Sample records for optical performance monitoring

  1. A compact CCD-monitored atomic force microscope with optical vision and improved performances.

    PubMed

    Mingyue, Liu; Haijun, Zhang; Dongxian, Zhang

    2013-09-01

    A novel CCD-monitored atomic force microscope (AFM) with optical vision and improved performances has been developed. Compact optical paths are specifically devised for both tip-sample microscopic monitoring and cantilever's deflection detecting with minimized volume and optimal light-amplifying ratio. The ingeniously designed AFM probe with such optical paths enables quick and safe tip-sample approaching, convenient and effective tip-sample positioning, and high quality image scanning. An image stitching method is also developed to build a wider-range AFM image under monitoring. Experiments show that this AFM system can offer real-time optical vision for tip-sample monitoring with wide visual field and/or high lateral optical resolution by simply switching the objective; meanwhile, it has the elegant performances of nanometer resolution, high stability, and high scan speed. Furthermore, it is capable of conducting wider-range image measurement while keeping nanometer resolution. Copyright © 2013 Wiley Periodicals, Inc.

  2. Fiber Optic Sensors for Health Monitoring of Morphing Aircraft

    NASA Technical Reports Server (NTRS)

    Brown, Timothy; Wood, Karen; Childers, Brooks; Cano, Roberto; Jensen, Brian; Rogowski, Robert

    2001-01-01

    Fiber optic sensors are being developed for health monitoring of future aircraft. Aircraft health monitoring involves the use of strain, temperature, vibration and chemical sensors. These sensors will measure load and vibration signatures that will be used to infer structural integrity. Sine the aircraft morphing program assumes that future aircraft will be aerodynamically reconfigurable there is also a requirement for pressure, flow and shape sensors. In some cases a single fiber may be used for measuring several different parameters. The objective of the current program is to develop techniques for using optical fibers to monitor composite cure in real time during manufacture and to monitor in-service structural integrity of the composite structure. Graphite-epoxy panels were fabricated with integrated optical fibers of various types. The panels were mechanically and thermally tested to evaluate composite strength and sensor durability. Finally the performance of the fiber optic sensors was determined. Experimental results are presented evaluating the performance of embedded and surface mounted optical fibers for measuring strain, temperature and chemical composition. The performance of the fiber optic sensors was determined by direct comparison with results from more conventional instrumentation. The facilities for fabricating optical fiber and associated sensors and methods of demodulating Bragg gratings for strain measurement will be described.

  3. Tunable Laser Development for In-Flight Fiber Optic Based Structural Health Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen; Chan, Patrick

    2013-01-01

    Briefing based on tunable laser development for in flight fiber optic based structural health monitoring systems. The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles.

  4. Integrated controls and health monitoring fiberoptic shaft monitor

    NASA Technical Reports Server (NTRS)

    Coleman, P.; Darejeh, H.; Collins, J. J.

    1989-01-01

    Recent work was performed on development optical technology to provide real time monitoring of shaft speed, shaft axial displacement, and shaft orbit of the OTVE hydrostatic bearing tester. Results show shaft axial displacement can be optically measured (at the same time as shaft orbital motion and speed) to within 0.3 mills by two fiber optic deflectometers. The final results of this condition monitoring development effort are presented.

  5. Application of distributed optical fiber sensing technologies to the monitoring of leakage and abnormal disturbance of oil pipeline

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojun; Zhu, Xiaofei; Deng, Chi; Li, Junyi; Liu, Cheng; Yu, Wenpeng; Luo, Hui

    2017-10-01

    To improve the level of management and monitoring of leakage and abnormal disturbance of long distance oil pipeline, the distributed optical fiber temperature and vibration sensing system is employed to test the feasibility for the healthy monitoring of a domestic oil pipeline. The simulating leakage and abnormal disturbance affairs of oil pipeline are performed in the experiment. It is demonstrated that the leakage and abnormal disturbance affairs of oil pipeline can be monitored and located accurately with the distributed optical fiber sensing system, which exhibits good performance in the sensitivity, reliability, operation and maintenance etc., and shows good market application prospect.

  6. Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen; Chan, Patrick

    2014-01-01

    The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.

  7. Performance of an untethered micro-optical pressure sensor

    NASA Astrophysics Data System (ADS)

    Ioppolo, Tindaro; Manzo, Maurizio; Krueger, Paul

    2012-11-01

    We present analytical and computational studies of the performance of a novel untethered micro-optical pressure sensor for fluid dynamics measurements. In particular, resolution and dynamic range will be presented. The sensor concept is based on the whispering galley mode (WGM) shifts that are observed in micro-scale dielectric optical cavities. A micro-spherical optical cavity (liquid or solid) is embedded in a thin polymeric sheet. The applied external pressure perturbs the morphology of the optical cavity leading to a shift in its optical resonances. The optical sensors are interrogated remotely, by embedding quantum dots or fluorescent dye in the micro-optical cavity. This allows a free space coupling of excitation and monitoring of the optical modes without the need of optical fibers or other cabling. With appropriate excitation and monitoring equipment, the micro-scale sensors can be distributed over a surface (e.g., including flexible biological surfaces) to monitor the local pressure field. We acknowledge the financial support from the National Science Foundation through grant CBET-1133876 with Dr. Horst Henning Winter as the program director.

  8. Calibration and Deployment of a Fiber-Optic Sensing System for Monitoring Debris Flows

    PubMed Central

    Huang, Ching-Jer; Chu, Chung-Ray; Tien, Tsung-Mo; Yin, Hsiao-Yuen; Chen, Ping-Sen

    2012-01-01

    This work presents a novel fiber-optic sensing system, capable of monitoring debris flows or other natural hazards that produce ground vibrations. The proposed sensing system comprises a demodulator (BraggSCOPE, FS5500), which includes a broadband light source and a data logger, a four-port coupler and four Fiber Bragg Grating (FBG) accelerometers. Based on field tests, the performance of the proposed fiber-optic sensing system is compared with that of a conventional sensing system that includes a geophone or a microphone. Following confirmation of the reliability of the proposed sensing system, the fiber-optic sensing systems are deployed along the Ai-Yu-Zi and Chu-Shui Creeks in Nautou County of central Taiwan for monitoring debris flows. Sensitivity test of the deployed fiber-optic sensing system along the creek banks is also performed. Analysis results of the seismic data recorded by the systems reveal in detail the frequency characteristics of the artificially generated ground vibrations. Results of this study demonstrate that the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations. PMID:22778616

  9. Palo Alto Research Center - Smart Embedded Network of Sensors with an Optical Readout

    ScienceCinema

    Raghavan, Ajay; Sahu, Saroj; Bringans, Ross; Johnson, Noble; Kiesel, Peter; Saha, Bhaskar

    2018-05-18

    PARC is developing new fiber optic sensors that would be embedded into batteries to monitor and measure key internal parameters during charge and discharge cycles. Two significant problems with today's best batteries are their lack of internal monitoring capabilities and their design oversizing. The lack of monitoring interferes with the ability to identify and manage performance or safety issues as they arise, which are presently managed by very conservative design oversizing and protection approaches that result in cost inefficiencies. PARC's design combines low-cost, embedded optical battery sensors and smart algorithms to overcome challenges faced by today's best battery management systems. These advanced fiber optic sensing technologies have the potential to dramatically improve the safety, performance, and life-time of energy storage systems.

  10. Precise Control of Vertical-Cavity Surface-Emitting Laser Structural Growth Using Molecular Beam Epitaxy In Situ Reflectance Monitor

    NASA Astrophysics Data System (ADS)

    Mizutani, Mitsuhiro; Teramae, Fumiharu; Takeuchi, Kazutaka; Murase, Tatsunori; Naritsuka, Shigeya; Maruyama, Takahiro

    2006-04-01

    A vertical-cavity surface-emitting laser (VCSEL) was fabricated using a in situ reflectance monitor by molecular beam epitaxy (MBE). Both the center wavelength of the stop band of the distributed Bragg reflector (DBR) and the resonant wavelength of the optical cavity were successfully controlled using the monitor. However, these wavelengths shifted with decreasing substrate temperature after the growth, which could be reasonably explained by the temperature dependence of refractive index. Therefore, it is necessary to set a target wavelength at a growth temperature, considering the change. The desirable laser performance of the VCSEL fabricated from the wafer indicates marked increases in the controllability and reproducibility of growth with the aid of the in situ reflectance monitor. Since it can directly measure the optical properties of the grown layers, the reflectance monitor greatly helps in the fabrication of a structure with the designed optical performance.

  11. Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays

    DTIC Science & Technology

    2005-07-09

    This final report summarizes the progress during the Phase I SBIR project entitled Embedded Electro - Optic Sensor Network for the On-Site Calibration...network based on an electro - optic field-detection technique (the Electro - optic Sensor Network, or ESN) for the performance evaluation of phased

  12. Proposal of optical farming: development of several optical sensing instruments for agricultural use

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Kobayashi, K.

    2013-05-01

    We propose the use of "Optical Farming," which is the leading application of all types of optical technologies, in agriculture and agriculture-related industries. This paper focuses on the optical sensing instruments named "Agriserver," "Agrigadget" and "LIFS Monitor" developed in our laboratory. They are considered major factors in utilizing Optical Farming. Agriserver is a sensor network system that uses the Internet to collect information on agricultural products growing in fields. Agrigadget contains several optical devices, such as a smartphone-based spectroscopic device and a hand framing camera. LIFS Monitor is an advanced monitoring instrument that makes it possible to obtain physiological information of living plants. They are strongly associated with information communication technology. Their field and data usage performance in agricultural industries are reported.

  13. Novel techniques for optical performance monitoring in optical systems

    NASA Astrophysics Data System (ADS)

    Ku, Yuen Ching

    The tremendous increase of data traffic in the worldwide Internet has driven the rapid development of optical networks to migrate from numerous point-to-point links towards meshed, transparent optical networks with dynamically routed light paths. This increases the need for appropriate network supervision methods. In view of this, optical performance monitoring (OPM) has emerged as an indispensable element for the quality assurance of an optical network. This thesis is devoted to the proposal of several new and accurate techniques to monitor different optical impairments so as to enhance proper network management. When the optical signal is carried on fiber links with optical amplifiers, the accumulated amplified spontaneous emission (ASE) noise will result in erroneous detection of the received signals. The first part of the thesis presents a novel, simple, and robust in-band optical signal to noise ratio (OSNR) monitoring technique using phase modulator embedded fiber loop mirror (PM-FLM). This technique measures the in-band OSNR accurately by observing the output power of a fiber loop mirror filter, where the transmittance is adjusted by an embedded phase modulator driven by a low-frequency periodic signal. The robustness against polarization mode dispersion, chromatic dispersion, bit-rate, and partially polarized noise is experimentally demonstrated. Chromatic dispersion (CD) is due to the fact that light with different frequencies travel at different speeds inside fiber. It causes pulse spreading and intersymbol interference (ISI) which would severely degrade the transmission performance. By feeding a signal into a fiber loop which consists of a high-birefringence (Hi-Bi) fiber, we experimentally show that the amount of experienced dispersion can be deduced from the RF power at a specific selected frequency which is determined by the length of the Hi-Bi fiber. Experimental results show that this technique can provide high monitoring resolution and dynamic range. Polarization mode dispersion (PMD) splits an optical pulse into two orthogonally polarized pulses traveling along the fiber at different speeds, causing crosstalk and ISI. The third part of the thesis demonstrates two different PMD monitoring schemes. The first one is based on the analysis of frequency-resolved state-of-polarization (SOP) rotation, with signal spectrum broadened by self-phase modulation (SPM) effect. Experimental results show that the use of broadened signal spectrum induced by SPM not only relaxes the filter requirement and reduces the computational complexity, but also improves the estimation accuracy, and extends the monitoring range of the pulsewidth. The second one is based on the delay-tap asynchronous waveform sampling technique. By examining the statistical distribution of the measured scatter plot, unambiguous PMD measurement range up to 50% of signal bit-period is demonstrated. The final part of the thesis focuses on the monitoring of alignment status between the pulse carver and data modulator in an optical system. We again employ the two-tap asynchronous sampling technique to perform such kind of monitoring in RZ-OOK transmission system. Experimental results show that both the misalignment direction and magnitude can be successfully determined. Besides, we propose and experimentally demonstrate the use of off-center optical filtering technique to capture the amount of spectrum broadening induced by the misalignment between the pulse-carver and the data modulator in RZ-DPSK transmission system. The same technique was also applied to monitor the synchronization between the old and the new data in synchronized phase re-modulation (SPRM) system.

  14. Development of smart textiles with embedded fiber optic chemical sensors

    NASA Astrophysics Data System (ADS)

    Khalil, Saif E.; Yuan, Jianming; El-Sherif, Mahmoud A.

    2004-03-01

    Smart textiles are defined as textiles capable of monitoring their own health conditions or structural behavior, as well as sensing external environmental conditions. Smart textiles appear to be a future focus of the textile industry. As technology accelerates, textiles are found to be more useful and practical for potential advanced technologies. The majority of textiles are used in the clothing industry, which set up the idea of inventing smart clothes for various applications. Examples of such applications are medical trauma assessment and medical patients monitoring (heart and respiration rates), and environmental monitoring for public safety officials. Fiber optics have played a major role in the development of smart textiles as they have in smart structures in general. Optical fiber integration into textile structures (knitted, woven, and non-woven) is presented, and defines the proper methodology for the manufacturing of smart textiles. Samples of fabrics with integrated optical fibers were processed and tested for optical signal transmission. This was done in order to investigate the effect of textile production procedures on optical fiber performance. The tests proved the effectiveness of the developed methodology for integration of optical fibers without changing their optical performance or structural integrity.

  15. Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor

    NASA Astrophysics Data System (ADS)

    Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Flanagan, J. W.; Fontes, E.; Heltsley, B. K.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Seeley, R.; Shanks, J.

    2014-12-01

    We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of 10 - 100 μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of 2 - 5 GeV. x-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.

  16. AWG-based WDM-PON monitoring system using an optical switch and a WDM filter

    NASA Astrophysics Data System (ADS)

    Liaw, S.-K.; Lai, Y.-T.; Chang, C.-L.; Shung, O.

    2008-09-01

    A new WDM-PON scheme with real-time monitoring based on a time-sharing method is proposed. It uses an optical time domain reflectometer (OTDR) to monitor multiple ports by integrating an optical switch (OSW) with a dense wavelength division multiplexer (DWDM) at the optical line terminal (OLT) site. Each downstream signal and its corresponding monitoring signal are separated by m times the free-space range (FSR) of an array waveguide grating (AWG). A bit error rate (BER) test in 2.5 Gb/s × 27 km is performed with and without turning on the OTDR. A small power penalty of 0.7 dB is observed compared to the back-to-back measurement.

  17. Research of hydroelectric generating set low-frequency vibration monitoring system based on optical fiber sensing

    NASA Astrophysics Data System (ADS)

    Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang

    2017-10-01

    In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.

  18. Simultaneous Time, Wavelength and Intensity Measurement of Optical Memory Subsystems

    DTIC Science & Technology

    1998-07-01

    SIMULTANEOUS TIME, WAVELENGTH AND INTENSITY MEASUREMENT PE - 61102F OF OPTICAL MEMORY SUBSYSTEMS PR - 2300 6. AUTHOR( S ) TA - 06 WU -03 Joseph Osman and...Rebecca Bussjager 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER AFRL/SNDP25 letnic AFRL-SN-RS-TR- 1998...12025 Electronic Pky Rome, NY 13441-4515 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER

  19. Advances in fiber optic sensors for in-vivo monitoring

    NASA Astrophysics Data System (ADS)

    Baldini, Francesco; Mignani, Anna G.

    1995-09-01

    Biomedical fiber-optic sensors are attractive for the measurement of both physical and chemical parameters as well as for spectral measurements directly performed on the patient. An overview of fiber-optic sensors for in vivo monitoring is given, with particular attention to the advantages that these sensors are able to offer in different fields of application such as cardiovascular and intensive care, angiology, gastroenterology, ophthalmology, oncology, neurology, dermatology, and dentistry.

  20. Optimal Performance Monitoring of Hybrid Mid-Infrared Wavelength MIMO Free Space Optical and RF Wireless Networks in Fading Channels

    NASA Astrophysics Data System (ADS)

    Schmidt, Barnet Michael

    An optimal performance monitoring metric for a hybrid free space optical and radio-frequency (RF) wireless network, the Outage Capacity Objective Function, is analytically developed and studied. Current and traditional methods of performance monitoring of both optical and RF wireless networks are centered on measurement of physical layer parameters, the most common being signal-to-noise ratio, error rate, Q factor, and eye diagrams, occasionally combined with link-layer measurements such as data throughput, retransmission rate, and/or lost packet rate. Network management systems frequently attempt to predict or forestall network failures by observing degradations of these parameters and to attempt mitigation (such as offloading traffic, increasing transmitter power, reducing the data rate, or combinations thereof) prior to the failure. These methods are limited by the frequent low sensitivity of the physical layer parameters to the atmospheric optical conditions (measured by optical signal-to-noise ratio) and the radio frequency fading channel conditions (measured by signal-to-interference ratio). As a result of low sensitivity, measurements of this type frequently are unable to predict impending failures sufficiently in advance for the network management system to take corrective action prior to the failure. We derive and apply an optimal measure of hybrid network performance based on the outage capacity of the hybrid optical and RF channel, the outage capacity objective function. The objective function provides high sensitivity and reliable failure prediction, and considers both the effects of atmospheric optical impairments on the performance of the free space optical segment as well as the effect of RF channel impairments on the radio frequency segment. The radio frequency segment analysis considers the three most common RF channel fading statistics: Rayleigh, Ricean, and Nakagami-m. The novel application of information theory to the underlying physics of the gamma-gamma optical channel and radio fading channels in determining the joint hybrid channel outage capacity provides the best performance estimate under any given set of operating conditions. It is shown that, unlike traditional physical layer performance monitoring techniques, the objective function based upon the outage capacity of the hybrid channel at any combination of OSNR and SIR, is able to predict channel degradation and failure well in advance of the actual outage. An outage in the information-theoretic definition occurs when the offered load exceeds the outage capacity under the current conditions of OSNR and SIR. The optical channel is operated at the "long" mid-infrared wavelength of 10000 nm. which provides improved resistance to scattering compared to shorter wavelengths such as 1550 nm.

  1. Pathogen detection using evanescent-wave fiber optic biosensor

    NASA Astrophysics Data System (ADS)

    Ferreira, Aldo P.; Werneck, Marcelo M.; Ribeiro, R. M.; Lins, U. G.

    1999-07-01

    This paper describes a real time optical biosensor that utilizes the evanescent field technique for monitoring microorganisms in hospital environment. The biosensor monitors interactions between the analytic (bacteria) and the evanescent field of an optical fiber passing through the culture media where the bacteria grows. The objective is to monitor atmospheres in hospital areas for the Staphylococcus aureus and Streptococcus pneumonia. The results lead us the conclusion that this kind of sensor presents quick response, good performance, easy of construction and low cost. We expect that the sensor will be of great help in controlling the hospital environment.

  2. Specialty fibers for fiber optic sensor application

    NASA Astrophysics Data System (ADS)

    Bennett, K.; Koh, J.; Coon, J.; Chien, C. K.; Artuso, A.; Chen, X.; Nolan, D.; Li, M.-J.

    2007-09-01

    Over the last several years, Fiber Optic Sensor (FOS) applications have seen an increased acceptance in many areas including oil & gas production monitoring, gyroscopes, current sensors, structural sensing and monitoring, and aerospace applications. High level optical and mechanical reliability of optical fiber is necessary to guarantee reliable performance of FOS. In this paper, we review recent research and development activities on new specialty fibers. We discuss fiber design concepts and present both modeling and experimental results. The main approaches to enhancing fiber attributes include new index profile design and fiber coating modification.

  3. Using Arago's spot to monitor optical axis shift in a Petzval refractor.

    PubMed

    Bruns, Donald G

    2017-03-10

    Measuring the change in the optical alignment of a camera attached to a telescope is necessary to perform astrometric measurements. Camera movement when the telescope is refocused changes the plate constants, invalidating the calibration. Monitoring the shift in the optical axis requires a stable internal reference source. This is easily implemented in a Petzval refractor by adding an illuminated pinhole and a small obscuration that creates a spot of Arago on the camera. Measurements of the optical axis shift for a commercial telescope are given as an example.

  4. Recent developments in seismic seabed oil reservoir monitoring applications using fibre-optic sensing networks

    NASA Astrophysics Data System (ADS)

    De Freitas, J. M.

    2011-05-01

    This review looks at recent developments in seismic seabed oil reservoir monitoring techniques using fibre-optic sensing networks. After a brief introduction covering the background and scope of the review, the following section focuses on state-of-the-art fibre-optic hydrophones and accelerometers used for seismic applications. Related metrology aspects of the sensor such as measurement of sensitivity, noise and cross-axis performance are addressed. The third section focuses on interrogation systems. Two main phase-based competing systems have emerged over the past two decades for seismic applications, with a third technique showing much promise; these have been compared in terms of general performance.

  5. Nanostructured porous Si optical biosensors: effect of thermal oxidation on their performance and properties.

    PubMed

    Shtenberg, Giorgi; Massad-Ivanir, Naama; Fruk, Ljiljana; Segal, Ester

    2014-09-24

    The influence of thermal oxidation conditions on the performance of porous Si optical biosensors used for label-free and real-time monitoring of enzymatic activity is studied. We compare three oxidation temperatures (400, 600, and 800 °C) and their effect on the enzyme immobilization efficiency and the intrinsic stability of the resulting oxidized porous Si (PSiO2), Fabry-Pérot thin films. Importantly, we show that the thermal oxidation profoundly affects the biosensing performance in terms of greater optical sensitivity, by monitoring the catalytic activity of horseradish peroxidase and trypsin-immobilized PSiO2. Despite the significant decrease in porous volume and specific surface area (confirmed by nitrogen gas adsorption-desorption studies) with elevating the oxidation temperature, higher content and surface coverage of the immobilized enzymes is attained. This in turn leads to greater optical stability and sensitivity of PSiO2 nanostructures. Specifically, films produced at 800 °C exhibit stable optical readout in aqueous buffers combined with superior biosensing performance. Thus, by proper control of the oxide layer formation, we can eliminate the aging effect, thus achieving efficient immobilization of different biomolecules, optical signal stability, and sensitivity.

  6. Vibration Performance Comparison Study on Current Fiber Optic Connector Technologies

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Thomes Jr., William J.; LaRocca, Frank V.; Switzer, Robert C.; Chuska, Rick F.; Macmurphy, Shawn L.

    2008-01-01

    Fiber optic cables are increasingly being used in harsh environments where they are subjected to vibration. Understanding the degradation in performance under these conditions is essential for integration of the fibers into the given application. System constraints oftentimes require fiber optic connectors so subsystems can be removed or assembled as needed. In the present work, various types of fiber optic connectors were monitored in-situ during vibration testing to examine the transient change in optical transmission and the steady-state variation following the event. Inspection of the fiber endfaces and connectors was performed at chosen intervals throughout the testing.

  7. Integrated otpical monitoring of MEMS for closed-loop control

    NASA Astrophysics Data System (ADS)

    Dawson, Jeremy M.; Wang, Limin; McCormick, W. B.; Rittenhouse, S. A.; Famouri, Parviz F.; Hornak, Lawrence A.

    2003-01-01

    Robust control and failure assessment of MEMS employed in physically demanding, mission critical applications will allow for higher degrees of quality assurance in MEMS operation. Device fault detection and closed-loop control require detailed knowledge of the operational states of MEMS over the lifetime of the device, obtained by a means decoupled from the system. Preliminary through-wafer optical monitoring research efforts have shown that through-wafer optical probing is suitable for characterizing and monitoring the behavior of MEMS, and can be implemented in an integrated optical monitoring package for continuous in-situ device monitoring. This presentation will discuss research undertaken to establish integrated optical device metrology for closed-loop control of a MUMPS fabricated lateral harmonic oscillator. Successful linear closed-loop control results using a through-wafer optical microprobe position feedback signal will be presented. A theoretical optical output field intensity study of grating structures, fabricated on the shuttle of the resonator, was performed to improve the position resolution of the optical microprobe position signal. Through-wafer microprobe signals providing a positional resolution of 2 μm using grating structures will be shown, along with initial binary Fresnel diffractive optical microelement design layout, process development, and testing results. Progress in the design, fabrication, and test of integrated optical elements for multiple microprobe signal delivery and recovery will be discussed, as well as simulation of device system model parameter changes for failure assessment.

  8. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method.

