model Evaluation Framework

    SciTech Connect

    2014-02-14

    Provides a message passing framework between generic input, model and output drivers, and specifies an API for developing such drivers. Also provides batch and real-time controllers which step the model and 1/0 through the time domain (or other discrete domain), and sample 1/0 drivers. This is a Framework library framework, and does not, itself, solve any problems or execute any modelling. The SeMe framework aids in development of models which operate on sequential information, such as time-series, where evaluation is based on prior results combined with new data for this iteration. Ha) applications in quality monitoring, and was developed as part of the CANARY-EDS software, where real-time water quality data is being analyzed

  3. Sequentially Executed Model Evaluation Framework

    SciTech Connect

    2014-02-14

    Provides a message passing framework between generic input, model and output drivers, and specifies an API for developing such drivers. Also provides batch and real-time controllers which step the model and 1/0 through the time domain (or other discrete domain), and sample 1/0 drivers. This is a Framework library framework, and does not, itself, solve any problems or execute any modelling. The SeMe framework aids in development of models which operate on sequential information, such as time-series, where evaluation is based on prior results combined with new data for this iteration. Ha) applications in quality monitoring, and was developed as part of the CANARY-EDS software, where real-time water quality data is being analyzed

  4. Sequentially Executed Model Evaluation Framework

    SciTech Connect

    2015-10-20

    Provides a message passing framework between generic input, model and output drivers, and specifies an API for developing such drivers. Also provides batch and real-time controllers which step the model and I/O through the time domain (or other discrete domain), and sample I/O drivers. This is a library framework, and does not, itself, solve any problems or execute any modeling. The SeMe framework aids in development of models which operate on sequential information, such as time-series, where evaluation is based on prior results combined with new data for this iteration. Has applications in quality monitoring, and was developed as part of the CANARY-EDS software, where real-time water quality data is being analyzed for anomalies.

  5. Sequentially Executed Model Evaluation Framework

    SciTech Connect

    2015-10-20

    Provides a message passing framework between generic input, model and output drivers, and specifies an API for developing such drivers. Also provides batch and real-time controllers which step the model and I/O through the time domain (or other discrete domain), and sample I/O drivers. This is a library framework, and does not, itself, solve any problems or execute any modeling. The SeMe framework aids in development of models which operate on sequential information, such as time-series, where evaluation is based on prior results combined with new data for this iteration. Has applications in quality monitoring, and was developed as part of the CANARY-EDS software, where real-time water quality data is being analyzed for anomalies.

  6. A preliminary weather model for optical communications through the atmosphere

    NASA Technical Reports Server (NTRS)

    Shaik, K. S.

    1988-01-01

    A preliminary weather model is presented for optical propagation through the atmosphere. It can be used to compute the attenuation loss due to the atmosphere for desired link availability statistics. The quantitative results that can be obtained from this model provide good estimates for the atmospheric link budget necessary for the design of an optical communication system. The result is extended to provide for the computation of joint attenuation probability for n sites with uncorrelated weather patterns.

  7. ISCHEMIC MODEL OF OPTIC NERVE INJURY

    PubMed Central

    Cioffi, George A

    2005-01-01

    Purpose It is proposed that the anterior optic nerve is specifically susceptible to microcirculatory compromise contributing to the development of glaucomatous optic neuropathy. Methods Ischemic optic neuropathy was induced by delivering endothelin-1 (ET-1) to the retrobulbar space in one eye of 12 primates for 6 to 12 months. Regional ganglion cell axonal sizes and densities were compared with the normal, contralateral eyes. Results Without changes of intraocular pressure, mean axonal density was significantly decreased in ET-1 eyes compared to controls (P = .03, paired t test). Two-way matched-pair analysis of variance showed a significant effect of ET-1 on overall axonal density (P < .0001). Among the animals with significant axonal loss, the mean axonal loss was 11.6%, and loss varied from 4% to 21%. Axonal loss was commonly localized within specific quadrants. Five animals were examined for preferential axonal size loss. As a group, there appears to be a tendency toward preferential large axonal loss, but the mean axonal loss of large and small axons did not meet significant differences (P = .1) However, examination of individual animals with significant loss shows significantly greater loss of large axons as compared to the small axons in three of the animals. Conclusions Chronic optic nerve ischemia causes demonstrable and localized damage of the optic nerve, without intraocular pressure elevation. There is preferential loss of large retinal ganglion cell axons in animals with significant axonal loss. Ischemia-induced focal axonal loss is similar to human glaucoma and may represent a differential regional vulnerability. PMID:17057819

  8. Infrasound Sensor Models and Evaluations

    SciTech Connect

    KROMER,RICHARD P.; MCDONALD,TIMOTHY S.

    2000-07-31

    Sandia National Laboratories has continued to evaluate the performance of infrasound sensors that are candidates for use by the International Monitoring System (IMS) for the Comprehensive Nuclear-Test-Ban Treaty Organization. The performance criteria against which these sensors are assessed are specified in ``Operational Manual for Infra-sound Monitoring and the International Exchange of Infrasound Data''. This presentation includes the results of efforts concerning two of these sensors: (1) Chaparral Physics Model 5; and (2) CEA MB2000. Sandia is working with Chaparral Physics in order to improve the capability of the Model 5 (a prototype sensor) to be calibrated and evaluated. With the assistance of the Scripps Institution of Oceanography, Sandia is also conducting tests to evaluate the performance of the CEA MB2000. Sensor models based on theoretical transfer functions and manufacturer specifications for these two devices have been developed. This presentation will feature the results of coherence-based data analysis of signals from a huddle test, utilizing several sensors of both types, in order to verify the sensor performance.

  9. Integrated structural and optical modeling of the orbiting stellar interferometer

    NASA Astrophysics Data System (ADS)

    Shaklan, Stuart B.; Yu, Jeffrey W.; Briggs, Hugh C.

    1993-11-01

    The Integrated Modeling of Optical Systems (IMOS) Integration Workbench at JPL has been used to model the effects of structural perturbations on the optics in the proposed Orbiting Stellar Interferometer (OSI). OSI consists of 3 pairs of interferometers and delay lines attached to a 7.5 meter truss. They are interferometrically monitored from a separate boom by a laser metrology system. The spatially distributed nature of the science instrument calls for a high level of integration between the optics and support structure. Because OSI is designed to achieve micro-arcsecond astrometry, many of its alignment, stability, and knowledge tolerances are in the submicron regime. The spacecraft will be subject to vibrations caused by reaction wheels and on-board equipment, as well as thermal strain due to solar and terrestrial heating. These perturbations affect optical parameters such as optical path differences and beam co-parallelism which are critical to instrument performance. IMOS provides an environment that allows one to design and perturb the structure, attach optics to structural or non-structural nodes, trace rays, and analyze the impact of mechanical perturbations on optical performance. This tool makes it simple to change the structure and immediately see performance enhancement/degradation. We have employed IMOS to analyze the effect of reaction wheel disturbances on the optical path difference in both the science and metrology interferometers.

  10. Design and evaluation of a THz time domain imaging system using standard optical design software.

    PubMed

    Brückner, Claudia; Pradarutti, Boris; Müller, Ralf; Riehemann, Stefan; Notni, Gunther; Tünnermann, Andreas

    2008-09-20

    A terahertz (THz) time domain imaging system is analyzed and optimized with standard optical design software (ZEMAX). Special requirements to the illumination optics and imaging optics are presented. In the optimized system, off-axis parabolic mirrors and lenses are combined. The system has a numerical aperture of 0.4 and is diffraction limited for field points up to 4 mm and wavelengths down to 750 microm. ZEONEX is used as the lens material. Higher aspherical coefficients are used for correction of spherical aberration and reduction of lens thickness. The lenses were manufactured by ultraprecision machining. For optimization of the system, ray tracing and wave-optical methods were combined. We show how the ZEMAX Gaussian beam analysis tool can be used to evaluate illumination optics. The resolution of the THz system was tested with a wire and a slit target, line gratings of different period, and a Siemens star. The behavior of the temporal line spread function can be modeled with the polychromatic coherent line spread function feature in ZEMAX. The spectral and temporal resolutions of the line gratings are compared with the respective modulation transfer function of ZEMAX. For maximum resolution, the system has to be diffraction limited down to the smallest wavelength of the spectrum of the THz pulse. Then, the resolution on time domain analysis of the pulse maximum can be estimated with the spectral resolution of the center of gravity wavelength. The system resolution near the optical axis on time domain analysis of the pulse maximum is 1 line pair/mm with an intensity contrast of 0.22. The Siemens star is used for estimation of the resolution of the whole system. An eight channel electro-optic sampling system was used for detection. The resolution on time domain analysis of the pulse maximum of all eight channels could be determined with the Siemens star to be 0.7 line pairs/mm.

  11. Impact of Using Assimilated Data for Evaluating Performance of Active CO2 Optical Depth Measurements

    NASA Astrophysics Data System (ADS)

    Kooi, S. A.; Lin, B.; Ismail, S.; Browell, E. V.; Harrison, F. W.; Yang, M. M.; Choi, Y.; Kawa, S. R.

    2014-12-01

    NASA has recently conducted multiple DC-8 flight campaigns of candidate instruments for the future Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. For each campaign, the precision and accuracy of the remote measurements of atmospheric CO2 differential absorption optical depths from the candidate instruments were evaluated with respect to corresponding modeled CO2 optical depths derived from in situ profiles of atmospheric state variables including atmospheric CO2 mixing ratios, temperature (T), pressure (p), and humidity (q) and using the HITRAN spectroscopic database. To enable this evaluation, the DC-8 flights were designed to include multiple overpasses of a comparison location where the aircraft performed a spiral ascent or descent and captured the in situ profiles using a suite of onboard instruments. However large segments of some flights took place far from spiral locations and therefore had no coincident in situ measurements of the atmospheric state (CO2, T, p, q). For these situations meterological analysis data from the Goddard Modeling and Assimilation Office (GMAO) GEOS-5 gridded data have been used to assimilate atmospheric state profiles for use in the CO2 optical depth derivation. We use the location of the DC-8 spirals to identify all of the GMAO GEOS-5 gridded profiles that would compare with each spiral and report their differences with respect to the DC-8 in situ profiles. We show how these differences affect the modeled CO2 optical depth for the three campaigns and the impacts of these differences on the precision and accuracy evaluations of the remote CO2 measurements.

  12. SCRAM: A fast computational model for the optical performance of point focus solar central receiver systems

    NASA Astrophysics Data System (ADS)

    Bergeron, K. D.; Chiang, C. J.

    1980-04-01

    A mathematical approximation procedure, designated Sandia Central Receiver Approximation Model is described. A computational procedure which allows the user to define the heliostat field boundaries and tower height arbitrarily, generating a model for optical field performance, including shadowing, blocking, cosine, losses, and atmospheric attenuation, and which requires only a polynomial evaluation for each set of Sun angles was developed. One reason that the accuracy in field performance predictions is higher than that of the generating function for the model is that much of the error in the generating function is due to an oscillatory behavior associated with a moire pattern in the optical response of the heliostat field.

  13. A Taxonomy of Evaluation Models: Use of Evaluation Models in Program Evaluation.

    ERIC Educational Resources Information Center

    Carter, Wayne E.

    In the nine years following the passage of the Elementary Secondary Education Act (ESEA), several models have been developed to attempt to remedy the deficiencies in existing educational evaluation and decision theory noted by Stufflebeam and co-workers. Compilations of evaluation models have been undertaken and listings exist of models available…

  14. Virtual Mie particle model of laser damage to optical elements

    NASA Astrophysics Data System (ADS)

    Hirata, Kazuya; Haraguchi, Koshi

    2011-12-01

    In recent years, devices being developed for application systems have used laser beams that have high average power, high peak power, short pulse width, and short wavelength. Therefore, optical elements using such application systems require a high laser damage threshold. The laser damage threshold is provided by International Organization for Standardization 11254 (ISO11254). One of the measurement methods of the laser damage threshold provided by ISO11254 is an online method to measure the intensity of light scattering due to a laser damage trace. In this paper, we propose a measurement method for the laser damage threshold that realizes high sensitivity and high accuracy by using polarized light and lock-in detection. Since the scattering light with laser damage is modeled on the asperity of the optical element-surface as Mie particles (virtual Mie particles), we consider the intensity change of scattering light as a change in the radius of a virtual Mie particle. To evaluate this model, the laser damage trace on the optical element-surface was observed by an atomic force microscopy (AFM). Based on the observed AFM image, we analyzed the frequency domain by the Fourier transform, and estimated the dominant virtual Mie particle radius in the AFM measurement area. In addition, we measured the laser damage threshold. The light source was the fifth generation of a Nd:YAG laser (λ =213nm). The specifications of the laser were: repetition frequency 10Hz, pulse width 4ns, linear type polarization, laser pulse energy 4mJ, and laser transverse mode TEM00. The laser specifications were a repetition frequency, pulse width, pulse energy and beam diameter of 10Hz, 4ns, 4mJ and 13mm, respectively. The laser damage thresholds of an aluminum coated mirror and a dielectric multi-layer mirror designed at a wavelength of 213nm as measured by this method were 0.684 J/cm2 and 0.998J/cm2, respectively. These laser damage thresholds were 1/4 the laser damage thresholds measured based

  15. Evaluation of colour space transformation suitability to optical temperature measurements

    NASA Astrophysics Data System (ADS)

    Ziemba, A.; Fornalik-Wajs, E.

    2016-09-01

    All optical measurement methods base on the image analysis and relation between the measured parameter and some image features. In Digital Particle Image Thermometry (DPIT), such relation represents a function between the temperature and particles’ colour (i.a. Thermochromic Liquid Crystals). For the quantitative data acquisition the “colour” information is necessary, therefore the colour spaces based on hue H are used. Due to the big number of numerical operations needed in the analysis, the choice of colour space transformation is significant due to the accuracy and computational time. In this paper commonly applied RGB to HSI colour spaces’ transformations were compared and evaluation of their suitability to temperature measurement was performed. Time of obtaining the final results was considered as the main criterion. Appropriate calculations were conducted and presented.

  16. Performance evaluation of a sensorless adaptive optics multiphoton microscope.

    PubMed

    Skorsetz, Martin; Artal, Pablo; Bueno, Juan M

    2016-03-01

    A wavefront sensorless adaptive optics technique was combined with a custom-made multiphoton microscope to correct for specimen-induced aberrations. A liquid-crystal-on-silicon (LCoS) modulator was used to systematically generate Zernike modes during image recording. The performance of the instrument was evaluated in samples providing different nonlinear signals and the benefit of correcting higher order aberrations was always noticeable (in both contrast and resolution). The optimum aberration pattern was stable in time for the samples here involved. For a particular depth location within the sample, the wavefront to be precompensated was independent on the size of the imaged area (up to ∼ 360 × 360 μm(2)). The mode combination optimizing the recorded image depended on the Zernike correction control sequence; however, the final images hardly differed. At deeper locations, a noticeable dominance of spherical aberration was found. The influence of other aberration terms was also compared to the effect of the spherical aberration.

  17. Theoretical model for a Faraday anomalous dispersion optical filter

    NASA Technical Reports Server (NTRS)

    Yin, B.; Shay, T. M.

    1991-01-01

    A model for the Faraday anomalous dispersion optical filter is presented. The model predicts a bandwidth of 0.6 GHz and a transmission peak of 0.98 for a filter operating on the Cs (D2) line. The model includes hyperfine effects and is valid for arbitrary magnetic fields.

  18. Optical Propagation Modeling for the National Ignition Facility

    SciTech Connect

    Williams, W H; Auerbach, J M; Henesian, M A; Jancaitis, K S; Manes, K R; Mehta, N C; Orth, C D; Sacks, R A; Shaw, M J; Widmayer, C C

    2004-01-12

    Optical propagation modeling of the National Ignition Facility has been utilized extensively from conceptual design several years ago through to early operations today. In practice we routinely (for every shot) model beam propagation starting from the waveform generator through to the target. This includes the regenerative amplifier, the 4-pass rod amplifier, and the large slab amplifiers. Such models have been improved over time to include details such as distances between components, gain profiles in the laser slabs and rods, transient optical distortions due to the flashlamp heating of laser slabs, measured transmitted and reflected wavefronts for all large optics, the adaptive optic feedback loop, and the frequency converter. These calculations allow nearfield and farfield predictions in good agreement with measurements.

  19. A novel animal model of partial optic nerve transection established using an optic nerve quantitative amputator.

    PubMed

    Wang, Xu; Li, Ying; He, Yan; Liang, Hong-Sheng; Liu, En-Zhong

    2012-01-01

    Research into retinal ganglion cell (RGC) degeneration and neuroprotection after optic nerve injury has received considerable attention and the establishment of simple and effective animal models is of critical importance for future progress. In the present study, the optic nerves of Wistar rats were semi-transected selectively with a novel optic nerve quantitative amputator. The variation in RGC density was observed with retro-labeled fluorogold at different time points after nerve injury. The densities of surviving RGCs in the experimental eyes at different time points were 1113.69±188.83 RGC/mm² (the survival rate was 63.81% compared with the contralateral eye of the same animal) 1 week post surgery; 748.22±134.75/mm² (46.16% survival rate) 2 weeks post surgery; 505.03±118.67/mm² (30.52% survival rate) 4 weeks post surgery; 436.86±76.36/mm² (24.01% survival rate) 8 weeks post surgery; and 378.20±66.74/mm² (20.30% survival rate) 12 weeks post surgery. Simultaneously, we also measured the axonal distribution of optic nerve fibers; the latency and amplitude of pattern visual evoke potentials (P-VEP); and the variation in pupil diameter response to pupillary light reflex. All of these observations and profiles were consistent with post injury variation characteristics of the optic nerve. These results indicate that we effectively simulated the pathological process of primary and secondary injury after optic nerve injury. The present quantitative transection optic nerve injury model has increased reproducibility, effectiveness and uniformity. This model is an ideal animal model to provide a foundation for researching new treatments for nerve repair after optic nerve and/or central nerve injury.

  20. A Novel Animal Model of Partial Optic Nerve Transection Established Using an Optic Nerve Quantitative Amputator

    PubMed Central

    Wang, Xu; Li, Ying; He, Yan; Liang, Hong-Sheng; Liu, En-Zhong

    2012-01-01

    Background Research into retinal ganglion cell (RGC) degeneration and neuroprotection after optic nerve injury has received considerable attention and the establishment of simple and effective animal models is of critical importance for future progress. Methodology/Principal Findings In the present study, the optic nerves of Wistar rats were semi-transected selectively with a novel optic nerve quantitative amputator. The variation in RGC density was observed with retro-labeled fluorogold at different time points after nerve injury. The densities of surviving RGCs in the experimental eyes at different time points were 1113.69±188.83 RGC/mm2 (the survival rate was 63.81% compared with the contralateral eye of the same animal) 1 week post surgery; 748.22±134.75 /mm2 (46.16% survival rate) 2 weeks post surgery; 505.03±118.67 /mm2 (30.52% survival rate) 4 weeks post surgery; 436.86±76.36 /mm2 (24.01% survival rate) 8 weeks post surgery; and 378.20±66.74 /mm2 (20.30% survival rate) 12 weeks post surgery. Simultaneously, we also measured the axonal distribution of optic nerve fibers; the latency and amplitude of pattern visual evoke potentials (P-VEP); and the variation in pupil diameter response to pupillary light reflex. All of these observations and profiles were consistent with post injury variation characteristics of the optic nerve. These results indicate that we effectively simulated the pathological process of primary and secondary injury after optic nerve injury. Conclusions/Significance The present quantitative transection optic nerve injury model has increased reproducibility, effectiveness and uniformity. This model is an ideal animal model to provide a foundation for researching new treatments for nerve repair after optic nerve and/or central nerve injury. PMID:22973439

  1. Acute mountain sickness and retinal evaluation by optical coherence tomography.

    PubMed

    Ascaso, Francisco J; Nerín, María A; Villén, Laura; Morandeira, José R; Cristóbal, José A

    2012-01-01

    Acute mountain sickness (AMS), the commonest form of altitude illness, might represent early-stage high altitude cerebral edema (HACE). Optical coherence tomography (OCT) was used to evaluate optic nerve head (ONH) consequences following a sojourn to extreme altitude. This prospective study included 4 high-altitude expeditions in Himalayas. Twenty-four eyes of 12 healthy male climbers underwent baseline and postexpedition complete ophthalmic evaluation, including OCT to measure the peripapillary retinal nerve fiber layer (RNFL) thickness, ONH parameters, and macular thickness and volume. Lake Louise Scoring (LLS) self-report questionnaire was used to estimate AMS severity. All mountaineers experienced symptoms of AMS (LLS: 5.1±1.1, range 4.0-7.0). Average peripapillary RNFL thickness showed a significant increase in postexpedition examination (94±23 µm, 47-115), compared with baseline values (89±19 µm, range 45-114) (p=0.034). Superior (p=0.036) and temporal (p=0.010) quadrants also showed an increased RNFL thickness following exposure to high altitude. Vertical integrated rim area (VIRA) was significantly higher in postexpedition examination (0.71±0.43 mm(3), 0.14-1.50) than in baseline examination (0.51±0.26 mm(3), 0.11-1.00) (p=0.002). Horizontal integrated rim width was significantly higher in postexpedition examination (1.90±0.32 mm(2), range 1.37-2.34) than in baseline examination (1.77±0.27 mm(2), 1.27-2.08) (p=0.004). There was no correlation between LLS and OCT parameters (p>0.05). In climbers with AMS, OCT was able to detect subtle increases in the peripapillary RNFL thickness and in some ONH measurements, even in absence of HACE and papilledema. These changes might be a sensitive parameter in physiologic acclimatization and in the pathogenesis of AMS.

  2. Computer Modeling for Optical Waveguide Sensors.

    DTIC Science & Technology

    1987-12-15

    COSATI CODES 18 SUBJECT TERMS (Continue on reverse it necessary and cleritify by DIock numnerl FIEL GRUP SB-GOUP Optical waveguide sensors Computer...reflection. The resultant probe beam transmission may be plotted as a function of changes in the refractive index of the surrounding fluid medium. BASIC...all angles of incidence about the critical angle ecr. It should be noted that N in equation (3) is a function of e, since = sin - l sin 8 , see

  3. An electrical model of VCSEL as optical transmitter for optical printed circuit board

    NASA Astrophysics Data System (ADS)

    Kim, Do-Kyoon; Yoon, Young-Seol; Choi, Jin-Ho; Kim, Kyung-Min; Choi, Young-Wan; Lee, Seok

    2005-03-01

    Optical interconnection is recent issue for high-speed data transmission. The limitation of high-speed electrical data transmission is caused by impedance mismatching, electric field coupling, microwave loss, and different length of the electrical signal lines. To overcome these limitations, the electrical signal in the current electrical system has to be changed by the optical signal. The most suitable optical source in the OPCB (Optical Printed Circuit Board) is VCSEL (Vertical Cavity Surface Emitting Lasers) that is low-priced and has the characteristic of vertical surface emitting. In this paper, we propose an electrical model of the VCSEL as E/O converting devices for the OPCB. The equivalent circuit of the VCSEL based on the rate equations includes carrier dynamics and material properties. The rate equation parameters are obtained by full analysis based on rate equation and experiment results. The electrical model of the VCSEL has the series resistance determined by I-V characteristic curve, and the parallel capacitance by the parasitic response of the VCSEL chip. The bandwidth of the optical interconnection is analyzed considering those parameters. We design and fabricate the optical transmitter for OPCB considering proposed electrical model of VCSEL.

  4. Design and modeling of optical engine for LC rear projection display

    NASA Astrophysics Data System (ADS)

    Weng, Zhicheng; Zhang, Zengbao

    2002-12-01

    Based on analyzing the LC rear projective TV system, The OE (optical engine) for three penal LCoS rear projection TV system has been designed and modeled, The OE (optical engine) of LC rear projection display is the main component of the system, and it directly affects final performance, so the design of good color performance, high brightness and contrast and high optical efficient is the key of the system. From a commercial viewpoint, a compact size and light weight design makes it more competitive. LightTools software has a great many of powerful functions, such as modeling of optical system, analysis of illumination, modeling of machine structure, analysis of polarization and design of optical coating. We have used LightTools to analyses and optimize a whole optical engine of three penal LCoS projection display including illumination system, dividing and recombining of colors system, projection lens. At the end evaluated the performances of optical engine (parameters of output, uniformity, contract, resolution and so on).

  5. Accuracy evaluation of intraoral optical impressions: A clinical study using a reference appliance.

    PubMed

    Atieh, Mohammad A; Ritter, André V; Ko, Ching-Chang; Duqum, Ibrahim

    2017-09-01

    Trueness and precision are used to evaluate the accuracy of intraoral optical impressions. Although the in vivo precision of intraoral optical impressions has been reported, in vivo trueness has not been evaluated because of limitations in the available protocols. The purpose of this clinical study was to compare the accuracy (trueness and precision) of optical and conventional impressions by using a novel study design. Five study participants consented and were enrolled. For each participant, optical and conventional (vinylsiloxanether) impressions of a custom-made intraoral Co-Cr alloy reference appliance fitted to the mandibular arch were obtained by 1 operator. Three-dimensional (3D) digital models were created for stone casts obtained from the conventional impression group and for the reference appliances by using a validated high-accuracy reference scanner. For the optical impression group, 3D digital models were obtained directly from the intraoral scans. The total mean trueness of each impression system was calculated by averaging the mean absolute deviations of the impression replicates from their 3D reference model for each participant, followed by averaging the obtained values across all participants. The total mean precision for each impression system was calculated by averaging the mean absolute deviations between all the impression replicas for each participant (10 pairs), followed by averaging the obtained values across all participants. Data were analyzed using repeated measures ANOVA (α=.05), first to assess whether a systematic difference in trueness or precision of replicate impressions could be found among participants and second to assess whether the mean trueness and precision values differed between the 2 impression systems. Statistically significant differences were found between the 2 impression systems for both mean trueness (P=.010) and mean precision (P=.007). Conventional impressions had higher accuracy with a mean trueness of 17.0

  6. Evaluating optical properties of real photonic crystal fibers with compressed sensing based on non-subsampled contourlet transform

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Liu, Jing; Lou, Shuqin; Hou, Ya-Li; Chen, Houjin

    2017-09-01

    A real photonic crystal fibers (PCFs) evaluation approach based on compressed sensing with non-subsampled contourlet transform (NSCT) and the total variation model is proposed for modeling optical properties of the real PCFs. The classical images of a commercial large mode area PCF and polarization-maintaining PCF are used to verify the effectiveness of the proposed method. Experimental results demonstrate that the cross section images of real PCFs are rebuilt effectively by using only 36% image data for evaluating the optical properties with the same accuracy as by 100% data. To the best of our knowledge, this is the instance of applying the compressed sensing with the NSCT and total variation to reconstruct the cross section images of PCFs for quickly evaluating the optical properties of real PCFs without the requirement of long fiber samples and expensive measurement apparatuses.

  7. Electro-optic time lens model for femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Marinho, Francisco J.; Bernardo, Luís M.

    2008-04-01

    We propose an electro-optic time-lens (EOTL) model based on the coupled-mode theory. The model describes the propagation of a femtosecond pulse in an electro-optical crystal with parabolic refractive index modulation by a microwave. The proposed model integrates the second order dispersion approximation (β II ≠ 0) and takes into consideration the possible mismatch between the microwave phase velocity and the pulse group velocity. The coupled-mode theory uses the Hermite-Gaussian functions which are the modes of an ideal electro-optic time-lens. The model characterizes completely the performances of EOTL, including the aberrations, and it establishes the maximum velocity mismatch for which the pulse profile propagates through the crystal without significant distortion. The theoretical model is numerically implement considering the propagation of a short pulse in a Litium Niobate time-lens.

  8. Photonic encryption : modeling and functional analysis of all optical logic.

    SciTech Connect

    Tang, Jason D.; Schroeppel, Richard Crabtree; Robertson, Perry J.

    2004-10-01

    With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in the photonic domain to achieve the requisite encryption rates. This paper documents the innovations and advances of work first detailed in 'Photonic Encryption using All Optical Logic,' [1]. A discussion of underlying concepts can be found in SAND2003-4474. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines S-SEED devices and how discrete logic elements can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of S-SEED devices in an optical circuit was modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay

  9. Evaluating optical aberrations using fluorescent microspheres: methods, analysis, and corrective actions.

    PubMed

    Goodwin, Paul C

    2013-01-01

    Obtaining optimal performance from a microscopy system requires careful evaluation of the entire optics train of the imaging system. This evaluation starts with a fundamental evaluation of the optical components in the microscope. Concise and visual methods are provided for understanding the optical performance of the microscope as a system using subdiffraction fluorescent microspheres to evaluate both monochromatic and polychromatic aberrations. Further practical guides are given to troubleshooting optical problems and final comments are made on optimizing sample preparation. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Evaluation of choroidal thickness in psoriasis using optical coherence tomography.

    PubMed

    Türkcü, Fatih Mehmet; Şahin, Alparslan; Yüksel, Harun; Akkurt, Meltem; Uçmak, Derya; Çınar, Yasin; Yıldırım, Adnan; Çaça, İhsan

    2016-12-01

    The purpose of this study was to evaluate choroidal thickness (CT) in patients with psoriasis using enhanced depth imaging optical coherence tomography (EDI-OCT) and to determine its relationship with psoriasis activity indices. In this prospective study, EDI-OCT images were obtained in consecutive patients with psoriasis and in age-gender-matched healthy individuals. Comprehensive ophthalmic examination and EDI-OCT evaluation were performed. CT was measured in the subfoveal area. Correlation analyses were performed to identify the relationship of the CT with disease duration and clinical disease activity score. In total, 65 individuals were evaluated in this study, 35 with psoriasis and 30 controls. The mean disease duration of the patients with psoriasis was 15.7 ± 8.8 years (0.3-34 years). There was no difference between groups with respect to age and gender (p = 0.695 and p = 0.628, respectively). Five of the 35 patients with psoriasis had anterior uveitis. None of the patients with psoriasis had signs of posterior uveitis. CT was significantly higher in the psoriasis group than that of control subjects (p < 0.001). The mean central foveal thickness was comparable between groups (p = 0.672). There was also no significant correlation between EDI-OCT, disease activity score, and disease duration (p < 0.05). Choroidal thickness is increased in psoriasis patients. Large serial and comparative studies are necessary to evaluate EDI-OCT, an examination that may be helpful in understanding the effects of psoriasis on the eye and its pathophysiology.

  11. Retinal nerve fiber layer evaluation in multiple sclerosis with spectral domain optical coherence tomography

    PubMed Central

    Khanifar, Aziz A; Parlitsis, George J; Ehrlich, Joshua R; Aaker, Grant D; D’Amico, Donald J; Gauthier, Susan A; Kiss, Szilárd

    2010-01-01

    Purpose: Histopathologic studies have reported retinal nerve fiber layer (RNFL) thinning in various neurodegenerative diseases. Attempts to quantify this loss in vivo have relied on time-domain optical coherence tomography (TDOCT), which has low resolution and requires substantial interpolation of data for volume measurements. We hypothesized that the significantly higher resolution of spectral-domain optical coherence tomography (SDOCT) would better detect RNFL changes in patients with multiple sclerosis, and that RNFL thickness differences between eyes with and without optic neuritis might be identified more accurately. Methods: In this retrospective case series, patients with multiple sclerosis were recruited from the Judith Jaffe Multiple Sclerosis Center at Weill Cornell Medical College in New York. Patients with a recent clinical diagnosis of optic neuritis (less than three months) were excluded. Eyes with a history of glaucoma, optic neuropathy (other than multiple sclerosis-related optic neuritis), age-related macular degeneration, or other relevant retinal and/or optic nerve disease were excluded. Both eyes of each patient were imaged with the Heidelberg Spectralis® HRA + OCT. RNFL and macular thickness were measured for each eye using the Heidelberg OCT software. These measurements were compared with validated published normal values, and were modeled as linear functions of duration of disease. The odds of an optic neuritis diagnosis as a function of RNFL and macular thickness were calculated. Results: Ninety-four eyes were prospectively evaluated using OCT. Ages of patients ranged from 26 to 69 years, with an average age of 39 years. Peripapillary RNFL thinning was demonstrated in multiple sclerosis patients; mean RNFL thickness was 88.5 μm for individuals with multiple sclerosis compared with a reported normal value of 97 μm (P < 0.001). Eyes with a history of optic neuritis had more thinning compared with those without optic neuritis (83.0

  12. Evaluation strategies for CNSs: application of an evaluation model.

    PubMed

    Kennedy-Malone, L M

    1996-07-01

    Program development has become an essential role function for today's CNS, who must be able to evaluate programs to determine their efficacy. A useful evaluation guide is Stufflebeam's CIPP (context, input, process, and product) model, which includes a framework to evaluate indirect care measures directly affecting cost-effectiveness and accountability. The model's core consists of (1) context evaluation leading to informed, contemplated decisions; (2) input evaluation directing structured decisions; (3) process evaluation guiding implemented decisions; and (4) product evaluation serving to recycle decisions. Strategies for using Stufflebeam's CIPP model are described.

  13. Ray-tracing optical modeling of negative dysphotopsia

    NASA Astrophysics Data System (ADS)

    Hong, Xin; Liu, Yueai; Karakelle, Mutlu; Masket, Samuel; Fram, Nicole R.

    2011-12-01

    Negative dysphotopsia is a relatively common photic phenomenon that may occur after implantation of an intraocular lens. The etiology of negative dysphotopsia is not fully understood. In this investigation, optical modeling was developed using nonsequential-component Zemax ray-tracing technology to simulate photic phenomena experienced by the human eye. The simulation investigated the effects of pupil size, capsulorrhexis size, and bag diffusiveness. Results demonstrated the optical basis of negative dysphotopsia. We found that photic structures were mainly influenced by critical factors such as the capsulorrhexis size and the optical diffusiveness of the capsular bag. The simulations suggested the hypothesis that the anterior capsulorrhexis interacting with intraocular lens could induce negative dysphotopsia.

  14. Modeling the noise figure of an acousto-optic receiver

    NASA Astrophysics Data System (ADS)

    Ristic, V. M.; Lee, J. P. Y.

    1996-02-01

    By defining the processing gain of an acousto-optic receiver as the ratio of the signal-to-noise ratio at the output of the detector to the signal-to-noise ratio of the intermediate-frequency input, one can model a noise figure for the acousto-optic receiver. The noise figure has a minimum of 0 dB and depends on the ratio of the noise power (internal to the acousto-optic cell) to the intermediate-frequency input noise power multiplied by the frequency and the spatially dependent exponential factor.

  15. Optical coherence tomography for nondestructive evaluation of fuel rod degradation

    SciTech Connect

    Renshaw, Jeremy B.; Jenkins, Thomas P. Buckner, Benjamin D.; Friend, Brian

    2015-03-31

    Nuclear power plants regularly inspect fuel rods to ensure safe and reliable operation. Excessive corrosion can cause fuel failures which can have significant repercussions for the plant, including impacts on plant operation, worker exposure to radiation, and the plant's INPO rating. While plants typically inspect for fuel rod corrosion using eddy current techniques, these techniques have known issues with reliability in the presence of tenacious, ferromagnetic crud layers that can deposit during operation, and the nondestructive evaluation (NDE) inspection results can often be in error by a factor of 2 or 3. For this reason, alternative measurement techniques, such as Optical Coherence Tomography (OCT), have been evaluated that are not sensitive to the ferromagnetic nature of the crud. This paper demonstrates that OCT has significant potential to characterize the thickness of crud layers that can deposit on the surfaces of fuel rods during operation. Physical trials have been performed on simulated crud samples, and the resulting data show an apparent correlation between the crud layer thickness and the OCT signal.

  16. Optical coherence tomography for nondestructive evaluation of fuel rod degradation

    NASA Astrophysics Data System (ADS)

    Renshaw, Jeremy B.; Jenkins, Thomas P.; Buckner, Benjamin D.; Friend, Brian

    2015-03-01

    Nuclear power plants regularly inspect fuel rods to ensure safe and reliable operation. Excessive corrosion can cause fuel failures which can have significant repercussions for the plant, including impacts on plant operation, worker exposure to radiation, and the plant's INPO rating. While plants typically inspect for fuel rod corrosion using eddy current techniques, these techniques have known issues with reliability in the presence of tenacious, ferromagnetic crud layers that can deposit during operation, and the nondestructive evaluation (NDE) inspection results can often be in error by a factor of 2 or 3. For this reason, alternative measurement techniques, such as Optical Coherence Tomography (OCT), have been evaluated that are not sensitive to the ferromagnetic nature of the crud. This paper demonstrates that OCT has significant potential to characterize the thickness of crud layers that can deposit on the surfaces of fuel rods during operation. Physical trials have been performed on simulated crud samples, and the resulting data show an apparent correlation between the crud layer thickness and the OCT signal.

  17. AeroCom INSITU Project: Comparing modeled and measured aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Andrews, Elisabeth; Schmeisser, Lauren; Schulz, Michael; Fiebig, Markus; Ogren, John; Bian, Huisheng; Chin, Mian; Easter, Richard; Ghan, Steve; Kokkola, Harri; Laakso, Anton; Myhre, Gunnar; Randles, Cynthia; da Silva, Arlindo; Stier, Phillip; Skeie, Ragnehild; Takemura, Toshihiko; van Noije, Twan; Zhang, Kai

    2016-04-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data has the unique property of being traceable to physical standards, which is an asset in accomplishing the overall goal of bettering the accuracy of aerosols processes and the predicative capability of global climate models. Here we compare dry, in-situ aerosol scattering and absorption data from ~75 surface, in-situ sites from various global aerosol networks (including NOAA, EUSAAR/ACTRIS and GAW) with a simulated optical properties from a suite of models participating in the AeroCom project. We report how well models reproduce aerosol climatologies for a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis suggest substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography. Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol behaviors, for example, the tendency of in-situ single scattering albedo to decrease with decreasing aerosol extinction coefficient. The endgoal of the INSITU project is to identify specific

  18. Optical modelling data for room temperature optical properties of organic–inorganic lead halide perovskites

    PubMed Central

    Jiang, Yajie; Green, Martin A.; Sheng, Rui; Ho-Baillie, Anita

    2015-01-01

    The optical properties of perovskites at ambient temperatures are important both to the design of optimised solar cells as well as in other areas such as the refinement of electronic band structure calculations. Limited previous information on the optical modelling has been published. The experimental fitting parameters for optical constants of CH3NH3PbI3−xClx and CH3NH3PbI3 perovskite films are reported at 297 K as determined by detailed analysis of reflectance and transmittance data. The data in this study is related to the research article “Room temperature optical properties of organic–inorganic lead halide perovskites” in Solar Energy Materials & Solar Cells [1]. PMID:26217745

  19. An Evaluation of Grazing-Incidence Optics for Neutron Imaging

    NASA Technical Reports Server (NTRS)

    Gubarev, M. V.

    2007-01-01

    The refractive index for most materials is slightly less than unity, which opens an opportunity to develop the grazing incidence neutron imaging optics. The ideal material for the optics would be natural nickel and its isotopes. Marshall Space Flight Center (MSFC) has active development program on the nickel replicated optics for use in x-ray astronomy. Brief status report on the program is presented. The results of the neutron focusing optic test carried by the MSFC team at National Institute of Standards and Technology (NIST) are also presented. Possible applications of the optics are briefly discussed.

  20. Eikonal solutions to optical model coupled-channel equations

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Khandelwal, Govind S.; Maung, Khin M.; Townsend, Lawrence W.; Wilson, John W.

    1988-01-01

    Methods of solution are presented for the Eikonal form of the nucleus-nucleus coupled-channel scattering amplitudes. Analytic solutions are obtained for the second-order optical potential for elastic scattering. A numerical comparison is made between the first and second order optical model solutions for elastic and inelastic scattering of H-1 and He-4 on C-12. The effects of bound-state excitations on total and reaction cross sections are also estimated.

  1. Remark on: the neutron spherical optical-model absorption.

    SciTech Connect

    Smith, A. B.; Nuclear Engineering Division

    2007-06-30

    The energy-dependent behavior of the absorption term of the spherical neutron optical potential for doubly magic {sup 208}Pb and the neighboring {sup 209}Bi is examined. These considerations suggest a phenomenological model that results in an intuitively attractive energy dependence of the imaginary potential that provides a good description of the observed neutron cross sections and that is qualitatively consistent with theoretical concepts. At the same time it provides an alternative to some of the arbitrary assumptions involved in many conventional optical-model interpretations reported in the literature and reduces the number of the parameters of the model.

  2. Evaluation of insertion characteristics of less invasive Si optoneural probe with embedded optical fiber

    NASA Astrophysics Data System (ADS)

    Morikawa, Takumi; Harashima, Takuya; Kino, Hisashi; Fukushima, Takafumi; Tanaka, Tetsu

    2017-04-01

    A less invasive Si optoneural probe with an embedded optical fiber was proposed and successfully fabricated. The diameter of the optical fiber was completely controlled by hydrogen fluoride etching, and the thinned optical fiber can propagate light without any leakage. This optical fiber was embedded in a trench formed inside a probe shank, which causes less damage to tissues. In addition, it was confirmed that the optical fiber embedded in the probe shank successfully irradiated light to optically stimulate gene transfected neurons. The electrochemical impedance of the probe did not change despite the light irradiation. Furthermore, probe insertion characteristics were evaluated in detail and less invasive insertion was clearly indicated for the Si optoneural probe with the embedded optical fiber compared with conventional optical neural probes. This neural probe with the embedded optical fiber can be used as a simple and easy tool for optogenetics and brain science.

  3. A theoretical model for optical oximetry at the capillary-level by optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Rongrong; Spicer, Graham; Chen, Siyu; Zhang, Hao F.; Yi, Ji; Backman, Vadim

    2017-02-01

    Oxygen saturation (sO2) of RBCs in capillaries can indirectly assess local tissue oxygenation and metabolic function. For example, the altered retinal oxygenation in diabetic retinopathy and local hypoxia during tumor development in cancer are reflected by abnormal sO2 of local capillary networks. However, it is far from clear whether accurate label-free optical oximetry (i.e. measuring hemoglobin sO2) is feasible from dispersed red blood cells (RBCs) at the single-capillary level. The sO2-dependent hemoglobin absorption contrast present in optical scattering signal is complicated by geometry-dependent scattering from RBCs. Here we provide a theoretical model to calculate the backscattering spectra of single RBCs based on the first-order Born approximation, considering the orientation, size variation, and deformation of RBCs. We show that the oscillatory spectral behavior of RBC geometries is smoothed by variations in cell size and orientation, resulting in clear sO2-dependent spectral contrast. In addition, this spectral contrast persists with different deformations of RBCs, allowing the sO2 of individual RBCs in capillaries to be characterized. The theoretical model is verified by Mie theory and experiments using visible light optical coherence tomography (vis-OCT). Thus, this study shows for the first time the feasibility of, and provides a theoretical model for, label-free optical oximetry at the single-capillary level by backscattering-based imaging modalities, challenging the popular view that such measurements are impossible at the single-capillary level. This is promising for in vivo backscattering-based optical oximetry at the single-capillary level, to measure local capillary sO2 for early diagnosis, progression monitoring, and treatment evaluation of diabetic retinopathy and cancer.

  4. Optical linear algebra processors - Noise and error-source modeling

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  5. Optical linear algebra processors - Noise and error-source modeling

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  6. Optical linear algebra processors: noise and error-source modeling.

    PubMed

    Casasent, D; Ghosh, A

    1985-06-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  7. Modeling and analysis of novel laser weld joint designs using optical ray tracing.

    SciTech Connect

    Milewski, J. O.

    2002-01-01

    Reflection of laser energy presents challenges in material processing that can lead to process inefficiency or process instability. Understanding the fundamentals of non-imaging optics and the reflective propagation of laser energy can allow process and weld joint designs to take advantage of these reflections to enhance process efficiency or mitigate detrimental effects. Optical ray tracing may be used within a 3D computer model to evaluate novel joint and fixture designs for laser welding that take advantage of the reflective propagation of laser energy. This modeling work extends that of previous studies by the author and provides comparison with experimental studies performed on highly reflective metals. Practical examples are discussed.

  8. Progress in NEXT Ion Optics Modeling

    NASA Technical Reports Server (NTRS)

    Emhoff, Jerold W.; Boyd, Iain D.

    2004-01-01

    Results are presented from an ion optics simulation code applied to the NEXT ion thruster geometry. The error in the potential field solver of the code is characterized, and methods and requirements for reducing this error are given. Results from a study on electron backstreaming using the improved field solver are given and shown to compare much better to experimental results than previous studies. Results are also presented on a study of the beamlet behavior in the outer radial apertures of the NEXT thruster. The low beamlet currents in this region allow over-focusing of the beam, causing direct impingement of ions on the accelerator grid aperture wall. Different possibilities for reducing this direct impingement are analyzed, with the conclusion that, of the methods studied, decreasing the screen grid aperture diameter eliminates direct impingement most effectively.

  9. Long-term evaluation of Leber's hereditary optic neuropathy-like symptoms in rotenone administered rats.

    PubMed

    Zhang, Li; Liu, Laura; Philip, Ann L; Martinez, Juan C; Guttierez, Juan C; Marella, Mathieu; Patki, Gaurav; Matsuno-Yagi, Akemi; Yagi, Takao; Thomas, Biju B

    2015-01-12

    Leber's hereditary optic neuropathy (LHON) is an inherited disorder affecting the retinal ganglion cells (RGCs) and their axons that lead to the loss of central vision. This study is aimed at evaluating the LHON symptoms in rats administered with rotenone microspheres into the superior colliculus (SC). Optical coherence tomography (OCT) analysis showed substantial loss of retinal nerve fiber layer (RNFL) thickness in rotenone injected rats. Optokinetic testing in rotenone treated rats showed decrease in head-tracking response. Electrophysiological mapping of the SC surface demonstrated attenuation of visually evoked responses; however, no changes were observed in the ERG data. The progressive pattern of disease manifestation in rotenone administered rats demonstrated several similarities with human disease symptoms. These rats with LHON-like symptoms can serve as a model for future investigators to design and implement reliable tests to assess the beneficial effects of therapeutic interventions for LHON disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Systematic evaluation of atmospheric chemistry-transport model CHIMERE

    NASA Astrophysics Data System (ADS)

    Khvorostyanov, Dmitry; Menut, Laurent; Mailler, Sylvain; Siour, Guillaume; Couvidat, Florian; Bessagnet, Bertrand; Turquety, Solene

    2017-04-01

    Regional-scale atmospheric chemistry-transport models (CTM) are used to develop air quality regulatory measures, to support environmentally sensitive decisions in the industry, and to address variety of scientific questions involving the atmospheric composition. Model performance evaluation with measurement data is critical to understand their limits and the degree of confidence in model results. CHIMERE CTM (http://www.lmd.polytechnique.fr/chimere/) is a French national tool for operational forecast and decision support and is widely used in the international research community in various areas of atmospheric chemistry and physics, climate, and environment (http://www.lmd.polytechnique.fr/chimere/CW-articles.php). This work presents the model evaluation framework applied systematically to the new CHIMERE CTM versions in the course of the continuous model development. The framework uses three of the four CTM evaluation types identified by the Environmental Protection Agency (EPA) and the American Meteorological Society (AMS): operational, diagnostic, and dynamic. It allows to compare the overall model performance in subsequent model versions (operational evaluation), identify specific processes and/or model inputs that could be improved (diagnostic evaluation), and test the model sensitivity to the changes in air quality, such as emission reductions and meteorological events (dynamic evaluation). The observation datasets currently used for the evaluation are: EMEP (surface concentrations), AERONET (optical depths), and WOUDC (ozone sounding profiles). The framework is implemented as an automated processing chain and allows interactive exploration of the results via a web interface.

  11. Diffusion model of the optical absorbance of whole blood.

    PubMed

    Steinke, J M; Shepherd, A P

    1988-06-01

    Photon-diffusion theory has had limited success in modeling the optical transmittance of whole blood. Therefore we have developed a new photon-diffusion model of the optical absorbance of blood. The model has benefited from experiments designed to test its fundamental assumptions, and it has been compared extensively with transmittance data from whole blood. The model is consistent with both experimental and theoretical notions. Furthermore, when all parameters associated with a given optical geometry are known, the model needs no variational parameters to predict the absolute transmittance of whole blood. However, even if the exact value of the incident light intensity is unknown (which is the case in many situations), only a single additive constant is required to scale experiment to theory. Finally, the model is shown to be useful for simulating scattering effects and for delineating the relative contributions of the diffuse transmittance and the collimated transmittance to the total optical density of whole blood. Applications of the model include oximetry and measurements of the arteriovenous oxygen difference in whole, undiluted blood.

  12. Cost Modeling for Space Optical Telescope Assemblies

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda

    2011-01-01

    Parametric cost models are used to plan missions, compare concepts and justify technology investments. This paper reviews an on-going effort to develop cost modes for space telescopes. This paper summarizes the methodology used to develop cost models and documents how changes to the database have changed previously published preliminary cost models. While the cost models are evolving, the previously published findings remain valid: it costs less per square meter of collecting aperture to build a large telescope than a small telescope; technology development as a function of time reduces cost; and lower areal density telescopes cost more than more massive telescopes.

  13. Modeling and model-aware signal processing methods for enhancement of optical systems

    NASA Astrophysics Data System (ADS)

    Aksoylar, Aydan

    Theoretical and numerical modeling of optical systems are increasingly being utilized in a wide range of areas in physics and engineering for characterizing and improving existing systems or developing new methods. This dissertation focuses on determining and improving the performance of imaging and non-imaging optical systems through modeling and developing model-aware enhancement methods. We evaluate the performance, demonstrate enhancements in terms of resolution and light collection efficiency, and improve the capabilities of the systems through changes to the system design and through post-processing techniques. We consider application areas in integrated circuit (IC) imaging for fault analysis and malicious circuitry detection, and free-form lens design for creating prescribed illumination patterns. The first part of this dissertation focuses on sub-surface imaging of ICs for fault analysis using a solid immersion lens (SIL) microscope. We first derive the Green's function of the microscope and use it to determine its resolution limits for bulk silicon and silicon-on-insulator (SOI) chips. We then propose an optimization framework for designing super-resolving apodization masks that utilizes the developed model and demonstrate the trade-offs in designing such masks. Finally, we derive the full electromagnetic model of the SIL microscope that models the image of an arbitrary sub-surface structure. With the rapidly shrinking dimensions of ICs, we are increasingly limited in resolving the features and identifying potential modifications despite the resolution improvements provided by the state-of-the-art microscopy techniques and enhancement methods described here. In the second part of this dissertation, we shift our focus away from improving the resolution and consider an optical framework that does not require high resolution imaging for detecting malicious circuitry. We develop a classification-based high-throughput gate identification method that utilizes

  14. Evaluating models of vowel perception

    NASA Astrophysics Data System (ADS)

    Molis, Michelle R.

    2005-08-01

    There is a long-standing debate concerning the efficacy of formant-based versus whole spectrum models of vowel perception. Categorization data for a set of synthetic steady-state vowels were used to evaluate both types of models. The models tested included various combinations of formant frequencies and amplitudes, principal components derived from excitation patterns, and perceptually scaled LPC cepstral coefficients. The stimuli were 54 five-formant synthesized vowels that had a common F1 frequency and varied orthogonally in F2 and F3 frequency. Twelve speakers of American English categorized the stimuli as the vowels /smcapi/, /capomega/, or /hkbkeh/. Results indicate that formant frequencies provided the best account of the data only if nonlinear terms, in the form of squares and cross products of the formant values, were also included in the analysis. The excitation pattern principal components also produced reasonably accurate fits to the data. Although a wish to use the lowest-dimensional representation would dictate that formant frequencies are the most appropriate vowel description, the relative success of richer, more flexible, and more neurophysiologically plausible whole spectrum representations suggests that they may be preferred for understanding human vowel perception.

  15. α-Cluster Optical Potential Model of 40Ca

    NASA Astrophysics Data System (ADS)

    Mahmoud, Zakaria M. M.; Behairy, Kassem O.

    2017-04-01

    Elastic scattering of α + 40Ca is analyzed in the framework of the optical model. We adopted an independent α-cluster model to generate the α-cluster and matter density of 40Ca. We proposed a parametrized form for the α-cluster density and fixed its parameters according to the available experimental data about the α-particle and 40Ca nuclei. The obtained α-cluster density of 40Ca is used to generate the real part of the optical potential. The single folding procedure is used to generate this real optical potential with two different effective α-α interactions. The real calculated potential supplied with an imaginary Woods-Saxon squared potential is used to analyze 20 sets of experimental data in the energy range between 18 and 166 MeV. We found that our model is successful in reproducing the data for energies above 40 MeV and still doubtful for lower energies.

  16. Optical model of the blood in large retinal vessels.

    PubMed

    Denninghoff, K R; Smith, M H

    2000-10-01

    Several optical techniques that investigate blood contained within the retinal vessels are available or under development. We present a mechanical model that simulates the optical properties of the eye, the retinal vessels, and the ocular fundus. A micropipette is chosen as the retinal vessel model, and a mechanical housing is constructed to simulate the eyeball. Spectralon is used to simulate the retinal layers. Filling the eye with fluid index matched to the glass pipette eliminates reflection and refraction effects from the pipette. An apparatus is constructed and used to set the oxygen, nitrogen, and carbon dioxide concentrations in whole human blood. These whole blood samples are pumped through the pipette at 34 microL/min. Measurements made in the model eye closely resemble measurements made in the human eye. This apparatus is useful for developing the science and testing the systems that optically investigate blood and blood flow in the large retinal vessels.

  17. α-Cluster Optical Potential Model of 40Ca

    NASA Astrophysics Data System (ADS)

    Mahmoud, Zakaria M. M.; Behairy, Kassem O.

    2017-01-01

    Elastic scattering of α + 40Ca is analyzed in the framework of the optical model. We adopted an independent α-cluster model to generate the α-cluster and matter density of 40Ca. We proposed a parametrized form for the α-cluster density and fixed its parameters according to the available experimental data about the α-particle and 40Ca nuclei. The obtained α-cluster density of 40Ca is used to generate the real part of the optical potential. The single folding procedure is used to generate this real optical potential with two different effective α-α interactions. The real calculated potential supplied with an imaginary Woods-Saxon squared potential is used to analyze 20 sets of experimental data in the energy range between 18 and 166 MeV. We found that our model is successful in reproducing the data for energies above 40 MeV and still doubtful for lower energies.

  18. Impact of Using Assimilated Data for Evaluating Performance of Active CO2 Optical Depth Measurements

    NASA Astrophysics Data System (ADS)

    Kooi, S. A.; Harrison, F. W.; Lin, B.; Ismail, S.; Browell, E. V.; Yang, M. M.; Choi, Y.

    2015-12-01

    NASA has recently conducted multiple DC-8 flight campaigns of candidate instruments for the future Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. For each campaign, the precision and accuracy of the remote measurements of atmospheric CO2 differential absorption optical depths from the candidate instruments were evaluated with respect to corresponding CO2 optical depths derived from in situ profiles of atmospheric state variables including atmospheric CO2 mixing ratios, temperature (T), pressure (p), and humidity (q) and radiative transfer calculations using the HITRAN spectroscopic database in combination with recent measurements of spectral line parameters. To enable this evaluation, the DC-8 flights were designed to include multiple overpasses of a comparison location where the aircraft performed a spiral ascent or descent and captured the in situ profiles using a suite of onboard instruments. However large segments of some flights took place far from spiral locations and therefore had no coincident in situ measurements of the atmospheric state (CO2, T, p, q). For these situations meterological analysis data from the Goddard Modeling and Assimilation Office (GMAO) GEOS-5 gridded data have been used to assimilate atmospheric state profiles for use in the CO2 optical depth derivation. We use the location of the DC-8 spirals to identify all of the GMAO GEOS-5 gridded profiles that would compare with each spiral and report their differences with respect to the DC-8 in situ profiles. We show how these differences affect the in situ derived CO2 optical depth for the three campaigns and the impacts of these differences on the precision and accuracy evaluations of the remote CO2 measurements.

  19. Simple evaluation method of multimode polymer optical waveguides for next generation FTTH application

    NASA Astrophysics Data System (ADS)

    Sugihara, Okihiro; Kaino, Toshikuni; Shibata, Shinya; Takayama, Kazuya; Selvan, J. S.; Hirano, Koki; Ushiwaka, Takami; Yasuda, Hiroki; Itoh, Yuzo; Morimoto, Masahito; Yagi, Shogo; Sugita, Akio; Shimizu, Keishi; Akutsu, Eiichi; Matsui, Yoko; Tajiri, Kozo

    2007-09-01

    Polymer optical waveguide devices are getting popular for next generation FTTH application. In order to accelerate the development of polymer optical devices, evaluation of waveguide characteristics should be speeded up. Polymer optical chip containing a combination of 45°-angled cut waveguide, Y-splitter and S-bend structures was designed and fabricated for simple evaluation of multimode waveguides. Input launching such as light source, mode scrambler was investigated for reliable measurement.

  20. Optical neural stimulation modeling on degenerative neocortical neural networks

    NASA Astrophysics Data System (ADS)

    Zverev, M.; Fanjul-Vélez, F.; Salas-García, I.; Arce-Diego, J. L.

    2015-07-01

    Neurodegenerative diseases usually appear at advanced age. Medical advances make people live longer and as a consequence, the number of neurodegenerative diseases continuously grows. There is still no cure for these diseases, but several brain stimulation techniques have been proposed to improve patients' condition. One of them is Optical Neural Stimulation (ONS), which is based on the application of optical radiation over specific brain regions. The outer cerebral zones can be noninvasively stimulated, without the common drawbacks associated to surgical procedures. This work focuses on the analysis of ONS effects in stimulated neurons to determine their influence in neuronal activity. For this purpose a neural network model has been employed. The results show the neural network behavior when the stimulation is provided by means of different optical radiation sources and constitute a first approach to adjust the optical light source parameters to stimulate specific neocortical areas.

  1. Grid Erosion Modeling of the NEXT Ion Thruster Optics

    NASA Technical Reports Server (NTRS)

    Ernhoff, Jerold W.; Boyd, Iain D.; Soulas, George (Technical Monitor)

    2003-01-01

    Results from several different computational studies of the NEXT ion thruster optics are presented. A study of the effect of beam voltage on accelerator grid aperture wall erosion shows a non-monotonic, complex behavior. Comparison to experimental performance data indicates improvements in simulation of the accelerator grid current, as well as very good agreement with other quantities. Also examined is the effect of ion optics choice on the thruster life, showing that TAG optics provide better margin against electron backstreaming than NSTAR optics. The model is used to predict the change in performance with increasing accelerator grid voltage, showing that although the current collected on the accel grid downstream face increases, the erosion rate decreases. A study is presented for varying doubly-ionized Xenon current fraction. The results show that performance data is not extremely sensitive to the current fraction.

  2. Improved evaluation of optical depth components from Langley plot data

    NASA Technical Reports Server (NTRS)

    Biggar, S. F.; Gellman, D. I.; Slater, P. N.

    1990-01-01

    A simple, iterative procedure to determine the optical depth components of the extinction optical depth measured by a solar radiometer is presented. Simulated data show that the iterative procedure improves the determination of the exponent of a Junge law particle size distribution. The determination of the optical depth due to aerosol scattering is improved as compared to a method which uses only two points from the extinction data. The iterative method was used to determine spectral optical depth components for June 11-13, 1988 during the MAC III experiment.

  3. Radar Evaluation of Optical Cloud Constraints to Space Launch Operations

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Short, David A.; Ward, Jennifer G.

    2005-01-01

    Weather constraints to launching space vehicles are designed to prevent loss of the vehicle or mission due to weather hazards (See, e.g., Ref 1). Constraints include Lightning Launch Commit Criteria (LLCC) designed to avoid natural and triggered lightning. The LLCC currently in use at most American launch sites including the Eastern Range and Kennedy Space Center require the Launch Weather Officer to determine the height of cloud bases and tops, the location of cloud edges, and cloud transparency. The preferred method of making these determinations is visual observation, but when that isn't possible due to darkness or obscured vision, it is permissible to use radar. This note examines the relationship between visual and radar observations in three ways: A theoretical consideration of the relationship between radar reflectivity and optical transparency. An observational study relating radar reflectivity to cloud edge determined from in-situ measurements of cloud particle concentrations that determine the visible cloud edge. An observational study relating standard radar products to anvil cloud transparency. It is shown that these three approaches yield results consistent with each other and with the radar threshold specified in Reference 2 for LLCC evaluation.

  4. Marginal integrity evaluation of dental composite using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Stan, Adrian-Tudor; Cojocariu, Andreea-Codruta; Antal, Anca Adriana; Topala, Florin; Sinescu, Cosmin; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian Gh.

    2016-03-01

    In clinical dental practice it is often difficult or even impossible to distinguish and control interfacial adhesive defects from adhesive restorations using visual inspection or other traditional diagnostic methods. Nonetheless, non-invasive biomedical imaging methods like Optical Coherence Tomography (OCT) may provide a better view in this diagnostic outline. The aim of this study is to explore evaluations of the marginal adaptation of class I resin composites restorations using Time Domain (TD) OCT. Posterior human teeth have been chosen for this study. The teeth were stored in 0.9% physiological saline solution prior to use. A classical round-shaped class I cavity was prepared and cavities were restored with Charisma Diamond composite by Heraeus Kulzer and using a system of etch and rinse boding. The specimens were subjected to water storage and then to thermo-cycling. Three dimensional (3-D) scans of the restoration were obtained using a TD-OCT system centered at a 1300 nm wavelength. Open marginal adaptation at the interfaces and gaps inside the composite resins materials were identified using the proposed method. In conclusion, OCT has numerous advantages which justify its use for in vitro, as well as for in vivo studies. It can therefore be considered for non-invasive and fast detection of gaps at the restoration interface.