    PubMed

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  9. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    PubMed Central

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring. PMID:22346672

  10. NASA's first in-space optical gyroscope: A technology experiment on the X ray Timing Explorer spacecraft

    NASA Technical Reports Server (NTRS)

    Unger, Glenn; Kaufman, David M.; Krainak, Michael; Sanders, Glenn; Taylor, Bill; Schulze, Norman R.

    1993-01-01

    A technology experiment on the X-ray Timing Explorer spacecraft to determine the feasibility of Interferometric Fiber Optic Gyroscopes for space flight navigation is described. The experiment consists of placing a medium grade fiber optic gyroscope in parallel with the spacecraft's inertial reference unit. The performance of the fiber optic gyroscope will be monitored and compared to the primary mechanical gyroscope's performance throughout the two-year mission life.

  11. Optically powered remote gas monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubaniewicz, T.H. Jr.; Chilton, J.E.

    1995-12-31

    Many mines rely on toxic gas sensors to help maintain a safe and healthy work environment. This report describes a prototype monitoring system developed by the US Bureau of Mines (USBM) that uses light to power and communicate with several remote toxic gas sensors. The design is based on state-of-art optical-to-electrical power converters, solid-state diode lasers, and fiber optics. This design overcomes several problems associated with conventional wire-based systems by providing complete electrical isolation between the remote sensors and the central monitor. The prototype performed well during a 2-week field trial in the USBM Pittsburgh Research Center Safety Research Coalmore » Mine.« less

  12. Optical characteristics of waste stabilization ponds: recommendations for monitoring.

    PubMed

    Davies-Colley, R J; Craggs, R J; Park, J; Nagels, J W

    2005-01-01

    The optical character of waste stabilization ponds (WSPs) is of concern for several reasons. Algal photosynthesis, which produces oxygen for waste oxidation in WSPs, is influenced by attenuation of sunlight in ponds. Disinfection in WSPs is influenced by optical characteristics because solar UV exposure usually dominates inactivation. The optical nature of WSPs effluent also affects assimilation by receiving waters. Despite the importance of light behaviour in WSPs, few studies have been made of their optical characteristics. We discuss simple optical measures suitable for routine monitoring of WSPs (including at sites remote from laboratories): optical density of filtrates - an index of dissolved coloured organic (humic) matter, visual clarity - to provide an estimate of the beam attenuation coefficient (a fundamental quantity needed for optical modelling) colour (hue) - as an indicator of general WSP 'condition' and irradiance attenuation quantifying depth of light penetration. The value of optical characterisation of WSPs is illustrated with reference to optical data for WSPs in NZ (including high-rate algal ponds) treating dairy cattle wastewater versus domestic sewage. We encourage increased research on optical characteristics of WSPs and the incorporation of optical measures in monitoring and modelling of WSP performance.

  13. Functionality Enhancement of Industrialized Optical Fiber Sensors and System Developed for Full-Scale Pavement Monitoring

    PubMed Central

    Wang, Huaping; Liu, Wanqiu; He, Jianping; Xing, Xiaoying; Cao, Dandan; Gao, Xipeng; Hao, Xiaowei; Cheng, Hongwei; Zhou, Zhi

    2014-01-01

    Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements. PMID:24854060

  14. Experimental demonstration of the real-time online fault monitoring technique for chaos-based passive optical networks

    NASA Astrophysics Data System (ADS)

    Dou, Xinyu; Yin, Hongxi; Yue, Hehe; Jin, Yu; Shen, Jing; Li, Lin

    2015-09-01

    In this paper, a real-time online fault monitoring technique for chaos-based passive optical networks (PONs) is proposed and experimentally demonstrated. The fault monitoring is performed by the chaotic communication signal. The proof-of-concept experiments are demonstrated for two PON structures, i.e., wavelength-division-multiplexing (WDM) PON and Ethernet PON (EPON), respectively. For WDM PON, two monitoring approaches are investigated, one deploying a chaotic optical time domain reflectometry (OTDR) for each transmitter, and the other using only one tunable chaotic OTDR. The experimental results show that the faults at beyond 20 km from the OLT can be detected and located. The spatial resolution of the tunable chaotic OTDR is an order of magnitude of centimeter. Meanwhile, the monitoring process can operate in parallel with the chaotic optical secure communications. The proposed technique has benefits of real-time, online, precise fault location, and simple realization, which will significantly reduce the cost of operation, administration and maintenance (OAM) of PON.

  15. Functionality enhancement of industrialized optical fiber sensors and system developed for full-scale pavement monitoring.

    PubMed

    Wang, Huaping; Liu, Wanqiu; He, Jianping; Xing, Xiaoying; Cao, Dandan; Gao, Xipeng; Hao, Xiaowei; Cheng, Hongwei; Zhou, Zhi

    2014-05-19

    Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements.

  16. Ten-year monitoring of high-rise building columns using long-gauge fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Glisic, B.; Inaudi, D.; Lau, J. M.; Fong, C. C.

    2013-05-01

    A large-scale lifetime building monitoring program was implemented in Singapore in 2001. The monitoring aims of this unique program were to increase safety, verify performance, control quality, increase knowledge, optimize maintenance costs, and evaluate the condition of the structures after a hazardous event. The first instrumented building, which has now been monitored for more than ten years, is presented in this paper. The long-gauge fiber optic strain sensors were embedded in fresh concrete of ground-level columns, thus the monitoring started at the birth of both the construction material and the structure. Measurement sessions were performed during construction, upon completion of each new story and the roof, and after the construction, i.e., in-service. Based on results it was possible to follow and evaluate long-term behavior of the building through every stage of its life. The results of monitoring were analyzed at a local (column) and global (building) level. Over-dimensioning of one column was identified. Differential settlement of foundations was detected, localized, and its magnitude estimated. Post-tremor analysis was performed. Real long-term behavior of concrete columns was assessed. Finally, the long-term performance of the monitoring system was evaluated. The researched monitoring method, monitoring system, rich results gathered over approximately ten years, data analysis algorithms, and the conclusions on the structural behavior and health condition of the building based on monitoring are presented in this paper.

  17. Method of joint bit rate/modulation format identification and optical performance monitoring using asynchronous delay-tap sampling for radio-over-fiber systems

    NASA Astrophysics Data System (ADS)

    Guesmi, Latifa; Menif, Mourad

    2016-08-01

    In the context of carrying a wide variety of modulation formats and data rates for home networks, the study covers the radio-over-fiber (RoF) technology, where the need for an alternative way of management, automated fault diagnosis, and formats identification is expressed. Also, RoF signals in an optical link are impaired by various linear and nonlinear effects including chromatic dispersion, polarization mode dispersion, amplified spontaneous emission noise, and so on. Hence, for this purpose, we investigated the sampling method based on asynchronous delay-tap sampling in conjunction with a cross-correlation function for the joint bit rate/modulation format identification and optical performance monitoring. Three modulation formats with different data rates are used to demonstrate the validity of this technique, where the identification accuracy and the monitoring ranges reached high values.

  18. Static and cyclic performance evaluation of sensors for human interface pressure measurement.

    PubMed

    Dabling, Jeffrey G; Filatov, Anton; Wheeler, Jason W

    2012-01-01

    Researchers and clinicians often desire to monitor pressure distributions on soft tissues at interfaces to mechanical devices such as prosthetics, orthotics or shoes. The most common type of sensor used for this type of applications is a Force Sensitive Resistor (FSR) as these are convenient to use and inexpensive. Several other types of sensors exist that may have superior sensing performance but are less ubiquitous or more expensive, such as optical or capacitive sensors. We tested five sensors (two FSRs, one optical, one capacitive and one fluid pressure) in a static drift and cyclic loading configuration. The results show that relative to the important performance characteristics for soft tissue pressure monitoring (i.e. hysteresis, drift), many of the sensors tested have significant limitations. The FSRs exhibited hysteresis, drift and loss of sensitivity under cyclic loading. The capacitive sensor had substantial drift. The optical sensor had some hysteresis and temperature-related drift. The fluid pressure sensor performed well in these tests but is not as flat as the other sensors and is not commercially available. Researchers and clinicians should carefully consider the convenience and performance trade-offs when choosing a sensor for soft-tissue pressure monitoring.

  19. Development of advanced seal verification

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kosten, Susan E.; Abushagur, Mustafa A.

    1992-01-01

    The purpose of this research is to develop a technique to monitor and insure seal integrity with a sensor that has no active elements to burn-out during a long duration activity, such as a leakage test or especially during a mission in space. The original concept proposed is that by implementing fiber optic sensors, changes in the integrity of a seal can be monitored in real time and at no time should the optical fiber sensor fail. The electrical components which provide optical excitation and detection through the fiber are not part of the seal; hence, if these electrical components fail, they can be easily changed without breaking the seal. The optical connections required for the concept to work does present a functional problem to work out. The utility of the optical fiber sensor for seal monitoring should be general enough that the degradation of a seal can be determined before catastrophic failure occurs and appropriate action taken. Two parallel efforts were performed in determining the feasibility of using optical fiber sensors for seal verification. In one study, research on interferometric measurements of the mechanical response of the optical fiber sensors to seal integrity was studied. In a second study, the implementation of the optical fiber to a typical vacuum chamber was implemented and feasibility studies on microbend experiments in the vacuum chamber were performed. Also, an attempt was made to quantify the amount of pressure actually being applied to the optical fiber using finite element analysis software by Algor.

  20. Comparison of Fiber Optic and Conduit Attenuated Total Reflection (ATR) Fourier Transform Infrared (FT-IR) Setup for In-Line Fermentation Monitoring.

    PubMed

    Koch, Cosima; Posch, Andreas E; Herwig, Christoph; Lendl, Bernhard

    2016-12-01

    The performance of a fiber optic and an optical conduit in-line attenuated total reflection mid-infrared (IR) probe during in situ monitoring of Penicillium chrysogenum fermentation were compared. The fiber optic probe was connected to a sealed, portable, Fourier transform infrared (FT-IR) process spectrometer via a plug-and-play interface. The optical conduit, on the other hand, was connected to a FT-IR process spectrometer via a knuckled probe with mirrors that had to be adjusted prior to each fermentation, which were purged with dry air. Penicillin V (PenV) and its precursor phenoxyacetic acid (POX) concentrations were determined by online high-performance liquid chromatography and the obtained concentrations were used as reference to build partial least squares regression models. Cross-validated root-mean-square errors of prediction were found to be 0.2 g L -1 (POX) and 0.19 g L -1 (PenV) for the fiber optic setup and 0.17 g L -1 (both POX and PenV) for the conduit setup. Higher noise-levels and spectrum-to-spectrum variations of the fiber optic setup lead to higher noise of estimated (i.e., unknown) POX and PenV concentrations than was found for the conduit setup. It seems that trade-off has to be made between ease of handling (fiber optic setup) and measurement accuracy (optical conduit setup) when choosing one of these systems for bioprocess monitoring. © The Author(s) 2016.

  1. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    DOEpatents

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  2. System Report for the Optical Properties Monitor (OPM) Experiment

    NASA Technical Reports Server (NTRS)

    Hummer, L.

    2001-01-01

    This systems report describes how the Optical Properties Monitor (OPM) experiment was developed. Pertinent design parameters are discussed, along with mission information and system requirements to successfully complete the mission. Environmental testing was performed on the OPM to certify it for spaceflight. This testing included vibration, thermal vacuum, electromagnetic interference and conductance, and toxicity tests. Instrument and monitor subsystem performances, including the reflectometer, vacuum ultraviolet, total integrated scatter, atomic oxygen monitor, irradiance monitor, and molecular contamination monitor during the mission are discussed. The OPM experiment was launched aboard the Space Shuttle on mission STS-81 in January 1997 and transferred to the Mir space station. An extravehicular activity (EVA) was performed in April 1997 to attach the OPM experiment to the outside of the Mir/Shuttle Docking Module for space environment exposure. The OPM conducted in situ measurements of a number of material samples. These data may be found in the OPM Science Report. OPM was retrieved during an EVA in January 1998 and was returned to Earth on board the Space Shuttle on mission STS-89.

  3. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance

    NASA Astrophysics Data System (ADS)

    Raghavan, Ajay; Kiesel, Peter; Sommer, Lars Wilko; Schwartz, Julian; Lochbaum, Alexander; Hegyi, Alex; Schuh, Andreas; Arakaki, Kyle; Saha, Bhaskar; Ganguli, Anurag; Kim, Kyung Ho; Kim, ChaeAh; Hah, Hoe Jin; Kim, SeokKoo; Hwang, Gyu-Ok; Chung, Geun-Chang; Choi, Bokkyu; Alamgir, Mohamed

    2017-02-01

    A key challenge hindering the mass adoption of Lithium-ion and other next-gen chemistries in advanced battery applications such as hybrid/electric vehicles (xEVs) has been management of their functional performance for more effective battery utilization and control over their life. Contemporary battery management systems (BMS) reliant on monitoring external parameters such as voltage and current to ensure safe battery operation with the required performance usually result in overdesign and inefficient use of capacity. More informative embedded sensors are desirable for internal cell state monitoring, which could provide accurate state-of-charge (SOC) and state-of-health (SOH) estimates and early failure indicators. Here we present a promising new embedded sensing option developed by our team for cell monitoring, fiber-optic sensors. High-performance large-format pouch cells with embedded fiber-optic sensors were fabricated. The first of this two-part paper focuses on the embedding method details and performance of these cells. The seal integrity, capacity retention, cycle life, compatibility with existing module designs, and mass-volume cost estimates indicate their suitability for xEV and other advanced battery applications. The second part of the paper focuses on the internal strain and temperature signals obtained from these sensors under various conditions and their utility for high-accuracy cell state estimation algorithms.

  4. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

    2003-06-01

    Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateralmore » wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of the field test data from virtually anywhere in the world, and development of novel data processing techniques. Comprehensive testing was performed to systematically evaluate the performance of the fiber optic sensor systems in both lab and field environments.« less

  5. Real-time In-Flight Strain and Deflection Monitoring with Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This viewgraph presentation reviews Dryden's efforts to develop in-flight monitoring based on Fiber Optics. One of the motivating factors for this development was the breakup of the Helios aircraft. On Ikhana the use of fiber optics for wing shape sensing is being developed. They are being used to flight validate fiber optic sensor measurements and real-time wing shape sensing predictions on NASA's Ikhana vehicle; validate fiber optic mathematical models and design tools; Assess technical viability and, if applicable, develop methodology and approach to incorporate wing shape measurements within the vehicle flight control system, and develop and flight validate advanced approaches to perform active wing shape control.

  6. Skylab consolidated instrumentation plan for SL-1/SL-2

    NASA Technical Reports Server (NTRS)

    Clark, D. E.

    1972-01-01

    The consolidated instrumentation plan is presented for employing optical and electronic data acquisition systems to monitor the performance and trajectory of Skylab 1 and Skylab 2 vehicles during the launch phase. Telemetry, optical, and electronic tracking equipment on board the vehicles, and data acquisition systems monitoring the flights are discussed. Flight safety instrumentation, vehicle data transmission systems, and instrumentation geography are also described.

  7. Tunable thin film filters for intelligent WDM networks

    NASA Astrophysics Data System (ADS)

    Cahill, Michael; Bartolini, Glenn; Lourie, Mark; Domash, Lawrence

    2006-08-01

    Optical transmission systems have evolved rapidly in recent years with the emergence of new technologies for gain management, wavelength multiplexing, tunability, and switching. WDM networks are increasingly expected to be agile, flexible, and reconfigurable which in turn has led to a need for monitoring to be more widely distributed within the network. Automation of many actions performed on these networks, such as channel provisioning and power balancing, can only be realized by the addition of optical channel monitors (OCMs). These devices provide information about the optical transmission system including the number of optical channels, channel identification, wavelength, power, and in some cases optical signal-to-noise ratio (OSNR). Until recently OCMs were costly and bulky and thus the number of OCMs used in optical networks was often kept to a minimum. We describe a family of tunable thin film filters which have greatly reduced the cost and physical footprint of channel monitors, making possible 'monitoring everywhere' for intelligent optical networks which can serve long haul, metro and access requirements from a single technology platform. As examples of specific applications we discuss network issues such as auto provisioning, wavelength collision avoidance, power balancing, OSNR balancing, gain equalization, alien wavelength recognition, interoperability, and other requirements assigned to the emerging concept of an Optical Control Plane.

  8. Colloidal Metamaterials at Optical Frequencies

    DTIC Science & Technology

    2014-07-18

    NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR...optical constants from Johnson and Christy) with a 2 nm interparticle spacing. All calculations were performed assuming an aqueous embedding medium (n

  9. No moving parts safe & arm apparatus and method with monitoring and built-in-test for optical firing of explosive systems

    DOEpatents

    Hendrix, J.L.

    1995-04-11

    A laser initiated ordnance controller apparatus which provides a safe and arm scheme with no moving parts. The safe & arm apparatus provides isolation of firing energy to explosive devices using a combination of polarization isolation and control through acousto-optical deviation of laser energy pulses. The apparatus provides constant monitoring of the systems status and performs 100% built-in-test at any time prior to ordnance ignition without the risk of premature ignition or detonation. The apparatus has a computer controller, a solid state laser, an acousto-optic deflector and RF drive circuitry, built-in-test optics and electronics, and system monitoring capabilities. The optical system is completed from the laser beam power source to the pyrotechnic ordnance through fiber optic cabling, optical splitters and optical connectors. During operation of the apparatus, a command is provided by the computer controller and, simultaneous with laser flashlamp fire, the safe & arm device is opened for approximately 200 microseconds which allows the laser pulse to transmit through the device. The arm signal also energizes the laser power supply and activates the acousto-optical deflector. When the correct fire format command is received, the acousto-optic deflector moves to the selected event channel, and the channel is verified to ensure the system is pointing to the correct position. Laser energy is transmitted through the fiber where an ignitor or detonator designed to be sensitive to optical pulses is fired at the end of the fiber channel. Simultaneous event channels may also be utilized by optically splitting a single event channel. The built-in-test may be performed anytime prior to ordnance ignition. 6 figures.

  10. No moving parts safe & arm apparatus and method with monitoring and built-in-test for optical firing of explosive systems

    DOEpatents

    Hendrix, James L.

    1995-01-01

    A laser initiated ordnance controller apparatus which provides a safe and m scheme with no moving parts. The safe & arm apparatus provides isolation of firing energy to explosive devices using a combination of polarization isolation and control through acousto-optical deviation of laser energy pulses. The apparatus provides constant monitoring of the systems status and performs 100% built-in-test at any time prior to ordnance ignition without the risk of premature ignition or detonation. The apparatus has a computer controller, a solid state laser, an acousto-optic deflector and RF drive circuitry, built-in-test optics and electronics, and system monitoring capabilities. The optical system is completed from the laser beam power source to the pyrotechnic ordnance through fiber optic cabling, optical splitters and optical connectors. During operation of the apparatus, a command is provided by the computer controller and, simultaneous with laser flashlamp fire, the safe & arm device is opened for approximately 200 microseconds which allows the laser pulse to transmit through the device. The arm signal also energizes the laser power supply and activates the acousto-optical deflector. When the correct fire format command is received, the acousto-optic deflector moves to the selected event channel, and the channel is verified to ensure the system is pointing to the correct position. Laser energy is transmitted through the fiber where an ignitor or detonator designed to be sensitive to optical pulses is fired at the end of the fiber channel. Simultaneous event channels may also be utilized by optically splitting a single event channel. The built-in-test may be performed anytime prior to ordnance ignition.

  11. In vivo Raman measurement of levofloxacin lactate in blood using a nanoparticle-coated optical fiber probe

    PubMed Central

    Liu, Shupeng; Rong, Ming; Zhang, Heng; Chen, Na; Pang, Fufei; Chen, Zhenyi; Wang, Tingyun; Yan, Jianshe

    2016-01-01

    Monitoring drug concentrations in vivo is very useful for adjusting a drug dosage during treatment and for drug research. Specifically, cutting-edge “on-line” drug research relies on knowing how drugs are metabolized or how they interact with the blood in real-time. Thus, this study explored performing in vivo Raman measurements of the model drug levofloxacin lactate in the blood using a nanoparticle-coated optical fiber probe (optical fiber nano-probe). The results show that we were able to measure real-time changes in the blood concentration of levofloxacin lactate, suggesting that this technique could be helpful for performing drug analyses and drug monitoring in a clinical setting without repeatedly withdrawing blood from patients. PMID:27231590

  12. Revolutionary optical sensor for physiological monitoring in the battlefield

    NASA Astrophysics Data System (ADS)

    Kingsley, Stuart A.; Sriram, Sriram; Pollick, Andrea; Marsh, John

    2004-09-01

    SRICO has developed a revolutionary approach to physiological status monitoring using state-of-the-art optical chip technology. The company"s patent pending Photrode is a photonic electrode that uses unique optical voltage sensing technology to measure and monitor electrophysiological parameters. The optical-based monitoring system enables dry-contact measurements of EEG and ECG signals that require no surface preparation or conductive gel and non-contact measurements of ECG signals through the clothing. The Photrode applies high performance optical integrated circuit technology, that has been successfully implemented in military & commercial aerospace, missile, and communications applications for sensing and signal transmission. SRICO"s award winning Photrode represents a new paradigm for the measurement of biopotentials in a reliable, convenient, and non-intrusive manner. Photrode technology has significant applications on the battlefield for rapid triage to determine the brain dead from those with viable brain function. An ECG may be obtained over the clothing without any direct skin contact. Such applications would enable the combat medic to receive timely medical information and to make important decisions regarding identification, location, triage priority and treatment of casualties. Other applications for the Photrode include anesthesia awareness monitoring, sleep medicine, mobile medical monitoring for space flight, emergency patient care, functional magnetic resonance imaging, various biopotential signal acquisition (EMG, EOG), and routine neuro and cardio diagnostics.

  13. Optical signal monitoring in phase modulated optical fiber transmission systems

    NASA Astrophysics Data System (ADS)

    Zhao, Jian

    Optical performance monitoring (OPM) is one of the essential functions for future high speed optical networks. Among the parameters to be monitored, chromatic dispersion (CD) is especially important since it has a significant impact on overall system performance. In this thesis effective CD monitoring approaches for phase-shift keying (PSK) based optical transmission systems are investigated. A number of monitoring schemes based on radio frequency (RF) spectrum analysis and delay-tap sampling are proposed and their performance evaluated. A method for dispersion monitoring of differential phase-shift keying (DPSK) signals based on RF power detection is studied. The RF power spectrum is found to increase with the increase of CD and decrease with polarization mode dispersion (PMD). The spectral power density dependence on CD is studied theoretically and then verified through simulations and experiments. The monitoring sensitivity for nonreturn-to-zero differential phase-shift keying (NRZ-DPSK) and return-to-zero differential phase-shift keying (RZ-DPSK) based systems can reach 80ps/nm/dB and 34ps/nm/dB respectively. The scheme enables the monitoring of differential group delay (DGD) and CD simultaneously. The monitoring sensitivity of CD and DGD can reach 56.7ps/nm/dB and 3.1ps/dB using a bandpass filter. The effects of optical signal-to-noise ratio (OSNR), DGD, fiber nonlinearity and chirp on the monitoring results are investigated. Two RF pilot tones are employed for CD monitoring of DPSK signals. Specially selected pilot tone frequencies enable good monitoring sensitivity with minimum influence on the received signals. The dynamic range exceeding 35dB and monitoring sensitivity up to 9.5ps/nm/dB are achieved. Asynchronous sampling technique is employed for CD monitoring. A signed CD monitoring method for 10Gb/s NRZ-DPSK and RZ-DPSK systems using asynchronous delay-tap sampling technique is studied. The demodulated signals suffer asymmetric waveform distortion if there is a phase error (Deltaphi) in the delay interferometer (DI) and in the presence of residual CD. Using delay-tap sampling the scatter plots can reflect this signal distortion through their asymmetric characteristics. A distance ratio (DR) is defined to represent the change of the scatter plots which is directly related to the accumulated CD. The monitoring range can be up to +/-400ps/nm and to +/-720ps/nm for 10Gb/s NRZ-DPSK and RZ-DPSK signals with 450 phase error in DI. The monitoring sensitivity reaches +/-8ps/nm and CD polarity discrimination is realized. It is found that the signal degradation is related to the increment of the absolute value of CD or phase mismatch. The effect of different polarities of phase error on CD monitoring is also analyzed. The shoulders location depends on the sign of the product DLDeltaphi. If DLDeltaphi > 0, the shoulder will appear on trailing edge else the shoulder will appear on leading edge when DLDeltaphi < 0. The analysis shows that the phase error is identical to the frequency offset of optical source so a signed frequency offset monitoring is also demonstrated. The monitoring results show that the monitoring range can reach +/-2.2GHz and the monitoring sensitivity is around 27MHz. The effect of nonlinearity, OSNR and bandwidth of the lowpass filter on the proposed monitoring method has also been studied. The signed CD monitoring for 100Gb/s carrier suppressed return-to-zero differential quadrature phase-shift keying (CSRZ-DQPSK) system based on the delay-tap sampling technology is demonstrated. The monitoring range and monitoring resolution can goes up to +/-32ps/nm and +/-8ps/nm, respectively. A signed CD and optical carrier wavelength monitoring scheme using cross-correlation method for on-off keying (00K) wavelength division multiplexing (WDM) system is proposed and demonstrated. CD monitoring sensitivity is high and can be less than 10% of the bit period. Wavelength monitoring is implemented using the proposed approach. The monitoring results show that the sensitivity can reach up to 1.37ps/GHz.