  5. Optical coherence tomography for evaluation of enamel and protective coatings.

    PubMed

    Alsayed, Ehab Z; Hariri, Ilnaz; Sadr, Alireza; Nakashima, Syozi; Bakhsh, Turki A; Shimada, Yasushi; Sumi, Yasunori; Tagami, Junji

    2015-01-01

    Optical coherence tomography (OCT) is an interferometric imaging technique. This study aimed to employ OCT to evaluate four different resin-based materials including a coating containing glass-ionomer filler and calcium, a giomer, and two fluoride-releasing self-etch resins. The coating and its underlying and adjacent enamel were monitored using swept-source OCT (center wavelength: 1330 nm) at baseline, after 5,000 thermal cycles, and after 1, 4 and 7 days of demineralization (pH 4.5). The coatings showed different thicknesses (60-250 micrometers) and various levels of structural and interfacial integrity. OCT could detect a demineralization inhibition zone adjacent to the edge of the fluoride- and calcium-releasing material. Localized demineralization was occasionally observed under thinner coatings. Protection of susceptible enamel surfaces by thin resin-based bioactive coatings provides protection from demineralization. OCT can be used to non-destructively monitor the integrity of such coatings, as well as enamel changes beneath and adjacent to them.

  6. Evaluation of fingerprint deformation using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Gutierrez da Costa, Henrique S.; Maxey, Jessica R.; Silva, Luciano; Ellerbee, Audrey K.

    2014-02-01

    Biometric identification systems have important applications to privacy and security. The most widely used of these, print identification, is based on imaging patterns present in the fingers, hands and feet that are formed by the ridges, valleys and pores of the skin. Most modern print sensors acquire images of the finger when pressed against a sensor surface. Unfortunately, this pressure may result in deformations, characterized by changes in the sizes and relative distances of the print patterns, and such changes have been shown to negatively affect the performance of fingerprint identification algorithms. Optical coherence tomography (OCT) is a novel imaging technique that is capable of imaging the subsurface of biological tissue. Hence, OCT may be used to obtain images of subdermal skin structures from which one can extract an internal fingerprint. The internal fingerprint is very similar in structure to the commonly used external fingerprint and is of increasing interest in investigations of identify fraud. We proposed and tested metrics based on measurements calculated from external and internal fingerprints to evaluate the amount of deformation of the skin. Such metrics were used to test hypotheses about the differences of deformation between the internal and external images, variations with the type of finger and location inside the fingerprint.

  7. Engineering Evaluation of the Optacon (OPtical to TActile CONverter). Final Report.

    ERIC Educational Resources Information Center

    DeBenedictis, John A.

    An independent engineering evaluation was conducted of the Optical to Tactile Converter (Optacon), a reading aid for the blind which senses the contrast of printed text and converts the information into a tactile presentation. Tasks performed included: user evaluation, optical, electrical, mechanical, production costs, life tests, reliability, and…

  8. Performance Evaluation of Large Aperture 'Polished Panel' Optical Receivers Based on Experimental Data

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor

    2013-01-01

    Recent interest in hybrid RF/Optical communications has led to the development and installation of a "polished-panel" optical receiver evaluation assembly on the 34-meter research antenna at Deep-Space Station 13 (DSS-13) at NASA's Goldstone Communications Complex. The test setup consists of a custom aluminum panel polished to optical smoothness, and a large-sensor CCD camera designed to image the point-spread function (PSF) generated by the polished aluminum panel. Extensive data has been obtained via realtime tracking and imaging of planets and stars at DSS-13. Both "on-source" and "off-source" data were recorded at various elevations, enabling the development of realistic simulations and analytic models to help determine the performance of future deep-space communications systems operating with on-off keying (OOK) or pulse-position-modulated (PPM) signaling formats with photon-counting detection, and compared with the ultimate quantum bound on detection performance for these modulations. Experimentally determined PSFs were scaled to provide realistic signal-distributions across a photon-counting detector array when a pulse is received, and uncoded as well as block-coded performance analyzed and evaluated for a well-known class of block codes.

  9. Performance evaluation of large aperture "polished panel" optical receivers based on experimental data

    NASA Astrophysics Data System (ADS)

    Vilnrotter, V.

    Recent interest in the development of hybrid RF/Optical communications has led to the installation of a “ polished-panel” optical receiver evaluation assembly on the 34-meter research antenna at Deep-Space Station 13 (DSS-13) at NASA's Goldstone Deep Space Communications Complex1. The test setup consists of a custom aluminum panel polished to optical smoothness, and a large-sensor CCD camera designed to image the point-spread function (PSF) generated by the polished aluminum panel. Extensive data has been obtained via real-time tracking and imaging of planets and stars at DSS-13. Both “ on-source” and “ off-source” data were recorded at various elevations, enabling the development of realistic simulations and analytic models to help determine the performance of future deep-space communications systems operating with on-off keying (OOK) or pulse-position-modulated (PPM) signaling formats, and compared with the ultimate quantum bound on detection performance. Experimentally determined PSFs were scaled to provide realistic signal-distributions across a photon-counting detector array when a pulse is received, and uncoded as well as block-coded performance analyzed and evaluated for a well-known class of block codes.

  10. Performance Evaluation of Large Aperture 'Polished Panel' Optical Receivers Based on Experimental Data

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor

    2013-01-01

    Recent interest in hybrid RF/Optical communications has led to the development and installation of a "polished-panel" optical receiver evaluation assembly on the 34-meter research antenna at Deep-Space Station 13 (DSS-13) at NASA's Goldstone Communications Complex. The test setup consists of a custom aluminum panel polished to optical smoothness, and a large-sensor CCD camera designed to image the point-spread function (PSF) generated by the polished aluminum panel. Extensive data has been obtained via realtime tracking and imaging of planets and stars at DSS-13. Both "on-source" and "off-source" data were recorded at various elevations, enabling the development of realistic simulations and analytic models to help determine the performance of future deep-space communications systems operating with on-off keying (OOK) or pulse-position-modulated (PPM) signaling formats with photon-counting detection, and compared with the ultimate quantum bound on detection performance for these modulations. Experimentally determined PSFs were scaled to provide realistic signal-distributions across a photon-counting detector array when a pulse is received, and uncoded as well as block-coded performance analyzed and evaluated for a well-known class of block codes.

  11. Root canal filling evaluation using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Negrutiu, Meda L.; Sinescu, Cosmin; Topala, Florin; Nica, Luminita; Ionita, Ciprian; Marcauteanu, Corina; Goguta, Luciana; Bradu, Adrian; Dobre, George; Rominu, Mihai; Podoleanu, Adrian Gh.

    2010-04-01

    Endodontic therapy consists in cleaning and shaping the root canal system, removing organic debris and sealing the intra-canal space with permanent filling materials. The purpose of this study was to evaluate various root canal fillings in order to detect material defects, the marginal adaptation at the root canal walls and to assess the quality of the apical sealing. 21 extracted single-root canal human teeth were selected for this study. We instrumented all roots using NiTi rotary instruments. All canals were enlarged with a 6% taper size 30 GT instrument, 0,5 mm from the anatomical apex. The root canals were irrigated with 5% sodium hypochlorite, followed by 17% ethylenediaminetetraacetic acid (EDTA). After the instrumentation was completed, the root canals were obturated using a thermoplasticizable polymer of polyesters. In order to assess the defects inside the filling material and the marginal fit to the root canal walls, the conebeam micro-computed tomography (CBμCT) was used first. After the CBμCT investigation, time domain optical coherence tomography working in en face mode (TDefOCT) was employed to evaluate the previous samples. The TDefOCT system was working at 1300 nm and was doubled by a confocal channel at 970 nm. The results obtained by CBμCT revealed no visible defects inside the root-canal fillings and at the interfaces with the root-canal walls. TDefOCT investigations permit to visualize a more complex stratificated structure at the interface filling material/dental hard tissue and in the apical region.

  12. Refinery evaluation of optical imaging to locate fugitive emissions.

    PubMed

    Robinson, Donald R; Luke-Boone, Ronke; Aggarwal, Vineet; Harris, Buzz; Anderson, Eric; Ranum, David; Kulp, Thomas J; Armstrong, Karla; Sommers, Ricky; McRae, Thomas G; Ritter, Karin; Siegell, Jeffrey H; Van Pelt, Doug; Smylie, Mike

    2007-07-01

    Fugitive emissions account for approximately 50% of total hydrocarbon emissions from process plants. Federal and state regulations aiming at controlling these emissions require refineries and petrochemical plants in the United States to implement a Leak Detection and Repair Program (LDAR). The current regulatory work practice, U.S. Environment Protection Agency Method 21, requires designated components to be monitored individually at regular intervals. The annual costs of these LDAR programs in a typical refinery can exceed US$1,000,000. Previous studies have shown that a majority of controllable fugitive emissions come from a very small fraction of components. The Smart LDAR program aims to find cost-effective methods to monitor and reduce emissions from these large leakers. Optical gas imaging has been identified as one such technology that can help achieve this objective. This paper discusses a refinery evaluation of an instrument based on backscatter absorption gas imaging technology. This portable camera allows an operator to scan components more quickly and image gas leaks in real time. During the evaluation, the instrument was able to identify leaking components that were the source of 97% of the total mass emissions from leaks detected. More than 27,000 components were monitored. This was achieved in far less time than it would have taken using Method 21. In addition, the instrument was able to find leaks from components that are not required to be monitored by the current LDAR regulations. The technology principles and the parameters that affect instrument performance are also discussed in the paper.

  13. The Idiographic Evaluation Model in Crime Control.

    ERIC Educational Resources Information Center

    Hurwitz, Jacob I.

    1984-01-01

    Presents some recent developments in the evaluation of crime prevention and control programs, including the increased use of process evaluation models. Describes the nature, methods, and advantages of the idiographic (or single subject) model as used in social work. (JAC)

  14. Assimilation of Bio-Optical Properties into Coupled Physical, Bio-Optical Coastal Model

    DTIC Science & Technology

    2013-01-01

    analysis (updated) fields for the bio-optical model state variables are derived from: Proc. of SPIE Vol. 8724 87240E-3 Downloaded From: http...proceedings.spiedigitallibrary.org/ on 07/11/2013 Terms of Use: http://spiedl.org/terms ),XY(XX fofa HK −+= aX fX oY (1) where is vector of the

  15. Classification of scalar and dyadic nonlocal optical response models.

    PubMed

    Wubs, M

    2015-11-30

    Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response, the transverse response, or both. In phenomenological scalar models the nonlocal response is described as a smearing out of the commonly assumed infinitely localized response, as characterized by a distribution with a finite width. Here we calculate explicitly whether and how tensorial models, such as the hydrodynamic Drude model and generalized nonlocal optical response theory, follow this phenomenological description. We find considerable differences, for example that nonlocal response functions, in contrast to simple distributions, assume negative and complex values. Moreover, nonlocal response regularizes some but not all diverging optical near fields. We identify the scalar model that comes closest to the hydrodynamic model. Interestingly, for the hydrodynamic Drude model we find that actually only one third (1/3) of the free-electron response is smeared out nonlocally. In that sense, nonlocal response is stronger for transverse and scalar nonlocal response models, where the smeared-out fractions are 2/3 and 3/3, respectively. The latter two models seem to predict novel plasmonic resonances also below the plasma frequency, in contrast to the hydrodynamic model that predicts standing pressure waves only above the plasma frequency.

  16. Generalized model for incoherent detection in confocal optical microscopy.

    PubMed

    Hammoum, Rachid; Hamady, Sidi Ould Saad; Fontana, Marc D

    2010-06-01

    We develop a generalized model in order to calculate the point spread functions in both the focal and the detection planes for the electric field strengths. In these calculations, based on the generalized Jones matrices, we introduce all of the interdependent parameters that could influence the spatial resolution of a confocal optical microscope. Our proposed model is more nearly complete, since we make no approximations of the scattered electric fields. These results can be successfully applied to standard confocal optical techniques to get a better understanding for more quantitative interpretations of the probe.

  17. A geometric view of adaptive optics control: boiling atmosphere model

    NASA Astrophysics Data System (ADS)

    Wiberg, Donald M.; Max, Claire E.; Gavel, Donald T.

    2004-10-01

    The separation principle of optimal adaptive optics control is derived, and definitions of controllability and observability are introduced. An exact finite dimensional state space representation of the control system dynamics is obtained without the need for truncation in modes such as Zernikes. The uncertainty of sensing uncontrollable modes confuses present adaptive optics controllers. This uncertainty can be modeled by a Kalman filter. Reducing this uncertainty permits increased gain, increasing the Strehl, which is done by an optimal control law derived here. A general model of the atmosphere is considered, including boiling.

  18. Towards an event-based corpuscular model for optical phenomena

    NASA Astrophysics Data System (ADS)

    De Raedt, H.; Jin, F.; Michielsen, K.

    2011-09-01

    We discuss an event-based corpuscular model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory through a series of cause-and-effect processes, starting with the emission and ending with the detection of a particle. Event-based models of a single-photon detector and of light propagation through an interface of two dielectrics are used as modular building blocks to give a unified, corpuscular description of many optical phenomena. The approach is illustrated by applications to Wheeler's delayed choice, Einstein-Podolsky-Rosen-Bohm and Hanbury Brown-Twiss experiments.

  19. System-Level Performance Evaluation of Microwave Fiber-Optic Links

    NASA Astrophysics Data System (ADS)

    Ackerman, Edward Irving

    electronic and photonic components that will yield the best combination of fiber-optic link characteristics (i.e., gain, noise figure, dynamic range, etc.) over a given frequency band, accurate link modeling techniques are set forth, verified experimentally, and then employed to evaluate the suitability of the various architectures to specific applications.

  20. Finite-element modelling of multilayer X-ray optics.

    PubMed

    Cheng, Xianchao; Zhang, Lin

    2017-05-01

    Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100-300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10(7)) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10(16) elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10(6)), which causes low solution accuracy; and the number of elements is still very large (10(6)). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.

  1. EVALUATION OF OPTICAL DETECTION METHODS FOR WATERBORNE SUSPENSIONS

    EPA Science Inventory

    Turbidimeters and optical paricle counters (OPCs) are used to monitor particulate matter in water. The response from these instruments is governed by the optical properties of the suspension and the instrument design. The recommended design criteria for turbidimeters allows for l...

  2. EVALUATION OF OPTICAL DETECTION METHODS FOR WATERBORNE SUSPENSIONS

    EPA Science Inventory

    Turbidimeters and optical paricle counters (OPCs) are used to monitor particulate matter in water. The response from these instruments is governed by the optical properties of the suspension and the instrument design. The recommended design criteria for turbidimeters allows for l...

  3. Evaluation of correlation in optical encryption by using visual cryptography

    NASA Astrophysics Data System (ADS)

    Yi, Sang-Yi; Ryu, Chung-Sang; Ryu, Dae-Hyun; Lee, Seung-Hyun

    2001-03-01

    Visual cryptography made it possible to decrypt the information encrypted by thresholding scheme not with digital system but with human vision system. This method, however, has some limit in it because of the rack of resolution in both the spatial and amplitude domain. Optical visual cryptography, which used laser system instead of human eyesight, was proposed by conjunction of the optical theory with the cryptography. However, it also had some difficulties because it did not overcome the existing problem of visual cryptography completely. The problems occurred in the process of transferring data processing system from visual to optics. Therefore, it is appropriate to approach these problems in terms of optics. The results show that the optical visual cryptograph system has both the effectiveness and reliability as well as real-time implementation property.

  4. Evaluating the accuracy of diffusion MRI models in white matter.

    PubMed

    Rokem, Ariel; Yeatman, Jason D; Pestilli, Franco; Kay, Kendrick N; Mezer, Aviv; van der Walt, Stefan; Wandell, Brian A

    2015-01-01

    Models of diffusion MRI within a voxel are useful for making inferences about the properties of the tissue and inferring fiber orientation distribution used by tractography algorithms. A useful model must fit the data accurately. However, evaluations of model-accuracy of commonly used models have not been published before. Here, we evaluate model-accuracy of the two main classes of diffusion MRI models. The diffusion tensor model (DTM) summarizes diffusion as a 3-dimensional Gaussian distribution. Sparse fascicle models (SFM) summarize the signal as a sum of signals originating from a collection of fascicles oriented in different directions. We use cross-validation to assess model-accuracy at different gradient amplitudes (b-values) throughout the white matter. Specifically, we fit each model to all the white matter voxels in one data set and then use the model to predict a second, independent data set. This is the first evaluation of model-accuracy of these models. In most of the white matter the DTM predicts the data more accurately than test-retest reliability; SFM model-accuracy is higher than test-retest reliability and also higher than the DTM model-accuracy, particularly for measurements with (a) a b-value above 1000 in locations containing fiber crossings, and (b) in the regions of the brain surrounding the optic radiations. The SFM also has better parameter-validity: it more accurately estimates the fiber orientation distribution function (fODF) in each voxel, which is useful for fiber tracking.

  5. Rapid evaluation of ion thruster lifetime using optical emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Rock, B. A.; Mantenieks, M. A.; Parsons, M. L.

    1985-01-01

    A major life-limiting phenomenon of electric thrusters is the sputter erosion of discharge chamber components. Thrusters for space propulsion are required to operate for extended periods of time, usually in excess of 10,000 hr. Lengthy and very costly life-tests in high-vacuum facilities have been required in the past to determine the erosion rates of thruster components. Alternative methods for determining erosion rates which can be performed in relatively short periods of time at considerably lower costs are studied. An attempt to relate optical emission intensity from an ion bombarded surface (screen grid) to the sputtering rate of that surface is made. The model used a kinetic steady-state (KSS) approach, balancing the rates of population and depopulation of ten low-lying excited states of the sputtered molybdenum atom (MoI) with those of the ground state to relate the spectral intensities of the various transitions of the MoI to the population densities. Once this is accomplished, the population density can be related to the sputtering rate of the target. Radiative and collisional modes of excitation and decay are considered. Since actual data has not been published for MoI excitation rate and decay constants, semiempirical equations are used. The calculated sputtering rate and intensity is compared to the measured intensity and sputtering rates of the 8 and 30 cm ion thrusters.

  6. Rapid evaluation of ion thruster lifetime using optical emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Rock, B. A.; Parsons, M. L.; Mantenieks, M. A.

    1985-01-01

    A major life-limiting phenomenon of electric thrusters is the sputter erosion of discharge chamber components. Thrusters for space propulsion are required to operate for extended periods of time, usually in excess of 10,000 hr. Lengthy and very costly life-tests in high-vacuum facilities have been required in the past to determine the erosion rates of thruster components. Alternative methods for determining erosion rates which can be performed in relatively short periods of time at considerably lower costs are studied. An attempt to relate optical emission intensity from an ion bombarded surface (screen grid) to the sputtering rate of that surface is made. The model used a kinetic steady-state (KSS) approach, balancing the rates of population and depopulation of ten low-lying excited states of the sputtered molybdenum atom (MoI) with those of the ground state to relate the spectral intensities of the various transitions of the MoI to the population densities. Once this is accomplished, the population density can be related to the sputting rate of the target. Radiative and collisional modes of excitation and decay are considered. Since actual data has not been published for MoI excitation rate and decay constants, semiempirical equations are used. The calculated sputtering rate and intensity is compared to the measured intensity and sputtering rates of the 8 and 30 cm ion thrusters.

  7. Optical modeling of media for heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Ghoreyshi, Ali; Victora, R. H.

    2016-02-01

    The validity of effective medium theory for modeling nanocomposite thin films interacting with a plasmonic nanoantenna has been investigated using an optical circuit model and finite-difference time-domain simulations. We show that in the regime where the size of the optical beam generated by the nanoantenna is comparable to the feature size inside the thin film, the effective medium theory is not valid anymore. We demonstrate that using effective medium theory can cause a dramatic error in the performance analysis of applications such as heat assisted magnetic recording that work at this regime. Therefore, we develop a theoretical framework based on circuit theory at optical frequencies to study and design nanocomposite thin films for these applications.

  8. Optical-based spectral modeling of infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Mouzali, Salima; Lefebvre, Sidonie; Rommeluère, Sylvain; Ferrec, Yann; Primot, Jérôme

    2016-07-01

    We adopt an optical approach in order to model and predict the spectral signature of an infrared focal plane array. The modeling is based on a multilayer description of the structure and considers a one-dimensional propagation. It provides a better understanding of the physical phenomena occurring within the pixels, which is useful to perform radiometric measurements, as well as to reliably predict the spectral sensitivity of the detector. An exhaustive model is presented, covering the total spectral range of the pixel response. A heuristic model is also described, depicting a complementary approach that separates the different optical phenomena inside the pixel structure. Promising results are presented, validating the models through comparison with experimental results. Finally, advantages and limitations of this approach are discussed.

  9. Integrated framework for jitter analysis combining disturbance, structure, vibration isolator and optical model

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Oen; Yoon, Jae-San; Han, Jae-Hung

    2012-04-01

    Micro-vibration induced by actuating components of the satellite can severely degrade the optical performance of high precision observation satellites. In this paper, an integrated analysis framework combining disturbance, structure, vibration isolator and optical system model is developed for evaluating the performance of optical payloads in the presence of micro-vibration, and the effectiveness of using a vibration isolator for performance enhancement. Reaction wheel generated disturbance, usually the largest anticipated disturbance, is modeled including the disturbances' interaction with the structural modes of the wheel. For structure modeling, a finite element program is used to solve for eigenvalues and eigenvectors of a structure model which are then used to create a state space model in modal form. A vibration isolator model capturing dynamics of an active isolator utilizing piezoelectric based actuator and load cell for feedback control is included to reduce the transmission of reaction wheel disturbances to the base structure. Dynamic response of the structure to reaction wheel disturbances is calculated with and without vibration isolator. The resulting jitter is used to obtain modulation transfer function (MTF) of diffraction limited optical system model, and the obtained MTF is used as spatial frequency filter for image simulation.

  10. Evaluation of a fiber-optic technique for recording intramuscular pressure in the human leg.

    PubMed

    Nilsson, Andreas; Zhang, Qiuxia; Styf, Jorma

    2016-10-01

    To evaluate a forward-sensing fiber-optic pressure technique for recording of intramuscular pressure (IMP) in the human leg and investigate factors that may influence IMP measurements used in diagnosing compartment syndromes. IMP in the tibialis anterior muscle was recorded simultaneously by a fiber-optic technique and needle-injection technique in 12 legs of 7 healthy subjects. Both measurement catheters were placed in parallel with the muscle fibers to the same depth, as verified by sonography. IMP recordings were performed at rest before, during and after applying a model of abnormally elevated IMP (simulated compartment syndrome). IMP was elevated by venous obstruction induced by a thigh tourniquet of a casted leg. IMP was also measured during injections of 0.1 ml of saline into the muscle through the catheters. IMP at baseline was 5.1 (SD = 2.6) mmHg measured with the fiber-optic technique and 7.1 (SD = 2.5) mmHg with the needle-injection technique (p < 0.001). It increased to 48.5 (SD = 6.9) mmHg and 47.6 (SD = 6.6) mmHg respectively, during simulated compartment syndrome. IMP increased significantly following injection of 0.1 ml of saline, measured by both techniques. It remained increased 1 min after injection. The fiber-optic technique was able to record pulse-synchronous IMP oscillations. The fiber-optic technique may be used for IMP measurements in a muscle with both normal and abnormally elevated IMP. It has good dynamic properties allowing for measurement of IMP oscillations. Saline injection used with needle-injection systems to ensure catheter patency compromises IMP readings at least one minute after injection.

  11. Semi-analytical Model for Estimating Absorption Coefficients of Optically Active Constituents in Coastal Waters

    NASA Astrophysics Data System (ADS)

    Wang, D.; Cui, Y.

    2015-12-01

    The objectives of this paper are to validate the applicability of a multi-band quasi-analytical algorithm (QAA) in retrieval absorption coefficients of optically active constituents in turbid coastal waters, and to further improve the model using a proposed semi-analytical model (SAA). The ap(531) and ag(531) semi-analytically derived using SAA model are quite different from the retrievals procedures of QAA model that ap(531) and ag(531) are semi-analytically derived from the empirical retrievals results of a(531) and a(551). The two models are calibrated and evaluated against datasets taken from 19 independent cruises in West Florida Shelf in 1999-2003, provided by SeaBASS. The results indicate that the SAA model produces a superior performance to QAA model in absorption retrieval. Using of the SAA model in retrieving absorption coefficients of optically active constituents from West Florida Shelf decreases the random uncertainty of estimation by >23.05% from the QAA model. This study demonstrates the potential of the SAA model in absorption coefficients of optically active constituents estimating even in turbid coastal waters. Keywords: Remote sensing; Coastal Water; Absorption Coefficient; Semi-analytical Model

  12. Numerical Modeling and Analysis of Optical Response of Electro-optic Modulators

    SciTech Connect

    Hussein, Y

    2004-04-14

    This paper presents an analysis of a LiNbO{sub 3} electro-optic modulator using the Finite Difference Time Domain (FDTD) technique, and also a new and efficient multiresolution time-domain technique for fast and accurate modeling of photonic devices. The electromagnetic fields computed by FDTD are coupled to standard electro-optic relations that characterize electro-optic interactions. This novel approach to LiNbO{sub 3} electro-optic modulators using a coupled FDTD technique allows for previously unattainable investigations into device operating bandwidth and data transmission speed. On the other hand, the proposed multiresolution approach presented in this paper solves Maxwell's Equations on nonuniform self-adaptive grids, obtained by applying wavelet transforms followed by hard thresholding. The developed technique is employed to simulate a coplanar waveguide CPW, which represents an electro-optic modulator. Different numerical examples are presented showing more than 75% CPU-time reduction, while maintaining the same degree of accuracy of standard FDTD techniques.

  13. Visual Evoked Potential Recording in a Rat Model of Experimental Optic Nerve Demyelination

    PubMed Central

    You, Yuyi; Gupta, Vivek K.; Chitranshi, Nitin; Reedman, Brittany; Klistorner, Alexander; Graham, Stuart L.

    2015-01-01

    The visual evoked potential (VEP) recording is widely used in clinical practice to assess the severity of optic neuritis in its acute phase, and to monitor the disease course in the follow-up period. Changes in the VEP parameters closely correlate with pathological damage in the optic nerve. This protocol provides a detailed description about the rodent model of optic nerve microinjection, in which a partial demyelination lesion is produced in the optic nerve. VEP recording techniques are also discussed. Using skull implanted electrodes, we are able to acquire reproducible intra-session and between-session VEP traces. VEPs can be recorded on individual animals over a period of time to assess the functional changes in the optic nerve longitudinally. The optic nerve demyelination model, in conjunction with the VEP recording protocol, provides a tool to investigate the disease processes associated with demyelination and remyelination, and can potentially be employed to evaluate the effects of new remyelinating drugs or neuroprotective therapies. PMID:26273963

  14. Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging

    NASA Astrophysics Data System (ADS)

    Dong, Erbao; Zhao, Zuhua; Wang, Minjie; Xie, Yanjun; Li, Shidi; Shao, Pengfei; Cheng, Liuquan; Xu, Ronald X.

    2015-12-01

    Biomedical optical devices are widely used for clinical detection of various tissue anomalies. However, optical measurements have limited accuracy and traceability, partially owing to the lack of effective calibration methods that simulate the actual tissue conditions. To facilitate standardized calibration and performance evaluation of medical optical devices, we develop a three-dimensional fuse deposition modeling (FDM) technique for freeform fabrication of tissue-simulating phantoms. The FDM system uses transparent gel wax as the base material, titanium dioxide (TiO2) powder as the scattering ingredient, and graphite powder as the absorption ingredient. The ingredients are preheated, mixed, and deposited at the designated ratios layer-by-layer to simulate tissue structural and optical heterogeneities. By printing the sections of human brain model based on magnetic resonance images, we demonstrate the capability for simulating tissue structural heterogeneities. By measuring optical properties of multilayered phantoms and comparing with numerical simulation, we demonstrate the feasibility for simulating tissue optical properties. By creating a rat head phantom with embedded vasculature, we demonstrate the potential for mimicking physiologic processes of a living system.

  15. Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging.

    PubMed

    Dong, Erbao; Zhao, Zuhua; Wang, Minjie; Xie, Yanjun; Li, Shidi; Shao, Pengfei; Cheng, Liuquan; Xu, Ronald X

    2015-01-01

    Biomedical optical devices are widely used for clinical detection of various tissue anomalies. However, optical measurements have limited accuracy and traceability, partially owing to the lack of effective calibration methods that simulate the actual tissue conditions. To facilitate standardized calibration and performance evaluation of medical optical devices, we develop a three-dimensional fuse deposition modeling (FDM) technique for freeform fabrication of tissue-simulating phantoms. The FDM system uses transparent gel wax as the base material, titanium dioxide (TiO2 ) powder as the scattering ingredient, and graphite powder as the absorption ingredient. The ingredients are preheated, mixed, and deposited at the designated ratios layer-by-layer to simulate tissue structural and optical heterogeneities. By printing the sections of human brain model based on magnetic resonance images, we demonstrate the capability for simulating tissue structural heterogeneities. By measuring optical properties of multilayered phantoms and comparing with numerical simulation, we demonstrate the feasibility for simulating tissue optical properties. By creating a rat head phantom with embedded vasculature, we demonstrate the potential for mimicking physiologic processes of a living system.

  16. Comparative evaluation of two simple diffuse reflectance models for biological tissue applications.

    PubMed

    Zonios, George; Bassukas, Ioannis; Dimou, Aikaterini

    2008-09-20

    We present a comparative evaluation of two simple diffuse reflectance models for biological tissue applications. One model is based on a widely accepted and used in biomedical optics implementation of diffusion theory, and the other one is based on a semiempirical approach derived from basic physical principles. We test the models on tissue phantoms and on human skin, utilizing a standard six-around-one optical fiber probe for light delivery and collection. We show that both models are suitable for use with an optical fiber probe and illustrate the potential, applicability, and validity range of the models.

  17. Quantitative Analysis of Intracellular Motility Based on Optical Flow Model

    PubMed Central

    Li, Heng

    2017-01-01

    Analysis of cell mobility is a key issue for abnormality identification and classification in cell biology research. However, since cell deformation induced by various biological processes is random and cell protrusion is irregular, it is difficult to measure cell morphology and motility in microscopic images. To address this dilemma, we propose an improved variation optical flow model for quantitative analysis of intracellular motility, which not only extracts intracellular motion fields effectively but also deals with optical flow computation problem at the border by taking advantages of the formulation based on L1 and L2 norm, respectively. In the energy functional of our proposed optical flow model, the data term is in the form of L2 norm; the smoothness of the data changes with regional features through an adaptive parameter, using L1 norm near the edge of the cell and L2 norm away from the edge. We further extract histograms of oriented optical flow (HOOF) after optical flow field of intracellular motion is computed. Then distances of different HOOFs are calculated as the intracellular motion features to grade the intracellular motion. Experimental results show that the features extracted from HOOFs provide new insights into the relationship between the cell motility and the special pathological conditions.

  18. Feasibility of spatial frequency domain imaging (SFDI) for optically characterizing a preclinical oncology model

    PubMed Central

    Tabassum, Syeda; Zhao, Yanyu; Istfan, Raeef; Wu, Junjie; Waxman, David J.; Roblyer, Darren

    2016-01-01

    Determination of chemotherapy efficacy early during treatment would provide more opportunities for physicians to alter and adapt treatment plans. Diffuse optical technologies may be ideally suited to track early biological events following chemotherapy administration due to low cost and high information content. We evaluated the use of spatial frequency domain imaging (SFDI) to characterize a small animal tumor model in order to move towards the goal of endogenous optical monitoring of cancer therapy in a controlled preclinical setting. The effects of key measurement parameters including the choice of imaging spatial frequency and the repeatability of measurements were evaluated. The precision of SFDI optical property extractions over repeat mouse measurements was determined to be within 3.52% for move and replace experiments. Baseline optical properties and chromophore values as well as intratumor heterogeneity were evaluated over 25 tumors. Additionally, tumor growth and chemotherapy response were monitored over a 45 day longitudinal study in a small number of mice to demonstrate the ability of SFDI to track treatment effects. Optical scattering and oxygen saturation increased as much as 70% and 25% respectively in treated tumors, suggesting SFDI may be useful for preclinical tracking of cancer therapies. PMID:27867722

  19. Feasibility of spatial frequency domain imaging (SFDI) for optically characterizing a preclinical oncology model.

    PubMed

    Tabassum, Syeda; Zhao, Yanyu; Istfan, Raeef; Wu, Junjie; Waxman, David J; Roblyer, Darren

    2016-10-01

    Determination of chemotherapy efficacy early during treatment would provide more opportunities for physicians to alter and adapt treatment plans. Diffuse optical technologies may be ideally suited to track early biological events following chemotherapy administration due to low cost and high information content. We evaluated the use of spatial frequency domain imaging (SFDI) to characterize a small animal tumor model in order to move towards the goal of endogenous optical monitoring of cancer therapy in a controlled preclinical setting. The effects of key measurement parameters including the choice of imaging spatial frequency and the repeatability of measurements were evaluated. The precision of SFDI optical property extractions over repeat mouse measurements was determined to be within 3.52% for move and replace experiments. Baseline optical properties and chromophore values as well as intratumor heterogeneity were evaluated over 25 tumors. Additionally, tumor growth and chemotherapy response were monitored over a 45 day longitudinal study in a small number of mice to demonstrate the ability of SFDI to track treatment effects. Optical scattering and oxygen saturation increased as much as 70% and 25% respectively in treated tumors, suggesting SFDI may be useful for preclinical tracking of cancer therapies.

  20. Optical Computing Based on Neuronal Models.

    DTIC Science & Technology

    1987-10-01

    Tikhonov , A.N. and V.Y. Arsenin , " Solutions of Ill - Posed Problems ", Winston and Sons, Washington, D.C. 1977 . 11. Poggio, T. and C. Koch, " Ill - Posed ...describe a solution to this problem and to use the solu- tion as a vehicle for pointing out the distinctive features of the neural net model approach to... ill - posedness [11]. The brain’s associative memory capabilities where nearest neighbor searches are performed successfully

  1. Mathematical modeling and computation of the optical response from nanostructures

    NASA Astrophysics Data System (ADS)

    Sun, Yuanchang

    This dissertation studies the computational modeling for nanostructures in response to external electromagnetic fields. Light-matter interactions on nanoscale are at the heart of nano-optics. To fully characterize the optical interactions with nanostructures quantum electrodynamics (QED) must be invoked, however, the required extremely intense computation and analysis prohibit QED from applications in nano-optics. To avoid the expensive computations and be able to seize the essential quantum effects a semiclassical model is developed. The wellposedness of the model partial differential equations is established. Emphasis is placed on the optical interactions with an individual nanostructure, excitons and biexcitons effects and finite-size effects are investigated. The crucial step of our model is to couple the electromagnetic fields with the motion of the excited particles to yield a new dielectric constant which contains quantum effects of interest. A novel feature of the dielectric constant is the wavevector-dependence which leads to a multi-wave propagation inside the medium. Additional boundary conditions are proposed to deal with this situation. We proceed with incorporating this dielectric constant to Maxwell's equations, and by solving a scattering problem the quantum effects can be captured in the scattered spectra.

  2. Concentrator optical characterization using computer mathematical modelling and point source testing

    NASA Technical Reports Server (NTRS)

    Dennison, E. W.; John, S. L.; Trentelman, G. F.

    1984-01-01

    The optical characteristics of a paraboloidal solar concentrator are analyzed using the intercept factor curve (a format for image data) to describe the results of a mathematical model and to represent reduced data from experimental testing. This procedure makes it possible not only to test an assembled concentrator, but also to evaluate single optical panels or to conduct non-solar tests of an assembled concentrator. The use of three-dimensional ray tracing computer programs to calculate the mathematical model is described. These ray tracing programs can include any type of optical configuration from simple paraboloids to array of spherical facets and can be adapted to microcomputers or larger computers, which can graphically display real-time comparison of calculated and measured data.

  3. Model Performance Evaluation and Scenario Analysis (MPESA)

    EPA Pesticide Factsheets

    Model Performance Evaluation and Scenario Analysis (MPESA) assesses the performance with which models predict time series data. The tool was developed Hydrological Simulation Program-Fortran (HSPF) and the Stormwater Management Model (SWMM)

  4. Simulation of optical diagnostics for crystal growth: models and results

    NASA Astrophysics Data System (ADS)

    Banish, Michele R.; Clark, Rodney L.; Kathman, Alan D.; Lawson, Shelah M.

    1991-12-01

    A computer simulation of a two-color holographic interferometric (TCHI) optical system was performed using a physical (wave) optics model. This model accurately simulates propagation through time-varying, 2-D or 3-D concentration and temperature fields as a wave phenomenon. The model calculates wavefront deformations that can be used to generate fringe patterns. This simulation modeled a proposed TriGlycine sulphate TGS flight experiment by propagating through the simplified onion-like refractive index distribution of the growing crystal and calculating the recorded wavefront deformation. The phase of this wavefront was used to generate sample interferograms that map index of refraction variation. Two such fringe patterns, generated at different wavelengths, were used to extract the original temperature and concentration field characteristics within the growth chamber. This proves feasibility for this TCHI crystal growth diagnostic technique. This simulation provides feedback to the experimental design process.

  5. Evaluation of novel approach to deflectometry for high accuracy optics

    NASA Astrophysics Data System (ADS)

    Sironi, Giorgia; Canestrari, Rodolfo; Tayabaly, Kashmira; Pareschi, Giovanni

    2016-07-01

    A deflectometrical facility was developed at Italian National Institute for Astrophysics-OAB to characterize free-form optics with shape errors within few microns rms. Deflectometry is an interesting technique because it allows the fast characterization of free-form optics. The capabilities of deflectometry in measuring medium-high frequencies are well known, but the low frequencies error characterization is more challenging. Our facility design foresees an innovative approach based on the acquisition of multiple direct images to enhance the performance on the challenging low frequencies range. This contribution presents the error-budget analysis of the measuring method and a study of the configuration tolerances required to allow the use of deflectometry in the realization of optical components suitable for astronomical projects with a requirement of high accuracy for the optics. As test examples we took into account mirrors for the E-ELT telescope.

  6. Indoor Free Space Optic: a new prototype, realization and evaluation

    NASA Astrophysics Data System (ADS)

    Bouchet, Olivier; Besnard, Pascal; Mihaescu, Adrian

    2008-08-01

    The Free Space Optic (FSO) communication is a daily reality used by an increasing number of companies. For indoor environment, optical wireless communication becomes a good alternative with respect to radio proposals. For both technologies, the architecture is similar: emission/reception base station (Gateway or Bridge) are installed to cover zones, which are defined to ensure a quality of service. The customers may be connected to the Wireless Local Area Network (WLAN) with an adapter or module that emits and receives on this network. But due to its specific characteristics, wireless optical technology could present important advantages such as: Transmitted data security, medical immunity, high data rate, etc... Nevertheless, the optical system may have a limit on the network management aspect and link budget. The scope of this paper is to present a proposal at crossroads between optical fibre telecom system and data processing. In this document, we will present a prototype developed in Brittany during a regional collaborative project (Techim@ges). In order to answer to the management aspect and the link budget, this prototype uses an optical multiplexing technique in 1550 nm band: the Wavelength Division Multiple Access (WDMA). Moreover it also proposes a new class 1 high power emission solution. This full duplex system transmits these various wavelengths in free space, by using optical Multiplexer/Demultiplexer and optical modules. Each module has a defined and personal wavelength associated to the terminal identification (addresses MAC or IP). This approach permits a data rate at a minimum of a ten's Mbit/s per customer and potentially hundred Mbps for a line of sight system. The application field for the achieved and proposed prototype is potentially investigated from WLAN to WPAN.

  7. An Evaluation of Grazing-Incidence Optics for Neutron Imaging

    NASA Technical Reports Server (NTRS)

    Gubarev, M. V.; Ramsey, B. D.; Engelhaupt, D. E.; Burgess, J.; Mildner, D. F. R.

    2007-01-01

    The focusing capabilities of neutron imaging optic based on the Wolter-1 geometry have been successfully demonstrated with a beam of long wavelength neutrons with low angular divergence.. A test mirror was fabricated using an electroformed nickel replication process at Marshall Space Flight Center. The neutron current density gain at the focal spot of the mirror is found to be at least 8 for neutron wavelengths in the range from 6 to 20 A. Possible applications of the optics are briefly discussed.

  8. Beyond Evaluation: A Model for Cooperative Evaluation of Internet Resources.

    ERIC Educational Resources Information Center

    Kirkwood, Hal P., Jr.

    1998-01-01

    Presents a status report on Web site evaluation efforts, listing dead, merged, new review, Yahoo! wannabes, subject-specific review, former librarian-managed, and librarian-managed review sites; discusses how sites are evaluated; describes and demonstrates (reviewing company directories) the Marr/Kirkwood evaluation model; and provides an…

  9. Optical model of transient light scattering in ferroelectric liquid crystals

    SciTech Connect

    Loiko, V. A. Konkolovich, A. V.; Miskevich, A. A.

    2009-03-15

    A static optical model is developed for the effect of field-induced transient scattering on coherent light transmission through ferroelectric liquid crystals. Scattering processes are described by introducing an optically anisotropic medium containing scatterers (transient domains). The results presented in the paper are obtained for a plane parallel layer of ferroelectric liquid crystals with a planar helicoidal structure under normal illumination with a linearly polarized plane wave. An analysis is presented of the coherent transmittance of the layer in static applied electric fields.

  10. Quantum Electrostatic Model for Optical Properties of Nanoscale Gold Films

    NASA Astrophysics Data System (ADS)

    Qian, Haoliang; Xiao, Yuzhe; Lepage, Dominic; Chen, Li; Liu, Zhaowei

    2015-11-01

    The optical properties of thin gold films with thickness varying from 2.5 nm to 30 nm are investigated. Due to the quantum size effect, the optical constants of the thin gold film deviate from the Drude model for bulk material as film thickness decreases, especially around 2.5 nm, where the electron energy level becomes discrete. A theory based on the self-consistent solution of the Schrödinger equation and the Poisson equation is proposed and its predictions agree well with experimental results.

  11. Advances in DOE modeling and optical performance for SMO applications

    NASA Astrophysics Data System (ADS)

    Carriere, James; Stack, Jared; Childers, John; Welch, Kevin; Himel, Marc D.

    2010-04-01

    The introduction of source mask optimization (SMO) to the design process addresses an urgent need for the 32nm node and beyond as alternative lithography approaches continue to push out. To take full advantage of SMO routines, an understanding of the characteristic properties of diffractive optical elements (DOEs) is required. Greater flexibility in the DOE output is needed to optimize lithographic process windows. In addition, new and tighter constraints on the DOEs used for off-axis illumination (OAI) are being introduced to precisely predict, control and reduce the effects of pole imbalance and stray light on the CD budget. We present recent advancements in the modeling and optical performance of these DOEs.

  12. Model Evaluation of Continuous Data Pharmacometric Models: Metrics and Graphics

    PubMed Central

    Nguyen, THT; Mouksassi, M‐S; Holford, N; Al‐Huniti, N; Freedman, I; Hooker, AC; John, J; Karlsson, MO; Mould, DR; Pérez Ruixo, JJ; Plan, EL; Savic, R; van Hasselt, JGC; Weber, B; Zhou, C; Comets, E

    2017-01-01

    This article represents the first in a series of tutorials on model evaluation in nonlinear mixed effect models (NLMEMs), from the International Society of Pharmacometrics (ISoP) Model Evaluation Group. Numerous tools are available for evaluation of NLMEM, with a particular emphasis on visual assessment. This first basic tutorial focuses on presenting graphical evaluation tools of NLMEM for continuous data. It illustrates graphs for correct or misspecified models, discusses their pros and cons, and recalls the definition of metrics used. PMID:27884052

  13. Model Evaluation of Continuous Data Pharmacometric Models: Metrics and Graphics.

    PubMed

    Nguyen, Tht; Mouksassi, M-S; Holford, N; Al-Huniti, N; Freedman, I; Hooker, A C; John, J; Karlsson, M O; Mould, D R; Pérez Ruixo, J J; Plan, E L; Savic, R; van Hasselt, Jgc; Weber, B; Zhou, C; Comets, E; Mentré, F

    2017-02-01

    This article represents the first in a series of tutorials on model evaluation in nonlinear mixed effect models (NLMEMs), from the International Society of Pharmacometrics (ISoP) Model Evaluation Group. Numerous tools are available for evaluation of NLMEM, with a particular emphasis on visual assessment. This first basic tutorial focuses on presenting graphical evaluation tools of NLMEM for continuous data. It illustrates graphs for correct or misspecified models, discusses their pros and cons, and recalls the definition of metrics used.

  14. In vitro comparative optical bench analysis of a spherical and aspheric optic design of the same IOL model.

    PubMed

    Tandogan, Tamer; Auffarth, Gerd U; Choi, Chul Y; Liebing, Stephanie; Mayer, Christian; Khoramnia, Ramin

    2017-02-08

    To analyse objective optical properties of the spherical and aspheric design of the same intraocular lens (IOL) model using optical bench analysis. This study entailed a comparative analysis of 10 spherical C-flex 570 C and 10 aspheric C-flex 970 C IOLs (Rayner Intraocular Lenses Ltd., Hove, UK) of 26 diopters [D] using an optical bench (OptiSpheric, Trioptics, Germany). In all lenses, we evaluated the modulation transfer function (MTF) at 50 lp/mm and 100 lp/mm and the Strehl Ratio using a 3-mm (photopic) and 4.5-mm (mesopic) aperture. At 50 lp/mm, the MTF values were 0.713/0.805 (C-flex 570 C/C-flex 970 C) for a 3-mm aperture and 0.294/0.591 for a 4.5-mm aperture. At 100 lp/mm, the MTF values were 0.524/0.634 for a 3-mm aperture and 0.198/0.344 for a 4.5-mm aperture. The Strehl Ratio was 0.806/0.925 and 0.237/0.479 for a 3-mm and 4.5-mm aperture respectively. A Mann-Whitney U test revealed all intergroup differences to be statistically significant (p < 0.01). The aspheric IOL design achieved higher MTF values than the spherical design of the same IOL for both apertures. Moreover, the differences between the two designs of the IOL were more prominent for larger apertures. This suggests that the evaluated IOL provides enhanced optical quality to patients with larger pupils or working under mesopic conditions.

  15. A method of rapidly evaluating image quality of NED optical system

    NASA Astrophysics Data System (ADS)

    Sun, Qi; Qiu, Chuankai; Yang, Huan

    2014-11-01

    In recent years, with the development of technology of micro-display, advanced optics and the software and hardware, near-to-eye display ( NED) optical system will have a wide range of potential applications in the fields of amusement and virtual reality. However, research on the evaluating image quality of this kind optical system is comparatively lagging behind. Although now there are some methods and equipment for evaluation, they can't be applied in commercial production because of their complex operation and inaccuracy. In this paper, an academic method is proposed and a Rapid Evaluation System (RES) is designed to evaluate the image of optical system rapidly and exactly. Firstly, a set of parameters that eyes are sensitive to and also express the quality of system should be extracted and quantized to be criterion, so the evaluation standards can be established. Then, some parameters can be detected by RES consisted of micro-display, CCD camera and computer and so on. By process of scaling, the measuring results of the RES are exact and creditable, relationship between object measurement, subjective evaluation and the RES will be established. After that, image quality of optical system can be evaluated just by detecting parameters of that. The RES is simple and the results of evaluation are exact and keeping with human vision. So the method can be used not only for optimizing design of optical system, but also for evaluation in commercial production.

  16. Global optical model potential for A=3 projectiles

    NASA Astrophysics Data System (ADS)

    Pang, D. Y.; Roussel-Chomaz, P.; Savajols, H.; Varner, R. L.; Wolski, R.

    2009-02-01

    A global optical model potential (GDP08) for He3 projectiles has been obtained by simultaneously fitting the elastic scattering data of He3 from targets of 40⩽AT⩽209 at incident energies of 30⩽Einc⩽217 MeV. Uncertainties and correlation coefficients between the global potential parameters were obtained by using the bootstrap statistical method. GDP08 was found to satisfactorily account for the elastic scattering of H3 as well, which makes it a global optical potential for the A=3 nuclei. Optical model calculations using the GDP08 global potential are compared with the experimental angular distributions of differential cross sections for He3-nucleus and H3-nucleus scattering from different targets of 6⩽AT⩽232 at incident energies of 4⩽Einc⩽450 MeV. The optical potential for the doubly-magic nucleus Ca40, the low-energy correction to the real potential for nuclei with 58≲AT≲120 at Einc<30 MeV, the comparison with double-folding model calculations and the CH89 potential, and the spin-orbit potential parameters are discussed.

  17. Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)

    1996-01-01

    There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.

  18. Fluorescence laminar optical tomography for brain imaging: system implementation and performance evaluation

    NASA Astrophysics Data System (ADS)

    Azimipour, Mehdi; Sheikhzadeh, Mahya; Baumgartner, Ryan; Cullen, Patrick K.; Helmstetter, Fred J.; Chang, Woo-Jin; Pashaie, Ramin

    2017-01-01

    We present our effort in implementing a fluorescence laminar optical tomography scanner which is specifically designed for noninvasive three-dimensional imaging of fluorescence proteins in the brains of small rodents. A laser beam, after passing through a cylindrical lens, scans the brain tissue from the surface while the emission signal is captured by the epi-fluorescence optics and is recorded using an electron multiplication CCD sensor. Image reconstruction algorithms are developed based on Monte Carlo simulation to model light-tissue interaction and generate the sensitivity matrices. To solve the inverse problem, we used the iterative simultaneous algebraic reconstruction technique. The performance of the developed system was evaluated by imaging microfabricated silicon microchannels embedded inside a substrate with optical properties close to the brain as a tissue phantom and ultimately by scanning brain tissue in vivo. Details of the hardware design and reconstruction algorithms are discussed and several experimental results are presented. The developed system can specifically facilitate neuroscience experiments where fluorescence imaging and molecular genetic methods are used to study the dynamics of the brain circuitries.

  19. Evaluation of the performance of accommodating IOLs using a paraxial optics analysis

    PubMed Central

    Ale, Jit; Manns, Fabrice; Ho, Arthur

    2011-01-01

    Purpose We employed an analytical approach to evaluate the key parameters for the potential design optimisation of accommodating intra-ocular lenses (AIOL) and to use these parameters to predict their accommodative performance. Methods Paraxial thin-lens equations to predict the accommodative performances of single-element (1E) and two-element (2E) AIOLs were developed. 2E-AIOLs with either mobile front or back lens elements were analysed as well as 1E-AIOL for their accommodative performance. A paraxial model including key ocular components (corneal surfaces, pupil and retina) as well as AIOL was used to evaluate the key control parameters and optimal design configurations. A range of variants of the model, representing varying powers of front and back optical elements and with either front or back optical element mobile was tested. Results Optimal accommodative performance of 2E-AIOL is governed by the power combinations of its optical elements; design variants with higher positive front element power produced greater accommodative efficacy, while mobility of the front element contributed more to the accommodative performance than the back element. The performance of 1E-AIOL is primarily governed by the power of the AIOL; the higher the AIOL power, the better the accommodative performance. Conclusions From an accommodative performance standpoint, the optimal design of 2E-AIOL should comprise a high plus power front element. Considering the maximum potential amounts of element translation available clinically, 2E-AIOLs are predicted to offer higher accommodative performance compared to 1E-AIOL. PMID:20444117

  20. Evaluating Interactive Instructional Technologies: A Cognitive Model.

    ERIC Educational Resources Information Center

    Tucker, Susan A.

    Strengths and weaknesses of prevailing evaluation models are analyzed, with attention to the role of feedback in each paradigm. A framework is then presented for analyzing issues faced by evaluators of interactive instructional technologies. The current practice of evaluation relies heavily on 3 models developed over 20 years ago: (1) the…

  1. Phenomenological model for the optically induced easy direction.

    PubMed

    Alexe-Ionescu, A L; Uncheselu, C; Lucchetti, L; Barbero, G

    2007-02-01

    We present a phenomenological model to interprete the optically induced easy direction in a nematic cell in the slab approximation. One of the surfaces of the sample is supposed to give strong anchoring, whereas the other, covered with photosensible material, very weak anchoring. We assume that a surface nematic molecule is submitted to a potential connected with its interaction with the surface easy direction, with the surface nematic field, and with the optical induced anisotropy. The case in which the coupling with the nematic order in the bulk is important is considered too. A differential equation for the time evolution of the surface director is proposed, in which the viscous torque is balanced by the torque related to the surface fields. We show that our theoretical predictions are in agreement with experimental data on the optical induced surface orientation. The dependence of the anchoring energy strength on the irradiation time for dye-doped liquid crystals is also investigated.

  2. Regime-based evaluation of cloudiness in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin

    2017-01-01

    The concept of cloud regimes (CRs) is used to develop a framework for evaluating the cloudiness of 12 fifth Coupled Model Intercomparison Project (CMIP5) models. Reference CRs come from existing global International Satellite Cloud Climatology Project (ISCCP) weather states. The evaluation is made possible by the implementation in several CMIP5 models of the ISCCP simulator generating in each grid cell daily joint histograms of cloud optical thickness and cloud top pressure. Model performance is assessed with several metrics such as CR global cloud fraction (CF), CR relative frequency of occurrence (RFO), their product [long-term average total cloud amount (TCA)], cross-correlations of CR RFO maps, and a metric of resemblance between model and ISCCP CRs. In terms of CR global RFO, arguably the most fundamental metric, the models perform unsatisfactorily overall, except for CRs representing thick storm clouds. Because model CR CF is internally constrained by our method, RFO discrepancies yield also substantial TCA errors. Our results support previous findings that CMIP5 models underestimate cloudiness. The multi-model mean performs well in matching observed RFO maps for many CRs, but is still not the best for this or other metrics. When overall performance across all CRs is assessed, some models, despite shortcomings, apparently outperform Moderate Resolution Imaging Spectroradiometer cloud observations evaluated against ISCCP like another model output. Lastly, contrasting cloud simulation performance against each model's equilibrium climate sensitivity in order to gain insight on whether good cloud simulation pairs with particular values of this parameter, yields no clear conclusions.

  3. Chasing the Sun - The In-Flight Evaluation of an Optical Head Tracker

    DTIC Science & Technology

    2006-03-01

    AFRL-HE-WP-TP-2006-0057 AIR FORCE RESEARCH LABORATORY Chasing the Sun - The In-Flight Evaluation of an NO, Optical Head Tracker Michael R. Sedillo...Chasing the Sun -The In-flight Evaluation of an Optical Head Tracker 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Michael...area UNC UNC UNC code) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Chasing the Sun - In-flight Evaluation of an Optical Tracker 21

  4. Underwater Optical Wireless Channel Modeling Using Monte-Carlo Method

    NASA Astrophysics Data System (ADS)

    Saini, P. Sri; Prince, Shanthi

    2011-10-01

    At present, there is a lot of interest in the functioning of the marine environment. Unmanned or Autonomous Underwater Vehicles (UUVs or AUVs) are used in the exploration of the underwater resources, pollution monitoring, disaster prevention etc. Underwater, where radio waves do not propagate, acoustic communication is being used. But, underwater communication is moving towards Optical Communication which has higher bandwidth when compared to Acoustic Communication but has shorter range comparatively. Underwater Optical Wireless Communication (OWC) is mainly affected by the absorption and scattering of the optical signal. In coastal waters, both inherent and apparent optical properties (IOPs and AOPs) are influenced by a wide array of physical, biological and chemical processes leading to optical variability. The scattering effect has two effects: the attenuation of the signal and the Inter-Symbol Interference (ISI) of the signal. However, the Inter-Symbol Interference is ignored in the present paper. Therefore, in order to have an efficient underwater OWC link it is necessary to model the channel efficiently. In this paper, the underwater optical channel is modeled using Monte-Carlo method. The Monte Carlo approach provides the most general and most flexible technique for numerically solving the equations of Radiative transfer. The attenuation co-efficient of the light signal is studied as a function of the absorption (a) and scattering (b) coefficients. It has been observed that for pure sea water and for less chlorophyll conditions blue wavelength is less absorbed whereas for chlorophyll rich environment red wavelength signal is absorbed less comparative to blue and green wavelength.

  5. Detection, Evaluation, and Optimization of Optical Signals Generated by Fiber Optic Bragg Gratings Under Dynamic Excitations

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Lekki, John; Lock, James A.

    2002-01-01

    The dynamic response of a fiber optic Bragg grating to mechanical vibrations is examined both theoretically and experimentally. The theoretical expressions describing the consequences of changes in the grating's reflection spectrum are derived for partially coherent beams in an interferometer. The analysis is given in terms of the dominant wavelength, optical bandwidth, and optical path difference of the interfering signals. Changes in the reflection spectrum caused by a periodic stretching and compression of the grating were experimentally measured using an unbalanced Michelson interferometer, a Michelson interferometer with a non-zero optical path difference. The interferometer's sensitivity to changes in dominant wavelength of the interfering beams was measured as a function of interferometer unbalance and was compared to theoretical predictions. The theoretical analysis enables the user to determine the optimum performance for an unbalanced interferometer.

  6. Evaluation of space environmental effects on metals and optical thin films on EOIM-3

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.

    1995-01-01

    Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.

  7. Geometric-optical Modeling of a Conifer Forest Canopy

    NASA Technical Reports Server (NTRS)

    Strahler, A. H. (Principal Investigator)

    1985-01-01

    The objective of this research is to explore how the geometry of trees in forest stands influences the reflectance of the forest as imaged from space. Most plant canopy modeling has viewed the canopy as an assemblage of plane-parallel layers on top of a soil surface. For these models, leaf angle distribution, leaf area index, and the angular transmittance and reflectance of leaves are the primary optical and geometric parameters. Such models are now sufficiently well developed to explain most of the variance in angular reflectance measurements observed from homogeneous plant canopies. However, forest canopies as imaged by airborne and spaceborne scanners exhibit considerable variance at quite a different scale. Brightness values vary strongly from one pixel to the next primarily as a function of the number of trees they contain. At this scale, the forest canopy is nonuniform and discontinuous. This research focuses on a discrete-element, geometric-optical view of the forest canopy.

  8. Numerical modelling and image reconstruction in diffuse optical tomography

    PubMed Central

    Dehghani, Hamid; Srinivasan, Subhadra; Pogue, Brian W.; Gibson, Adam

    2009-01-01

    The development of diffuse optical tomography as a functional imaging modality has relied largely on the use of model-based image reconstruction. The recovery of optical parameters from boundary measurements of light propagation within tissue is inherently a difficult one, because the problem is nonlinear, ill-posed and ill-conditioned. Additionally, although the measured near-infrared signals of light transmission through tissue provide high imaging contrast, the reconstructed images suffer from poor spatial resolution due to the diffuse propagation of light in biological tissue. The application of model-based image reconstruction is reviewed in this paper, together with a numerical modelling approach to light propagation in tissue as well as generalized image reconstruction using boundary data. A comprehensive review and details of the basis for using spatial and structural prior information are also discussed, whereby the use of spectral and dual-modality systems can improve contrast and spatial resolution. PMID:19581256

  9. Electro-optical terrain reflectance modeling - A perspective

    NASA Technical Reports Server (NTRS)

    Smith, J. A.; Cooper, K. D.; Strahler, A. H.

    1984-01-01

    Electro-optical terrain reflectance modeling is one of the components required in the overall capability to simulate remote sensing measurement systems as an aid to the sensor or information processing designer. Given that sensor fields-of-view may vary from a few centimeters to several meters and that measurement devices may be placed at varying heights above the terrain surface, modeling of complex combinations of terrain classes or media with respect to both vertical and horizontal scales may be required. This paper addresses the issue of combining modeling approaches for different classes of materials in the optical regime and recommends a more formal approach to the radiative characterization of media properties as well as the calculation of the bidirectional reflectance distribution functions.

  10. SCRAM: a fast computational model for the optical performance of point fucus solar central receiver systems

    SciTech Connect

    Bergeron, K. D.; Chiang, C. J.

    1980-04-01

    Because of the complexities of heliostat shadowing and blocking calculations, computational models for the optical performance of point focus central receiver (PFCR) systems tend to be too slow for many important applications, such as optimization studies based on performance with realistic weather data. In this paper, a mathematical approximation procedure, designated Sandia Central Receiver Approximation Model (SCRAM) will be described. Rather than simulating the system components from first principles, it relies on data generated by the DELSOL code of Dellin and Fish for the optical performance of PFCR systems, and abstracts a mathematical model using a stepwise regression procedure. The result is a computational procedure which allows the user to define the heliostat field boundaries and tower height arbitrarily, generating a model for optical field performance, including shadowing, blocking, cosine, losses, and atmospheric attenuation, and which requires only a polynomial evaluation for each set of sun angles. A comparison with DELSOL for three different fields on three representative days indicates that the rms error of the approximation is 1-3% and that the new code is 1,000-3,000 times as fast as DELSOL. It is also shown that one reason that the accuracy in field performance predictions is higher than that of the generting function for the model is that much of the error in the generating function is due to an oscillatory behavior associated with a moire pattern in the optical response of the heiostat field.

  11. Experience at Los Alamos with use of the optical model for applied nuclear data calculations

    SciTech Connect

    Young, P.G.

    1994-10-01

    While many nuclear models are important in calculations of nuclear data, the optical model usually provides the basic underpinning of analyses directed at data for applications. An overview is given here of experience in the Nuclear Theory and Applications Group at Los Alamos National Laboratory in the use of the optical model for calculations of nuclear cross section data for applied purposes. We consider the direct utilization of total, elastic, and reaction cross sections for neutrons, protons, deuterons, tritons, {sup 3}He and alpha particles in files of evaluated nuclear data covering the energy range of 0 to 200 MeV, as well as transmission coefficients for reaction theory calculations and neutron and proton wave functions direct-reaction and Feshbach-Kerman-Koonin analyses. Optical model codes such as SCAT and ECIS and the reaction theory codes COMNUC, GNASH FKK-GNASH, and DWUCK have primarily been used in our analyses. A summary of optical model parameterizations from past analyses at Los Alamos will be given, including detailed tabulations of the parameters for a selection of nuclei.