  14. Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Anbo

    This report summarizes technical progress on the program “Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology at Virginia Tech. The objective of this project is to develop a first-of-a-kind technology for remote fiber optic generation and detection of acoustic waves for structural health monitoring in harsh environments. During the project period, which is from April 1, 2013 to Septemeber 30, 2016, three different acoustic generation mechanisms were studied in detail for their applications inmore » building a fiber optic acoustic generation unit (AGU), including laser induced plasma breakdown (LIP), Erbium-doped fiber laser absorption, and metal laser absorption. By comparing the performance of the AGUs designed based on these three mechanisms and analyzing the experimental results with simulations, the metal laser absorption method was selected to build a complete fiber optic structure health monitoring (FO-SHM) system for the proposed high temperature multi-parameter structure health monitoring application. Based on the simulation of elastic wave propagation and fiber Bragg grating acoustic pulse detection, an FO-SHM element together with a completed interrogation system were designed and built. This system was first tested on an aluminum piece in the low-temperature range and successfully demonstrated its capability of multi-parameter monitoring and multi-point sensing. In the later stages of the project, the research was focused on improving the surface attachment design and preparing the FO-SHM element for high temperature environment tests. After several upgrades to the surface attachment methods, the FO-SHM element was able to work reliably up to 600oC when attached to P91 pipes, which are the target material of this project. In the final stage of this project, this FO-SHM sensing system was tested in the simulated harsh environment for its multi-parameter monitoring performance and high-temperature survivability.« less

  15. Fiber Optic Raman Sensor to Monitor Concentration Ratio of Nitrogen and Oxygen in a Cryogenic Mixture

    NASA Technical Reports Server (NTRS)

    Tiwari, Vidhu S.; Kalluru, Rajamohan R.; Yueh, Fang-Yu; Singh, Jagdish P.; SaintCyr, William

    2007-01-01

    A spontaneous Raman scattering optical fiber sensor is developed for a specific need of NASA/SSC for long-term detection and monitoring of the quality of liquid oxygen (LOX) in the delivery line during ground testing of rocket engines. The sensor performance was tested in the laboratory and with different excitation light sources. To evaluate the sensor performance with different excitation light sources for the LOX quality application, we have used the various mixtures of liquid oxygen and liquid nitrogen as samples. The study of the sensor performance shows that this sensor offers a great deal of flexibility and provides a cost effective solution for the application. However, an improved system response time is needed for the real-time, quantitative monitoring of the quality of cryogenic fluids in harsh environment.

  16. Science Data Report for the Optical Properties Monitor (OPM) Experiment

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Zwiener, James M.

    1999-01-01

    Long term stability of spacecraft materials when exposed to the space environment continues to be a major area of investigation. The natural and induced environment surrounding a spacecraft can decrease material performance and limit useful lifetimes. The Optical Properties Monitor (OPM) experiment provided the capability to perform the important flight testing of materials and was flown on the Russian Mir Station to study the long term effects of the natural and induced space environment on materials. The core of the OPM in-flight analysis was three independent optical instruments. These instruments included an integrating sphere spectral reflectometer, a vacuum ultraviolet spectrometer, and a Total Integrated Scatter instrument. The OPM also monitored selected components of the environment including molecular contamination. The OPM was exposed on the exterior of the Mir Docking Module for approximately 8-1/2 months. This report describes the OPM experiment, a brief background of its development, program organization, experiment description, mission overview including space environment definition, performance overview, materials data including flight and ground data, in-depth post flight analysis including ground analysis measurements and a summary discussion of the findings and results.

  17. Fiber optic shape sensing for monitoring of flexible structures

    NASA Astrophysics Data System (ADS)

    Lally, Evan M.; Reaves, Matt; Horrell, Emily; Klute, Sandra; Froggatt, Mark E.

    2012-04-01

    Recent advances in materials science have resulted in a proliferation of flexible structures for high-performance civil, mechanical, and aerospace applications. Large aspect-ratio aircraft wings, composite wind turbine blades, and suspension bridges are all designed to meet critical performance targets while adapting to dynamic loading conditions. By monitoring the distributed shape of a flexible component, fiber optic shape sensing technology has the potential to provide valuable data during design, testing, and operation of these smart structures. This work presents a demonstration of such an extended-range fiber optic shape sensing technology. Three-dimensional distributed shape and position sensing is demonstrated over a 30m length using a monolithic silica fiber with multiple optical cores. A novel, helicallywound geometry endows the fiber with the capability to convert distributed strain measurements, made using Optical Frequency-Domain Reflectometry (OFDR), to a measurement of curvature, twist, and 3D shape along its entire length. Laboratory testing of the extended-range shape sensing technology shows

  18. In-Situ Cure Monitoring of the Immidization Reaction of PMR-15

    NASA Technical Reports Server (NTRS)

    Cossins, Sheryl; Kellar, Jon J.; Winter, Robb M.

    1997-01-01

    Glass fiber reinforced polymer composites are becoming widely used in industry. With this increase in production, an in-situ method of quality control for the curing of the polymer is desirable. This would allow for the production of high-quality parts having more uniform properties.' Recently, in-situ fiber optic monitoring of polymer curing has primarily focused on epoxy resins and has been performed by Raman or fluorescence methods. In addition, some infrared (IR) investigations have been performed using transmission or ATR cells. An alternate IR approach involves using optical fibers as a sensor by utilizing evanescent wave spectroscopy.

  19. Space Science Payloads Optical Properties Monitor (OPM) Mission Flight Anomalies Thermal Analyses

    NASA Technical Reports Server (NTRS)

    Schmitz, Craig P.

    2001-01-01

    The OPM was the first space payload that measured in-situ the optical properties of materials and had data telemetered to ground. The OPM was EVA mounted to the Mir Docking Module for an eight-month stay where flight samples were exposed to the Mir induced and natural environments. The OPM was comprised of three optical instruments; a total hemispherical spectral reflectometer, a vacuum ultraviolet spectrometer, and a total integrated scatterometer. There were also three environmental monitors; an atomic oxygen monitor, solar and infrared radiometers, and two temperature-controlled quartz crystal microbalances (to monitor contamination). Measurements were performed weekly and data telemetered to ground through the Mir data system. This paper will describe the OPM thermal control design and how the thermal math models were used to analyze anomalies which occurred during the space flight mission.

  20. High-density fiber-optic DNA random microsphere array.

    PubMed

    Ferguson, J A; Steemers, F J; Walt, D R

    2000-11-15

    A high-density fiber-optic DNA microarray sensor was developed to monitor multiple DNA sequences in parallel. Microarrays were prepared by randomly distributing DNA probe-functionalized 3.1-microm-diameter microspheres in an array of wells etched in a 500-microm-diameter optical imaging fiber. Registration of the microspheres was performed using an optical encoding scheme and a custom-built imaging system. Hybridization was visualized using fluorescent-labeled DNA targets with a detection limit of 10 fM. Hybridization times of seconds are required for nanomolar target concentrations, and analysis is performed in minutes.

  1. Infrastructure monitoring data management.

    DOT National Transportation Integrated Search

    2015-07-01

    The primary objective of this project is to advance the development of a structural health monitoring : system (SHMS) for the Cut River Bridge. The scope includes performing an analysis from the fiber : optic strain gauge readings and making recommen...

  2. Fiber optic choline biosensor

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Cao, Xiaojian; Jia, Ke; Chai, Xueting; Lu, Hua; Lu, Zuhong

    2001-10-01

    A fiber optic fluorescence biosensor for choline is introduced in this paper. Choline is an important neurotransmitter in mammals. Due to the growing needs for on-site clinical monitoring of the choline, much effect has been devoted to develop choline biosensors. Fiber-optic fluorescence biosensors have many advantages, including miniaturization, flexibility, and lack of electrical contact and interference. The choline fiber-optic biosensor we designed implemented a bifurcated fiber to perform fluorescence measurements. The light of the blue LED is coupled into one end of the fiber as excitation and the emission spectrum from sensing film is monitored by fiber-spectrometer (S2000, Ocean Optics) through the other end of the fiber. The sensing end of the fiber is coated with Nafion film dispersed with choline oxidase and oxygen sensitive luminescent Ru(II) complex (Tris(2,2'-bipyridyl)dichlororuthenium(II), hexahydrate). Choline oxidase catalyzes the oxidation of choline to betaine and hydrogen peroxide while consuming oxygen. The fluorescence intensity of oxygen- sensitive Ru(II) are related to the choline concentration. The response of the fiber-optic sensor in choline solution is represented and discussed. The result indicates a low-cost, high-performance, portable choline biosensor.

  3. Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Anbo; Yu, Zhihao

    This report summarizes technical progress on the program “Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The scope of work entails analyses of traveling grating generation technologies in an optical fiber, as well as the interrogation of the gratings to infer a distributed temperature along the fiber, for the purpose of developing a real-time refractory health condition monitoring technology for coal gasifiers. Duringmore » the project period, which is from 2011-2015, three different sensing principles were studied, including four-wave mixing (FWM), coherent optical time-domain reflectometer (C-OTDR) and Brillouin optical time-domain analysis (BOTDA). By comparing the three methods, the BOTDA was selected for further development into a complete bench-top sensing system for the proposed high-temperature sensing application. Based on the input from Eastman Chemical, the industrial collaborator on this project, a cylindrical furnace was designed and constructed to simulate typical gasifier refractory temperature conditions in the laboratory, and verify the sensor’s capability to fully monitor refractory conditions on the back-side at temperatures up to 1000°C. In the later stages of the project, the sensing system was tested in the simulated environment for its sensing performance and high-temperature survivability. Through theoretical analyses and experimental research on the different factors affecting the sensor performance, a sensor field deployment strategy was proposed for possible future sensor field implementations.« less

  4. Non-Dispersive Infrared Sensor for Online Condition Monitoring of Gearbox Oil.

    PubMed

    Rauscher, Markus S; Tremmel, Anton J; Schardt, Michael; Koch, Alexander W

    2017-02-18

    The condition of lubricating oil used in automotive and industrial gearboxes must be controlled in order to guarantee optimum performance and prevent damage to machinery parts. In normal practice, this is done by regular oil change intervals and routine laboratory analysis, both of which involve considerable operating costs. In this paper, we present a compact and robust optical sensor that can be installed in the lubrication circuit to provide quasi-continuous information about the condition of the oil. The measuring principle is based on non-dispersive infrared spectroscopy. The implemented sensor setup consists of an optical measurement cell, two thin-film infrared emitters, and two four-channel pyroelectric detectors equipped with optical bandpass filters. We present a method based on multivariate partial least squares regression to select appropriate optical bandpass filters for monitoring the oxidation, water content, and acid number of the oil. We perform a ray tracing analysis to analyze and correct the influence of the light path in the optical setup on the optical parameters of the bandpass filters. The measurement values acquired with the sensor for three different gearbox oil types show high correlation with laboratory reference data for the oxidation, water content, and acid number. The presented sensor can thus be a useful supplementary tool for the online condition monitoring of lubricants when integrated into a gearbox oil circuit.

  5. Non-Dispersive Infrared Sensor for Online Condition Monitoring of Gearbox Oil

    PubMed Central

    Rauscher, Markus S.; Tremmel, Anton J.; Schardt, Michael; Koch, Alexander W.

    2017-01-01

    The condition of lubricating oil used in automotive and industrial gearboxes must be controlled in order to guarantee optimum performance and prevent damage to machinery parts. In normal practice, this is done by regular oil change intervals and routine laboratory analysis, both of which involve considerable operating costs. In this paper, we present a compact and robust optical sensor that can be installed in the lubrication circuit to provide quasi-continuous information about the condition of the oil. The measuring principle is based on non-dispersive infrared spectroscopy. The implemented sensor setup consists of an optical measurement cell, two thin-film infrared emitters, and two four-channel pyroelectric detectors equipped with optical bandpass filters. We present a method based on multivariate partial least squares regression to select appropriate optical bandpass filters for monitoring the oxidation, water content, and acid number of the oil. We perform a ray tracing analysis to analyze and correct the influence of the light path in the optical setup on the optical parameters of the bandpass filters. The measurement values acquired with the sensor for three different gearbox oil types show high correlation with laboratory reference data for the oxidation, water content, and acid number. The presented sensor can thus be a useful supplementary tool for the online condition monitoring of lubricants when integrated into a gearbox oil circuit. PMID:28218701

  6. Apollo/Saturn 5 consolidated instrumentation plan for AS-511 (Apollo 16)

    NASA Technical Reports Server (NTRS)

    Clark, D. E.

    1972-01-01

    The consolidated instrumentation plan, for employing optical and electronic data acquisition systems to monitor the performance and trajectory of Apollo Saturn 5 vehicle 511 during the launch phase of the mission (prelaunch, liftoff to insertion), is presented. Telemetry, optical, and electronic tracking equipment on board the vehicle and data acquisition systems monitoring the flight are discussed. Flight safety instrumentation, vehicle data transmission systems, and geophysical instrumentation are also described.

  7. Fiber Optic Thermal Health Monitoring of Composites

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.

    2010-01-01

    A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.

  8. Science Data Report for the Optical Properties Monitor (OPM) Experiment

    NASA Technical Reports Server (NTRS)

    Wilkes, D. R.; Zwiener, J. M.; Carruth, Ralph (Technical Monitor)

    2001-01-01

    This science data report describes the Optical Properties Monitor (OPM) experiment and the data gathered during its 9-mo exposure on the Mir space station. Three independent optical instruments made up OPM: an integrating sphere spectral reflectometer, vacuum ultraviolet spectrometer, and a total integrated scatter instrument. Selected materials were exposed to the low-Earth orbit, and their performance monitored in situ by the OPM instruments. Coinvestigators from four NASA Centers, five International Space Station contractors, one university, two Department of Defense organizations, and the Russian space company, Energia, contributed samples to this experiment. These materials included a number of thermal control coatings, optical materials, polymeric films, nanocomposites, and other state-of-the-art materials. Degradation of some materials, including aluminum conversion coatings and Beta cloth, was greater than expected. The OPM experiment was launched aboard the Space Shuttle on mission STS-81 in January 1997 and transferred to the Mir space station. An extravehicular activity (EVA) was performed in April 1997 to attach the OPM experiment to the outside of the Mir/Shuttle Docking Module for space environment exposure. OPM was retrieved during an EVA in January 1998 and was returned to Earth on board the Space Shuttle on mission STS-89.

  9. Monitoring of tissue optical properties using OCT: application for blood glucose analysis

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Eledrisi, Mohsen S.; Ashitkov, Taras V.; Motamedi, Massoud; Esenaliev, Rinat O.

    2002-07-01

    Noninvasive monitoring of tissue optical properties in real time could significantly improve diagnostics and management of various diseases. Recently we proposed to use high- resolution Optical Coherence Tomography (OCT) technique for measurement of tissue scattering coefficient at the depth of up to 1mm. Our pilot studies performed in vitro and in vivo demonstrated that measurement of tissue scattering with this technique can potentially be applied for noninvasive monitoring of blood glucose concentration. High resolution and coherent photon detection of the OCT technique allowed detection of glucose-induced changes in the scattering coefficient. In this paper we report results of in vivo studies performed in dog, New Zealand rabbits, and first human subjects. OCT system with the wavelength of 1300 nm was used in our experiments. OCT signal slope was measured and compared with actual blood glucose concentration. Bolus glucose injections and glucose clamping administrations were used in animal studies. OCT signals were recorded form human subjects during oral glucose tolerance test. Results obtained form both animal and human studies show good correlation between slope of the OCT signals and actual blood glucose concentration measured using standard glucometesr. Sensitivity and accuracy of blood glucose concentrations monitoring with the OCT is discussed. Obtained result suggest that OCT is a promising technique for noninvasive monitoring of tissue analytes including glucose.

  10. Research on corrosion detection for steel reinforced concrete structures using the fiber optical white light interferometer sensing technique

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Cui, Yanjun; Wei, Heming; Kong, Xianglong; Zhang, Pinglei; Sun, Changsen

    2013-06-01

    In this paper, a novel kind of steel rebar corrosion monitoring technique for steel reinforced concrete structures is proposed, designed, and tested. The technique is based on the fiber optical white light interferometer (WLI) sensing technique. Firstly, a feasibility test was carried out using an equal-strength beam for comparison of strain sensing ability between the WLI and a fiber Bragg grating (FBG). The comparison results showed that the sensitivity of the WLI is sufficient for corrosion expansion strain monitoring. Then, two WLI corrosion sensors (WLI-CSs) were designed, fabricated, and embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion. Their performance was studied in an accelerated electrochemical corrosion test. Experimental results show that expansion strain along the fiber optical coil winding area can be detected and measured accurately by the proposed sensor. The advantages of the proposed monitoring technique allow for quantitative corrosion expansion monitoring to be executed in real time for reinforced concrete structures and with low cost.

  11. Continuous intra-arterial blood-gas monitoring

    NASA Astrophysics Data System (ADS)

    Divers, George A.; Riccitelli, Samuel D.; Blais, Maurice; Hui, Henry K.

    1993-05-01

    Fiber optic technology and optical fluorescence have made the continuous monitoring of arterial blood gases a reality. Practical products that continuously monitor blood gases by use of an invasive sensor are now available. Anesthesiologists and intensive care physicians are beginning to explore the practical implications of this technology. With the advent of intra- arterial blood gas monitors it is possible to assess arterial blood gas values without the labor intensive steps of drawing blood and transporting a blood sample to the lab followed by the actual analysis. These intra-arterial blood gas monitors use new optical sensor technologies that can be reduced in size to the point that the sensor can be inserted into the arterial blood flow through a 20-gauge arterial cannula. In the best of these technologies the sensors accuracy and precision are similar to those in vitro analyzers. This presentation focuses on background technology and in vivo performance of a device developed, manufactured, and marketed by Puritan-Bennett Corporation.

  12. Bedside arterial blood gas monitoring system using fluorescent optical sensors

    NASA Astrophysics Data System (ADS)

    Bartnik, Daniel J.; Rymut, Russell A.

    1995-05-01

    We describe a bedside arterial blood gas (ABG) monitoring system which uses fluorescent optical sensors in the measurement of blood pH, PCO2 and PO2. The Point-of-Care Arterial Blood Gas Monitoring System consists of the SensiCathTM optical sensor unit manufactured by Optical Sensors Incorporated and the TramTM Critical Care Monitoring System with ABG Module manufactured by Marquette Electronics Incorporated. Current blood gas measurement techniques require a blood sample to be removed from the patient and transported to an electrochemical analyzer for analysis. The ABG system does not require removal of blood from the patient or transport of the sample. The sensor is added to the patient's existing arterial line. ABG measurements are made by drawing a small blood sample from the arterial line in sufficient quantity to ensure an undiluted sample at the sensor. Measurements of pH, PCO2 and PO2 are made within 60 seconds. The blood is then returned to the patient, the line flushed and results appear on the bedside monitor. The ABG system offers several advantages over traditional electrochemical analyzers. Since the arterial line remains closed during the blood sampling procedure the patient's risk of infection is reduced and the caregiver's exposure to blood is eliminated. The single-use, disposable sensor can be measure 100 blood samples over 72 hours after a single two-point calibration. Quality Assurance checks are also available and provide the caregiver the ability to assess system performance even after the sensor is patient attached. The ABG module integrates with an existing bedside monitoring system. This allows ABG results to appear on the same display as ECG, respiration, blood pressure, cardiac output, SpO2, and other clinical information. The small module takes up little space in the crowded intensive care unit. Performance studies compare the ABG system with an electrochemical blood gas analyzer. Study results demonstrated accurate and precise blood gas measurement of 100 samples and 72 hour performance without need for re-calibration.

  13. Optical properties of boreal region biomass burning aerosols in central Alaska and seasonal variation of aerosol optical depth at an Arctic coastal site

    Treesearch

    T.F. Eck; B.N. Holben; J.S. Reid; A. Sinyuk; E.J. Hyer; N.T. O' Neill; G.E. Shaw; J.R. Vande Castle; F.S. Chapin; O. Dubovik; A. Smirnov; E. Vermote; J.S. Schafer; D. Giles; I. Slutsker; M. Sorokine; W.W. Newcomb

    2009-01-01

    Long-term monitoring of aerosol optical properties at a boreal forest AERONET site in interior Alaska was performed from 1994 through 2008 (excluding winter), Large interannual variability was observed, with some years showing near background aerosol optical depth (AOD) levels while 2004 and 2005 had August monthly means similar in magnitude to peak months at major...

  14. Monitoring of Structural Integrity of Composite Structures by Embedded Optical Fiber Sensors

    NASA Technical Reports Server (NTRS)

    Osei, Albert J.

    2002-01-01

    Real time monitoring of the mechanical integrity and stresses on key aerospace composite structures like aircraft wings, walls of pressure vessels and fuel tanks or any other structurally extended components and panels as in space telescopes is very important to NASA. Future military and commercial aircraft as well as NASA space systems such as Space Based Radar and International Space Station will incorporate a monitoring system to sense any degradation to the structure. In the extreme flight conditions of an aerospace vehicle it might be desirable to measure the strain every ten centimeters and thus fully map out the strain field of a composite component. A series of missions and vehicle health management requirements call for these measurements. At the moment thousands of people support a few vehicle launches per year. This number can be significantly reduced by implementing intelligent vehicles with integral nervous systems (smart structures). This would require maintenance to be performed only as needed. Military and commercial aircrafts have an equally compelling case. Maintenance yearly costs are currently reaching astronomical heights. Monitoring techniques are therefore required that allow for maintenance to be performed only when needed. This would allow improved safety by insuring that necessary tasks are performed while reducing costs by eliminating procedures that are costly and not needed. The advantages fiber optical sensors have over conventional electro-mechanical systems like strain gauges have been widely extolled in the research literature. These advantages include their small size, low weight, immunity to electrical resistance, corrosion resistance, compatibility with composite materials and process conditions, and multiplexing capabilities. One fiber optic device which is suitable for distributed sensing is the fiber Bragg grating (FBG). Researchers at NASA MSFC are currently developing techniques for using FBGs for monitoring the integrity of advanced structural materials expected to become the mainstay of the current and future generation space structures. Since carbon-epoxy composites are the materials of choice for the current space structures, the initial study is concentrated on this type of composite. The goals of this activity are to use embedded FBG sensors for measuring strain and temperature of composite structures, and to investigate the effects of various parameters such as composite fiber orientation with respect to the optical sensor, unidirectional fiber composite, fabrication process etc., on the optical performance of the sensor. This paper describes an experiment to demonstrate the use of an embedded FBG for measuring strain in a composite material. The performance of the fiber optic sensor is determined by direct comparison with results from more conventional instrumentation.

  15. Fibre-optic distributed temperature sensing in combined sewer systems.

    PubMed

    Schilperoort, R P S; Clemens, F H L R

    2009-01-01

    This paper introduces the application of fibre-optic distributed temperature sensing (DTS) in combined sewer systems. The DTS-technique uses a fibre-optic cable that is inserted into a combined sewer system in combination with a laser instrument that performs measurements and logs the data. The DTS-technique allows monitoring in-sewer temperatures with dense spatial and temporal resolutions. The installation of a fibre-optic cable in a combined sewer system has proven feasible. The use of a single instrument in an easy accessible and safe location that can simultaneously monitor up to several hundreds of monitoring locations makes the DTS set-up easy in use and nearly free of maintenance. Temperature data from a one-week monitoring campaign in an 1,850 m combined sewer system shows the level of detail with which in-sewer processes that affect wastewater temperatures can be studied. Individual discharges from house-connections can be tracked in time and space. With a dedicated cable configuration the confluence of wastewater flows can be observed with a potential to derive the relative contributions of contributary flows to a total flow. Also, the inflow and in-sewer propagation of stormwater can be monitored.

  16. Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography.

    PubMed

    Kim, Youngseop; Choi, Eun Seo; Kwak, Wooseop; Shin, Yongjin; Jung, Woonggyu; Ahn, Yeh-Chan; Chen, Zhongping

    2008-06-01

    We demonstrate the use of optical coherence tomography (OCT) as a non-destructive diagnostic tool for evaluating laser-processing performance by imaging the features of a pit and a rim. A pit formed on a material at different laser-processing conditions is imaged using both a conventional scanning electron microscope (SEM) and OCT. Then using corresponding images, the geometrical characteristics of the pit are analyzed and compared. From the results, we could verify the feasibility and the potential of the application of OCT to the monitoring of the laser-processing performance.

  17. Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography

    PubMed Central

    Kim, Youngseop; Choi, Eun Seo; Kwak, Wooseop; Shin, Yongjin; Jung, Woonggyu; Ahn, Yeh-Chan; Chen, Zhongping

    2014-01-01

    We demonstrate the use of optical coherence tomography (OCT) as a non-destructive diagnostic tool for evaluating laser-processing performance by imaging the features of a pit and a rim. A pit formed on a material at different laser-processing conditions is imaged using both a conventional scanning electron microscope (SEM) and OCT. Then using corresponding images, the geometrical characteristics of the pit are analyzed and compared. From the results, we could verify the feasibility and the potential of the application of OCT to the monitoring of the laser-processing performance. PMID:24932051

  18. On-orbit figure sensing and figure correction control for 0.5 arc-second adjustable X-ray optics

    NASA Astrophysics Data System (ADS)

    Reid, Paul

    This investigation seeks to develop the technology to directly monitor on-orbit changes to imaging performance of adjustable X-ray optics so as to be able to efficiently correct adverse changes at a level consistent with 0.5 arc-second X-ray telescope imaging. Adjustable X-ray optics employ thin film piezoelectric material deposited on the back of a thin glass Wolter mirror segment to introduce localized stresses in the mirror. These stresses are used in a deterministic way to improve mirror figure from 10 arc-sec, half power diameter (HPD), to 0.5 arc-sec, HPD, without the need for a heavy reaction structure. This is a realizable technology for potential future X-ray telescope missions with 0.5 arc-second resolution and several square meters effective area, such as SMART-X. We are pursuing such mirror development under an existing APRA grant. Here we propose a new investigation to accomplish the monitoring and control of the mirrors by monitoring the health of the piezoelectric actuators of the adjustable optics to a level consistent with 0.5 arcsec imaging. Such measurements are beyond the capability of conventional, thin metal film strain gauges using DC measurements. Instead, we propose to develop the technology to deposit different types of strain gauges (metal film, semiconductor) directly on the piezoelectric cells; to investigate the use of additional thin layers of piezoelectric materials such as lead zirconate titanate or zinc oxide as strain and temperature gauges; and to use AC measurement of strain gauges for precise measurement of piezoelectric adjuster performance. The intent is to use this information to correct changes in mirror shape by adjusting the voltages on the piezoelectric adjustors. Adjustable X-ray optics are designed to meet the challenge of large collecting area and high angular resolution. The mirrors are called adjustable rather than active as mirror figure error is corrected (adjusted) once or infrequently, as opposed to being changed constantly at several cycles/sec (active). In our approach, the mirror figure is corrected based on ground measurements, accounting for figure errors due to mirror manufacturing, mounting induced deformations, modeled gravity release, and modeled on-orbit thermal effects. The piezoelectric strain monitoring we seek to develop in this program extends adjustable mirror technology development, as it enables efficient adjustment and correction of mirror figure on-orbit, as required. This unprecedented level of system robustness will make telescopes less expensive to build because requirements for the non-optical systems can be looser, and it will also make the system more resistant to degradation, promoting mission success. The largest drivers for changes from ground calibration to on-orbit performance are piezoelectric material aging and an unexpected thermal environment (i.e., larger gradients than modeled or other thermal control system problem). Developing the capability to accurately monitor the health of each piezoelectric cell and the local mirror surface temperature will enable the real time sensing of any of these potential issues, help determine the cause, and enable corrections via updating models of on-orbit conditions and re-optimizing the required piezoelectric cell voltages for mirror figure correction. Our 3 year research program includes the development of the strain monitoring technology, its deposition on the adjustable optics, modeling and performance simulation, accelerated lifetime testing, and optical and electrical metrology of sample adjustable optics that incorporate monitoring sensors. Development of the capability to remotely monitor piezo performance and temperature to necessary precision will vastly improve reliability of the SMART-X mission concept, or the sub-arc-second X-ray Surveyor mission described in the 2013 NASA Astrophysics Roadmap, Enduring Quests Daring Visions.

  19. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 2; Chemical Sensing Using Optical Fibers with Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-01-01

    Part 1 of this two part series described the fabrication and calibration of Bragg gratings written into a single mode optical fiber for use in strain and temperature monitoring. Part 2 of the series describes the use of identical fibers and additional multimode fibers, both with and without Bragg gratings, to perform near infrared spectroscopy. The demodulation system being developed at NASA Langley Research Center currently requires the use of a single mode optical fiber. Attempts to use this single mode fiber for spectroscopic analysis are problematic given its small core diameter, resulting in low signal intensity. Nonetheless, we have conducted a preliminary investigation using a single mode fiber in conjunction with an infrared spectrometer to obtain spectra of a high-performance epoxy resin system. Spectra were obtained using single mode fibers that contained Bragg gratings; however, the peaks of interest were barely discernible above the noise. The goal of this research is to provide a multipurpose sensor in a single optical fiber capable of measuring a variety of chemical and physical properties.

  20. Continuous monitoring of arthritis in animal models using optical imaging modalities

    NASA Astrophysics Data System (ADS)

    Son, Taeyoon; Yoon, Hyung-Ju; Lee, Saseong; Jang, Won Seuk; Jung, Byungjo; Kim, Wan-Uk

    2014-10-01

    Given the several difficulties associated with histology, including difficulty in continuous monitoring, this study aimed to investigate the feasibility of optical imaging modalities-cross-polarization color (CPC) imaging, erythema index (EI) imaging, and laser speckle contrast (LSC) imaging-for continuous evaluation and monitoring of arthritis in animal models. C57BL/6 mice, used for the evaluation of arthritis, were divided into three groups: arthritic mice group (AMG), positive control mice group (PCMG), and negative control mice group (NCMG). Complete Freund's adjuvant, mineral oil, and saline were injected into the footpad for AMG, PCMG, and NCMG, respectively. LSC and CPC images were acquired from 0 through 144 h after injection for all groups. EI images were calculated from CPC images. Variations in feet area, EI, and speckle index for each mice group over time were calculated for quantitative evaluation of arthritis. Histological examinations were performed, and the results were found to be consistent with those from optical imaging analysis. Thus, optical imaging modalities may be successfully applied for continuous evaluation and monitoring of arthritis in animal models.

  1. Effects of fixture rotation on coating uniformity for high-performance optical filter fabrication

    NASA Astrophysics Data System (ADS)

    Rubin, Binyamin; George, Jason; Singhal, Riju

    2018-04-01

    Coating uniformity is critical in fabricating high-performance optical filters by various vacuum deposition methods. Simple and planetary rotation systems with shadow masks are used to achieve the required uniformity [J. B. Oliver and D. Talbot, Appl. Optics 45, 13, 3097 (2006); O. Lyngnes, K. Kraus, A. Ode and T. Erguder, in `Method for Designing Coating Thickness Uniformity Shadow Masks for Deposition Systems with a Planetary Fixture', 2014 Technical Conference Proceedings, Optical Coatings, August 13, 2014, DOI: 10.14332/svc14.proc.1817.]. In this work, we discuss the effect of rotation pattern and speed on thickness uniformity in an ion beam sputter deposition system. Numerical modeling is used to determine statistical distribution of random thickness errors in coating layers. The relationship between thickness tolerance and production yield are simulated theoretically and demonstrated experimentally. Production yields for different optical filters produced in an ion beam deposition system with planetary rotation are presented. Single-wavelength and broadband optical monitoring systems were used for endpoint monitoring during filter deposition. Limitations of thickness tolerances that can be achieved in systems with planetary rotation are shown. Paths for improving production yield in an ion beam deposition system are described.

  2. Monitoring of temperature-mediated phase transitions of adipose tissue by combined optical coherence tomography and Abbe refractometry.

    PubMed

    Yanina, Irina Y; Popov, Alexey P; Bykov, Alexander V; Meglinski, Igor V; Tuchin, Valery V

    2018-01-01

    Observation of temperature-mediated phase transitions between lipid components of the adipose tissues has been performed by combined use of the Abbe refractometry and optical coherence tomography. The phase transitions of the lipid components were clearly observed in the range of temperatures from 24°C to 60°C, and assessed by quantitatively monitoring the changes of the refractive index of 1- to 2-mm-thick porcine fat tissue slices. The developed approach has a great potential as an alternative method for obtaining accurate information on the processes occurring during thermal lipolysis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  3. First results on the Experiment FESTER on optical turbulence over False Bay South Africa: dependencies and consequences

    NASA Astrophysics Data System (ADS)

    Sprung, Detlev; van Eijk, Alexander M. J.; Sucher, Erik; Eisele, Christian; Seiffer, Dirk; Stein, Karin

    2016-10-01

    The experiment FESTER (First European South African Transmission ExpeRiment) took place in 2015 to investigate the atmospheric influence on electro-optical systems performance across False Bay / South Africa on a long term basis. Several permanent stations for monitoring electro-optical propagation and atmospheric parameters were set up around the Bay. Additional intensive observation periods (IOPs) allowed for boat runs to assess the inhomogeneous atmospheric propagation conditions over water. In this paper we focus on the distribution of optical turbulence over the Bay. The different impact of water masses originating from the Indian Ocean and the Benguela current on the development of optical turbulence is discussed. The seasonal behavior of optical turbulence is presented and its effect on electro-optical system performance examined.

  4. In vivo monitoring of seeds and plant-tissue water absorption using optical coherence tomography and optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Sapozhnikova, Veronika V.; Kutis, Irina S.; Kutis, Sergey D.; Kuranov, Roman V.; Gelikonov, Grigory V.; Shabanov, Dmitry V.; Kamensky, Vladislav A.

    2004-07-01

    First experimental results on OCT imaging of internal structure of plant tissues and in situ OCT monitoring of plant tissue regeneration at different water supply are reported. Experiments for evaluating OCT capabilities were performed on Tradescantia. The investigation of seeds swelling was performed on wheat seeds (Triticum L.), barley seeds (Hordeum L.), long-fibred flax seeds (Linum usitatissimum L.) and cucumber seeds (Cucumis sativus L.). These OCT images correlate with standard microscopy data from the same tissue regions. Seeds were exposed to a low-intensity physical factor-the pulsed gradient magnetic field (GMF) with pulse duration 0.1 s and maximum amplitude 5 mT (4 successive pulses during 0.4 s). OCT and OCM enable effective monitoring of fast reactions in plants and seeds at different water supply.

  5. 40 CFR 60.255 - Performance tests and other compliance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Transfer Network (TTN) under Emission Measurement Center Preliminary Methods. The monitoring plan approved... be recorded and quantified. The optical surfaces exposed to the effluent gases must be cleaned prior... adjustments. For systems using automatic zero adjustments, the optical surfaces must be cleaned when the...

  6. Bio-Optical Instrumentation for Mapping of the Upper Ocean Using SeaSoar

    DTIC Science & Technology

    1998-01-01

    Bio-Optical Instrumentation for Mapping of the Upper Ocean Using SeaSoar Burton H. Jones Wrigley Institute of Environmental Science and Department of... Environmental Science and,Department of Biological Sciences,Los Angeles,CA,90089-0371 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING

  7. Simultaneous and independent optical impairments monitoring using singular spectrum analysis of asynchronously sampled signal amplitudes

    NASA Astrophysics Data System (ADS)

    Guesmi, Latifa; Menif, Mourad

    2015-09-01

    Optical performance monitoring (OPM) becomes an inviting topic in high speed optical communication networks. In this paper, a novel technique of OPM based on a new elaborated computation approach of singular spectrum analysis (SSA) for time series prediction is presented. Indeed, various optical impairments among chromatic dispersion (CD), polarization mode dispersion (PMD) and amplified spontaneous emission (ASE) noise are a major factors limiting quality of transmission data in the systems with data rates lager than 40 Gbit/s. This technique proposed an independent and simultaneous multi-impairments monitoring, where we used SSA of time series analysis and forecasting. It has proven their usefulness in the temporal analysis of short and noisy time series in several fields, that it is based on the singular value decomposition (SVD). Also, advanced optical modulation formats (100 Gbit/s non-return-to zero dual-polarization quadrature phase shift keying (NRZ-DP-QPSK) and 160 Gbit/s DP-16 quadrature amplitude modulation (DP-16QAM)) offering high spectral efficiencies have been successfully employed by analyzing their asynchronously sampled amplitude. The simulated results proved that our method is efficient on CD, first-order PMD, Q-factor and OSNR monitoring, which enabled large monitoring ranges, the CD in the range of 170-1700 ps/nm.Km and 170-1110 ps/nm.Km for 100 Gbit/s NRZ-DP-QPSK and 160 Gbit/s DP-16QAM respectively, and also the DGD up to 20 ps is monitored. We could accurately monitor the OSNR in the range of 10-40 dB with monitoring error remains less than 1 dB in the presence of large accumulated CD.

  8. Downhole fiber optic sensing: the oilfield service provider's perspective

    NASA Astrophysics Data System (ADS)

    Skinner, Neal G.; Maida, John L., Jr.

    2004-12-01

    There is increasing interest in the petroleum industry in the application of fiber-optic sensing techniques. In this paper, we review which sensing technologies are being adopted downhole and the drivers for this deployment. We describe the performance expectations (accuracy, resolution, stability and operational lifetime) that the oil companies and the oil service companies have for fiber-optic sensing systems. We also describe the environmental conditions (high hydrostatic pressures, high temperatures, shock, vibration, crush, and chemical attack) that these systems must tolerate in order to provide reliable and economically attractive reservoir-performance monitoring solutions.

  9. Structural Health Monitoring Using High-Density Fiber Optic Strain Sensor and Inverse Finite Element Methods

    NASA Technical Reports Server (NTRS)

    Vazquez, Sixto L.; Tessler, Alexander; Quach, Cuong C.; Cooper, Eric G.; Parks, Jeffrey; Spangler, Jan L.

    2005-01-01

    In an effort to mitigate accidents due to system and component failure, NASA s Aviation Safety has partnered with industry, academia, and other governmental organizations to develop real-time, on-board monitoring capabilities and system performance models for early detection of airframe structure degradation. NASA Langley is investigating a structural health monitoring capability that uses a distributed fiber optic strain system and an inverse finite element method for measuring and modeling structural deformations. This report describes the constituent systems that enable this structural monitoring function and discusses results from laboratory tests using the fiber strain sensor system and the inverse finite element method to demonstrate structural deformation estimation on an instrumented test article

  10. A mobile system for active otpical pollution monitoring

    NASA Technical Reports Server (NTRS)

    Sunesson, A.; Edner, H.; Svanberg, S.; Uneus, L.; Wendt, W.; Fredriksson, K.

    1986-01-01

    The remote monitoring of atmospheric pollutants can now be performed in several ways. Laser radar techniques have proven their ability to reveal the spatial distribution of different species or particles. Classical optical techniques can also be used, but yield the average concentration over a given path and hence no range resolution. One such technique is Differential Optical Absorption Spectroscopy, DOAS. Such schemes can be used to monitor paths that a preliminary lidar investigation has shown to be of interest. Having previously had access to a mobile lidar system, a new system has been completed. The construction builds on experience from using the other system and it is meant to be more of a mobile optical laboratory than just a lidar system. A complete system description is given along with some preliminary usage. Future uses are contemplated.

  11. Fibre-optic sensors in health care

    NASA Astrophysics Data System (ADS)

    Grazia Mignani, Anna; Baldini, Francesco

    1997-05-01

    Biomedical fibre-optic sensors are attractive for the measurement of physical, chemical and biochemical parameters and for spectral measurements directly performed on the patient. An overview of fibre-optic sensors for in vivo monitoring is given, with particular attention paid to the advantages that these sensors are able to offer in different application fields such as cardiovascular and intensive care, angiology, gastroenterology, ophthalmology, oncology, neurology, dermatology and dentistry.

  12. A Platform to Monitor Tumor Cellular and Vascular Response to Radiation Therapy by Optical Coherence Tomography and Fluorescence Microscopy in vivo

    NASA Astrophysics Data System (ADS)

    Leung, Michael Ka Kit

    Radiotherapy plays a significant role in cancer treatment, and is thought to be curative by mainly killing tumor cells through damage to their genetic material. However, recent findings indicate that the tumor's vascular blood supply is also a major determinant of radiation response. The goals of this thesis are to: (1) develop an experimental platform for small animals to deliver ionizing radiation and perform high-resolution optical imaging to treatment targets, and (2) use this toolkit to longitudinally monitor the response of tumors and the associated vasculature. The thesis has achieved: (1) customization of a novel micro-irradiator for mice, (2) technical development of an improved optical coherence tomography imaging system, (3) comprehensive experimental protocol and imaging optimization for optical microscopy in a specialized animal model, and (4) completion of a feasibility study to demonstrate the capabilities of the experimental platform in monitoring the response of tumor and vasculature to radiotherapy.

  13. Noninvasive monitoring of photodynamic therapy on skin neoplastic lesions using the optical attenuation coefficient measured by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Goulart, Viviane P.; dos Santos, Moisés O.; Latrive, Anne; Freitas, Anderson Z.; Correa, Luciana; Zezell, Denise M.

    2015-05-01

    Photodynamic therapy (PDT) has become a promising alternative for treatment of skin lesions such as squamous cell carcinoma. We propose a method to monitor the effects of PDT in a noninvasive way by using the optical attenuation coefficient (OAC) calculated from optical coherence tomography (OCT) images. We conducted a study on mice with chemically induced neoplastic lesions and performed PDT on these lesions using homemade photosensitizers. The response of neoplastic lesions to therapy was monitored using, at the same time, macroscopic clinical visualization, histopathological analysis, OCT imaging, and OCT-based attenuation coefficient measurement. Results with all four modalities demonstrated a positive response to treatment. The attenuation coefficient was found to be 1.4 higher in skin lesions than in healthy tissue and it decreased after therapy. This study shows that the OAC is a potential tool to noninvasively assess the evolution of skin neoplastic lesions with time after treatment.

  14. Exploiting Auto-Collimation for Real-Time Onboard Monitoring of Space Optical Camera Geometric Parameters

    NASA Astrophysics Data System (ADS)

    Liu, W.; Wang, H.; Liu, D.; Miu, Y.

    2018-05-01

    Precise geometric parameters are essential to ensure the positioning accuracy for space optical cameras. However, state-of-the-art onorbit calibration method inevitably suffers from long update cycle and poor timeliness performance. To this end, in this paper we exploit the optical auto-collimation principle and propose a real-time onboard calibration scheme for monitoring key geometric parameters. Specifically, in the proposed scheme, auto-collimation devices are first designed by installing collimated light sources, area-array CCDs, and prisms inside the satellite payload system. Through utilizing those devices, the changes in the geometric parameters are elegantly converted into changes in the spot image positions. The variation of geometric parameters can be derived via extracting and processing the spot images. An experimental platform is then set up to verify the feasibility and analyze the precision index of the proposed scheme. The experiment results demonstrate that it is feasible to apply the optical auto-collimation principle for real-time onboard monitoring.

  15. Fibre optic sensors for temperature and pressure monitoring in laser ablation: experiments on ex-vivo animal model

    NASA Astrophysics Data System (ADS)

    Tosi, Daniele; Saccomandi, Paola; Schena, Emiliano; Duraibabu, Dinesh B.; Poeggel, Sven; Adilzhan, Abzal; Aliakhmet, Kamilla; Silvestri, Sergio; Leen, Gabriel; Lewis, Elfed

    2016-05-01

    Optical fibre sensors have been applied to perform biophysical measurement in ex-vivo laser ablation (LA), on pancreas animal phantom. Experiments have been performed using Fibre Bragg Grating (FBG) arrays for spatially resolved temperature detection, and an all-glass Extrinsic Fabry-Perot Interferometer (EFPI) for pressure measurement. Results using a Nd:YAG laser source as ablation device, are presented and discussed.

  16. Optical and X-ray rebrightening in NS X-ray Nova Aql X-1

    NASA Astrophysics Data System (ADS)

    Meshcheryakov, A.; Bikmaev, I.; Irtuganov, E.; Sakhibullin, N.; Vlasyuk, V. V.; Spiridonova, O. I.; Khamitov, I.; Medvedev, P.; Pavlinsky, M. N.; Tsygankov, S. S.

    2017-06-01

    The current outburst in NS X-ray Nova Aql X-1 has started 28 May 2017, as it was reported earlier (see ATel#10441, #10450, #10452). During optical monitoring campaign of Aql X-1, performed at 1.5-m Russian-Turkish telescope (TUBITAK National Observatory) and 1-m SAO RAS optical telescope (Special Astrophysical Observatory) we report a substantial increase of optical brightness of Aql X-1 in the last few days.

  17. A low cost wearable optical-based goniometer for human joint monitoring

    NASA Astrophysics Data System (ADS)

    Lim, Chee Kian; Luo, Zhiqiang; Chen, I.-Ming; Yeo, Song Huat

    2011-03-01

    Widely used in the fields of physical and occupational therapy, goniometers are indispensible when it comes to angular measurement of the human joint. In both fields, there is a need to measure the range of motion associated with various joints and muscle groups. For example, a goniometer may be used to help determine the current status of the range of motion in bend the arm at the elbow, bending the knee, or bending at the waist. The device can help to establish the range of motion at the beginning of the treatment series, and also allow the therapist to monitor progress during subsequent sessions. Most commonly found are the mechanical goniometers which are inexpensive but bulky. As the parts are mechanically linked, accuracy and resolution are largely limited. On the other hand, electronic and optical fiberbased goniometers promise better performance over its mechanical counterpart but due to higher cost and setup requirements does not make it an attractive proposition as well. In this paper, we present a reliable and non-intrusive design of an optical-based goniometer for human joint measurement. This device will allow continuous and longterm monitoring of human joint motion in everyday setting. The proposed device was benchmarked against mechanical goniometer and optical based motion capture system to validate its performance. From the empirical results, it has been proven that this design can be use as a robust and effective wearable joint monitoring device.

  18. Imaging of the optic nerve and retinal nerve fiber layer: an essential part of glaucoma diagnosis and monitoring.

    PubMed

    Kotowski, Jacek; Wollstein, Gadi; Ishikawa, Hiroshi; Schuman, Joel S

    2014-01-01

    Because glaucomatous damage is irreversible early detection of structural changes in the optic nerve head and retinal nerve fiber layer is imperative for timely diagnosis of glaucoma and monitoring of its progression. Significant improvements in ocular imaging have been made in recent years. Imaging techniques such as optical coherence tomography, scanning laser polarimetry and confocal scanning laser ophthalmoscopy rely on different properties of light to provide objective structural assessment of the optic nerve head, retinal nerve fiber layer and macula. In this review, we discuss the capabilities of these imaging modalities pertinent for diagnosis of glaucoma and detection of progressive glaucomatous damage and provide a review of the current knowledge on the clinical performance of these technologies. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Optoacoustic Monitoring of Physiologic Variables

    PubMed Central

    Esenaliev, Rinat O.

    2017-01-01

    Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro, in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy. PMID:29311964

  20. Optoacoustic Monitoring of Physiologic Variables.

    PubMed

    Esenaliev, Rinat O

    2017-01-01

    Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro , in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy.

  1. Development of a wireless crop growth monitor based on optical principle

    NASA Astrophysics Data System (ADS)

    Li, Xihua; Li, Minzan; Cui, Di

    2008-12-01

    In order to detect the plant's nitrogen content in real-time, a wireless crop growth monitor is developed. It is made up of a sensor and a controller. The sensor consists of an optical part and a circuit part. The optical part is made up of 4 optical channels and 4 photo-detectors. 2 channels receive the sunlight and the other 2 receive the reflected light from the crop canopy. The intensity of sunlight and the reflected light is measured at the wavebands of 610 nm and 1220 nm respectively. The circuit part is made up of power supply unit, 4 amplifiers and a wireless module. The controller has functions such as keyboard input, LCD display, data storage, data upload and so on. Both hardware and software are introduced in this report. Calibration tests show that the optical part has a high accuracy and the wireless transmission also has a good performance.

  2. Development of an imaging system for in vivo real-time monitoring of neuronal activity in deep brain of free-moving rats.