  12. An evaluation of meniscal collagenous structure using optical projection tomography

    PubMed Central

    2013-01-01

    Background The collagenous structure of menisci is a complex network of circumferentially oriented fascicles and interwoven radially oriented tie-fibres. To date, examination of this micro- architecture has been limited to two-dimensional imaging techniques. The purpose of this study was to evaluate the ability of the three-dimensional imaging technique; optical projection tomography (OPT), to visualize the collagenous structure of the meniscus. If successful, this technique would be the first to visualize the macroscopic orientation of collagen fascicles in 3-D in the meniscus and could further refine load bearing mechanisms in the tissue. OPT is an imaging technique capable of imaging samples on the meso-scale (1-10 mm) at a micro-scale resolution. The technique, similar to computed tomography, takes two-dimensional images of objects from incremental angles around the object and reconstructs them using a back projection algorithm to determine three-dimensional structure. Methods Bovine meniscal samples were imaged from four locations (outer main body, femoral surface, tibial surface and inner main body) to determine the variation in collagen orientation throughout the tissue. Bovine stifles (n = 2) were obtained from a local abattoir and the menisci carefully dissected. Menisci were fixed in methanol and subsequently cut using a custom cutting jig (n = 4 samples per meniscus). Samples were then mounted in agarose, dehydrated in methanol and subsequently cleared using benzyl alcohol benzyl benzoate (BABB) and imaged using OPT. Results Results indicate circumferential, radial and oblique collagenous orientations at the contact surfaces and in the inner third of the main body of the meniscus. Imaging identified fascicles ranging from 80-420 μm in diameter. Transition zones where fascicles were found to have a woven or braided appearance were also identified. The outer-third of the main body was composed of fascicles oriented predominantly in the

  13. Optical evaluation of red blood cell geometry using micropipette aspiration.

    PubMed

    Engström, K G; Möller, B; Meiselman, H J

    1992-01-01

    Although red blood cell (RBC) geometry has been extensively studied by micropipette aspiration, the small size of RBC and pipettes vs. the optical resolution of light microscopy suggests the need to consider potential errors. The present study addressed such difficulties and investigated four specific problems: (1) use of exact equations to calculate RBC membrane area and volume; (2) calibration of the pipette internal diameter (PID); (3) correction for a noncylindrical pipette barrel; (4) diffraction distortion of the RBC image. The observed PID represents a cylinder lens enlargement that can be theoretically derived from the glass/buffer refractive index ratio (1.49/1.33 = 1.12). This enlargement was experimentally confirmed by: (1) studying pipettes bent to allow measurement through the barrel (horizontal) and at the orifice (vertical), with a resulting diameter ratio of 1.12 +/- 0.01; (2) and by replacing the surrounding buffer with immersion oil and hence abolishing the lens phenomenon (ratio = 1.12 +/- 0.02). In addition, use of aspirated oil droplets demonstrated a 3.2 +/- 0.2% error when the PID is focused at a sharp, maximum diameter. The average pipette cone angle was 1.49 +/- 0.09 degrees and varied considerably with pipette pulling procedures; calculated tongue geometry inside the pipette was affected by the noncylindrical pipette barrel. The RBC diffraction error, demonstrated by touching two aspirated cells held by opposing pipettes, was 0.091 +/- 0.002 microns. The PID, cone angle, and diffraction artifacts significantly (p < 0.001) affected calculated RBC geometry (average errors up to 5.4% for area and 9.6% for volume). Two new methods to calculate, rather than directly measure, the PID from images of a single RBC, during either osmotic or pressure manipulation, were evaluated; the osmotic method closely predicted the PID, whereas the pressure method markedly underestimated the PID. Our results thus confirm the need to consider the above

  14. HiPEP Ion Optics System Evaluation Using Gridlets

    NASA Technical Reports Server (NTRS)

    Willliams, John D.; Farnell, Cody C.; Laufer, D. Mark; Martinez, Rafael A.

    2004-01-01

    Experimental measurements are presented for sub-scale ion optics systems comprised of 7 and 19 aperture pairs with geometrical features that are similar to the HiPEP ion optics system. Effects of hole diameter and grid-to-grid spacing are presented as functions of applied voltage and beamlet current. Recommendations are made for the beamlet current range where the ion optics system can be safely operated without experiencing direct impingement of high energy ions on the accelerator grid surface. Measurements are also presented of the accelerator grid voltage where beam plasma electrons backstream through the ion optics system. Results of numerical simulations obtained with the ffx code are compared to both the impingement limit and backstreaming measurements. An emphasis is placed on identifying differences between measurements and simulation predictions to highlight areas where more research is needed. Relatively large effects are observed in simulations when the discharge chamber plasma properties and ion optics geometry are varied. Parameters investigated using simulations include the applied voltages, grid spacing, hole-to-hole spacing, doubles-to-singles ratio, plasma potential, and electron temperature; and estimates are provided for the sensitivity of impingement limits on these parameters.

  15. Gold nanoparticles evaluation using functional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    StrÄ kowski, Marcin R.; Głowacki, Maciej; Kamińska, Aleksandra; Sawczak, Mirosław

    2017-02-01

    The main object of this research was to assess the ability to characterize the gold nanoparticles using optical modalities like optical coherence tomography. Since the nanoparticles, especially gold one, have been very attractive for medical diagnosis and treatment the amount of research activities have been growing rapidly. The nanoparticles designed for different applications like contrast agents or drugs delivery change the optical features of tissue in different way. Therefore, the expanded analysis of scattering optical signal may lead to obtain much more useful information about the tissues health and the treatment efficiency. The noninvasive measurements of the concentration and distribution of the nanoparticles, as well as their size in the media have been taken under consideration. For this purpose the polarization sensitive optical coherence tomography system with spectroscopic analysis (PS-SOCT) has been designed and used. In this contribution we are going to present the PS-SOCT measurement data obtained for the gold nanoparticles. The measurements have been taken for the liquid (gold nanoparticles in water) samples changing the particles concentrations in time.

  16. Evaluation of Mechanical Modal Characteristics Using Optical Techniques

    NASA Technical Reports Server (NTRS)

    Lekki, John; Adamovsky, Grigory; Flanagan, Patrick; Weiland, Ken

    2002-01-01

    In this paper the sensitivity of embedded fiber optic sensors to changes in modal characteristics of plates is discussed. In order to determine the feasibility of embedded fiber Bragg gratings for the detection of modal shapes and modal frequencies, a comparison of holographically imaged modes and the detected dynamic strain from embedded fiber optic Bragg gratings is made. Time averaged optical holography is used for the detection of mechanical defects, or damage, in various aerospace components. The damage is detected by measuring an alteration in structural dynamics, which is visually apparent when using time-averaged holography. These shifts in the mode shapes, both in frequency of the resonance and spatial location of vibration nodes, are caused by changes in parameters that affect the structure's mechanical impedance, such as stiffness, mass and damping, resulting from cracks or holes. It is anticipated that embedded fiber optic sensor arrays may also be able to detect component damage by sensing these changes in modal characteristics. This work is designed to give an initial indication to the feasibility of damage detection through the monitoring of modal frequencies and mode shapes with fiber optic sensors.

  17. Model of Host-Pathogen Interaction Dynamics Links In Vivo Optical Imaging and Immune Responses

    PubMed Central

    Ale, Angelique; Crepin, Valerie F.; Collins, James W.; Constantinou, Nicholas; Habibzay, Maryam; Babtie, Ann C.

    2016-01-01

    ABSTRACT Tracking disease progression in vivo is essential for the development of treatments against bacterial infection. Optical imaging has become a central tool for in vivo tracking of bacterial population development and therapeutic response. For a precise understanding of in vivo imaging results in terms of disease mechanisms derived from detailed postmortem observations, however, a link between the two is needed. Here, we develop a model that provides that link for the investigation of Citrobacter rodentium infection, a mouse model for enteropathogenic Escherichia coli (EPEC). We connect in vivo disease progression of C57BL/6 mice infected with bioluminescent bacteria, imaged using optical tomography and X-ray computed tomography, to postmortem measurements of colonic immune cell infiltration. We use the model to explore changes to both the host immune response and the bacteria and to evaluate the response to antibiotic treatment. The developed model serves as a novel tool for the identification and development of new therapeutic interventions. PMID:27821583

  18. Analysis of the electric field propagation method: theoretical model applied to perfluorinated graded-index polymer optical fiber links.

    PubMed

    Montero, D S; Vázquez, C

    2011-10-15

    We evaluate a theoretical model based on the electric field propagation method but applied for the first time to amorphous perfluorinated graded-index polymer optical fibers (PF GIPOFs). The belief is that a better understanding of the factors that affect the fiber frequency response will prove very useful in increasing the performance of PF-GIPOF-based optical links in real situations. The influence of some parameters involved in the frequency response is addressed, and results show experimental data that validate, with tolerable discrepancy, the model described applied to this kind of optical fibers.

  19. Development and Performance Evaluation of Optical Sensors for High Temperature Engine Applications

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Varga, D.; Floyd, B.

    2011-01-01

    This paper discusses fiber optic sensors designed and constructed to withstand extreme temperatures of aircraft engine. The paper describes development and performance evaluation of fiber optic Bragg grating based sensors. It also describes the design and presents test results of packaged sensors subjected to temperatures up to 1000 C for prolonged periods of time.

  20. Introduction: feature issue on phantoms for the performance evaluation and validation of optical medical imaging devices.

    PubMed

    Hwang, Jeeseong; Ramella-Roman, Jessica C; Nordstrom, Robert

    2012-06-01

    The editors introduce the Biomedical Optics Express feature issue on "Phantoms for the Performance Evaluation and Validation of Optical Medical Imaging Devices." This topic was the focus of a technical workshop that was held on November 7-8, 2011, in Washington, D.C. The feature issue includes 13 contributions from workshop attendees.

  1. Fiber-optic interferometric sensors for measurements of pressure fluctuations - Experimental evaluation

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.; Soderman, P. T.

    1993-01-01

    A fiber optic interferometric sensor that is being developed at NASA Ames Research Center for pressure fluctuation measurements in wind tunnels is considered. Preliminary evaluation indicates that the fiber optic interferometric sensor can be successfully used as an aeroacoustic sensor and is capable of providing a powerful instrument to solve complex acoustic measurement problems in wind tunnels.

  2. Differential program evaluation model in child protection.

    PubMed

    Lalayants, Marina

    2012-01-01

    Increasingly attention has been focused to the degree to which social programs have effectively and efficiently delivered services. Using the differential program evaluation model by Tripodi, Fellin, and Epstein (1978) and by Bielawski and Epstein (1984), this paper described the application of this model to evaluating a multidisciplinary clinical consultation practice in child protection. This paper discussed the uses of the model by demonstrating them through the four stages of program initiation, contact, implementation, and stabilization. This organizational case study made a contribution to the model by introducing essential and interrelated elements of a "practical evaluation" methodology in evaluating social programs, such as a participatory evaluation approach; learning, empowerment and sustainability; and a flexible individualized approach to evaluation. The study results demonstrated that by applying the program development model, child-protective administrators and practitioners were able to evaluate the existing practices and recognize areas for program improvement.

  3. Performance Evaluation of the Optical AND Gate at 200 Gbps

    NASA Astrophysics Data System (ADS)

    Tripathi, Devendra Kr.

    2017-06-01

    The article explores performance investigation for the all optical AND logic gate at the 200 Gbps data rate. Numerical simulations have been executed and output pattern for the AND logic operation has been verified. Accordingly good extinction ratio of 15.8 dB has been observed. Investigations depict optimum optical performance metric with the key deign parameters as the pump power (>1e-4 W), pump current (>1 ‎Å), current injection efficiency (>0.5), modulator bias voltage (>1.25 V), modulator on off ratio (>10 dB) and the SOA reflectivity (>0 dB). The schematic is evident, simpler tender's option to endow different input combinations simultaneously. Furthermore, the outcomes are well sustainable to formulate forthcoming advanced higher data rate all-optical digital processing.

  4. Optical Channelizer Evaluation Using Empirical Data and Simulation

    NASA Technical Reports Server (NTRS)

    Ivancic,William D.

    1998-01-01

    Westinghouse Electric Corporation Division under NASA contract NAS3-25865 developed a proof-of-concept (POC) multichannel demultiplexer implemented as an acousto-optic radiofrequency (RF) with a spectrum analyzer. A detailed analysis of the experimental results indicate that the expected degradation caused by the acousto-optical channelizer is approximately 2.0 dB degradation at 10(exp -5) bit-error rate (BER) and 3.0 dB degradation at 10(exp -8) BER. This degradation may be quite acceptable when considering the excellent volume, mass, and power characteristics of acousto-optical channelizing relative to other technologies. In addition, system performance can be greatly improved by using digital pulse shaping in the modem and increasing the channel spacing from 40 to 45 kHz for 64 kbps quadrature phase-shift keying (QPSK) modulation.

  5. EPA Corporate GHG Goal Evaluation Model

    EPA Pesticide Factsheets

    The EPA Corporate GHG Goal Evaluation Model provides companies with a transparent and publicly available benchmarking resource to help evaluate and establish new or existing GHG goals that go beyond business as usual for their individual sectors.

  6. Toward an Ecological Evaluation Model.

    ERIC Educational Resources Information Center

    Parker, Jackson; Patterson, Jerry L.

    1979-01-01

    The authors suggest that the aura of authority traditionally placed on educational research and evaluation has been based on an outdated understanding of the scientific enterprise. They outline an alternative view of science which is more ecological and provides more scope and power for evaluating educational programs. They propose a new framework…

  7. Toward an Ecological Evaluation Model.

    ERIC Educational Resources Information Center

    Parker, Jackson; Patterson, Jerry L.

    1979-01-01

    The authors suggest that the aura of authority traditionally placed on educational research and evaluation has been based on an outdated understanding of the scientific enterprise. They outline an alternative view of science which is more ecological and provides more scope and power for evaluating educational programs. They propose a new framework…

  8. Controllably Inducing and Modeling Optical Response from Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Lombardo, Nicholas; Naumov, Anton

    Graphene, a novel 2-dimensional sp2-hybridized allotrope of Carbon, has unique electrical and mechanical properties. While it is naturally a highly conductive zero band gap semiconductor, graphene does not exhibit optical emission. It has been shown that functionalization with oxygen-containing groups elicits an opening of band gap in graphene. In this work, we aim to induce an optical response in graphene via controlled oxidation, and then explore potential origins of its photoluminescence through mathematical modeling. We employ timed ozone treatment of initially non-fluorescent reduced graphene oxide (RGO) to produce graphene oxide (GO) with specific optical properties. Oxidized material exhibits substantial changes in the absorption spectra and a broad photoluminescence feature, centered at 532 nm, which suggests the appearance of a band gap. We then explore a number of possible mechanisms for the origin of GO photoluminescence via PM3 and ab initio calculations on a functionalized single sheet of graphene. By adjusting modeling parameters to fit experimentally obtained optical transition energies we estimate the size of the sp2 graphitic regions in GO and the arrangement of functional groups that could be responsible for the observed emission.

  9. Phase-transparency model of an eye optical system

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl V.; Chyzh, Igor H.; Sokurenko, Vyacheslav M.; Molebny, S. V.; Pallikaris, Ioannis G.; Naoumidis, Leonidas P.

    1997-12-01

    Measurement of refraction distribution in the human eye opens new opportunities to make photorefractive surgery more accurate due to accounting imperfections not only of the cornea, but of the eye as an optical system. To calculate the to-be-ablated cornea layers, mathematical relations must be found between measured coordinates of retina ray tracings and transfer function of an eye. A new concept for modeling eye optical system is proposed using four phase transparencies, each of them exercising its own function: accommodation (equivalent to varifocal system), image focusing on the retina (optical system with constant optical power), regular aberrations (spherical and chromatic, astigmatism), and irregular phase distribution. It is shown, how the parameters, necessary for phase transparencies description, can be derived from direct and indirect measurements. Results of modeling experiment with simplified set of test points showed good sight correction. Investigated methodology proved to be fruitful even with limited number of test points and restricted length of polynomial approximation. In our refraction mapping system, transfer function reconstruction will use initial information from 65 points.

  10. Diffraction analysis and evaluation of several focus- and track-error detection schemes for magneto-optical disk systems

    NASA Technical Reports Server (NTRS)

    Bernacki, Bruce E.; Mansuripur, M.

    1992-01-01

    A commonly used tracking method on pre-grooved magneto-optical (MO) media is the push-pull technique, and the astigmatic method is a popular focus-error detection approach. These two methods are analyzed using DIFFRACT, a general-purpose scalar diffraction modeling program, to observe the effects on the error signals due to focusing lens misalignment, Seidel aberrations, and optical crosstalk (feedthrough) between the focusing and tracking servos. Using the results of the astigmatic/push-pull system as a basis for comparison, a novel focus/track-error detection technique that utilizes a ring toric lens is evaluated as well as the obscuration method (focus error detection only).

  11. Evaluation of atomic constants for optical radiation, volume 1

    NASA Technical Reports Server (NTRS)

    Kylstra, C. D.; Schneider, R. J.

    1974-01-01

    Atomic constants for optical radiation are discussed which include transition probabilities, line strengths, and oscillator strengths for both dipole and quadrupole transitions, as well as the associated matrix elements needed for line broadening calculations. Atomic constants were computed for a wide selection of elements and lines. An existing computer program was used, with modifications to include, in an approximate manner, the effect of equivalent electrons, and to enable reordering and restructuring of the output for publication. This program is suitable for fast, low cost computation of the optical constants, using the Coulomb approximation formalism for LS coupling.

  12. FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides.

    PubMed

    Dissanayake, Chethiya M; Premaratne, Malin; Rukhlenko, Ivan D; Agrawal, Govind P

    2010-09-27

    A deep insight into the inherent anisotropic optical properties of silicon is required to improve the performance of silicon-waveguide-based photonic devices. It may also lead to novel device concepts and substantially extend the capabilities of silicon photonics in the future. In this paper, for the first time to the best of our knowledge, we present a three-dimensional finite-difference time-domain (FDTD) method for modeling optical phenomena in silicon waveguides, which takes into account fully the anisotropy of the third-order electronic and Raman susceptibilities. We show that, under certain realistic conditions that prevent generation of the longitudinal optical field inside the waveguide, this model is considerably simplified and can be represented by a computationally efficient algorithm, suitable for numerical analysis of complex polarization effects. To demonstrate the versatility of our model, we study polarization dependence for several nonlinear effects, including self-phase modulation, cross-phase modulation, and stimulated Raman scattering. Our FDTD model provides a basis for a full-blown numerical simulator that is restricted neither by the single-mode assumption nor by the slowly varying envelope approximation.

  13. Time-domain model of quantum-dot semiconductor optical amplifiers for wideband optical signals.

    PubMed

    Puris, D; Schmidt-Langhorst, C; Lüdge, K; Majer, N; Schöll, E; Petermann, K

    2012-11-19

    We present a novel theoretical time-domain model for a quantum dot semiconductor optical amplifier, that allows to simulate subpicosecond pulse propagation including power-based and phase-based effects. Static results including amplified spontaneous emission spectra, continuous wave amplification, and four-wave mixing experiments in addition to dynamic pump-probe simulations are presented for different injection currents. The model uses digital filters to describe the frequency dependent gain and microscopically calculated carrier-carrier scattering rates for the interband carrier dynamics. It can be used to calculate the propagation of multiple signals with different wavelengths or one wideband signal with high bitrate.

  14. Multiple Fan-Beam Optical Tomography: Modelling Techniques

    PubMed Central

    Rahim, Ruzairi Abdul; Chen, Leong Lai; San, Chan Kok; Rahiman, Mohd Hafiz Fazalul; Fea, Pang Jon

    2009-01-01

    This paper explains in detail the solution to the forward and inverse problem faced in this research. In the forward problem section, the projection geometry and the sensor modelling are discussed. The dimensions, distributions and arrangements of the optical fibre sensors are determined based on the real hardware constructed and these are explained in the projection geometry section. The general idea in sensor modelling is to simulate an artificial environment, but with similar system properties, to predict the actual sensor values for various flow models in the hardware system. The sensitivity maps produced from the solution of the forward problems are important in reconstructing the tomographic image. PMID:22291523

  15. Optical and X-Ray Afterglows in the Cannonball Model

    NASA Astrophysics Data System (ADS)

    de Rújula, A.

    2003-04-01

    The Cannonball Model is based on the hypothesis that GRBs and their afterglows are made in supernova explosions by relativistic ejecta similar to the ones observed in quasars and microquasars. Its predictions are simple, and analytical in fair approximations. The model describes well the properties of the γ-rays of GRBs. It gives a very simple and extremely successful description of the optical and X-ray afterglows of all GRBs of known redshift. The only problem the model has, so far, is that it is contrary to staunch orthodox beliefs.

  16. Fiber optic displacement measurement model based on finite reflective surface

    NASA Astrophysics Data System (ADS)

    Li, Yuhe; Guan, Kaisen; Hu, Zhaohui

    2016-10-01

    We present a fiber optic displacement measurement model based on finite reflective plate. The theoretical model was derived, and simulation analysis of light intensity distribution, reflective plate width, and the distance between fiber probe and reflective plate were conducted in details. The three dimensional received light intensity distribution and the characteristic curve of light intensity were studied as functions of displacement of finite reflective plate. Experiments were carried out to verify the established model. The physical fundamentals and the effect of operating parameters on measuring system performance were revealed in the end.

  17. Event-based Simulation Model for Quantum Optics Experiments

    NASA Astrophysics Data System (ADS)

    De Raedt, H.; Michielsen, K.

    2011-03-01

    We present a corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one. The event-based corpuscular model gives a unified description of multiple-beam fringes of a plane parallel plate and single-photon Mach-Zehnder interferometer, Wheeler's delayed choice, photon tunneling, quantum eraser, two-beam interference, double-slit, Einstein-Podolsky-Rosen-Bohm and Hanbury Brown-Twiss experiments. We also discuss the possibility to refute our corpuscular model.

  18. Numerical modeling of collisional dynamics of Sr in an optical dipole trap

    NASA Astrophysics Data System (ADS)

    Yan, M.; Chakraborty, R.; Mazurenko, A.; Mickelson, P. G.; de Escobar, Y. N. Martinez; Desalvo, B. J.; Killian, T. C.

    2011-03-01

    We describe a model of inelastic and elastic collisional dynamics of atoms in an optical dipole trap that utilizes numerical evaluation of statistical mechanical quantities and numerical solution of equations for the evolution of number and temperature of trapped atoms. It can be used for traps that possess little spatial symmetry and when the ratio of trap depth to sample temperature is relatively small. We compare simulation results with experiments on Sr88 and Sr84, which have well-characterized collisional properties.

  19. B-spline image model for energy minimization-based optical flow estimation.

    PubMed

    Le Besnerais, Guy; Champagnat, Frédéric

    2006-10-01

    Robust estimation of the optical flow is addressed through a multiresolution energy minimization. It involves repeated evaluation of spatial and temporal gradients of image intensity which rely usually on bilinear interpolation and image filtering. We propose to base both computations on a single pyramidal cubic B-spline model of image intensity. We show empirically improvements in convergence speed and estimation error and validate the resulting algorithm on real test sequences.

  20. Comparative analysis of optical coherence tomography signal and microhardness for demineralization evaluation of human tooth enamel

    NASA Astrophysics Data System (ADS)

    de Cara, Ana Claudia Ballet; Zezell, Denise Maria; Ana, Patricia A.; Deana, Alessandro Melo; Amaral, Marcello Magri; Dias Vieira, Nilson, Jr.; de Freitas, Anderson Zanardi

    2012-06-01

    The diagnosis of dental caries at an early stage enables the implementation of conservative treatments based on dental preservation. Several diagnostic methods have been developed, like visual-tactile and radiographic are the most commons but are limited for this application. The Optical Coherence Tomography is a technique that provides information of optical properties of enamel, which may change due to the decay process. The objective of this study was to evaluate the ability of OCT to detect different stages of demineralization of tooth enamel during the development of artificial caries lesions, taking as a reference standard for comparison sectional microhardness testing. Different stages of caries lesions were simulated using the pH cycling model suggested Feathestone and modified by Argenta. The samples were exposed to 0 (control group), 5, 10, 15, 20 and 25 days at a daily regimen of three hours demineralization followed by remineralization during 20 hours. It was used an OCT system with at 930nm. Sectional images were generated in all lesion region. The results obtained from the OCT technique presented similar behavior to microhardness, except for the group 25 days, due to inability to perform indentations reading in areas of more intense demineralization. A linear relationship was observed between the OCT and microhardness techniques for detection of demineralization in enamel. This relationship will allow the use of OCT technique in quantitative assessment of mineral loss and for the evaluation of incipient caries lesions.

  1. A Communication Model for Evaluation and Remediation

    ERIC Educational Resources Information Center

    Bown, J. Clinton

    1972-01-01

    The communication model, described within the framework of channels, levels, and processes, is intended to clarify evaluative, prescriptive, and instructional practices for exceptional children. (Author/KW)

  2. Evaluation of the Solutions for two Design Problems Presented at the 1998 Optical Interference Coatings Conference.

    PubMed

    Baumeister, P

    2000-05-01

    Two problems were proposed at the 1998 Conference on Optical Interference Coatings: dual-band antireflection coatings and bandpass filters. In excess of 40 solutions were submitted. An evaluation of those solutions is presented.

  3. Retinal phototoxicity: a review of standard methodology for evaluating retinal optical radiation hazards.

    PubMed

    Landry, Robert J; Bostrom, Robert G; Miller, Sharon A; Shi, Dexiu; Sliney, David H

    2011-04-01

    Optical radiation (light) safety standards can be difficult to use for the evaluation of light hazards to the retina, even for persons experienced in radiometry and photometry. This paper reviews terminology and methodology for evaluating optical radiation hazards to the retina in accordance with international standard ISO 15004-2 Ophthalmic instruments-Fundamental requirements and test methods, Part 2: Light hazard protection (2007). All optical radiation safety standards use similar methods. Specifically, this paper illustrates how to evaluate the retinal hazards from various ophthalmic instruments including the following: diffuse illumination of the cornea; incident light diverging at the cornea (direct ophthalmoscope, operation microscope, fixation lamp); and incident light converging at the cornea (indirect ophthalmoscope, fundus camera, slit lamp biomicroscope). A brief review of radiometry and the use of certified optical components by manufacturers as specified by the ISO standard is also provided. Finally, the authors provide examples of the use of photometric measurements in hazard evaluation.

  4. (abstract) Evaluation and Development of Diamond Grids for Ion Optics

    NASA Technical Reports Server (NTRS)

    Blandino, J.; Goodwin, D.; Garner, C.

    1993-01-01

    A research program is underway to establish the feasibility of fabricating 15 cm diameter ion engine optics from polycrystalline diamond film. Because of its high thermal conductivity, low CTE, and low sputter yield, diamond film has the potential of mitigating life limiting and performance degrading processes which have hindered flight qualification of ion thrusters to date. Results of experiments are reported.

  5. Evaluation of optical reflectance techniques for imaging of alveolar structure

    NASA Astrophysics Data System (ADS)

    Unglert, Carolin I.; Namati, Eman; Warger, William C.; Liu, Linbo; Yoo, Hongki; Kang, DongKyun; Bouma, Brett E.; Tearney, Guillermo J.

    2012-07-01

    Three-dimensional (3-D) visualization of the fine structures within the lung parenchyma could advance our understanding of alveolar physiology and pathophysiology. Current knowledge has been primarily based on histology, but it is a destructive two-dimensional (2-D) technique that is limited by tissue processing artifacts. Micro-CT provides high-resolution three-dimensional (3-D) imaging within a limited sample size, but is not applicable to intact lungs from larger animals or humans. Optical reflectance techniques offer the promise to visualize alveolar regions of the large animal or human lung with sub-cellular resolution in three dimensions. Here, we present the capabilities of three optical reflectance techniques, namely optical frequency domain imaging, spectrally encoded confocal microscopy, and full field optical coherence microscopy, to visualize both gross architecture as well as cellular detail in fixed, phosphate buffered saline-immersed rat lung tissue. Images from all techniques were correlated to each other and then to corresponding histology. Spatial and temporal resolution, imaging depth, and suitability for in vivo probe development were compared to highlight the merits and limitations of each technology for studying respiratory physiology at the alveolar level.

  6. (abstract) Evaluation and Development of Diamond Grids for Ion Optics

    NASA Technical Reports Server (NTRS)

    Blandino, J.; Goodwin, D.; Garner, C.

    1993-01-01

    A research program is underway to establish the feasibility of fabricating 15 cm diameter ion engine optics from polycrystalline diamond film. Because of its high thermal conductivity, low CTE, and low sputter yield, diamond film has the potential of mitigating life limiting and performance degrading processes which have hindered flight qualification of ion thrusters to date. Results of experiments are reported.

  7. An Evaluation of PC-Based Optical Character Recognition Systems.

    ERIC Educational Resources Information Center

    Schreier, E. M.; Uslan, M. M.

    1991-01-01

    The review examines six personal computer-based optical character recognition (OCR) systems designed for use by blind and visually impaired people. Considered are OCR components and terms, documentation, scanning and reading, command structure, conversion, unique features, accuracy of recognition, scanning time, speed, and cost. (DB)

  8. Diagrammatic evaluation of the density operator for nonlinear optical calculations

    NASA Technical Reports Server (NTRS)

    Yee, S. Y.; Gustafson, T. K.; Druet, S. A. J.; Taran, J.-P. E.

    1977-01-01

    Time-ordered diagrammatic representations are shown to precisely define and to simplify calculations of radiative perturbations to the density matrix. Nonlinear optical susceptibilities, here exemplified by that of CARS, can be obtained by simple propagator rules. An interpretation of transient Raman scattering in terms of time-ordered contributions is also discussed.

  9. Continuous monitoring of arthritis in animal models using optical imaging modalities

    NASA Astrophysics Data System (ADS)

    Son, Taeyoon; Yoon, Hyung-Ju; Lee, Saseong; Jang, Won Seuk; Jung, Byungjo; Kim, Wan-Uk

    2014-10-01

    Given the several difficulties associated with histology, including difficulty in continuous monitoring, this study aimed to investigate the feasibility of optical imaging modalities-cross-polarization color (CPC) imaging, erythema index (EI) imaging, and laser speckle contrast (LSC) imaging-for continuous evaluation and monitoring of arthritis in animal models. C57BL/6 mice, used for the evaluation of arthritis, were divided into three groups: arthritic mice group (AMG), positive control mice group (PCMG), and negative control mice group (NCMG). Complete Freund's adjuvant, mineral oil, and saline were injected into the footpad for AMG, PCMG, and NCMG, respectively. LSC and CPC images were acquired from 0 through 144 h after injection for all groups. EI images were calculated from CPC images. Variations in feet area, EI, and speckle index for each mice group over time were calculated for quantitative evaluation of arthritis. Histological examinations were performed, and the results were found to be consistent with those from optical imaging analysis. Thus, optical imaging modalities may be successfully applied for continuous evaluation and monitoring of arthritis in animal models.

  10. X-ray scattering and optical ellipsometric studies of collagen-model peptides

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgie; Cebe, Peggy; Valluzzi, Regina; Kaplan, David

    2003-03-01

    We report results of optical ellipsometry and X-ray scattering studies of structure in collagen-model peptides. Proline and hydroxyproline residues stabilize the triple-helical conformation of collagen proteins in the collagen consensus sequence. Regular modifications have been introduced into the collagen consensus sequence, forming model systems for the study of bio-macromolecular organization. The model systems are oligomers with hexapeptide sequences of the form: (Glu)5(Gly-Ala-Pro-Gly-Pro-Pro)6(Glu)5, or (Glu)5(Gly-Pro-Ala-Gly-Pro-Pro)6(Glu)5. The glutamic acid capping the ends of the hexapeptide sequences imparts solubility in water. Depending upon concentration and temperature, the peptides form lyotropic liquid crystalline structures, and maintain their order when dried to powders or films suitable for X-ray and optical studies. Through the use of the high intensity source of X-radiation at the Brookhaven National Synchrotron Light Source, phase transformation kinetics and structure development are studied in-situ, providing time-resolved characterization of these peptides. Two-dimensional optical ellipsometry provides direct measure of the optical anisotropy and retardance of the structures. The goal of our research is to evaluate the ability of these model peptides for self-assembly into liquid crystalline and true three-dimensional crystalline phases and to assess the temperature stability of resultant higher order structures.

  11. Mathematically Modeling the Involvement of Axons in Leber's Hereditary Optic Neuropathy

    PubMed Central

    Pan, Billy X.; Ross-Cisneros, Fred N.; Carelli, Valerio; Rue, Kelly S.; Salomao, Solange R.; Moraes-Filho, Milton N.; Moraes, Milton N.; Berezovsky, Adriana; Belfort, Rubens; Sadun, Alfredo A.

    2012-01-01

    Purpose. Leber's hereditary optic neuropathy (LHON), a mitochondrial disease, has clinical manifestations that reflect the initial preferential involvement of the papillomacular bundle (PMB). The present study seeks to predict the order of axonal loss in LHON optic nerves using the Nerve Fiber Layer Stress Index (NFL-SI), which is a novel mathematical model. Methods. Optic nerves were obtained postmortem from four molecularly characterized LHON patients with varying degrees of neurodegenerative changes and three age-matched controls. Tissues were cut in cross-section and stained with p-phenylenediamine to visualize myelin. Light microscopic images were captured in 32 regions of each optic nerve. Control and LHON tissues were evaluated by measuring axonal dimensions to generate an axonal diameter distribution map. LHON tissues were further evaluated by determining regions of total axonal depletion. Results. A size gradient was evident in the control optic nerves, with average axonal diameter increasing progressively from the temporal to nasal borders. LHON optic nerves showed an orderly loss of axons, starting inferotemporally, progressing centrally, and sparing the superonasal region until the end. Values generated from the NFL-SI equation fit a linear regression curve (R2 = 0.97; P < 0.001). Conclusions. The quantitative histopathologic data from this study revealed that the PMB is most susceptible in LHON, supporting clinical findings seen early in the course of disease onset. The present study also showed that the subsequent progression of axonal loss within the optic nerve can be predicted precisely with the NFL-SI equation. The results presented provided further insight into the pathophysiology of LHON. PMID:23060142

  12. Evaluation of Pyro-optic Materials for Infrared Imaging

    NASA Astrophysics Data System (ADS)

    Pandey, R. K.; Kotru, Sushma; Song, Xiuyu; Donnelly, David

    2004-03-01

    Infrared detectors are needed for a wide range of applications. IR detectors operate either on the principles of photon detection or pyroelectric detection. Both these systems have their respective advantages and disadvantages. However, both of them inherently have difficulties in management of noise to signal ratio and in read-out circuitory. One of the most serious handicaps of photon detectors is requirement of cryogenic cooling for satisfactory operation. In this respect uncooled pyroelectric detectors operating at above room temperature have an advantage. An alternative to these approaches can be pyro-optic based detectors. Only a handful of materials have been found with some satisfactory level of pyro-optic coefficients appropriate for imaginig devices. Some of them are: antimony-sulfo-iodide (SbSI), molybdenum sulfide (MoS2), bismuth vanadate (BiVO4) and Pb-based titanates. Pyrooptic coefficients of these materials have been reported using presumably bulk single crystals. However, no such data are available for their thin films which would be very important for light weight integrated structured devices.In this paper we will describe the parameters and optimization protocol for the growh of thin films of these materials on thermally insulating substrates. We will also discuss their structural, electrical and optical properties. Our investigations suggest that SbSI, BiVO4 and PNZT films are attractive options for advancing the IR detecting technology by utilizing the pyro-optic effect. Integrated thin film structures might lead to the fabrication of light weight, low cost, noise immune and efficient imaging devices based on pyro-optic properties. This research is sponsored by the DEPSCoR program of the U.S. Army Research Office.

  13. Coupling aerosol optics to the chemical transport model MATCH (v5.5.0) and aerosol dynamics module SALSA (v1)

    NASA Astrophysics Data System (ADS)

    Andersson, E.; Kahnert, M.

    2015-12-01

    Modelling aerosol optical properties is a notoriously difficult task due to the particles' complex morphologies and compositions. Yet aerosols and their optical properties are important for Earth system modelling and remote sensing applications. Operational optics models often make drastic and non realistic approximations regarding morphological properties, which can introduce errors. In this study a new aerosol optics model is implemented, in which more realistic morphologies and mixing states are assumed, especially for black carbon aerosols. The model includes both external and internal mixing of all chemical species, it treats externally mixed black carbon as fractal aggregates, and it accounts for inhomogeneous internal mixing of black carbon by use of a novel "core-grey shell" model. Simulated results of radiative fluxes, backscattering coefficients and the Ångström exponent from the new optics model are compared with results from another model simulating particles as externally mixed homogeneous spheres. To gauge the impact on the optical properties from the new optics model, the known and important effects from using aerosol dynamics serves as a reference. The results show that using a more detailed description of particle morphology and mixing states influences the optical properties to the same degree as aerosol dynamics. This is an important finding suggesting that over-simplified optics models coupled to a chemical transport model can introduce considerable errors; this can strongly effect simulations of radiative fluxes in Earth-system models, and it can compromise the use of remote sensing observations of aerosols in model evaluations and chemical data assimilation.

  14. Modelling the extrusion of preforms for microstructured optical fibres

    NASA Astrophysics Data System (ADS)

    Tronnolone, Hayden; Stokes, Yvonne; Crowdy, Darren

    2013-11-01

    Owing to a novel design, microstructured optical fibres (MOFs) promise the realisation of fibres with effectively any desired optical properties. MOFs are typically constructed from glass and employ a series of air channels aligned along the fibre axis to form a waveguide. The construction of MOFs by first extruding a preform and then drawing this into the final fibre has the potential to produce fibres on an industrial scale; however, this is hindered by a limited understanding of the fluid flow that arises during this process. We focus on the extrusion stage of fabrication and discuss a model of the fibre evolution based upon complex-variable techniques. The relative influence of the various physical processes involved is discussed, along with limitations of the model.

  15. Optical model for light distribution during transscleral cyclophotocoagulation

    SciTech Connect

    Nemati, B.; Dunn, A.; Welch, A.J.; Rylander, H.G. III

    1998-02-01

    Transscleral cyclophotocoagulation (TSCPC) is currently performed clinically as an effective treatment for end-stage glaucoma. We develop a theoretical model for the analysis of optical attenuation phenomena during TSCPC as a basis for selection of an optimal wavelength. A multilayered Monte Carlo model was developed to calculate the fluence and the rate of heat generation in each tissue layer for the wavelengths of Nd:YAG, diode, ruby, krypton yellow, and argon lasers. Of the five wavelengths under study, our theoretical results suggest that the diode laser wavelength offers the best penetration through the conjunctiva, sclera, and ciliary muscle and highest absorption within the ciliary pigment epithelium. {copyright} 1998 Optical Society of America.

  16. Computational modeling of femtosecond optical solitons from Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Taflove, Allen; Joseph, Rose M.; Hagness, Susan C.

    1992-01-01

    An algorithm is developed that permits the direct time integration of full-vector nonlinear Maxwell's equations. This capability permits the modeling of both linear and nonlinear instantaneous and dispersive effects in the electric polarization in material media. The modeling of the optical carrier is retained. The fundamental innovation is to notice that it is possible to treat the linear and nonlinear convolution integrals, which describe the dispersion, as new dependent variables. A coupled system of nonlinear second-order ordinary differential equations can then be derived for the linear and nonlinear convolution integrals, by differentiating them in the time domain. These equations, together with Maxwell's equations, are solved to determine the electromagnetic fields in nonlinear dispersive media. Results are presented of calculations in one dimension of the propagation and collision of femtosecond electromagnetic solitons that retain the optical carrier, taking into account as the Kerr and Raman interactions.

  17. Computational modeling of femtosecond optical solitons from Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Taflove, Allen; Joseph, Rose M.; Hagness, Susan C.

    1992-01-01

    An algorithm is developed that permits the direct time integration of full-vector nonlinear Maxwell's equations. This capability permits the modeling of both linear and nonlinear instantaneous and dispersive effects in the electric polarization in material media. The modeling of the optical carrier is retained. The fundamental innovation is to notice that it is possible to treat the linear and nonlinear convolution integrals, which describe the dispersion, as new dependent variables. A coupled system of nonlinear second-order ordinary differential equations can then be derived for the linear and nonlinear convolution integrals, by differentiating them in the time domain. These equations, together with Maxwell's equations, are solved to determine the electromagnetic fields in nonlinear dispersive media. Results are presented of calculations in one dimension of the propagation and collision of femtosecond electromagnetic solitons that retain the optical carrier, taking into account as the Kerr and Raman interactions.

  18. Evaluating Regional-Scale Air Quality Models

    EPA Science Inventory

    Numerical air quality models are being used to understand the complex interplay among emission loading meteorology, and atmospheric chemistry leading to the formation and accumulation of pollutants in the atmosphere. A model evaluation framework is presented here that considers ...

  19. Using multifractals to evaluate oceanographic model skill

    NASA Astrophysics Data System (ADS)

    Skákala, Jozef; Cazenave, Pierre W.; Smyth, Timothy J.; Torres, Ricardo

    2016-08-01

    We are in an era of unprecedented data volumes generated from observations and model simulations. This is particularly true from satellite Earth Observations (EO) and global scale oceanographic models. This presents us with an opportunity to evaluate large-scale oceanographic model outputs using EO data. Previous work on model skill evaluation has led to a plethora of metrics. The paper defines two new model skill evaluation metrics. The metrics are based on the theory of universal multifractals and their purpose is to measure the structural similarity between the model predictions and the EO data. The two metrics have the following advantages over the standard techniques: (a) they are scale-free and (b) they carry important part of information about how model represents different oceanographic drivers. Those two metrics are then used in the paper to evaluate the performance of the FVCOM model in the shelf seas around the south-west coast of the UK.

  20. Performance Evaluation of 40 cm Ion Optics for the NEXT Ion Engine

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Haag, Thomas W.; Patterson, Michael J.

    2002-01-01

    The results of performance tests with two 40 cm ion optics sets are presented and compared to those of 30 cm ion optics with similar aperture geometries. The 40 cm ion optics utilized both NSTAR and TAG (Thick-Accelerator-Grid) aperture geometries. All 40 cm ion optics tests were conducted on a NEXT (NASA's Evolutionary Xenon Thruster) laboratory model ion engine. Ion optics performance tests were conducted over a beam current range of 1.20 to 3.52 A and an engine input power range of 1.1 to 6.9 kW. Measured ion optics' performance parameters included near-field radial beam current density profiles, impingement-limited total voltages, electron backstreaming limits, screen grid ion transparencies, beam divergence angles, and start-up transients. Impingement-limited total voltages for 40 cm ion optics with the NSTAR aperture geometry were 60 to 90 V lower than those with the TAG aperture geometry. This difference was speculated to be due to an incomplete burn-in of the TAG ion optics. Electron backstreaming limits for the 40 cm ion optics with the TAG aperture geometry were 8 to 19 V higher than those with the NSTAR aperture geometry due to the thicker accelerator grid of the TAG geometry. Because the NEXT ion engine provided beam flatness parameters that were 40 to 63 percent higher than those of the NSTAR ion engine, the 40 cm ion optics outperformed the 30 cm ion optics.

  1. Evaluation of SeaWIFS Bio-Optical Products in Coastal Regions.

    NASA Astrophysics Data System (ADS)

    Ladner, S. D.; Arnone, R. A.; Gould, R. W.; Martinolich, P. M.

    2001-12-01

    Optical properties derived from SeaWIFS were evaluated for 10 cruises in coastal and open ocean waters in the Gulf of Mexico, US East Coastal and the Japan/ East Sea. The inherent optical properties (absorption and scattering)were derived from SeaWIFS processing using a Near-IR correction with a coupled ocean- atmosphere algorithm. Coastal optical properties are more complex and differ greatly from chlorophyll - dominated open-ocean waters. The coupled algorithms improved results and extend SeaWIFS optical properties well into bays and estuaries where high sediments and CDOM absorption dominate the optical signature. We assembled a database in situ optical properties to evaluate SeaWIFS-derived properties collected from 1998 to present in a variety of coastal regions (Mississippi Bight, and Miss. River, West Florida Shelf, Loop Current, New Jersey). The data cover a broad range of absorption (.4 - 15), scattering (.01 - 3) coefficients and remote sensing reflectance. The in situ data were used to estimate the error associated with in-water optical algorithms based on remote sensing reflectance. We then estimated the error associated with satellite optical products for a variety of different optical regimes (CDOM rich, sediment rich, and chlorophyll rich). As a whole, we noted higher error is associated with coastal waters than open ocean.

  2. Modeling the optical coupling across the anterior chamber of the eye towards polarimetric glucose sensing

    NASA Astrophysics Data System (ADS)

    Pirnstill, Casey W.; Coté, Gerard L.

    2014-02-01

    Millions of people worldwide are affected by diabetes. While glucose sensing technology has come a long way over the past several decades, the current commercially available techniques are still invasive, often leading to poor patient compliance. To minimize invasiveness, focus has been placed on optical techniques to ascertain blood glucose concentrations. Optical polarimetry has shown promise and progress as a viable technique for glucose sensing. Recent developments in polarimetric glucose sensing have been focused on overcoming time varying corneal birefringence due to motion artifacts. Beyond corneal birefringence, the next hurdle toward making this approach viable is the ability to couple polarized light across the eye's anterior chamber. The eye is ideally suited to couple light to the retina. The index mismatch between the air and cornea is partially responsible for the beam bending toward the retina and, while good for vision, it complicates our ability to couple light across the anterior chamber without using an index matching device when performing polarimetric glucose monitoring. In this report, we have designed and modeled a non-index matched coupling scheme constructed with commercially available optics. The optical ray tracing model was performed using CODE V to verify the feasibility of a reflective based non-index matched coupling scheme with respect to index of refraction and anatomical restraints. The ray tracing model was developed for a dual-wavelength system and the effect of refraction and reflection at each optical interface within the setup was evaluated. The modeling results indicate a reflective based optical coupling design could be added to existing polarimetric glucose systems thus removing the need for placing an index matched eye-coupling mechanism over the eye prior to data collection.

  3. Evaluation of the global aerosol microphysical ModelE2-TOMAS model against satellite and ground-based observations

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Adams, P. J.; Shindell, D. T.

    2015-03-01

    The TwO-Moment Aerosol Sectional (TOMAS) microphysics model has been integrated into the state-of-the-art general circulation model, GISS ModelE2. This paper provides a detailed description of the ModelE2-TOMAS model and evaluates the model against various observations including aerosol precursor gas concentrations, aerosol mass and number concentrations, and aerosol optical depths. Additionally, global budgets in ModelE2-TOMAS are compared with those of other global aerosol models, and the ModelE2-TOMAS model is compared to the default aerosol model in ModelE2, which is a one-moment aerosol (OMA) model (i.e. no aerosol microphysics). Overall, the ModelE2-TOMAS predictions are within the range of other global aerosol model predictions, and the model has a reasonable agreement (mostly within a factor of 2) with observations of sulfur species and other aerosol components as well as aerosol optical depth. However, ModelE2-TOMAS (as well as ModelE2-OMA) cannot capture the observed vertical distribution of sulfur dioxide over the Pacific Ocean, possibly due to overly strong convective transport and overpredicted precipitation. The ModelE2-TOMAS model simulates observed aerosol number concentrations and cloud condensation nuclei concentrations roughly within a factor of 2. Anthropogenic aerosol burdens in ModelE2-OMA differ from ModelE2-TOMAS by a few percent to a factor of 2 regionally, mainly due to differences in aerosol processes including deposition, cloud processing, and emission parameterizations. We observed larger differences for naturally emitted aerosols such as sea salt and mineral dust, as those emission rates are quite different due to different upper size cutoff assumptions.

  4. Evaluation of the Global Aerosol Microphysical ModelE2-TOMAS Model Against Satellite and Ground-Based Observations

    NASA Technical Reports Server (NTRS)

    Lee, Y. H.; Adams, P. J.; Shindell, D. T.

    2015-01-01

    The TwO-Moment Aerosol Sectional (TOMAS) microphysics model has been integrated into the state-of-the- art general circulation model, GISS ModelE2. This paper provides a detailed description of the ModelE2-TOMAS model and evaluates the model against various observations including aerosol precursor gas concentrations, aerosol mass and number concentrations, and aerosol optical depths. Additionally, global budgets in ModelE2-TOMAS are compared with those of other global aerosol models, and the ModelE2-TOMAS model is compared to the default aerosol model in ModelE2, which is a one-moment aerosol (OMA) model (i.e. no aerosol microphysics). Overall, the ModelE2- TOMAS predictions are within the range of other global aerosol model predictions, and the model has a reasonable agreement (mostly within a factor of 2) with observations of sulfur species and other aerosol components as well as aerosol optical depth. However, ModelE2-TOMAS (as well as ModelE2-OMA) cannot capture the observed vertical distribution of sulfur dioxide over the Pacific Ocean, possibly due to overly strong convective transport and over-predicted precipitation. The ModelE2-TOMAS model simulates observed aerosol number concentrations and cloud condensation nuclei concentrations roughly within a factor of 2. Anthropogenic aerosol burdens in ModelE2-OMA differ from ModelE2-TOMAS by a few percent to a factor of 2 regionally, mainly due to differences in aerosol processes including deposition, cloud processing, and emission parameterizations. We observed larger differences for naturally emitted aerosols such as sea salt and mineral dust, as those emission rates are quite different due to different upper size cutoff assumptions.

  5. General Hubbard Model for Fermions in an Optical Lattice

    NASA Astrophysics Data System (ADS)

    Kestner, Jason; Duan, Luming

    2009-03-01

    For two-component fermions in an optical lattice, an effective general Hubbard model (GHM) with tunable on-site attraction/repulsion and occupation-dependent hopping rates emerges from very general arguments [1]. This model is quite interesting, containing as special cases both the t-J and the XXZ models. However, the experimental range of applicability and the connection between the model parameters and the actual experimental parameters must be determined explicitly. To this end, we have used a stochastic variational approach with a correlated gaussian wavefunction to numerically find the eigenstates of two atoms interacting in a 3D few-well trap. By matching the few-site spectrum of the GHM to the variational spectrum obtained, the validity of the model and the relationship between experimental and model parameters are determined. [1] L.-M. Duan, Euro. Phys. Lett. 81, 20001 (2008).

  6. A Model Evaluation Data Set for the Tropical ARM Sites

    DOE Data Explorer

    Jakob, Christian

    2008-01-15

    This data set has been derived from various ARM and external data sources with the main aim of providing modelers easy access to quality controlled data for model evaluation. The data set contains highly aggregated (in time) data from a number of sources at the tropical ARM sites at Manus and Nauru. It spans the years of 1999 and 2000. The data set contains information on downward surface radiation; surface meteorology, including precipitation; atmospheric water vapor and cloud liquid water content; hydrometeor cover as a function of height; and cloud cover, cloud optical thickness and cloud top pressure information provided by the International Satellite Cloud Climatology Project (ISCCP).

  7. Distribution Models for Optical Scintillation Due to Atmospheric Turbulence

    DTIC Science & Technology

    2005-12-12

    beam jitter is found to be a dominant effect when this radius is close to unity, and the relationship between pointing error and scintillation is...phase errors in the near Field of the transmitter. If the optical phase at each point in the transmitter plane is described by the residual, 9, within...is close to unity, and the relationship between pointing error and scintillation is examined in detail. As a result of this work, models for the mean

  8. Probabilistic Modeling of Intracranial Pressure Effects on Optic Nerve Biomechanics

    NASA Technical Reports Server (NTRS)

    Ethier, C. R.; Feola, Andrew J.; Raykin, Julia; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian C.

    2016-01-01

    Altered intracranial pressure (ICP) is involved/implicated in several ocular conditions: papilledema, glaucoma and Visual Impairment and Intracranial Pressure (VIIP) syndrome. The biomechanical effects of altered ICP on optic nerve head (ONH) tissues in these conditions are uncertain but likely important. We have quantified ICP-induced deformations of ONH tissues, using finite element (FE) and probabilistic modeling (Latin Hypercube Simulations (LHS)) to consider a range of tissue properties and relevant pressures.

  9. The ROSCOE Manual. Volume 21-1. Optics Model

    DTIC Science & Technology

    1980-01-01

    AT GRID POINT TAKEN AS MAX OF CURRENT AND OLD VALUES POINTS • ADDED AT APPROPRIATE LOCATIONS IN ARRAY Figure 10. Focal Plane Generation ( OPSIN ) 21 10...participated in this program development effort. GRC’s responsibilities have been primarily concerned with the development of the optics system model and...ordered fashion. An initial list of events is set up in the input deck by the user. Additional events may be added to the list as computations are

  10. Optical Thin Film Modeling: Using FTG's FilmStar Software

    NASA Technical Reports Server (NTRS)

    Freese, Scott

    2009-01-01

    Every material has basic optical properties that define its interaction with light: The index of refraction (n) and extinction coefficient (k) vary for the material as a function of the wavelength of the incident light. Also significant are the phase velocity and polarization of the incident light These inherent properties allow for the accurate modeling of light s behavior upon contact with a surface: Reflectance, Transmittance, Absorptance.

  11. Unitary version of the particle–hole dispersive optical model

    SciTech Connect

    Gorelik, M. L.; Tulupov, B. A.; Urin, M. H.

    2016-11-15

    For the particle–hole dispersive optical model developed recently, a method is proposed for restoring unitarity weakly violated by a phenomenological description of the spreading effect. The method is implemented by performing a quantitative analysis of the energy-averaged isoscalar monopole double transition density and strength functions over a broad energy range including the isoscalar giant monopole resonance and its overtone in the {sup 208}Pb nucleus.

  12. The EMEFS model evaluation. An interim report

    SciTech Connect

    Barchet, W.R.; Dennis, R.L.; Seilkop, S.K.; Banic, C.M.; Davies, D.; Hoff, R.M.; Macdonald, A.M.; Mickle, R.E.; Padro, J.; Puckett, K.; Byun, D.; McHenry, J.N.; Karamchandani, P.; Venkatram, A.; Fung, C.; Misra, P.K.; Hansen, D.A.; Chang, J.S.

    1991-12-01

    The binational Eulerian Model Evaluation Field Study (EMEFS) consisted of several coordinated data gathering and model evaluation activities. In the EMEFS, data were collected by five air and precipitation monitoring networks between June 1988 and June 1990. Model evaluation is continuing. This interim report summarizes the progress made in the evaluation of the Regional Acid Deposition Model (RADM) and the Acid Deposition and Oxidant Model (ADOM) through the December 1990 completion of a State of Science and Technology report on model evaluation for the National Acid Precipitation Assessment Program (NAPAP). Because various assessment applications of RADM had to be evaluated for NAPAP, the report emphasizes the RADM component of the evaluation. A protocol for the evaluation was developed by the model evaluation team and defined the observed and predicted values to be used and the methods by which the observed and predicted values were to be compared. Scatter plots and time series of predicted and observed values were used to present the comparisons graphically. Difference statistics and correlations were used to quantify model performance. 64 refs., 34 figs., 6 tabs.

  13. Large Signal Evaluation of Nonlinear HBT Model

    NASA Astrophysics Data System (ADS)

    Angelov, Iltcho; Inoue, Akira; Watanabe, Shinsuke

    The performance of recently developed Large Signal (LS) HBT model was evaluated with extensive LS measurements like Power spectrum, Load pull and Inter-modulation investigations. Proposed model has adopted temperature dependent leakage resistance and a simplified capacitance models. The model was implemented in ADS as SDD. Important feature of the model is that the main model parameters are taken directly from measurements in rather simple and understandable way. Results show good accuracy despite the simplicity of the model. To our knowledge the HBT model is one of a few HBT models which can handle high current & Power HBT devices, with significantly less model parameters with good accuracy.

  14. Nonarteritic anterior ischemic optic neuropathy (NAION) and its experimental models

    PubMed Central

    Bernstein, Steven L.; Johnson, Mary A.; Miller, Neil R.

    2011-01-01

    Anterior ischemic optic neuropathy (AION) can be divided into nonarteritic (NAION) and arteritic (AAION) forms. NAION makes up ~85% of all cases of AION, and until recently was poorly understood. There is no treatment for NAION, and its initiating causes are poorly understood, in part because NAION is not lethal, making it difficult to obtain fresh, newly affected tissue for study. In-vivo electrophysiology and post-mortem studies reveal specific responses that are associated with NAION. New models of NAION have been developed which enable insights into the pathophysiological events surrounding this disease. These models include both rodent and primate species, and the power of a `vertically integrated' multi-species approach can help in understanding the common cellular mechanisms and physiological responses to clinical NAION, and to identify potential approaches to treatment. The models utilize laser light to activate intravascular photoactive dye to induce capillary vascular thrombosis, while sparing the larger vessels. The observable optic nerve changes associated with rodent models of AION (rAION) and primate NAION (pNAION) are indistinguishable from that seen in clinical disease, including sectoral axonal involvement, and in-vivo electrophysiological data from these models are consistent with clinical data. Early post-infarct events reveal an unexpected inflammatory response, and changes in intraretinal gene expression for both stress response, while sparing outer retinal function, which occurs in AAION models. Histologically, the NAION models reveal an isolated loss of retinal ganglion cells by apoptosis. There are changes detectable by immunohistochemistry suggesting that other retinal cells mount a brisk response to retinal ganglion cell distress without themselves dying. The optic nerve ultimately shows axonal loss and scarring. Inflammation is a prominent early histological feature. This suggests that clinically, specific modulation of inflammation may

  15. Theoretical model for high-power diamond laser optics using high-velocity liquid-metal jet impingement cooling

    NASA Astrophysics Data System (ADS)

    Palmer, James R.

    1993-02-01

    In 1988 I presented a paper, `Fly's Eye Modular Optic,' in the Los Angeles Symposium that described an optic for high power laser systems that provided for a modular system of hexagonal components that were independently cooled using a high velocity jet pointed normal to the back surface of the optical faceplate. In this paper we look at the use of diamond optical materials in concert with high velocity jet impingement heat transfer of various liquid metal mediums. By using this combination of techniques and materials we can push the laser damage threshold of optical components to even higher levels of absorbed flux density. The thrust of this paper is to develop a theoretical model for use on optical elements subject to very high continuous flux density lasers and to evaluate the use of commercial diamond substrates with conventional optical thin films and conventional substrates with CVD diamond films. In order to assume the very high absorbed flux densities, it is necessary to have a heat transfer technique capable of maintaining the optical component at a stable temperature and below the damage threshold of the optical materials. For the more common materials, thermal shock and subsequent failure in bi-axial shear have proven to be one of the major constituents of the optical damage. In this paper we look at the thermal shock, vis-a-vis, the melting point of some of the materials.

  16. Evaluating modeling tools for the EDOS

    NASA Technical Reports Server (NTRS)

    Knoble, Gordon; Mccaleb, Frederick; Aslam, Tanweer; Nester, Paul

    1994-01-01

    The Earth Observing System (EOS) Data and Operations System (EDOS) Project is developing a functional, system performance model to support the system implementation phase of the EDOS which is being designed and built by the Goddard Space Flight Center (GSFC). The EDOS Project will use modeling to meet two key objectives: (1) manage system design impacts introduced by unplanned changed in mission requirements; and (2) evaluate evolutionary technology insertions throughout the development of the EDOS. To select a suitable modeling tool, the EDOS modeling team developed an approach for evaluating modeling tools and languages by deriving evaluation criteria from both the EDOS modeling requirements and the development plan. Essential and optional features for an appropriate modeling tool were identified and compared with known capabilities of several modeling tools. Vendors were also provided the opportunity to model a representative EDOS processing function to demonstrate the applicability of their modeling tool to the EDOS modeling requirements. This paper emphasizes the importance of using a well defined approach for evaluating tools to model complex systems like the EDOS. The results of this evaluation study do not in any way signify the superiority of any one modeling tool since the results will vary with the specific modeling requirements of each project.

  17. Statistical evaluation of the performance of an optimized adaptive optics arm for retinal imaging flood system

    NASA Astrophysics Data System (ADS)

    Magaña Chávez, J. L.; Medina-Márquez, J.; Valdivieso-González, L. G.; Balderas-Mata, S. E.

    2016-09-01

    In the last decade, Adaptive Optics has been used to compensate the aberrations of the eye in order to acquire high resolution retinal images. The use of high speed deformable mirrors (DMs) to accomplish this compensation in real time is of great importance. But, sometimes DMs are overused, compensating the aberrations inherent in the optical systems. In this work the evaluation of the performance of an adaptive optics system together with the imaging system will be evaluated in order to know in advance the aberrations inherent in them in order to compensate them prior the use of a DM.

  18. Modelization of the optical and colorimetric properties of lustred ceramics

    NASA Astrophysics Data System (ADS)

    Reillon, V.; Berthier, S.

    2006-05-01

    The lustre decoration is one of the most famous decorations of glazed ceramics in the Mediterranean basin. Unfortunately, the recipes and fabrication techniques used during medieval times have been lost and that is why these objects have been widely studied. But until now, little was known on their optical properties. In this work it is shown that, despite the common belief, the chemical composition of the decoration (copper and/or silver nanoparticles) is not the only relevant parameter in order to explain the optical properties of lustres. By the use of optical characterization and the elaboration of a model - based on the Maxwell Garnett theory and the Abeles matrices theory for interferences -, simulated reflection spectra have been obtained in good agreement with the measured reflection spectra, confirming that the concentration of metal, the size of the metallic nanoparticles as well as the optical index of the glaze play a key-role in order to explain the coloured metallic shine exhibited by the lustres.

  19. Modeling of optical losses in perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Taghavi, M. Javad; Houshmand, Mohammad; Zandi, M. Hossein; Gorji, Nima E.

    2016-09-01

    The optical losses within the structure of hybrid perovskite solar cells are investigated using only the optical properties of each layer e.g. refractive index and extinction coefficient. This model allows calculating the transmission/reflection rates at the interfaces and absorption loss within any layer. Then, the short circuit current density and loss percentage are calculated versus the perovskite and TiO2 thicknesses from 50 nm to 150 nm. To make our calculations closer to reality, we extracted the optical properties of each device component from the literature reports on glass/TCO/TiO2/perovskite/metal. The simulations were fitted with the experimental results of some relevant references. Our simulations show that ITO transmits the light better than SnO2 as the TCO front electrode, and the light reflection at both sides of the perovskite layer, e.g. at TiO2/perovskite and perovskite/Spiro-OMeTAD, is lower than 25%. The light interference and multiple reflections have been accounted in our calculations and finally we showed that a thicker TiO2 and perovskite cause more optical loss in current density due to stronger absorption.