    PubMed

    Iijima, Norio; Miyamoto, Shinji; Matsumoto, Keisuke; Takumi, Ken; Ueta, Yoichi; Ozawa, Hitoshi

    2017-09-01

    We have newly developed a system that allows monitoring of the intensity of fluorescent signals from deep brains of rats transgenically modified to express enhanced green fluorescent protein (eGFP) via an optical fiber. One terminal of the optical fiber was connected to a blue semiconductor laser oscillator/green fluorescence detector. The other terminal was inserted into the vicinity of the eGFP-expressing neurons. Since the optical fiber was vulnerable to twisting stresses caused by animal movement, we also developed a cage in which the floor automatically turns, in response to the turning of the rat's head. This relieved the twisting stress on the optical fiber. The system then enabled real-time monitoring of fluorescence in awake and unrestrained rats over many hours. Using this system, we could continuously monitor eGFP-expression in arginine vasopressin-eGFP transgenic rats. Moreover, we observed an increase of eGFP-expression in the paraventricular nucleus under salt-loading conditions. We then performed in vivo imaging of eGFP-expressing GnRH neurons in the hypothalamus, via a bundle consisting of 3000 thin optical fibers. With the combination of the optical fiber bundle connection to the fluorescence microscope, and the special cage system, we were able to capture and retain images of eGFP-expressing neurons from free-moving rats. We believe that our newly developed method for monitoring and imaging eGFP-expression in deep brain neurons will be useful for analysis of neuronal functions in awake and unrestrained animals for long durations.

  3. Millimeter-wave radar for vital signs sensing

    NASA Astrophysics Data System (ADS)

    Petkie, Douglas T.; Benton, Carla; Bryan, Erik

    2009-05-01

    In this paper, we will describe the development of a 228 GHz heterodyne radar system as a vital signs sensing monitor that can remotely measure respiration and heart rates from distances of 1 to 50 meters. We will discuss the design of the radar system along with several studies of its performance. The system includes the 228 GHz transmitter and heterodyne receiver that are optically coupled to the same 6 inch optical mirror that is used to illuminate the subject under study. Intermediate Frequency (IF) signal processing allows the system to track the phase of the reflected signal through I and Q detection and phase unwrapping. The system monitors the displacement in real time, allowing various studies of its performance to be made. We will review its successes by comparing the measured rates with a wireless health monitor and also describe the challenges of the system.

  4. Demonstration of a Fiber Optic Regression Probe

    NASA Technical Reports Server (NTRS)

    Korman, Valentin; Polzin, Kurt A.

    2010-01-01

    The capability to provide localized, real-time monitoring of material regression rates in various applications has the potential to provide a new stream of data for development testing of various components and systems, as well as serving as a monitoring tool in flight applications. These applications include, but are not limited to, the regression of a combusting solid fuel surface, the ablation of the throat in a chemical rocket or the heat shield of an aeroshell, and the monitoring of erosion in long-life plasma thrusters. The rate of regression in the first application is very fast, while the second and third are increasingly slower. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor is optical, using two different, co-located fiber-optics to perform the regression measurement. The disparate optical transmission properties of the two fiber-optics makes it possible to measure the regression rate by monitoring the relative light attenuation through the fibers. As the fibers regress along with the parent material in which they are embedded, the relative light intensities through the two fibers changes, providing a measure of the regression rate. The optical nature of the system makes it relatively easy to use in a variety of harsh, high temperature environments, and it is also unaffected by the presence of electric and magnetic fields. In addition, the sensor could be used to perform optical spectroscopy on the light emitted by a process and collected by fibers, giving localized measurements of various properties. The capability to perform an in-situ measurement of material regression rates is useful in addressing a variety of physical issues in various applications. An in-situ measurement allows for real-time data regarding the erosion rates, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over an operating envelope could also be useful in the modeling detailed physical processes. The sensor has been embedded in many regressing media for the purposes of proof-of-concept testing. A gross demonstration of its capabilities was performed using a sanding wheel to remove layers of metal. A longer-term demonstration measurement involved the placement of the sensor in a brake pad, monitoring the removal of pad material associated with the normal wear-and-tear of driving. It was used to measure the regression rates of the combustable media in small model rocket motors and road flares. Finally, a test was performed using a sand blaster to remove small amounts of material at a time. This test was aimed at demonstrating the unit's present resolution, and is compared with laser profilometry data obtained simultaneously. At the lowest resolution levels, this unit should be useful in locally quantifying the erosion rates of the channel walls in plasma thrusters. .

  5. Optical and mechanical response of high temperature optical fiber sensors

    NASA Technical Reports Server (NTRS)

    Sirkis, Jim

    1991-01-01

    The National Aerospace Plane (NASP) will experience temperatures as high as 2500 F at critical locations in its structure. Optical fiber sensors were proposed as a means of monitoring the temperature in these critical regions by either bonding the optical fiber to, or embedding the optical fiber in, metal matrix composite (MMC) components. Unfortunately, the anticipated NASP temperature ranges exceed the glass transition region of the optical fiber glass. The attempt is made to define the operating temperature range of optical fiber sensors from both optical and mechanical perspectives. A full non-linear optical analysis was performed by modeling the optical response of an isolated sensor cyclically driven through the glass transition region.

  6. Neurophysiological intraoperative monitoring during an optic nerve schwannoma removal.

    PubMed

    San-Juan, Daniel; Escanio Cortés, Manuel; Tena-Suck, Martha; Orozco Garduño, Adolfo Josué; López Pizano, Jesús Alejandro; Villanueva Domínguez, Jonathan; Fernández Gónzalez-Aragón, Maricarmen; Gómez-Amador, Juan Luis

    2017-10-01

    This paper reports the case of a patient with optic nerve schwannoma and the first use of neurophysiological intraoperative monitoring of visual evoked potentials during the removal of such tumor with no postoperative visual damage. Schwannomas are benign neoplasms of the peripheral nervous system arising from the neural crest-derived Schwann cells, these tumors are rarely located in the optic nerve and the treatment consists on surgical removal leading to high risk of damage to the visual pathway. Case report of a thirty-year-old woman with an optic nerve schwannoma. The patient underwent surgery for tumor removal on the left optic nerve through a left orbitozygomatic approach with intraoperative monitoring of left II and III cranial nerves. We used Nicolet Endeavour CR IOM (Carefusion, Middleton WI, USA) to performed visual evoked potentials stimulating binocularly with LED flash goggles with the patient´s eyes closed and direct epidural optic nerve stimulation delivering rostral to the tumor a rectangular current pulse. At follow up examinations 7 months later, the left eye visual acuity was 20/60; Ishihara score was 8/8 in both eyes; the right eye photomotor reflex was normal and left eye was mydriatic and arreflectic; optokinetic reflex and ocular conjugate movements were normal. In this case, the epidural direct electrical stimulation of optic nerve provided stable waveforms during optic nerve schwannoma resection without visual loss.

  7. New improvement of the combined optical fiber transducer for landslide monitoring

    NASA Astrophysics Data System (ADS)

    Zhu, Z.-W.; Yuan, Q.-Y.; Liu, D.-Y.; Liu, B.; Liu, J.-C.; Luo, H.

    2014-08-01

    Landslide monitoring is important in predicting the behavior of landslides, thereby ensuring environmental, life, and property safety. On the basis of our previous studies, we conducted the double shear test by using a third-generation optical fiber transducer that uses expandable polystyrene (EPS) as base material. However, the third-generation transducer has poor performance when cohesive force is present between the grout and capillary stainless steel pipe of the transducer. Thus, the fourth-generation optical fiber transducer was invented. Similar to the third-generation transducer, the fourth-generation transducer also used EPS as its base material. Single shear test was conducted on the fourth-generation transducer after being grouted with cement mortar (1 : 1 mix ratio). The micro-bend loss mechanism of the optical fiber was considered, and the optical time domain reflectometry instrument was used. The fact that the loss sequence of optical fibers subjected to loading is different at various locations is found. The relationship of the loading-point displacement vs. optical fiber sliding distance and optical loss were measured. Results show that the maximum initial measurement precision of the newly proposed device is 1 mm, the corresponding sliding distance is 21 mm, and the dynamic range is 0-20 mm. The fourth-generation transducer can measure the movement direction of loadings, thus making this transducer applicable for landslide monitoring.

  8. Modular separation-based fiber-optic sensors for remote in situ monitoring.

    PubMed

    Dickens, J; Sepaniak, M

    2000-02-01

    A modular separation-based fiber-optic sensor (SBFOS) with an integrated electronically controlled injection device is described for potential use in remote environmental monitoring. An SBFOS is a chemical monitor that integrates the separation selectivity and versatility afforded by capillary electrophoresis with the remote and high sensitivity capabilities of fiber-optic-based laser-induced fluorescence sensing. The detection module of the SBFOS accommodates all essential sensing components for dual-optical fiber, on-capillary fluorescence detection. An injection module, similar to injection platforms on micro-analysis chips, is also integrated to the SBFOS. The injection module allows for electronically controlled injection of the sample onto the separation capillary. The design and operational characteristics of the modular SBFOS are discussed in this paper. A micellar electrokinetic capillary chromatography mode of separation is employed to evaluate the potential of the sensor for in situ monitoring of neutral toxins (aflatoxins). The analytical figures of merit for the modular SBFOS include analysis times of between 5 and 10 min, separation efficiencies of approximately 10(4) theoretical plates, detection limits for aflatoxins in the mid-to-low nanomolar range, and controllable operation that results in sensor performance that is largely immune to sample matrix effects.

  9. OCT monitoring of pathophysiological processes

    NASA Astrophysics Data System (ADS)

    Gladkova, Natalia D.; Shakhova, Natalia M.; Shakhov, Andrei; Petrova, Galina P.; Zagainova, Elena; Snopova, Ludmila; Kuznetzova, Irina N.; Chumakov, Yuri; Feldchtein, Felix I.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Kamensky, Vladislav A.; Kuranov, Roman V.; Sergeev, Alexander M.

    1999-04-01

    Based on results of clinical examination of about 200 patients we discuss capabilities of the optical coherence tomography (OCT) in monitoring and diagnosing of various pathophysiological processes. Performed in several clinical areas including dermatology, urology, laryngology, gynecology, and dentistry, our study shows the existence of common optical features in manifestation of a pathophysiological process in different organs. In this paper we focus at such universal tomographic optical signs for processes of inflammation, necrosis and tumor growth. We also present data on dynamical OCT monitoring of evolution of pathophysiological processes, both at the stage of disease development and following-up results of different treatments such as drug application, radiation therapy, cryodestruction, and laser vaporization. The discovered peculiarities of OCT images for structural and functional imaging of biological tissues can be put as a basis for application of this method for diagnosing of pathology, guidance of treatment, estimation of its adequacy and assessing of the healing process.

  10. Research of pressure sensor based on the fiber Bragg grating for permanent downwell monitoring application

    NASA Astrophysics Data System (ADS)

    Liu, Lina; Long, Pin; Liu, Tiegen

    2004-11-01

    Timely, accurate and reliable pressure information about how the reservoir is performing is an important component to optimizing oil yield and production rates. This paper reviews the use of fiber optical pressure sensor for downhole monitoring in the oil industry. Several types of pressure transducer with different characteristics have been introduced. Due to their multiplexing capabilities and versatility ,the use of Bragg grating sensors appears to be particularly suited for this application. A sensor for accurate and long term fluid pressure monitoring based on optical fiber Bragg gratings(FBGs) is developed. The sensor converts fluid pressure into optical fiber strain by means of a mechanical transducer to enhance its sensitivity to pressure. It can also implement distributed or multiplexed sensing. The sensor operation is studied at pressure up to 100 Mpa(1000bar) and the tested temperature to ~175°. It is possible to be used in the well.

  11. Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yup; Pakela, Julia M.; Helton, Michael C.; Vishwanath, Karthik; Chung, Yooree G.; Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Christian, James F.; O'Reilly, Jameson; Farkas, Dana; Ward, Brent B.; Feinberg, Stephen E.; Mycek, Mary-Ann

    2017-12-01

    In reconstructive surgery, the ability to detect blood flow interruptions to grafted tissue represents a critical step in preventing postsurgical complications. We have developed and pilot tested a compact, fiber-based device that combines two complimentary modalities-diffuse correlation spectroscopy (DCS) and diffuse reflectance spectroscopy-to quantitatively monitor blood perfusion. We present a proof-of-concept study on an in vivo porcine model (n=8). With a controllable arterial blood flow supply, occlusion studies (n=4) were performed on surgically isolated free flaps while the device simultaneously monitored blood flow through the supplying artery as well as flap perfusion from three orientations: the distal side of the flap and two transdermal channels. Further studies featuring long-term monitoring, arterial failure simulations, and venous failure simulations were performed on flaps that had undergone an anastomosis procedure (n=4). Additionally, benchtop verification of the DCS system was performed on liquid flow phantoms. Data revealed relationships between diffuse optical measures and state of occlusion as well as the ability to detect arterial and venous compromise. The compact construction of the device, along with its noninvasive and quantitative nature, would make this technology suitable for clinical translation.

  12. In situ optical measurements of bacterial endospore breakdown in a shock tube

    NASA Astrophysics Data System (ADS)

    McCartt, A. D.; Gates, S.; Lappas, P.; Jeffries, J. B.; Hanson, R. K.

    2012-03-01

    The interaction of endospore-laden bioaerosols and shock waves is monitored with a combination of laser absorption and scattering. Tests are performed in the Stanford aerosol shock tube for post-shock temperatures ranging from 400-1100 K. In situ laser measurements at 266 and 665 nm provide a real-time monitor of endospore morphology. Scatter of visible light measures the integrity of endospore structure, while absorption of UV light provides a monitor of biochemicals released by endospore rupture. For post-shock temperatures greater than 750 K endospore morphological breakdown is observed. A simple theoretical model is employed to quantify the optical measurements, and mechanisms leading to the observed data are discussed.

  13. Potential of optical spectral transmission measurements for joint inflammation measurements in rheumatoid arthritis patients

    NASA Astrophysics Data System (ADS)

    Meier, A. J. Louise; Rensen, Wouter H. J.; de Bokx, Pieter K.; de Nijs, Ron N. J.

    2012-08-01

    Frequent monitoring of rheumatoid arthritis (RA) patients enables timely treatment adjustments and improved outcomes. Currently this is not feasible due to a shortage of rheumatologists. An optical spectral transmission device is presented for objective assessment of joint inflammation in RA patients, while improving diagnostic accuracy and clinical workflow. A cross-sectional, nonrandomized observational study was performed with this device. In the study, 77 proximal interphalangeal (PIP) joints in 67 patients have been analyzed. Inflammation of these PIP joints was also assessed by a rheumatologist with a score varying from 1 (not inflamed) to 5 (severely inflamed). Out of 77 measurements, 27 were performed in moderate to strongly inflamed PIP joints. Comparison between the clinical assessment and an optical measurement showed a correlation coefficient r=0.63, p<0.001, 95% CI [0.47, 0.75], and a ROC curve (AUC=0.88) that shows a relative good specificity and sensitivity. Optical spectral transmission measurements in a single joint correlate with clinical assessment of joint inflammation, and therefore might be useful in monitoring joint inflammation in RA patients.

  14. Fiber-optic epoxy composite cure sensor. II. Performance characteristics

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Yuen; Afromowitz, Martin A.

    1995-09-01

    The performance of a fiber-optic epoxy composite cure sensor, as previously proposed, depends on the optical properties and the reaction kinetics of the epoxy. The reaction kinetics of a typical epoxy system are presented. It is a third-order autocatalytic reaction with a peak observed in each isothermal reaction-rate curve. A model is derived to describe the performance characteristics of the epoxy cure sensor. If a composite coupon is cured at an isothermal temperature, the sensor signal can be used to predict the time when the gel point occurs and to monitor the cure process. The sensor is also shown to perform well in nonstoichiometric epoxy matrices. In addition the sensor can detect the end of the cure without calibration.

  15. Updating the Synchrotron Radiation Monitor at TLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, C. H.; Hsu, S. Y.; Wang, C. J.

    2007-01-19

    The synchrotron radiation monitor provides useful information to support routine operation and physics experiments using the beam. Precisely knowing the profile of the beam helps to improve machine performance. The synchrotron radiation monitor at the Taiwan Light Source (TLS) was recently upgraded. The optics and modeling were improved to increase the accuracy of measurement in the small beam size. A high-performance IEEE-1394 digital CCD camera was used to improve the quality of images and extend the dynamic range of measurement. The image analysis is also improved. This report summarizes status and results.

  16. Feasibility study for distributed dose monitoring in ionizing radiation environments with standard and custom-made optical fibers

    NASA Astrophysics Data System (ADS)

    Van Uffelen, Marco; Berghmans, Francis; Brichard, Benoit; Borgermans, Paul; Decréton, Marc C.

    2002-09-01

    Optical fibers stimulate much interest since many years for their potential use in various nuclear environments, both for radiation tolerant and EMI-free data communication as well as for distributed sensing. Besides monitoring temperature and stress, measuring ionizing doses with optical fibers is particularly essential in applications such as long-term nuclear waste disposal monitoring, and for real-time aging monitoring of power and signal cables installed inside a reactor containment building. Two distinct options exist to perform optical fiber dosimetry. First, find an accurate model for a restricted application field that accounts for all the parameters that influence the radiation response of a standard fiber, or second, develop a dedicated fiber with a response that will solely depend on the deposited energy. Using various models presented in literature, we evaluate both standard commercially available and custom-made optical fibers under gamma radiation, particularly for distributed dosimetry applications with an optical time domain reflectometer (OTDR). We therefore present the radiation induced attenuation at near-infrared telecom wavelengths up to MGy total dose levels, with dose rates ranging from about 1 Gy/h up to 1 kGy/h, whereas temperature was raised step-wise from 25 °C to 85 °C. Our results allow to determine and compare the practical limitations of distributed dose measurements with both fiber types in terms of temperature sensitivity, dose estimation accuracy and spatial resolution.

  17. An optical fiber guided ultrasonic excitation and sensing system for online monitoring of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Yang, J.; Lee, H.; Sohn, H.

    2012-05-01

    This study presents an embedded laser ultrasonic system for pipeline monitoring under high temperature environment. Recently, laser ultrasonics is becoming popular because of their advantageous characteristics such as (a) noncontact inspection, (b) immunity against electromagnetic interference (EMI), and (c) applicability under high temperature. However, the performance of conventional laser ultrasonic techniques for pipeline monitoring has been limited because many pipelines are covered by insulating materials and target surfaces are inaccessible. To overcome the problem, this study designs an embeddable optical fibers and fixing devices that deliver laser beams from laser sources to a target pipe using embedded optical fibers. For guided wave generation, an optical fiber is furnished with a beam collimator for irradiating a laser beam onto a target structure. The corresponding response is measured based on the principle of laser interferometry. Light from a monochromatic source is colliminated and delivered to a target surface by another optical with a focusing module, and reflected light is transmitted back to the interferometer through the same fiber. The feasibility of the proposed system for embedded ultrasonic measurement has been experimentally verified using a pipe specimen under high temperature.

  18. Performance of the fiber-optic low-coherent ground settlement sensor: From lab to field

    NASA Astrophysics Data System (ADS)

    Guo, Jingjing; Tan, Yanbin; Peng, Li; Chen, Jisong; Wei, Chuanjun; Zhang, Pinglei; Zhang, Tianhang; Alrabeei, Salah; Zhang, Zhe; Sun, Changsen

    2018-04-01

    A fiber-optic low-coherent interferometry sensor was developed to measure the ground settlement (GS) in an accuracy of the micrometer. The sensor combined optical techniques with liquid-contained chambers that were hydraulically connected together at the bottom by using a water-filled tube. The liquid surface inside each chamber was at the same level initially. The optical interferometry was employed to read out the liquid level changes, which following the GS happened at the place where the chamber was put on and, thereby, the GS information was calculated. The laboratory effort had demonstrated its potential in the practical application. Here, the denoising algorithms on the measurement signal were carried out based on the specific environment to ensure the accuracy and stability of the system in field applications. After that, we extended this technique to the high-speed railway. The 5-days continuous measurement proved that the designed system could be applied to monitor the GS of the high-speed railway piers and approached an accuracy of ±70 μm in the field situation with a reference compensation sensor. So the performance of the sensor was suitable to the GS monitoring problem in the high-speed railway. There, the difficulties were to meet the monitoring requirement of both a large span in space and its quite tiny and slow changes.

  19. Utilization of a new optical sensor unit to monitor the electrochemical elimination of selected dyes in water

    NASA Astrophysics Data System (ADS)

    Valica, M.; Černá, T.; Hostin, S.

    2017-10-01

    This paper presents results obtained by developed optical sensor, which consist from multi-wavelength LED light source and two photodetectors capable of measuring the change in optical signal along two different optical paths (absorbance and reflectance measurements). Arduino microcomputer was used for light source management and optical signal data measuring and recording. Analytical validation of developed optical sensor is presented in this paper. The performance of the system has been tested with varying water solution of dyes (malachite green, methyl orange, trypan red). These results show strong correlations between the optical signal response and colour change from the dyes. Sensor was used for continual in-situ monitoring of electrochemical elimination of selected dyes (current density 15.7 mA cm-2, electrolyte volume 4 L and NaCl concentration 2 g L-1). Maximum decolorization level varies with each dye. For malachite green was obtain 92,7 % decolorization (25 min); methyl orange 90,8% (8,5 min) and trypan red 84,7% decolorization after 33 min of electrochemical treatment.

  20. A Novel Strategy for landslide displacement and its direction monitoring

    NASA Astrophysics Data System (ADS)

    Zhu, Z.-W.; Yuan, Q.-Y.; Liu, D.-Y.; Liu, B.; Liu, J.-C.; Luo, H.

    2013-12-01

    Landslide monitoring is important in predicting the behavior of landslides, thereby ensuring environmental, life, and property safety. On the basis of our previous studies, we conducted the double shear test by using a third-generation optical fiber transducer that uses expandable polystyrene (EPS) as base material. However, the third-generation transducer has poor performance when cohesive force is present between the grout and capillary stainless steel pipe of the transducer. Thus, the fourth-generation optical fiber transducer was invented. Similar to the third-generation transducer, the fourth-generation transducer also used EPS as its base material. Single shear test was conducted on the fourth-generation transducer after being grouted with cement mortar (1:1 mix ratio). The micro-bend loss mechanism of the optical fiber was considered, and the optical time domain reflectometry instrument was used. The fact that the loss sequence of optical fibers subjected to loading is different at various locations is found. The relationship of the loading-point displacement VS. optical fiber sliding distance and optical loss were measured. Results show that the maximum initial measurement precision of the newly proposed device is 1mm, the corresponding sliding distance is 21 mm, and the dynamic range is 0-20 mm. The fourth-generation transducer can measure the movement direction of loadings, thus making this transducer applicable for landslide monitoring.

  1. In situ optical time-domain reflectometry (OTDR) for VCSEL-based communication systems

    NASA Astrophysics Data System (ADS)

    Keeler, Gordon A.; Serkland, Darwin K.; Geib, Kent M.; Klem, John F.; Peake, Gregory M.

    2006-02-01

    Optical time-domain reflectometry (OTDR) is an effective technique for locating faults in fiber communication links. The fact that most OTDR measurements are performed manually is a significant drawback, because it makes them too costly for use in many short-distance networks and too slow for use in military avionic platforms. Here we describe and demonstrate an automated, low-cost, real-time approach to fault monitoring that can be achieved by integrating OTDR functionality directly into VCSEL-based transceivers. This built-in test capability is straightforward to implement and relevant to both multimode and single mode networks. In-situ OTDR uses the transmitter VCSEL already present in data transceivers. Fault monitoring is performed by emitting a brief optical pulse into the fiber and then turning the VCSEL off. If a fault exists, a portion of the optical pulse returns to the transceiver after a time equal to the round-trip delay through the fiber. In multimode OTDR, the signal is detected by an integrated photodetector, while in single mode OTDR the VCSEL itself can be used as a detector. Modified driver electronics perform the measurement and analysis. We demonstrate that VCSEL-based OTDR has sufficient sensitivity to determine the location of most faults commonly seen in short-haul networks (i.e., the Fresnel reflections from improperly terminated fibers and scattering from raggedly-broken fibers). Results are described for single mode and multimode experiments, at both 850 nm and 1.3 μm. We discuss the resolution and sensitivity that have been achieved, as well as expected limitations for this novel approach to network monitoring.

  2. Monitoring of Concrete Structures Using Ofdr Technique

    NASA Astrophysics Data System (ADS)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-06-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  3. Achieving Last-Mile Broadband Access With Passive Optical Networking Technology

    DTIC Science & Technology

    2002-09-01

    Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING ...AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in...definition television (HDTV), video telecommuting , tele- education, video-on-demand, online video games, interactive shopping and yet to

  4. The GBT-SCA, a radiation tolerant ASIC for detector control and monitoring applications in HEP experiments

    NASA Astrophysics Data System (ADS)

    Caratelli, A.; Bonacini, S.; Kloukinas, K.; Marchioro, A.; Moreira, P.; De Oliveira, R.; Paillard, C.

    2015-03-01

    The future upgrades of the LHC experiments will increase the beam luminosity leading to a corresponding growth of the amounts of data to be treated by the data acquisition systems. To address these needs, the GBT (Giga-Bit Transceiver optical link [1,2]) architecture was developed to provide the simultaneous transfer of readout data, timing and trigger signals as well as slow control and monitoring data. The GBT-SCA ASIC, part of the GBT chip-set, has the purpose to distribute control and monitoring signals to the on-detector front-end electronics and perform monitoring operations of detector environmental parameters. In order to meet the requirements of different front-end ASICs used in the experiments, it provides various user-configurable interfaces capable to perform simultaneous operations. It is designed employing radiation tolerant design techniques to ensure robustness against SEUs and TID radiation effects and is implemented in a commercial 130 nm CMOS technology. This work presents the GBT-SCA architecture, the ASIC interfaces, the data transfer protocol, and its integration with the GBT optical link.

  5. Real-time optical fiber dosimeter probe

    NASA Astrophysics Data System (ADS)

    Croteau, André; Caron, Serge; Rink, Alexandra; Jaffray, David; Mermut, Ozzy

    2011-03-01

    There is a pressing need for a passive optical fiber dosimeter probe for use in real-time monitoring of radiation dose delivered to clinical radiation therapy patients. An optical fiber probe using radiochromic material has been designed and fabricated based on a thin film of the radiochromic material on a dielectric mirror. Measurements of the net optical density vs. time before, during, and after irradiation at a rate of 500cGy/minute to a total dose of 5 Gy were performed. Net optical densities increased from 0.2 to 2.0 for radiochromic thin film thicknesses of 2 to 20 μm, respectively.

  6. Chlorophyll-a concentration estimation with three bio-optical algorithms: correction for the low concentration range for the Yiam Reservoir, Korea

    USDA-ARS?s Scientific Manuscript database

    Bio-optical algorithms have been applied to monitor water quality in surface water systems. Empirical algorithms, such as Ritchie (2008), Gons (2008), and Gilerson (2010), have been applied to estimate the chlorophyll-a (chl-a) concentrations. However, the performance of each algorithm severely degr...

  7. A comparison between remote sensing approaches to water extent monitoring

    NASA Astrophysics Data System (ADS)

    elmi, omid; javad tourian, mohammad; sneeuw, nico

    2013-04-01

    Monitoring the variation of water storage in a long period is a primary issue for understanding the impact of climate change and human activities on earth water resources. In order to obtain the change in water volume in a lake and reservoir, in addition to water level, water extent must be repeatedly determined in an appropriate time interval. Optical satellite imagery as a passive system is the main source of determination of coast line change as it is easy to interpret. Optical sensors acquire the reflected energy from the sunlight in various bands from visible to near infrared. Also, panchromatic mode provides more geometric details. Establishing a ratio between visible bands is the most common way of extract coastlines because with this ratio, water and land can be separated directly. Also, since the reflectance value of water is distinctly less than soil in infrared bands, applying a histogram threshold on this band is a effective way of coastline extraction. However, optical imagery is highly vulnerable to occurrence of dense clouds and fog. Moreover, the coastline is hard to detect where it is covered by dense vegetation. Synthetic aperture radar (SAR) as an active system provides an alternative source for monitoring the spatial change in coastlines. Two methods for monitoring the shoreline with SAR data have been published. First, the backscatter difference is calculated between two images acquired at different times. Second, the change in coastline is detected by computing the coherence of two SAR images acquired at different times. A SAR system can operate in all weather, so clouds and fog don't impact its efficiency. Also, it can penetrate into the plant canopy. However, in comparison with optical imagery, interpretation of SAR image in this case is relatively hard because of limitation in the number of band and polarization modes, also due to effects caused by speckle noises, slant-range imaging and shadows. The primary aim of this study is a comparison between the performance and result of different methods of the water area monitoring over a long period by applying optic and SAR images. The secondary goal is investigation a method to integrate SAR and optical imagery for water extent monitoring to improve the performance. The case study of this paper is Urmia lake located in the northwest of Iran. Its area has impressively decreased since 1995, so water extent monitoring is vital in this case.

  8. Quantitative relations between the eyeball, the optic nerve, and the optic canal important for intracranial pressure monitoring

    PubMed Central

    2014-01-01

    Objective To find correlations between diameters of the optic nerve sheath (ONSD), the eyeball, and the optic canal that might be important for intracranial pressure monitoring. Methods In a prospective cohort study, the CT data of consecutive 400 adults (18+) with healthy eyes and optic nerves and absence of neurological diseases were collected and analyzed. When the CT scans were obtained, the diameters of the optic nerve sheath, the eyeball, and the optic canal were measured and statistically analyzed. The data obtained from the left and from the right eyeballs and optic nerves were compared. The correlation analysis was performed within these variables, with the gender, and the age. Results In healthy persons, the ONSD varies from 3.65 mm to 5.17 mm in different locations within the intraorbital space with no significant difference between sexes and age groups. There is a strong correlation between the eyeball transverse diameter (ETD) and ONSD that can be presented as ONSD/ETD index. In healthy subjects, the ONSD/ETD index equals 0.19. Conclusion The calculation of an index when ONSD is divided by the ETD of the eyeball presents precise normative database for ONSD intracranial pressure measurement technique. When the ONSD is measured for intracranial pressure monitoring, the most stable results can be obtained if the diameter is measured 10 mm from the globe. These data might serve as a normative database at emergency departments and in general neurological practice. PMID:25130267

  9. Quantitative relations between the eyeball, the optic nerve, and the optic canal important for intracranial pressure monitoring.

    PubMed

    Vaiman, Michael; Gottlieb, Paul; Bekerman, Inessa

    2014-08-17

    To find correlations between diameters of the optic nerve sheath (ONSD), the eyeball, and the optic canal that might be important for intracranial pressure monitoring. In a prospective cohort study, the CT data of consecutive 400 adults (18+) with healthy eyes and optic nerves and absence of neurological diseases were collected and analyzed. When the CT scans were obtained, the diameters of the optic nerve sheath, the eyeball, and the optic canal were measured and statistically analyzed. The data obtained from the left and from the right eyeballs and optic nerves were compared. The correlation analysis was performed within these variables, with the gender, and the age. In healthy persons, the ONSD varies from 3.65 mm to 5.17 mm in different locations within the intraorbital space with no significant difference between sexes and age groups. There is a strong correlation between the eyeball transverse diameter (ETD) and ONSD that can be presented as ONSD/ETD index. In healthy subjects, the ONSD/ETD index equals 0.19. The calculation of an index when ONSD is divided by the ETD of the eyeball presents precise normative database for ONSD intracranial pressure measurement technique. When the ONSD is measured for intracranial pressure monitoring, the most stable results can be obtained if the diameter is measured 10 mm from the globe. These data might serve as a normative database at emergency departments and in general neurological practice.

  10. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    PubMed Central

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  11. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    PubMed

    Di Sante, Raffaella

    2015-07-30

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  12. Small form factor optical fiber connector evaluation for harsh environments

    NASA Astrophysics Data System (ADS)

    Ott, Melanie N.; Thomes, W. Joe, Jr.; Chuska, Richard F.; Switzer, Robert; Blair, Diana E.

    2011-09-01

    For the past decade NASA programs have utilized the Diamond AVIM connector for optical fiber assemblies on space flight instrumentation. These connectors have been used in communications, sensing and LIDAR systems where repeatability and high performance are required. Recently Diamond has released a smaller form factor optical fiber connector called the "Mini-AVIM" which although more compact still includes the tight tolerances and the ratcheting feature of the heritage AVIM. NASA Goddard Space Flight Center Photonics Group in the Parts, Packaging and Assembly Technologies Office has been performing evaluations of this connector to determine how it compares to the performance of the AVIM connector and to assess its feasibility for harsh environmental applications. Vibration and thermal testing were performed on the Mini-AVIM with both multi-mode and single-mode optical fiber using insitu optical transmission monitoring. Random vibration testing was performed using typical launch condition profiles for most NASA missions but extended to 35 Grms, which is much higher than most requirements. Thermal testing was performed incrementally up to a range of -55°C to +125°C. The test results include both unjacketed fiber and cabled assembly evaluations. The data presented here indicate that the Mini-AVIM provides a viable option for small form factor applications that require a high performance optical fiber connector.

  13. Technical Note: A respiratory monitoring and processing system based on computer vision: prototype and proof of principle

    PubMed Central

    Atallah, Vincent; Escarmant, Patrick; Vinh‐Hung, Vincent

    2016-01-01

    Monitoring and controlling respiratory motion is a challenge for the accuracy and safety of therapeutic irradiation of thoracic tumors. Various commercial systems based on the monitoring of internal or external surrogates have been developed but remain costly. In this article we describe and validate Madibreast, an in‐house‐made respiratory monitoring and processing device based on optical tracking of external markers. We designed an optical apparatus to ensure real‐time submillimetric image resolution at 4 m. Using OpenCv libraries, we optically tracked high‐contrast markers set on patients' breasts. Validation of spatial and time accuracy was performed on a mechanical phantom and on human breast. Madibreast was able to track motion of markers up to a 5 cm/s speed, at a frame rate of 30 fps, with submillimetric accuracy on mechanical phantom and human breasts. Latency was below 100 ms. Concomitant monitoring of three different locations on the breast showed discrepancies in axial motion up to 4 mm for deep‐breathing patterns. This low‐cost, computer‐vision system for real‐time motion monitoring of the irradiation of breast cancer patients showed submillimetric accuracy and acceptable latency. It allowed the authors to highlight differences in surface motion that may be correlated to tumor motion. PACS number(s): 87.55.km PMID:27685116

  14. Technical Note: A respiratory monitoring and processing system based on computer vision: prototype and proof of principle.

    PubMed

    Leduc, Nicolas; Atallah, Vincent; Escarmant, Patrick; Vinh-Hung, Vincent

    2016-09-08

    Monitoring and controlling respiratory motion is a challenge for the accuracy and safety of therapeutic irradiation of thoracic tumors. Various commercial systems based on the monitoring of internal or external surrogates have been developed but remain costly. In this article we describe and validate Madibreast, an in-house-made respiratory monitoring and processing device based on optical tracking of external markers. We designed an optical apparatus to ensure real-time submillimetric image resolution at 4 m. Using OpenCv libraries, we optically tracked high-contrast markers set on patients' breasts. Validation of spatial and time accuracy was performed on a mechanical phantom and on human breast. Madibreast was able to track motion of markers up to a 5 cm/s speed, at a frame rate of 30 fps, with submillimetric accuracy on mechanical phantom and human breasts. Latency was below 100 ms. Concomitant monitoring of three different locations on the breast showed discrepancies in axial motion up to 4 mm for deep-breathing patterns. This low-cost, computer-vision system for real-time motion monitoring of the irradiation of breast cancer patients showed submillimetric accuracy and acceptable latency. It allowed the authors to highlight differences in surface motion that may be correlated to tumor motion.v. © 2016 The Authors.

  15. Monitoring the performance of a storm water separating manifold with distributed temperature sensing.

    PubMed

    Langeveld, J G; de Haan, C; Klootwijk, M; Schilperoort, R P S

    2012-01-01

    Storm water separating manifolds in house connections have been introduced as a cost effective solution to disconnect impervious areas from combined sewers. Such manifolds have been applied by the municipality of Breda, the Netherlands. In order to investigate the performance of the manifolds, a monitoring technique (distributed temperature sensing or DTS) using fiber optic cables has been applied in the sewer system of Breda. This paper describes the application of DTS as a research tool in sewer systems. DTS proves to be a powerful tool to monitor the performance of (parts of) a sewer system in time and space. The research project showed that DTS is capable of monitoring the performance of house connections and identifying locations of inflow of both sewage and storm runoff. The research results show that the performance of storm water separating manifolds varies over time, thus making them unreliable.

  16. Remote optical stethoscope and optomyography sensing device

    NASA Astrophysics Data System (ADS)

    Golberg, Mark; Polani, Sagi; Ozana, Nisan; Beiderman, Yevgeny; Garcia, Javier; Ruiz-Rivas Onses, Joaquin; Sanz Sabater, Martin; Shatsky, Max; Zalevsky, Zeev

    2017-02-01

    In this paper we present the usage of photonic remote laser based device for sensing nano-vibrations for detection of muscle contraction and fatigue, eye movements and in-vivo estimation of glucose concentration. The same concept is also used to realize a remote optical stethoscope. The advantage of doing the measurements from a distance is in preventing passage of infections as in the case of optical stethoscope or in the capability to monitor e.g. sleep quality without disturbing the patient. The remote monitoring of glucose concentration in the blood stream and the capability to perform opto-myography for the Messer muscles (chewing) is very useful for nutrition and weight control. The optical configuration for sensing the nano-vibrations is based upon analyzing the statistics of the secondary speckle patterns reflected from various tissues along the body of the subjects. Experimental results present the preliminary capability of the proposed configuration for the above mentioned applications.

  17. Fiber grating systems used to measure strain in cylindrical structures

    NASA Astrophysics Data System (ADS)

    Udd, Eric; Corona-Bittick, Kelli; Slattery, Kerry T.; Dorr, Donald J.; Crowe, C. Robert; Vandiver, Terry L.; Evans, Robert N.

    1997-07-01

    Fiber optic grating systems are described that have been used to measure strain in cylindrical structures. The applications of these systems to a composite utility pole and to a composite missile body are described. Composite utility poles have significant advantages with respect to wooden utility poles that include superior strength and uniformity; light weight for ease of deployment; the ability to be recycled, reducing hazardous waste associated with chemically treated wooden poles; and compatibility with embedded fiber optic sensors, allowing structural loads to be monitored. Tests conducted of fiber optic grating sensors in combination with an overcoupled coupler demodulation system to support structural testing of a 22-ft composite pole are reported. Monitoring strain in composite missile bodies has the potential to improve the quality of manufactured parts, support performance testing, and enhance safety during long periods of storage. Strain measurements made with fiber optic grating and electrical strain gauges are described.

  18. Optical quasi-distributed simultaneous vibration and temperature sensing in stator bars of a 370-MVA electric generator

    NASA Astrophysics Data System (ADS)

    Dreyer, Uilian José; Vagner da Silva, Erlon; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2017-08-01

    In this paper, we propose a new multiparametric optical fiber transducer applied to an electric generator of 370 MVA. The optical transducer has three multiplexed FBGs in the same optical fiber as the sensing element. The FBG sensors can simultaneously measure both the temperature and vibration independently of the other multiplexed FBGs. The installation in the power plant was performed using six transducers and it was obtained 23 hours of simultaneous vibration and temperature measurement. All the FBGs used to monitor generator vibration were able to monitor the frequency of mechanical and electromagnetic vibrations, which were measured at 2 Hz and 120 Hz, respectively. During the measurement, the machine was turned off due to a failure and all the FBGs sensed temperature changes, as well as frequency vibration changes. The largest temperature difference measured between the FBGs during the test is approximately 2°C.

  19. HT/HP x-tree and downhole fiber optic connectors and their use on subsea intelligent wells

    NASA Astrophysics Data System (ADS)

    Wright, Perry; Barlow, Stewart

    2004-12-01

    Offshore Oil and Gas R&D has been committed to improved reservoir performance through production monitoring. Technology improvements in these areas offer the greatest potential returns through increased knowledge of the reservoir, and the improvements in real-time production control that the technology and knowledge base can provide. One area of technology that supports this development is the growing application of fiber optic sensors for reservoir and production monitoring. These sensors cannot function in isolation, and need support in the form of fiber optic connection systems for x-tree penetrations. ODI have been developing products for fiber optic tree penetrations and down-hole wet connections for the last 4 years, working with Intelligent Wells Group at BP America Production Company in Houston. This paper discusses the application and reliability of fiber optic connectors, and reviews the development of the ODI I-CONN connection system and its application for vertical and horizontal x-trees, work-over systems and running tools, and down-hole systems.

  20. Software-centric View on OVMS for LBT

    NASA Astrophysics Data System (ADS)

    Trowitzsch, J.; Borelli, J.; Pott, J.; Kürster, M.

    2012-09-01

    The performance of infrared interferometry (IF) and adaptive optics (AO) strongly depends on the mitigation and correction of telescope vibrations. Therefore, at the Large Binocular Telescope (LBT) the OVMS, the Optical Path Difference and Vibration Monitoring System, is being installed. It is meant to ensure suitable conditions for adaptive optics and interferometry. The vibration information is collected from accelerometers that are distributed over the optical elements of the LBT. The collected vibration measurements are converted into tip-tilt and optical path difference data. That data is utilized in the control strategies of the LBT adaptive secondary mirrors and the beam combining interferometers, LINC-NIRVANA and LBTI. Within the OVMS the software part is responsibility of the LINC-NIRVANA team at MPIA Heidelberg. It comprises the software for the real-time data acquisition from the accelerometers as well as the related telemetry interface and the vibration monitoring quick look tools. The basic design ideas, implementation details and special features are explained here.

  1. Optical monitoring of thin film electro-polymerization on surface of ITO-coated lossy-mode resonance sensor

    NASA Astrophysics Data System (ADS)

    Sobaszek, Michał; Dominik, Magdalena; Burnat, Dariusz; Bogdanowicz, Robert; Stranak, Viteszlav; Sezemsky, Petr; Śmietana, Mateusz

    2017-04-01

    This work presents an optical fiber sensors based on lossy-mode resonance (LMR) phenomenon supported by indium tin oxide (ITO) thin overlay for investigation of electro-polymerization effect on ITO's surface. The ITO overlays were deposited on core of polymer-clad silica (PCS) fibers using reactive magnetron sputtering (RMS) method. Since ITO is electrically conductive and electrochemically active it can be used as a working electrode in 3-electrode cyclic voltammetry setup. For fixed potential applied to the electrode current flow decrease with time what corresponds to polymer layer formation on the ITO surface. Since LMR phenomenon depends on optical properties in proximity of the ITO surface, polymer layer formation can be monitored optically in real time. The electrodeposition process has been performed with Isatin which is a strong endogenous neurochemical regulator in humans as it is a metabolic derivative of adrenaline. It was found that optical detection of Isatin is possible in the proposed configuration.

  2. Diffractive optics technology and the NASA Geostationary Earth Observatory (GEO)

    NASA Technical Reports Server (NTRS)

    Morris, G. Michael; Michaels, Robert L.; Faklis, Dean

    1992-01-01

    Diffractive (or binary) optics offers unique capabilities for the development of large-aperture, high-performance, light-weight optical systems. The Geostationary Earth Observatory (GEO) will consist of a variety of instruments to monitor the environmental conditions of the earth and its atmosphere. The aim of this investigation is to analyze the design of the GEO instrument that is being proposed and to identify the areas in which diffractive (or binary) optics technology can make a significant impact in GEO sensor design. Several potential applications where diffractive optics may indeed serve as a key technology for improving the performance and reducing the weight and cost of the GEO sensors have been identified. Applications include the use of diffractive/refractive hybrid lenses for aft-optic imagers, diffractive telescopes for narrowband imaging, subwavelength structured surfaces for anti-reflection and polarization control, and aberration compensation for reflective imaging systems and grating spectrometers.

  3. Distributed Fiber Optic Sensors For The Monitoring Of A Tunnel Crossing A Landslide

    NASA Astrophysics Data System (ADS)

    Minardo, Aldo; Picarelli, Luciano; Zeni, Giovanni; Catalano, Ester; Coscetta, Agnese; Zhang, Lei; DiMaio, Caterina; Vassallo, Roberto; Coviello, Roberto; Macchia, Giuseppe Nicola Paolo; Zeni, Luigi

    2017-04-01

    Optical fiber distributed sensors have recently gained great attention in structural and environmental monitoring due to specific advantages because they share all the classical advantages common to all optical fiber sensors such as immunity to electromagnetic interferences, high sensitivity, small size and possibility to be embedded into the structures, multiplexing and remote interrogation capabilities [1], but also offer the unique feature of allowing the exploitation of a telecommunication grade optical fiber cable as the sensing element to measure deformation and temperature profiles over long distances, without any added devices. In particular, distributed optical fiber sensors based on stimulated Brillouin scattering through the so-called Brillouin Optical Time Domain Analysis (BOTDA), allow to measure strain and temperature profiles up to tens of kilometers with a strain accuracy of ±10µɛ and a temperature accuracy of ±1°C. These sensors have already been employed in static and dynamic monitoring of a variety of structures resulting able to identify and localize many kind of failures [2,3,4]. This paper deals with the application of BOTDA to the monitoring of the deformations of a railway tunnel (200 m long) constructed in the accumulation of Varco d'Izzo earthflow, Potenza city, in the Southern Italian Apennine. The earthflow, which occurs in the tectonized clay shale formation called Varicoloured Clays, although very slow, causes continuous damage to buildings and infrastructures built upon or across it. The railway tunnel itself had to be re-constructed in 1992. Since then, the Italian National Railway monitored the structure by means of localized fissure-meters. Recently, thanks to a collaboration with the rail Infrastructure Manager (RFI), monitoring of various zones of the landslide including the tunnel is based on advanced systems, among which the optical fiber distributed sensors. First results show how the sensing optical fiber cable is able to detect the formation of localized strains and cracks, following the evolution of their width and identifying their location along the tunnel walls. It is worth noticing that the distributed nature of the sensor makes it possible to perform the monitoring with no preliminary information about the possible location of concentrated deformation. The sensing cable is simply glued to the tunnel walls and the system will remotely detect and locate any deformation and fracture wherever they occur along the fiber path, so representing a powerful early warning system. [1] J. M. López-Higuera, L. R. Cobo, A. Q. Incera, A. Cobo, "Fiber Optic Sensors in Structural Health Monitoring", Journal of Lightwave Technology, 29, 2011. [2] L. Zeni, L. Picarelli, B. Avolio, A. Coscetta, R. Papa, G. Zeni, C. Di Maio, R. Vassallo, A. Minardo, "Brillouin Optical Time Domain Analysis for Geotechnical Monitoring", Journal of Rock Mechanics and Geotechnical Engineering, 7, 2015 [3] A. Minardo, G. Porcaro, D. Giannetta, R. Bernini, L. Zeni, "Real-time monitoring of railway traffic using slope-assisted Brillouin distributed sensors", Applied Optics, 52, 2013 [4] A. Minardo, A. Coscetta, S. Pirozzi, R. Bernini, L. Zeni, "Experimental modal analysis of an aluminum rectangular plate by use of the slope-assisted BOTDA method", Smart Materials & Structures, 22, 2014

  4. An emerging network storage management standard: Media error monitoring and reporting information (MEMRI) - to determine optical tape data integrity

    NASA Technical Reports Server (NTRS)

    Podio, Fernando; Vollrath, William; Williams, Joel; Kobler, Ben; Crouse, Don

    1998-01-01

    Sophisticated network storage management applications are rapidly evolving to satisfy a market demand for highly reliable data storage systems with large data storage capacities and performance requirements. To preserve a high degree of data integrity, these applications must rely on intelligent data storage devices that can provide reliable indicators of data degradation. Error correction activity generally occurs within storage devices without notification to the host. Early indicators of degradation and media error monitoring 333 and reporting (MEMR) techniques implemented in data storage devices allow network storage management applications to notify system administrators of these events and to take appropriate corrective actions before catastrophic errors occur. Although MEMR techniques have been implemented in data storage devices for many years, until 1996 no MEMR standards existed. In 1996 the American National Standards Institute (ANSI) approved the only known (world-wide) industry standard specifying MEMR techniques to verify stored data on optical disks. This industry standard was developed under the auspices of the Association for Information and Image Management (AIIM). A recently formed AIIM Optical Tape Subcommittee initiated the development of another data integrity standard specifying a set of media error monitoring tools and media error monitoring information (MEMRI) to verify stored data on optical tape media. This paper discusses the need for intelligent storage devices that can provide data integrity metadata, the content of the existing data integrity standard for optical disks, and the content of the MEMRI standard being developed by the AIIM Optical Tape Subcommittee.

  5. Measurement of aerosol optical properties by cw cavity enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Jie, Guo; Ye, Shan-Shan; Yang, Xiao; Han, Ye-Xing; Tang, Huai-Wu; Yu, Zhi-Wei

    2016-10-01

    The CAPS (Cavity Attenuated Phase shift Spectroscopy) system, which detects the extinction coefficients within a 10 nm bandpass centered at 532 nm, comprises a green LED with center wavelength in 532nm, a resonant optical cavity (36 cm length), a Photo Multiplier Tube detector, and a lock in amplifier. The square wave modulated light from the LED passes through the optical cavity and is detected as a distorted waveform which is characterized by a phase shift with respect to the initial modulation. Extinction coefficients are determined from changes in the phase shift of the distorted waveform of the square wave modulated LED light that is transmitted through the optical cavity. The performance of the CAPS system was evaluated by using measurements of the stability and response of the system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. In the paper, it illustrates that extinction coefficient was correlated with PM2.5 mass (0.91). These figures indicate that this method has the potential to become one of the most sensitive on-line analytical techniques for extinction coefficient detection. This work aims to provide an initial validation of the CAPS extinction monitor in laboratory and field environments. Our initial results presented in this paper show that the CAPS extinction monitor is capable of providing state-of-the-art performance while dramatically reducing the complexity of optical instrumentation for directly measuring the extinction coefficients.