  20. Numerical Simulations of Optical Turbulence Using an Advanced Atmospheric Prediction Model: Implications for Adaptive Optics Design

    NASA Astrophysics Data System (ADS)

    Alliss, R.

    2014-09-01

    Optical turbulence (OT) acts to distort light in the atmosphere, degrading imagery from astronomical telescopes and reducing the data quality of optical imaging and communication links. Some of the degradation due to turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon the turbulence at the location of interest. Therefore, it is vital to understand the climatology of optical turbulence at such locations. In many cases, it is impractical and expensive to setup instrumentation to characterize the climatology of OT, so numerical simulations become a less expensive and convenient alternative. The strength of OT is characterized by the refractive index structure function Cn2, which in turn is used to calculate atmospheric seeing parameters. While attempts have been made to characterize Cn2 using empirical models, Cn2 can be calculated more directly from Numerical Weather Prediction (NWP) simulations using pressure, temperature, thermal stability, vertical wind shear, turbulent Prandtl number, and turbulence kinetic energy (TKE). In this work we use the Weather Research and Forecast (WRF) NWP model to generate Cn2 climatologies in the planetary boundary layer and free atmosphere, allowing for both point-to-point and ground-to-space seeing estimates of the Fried Coherence length (ro) and other seeing parameters. Simulations are performed using a multi-node linux cluster using the Intel chip architecture. The WRF model is configured to run at 1km horizontal resolution and centered on the Mauna Loa Observatory (MLO) of the Big Island. The vertical resolution varies from 25 meters in the boundary layer to 500 meters in the stratosphere. The model top is 20 km. The Mellor-Yamada-Janjic (MYJ) TKE scheme has been modified to diagnose the turbulent Prandtl number as a function of the Richardson number, following observations by Kondo and others. This modification

  1. Development of an End-to-End Model for Free-Space Optical Communications

    NASA Astrophysics Data System (ADS)

    Hemmati, H.

    2005-05-01

    Through funding by NASA's Exploration Systems Research and Technology (ESR&T) Program and the Advanced Space Technology Program (ASTP), a team, including JPL, Boeing, NASA-Glenn, and the Georgia Institute of Technology, will develop an end-to-end modeling tool for rapid architecture trade-offs of high-data-rate laser communications from lunar, martian, and outer planetary ranges. An objective of the modeling tool is to reduce the inefficient reliance on modeling of discrete subsystems or sequential development of multiple expensive and time-consuming hardware units, thereby saving significant cost and time. This dynamic, time-domain modeling tool will accept measured component and subsystem data inputs and generate "difficult to measure" characteristics required for the performance evaluation of different designs and architectural choices. The planned modeling tool will incorporate actual subsystem performance data to reduce the develop-build-evaluate-refine production cycle. The list of high-level objectives of the program includes (1) development of a bidirectional global link analysis backbone software encompassing all optical communication subsystem parameters; (2) development of a bidirectional global link simulation model encompassing all optical communication parameters; (3) interoperability of the link analysis tool with all relevant detailed subsystem design models; and (4) a validated model that is validated against known experimental data at the subsystem and system levels.

  2. Mechanical modeling of red blood cells during optical stretching.

    PubMed

    Tan, Youhua; Sun, Dong; Huang, Wenhao

    2010-04-01

    Mechanical properties of red blood cells (RBCs) play an important role in regulating cellular functions. Many recent researches suggest that the cell properties or deformability may be used as a diagnostic indicator for the onset and progression of some human diseases. Although optical stretcher (OS) has emerged as an effective tool to investigate the cell mechanics of RBCs, little is known about the deformation behavior of RBCs in an OS. To address this problem, the mechanical model proposed in our previous work is extended in this paper to describe the mechanical responses of RBCs in the OS. With this model, the mechanical responses, such as the tension distribution, the effect of cell radius, and the deformed cell shapes, can be predicted. It is shown that the results obtained from our mechanical model are in good agreement with the experimental data, which demonstrates the validity of the developed model. Based on the derived model, the mechanical properties of RBCs can be further obtained. In conclusion, this study indicates that the developed mechanical model can be used to predict the deformation responses of RBCs during optical stretching and has potential biomedical applications such as characterizing cell properties and distinguishing abnormal cells from normal ones.

  3. The design and evaluation of grazing incidence relay optics

    NASA Technical Reports Server (NTRS)

    Davis, John M.; Chase, R. C.; Silk, J. K.; Krieger, A. S.

    1989-01-01

    X-ray astronomy, both solar and celestial, has many needs for high spatial resolution observations which have to be performed with electronic detectors. If the resolution is not to be detector limited, plate scales in excess of 25 microns arc/sec, corresponding to focal lengths greater than 5 m, are required. In situations where the physical size is restricted, the problem can be solved by the use of grazing incidence relay optics. A system was developed which employs externally polished hyperboloid-hyperboloid surfaces to be used in conjunction with a Wolter-Schwarzschild primary. The secondary is located in front of the primary focus and provides a magnification of 4, while the system has a plate scale of 28 microns arc/sec and a length of 1.9 m. The design, tolerance specification, fabrication and performance at visible and X-ray wavelengths of this optical system are described.

  4. Optical Distortion Evaluation in Large Area Windows using Interferometry

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Skow, Miles; Nurge, Mark A.

    2015-01-01

    It is important that imagery seen through large area windows, such as those used on space vehicles, not be substantially distorted. Many approaches are described in the literature for measuring the distortion of an optical window, but most suffer from either poor resolution or processing difficulties. In this paper a new definition of distortion is presented, allowing accurate measurement using an optical interferometer. This new definition is shown to be equivalent to the definitions provided by the military and the standards organizations. In order to determine the advantages and disadvantages of this new approach the distortion of an acrylic window is measured using three different methods; image comparison, Moiré interferometry, and phase-shifting interferometry.

  5. Non-standard Hubbard models in optical lattices: a review.

    PubMed

    Dutta, Omjyoti; Gajda, Mariusz; Hauke, Philipp; Lewenstein, Maciej; Lühmann, Dirk-Sören; Malomed, Boris A; Sowiński, Tomasz; Zakrzewski, Jakub

    2015-06-01

    Originally, the Hubbard model was derived for describing the behavior of strongly correlated electrons in solids. However, for over a decade now, variations of it have also routinely been implemented with ultracold atoms in optical lattices, allowing their study in a clean, essentially defect-free environment. Here, we review some of the vast literature on this subject, with a focus on more recent non-standard forms of the Hubbard model. After giving an introduction to standard (fermionic and bosonic) Hubbard models, we discuss briefly common models for mixtures, as well as the so-called extended Bose-Hubbard models, that include interactions between neighboring sites, next-neighbor sites, and so on. The main part of the review discusses the importance of additional terms appearing when refining the tight-binding approximation for the original physical Hamiltonian. Even when restricting the models to the lowest Bloch band is justified, the standard approach neglects the density-induced tunneling (which has the same origin as the usual on-site interaction). The importance of these contributions is discussed for both contact and dipolar interactions. For sufficiently strong interactions, the effects related to higher Bloch bands also become important even for deep optical lattices. Different approaches that aim at incorporating these effects, mainly via dressing the basis, Wannier functions with interactions, leading to effective, density-dependent Hubbard-type models, are reviewed. We discuss also examples of Hubbard-like models that explicitly involve higher p orbitals, as well as models that dynamically couple spin and orbital degrees of freedom. Finally, we review mean-field nonlinear Schrödinger models of the Salerno type that share with the non-standard Hubbard models nonlinear coupling between the adjacent sites. In that part, discrete solitons are the main subject of consideration. We conclude by listing some open problems, to be addressed in the future.

  6. Evaluation of bacteria-induced enamel demineralization using optical profilometry

    PubMed Central

    Cross, Sarah E.; Kreth, Jens; Wali, R. Paul; Sullivan, Richard; Shi, Wenyuan; Gimzewski, James K.

    2010-01-01

    Objectives Streptococcus mutans is considered a major causative of tooth decay due to it’s ability to rapidly metabolize carbohydrates such as sucrose. One prominent excreted end product of sucrose metabolism is lactic acid. Lactic acid causes a decrease in the pH of the oral environment with subsequent demineralization of the tooth enamel. Biologically relevant bacteria-induced enamel demineralization was studied. Methods Optical profiling was used to measure tooth enamel decay with vertical resolution under one nanometer and lateral features with optical resolution as a result of S. mutans biofilm exposure. Comparison measurements were made using AFM. Results After 72 hr of biofilm exposure the enamel displayed an 8-fold increase in the observed roughness average, (Ra), as calculated over the entire measured array. Similarly, the average root mean square (RMS) roughness, RRMS, of the enamel before and after biofilm exposure for 3 days displayed a 7-fold increase. Further, the direct effect of chemically induced enamel demineralization using biologically relevant organic acids was shown. Optical profiles of the enamel surface after addition of a 30% lactic acid solution showed a significant alteration in the surface topography with a corresponding increase in respective surface roughness statistics. Similar measurements with 10% citric acid over seconds and minutes give insight into the demineralization process by providing quantitative measures for erosion rates: comparing surface height and roughness as metrics. Significance The strengths of optical profilometry as an analytical tool for understanding and analyzing biologically relevant processes such as biofilm induced tooth enamel demineralization were demonstrated. PMID:19732947

  7. Evaluation of the thin deformable active optics mirror concept

    NASA Technical Reports Server (NTRS)

    Robertson, H. J.

    1972-01-01

    The active optics concept using a thin deformable mirror has been successfully demonstrated using a 30 in. diameter, 1/2 in. thick mirror and a 61 point matrix of forces for alignment. Many of the problems associated with the design, fabrication, and launch of large aperture diffraction-limited astronomical telescopes have been resolved and experimental data created that can provide accurate predictions of performance in orbit.

  8. Optical indication for evaluation ecological state of water areas

    SciTech Connect

    Surin, V.G.; Goloudin, R.I.

    1996-11-01

    The results of spectral measurements of reed, leaves by using a two kinds or the spectrometers at the Neva Bay and in the east part of the Gulf of Finland are discussed. It is shown that the optical properties of the coastal-aqueous vegetation depend on the presence of heavy metals in them. Key words: ecology, spectral reflectance, pollution, aqueous vegetation, remote sensing, spectrometer. 7 refs., 4 figs., 2 tabs.

  9. Modeling method and preliminary model of Asteroid Toutatis from Chang'E-2 optical images

    NASA Astrophysics Data System (ADS)

    Li, Xiang-Yu; Qiao, Dong

    2014-06-01

    Shape modeling is fundamental to the analysis of dynamic environment and motion around asteroid. Chang'E-2 successfully made a flyby of Asteroid 4179 Toutatis and obtained plenty of high-resolution images during the mission. In this paper, the modeling method and preliminary model of Asteroid Toutatis are discussed. First, the optical images obtained by Chang'E-2 are analyzed. Terrain and silhouette features in images are described. Then, the modeling method based on previous radar model and preliminary information from optical images is proposed. A preliminary polyhedron model of Asteroid Toutatis is established. Finally, the spherical harmonic coefficients of Asteroid Toutatis based on the polyhedron model are obtained. Some parameters of model are analyzed and compared. Although the model proposed in this paper is only a preliminary model, this work offers a valuable reference for future high-resolution models.

  10. Performance evaluation of panoramic electro-optic imagers using the TOD method

    NASA Astrophysics Data System (ADS)

    Désaulniers, Pierre; Thibault, Simon

    2011-05-01

    The triangle orientation discrimination (TOD) method is an emerging technique for the evaluation of electro-optical (EO) systems. In this method, the test pattern is a non-periodic equilateral triangle in one of four different orientations (apex up, down, left, or right), and the measurement procedure is a robust four-alternative forced-choice psychophysical process. This leads to a time-consuming task. Consequently, software models have been developed to replace the required human observers. These models base their decision on the orientation of the target using correlation between observed data and the set of four differently oriented targets. This study investigates for the first time how this method can be applied to highly distorted OE systems like hemispheric imagers. These types of systems have inherent large distortion, but the distortion should not be considered as an aberration but rather the result of the projection of a hemispheric field (3D) on a 2D sensor. The distortion deforms the image of the targets and image processing is usually performed to remove distortion and straighten the field of view. We present a comparison in accuracy and computational burden for the evaluation of EO system performance between cases where tested images are pre-processed and correlated to unchanged triangle targets and where untouched (distorted) images are correlated with position-wise distorted targets. This is a first evaluation of the application of the TOD with the goal of obtaining an image quality criterion for panoramic imagers.

  11. Corrections Education Evaluation System Model.

    ERIC Educational Resources Information Center

    Nelson, Orville; And Others

    The purpose of this project was to develop an evaluation system for the competency-based vocational program developed by Wisconsin's Division of Corrections, Department of Public Instruction (DPI), and the Vocational, Technical, and Adult Education System (VTAE). Site visits were conducted at five correctional institutions in March and April of…

  12. Evaluation of material dispersion using a nanosecond optical pulse radiator.

    PubMed

    Horiguchi, M; Ohmori, Y; Miya, T

    1979-07-01

    To study the material dispersion effects on graded-index fibers, a method for measuring the material dispersion in optical glass fibers has been developed. Nanosecond pulses in the 0.5-1.7-microm region are generated by a nanosecond optical pulse radiator and grating monochromator. These pulses are injected into a GeO(2)-P(2)0(5)-doped silica graded-index fiber. Relative time delay changes between different wavelengths are used to determine material dispersion, core glass refractive index, material group index, and optimum profile parameter of the graded-index fiber. From the measured data, the optimum profile parameter on the GeO(2)-P(2)O(5)-doped silica graded-index fiber could be estimated to be 1.88 at 1.27 microm of the material dispersion free wavelength region and 1.82 at 1.55 microm of the lowest-loss wavelength region in silica-based optical fiber waveguides.

  13. Optical modeling of graphene contacted CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Aldosari, Marouf; Sohrabpoor, Hamed; Gorji, Nima E.

    2016-04-01

    For the first time, an optical model is applied on CdS/CdTe thin film solar cells with graphene front or back contact. Graphene is highly conductive and is as thin as a single atom which reduces the light reflection and absorption, and thus enhances the light transmission to CdTe layer for a wide range of wavelengths including IR. Graphene as front electrode of CdTe devices led to loss in short circuit current density of 10% ΔJsc ≤ 15% compared to the conventional electrodes of TCO and ITO at CdS thickness of dCdS = 100 nm. In addition, all the multilayer graphene electrodes with 2, 4, and 7 graphene layers led to Jsc ≤ 20 mA/cm2. Therefore, we conclude that a single monolayer graphene with hexagonal carbon network reduces optical losses and enhances the carrier collection measured as Jsc. In another structure design, we applied the optical model to graphene back contacted CdS/CdTe device. This scheme allows double side irradiation of the cell which is expected to enhance the Jsc. We obtained 1 ∼ 6 , 23, and 38 mA/cm2 for back, front and bifacial illumination of graphene contacted CdTe cell with CdS = 100 nm. The bifacial irradiated cell, to be efficient, requires an ultrathin CdTe film with dCdTe ≤ 1 μm. In this case, the junction electric field extends to the back region and collects out the generated carriers efficiently. This was modelled by absorptivity rather than transmission rate and optical losses. Since the literature suggest that ZnO can increase the graphene conductivity and enhance the Jsc, we performed our simulations for a graphene/ZnO electrode (ZnO = 100 nm) instead of a single graphene layer.

  14. Program Development and Evaluation: A Modeling Process.

    ERIC Educational Resources Information Center

    Green, Donald W.; Corgiat, RayLene

    A model of program development and evaluation was developed at Genesee Community College, utilizing a system theory/process of deductive and inductive reasoning to ensure coherence and continuity within the program. The model links activities to specific measurable outcomes. Evaluation checks and feedback are built in at various levels so that…

  15. A Critique of Kirkpatrick's Evaluation Model

    ERIC Educational Resources Information Center

    Reio, Thomas G., Jr.; Rocco, Tonette S.; Smith, Douglas H.; Chang, Elegance

    2017-01-01

    Donald Kirkpatrick published a series of articles originating from his doctoral dissertation in the late 1950s describing a four-level training evaluation model. From its beginning, it was easily understood and became one of the most influential evaluation models impacting the field of HRD. While well received and popular, the Kirkpatrick model…

  16. Evaluation of Black Carbon Estimations in Global Aerosol Models

    SciTech Connect

    Koch, D.; Schulz, M.; Kinne, Stefan; McNaughton, C. S.; Spackman, J. R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, Tami C.; Boucher, Olivier; Chin, M.; Clarke, A. D.; De Luca, N.; Dentener, F.; Diehl, T.; Dubovik, O.; Easter, Richard C.; Fahey, D. W.; Feichter, J.; Fillmore, D.; Freitag, S.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Horowitz, L.; Iversen, T.; Kirkevag, A.; Klimont, Z.; Kondo, Yutaka; Krol, M.; Liu, Xiaohong; Miller, R.; Montanaro, V.; Moteki, N.; Myhre, G.; Penner, J.; Perlwitz, Ja; Pitari, G.; Reddy, S.; Sahu, L.; Sakamoto, H.; Schuster, G.; Schwarz, J. P.; Seland, O.; Stier, P.; Takegawa, Nobuyuki; Takemura, T.; Textor, C.; van Aardenne, John; Zhao, Y.

    2009-11-27

    We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) from AERONET and OMI retrievals and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.6 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 10 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC is 0.6 and underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the

  17. A Model for Administrative Evaluation by Subordinates.

    ERIC Educational Resources Information Center

    Budig, Jeanne E.

    Under the administrator evaluation program adopted at Vincennes University, all faculty and professional staff are invited to evaluate each administrator above them in the chain of command. Originally based on the Purdue University "cafeteria" system, this evaluation model has been used biannually for 10 years. In an effort to simplify the system,…

  18. Hybrid radiative-transfer-diffusion model for optical tomography

    NASA Astrophysics Data System (ADS)

    Tarvainen, Tanja; Vauhkonen, Marko; Kolehmainen, Ville; Kaipio, Jari P.

    2005-02-01

    A hybrid radiative-transfer-diffusion model for optical tomography is proposed. The light propagation is modeled with the radiative-transfer equation in the vicinity of the laser sources, and the diffusion approximation is used elsewhere in the domain. The solution of the radiative-transfer equation is used to construct a Dirichlet boundary condition for the diffusion approximation on a fictitious interface within the object. This boundary condition constitutes an approximative distributed source model for the diffusion approximation in the remaining area. The results from the proposed approach are compared with finite-element solutions of the radiative-transfer equation and the diffusion approximation and Monte Carlo simulation. The results show that the method improves the accuracy of the forward model compared with the conventional diffusion model.

  19. Estimation of kinetic model parameters in fluorescence optical diffusion tomography.

    PubMed

    Milstein, Adam B; Webb, Kevin J; Bouman, Charles A

    2005-07-01

    We present a technique for reconstructing the spatially dependent dynamics of a fluorescent contrast agent in turbid media. The dynamic behavior is described by linear and nonlinear parameters of a compartmental model or some other model with a deterministic functional form. The method extends our previous work in fluorescence optical diffusion tomography by parametrically reconstructing the time-dependent fluorescent yield. The reconstruction uses a Bayesian framework and parametric iterative coordinate descent optimization, which is closely related to Gauss-Seidel methods. We demonstrate the method with a simulation study.

  20. Modelling the optical properties of composite and porous interstellar grains

    NASA Astrophysics Data System (ADS)

    Voshchinnikov, N. V.; Il'in, V. B.; Henning, Th.

    2005-01-01

    There are indications that interstellar and interplanetary dust grains have an inhomogeneous and fluffy structure. We investigate different methods to describe light scattering by such composite particles. Both a model of layered particles and discrete dipole calculations for particles with Rayleigh and non-Rayleigh inclusions are used. The calculations demonstrate that porosity is a key parameter for determining light scattering. We find that the optical properties of the layered particles depend on the number and position of layers if the number of layers is small (⪉ 15). For a larger number of layers the scattering characteristics become independent of the layer sequence. The optical properties of particles with inclusions depend on the size of inclusions provided the porosity is large. The scattering characteristics of very porous particles with inclusions of different sizes are found to be close to those of multi-layered spheres. We compare the results of these calculations with the predictions of the effective medium theories (EMT) which are often used in astronomy as a tool to calculate the optical properties of composite particles. The results of our analysis show that the internal structure of grains (layers versus inclusions) only slightly affects the optics of particles provided the porosity does not exceed 50%. It is also demonstrated that in this case the optical properties of composite grains calculated with EMT agree with the results of the exact method for layered particles. For larger porosity, the standard EMT rules (i.e., Garnett and Bruggeman rules) give reliable results for particles with Rayleigh inclusions only.

  1. Assimilation of remotely-sensed optical properties to improve marine biogeochemistry modelling

    NASA Astrophysics Data System (ADS)

    Ciavatta, Stefano; Torres, Ricardo; Martinez-Vicente, Victor; Smyth, Timothy; Dall'Olmo, Giorgio; Polimene, Luca; Allen, J. Icarus

    2014-09-01

    In this paper we evaluate whether the assimilation of remotely-sensed optical data into a marine ecosystem model improves the simulation of biogeochemistry in a shelf sea. A localized Ensemble Kalman filter was used to assimilate weekly diffuse light attenuation coefficient data, Kd(443) from SeaWiFs, into an ecosystem model of the western English Channel. The spatial distributions of (unassimilated) surface chlorophyll from satellite, and a multivariate time series of eighteen biogeochemical and optical variables measured in situ at one long-term monitoring site were used to evaluate the system performance for the year 2006. Assimilation reduced the root mean square error and improved the correlation with the assimilated Kd(443) observations, for both the analysis and, to a lesser extent, the forecast estimates, when compared to the reference model simulation. Improvements in the simulation of (unassimilated) ocean colour chlorophyll were less evident, and in some parts of the Channel the simulation of this data deteriorated. The estimation errors for the (unassimilated) in situ data were reduced for most variables with some exceptions, e.g. dissolved nitrogen. Importantly, the assimilation adjusted the balance of ecosystem processes by shifting the simulated food web towards the microbial loop, thus improving the estimation of some properties, e.g. total particulate carbon. Assimilation of Kd(443) outperformed a comparative chlorophyll assimilation experiment, in both the estimation of ocean colour data and in the simulation of independent in situ data. These results are related to relatively low error in Kd(443) data, and because it is a bulk optical property of marine ecosystems. Assimilation of remotely-sensed optical properties is a promising approach to improve the simulation of biogeochemical and optical variables that are relevant for ecosystem functioning and climate change studies.

  2. Optical choppers with rotational elements: modeling, design and prototypes

    NASA Astrophysics Data System (ADS)

    Duma, Virgil-Florin; Cira, Octavian; Demian, Dorin

    2017-05-01

    We present a brief overview of our contributions regarding the analysis and design of optical choppers. Their applications range numerous domains, from optical sensing in radiometry or telescopes to laser manufacturing and biomedical imaging - for example for the controlled attenuation of light, the elimination of selected spectral domains, or the switching of optical paths. While these aspects are pointed out, the paper describes our analysis, modeling, and manufacturing of prototypes for choppers with: (a) wheels with windows with linear margins; (b) wheels with windows with non-linear margins (semi-circular or elliptical), outward or inward; (c) rotational shafts with different shapes, with slits or with holes. While variant (a) represents classical choppers, variant (b) represents the "eclipse" choppers that we have developed and also patented for the solution with two adjustable wheels that can produce circular windows. Variant (c), of choppers with shafts is also a patent application. Their transmission functions are discussed, for the shape of the laser pulses produced and for the attenuation coefficients obtained. While this discussion has been completed analytically for top-hat laser beams, it has been modeled using simulations for Gaussian and Bessel beams. Design, manufacturing aspects, and prototypes of the different chopper configurations complete the presentation.

  3. Modeling of optical quadrature microscopy for imaging mouse embryos

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; DiMarzio, Charles A.

    2008-02-01

    Optical quadrature microscopy (OQM) has been shown to provide the optical path difference through a mouse embryo, and has led to a novel method to count the total number of cells further into development than current non-toxic imaging techniques used in the clinic. The cell counting method has the potential to provide an additional quantitative viability marker for blastocyst transfer during in vitro fertilization. OQM uses a 633 nm laser within a modified Mach-Zehnder interferometer configuration to measure the amplitude and phase of the signal beam that travels through the embryo. Four cameras preceded by multiple beamsplitters record the four interferograms that are used within a reconstruction algorithm to produce an image of the complex electric field amplitude. Here we present a model for the electric field through the primary optical components in the imaging configuration and the reconstruction algorithm to calculate the signal to noise ratio when imaging mouse embryos. The model includes magnitude and phase errors in the individual reference and sample paths, fixed pattern noise, and noise within the laser and detectors. This analysis provides the foundation for determining the imaging limitations of OQM and the basis to optimize the cell counting method in order to introduce additional quantitative viability markers.

  4. Biomechanical Assessment in Models of Glaucomatous Optic Neuropathy

    PubMed Central

    Nguyen, Thao D.; Ethier, C. Ross

    2015-01-01

    The biomechanical environment within the eye is of interest in both the regulation of intraocular pressure and the loss of retinal ganglion cell axons in glaucomatous optic neuropathy. Unfortunately, this environment is complex and difficult to determine. Here we provide a brief introduction to basic concepts of mechanics (stress, strain, constitutive relationships) as applied to the eye, and then describe a variety of experimental and computational approaches used to study ocular biomechanics. These include finite element modeling, direct experimental measurements of tissue displacements using optical and other techniques, direct experimental measurement of tissue microstructure, and combinations thereof. Thanks to notable technical and conceptual advances in all of these areas, we are slowly gaining a better understanding of how tissue biomechanical properties in both the anterior and posterior segments may influence the development of, and risk for, glaucomatous optic neuropathy. Although many challenging research questions remain unanswered, the potential of this body of work is exciting; projects underway include the coupling of clinical imaging with biomechanical modeling to create new diagnostic tools, development of IOP control strategies based on improved understanding the mechanobiology of the outflow tract, and attempts to develop novel biomechanically-based therapeutic strategies for preservation of vision in glaucoma. PMID:26115620

  5. Optical modeling of volcanic ash particles using ellipsoids

    NASA Astrophysics Data System (ADS)

    Merikallio, Sini; Muñoz, Olga; Sundström, Anu-Maija; Virtanen, Timo H.; Horttanainen, Matti; de Leeuw, Gerrit; Nousiainen, Timo

    2015-05-01

    The single-scattering properties of volcanic ash particles are modeled here by using ellipsoidal shapes. Ellipsoids are expected to improve the accuracy of the retrieval of aerosol properties using remote sensing techniques, which are currently often based on oversimplified assumptions of spherical ash particles. Measurements of the single-scattering optical properties of ash particles from several volcanoes across the globe, including previously unpublished measurements from the Eyjafjallajökull and Puyehue volcanoes, are used to assess the performance of the ellipsoidal particle models. These comparisons between the measurements and the ellipsoidal particle model include consideration of the whole scattering matrix, as well as sensitivity studies on the point of view of the Advanced Along Track Scanning Radiometer (AATSR) instrument. AATSR, which flew on the ENVISAT satellite, offers two viewing directions but no information on polarization, so usually only the phase function is relevant for interpreting its measurements. As expected, ensembles of ellipsoids are able to reproduce the observed scattering matrix more faithfully than spheres. Performance of ellipsoid ensembles depends on the distribution of particle shapes, which we tried to optimize. No single specific shape distribution could be found that would perform superiorly in all situations, but all of the best-fit ellipsoidal distributions, as well as the additionally tested equiprobable distribution, improved greatly over the performance of spheres. We conclude that an equiprobable shape distribution of ellipsoidal model particles is a relatively good, yet enticingly simple, approach for modeling volcanic ash single-scattering optical properties.

  6. Comparison of wavefront sensor models for simulation of adaptive optics.

    PubMed

    Wu, Zhiwen; Enmark, Anita; Owner-Petersen, Mette; Andersen, Torben

    2009-10-26

    The new generation of extremely large telescopes will have adaptive optics. Due to the complexity and cost of such systems, it is important to simulate their performance before construction. Most systems planned will have Shack-Hartmann wavefront sensors. Different mathematical models are available for simulation of such wavefront sensors. The choice of wavefront sensor model strongly influences computation time and simulation accuracy. We have studied the influence of three wavefront sensor models on performance calculations for a generic, adaptive optics (AO) system designed for K-band operation of a 42 m telescope. The performance of this AO system has been investigated both for reduced wavelengths and for reduced r(0) in the K band. The telescope AO system was designed for K-band operation, that is both the subaperture size and the actuator pitch were matched to a fixed value of r(0) in the K-band. We find that under certain conditions, such as investigating limiting guide star magnitude for large Strehl-ratios, a full model based on Fraunhofer propagation to the subimages is significantly more accurate. It does however require long computation times. The shortcomings of simpler models based on either direct use of average wavefront tilt over the subapertures for actuator control, or use of the average tilt to move a precalculated point spread function in the subimages are most pronounced for studies of system limitations to operating parameter variations. In the long run, efficient parallelization techniques may be developed to overcome the problem.

  7. Full-field modeling of the longitudinal electro-optic probe.

    PubMed

    Freeman, J L; Jefferies, S R; Auld, B A

    1987-10-01

    Optical polarization changes and mode coupling due to spatially varying anisotropic perturbations in caused by electro-optic, acousto-optic, and other effects have been widely studied for both plane-wave and fiber mode propagation. A new optical S-parameter analysis of these effects, applicable to arbitrary optical field distributions, is presented. It is applied to evaluating the performance of the longitudinal electro-optic probe used for noninva-sively examining GaAs integrated circuits. Error in probe measurements of circuit voltage distributions can be characterized by considering the probe as a scanned electro-optic spatial filter.

  8. Wavefront Sensing for WFIRST with a Linear Optical Model

    NASA Technical Reports Server (NTRS)

    Jurling, Alden S.; Content, David A.

    2012-01-01

    In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.

  9. Wavefront sensing for WFIRST with a linear optical model

    NASA Astrophysics Data System (ADS)

    Jurling, Alden S.; Content, David A.

    2012-09-01

    In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.

  10. Modeling of Electro Optic Polymer Electrical Characteristics in a 3 layer Optical Waveguide Modulator

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Ashley, Paul R.; Guenthner, Andrew J.; Abushagur, Mustafa

    2004-01-01

    The electrical characteristics of electro optic polymer waveguide modulators are often described by the bulk reactance of the individual layers. However, the resistance and capacitance between the layers can significantly alter the electrical performance of a waveguide modulator. These interface characteristics are related to the boundary charge density and are strongly affected by the adhesion of the layers in the waveguide stack. An electrical reactance model has been derived to investigate this phenomenon at low frequencies. The model shows the waveguide stack frequency response has no limiting effects below the microwave range and that a true DC response requires a stable voltage for over 1000 hours. Thus, reactance of the layers is the key characteristic of optimizing the voltage across the core layer, even at very low frequencies (> 10(exp -6) Hz). The results of the model are compared with experimental data for two polymer systems and show quite good correlation.