  6. Fiber optic monitoring device

    DOEpatents

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  7. Strain and ground-motion monitoring at magmatic areas: ultra-long and ultra-dense networks using fibre optic sensing systems

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Reinsch, Thomas; Henninges, Jan; Blanck, Hanna; Ryberg, Trond

    2016-04-01

    The fibre optic distributed acoustic sensing technology (DAS) is a "new" sensing system for exploring earth crustal elastic properties and monitoring both strain and seismic waves with unprecedented acquisition characteristics. The DAS technology principle lies in sending successive and coherent pulses of light in an optical fibre and measuring the back-scattered light issued from elastic scattering at random defaults within the fibre. The read-out unit includes an interferometer, which measures light interference patterns continuously. The changes are related to the distance between such defaults and therefore the strain within the fibre can be detected. Along an optical fibre, DAS can be used to acquire acoustic signals with a high spatial (every meter over kilometres) and high temporal resolution (thousand of Hz). Fibre optic technologies were, up to now, mainly applied in perimeter surveillance applications and pipeline monitoring and in boreholes. Previous experiments in boreholes have shown that the DAS technology is well suited for probing subsurface elastic properties, showing new ways for cheaper VSP investigations of the Earth crust. Here, we demonstrate that a cable deployed at ground surface can also help in exploring subsurface properties at crustal scale and monitor earthquake activity in a volcanic environment. Within the framework of the EC funded project IMAGE, we observed a >15 km-long fibre optic cable at the surface connected to a DAS read-out unit. Acoustic data was acquired continuously for 9 days. Hammer shots were performed along the surface cable in order to locate individual acoustic traces and calibrate the spatial distribution of the acoustic information. During the monitoring period both signals from on- and offshore explosive sources and natural seismic events could be recorded. We compare the fibre optic data to conventional seismic records from a dense seismic network deployed on Reykjanes. We show that we can probe and monitor earth crust subsurface with dense acquisition of the ground motion, both in space and in time and over a broad band frequency range.

  8. Low cost and high performance GPON, GEPON and RFoG optical network pentaplexer module design using diffractive grating approach

    NASA Astrophysics Data System (ADS)

    Chen, I.-Ju; Chi, Chang-Chia; Tarn, Chen-Wen

    2016-01-01

    A new architecture of a pentaplexer transceiver module which can be used in GPON/GEPON and RFoG triple play optical networks with supporting of the multiple optical wavelengths of 1310 nm, 1490 nm, 1550 nm, 1610 nm, and 1650 nm, is proposed. By using diffractive grating elements combing with market readily available GRIN (Gradient-Index) lens, grating, mirrors, beamsplitter, LDs (Laser Diodes), and PDs (Photodetectors), the proposed design have the advantages of low cost, high efficiency/performance, easy design and manufacturing, over the contemporary triplex transceivers which are made of multilayer filters or waveguides that increase the complexity of manufacturing and reduce the performance efficiency. With the proposed design, a pentaplexer system can accommodate GPON/GEPON, RFoG, and monitoring integration services, total five optical wavelength channels into a hybrid-integrated TO-CAN package platform with sufficient efficiency.

  9. Optical wireless connected objects for healthcare.

    PubMed

    Toumieux, Pascal; Chevalier, Ludovic; Sahuguède, Stéphanie; Julien-Vergonjanne, Anne

    2015-10-01

    In this Letter the authors explore the communication capabilities of optical wireless technology for a wearable device dedicated to healthcare application. In an indoor environment sensible to electromagnetic perturbations such as a hospital, the use of optical wireless links can permit reducing the amount of radio frequencies in the patient environment. Moreover, this technology presents the advantage to be secure, low-cost and easy to deploy. On the basis of commercially available components, a custom-made wearable device is presented, which allows optical wireless transmission of accelerometer data in the context of physical activity supervision of post-stroke patients in hospital. Considering patient mobility, the experimental performance is established in terms of packet loss as a function of the number of receivers fixed to the ceiling. The results permit to conclude that optical wireless links can be used to perform such mobile remote monitoring applications. Moreover, based on the measurements obtained with one receiver, it is possible to theoretically determine the performance according to the number of receivers to be deployed.

  10. An underwater optical wireless communication network

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2009-08-01

    The growing need for underwater observation and sub-sea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, bio-geochemical, evolutionary and ecological changes in the sea, ocean and lake environments and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. We present models of three kinds of optical wireless communication links a) a line-of-sight link, b) a modulating retro-reflector link and c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered lighted it was possible to mitigate this decrease in some cases. We conclude from the analysis that a high data rate underwater optical wireless network is a feasible solution for emerging applications such as UUV to UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  11. Underwater optical wireless communication network

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2010-01-01

    The growing need for underwater observation and subsea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, biogeochemical, evolutionary, and ecological changes in the sea, ocean, and lake environments, and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. Models are presented for three kinds of optical wireless communication links: (a) a line-of-sight link, (b) a modulating retroreflector link, and (c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered light it was possible to mitigate this decrease in some cases. It is concluded from the analysis that a high-data-rate underwater optical wireless network is a feasible solution for emerging applications such as UUV-to-UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  12. Fabrication and characterization of a real-time optical fiber dosimeter probe

    NASA Astrophysics Data System (ADS)

    Croteau, André; Caron, Serge; Rink, Alexandra; Jaffray, David; Mermut, Ozzy

    2011-07-01

    There is a pressing need for a low cost, passive optical fiber dosimeter probe for use in real-time monitoring of radiation dose delivered to clinical radiation therapy patients. An optical fiber probe using radiochromic material has been designed and fabricated based on the deposition of a radiochromic thin film on a dielectric mirror. Measurements of the net optical density vs. time before, during, and after irradiation at a rate of 500 cGy/minute to a total dose of 5 Gy were performed. Net optical densities increased from 0.2 to 2.0 for radiochromic thin film thicknesses of 2 to 20 μm, respectively. An improved optical fiber probe fabrication method is presented.

  13. Application of smart BFRP bars with distributed fiber optic sensors into concrete structures

    NASA Astrophysics Data System (ADS)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Zhao, Lihua; Song, Shiwei

    2010-04-01

    In this paper, the self-sensing and mechanical properties of concrete structures strengthened with a novel type of smart basalt fiber reinforced polymer (BFRP) bars were experimentally studied, wherein the sensing element is Brillouin scattering-based distributed optical fiber sensing technique. First, one of the smart bars was applied to strengthen a 2m concrete beam under a 4-points static loading manner in the laboratory. During the experiment, the bar can measure the inner strain changes and monitor the randomly distributed cracks well. With the distributed strain information along the bar, the distributed deformation of the beam can be calculated, and the structural health can be monitored and evaluated as well. Then, two smart bars with a length of about 70m were embedded into a concrete airfield pavement reinforced by long BFRP bars. In the field test, all the optical fiber sensors in the smart bars survived the whole concrete casting process and worked well. From the measured data, the concrete cracks along the pavement length can be easily monitored. The experimental results also confirmed that the bars can strengthen the structures especially after the yielding of steel bars. All the results confirm that this new type of smart BFRP bars show not only good sensing performance but also mechanical performance in the concrete structures.

  14. D-Shaped Polarization Maintaining Fiber Sensor for Strain and Temperature Monitoring.

    PubMed

    Qazi, Hummad Habib; Mohammad, Abu Bakar; Ahmad, Harith; Zulkifli, Mohd Zamani

    2016-09-15

    A D-shaped polarization-maintaining fiber (PMF) as fiber optic sensor for the simultaneous monitoring of strain and the surrounding temperature is presented. A mechanical end and edge polishing system with aluminum oxide polishing film is utilized to perform sequential polishing on one side (lengthwise) of the PMF in order to fabricate a D-shaped cross-section. Experimental results show that the proposed sensor has high sensitivity of 46 pm/µε and 130 pm/°C for strain and temperature, respectively, which is significantly higher than other recently reported work (mainly from 2013) related to fiber optic sensors. The easy fabrication method, high sensitivity, and good linearity make this sensing device applicable in various applications such as health monitoring and spatial analysis of engineering structures.

  15. D-Shaped Polarization Maintaining Fiber Sensor for Strain and Temperature Monitoring

    PubMed Central

    Qazi, Hummad Habib; Mohammad, Abu Bakar; Ahmad, Harith; Zulkifli, Mohd Zamani

    2016-01-01

    A D-shaped polarization-maintaining fiber (PMF) as fiber optic sensor for the simultaneous monitoring of strain and the surrounding temperature is presented. A mechanical end and edge polishing system with aluminum oxide polishing film is utilized to perform sequential polishing on one side (lengthwise) of the PMF in order to fabricate a D-shaped cross-section. Experimental results show that the proposed sensor has high sensitivity of 46 pm/µε and 130 pm/°C for strain and temperature, respectively, which is significantly higher than other recently reported work (mainly from 2013) related to fiber optic sensors. The easy fabrication method, high sensitivity, and good linearity make this sensing device applicable in various applications such as health monitoring and spatial analysis of engineering structures. PMID:27649195

  16. Distributed intrusion monitoring system with fiber link backup and on-line fault diagnosis functions

    NASA Astrophysics Data System (ADS)

    Xu, Jiwei; Wu, Huijuan; Xiao, Shunkun

    2014-12-01

    A novel multi-channel distributed optical fiber intrusion monitoring system with smart fiber link backup and on-line fault diagnosis functions was proposed. A 1× N optical switch was intelligently controlled by a peripheral interface controller (PIC) to expand the fiber link from one channel to several ones to lower the cost of the long or ultra-long distance intrusion monitoring system and also to strengthen the intelligent monitoring link backup function. At the same time, a sliding window auto-correlation method was presented to identify and locate the broken or fault point of the cable. The experimental results showed that the proposed multi-channel system performed well especially whenever any a broken cable was detected. It could locate the broken or fault point by itself accurately and switch to its backup sensing link immediately to ensure the security system to operate stably without a minute idling. And it was successfully applied in a field test for security monitoring of the 220-km-length national borderline in China.

  17. Monitoring techniques for the manufacture of tapered optical fibers.

    PubMed

    Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P

    2015-10-01

    The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber.

  18. Evaluation of a newly developed mid-infrared sensor for real-time monitoring of yeast fermentations.

    PubMed

    Schalk, Robert; Geoerg, Daniel; Staubach, Jens; Raedle, Matthias; Methner, Frank-Juergen; Beuermann, Thomas

    2017-05-01

    A mid-infrared (MIR) sensor using the attenuated total reflection (ATR) technique has been developed for real-time monitoring in biotechnology. The MIR-ATR sensor consists of an IR emitter as light source, a zinc selenide ATR prism as boundary to the process, and four thermopile detectors, each equipped with an optical bandpass filter. The suitability of the sensor for practical application was tested during aerobic batch-fermentations of Saccharomyces cerevisiae by simultaneous monitoring of glucose and ethanol. The performance of the sensor was compared to a commercial Fourier transform mid-infrared (FT-MIR) spectrometer by on-line measurements in a bypass loop. Sensor and spectrometer were calibrated by multiple linear regression (MLR) in order to link the measured absorbance in the transmission ranges of the four optical sensor channels to the analyte concentrations. For reference analysis, high-performance liquid chromatography (HPLC) was applied. Process monitoring using the sensor yielded in standard errors of prediction (SEP) of 6.15 g/L and 1.36 g/L for glucose and ethanol. In the case of the FT-MIR spectrometer the corresponding SEP values were 4.34 g/L and 0.61 g/L, respectively. The advantages of optical multi-channel mid-infrared sensors in comparison to FT-MIR spectrometer setups are the compactness, easy process implementation and lower price. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Metal-coated optical fiber damage sensors

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Chen; Sirkis, James S.

    1993-07-01

    A process which uses electroplating methods has been developed to fabricate metal coated optical fiber sensors. The elastic-plastic characteristics of the metal coatings have been exploited to develop a sensor capable of `remembering' low velocity impact damage. These sensors have been investigated under uniaxial tension testing of unembedded sensors and under low velocity impact of graphite/epoxy specimens with embedded sensors using both Michelson and polarimetric optical arrangements. The tests show that coating properties alter the optical fiber sensor performance and that the permanent deformation in the coating can be used to monitor composite delamination/impact damage.

  20. Development and Testing of a Post-Installable Deepwater Monitoring System Using Fiber-Optic Sensors

    NASA Technical Reports Server (NTRS)

    Seaman, Calvin H.; Brower, David V.; Le, Suy Q.; Tang, Henry H.

    2015-01-01

    This paper addresses the design and development of a fiber-optic monitoring system that can be deployed on existing deepwater risers and flowlines; and provides a summary of test article fabrication and the subsequent laboratory testing performed at the National Aeronautics and Space Administration-Johnson Space Center (NASA-JSC). A major challenge of a post-installed instrumentation system is to ensure adequate coupling between the instruments and the riser or flowline of interest. This work investigates the sensor coupling for pipelines that are suspended in a water column (from topside platform to seabed) using a fiber-optic sensor clamp and subsea bonding adhesive. The study involved the design, fabrication, and test of several prototype clamps that contained fiber-optic sensors. A mold was produced by NASA using 3-D printing methods that allowed the casting of polyurethane clamp test articles to accommodate 4-inch and 8-inch diameter pipes. The prototype clamps were installed with a subsea adhesive in a "wet" environment and then tested in the NASA Structures Test Laboratory (STL). The tension, compression, and bending test data showed that the prototype sensor clamps achieved good structural coupling, and could provide high quality strain measurement for active monitoring.

  1. An optical motion measuring system for laterally oscillated fatigue tests

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping; Murri, Gretchen B.; Sharpe, Scott

    1993-01-01

    This paper describes an optical system developed for materials testing laboratories at NASA Langley Research Center (LaRC) for high resolution monitoring of the transverse displacement and angular rotation of a test specimen installed in an axial-tension bending machine (ATB) during fatigue tests. It consists of a small laser, optics, a motorized mirror, three photodiodes, electronic detection and counting circuits, a data acquisition system, and a personal computer. A 3-inch by 5-inch rectangular plate attached to the upper grip of the test machine serves as a target base for the optical system. The personal computer automates the fatigue test procedure, controls data acquisition, performs data reduction, and provides user displays. The data acquisition system also monitors signals from up to 16 strain gages mounted on the test specimen. The motion measuring system is designed to continuously monitor and correlate the amplitude of the oscillatory motion with the strain gage signals in order to detect the onset of failure of the composite test specimen. A prototype system has been developed and tested which exceeds the design specifications of +/- 0.01 inch displacement accuracy, and +/- 0.25 deg angular accuracy at a sampling rate of 100 samples per second.

  2. Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomography: a pilot study

    NASA Astrophysics Data System (ADS)

    He, Ruoyu; Wei, Huajiang; Gu, Huimin; Zhu, Zhengguo; Zhang, Yuqing; Guo, Xiao; Cai, Tiantian

    2012-10-01

    Recently, the capability of optical coherence tomography (OCT) has been demonstrated for noninvasive blood glucose monitoring. In this work, we investigate the administration of chemical agents onto human skin tissue to increase the transparency of the surface of the skin, as a means of improving the capability of OCT imaging for clinically relevant applications. Eight groups of experiments were proposed, in which different optical clearing agents (OCA) were used. The results indicate that, when properly used, some OCAs perform well in promoting the capability of OCT for noninvasive blood glucose monitoring. Among the four kinds of OCA we used, 50% v/v glycerol solute turns out to be the best enhancer. Compared with the results of the experiments in which no OCA was used, when 50% glycerol was applied onto the human skin topically, the correlation coefficient between the OCT signal slope (OCTSS) and blood glucose concentration (BGC) was improved by 7.1% on average, and the lag time between changes in the OCTSS and BGC was cut by 8 min on average. The results of 10 w/v mannitol were also good, but not as pronounced.

  3. Structural Health Monitoring Using Textile Reinforcement Structures with Integrated Optical Fiber Sensors

    PubMed Central

    Bremer, Kort; Weigand, Frank; Zheng, Yulong; Alwis, Lourdes Shanika; Helbig, Reinhard; Roth, Bernhard

    2017-01-01

    Optical fiber-based sensors “embedded” in functionalized carbon structures (FCSs) and textile net structures (TNSs) based on alkaline-resistant glass are introduced for the purpose of structural health monitoring (SHM) of concrete-based structures. The design aims to monitor common SHM parameters such as strain and cracks while at the same time acting as a structural strengthening mechanism. The sensor performances of the two systems are characterized in situ using Mach-Zehnder interferometric (MZI) and optical attenuation measurement techniques, respectively. For this purpose, different FCS samples were subjected to varying elongation using a tensile testing machine by carefully incrementing the applied force, and good correlation between the applied force and measured length change was observed. For crack detection, the functionalized TNSs were embedded into a concrete block which was then exposed to varying load using the three-point flexural test until destruction. Promising results were observed, identifying that the location of the crack can be determined using the conventional optical time domain reflectometry (OTDR) technique. The embedded sensors thus evaluated show the value of the dual achievement of the schemes proposed in obtaining strain/crack measurement while being utilized as strengthening agents as well. PMID:28208636

  4. Fiber optic sensing subsystem for temperature monitoring in space in-flight applications

    NASA Astrophysics Data System (ADS)

    Abad, S.; Araujo, F.; Pinto, F.; González Torres, J.; Rodriguez, R.; Moreno, M. A.

    2017-11-01

    Fiber Optic Sensor (FOS) technology presents long recognized advantages which enable to mitigate deficient performance of conventional technology in hazard-environments common in spacecraft monitoring applications, such as: multiplexing capability, immunity to EMI/RFI, remote monitoring, small size and weight, electrical insulation, intrinsically safe operation, high sensibility and long term reliability. A key advantage is also the potential reduction of Assembly Integration and Testing (AIT) time achieved by the multiplexing capability and associated reduced harness. In the frame of the ESA's ARTES5.2 and FLPP-Phase 3 programs, Airbus DS-Crisa and FiberSensing are developing a Fiber Bragg Grating (FBG) - based temperature monitoring system for application in space telecommunication platforms and launchers. The development encompasses both the interrogation unit and the FBG temperature sensors and associated fiber harness. In parallel Airbus DS - Crisa is developing a modular RTU (RTU2015) to provide maximum flexibility and mission-customization capability for RTUs maintaining the ESA's standards at I/O interface level [1]. In this context, the FBG interrogation unit is designed as a module to be compatible, in both physical dimensions and electrical interfaces aspects, with the Electrical Internal Interface Bus of the RTU2015, thus providing the capability for a hybrid electrical and optical monitoring system.

  5. Optoacoustic diagnostic modality: from idea to clinical studies with highly compact laser diode-based systems

    PubMed Central

    Esenaliev, Rinat O.

    2017-01-01

    Abstract. Optoacoustic (photoacoustic) diagnostic modality is a technique that combines high optical contrast and ultrasound spatial resolution. We proposed using the optoacoustic technique for a number of applications, including cancer detection, monitoring of thermotherapy (hyperthermia, coagulation, and freezing), monitoring of cerebral blood oxygenation in patients with traumatic brain injury, neonatal patients, fetuses during late-stage labor, central venous oxygenation monitoring, and total hemoglobin concentration monitoring as well as hematoma detection and characterization. We developed and built optical parametric oscillator-based systems and multiwavelength, fiber-coupled highly compact, laser diode-based systems for optoacoustic imaging, monitoring, and sensing. To provide sufficient output pulse energy, a specially designed fiber-optic system was built and incorporated in ultrasensitive, wideband optoacoustic probes. We performed preclinical and clinical tests of the systems and the optoacoustic probes in backward mode for most of the applications and in forward mode for the breast cancer and cerebral applications. The high pulse energy and repetition rate allowed for rapid data acquisition with high signal-to-noise ratio from cerebral blood vessels, such as the superior sagittal sinus, central veins, and peripheral veins and arteries, as well as from intracranial hematomas. The optoacoustic systems were capable of automatic, real-time, continuous measurements of blood oxygenation in these blood vessels. PMID:28444150

  6. Optoacoustic diagnostic modality: from idea to clinical studies with highly compact laser diode-based systems

    NASA Astrophysics Data System (ADS)

    Esenaliev, Rinat O.

    2017-09-01

    Optoacoustic (photoacoustic) diagnostic modality is a technique that combines high optical contrast and ultrasound spatial resolution. We proposed using the optoacoustic technique for a number of applications, including cancer detection, monitoring of thermotherapy (hyperthermia, coagulation, and freezing), monitoring of cerebral blood oxygenation in patients with traumatic brain injury, neonatal patients, fetuses during late-stage labor, central venous oxygenation monitoring, and total hemoglobin concentration monitoring as well as hematoma detection and characterization. We developed and built optical parametric oscillator-based systems and multiwavelength, fiber-coupled highly compact, laser diode-based systems for optoacoustic imaging, monitoring, and sensing. To provide sufficient output pulse energy, a specially designed fiber-optic system was built and incorporated in ultrasensitive, wideband optoacoustic probes. We performed preclinical and clinical tests of the systems and the optoacoustic probes in backward mode for most of the applications and in forward mode for the breast cancer and cerebral applications. The high pulse energy and repetition rate allowed for rapid data acquisition with high signal-to-noise ratio from cerebral blood vessels, such as the superior sagittal sinus, central veins, and peripheral veins and arteries, as well as from intracranial hematomas. The optoacoustic systems were capable of automatic, real-time, continuous measurements of blood oxygenation in these blood vessels.

  7. A non-invasive blood glucose meter design using multi-type sensors

    NASA Astrophysics Data System (ADS)

    Nguyen, D.; Nguyen, Hienvu; Roveda, Janet

    2012-10-01

    In this paper, we present a design of a multi optical modalities blood glucose monitor. The Monte Carlo tissues optics simulation with typical human skin model suggests the SNR ratio for a detector sensor is 104 with high sensitivity that can detect low blood sugar limit at 1 mMole/dL ( <20 mg/dL). A Bayesian filtering algorithm is proposed for multisensor fusion to identify whether e user has the danger of having diabetes. The new design has real time response (on the average of 2 minutes) and provides great potential to perform real time monitoring for blood glucose.

  8. Enabling aspects of fiber optic acoustic sensing in harsh environments

    NASA Astrophysics Data System (ADS)

    Saxena, Indu F.

    2013-05-01

    The advantages of optical fiber sensing in harsh electromagnetic as well as physical stress environments make them uniquely suited for structural health monitoring and non-destructive testing. In addition to aerospace applications they are making a strong footprint in geophysical monitoring and exploration applications for higher temperature and pressure environments, due to the high temperature resilience of fused silica glass sensors. Deeper oil searches and geothermal exploration and harvesting are possible with these novel capabilities. Progress in components and technologies that are enabling these systems to be fieldworthy are reviewed and emerging techniques summarized that could leapfrog the system performance and reliability.

  9. In-service communication channel sensing based on reflectometry for TWDM-PON systems

    NASA Astrophysics Data System (ADS)

    Iida, Daisuke; Kuwano, Shigeru; Terada, Jun

    2014-05-01

    Many base stations are accommodated in TWDM-PON based mobile backhaul and fronthaul networks for future radio access, and failed connections in an optical network unit (ONU) wavelength channel severely degrade system performance. A cost effective in-service ONU wavelength channel monitor is essential to ensure proper system operation without failed connections. To address this issue we propose a reflectometry-based remote sensing method that provides wavelength channel information with the optical line terminal (OLT)-ONU distance. The method realizes real-time monitoring of ONU wavelength channels without signal quality degradation. Experimental results show it achieves wavelength channel distinction with high distance resolution.

  10. Measurement of deformations of models in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Charpin, F.; Armand, C.; Selvaggini, R.

    Techniques used at the ONERA Modane Center to monitor geometric variations in scale-models in wind tunnel trials are described. The methods include: photography of reflections from mirrors embedded in the model surface; laser-based torsiometry with polarized mirrors embedded in the model surface; predictions of the deformations using numerical codes for the model surface mechanical characteristics and the measured surface stresses; and, use of an optical detector to monitor the position of luminous fiber optic sources emitting from the model surfaces. The data enhance the confidence that the wind tunnel aerodynamic data will correspond with the in-flight performance of full scale flight surfaces.