  11. Numerical modelling of multimode fibre-optic communication lines

    SciTech Connect

    Sidelnikov, O S; Fedoruk, M P; Sygletos, S; Ferreira, F

    2016-01-31

    The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong coupling regime provides a lower EVM level than the weak coupling one. (fibre-optic communication lines)

  12. Optical telecommunications: performance of the qualification model SILEX beacon

    NASA Astrophysics Data System (ADS)

    Renard, Michel; Dobie, Paul J.; Gollier, Jacques; Heinrichs, Theo; Woszczyk, Pawel; Sobeczko, Andre

    1995-04-01

    The Beacon is a powerful non-coherent CW infra-red laser source which is developed under the Semi-conductor Inter-satellite Link Experiment (SILEX). It will provide a high divergence beam used during the first tracking acquisition sequence of the Spot 4/Artemis optical communication link. The Beacon uses high efficiency anamorphic couplers to deliver output from 19 laser diodes into a single multi-mode Mixing Fiber, the exit of which is integrated at the focal plane of a collimator. Beacon output is maintained at the required level during unit life using an Optical Monitoring System and a Beacon output Tele-Command. The Engineering Qualification Model is now complete and overall performance with respect to the SILEX requirements is presented.

  13. Proceedings of the Society of Photo-Optical Instrumentation Engineers, Optical Components: Manufacture & Evaluation, Volume 171

    DTIC Science & Technology

    2007-11-02

    pulse width ). Optimization of the LG 812 composition combined with improvements in the melting process at Schott Optical have increased this value...Sciences Center, University of Arizona 171-10 In- Process Measurement of Fast Aspherics 70 John Bender, Graham Flint, International Laser Systems, Inc...Energy Gas Laser Facility incorporating Antares, the 100-kJ CCL laser system. «^ Fig. 2. Artist’s conception of a single Antares power amplifier

  14. Evaluating Polypoidal Choroidal Vasculopathy With Optical Coherence Tomography Angiography

    PubMed Central

    Wang, Min; Zhou, Yao; Gao, Simon S.; Liu, Wei; Huang, Yongheng; Huang, David; Jia, Yali

    2016-01-01

    Purpose We observed and analyzed the morphologic characteristics of polypoidal lesions and abnormal branching vascular network (BVN) in patients with polypoidal choroidal vasculopathy (PCV) by optical coherence tomography angiography (OCTA). Methods A retrospective observational case series was done of patients with PCV. All patients were scanned with a 70-kHz spectral-domain OCT system using the split-spectrum amplitude-decorrelation angiography (SSADA) algorithm to distinguish blood flow from static tissue. The OCTA images of these patients were compared to those from indocyanine green angiography (ICGA). Semiautomated segmentation was used to further analyze the polypoidal lesion and the BVN. Results We studied 13 eyes of 13 patients 51 to 69 years old. A total of 11 patients were treatment-naive. Two patients had multiple anti-VEGF injections and one underwent photodynamic therapy (PDT). Optical coherence tomography angiography was able to detect the BVN in all cases. Using cross-sectional OCTA, BVN locations were shown to be in the space between the RPE and Bruch's membrane. Using en face OCTA, the BVN vascular pattern could be shown more clearly than by ICGA. Polypoidal lesions showed high flow signals in different patterns in 12 cases in the outer retina slab. Using cross-sectional OCTA, the polyps were shown to be just below the top of the pigment epithelial detachment (PED). In one case, the polypoidal lesion was not detectable at the outer retina slab. Conclusions Optical coherence tomography angiography is a noninvasive imaging tool for detecting vascular changes in PCV. Branching vascular networks showed more clearly on OCTA than on ICGA. Polypoidal lesions had variable patterns on OCTA and were not always detected. The OCTA patterns of the polypoidal lesions and the BVN are helpful in understanding the pathology of PCV. PMID:27472276

  15. Optical Evaluation of an As-Manufactured Compound Secondary Concentrator

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Skowronski, Timothy J.; Miles, Barry J.

    1999-01-01

    Secondary concentrators are needed in solar thermal propulsion to further concentrate the energy collected by large lightweight primary concentrators. Although the physics of secondary concentrators has been worked out in detail and the manufacturing has been successfully completed for a ground demonstration, there is a need to quantify the specific performance of as-manufactured concentrators. This paper summarizes the properties of a secondary concentrator manufactured for the Integrated Solar Upper Stage engine ground demonstration in 1997 and presents data obtained from the optic that describe the performance of the as-manufactured component.

  16. Electrical and optical evaluation aspects of public lighting systems

    NASA Astrophysics Data System (ADS)

    Tulbure, Adrian; Marc, Gheorghe; Kurt, Ünal

    2016-12-01

    This paper briefs a few issues regarding the technical validation of public lighting solutions. The novelty of the work is justified by the fact that it combines technical legislation in force [1], with practical analysis procedures [2]. Thus, in order to select the optimal solution, the paper describes a case study of measurement procedure which confirms the high electrical and optical characteristics [3] of the proposed solutions. At the end of the contribution, comparative design purposes for the two versions of modern street lighting are presented.

  17. A progress report on grazing incidence optics fabrication and evaluation

    NASA Technical Reports Server (NTRS)

    Teague, Peter F.; Ulmer, Melville P.; Matsui, Yutaka; Briel, Ulrich; Burkert, Wolfgang

    1989-01-01

    The progress being made on a mirror array telescope for high energies (MARTHE) project is reported. As a first step, small mirror flats and full-size Wolter I mirrors are produced that are lacquer coated (mandrels) and then coated with gold or palladium. The up-to-date results of fabricating and testing these mirrors are presented. Currently, results can be provided on the micro-roughness, marco-figure, X-ray scattering, and reflectivity up to 8 keV from flats and Wolter I mirrors as well as optical measurements of the flats.

  18. A progress report on grazing incidence optics fabrication and evaluation

    NASA Technical Reports Server (NTRS)

    Teague, Peter F.; Ulmer, Melville P.; Matsui, Yutaka; Briel, Ulrich; Burkert, Wolfgang

    1989-01-01

    The progress being made on a mirror array telescope for high energies (MARTHE) project is reported. As a first step, small mirror flats and full-size Wolter I mirrors are produced that are lacquer coated (mandrels) and then coated with gold or palladium. The up-to-date results of fabricating and testing these mirrors are presented. Currently, results can be provided on the micro-roughness, marco-figure, X-ray scattering, and reflectivity up to 8 keV from flats and Wolter I mirrors as well as optical measurements of the flats.

  19. AeroCom INSITU Project: Comparison of Aerosol Optical Properties from In-situ Surface Measurements and Model Simulations

    NASA Astrophysics Data System (ADS)

    Schmeisser, L.; Andrews, E.; Schulz, M.; Fiebig, M.; Zhang, K.; Randles, C. A.; Myhre, G.; Chin, M.; Stier, P.; Takemura, T.; Krol, M. C.; Bian, H.; Skeie, R. B.; da Silva, A. M., Jr.; Kokkola, H.; Laakso, A.; Ghan, S.; Easter, R. C.

    2015-12-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data have the unique property of being traceable to physical standards, which is a big asset in accomplishing the overarching goal of bettering the accuracy of aerosol processes and predicative capability of global climate models. The INSITU project looks at how well models reproduce aerosol climatologies on a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis, using GOCART and other models participating in this AeroCom project, show substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location and optical property. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography (see Figure 1). Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol co-dependencies, for example, the tendency of in-situ surface single scattering albedo to decrease with decreasing aerosol extinction coefficient. This study elucidates specific problems with current aerosol models and suggests additional model runs and perturbations that could further evaluate the discrepancies between measured and modeled

  20. Optical coherence tomography angiography offers comprehensive evaluation of skin optical clearing in vivo by quantifying optical properties and blood flow imaging simultaneously.

    PubMed

    Guo, Li; Shi, Rui; Zhang, Chao; Zhu, Dan; Ding, Zhihua; Li, Peng

    2016-08-01

    Tissue optical clearing (TOC) is helpful for reducing scattering and enhancing the penetration depth of light, and shows promising potential in optimizing optical imaging performances. A mixture of fructose with PEG-400 and thiazone (FPT) is used as an optical clearing agent in mouse dorsal skin and evaluated with OCT angiography (Angio-OCT) by quantifying optical properties and blood flow imaging simultaneously. It is observed that FPT leads to an improved imaging performance for the deeper tissues. The imaging performance improvement is most likely caused by the FPT-induced dehydration of skin, and the reduction of scattering coefficient (more than ∼ 40.5%) and refractive-index mismatching (more than ∼ 25.3%) in the superficial (epidermal, dermal, and hypodermal) layers. A high correlation (up to ∼ 90%) between the relative changes in refractive-index mismatching and Angio-OCT signal strength is measured. The optical clearing rate is ∼ 5.83 × 10(-5) cm/s. In addition, Angio-OCT demonstrates enhanced performance in imaging cutaneous hemodynamics with satisfactory spatiotemporal resolution and contrast when combined with TOC, which exhibits a powerful practical application in studying microcirculation.

  1. Optical coherence tomography angiography offers comprehensive evaluation of skin optical clearing in vivo by quantifying optical properties and blood flow imaging simultaneously

    NASA Astrophysics Data System (ADS)

    Guo, Li; Shi, Rui; Zhang, Chao; Zhu, Dan; Ding, Zhihua; Li, Peng

    2016-08-01

    Tissue optical clearing (TOC) is helpful for reducing scattering and enhancing the penetration depth of light, and shows promising potential in optimizing optical imaging performances. A mixture of fructose with PEG-400 and thiazone (FPT) is used as an optical clearing agent in mouse dorsal skin and evaluated with OCT angiography (Angio-OCT) by quantifying optical properties and blood flow imaging simultaneously. It is observed that FPT leads to an improved imaging performance for the deeper tissues. The imaging performance improvement is most likely caused by the FPT-induced dehydration of skin, and the reduction of scattering coefficient (more than ˜40.5%) and refractive-index mismatching (more than ˜25.3%) in the superficial (epidermal, dermal, and hypodermal) layers. A high correlation (up to ˜90%) between the relative changes in refractive-index mismatching and Angio-OCT signal strength is measured. The optical clearing rate is ˜5.83×10-5 cm/s. In addition, Angio-OCT demonstrates enhanced performance in imaging cutaneous hemodynamics with satisfactory spatiotemporal resolution and contrast when combined with TOC, which exhibits a powerful practical application in studying microcirculation.

  2. Bioaerosol optical sensor model development and initial validation

    NASA Astrophysics Data System (ADS)

    Campbell, Steven D.; Jeys, Thomas H.; Eapen, Xuan Le

    2007-04-01

    This paper describes the development and initial validation of a bioaerosol optical sensor model. This model was used to help determine design parameters and estimate performance of a new low-cost optical sensor for detecting bioterrorism agents. In order to estimate sensor performance in detecting biowarfare simulants and rejecting environmental interferents, use was made of a previously reported catalog of EEM (excitation/emission matrix) fluorescence cross-section measurements and previously reported multiwavelength-excitation biosensor modeling work. In the present study, the biosensor modeled employs a single high-power 365 nm UV LED source plus an IR laser diode for particle size determination. The sensor has four output channels: IR size channel, UV elastic channel and two fluorescence channels. The sensor simulation was used to select the fluorescence channel wavelengths of 400-450 and 450-600 nm. Using these selected fluorescence channels, the performance of the sensor in detecting simulants and rejecting interferents was estimated. Preliminary measurements with the sensor are presented which compare favorably with the simulation results.

  3. Evaluation of environmentally safe cleaning agents for diamond turned optics

    NASA Astrophysics Data System (ADS)

    Theye, Lonnie A.; Day, Robert D.; Weinrach, Jeffrey; Schubert, Rudolf; Seiffert, Stephen

    Precision machining of metal surfaces using diamond turning has increased greatly in popularity at LANL in recent years. Similar techniques are used extensively to manufacture metal mirrors for use in laser applications. The diamond turned surfaces are easily damaged, making the selection of a cleaning agent very critical. These surfaces have been traditionally cleaned using Trichloroethane (TCA) to remove residual oil remaining from the machining process. The TCA was then removed with an ethanol rinse, leaving a residue free surface. Recently, however, TCA was pronounced environmentally unsafe. Consequently, we are searching for an environmentally safe cleaning agent for these diamond turned metal optics. The concern with using alternative solvents is the potential for residual surface films that produce reflectivity changes related to a combination of wavelength, surface coverage, film thickness and dielectric properties. Therefore, we have initiated a program for testing the effectiveness of a variety of environmentally safe solvents used to clean diamond turned optical surfaces. Our basic test plan consists of comparing a number of environmentally safe solvents against the TCA/ethanol cleaning system. We have identified twelve candidate solvents, but have only been able to perform a partial test on one of them to date. This paper discusses the results obtained to date using this solvent known as P F.

  4. Performance evaluation of distributed wavelength assignment in WDM optical networks

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Tomohiro; Wang, Xi; Morikawa, Hiroyuki; Aoyama, Tomonori

    2004-04-01

    In WDM wavelength routed networks, prior to a data transfer, a call setup procedure is required to reserve a wavelength path between the source-destination node pairs. A distributed approach to a connection setup can achieve a very high speed, while improving the reliability and reducing the implementation cost of the networks. However, along with many advantages, several major challenges have been posed by the distributed scheme in how the management and allocation of wavelength could be efficiently carried out. In this thesis, we apply a distributed wavelength assignment algorithm named priority based wavelength assignment (PWA) that was originally proposed for the use in burst switched optical networks to the problem of reserving wavelengths of path reservation protocols in the distributed control optical networks. Instead of assigning wavelengths randomly, this approach lets each node select the "safest" wavelengths based on the information of wavelength utilization history, thus unnecessary future contention is prevented. The simulation results presented in this paper show that the proposed protocol can enhance the performance of the system without introducing any apparent drawbacks.

  5. Evaluation of Fibre Lifetime in Optical Ground Wire Transmission Lines

    NASA Astrophysics Data System (ADS)

    Grunvalds, R.; Ciekurs, A.; Porins, J.; Supe, A.

    2017-06-01

    In the research, measurements of polarisation mode dispersion of two OPGWs (optical ground wire transmission lines), in total four fibres, have been carried out, and the expected lifetime of the infrastructure has been assessed on the basis of these measurements. The cables under consideration were installed in 1995 and 2011, respectively. Measurements have shown that polarisation mode dispersion values for cable installed in 1995 are four times higher than that for cable installed in 2011, which could mainly be explained by technological differences in fibre production and lower fibre polarisation mode dispersion requirements in 1995 due to lack of high-speed (over 10 Gbit/s) optical transmission systems. The calculation methodology of non-refusal work and refusal probabilities, using the measured polarisation mode dispersion parameters, is proposed in the paper. Based on reliability calculations, the expected lifetime is then predicted, showing that all measured fibres most likely will be operational within minimum theoretical service life of 25 years accepted by the industry.

  6. Evaluating the performance of collocated optical disdrometers: LPM and PARSIVEL

    NASA Astrophysics Data System (ADS)

    Angulo-Martinez, Marta; Begueria, Santiago; Latorre, Borja

    2017-04-01

    Optical disdrometers are present weather sensors with the ability of providing integrate information of precipitation like intensity and reflectivity together with discrete information of drop sizes and velocities distribution (DSVD) of the hydrometeors crossing the laser beam sampling area. These sensors constitute a step forward in comparison with pluviometers towards a more complete characterisation of precipitation. Their use is spreading in many research fields for several applications. Understanding the differences from one another helps in the election of the sensor and point out limitations to be fixed in future versions. Four collocated optical disdrometers, two Laser Precipitation Monitors (LPM-Thies Clima) and two PARSIVEL, 1-minute measurements of 800 natural rainfall events were compared. Results showed a general agreement in integrated variables, like intensity or liquid water content. Nevertheless, comparing raw data, as the number of particles and DSVD, great differences were found. LPM generally measures more and smaller drops than PARSIVEL and this difference increases with rainfall intensity. These results may affect especially the reflectivity value every disdrometer provide. A complete description of the measurements obtained, quantifiying the differences is provided, indicating their possible sources.

  7. Evaluation of environmentally safe cleaning agents for diamond turned optics

    SciTech Connect

    Theye, L.A.; Day, R.D.; Weinrach, J. ); Schubert, R. ); Seiffert, S. )

    1991-01-01

    Precision machining of metal surfaces using diamond turning has increased greatly in popularity at LANL in recent years. Similar techniques are used extensively to manufacture metal mirrors for use in laser applications. The diamond turned surfaces are easily damaged, making the selection of a cleaning agent very critical. These surfaces have been traditionally cleaned using Trichloroethane (TCA) to remove residual oil remaining from the machining process. The TCA was then removed with an ethanol rinse, leaving a residue free surface. Recently, however, TCA was pronounced environmentally unsafe. Consequently, we are searching for an environmentally safe cleaning agent for these diamond turned metal optics. The concern with using alternative solvents is the potential for residual surface films that produce reflectivity changes related to a combination of wavelength, surface coverage, film thickness and dielectric properties. Therefore, we have initiated a program for testing the effectiveness of a variety of environmentally safe solvents used to clean diamond turned optical surfaces. Our basic test plan consists of comparing a number of environmentally safe solvents against the TCA/ethanol cleaning system. We have identified twelve candidate solvents, but have only been able to perform a partial test on one of them to date. This paper discusses the results obtained to data using this solvent known as P F (1). 3 refs., 13 figs.

  8. Fast Simulators for Satellite Cloud Optical Centroid Pressure Retrievals, 1. Evaluation of OMI Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Vasilkov, A.; Gupta, P.; Bhartia, P. K.; Veefkind, P.; Sneep, M.; de Haan, J.; Polonsky, I.; Spurr, R.

    2012-01-01

    The cloud Optical Centroid Pressure (OCP), also known as the effective cloud pressure, is a satellite-derived parameter that is commonly used in trace-gas retrievals to account for the effects of clouds on near-infrared through ultraviolet radiance measurements. Fast simulators are desirable to further expand the use of cloud OCP retrievals into the operational and climate communities for applications such as data assimilation and evaluation of cloud vertical structure in general circulation models. In this paper, we develop and validate fast simulators that provide estimates of the cloud OCP given a vertical profile of optical extinction. We use a pressure-weighting scheme where the weights depend upon optical parameters of clouds and/or aerosol. A cloud weighting function is easily extracted using this formulation. We then use fast simulators to compare two different satellite cloud OCP retrievals from the Ozone Monitoring Instrument (OMI) with estimates based on collocated cloud extinction profiles from a combination of CloudS at radar and MODIS visible radiance data. These comparisons are made over a wide range of conditions to provide a comprehensive validation of the OMI cloud OCP retrievals. We find generally good agreement between OMI cloud OCPs and those predicted by CloudSat. However, the OMI cloud OCPs from the two independent algorithms agree better with each other than either does with the estimates from CloudSat/MODIS. Differences between OMI cloud OCPs and those based on CloudSat/MODIS may result from undetected snow/ice at the surface, cloud 3-D effects, low altitude clouds missed by CloudSat, and the fact that CloudSat only observes a relatively small fraction of an OMI field-of-view.

  9. Optical coherence tomography evaluation of posterior capsule opacification related to intraocular lens design.

    PubMed

    Moreno-Montañés, Javier; Alvarez, Aurora; Bes-Rastrollo, Maira; García-Layana, Alfredo

    2008-04-01

    To evaluate posterior capsule opacification (PCO) and the impact of different intraocular lens (IOL) models on PCO characteristics using optical coherence tomography (OCT). Eighty-three eyes with PCO (fibrosis or pearl type) and 32 pseudophakic eyes without PCO were included. Horizontal 3.0 mm long OCT scans of the posterior capsule were obtained. Measurements and means of the peak posterior capsule intensity (PCI) and posterior capsule thickness (PCT) (distance between 2 spikes at posterior capsule) at 3 scan points were recorded. The PCI and PCT were compared with best corrected visual acuity (BCVA) and IOL data. The PCT was high for IOLs with a rounded edge (P = .001) and with poly(methyl methacrylate) (PMMA) IOLs (P<.001). If the IOL optic was concave-convex, the PCT was higher than if the optic was biconvex (P = .001). The PCT of hydrophilic acrylic IOLs was higher than of hydrophobic acrylic IOLs (P = .04). Multivariate analysis of PCT showed that PMMA was the only factor statistically associated with PCT (P = .02). The worse logMAR BCVA correlated significantly with a higher PCT value (P<.001) but not with PCI (P = .42). An IOL size of 12.5 mm was related to fibrosis-type PCO (odds ratio, 3.14; P = .04). The PCT was most affected by IOL characteristics. Poly(methyl methacrylate) IOLs and IOLs with rounded edges were associated with higher PCT. Hydrophilic acrylic IOLs were associated with greater PCT than hydrophobic IOLs. Posterior capsule thickness was a factor in decreased BCVA.

  10. THE ATMOSPHERIC MODEL EVALUATION (AMET): METEOROLOGY MODULE

    EPA Science Inventory

    An Atmospheric Model Evaluation Tool (AMET), composed of meteorological and air quality components, is being developed to examine the error and uncertainty in the model simulations. AMET matches observations with the corresponding model-estimated values in space and time, and the...

  11. Optical fiber Bragg gratings. Part II. Modeling of finite-length gratings and grating arrays

    NASA Astrophysics Data System (ADS)

    Passaro, Vittorio M. N.; Diana, Roberto; Armenise, Mario N.

    2002-09-01

    A model of both uniform finite-length optical fiber Bragg gratings and grating arrays is presented. The model is based on the Floquet-Bloch formalism and allows rigorous investigation of all the physical aspects in either single- or multiple-periodic structures realized on the core of a monomodal fiber. Analytical expressions of reflectivity and transmittivity for both single gratings and grating arrays are derived. The influence of the grating length and the index modulation amplitude on the reflected and transmitted optical power for both sinusoidal and rectangular profiles is evaluated. Good agreement between our method and the well-known coupled-mode theory (CMT) approach has been observed for both single gratings and grating arrays only in the case of weak index perturbation. Significant discrepancies exist there in cases of strong index contrast because of the increasing approximation of the CMT approach. The effects of intragrating phase shift are also shown and discussed.

  12. Practical method for evaluating optical image defects caused by center artifacts

    NASA Astrophysics Data System (ADS)

    Tanabe, Takao; Shibuya, Masato; Maehara, Kazuhisa

    2017-08-01

    In modern optical element manufacturing, center artifacts are a common problem. A center artifact is a shape error that is rotationally symmetrical, steep, and localized at the center. These properties cause characteristic image defects different from those caused by ordinary irregularities. However, tolerancing center artifacts has not been fully discussed or properly carried out. We propose a simple mathematical model for center artifacts using normal distribution function as a figure model and showing that this function can be represented by a polynomial including odd-order terms. Our method enables appropriate optical simulation and tolerancing for center artifacts using general optical design software.

  13. A physical model eye with 3D resolution test targets for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hu, Zhixiong; Liu, Wenli; Hong, Baoyu; Hao, Bingtao; Wang, Lele; Li, Jiao

    2014-09-01

    Optical coherence tomography (OCT) has been widely employed as non-invasive 3D imaging diagnostic instrument, particularly in the field of ophthalmology. Although OCT has been approved for use in clinic in USA, Europe and Asia, international standardization of this technology is still in progress. Validation of OCT imaging capabilities is considered extremely important to ensure its effective use in clinical diagnoses. Phantom with appropriate test targets can assist evaluate and calibrate imaging performance of OCT at both installation and throughout lifetime of the instrument. In this paper, we design and fabricate a physical model eye with 3D resolution test targets to characterize OCT imaging performance. The model eye was fabricated with transparent resin to simulate realistic ophthalmic testing environment, and most key optical elements including cornea, lens and vitreous body were realized. The test targets which mimic USAF 1951 test chart were fabricated on the fundus of the model eye by 3D printing technology. Differing from traditional two dimensional USAF 1951 test chart, a group of patterns which have different thickness in depth were fabricated. By measuring the 3D test targets, axial resolution as well as lateral resolution of an OCT system can be evaluated at the same time with this model eye. To investigate this specialized model eye, it was measured by a scientific spectral domain OCT instrument and a clinical OCT system respectively. The results demonstrate that the model eye with 3D resolution test targets have the potential of qualitatively and quantitatively validating the performance of OCT systems.

  14. Comprehensive system models: Strategies for evaluation

    NASA Technical Reports Server (NTRS)

    Field, Christopher; Kutzbach, John E.; Ramanathan, V.; Maccracken, Michael C.

    1992-01-01

    The task of evaluating comprehensive earth system models is vast involving validations of every model component at every scale of organization, as well as tests of all the individual linkages. Even the most detailed evaluation of each of the component processes and the individual links among them should not, however, engender confidence in the performance of the whole. The integrated earth system is so rich with complex feedback loops, often involving components of the atmosphere, oceans, biosphere, and cryosphere, that it is certain to exhibit emergent properties very difficult to predict from the perspective of a narrow focus on any individual component of the system. Therefore, a substantial share of the task of evaluating comprehensive earth system models must reside at the level of whole system evaluations. Since complete, integrated atmosphere/ ocean/ biosphere/ hydrology models are not yet operational, questions of evaluation must be addressed at the level of the kinds of earth system processes that the models should be competent to simulate, rather than at the level of specific performance criteria. Here, we have tried to identify examples of earth system processes that are difficult to simulate with existing models and that involve a rich enough suite of feedbacks that they are unlikely to be satisfactorily described by highly simplified or toy models. Our purpose is not to specify a checklist of evaluation criteria but to introduce characteristics of the earth system that may present useful opportunities for model testing and, of course, improvement.

  15. Evaluation of model fit in nonlinear multilevel structural equation modeling

    PubMed Central

    Schermelleh-Engel, Karin; Kerwer, Martin; Klein, Andreas G.

    2013-01-01

    Evaluating model fit in nonlinear multilevel structural equation models (MSEM) presents a challenge as no adequate test statistic is available. Nevertheless, using a product indicator approach a likelihood ratio test for linear models is provided which may also be useful for nonlinear MSEM. The main problem with nonlinear models is that product variables are non-normally distributed. Although robust test statistics have been developed for linear SEM to ensure valid results under the condition of non-normality, they have not yet been investigated for nonlinear MSEM. In a Monte Carlo study, the performance of the robust likelihood ratio test was investigated for models with single-level latent interaction effects using the unconstrained product indicator approach. As overall model fit evaluation has a potential limitation in detecting the lack of fit at a single level even for linear models, level-specific model fit evaluation was also investigated using partially saturated models. Four population models were considered: a model with interaction effects at both levels, an interaction effect at the within-group level, an interaction effect at the between-group level, and a model with no interaction effects at both levels. For these models the number of groups, predictor correlation, and model misspecification was varied. The results indicate that the robust test statistic performed sufficiently well. Advantages of level-specific model fit evaluation for the detection of model misfit are demonstrated. PMID:24624110

  16. Model Performance Evaluation and Scenario Analysis (MPESA) Tutorial

    EPA Science Inventory

    This tool consists of two parts: model performance evaluation and scenario analysis (MPESA). The model performance evaluation consists of two components: model performance evaluation metrics and model diagnostics. These metrics provides modelers with statistical goodness-of-fit m...

  17. Model Performance Evaluation and Scenario Analysis (MPESA) Tutorial

    EPA Science Inventory

    This tool consists of two parts: model performance evaluation and scenario analysis (MPESA). The model performance evaluation consists of two components: model performance evaluation metrics and model diagnostics. These metrics provides modelers with statistical goodness-of-fit m...

  18. A trap potential model investigation of the optical activity induced in dye-DNA intercalation complexes

    NASA Astrophysics Data System (ADS)

    Kamiya, Mamoru

    1988-02-01

    The fundamental features of the optical activity induced in dye-DNA intercalation complexes are studied by application of the trap potential model which is useful to evaluate the induced rotational strength without reference to detailed geometrical information about the intercalation complexes. The specific effect of the potential depth upon the induced optical activity is explained in terms of the relative magnitudes of the wave-phase and helix-phase variations in the path of an electron moving on a restricted helical segment just like an exciton trapped around the dye intercalation site. The parallel and perpendicular components of the induced rotational strength well reflect basic properties of the helicity effects about the longitudinal and tangential axes of the DNA helical cylinder. The trap potential model is applied to optimize the potential parameters so as to reproduce the ionic strength effect upon the optical activity induced to proflavine-DNA intercalation complexes. From relationships between the optimized potential parameters and ionic strengths, it is inferred that increase in the ionic strength contributes to the optical activity induced by the nearest-neighbour interaction between intercalated proflavine and DNA base pairs.

  19. Modeling Cosmic Dust: How to Use Optical "Constants"

    NASA Astrophysics Data System (ADS)

    Speck, A.

    In order to determine the precise nature of cosmic dust, we use a combination of multi-wavelength ground- and space-based spectroscopy, imaging, laboratory data and modeling. Dust grains scatter, absorb and re-radiate light according to their optical properties, which are sensitive to e.g. the temperature, chemical composition, size, shape, and lattice structure of the dust grains. For example, graphite and diamond are both polymorphs of carbon, and will form under very similar conditions, but their interactions with light are very different. This work provides a primer on how to apply basic physics concepts to understanding how we measure and use the optical properties of candidate cosmic dust species. We discuss the way in which measurements are made, how simplifying assumptions commonly made in astronomy may cause problems and how measurable and calculable parameters from laboratory experiments can be directly or indirectly compared to parameters derived from astronomical observations. Finally, we examine the simplifying assumptions with the most commonly used “synthetic” optical properties for cosmic dust and highlight forthcoming laboratory data as a potential replacement.

  20. Optical modeling of the Jefferson Laboratory IR demo FEL

    NASA Astrophysics Data System (ADS)

    Neil, George R.; Benson, Stephen V.; Shinn, Michelle D.; Davidson, Paul C.; Kloeppel, Peter K.

    1997-05-01

    The Thomas Jefferson National Accelerator Facility (formerly known as CEBAF) has embarked on the construction of a 1 kW free-electron laser operating initially at 3 microns that is designed for laser-material interaction experiments and to explore the feasibility of scaling the system in power and wavelength for industrial and Navy defense applications. The accelerator system for this IR demo includes a 10 MeV photocathode-based injector, a 32 MeV CEBAF-style superconducting radio-frequency linac, and single-pass transport which accelerates the beam from injector to wiggler, followed by energy-recovery deceleration to a dump. The electron and optical beam time structure in the design consists of a train of picosecond pulses at 37.425 MHz pulse repetition rate. The initial optical configuration is a conventional near-concentric resonator with transmissive outcoupling. Future upgrades of the system will increase the power and shorten the operating wavelength, and utilize a more advanced resonator system capable of scaling to high powers. The optical system of the laser has been modeled using the GLADR code by using a Beer's-law region to mimic the FEL interaction. Effects such as mirror heating have been calculated and compared with analytical treatments. The magnitude of the distortion for several materials and wavelengths has been estimated. The advantages as well as the limitations of this approach are discussed.