  11. Optical fiber biocompatible sensors for monitoring selective treatment of tumors via thermal ablation

    NASA Astrophysics Data System (ADS)

    Tosi, Daniele; Poeggel, Sven; Dinesh, Duraibabu B.; Macchi, Edoardo G.; Gallati, Mario; Braschi, Giovanni; Leen, Gabriel; Lewis, Elfed

    2015-09-01

    Thermal ablation (TA) is an interventional procedure for selective treatment of tumors, that results in low-invasive outpatient care. The lack of real-time control of TA is one of its main weaknesses. Miniature and biocompatible optical fiber sensors are applied to achieve a dense, multi-parameter monitoring, that can substantially improve the control of TA. Ex vivo measurements are reported performed on porcine liver tissue, to reproduce radiofrequency ablation of hepatocellular carcinoma. Our measurement campaign has a two-fold focus: (1) dual pressure-temperature measurement with a single probe; (2) distributed thermal measurement to estimate point-by-point cells mortality.

  12. Applications of 1.55 μm optically injection-locked VCSELs in wavelength division multiplexed passive optical networks

    NASA Astrophysics Data System (ADS)

    Wong, Elaine; Zhao, Xiaoxue; Chang-Hasnain, Connie J.; Hofmann, Werner; Amann, Marcus C.

    2007-11-01

    In this paper, we will discuss the utilization of optically injection-locked (OIL) 1.55 μm vertical-cavity surface-emitting lasers (VCSELs) for operation as low-cost, stable, directly modulated, and potentially uncooled transmitters, whereby the injection-locking master source is furnished by modulated downstream signals. Such a transmitter will find useful application in wavelength division multiplexed passive optical networks (WDM-PONs) which is actively being developed to meet the ever-increasing bandwidth demands of end users. Our scheme eliminates the need for external injection locking optical sources, external modulators, and wavelength stabilization circuitry. We show through experiments that the injection-locked VCSEL favors low injection powers and responds only strongly to the carrier but not the modulated data of the downstream signal. Further, we will discuss results from experimental studies performed on the dependence of OIL-VCSELs in bidirectional networks on the degree of Rayleigh backscattered signal and extinction ratio. We show that error-free upstream performance can be achieved when the upstream signal to Rayleigh backscattering ratio is greater than 13.4 dB, and with minimal dependence on the downstream extinction ratio. We will also review a fault monitoring and localization scheme based on a highly-sensitive yet low-cost monitor comprising a low output power broadband source and low bandwidth detectors. The proposed scheme benefits from the high reflectivity top distributed Bragg reflector mirror of the OIL-VCSEL, incurring only a minimal penalty on the upstream transmissions of the existing infrastructure. Such a scheme provides fault monitoring without having to further invest in the upgrade of customer premises.

  13. Optical Network Virtualisation Using Multitechnology Monitoring and SDN-Enabled Optical Transceiver

    NASA Astrophysics Data System (ADS)

    Ou, Yanni; Davis, Matthew; Aguado, Alejandro; Meng, Fanchao; Nejabati, Reza; Simeonidou, Dimitra

    2018-05-01

    We introduce the real-time multi-technology transport layer monitoring to facilitate the coordinated virtualisation of optical and Ethernet networks supported by optical virtualise-able transceivers (V-BVT). A monitoring and network resource configuration scheme is proposed to include the hardware monitoring in both Ethernet and Optical layers. The scheme depicts the data and control interactions among multiple network layers under the software defined network (SDN) background, as well as the application that analyses the monitored data obtained from the database. We also present a re-configuration algorithm to adaptively modify the composition of virtual optical networks based on two criteria. The proposed monitoring scheme is experimentally demonstrated with OpenFlow (OF) extensions for a holistic (re-)configuration across both layers in Ethernet switches and V-BVTs.

  14. Nonlinear optical microscopy for immunoimaging: a custom optimized system of high-speed, large-area, multicolor imaging

    PubMed Central

    Li, Hui; Cui, Quan; Zhang, Zhihong; Luo, Qingming

    2015-01-01

    Background The nonlinear optical microscopy has become the current state-of-the-art for intravital imaging. Due to its advantages of high resolution, superior tissue penetration, lower photodamage and photobleaching, as well as intrinsic z-sectioning ability, this technology has been widely applied in immunoimaging for a decade. However, in terms of monitoring immune events in native physiological environment, the conventional nonlinear optical microscope system has to be optimized for live animal imaging. Generally speaking, three crucial capabilities are desired, including high-speed, large-area and multicolor imaging. Among numerous high-speed scanning mechanisms used in nonlinear optical imaging, polygon scanning is not only linearly but also dispersion-freely with high stability and tunable rotation speed, which can overcome disadvantages of multifocal scanning, resonant scanner and acousto-optical deflector (AOD). However, low frame rate, lacking large-area or multicolor imaging ability make current polygonbased nonlinear optical microscopes unable to meet the requirements of immune event monitoring. Methods We built up a polygon-based nonlinear optical microscope system which was custom optimized for immunoimaging with high-speed, large-are and multicolor imaging abilities. Results Firstly, we validated the imaging performance of the system by standard methods. Then, to demonstrate the ability to monitor immune events, migration of immunocytes observed by the system based on typical immunological models such as lymph node, footpad and dorsal skinfold chamber are shown. Finally, we take an outlook for the possible advance of related technologies such as sample stabilization and optical clearing for more stable and deeper intravital immunoimaging. Conclusions This study will be helpful for optimizing nonlinear optical microscope to obtain more comprehensive and accurate information of immune events. PMID:25694951

  15. Low-Cost Detection of Thin Film Stress during Fabrication

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center has developed a simple, cost-effective optical method for thin film stress measurements during growth and/or subsequent annealing processes. Stress arising in thin film fabrication presents production challenges for electronic devices, sensors, and optical coatings; it can lead to substrate distortion and deformation, impacting the performance of thin film products. NASA's technique measures in-situ stress using a simple, noncontact fiber optic probe in the thin film vacuum deposition chamber. This enables real-time monitoring of stress during the fabrication process and allows for efficient control of deposition process parameters. By modifying process parameters in real time during fabrication, thin film stress can be optimized or controlled, improving thin film product performance.

  16. Distributed measurement of high electric current by means of polarimetric optical fiber sensor.

    PubMed

    Palmieri, Luca; Sarchi, Davide; Galtarossa, Andrea

    2015-05-04

    A novel distributed optical fiber sensor for spatially resolved monitoring of high direct electric current is proposed and analyzed. The sensor exploits Faraday rotation and is based on the polarization analysis of the Rayleigh backscattered light. Preliminary laboratory tests, performed on a section of electric cable for currents up to 2.5 kA, have confirmed the viability of the method.

  17. A novel interferometric characterization technique for 3D analyses at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Roshanghias, Ali; Bardong, Jochen; Pulko, Jozef; Binder, Alfred

    2018-04-01

    Advanced optical measurement techniques are always of interest for the characterization of engineered surfaces. When pressure or temperature modules are also incorporated, these techniques will turn into robust and versatile methodologies for various applications such as performance monitoring of devices in service conditions. However, some microelectromechanical systems (MEMS) and MOEMS devices require performance monitoring at their final stage, i.e. enclosed or packaged. That necessitates measurements through a protective liquid, plastic, or glass, whereas the conventional objective lenses are not designed for such media. Correspondingly, in the current study, the development and tailoring of a 3D interferometer as a means for measuring the topography of reflective surfaces under transmissive media is sought. For topography measurements through glass, water and oil, compensation glass plates were designed and incorporated into the Michelson type interferometer objectives. Moreover, a customized chamber set-up featuring an optical access for the observation of the topographical changes at increasing pressure and temperature conditions was constructed and integrated into the apparatus. Conclusively, the in situ monitoring of the elastic deformation of sensing microstructures inside MEMS packages was achieved. These measurements were performed at a defined pressure (0–100 bar) and temperature (25 °C–180 °C).

  18. Development of the ARICH monitor system for the Belle II experiment

    NASA Astrophysics Data System (ADS)

    Hataya, K.; Adachi, I.; Dolenec, R.; Iori, S.; Iwata, S.; Kakuno, H.; Kataura, R.; Kawai, H.; Kindo, H.; Kobayashi, T.; Korpar, S.; Križan, P.; Kumita, T.; Mrvar, M.; Nishida, S.; Ogawa, K.; Ogawa, S.; Pestotnik, R.; Šantelj, L.; Sumiyoshi, T.; Tabata, M.; Yonenaga, M.; Yusa, Y.

    2017-12-01

    The Belle II detector is under construction at KEK in Japan. In the forward endcap region of the Belle II detector, particle identification (PID) is performed by the Aerogel Ring Imaging Cherenkov (ARICH) counter composed of aerogel tiles and 144-channel Hybrid Avalanche Photo-Detectors (HAPDs). The photon detection efficiency of the photosensor is important for a stable operation of the ARICH. To examine the performance of the HAPDs periodically, a monitor system using scattered photons injected by optical fibers is being developed. In this paper, we report the test using the prototype monitor system and the tests with a partially built ARICH detector.

  19. Extraction of natural weight shift and foot rolling in gait based on hetero-core optical fiber load sensor

    NASA Astrophysics Data System (ADS)

    Otsuka, Yudai; Koyama, Yuya; Nishiyama, Michiko; Watanabe, Kazuhiro

    2016-03-01

    Gait in daily activity affects human health because it may cause physical problems such as asymmetric pelvis, flat foot and bowlegs. Monitoring natural weight shift and foot rolling on plantar has been employed in order for researchers to analyze gait characteristics. Conventional gait monitoring systems have been developed using camera, acceleration sensor, gyro sensor and electrical load sensors. They have some problems such as limited measurement place, temperature dependence and electric leakage. On the other hand, a hetero-core optical fiber sensor has many advantages such as high sensitivity for macro-bending, light weight sensor element, independency on temperature fluctuations, and no electric contact. This paper describes extraction of natural weight shift and foot rolling for gait evaluation by using a sensitive shoe, in the insole of which hetero-core optical load sensors are embedded for detecting plantar pressure. Plantar pressure of three subjects who wear the sensitive shoe and walk on the treadmill was monitored. As a result, weight shift and foot rolling for three subjects were extracted using the proposed sensitive shoe in terms of centroid movement and positions. Additionally, these extracted data are compared to that of electric load sensor to ensure consistency. For these results, it was successfully demonstrated that hetero-core optical fiber load sensor performed in unconstraint gait monitoring as well as electric load sensor.

  20. Damage detection in bridges through fiber optic structural health monitoring

    NASA Astrophysics Data System (ADS)

    Doornink, J. D.; Phares, B. M.; Wipf, T. J.; Wood, D. L.

    2006-10-01

    A fiber optic structural health monitoring (SHM) system was developed and deployed by the Iowa State University (ISU) Bridge Engineering Center (BEC) to detect gradual or sudden damage in fracture-critical bridges (FCBs). The SHM system is trained with measured performance data, which are collected by fiber optic strain sensors to identify typical bridge behavior when subjected to ambient traffic loads. Structural responses deviating from the trained behavior are considered to be signs of structural damage or degradation and are identified through analytical procedures similar to control chart analyses used in statistical process control (SPC). The demonstration FCB SHM system was installed on the US Highway 30 bridge near Ames, IA, and utilizes 40 fiber bragg grating (FBG) sensors to continuously monitor the bridge response when subjected to ambient traffic loads. After the data is collected and processed, weekly evaluation reports are developed that summarize the continuous monitoring results. Through use of the evaluation reports, the bridge owner is able to identify and estimate the location and severity of the damage. The information presented herein includes an overview of the SHM components, results from laboratory and field validation testing on the system components, and samples of the reduced and analyzed data.

  1. Development of real-time thermal neutron monitor using boron-loaded plastic scintillator with optical fiber for boron neutron capture therapy.

    PubMed

    Ishikawa, M; Ono, K; Sakurai, Y; Unesaki, H; Uritani, A; Bengua, G; Kobayashi, T; Tanaka, K; Kosako, T

    2004-11-01

    A new thermal neutron monitor for boron neutron capture therapy was developed in this study. We called this monitor equipped boron-loaded plastic scintillator that uses optical fiber for signal transmission as an [scintillator with optical fiber] SOF detector. A water phantom experiment was performed to verify how the SOF detector compared with conventional method of measuring thermal neutron fluence. Measurements with a single SOF detector yielded indistinguishable signals for thermal neutrons and gamma rays. To account for the gamma ray contribution in the signal recorded by the SOF detector, a paired SOF detector system was employed. This was composed of an SOF detector with boron-loaded scintillator and an SOF detector with a boron-free scintillator. The difference between the recorded counts of these paired SOF detectors was used as the measure of the gamma ray contribution in the measured neutron fluence. The paired SOF detectors were ascertained to be effective in measuring thermal neutron flux in the range above 10(6)(n/cm(2)/s). Clinical trials using paired SOF to measure thermal neutron flux during therapy confirmed that paired SOF detectors were effective as a real-time thermal neutron flux monitor.

  2. New Applications of Portable Raman Spectroscopy in Agri-Bio-Photonics

    NASA Astrophysics Data System (ADS)

    Voronine, Dmitri; Scully, Rob; Sanders, Virgil

    2014-03-01

    Modern optical techniques based on Raman spectroscopy are being used to monitor and analyze the health of cattle, crops and their natural environment. These optical tools are now available to perform fast, noninvasive analysis of live animals and plants in situ. We will report new applications of a portable handheld Raman spectroscopy to identification and taxonomy of plants. In addition, detection of organic food residues will be demonstrated. Advantages and limitations of current portable instruments will be discussed with suggestions for improved performance by applying enhanced Raman spectroscopic schemes.

  3. Feature extraction and identification in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring

    NASA Astrophysics Data System (ADS)

    Wu, Huijuan; Qian, Ya; Zhang, Wei; Tang, Chenghao

    2017-12-01

    High sensitivity of a distributed optical-fiber vibration sensing (DOVS) system based on the phase-sensitivity optical time domain reflectometry (Φ-OTDR) technology also brings in high nuisance alarm rates (NARs) in real applications. In this paper, feature extraction methods of wavelet decomposition (WD) and wavelet packet decomposition (WPD) are comparatively studied for three typical field testing signals, and an artificial neural network (ANN) is built for the event identification. The comparison results prove that the WPD performs a little better than the WD for the DOVS signal analysis and identification in oil pipeline safety monitoring. The identification rate can be improved up to 94.4%, and the nuisance alarm rate can be effectively controlled as low as 5.6% for the identification network with the wavelet packet energy distribution features.

  4. Optical Spectroscopy of New Materials

    NASA Technical Reports Server (NTRS)

    White, Susan M.; Arnold, James O. (Technical Monitor)

    1993-01-01

    Composites are currently used for a rapidly expanding number of applications including aircraft structures, rocket nozzles, thermal protection of spacecraft, high performance ablative surfaces, sports equipment including skis, tennis rackets and bicycles, lightweight automobile components, cutting tools, and optical-grade mirrors. Composites are formed from two or more insoluble materials to produce a material with superior properties to either component. Composites range from dispersion-hardened alloys to advanced fiber-reinforced composites. UV/VIS and FTIR spectroscopy currently is used to evaluate the bonding between the matrix and the fibers, monitor the curing process of a polymer, measure surface contamination, characterize the interphase material, monitor anion transport in polymer phases, characterize the void formation (voids must be minimized because, like cracks in a bulk material, they lead to failure), characterize the surface of the fiber component, and measure the overall optical properties for energy balances.

  5. Energy Efficient, Cross-Layer Enabled, Dynamic Aggregation Networks for Next Generation Internet

    NASA Astrophysics Data System (ADS)

    Wang, Michael S.

    Today, the Internet traffic is growing at a near exponential rate, driven predominately by data center-based applications and Internet-of-Things services. This fast-paced growth in Internet traffic calls into question the ability of the existing optical network infrastructure to support this continued growth. The overall optical networking equipment efficiency has not been able to keep up with the traffic growth, creating a energy gap that makes energy and cost expenditures scale linearly with the traffic growth. The implication of this energy gap is that it is infeasible to continue using existing networking equipment to meet the growing bandwidth demand. A redesign of the optical networking platform is needed. The focus of this dissertation is on the design and implementation of energy efficient, cross-layer enabled, dynamic optical networking platforms, which is a promising approach to address the exponentially growing Internet bandwidth demand. Chapter 1 explains the motivation for this work by detailing the huge Internet traffic growth and the unsustainable energy growth of today's networking equipment. Chapter 2 describes the challenges and objectives of enabling agile, dynamic optical networking platforms and the vision of the Center for Integrated Access Networks (CIAN) to realize these objectives; the research objectives of this dissertation and the large body of related work in this field is also summarized. Chapter 3 details the design and implementation of dynamic networking platforms that support wavelength switching granularity. The main contribution of this work involves the experimental validation of deep cross-layer communication across the optical performance monitoring (OPM), data, and control planes. The first experiment shows QoS-aware video streaming over a metro-scale test-bed through optical power monitoring of the transmission wavelength and cross-layer feedback control of the power level. The second experiment extends the performance monitoring capabilities to include real-time monitoring of OSNR and polarization mode dispersion (PMD) to enable dynamic wavelength switching and selective restoration. Chapter 4 explains the author?s contributions in designing dynamic networking at the sub-wavelength switching granularity, which can provide greater network efficiency due to its finer granularity. To support dynamic switching, regeneration, adding/dropping, and control decisions on each individual packet, the cross-layer enabled node architecture is enhanced with a FPGA controller that brings much more precise timing and control to the switching, OPM, and control planes. Furthermore, QoS-aware packet protection and dynamic switching, dropping, and regeneration functionalities were experimentally demonstrated in a multi-node network. Chapter 5 describes a technique to perform optical grooming, a process of optically combining multiple incoming data streams into a single data stream, which can simultaneously achieve greater bandwidth utilization and increased spectral efficiency. In addition, an experimental demonstration highlighting a fully functioning multi-node, agile optical networking platform is detailed. Finally, a summary and discussion of future work is provided in Chapter 6. The future of the Internet is very exciting, filled with not-yet-invented applications and services driven by cloud computing and Internet-of-Things. The author is cautiously optimistic that agile, dynamically reconfigurable optical networking is the solution to realizing this future.

  6. In situ control of industrial processes using laser light scattering and optical rotation

    NASA Astrophysics Data System (ADS)

    Mendoza Sanchez, Patricia Judith; López Echevarria, Daniel; Huerta Ruelas, Jorge Adalberto

    2006-02-01

    We present results of optical measurements in products or processes usually found in industrial processes, which can be used to control them. Laser light scattering was employed during semiconductor epitaxial growth by molecular beam epitaxy. With this technique, it was possible to determine growth rate, roughness and critical temperatures related to substrate degradation. With the same scattering technique, oil degradation as function of temperature was monitored for different automotive lubricants. Clear differences can be studied between monograde and multigrade oils. Optical rotation measurements as function of temperature were performed in apple juice in a pasteurization process like. Average variations related to optical rotation dependence of sugars were measured and monitored during heating and cooling process, finding a reversible behavior. As opposite behavior, sugar-protein solution was measured in a similar heating and cooling process. Final result showed a non-reversible behavior related to protein denaturation. Potential applications are discussed for metal-mechanic, electronic, food, and pharmaceutical industry. Future improvements in optical systems to make them more portable and easily implemented under typical industry conditions are mentioned.

  7. Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity.

    PubMed

    Nishyama, Michiko; Miyamoto, Mitsuo; Watanabe, Kazuhiro

    2011-01-01

    We describe respiration monitoring in sleep using hetero-core fiber optic pressure sensors. The proposed hetero-core fiber optic sensor is highly sensitive to macrobending as a result of the core diameter difference due to stable single-mode transmission. Pressure sensors based on hetero-core fiber optics were fabricated to have a high sensitivity to small pressure changes resulting from minute body motions, such as respiration, during sleep and large pressure changes, such as those caused by a rollover. The sensors are installed in a conventional bed. The pressure characteristic performance of all the fabricated hetero-core fiber optic pressure sensors is found to show a monotonic response with weight changes. A respiration monitoring test in seven subjects efficiently demonstrates the effective use of eight hetero-core pressure sensors installed in a bed. Additionally, even in the case of different body postures, such as lying on one's side, a slight body movement due to respiration is detected by the hetero-core pressure sensors.

  8. Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity

    NASA Astrophysics Data System (ADS)

    Nishyama, Michiko; Miyamoto, Mitsuo; Watanabe, Kazuhiro

    2011-01-01

    We describe respiration monitoring in sleep using hetero-core fiber optic pressure sensors. The proposed hetero-core fiber optic sensor is highly sensitive to macrobending as a result of the core diameter difference due to stable single-mode transmission. Pressure sensors based on hetero-core fiber optics were fabricated to have a high sensitivity to small pressure changes resulting from minute body motions, such as respiration, during sleep and large pressure changes, such as those caused by a rollover. The sensors are installed in a conventional bed. The pressure characteristic performance of all the fabricated hetero-core fiber optic pressure sensors is found to show a monotonic response with weight changes. A respiration monitoring test in seven subjects efficiently demonstrates the effective use of eight hetero-core pressure sensors installed in a bed. Additionally, even in the case of different body postures, such as lying on one's side, a slight body movement due to respiration is detected by the hetero-core pressure sensors.

  9. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: Internal cell signals and utility for state estimation

    NASA Astrophysics Data System (ADS)

    Ganguli, Anurag; Saha, Bhaskar; Raghavan, Ajay; Kiesel, Peter; Arakaki, Kyle; Schuh, Andreas; Schwartz, Julian; Hegyi, Alex; Sommer, Lars Wilko; Lochbaum, Alexander; Sahu, Saroj; Alamgir, Mohamed

    2017-02-01

    A key challenge hindering the mass adoption of Lithium-ion and other next-gen chemistries in advanced battery applications such as hybrid/electric vehicles (xEVs) has been management of their functional performance for more effective battery utilization and control over their life. Contemporary battery management systems (BMS) reliant on monitoring external parameters such as voltage and current to ensure safe battery operation with the required performance usually result in overdesign and inefficient use of capacity. More informative embedded sensors are desirable for internal cell state monitoring, which could provide accurate state-of-charge (SOC) and state-of-health (SOH) estimates and early failure indicators. Here we present a promising new embedded sensing option developed by our team for cell monitoring, fiber-optic (FO) sensors. High-performance large-format pouch cells with embedded FO sensors were fabricated. This second part of the paper focuses on the internal signals obtained from these FO sensors. The details of the method to isolate intercalation strain and temperature signals are discussed. Data collected under various xEV operational conditions are presented. An algorithm employing dynamic time warping and Kalman filtering was used to estimate state-of-charge with high accuracy from these internal FO signals. Their utility for high-accuracy, predictive state-of-health estimation is also explored.

  10. An Optical Fibre Depth (Pressure) Sensor for Remote Operated Vehicles in Underwater Applications

    PubMed Central

    Duraibabu, Dinesh Babu; Poeggel, Sven; Omerdic, Edin; Capocci, Romano; Lewis, Elfed; Newe, Thomas; Leen, Gabriel; Toal, Daniel; Dooly, Gerard

    2017-01-01

    A miniature sensor for accurate measurement of pressure (depth) with temperature compensation in the ocean environment is described. The sensor is based on an optical fibre Extrinsic Fabry-Perot interferometer (EFPI) combined with a Fibre Bragg Grating (FBG). The EFPI provides pressure measurements while the Fibre Bragg Grating (FBG) provides temperature measurements. The sensor is mechanically robust, corrosion-resistant and suitable for use in underwater applications. The combined pressure and temperature sensor system was mounted on-board a mini remotely operated underwater vehicle (ROV) in order to monitor the pressure changes at various depths. The reflected optical spectrum from the sensor was monitored online and a pressure or temperature change caused a corresponding observable shift in the received optical spectrum. The sensor exhibited excellent stability when measured over a 2 h period underwater and its performance is compared with a commercially available reference sensor also mounted on the ROV. The measurements illustrates that the EFPI/FBG sensor is more accurate for depth measurements (depth of ~0.020 m). PMID:28218727

  11. Analytical N beam position monitor method

    NASA Astrophysics Data System (ADS)

    Wegscheider, A.; Langner, A.; Tomás, R.; Franchi, A.

    2017-11-01

    Measurement and correction of focusing errors is of great importance for performance and machine protection of circular accelerators. Furthermore LHC needs to provide equal luminosities to the experiments ATLAS and CMS. High demands are also set on the speed of the optics commissioning, as the foreseen operation with β*-leveling on luminosity will require many operational optics. A fast measurement of the β -function around a storage ring is usually done by using the measured phase advance between three consecutive beam position monitors (BPMs). A recent extension of this established technique, called the N-BPM method, was successfully applied for optics measurements at CERN, ALBA, and ESRF. We present here an improved algorithm that uses analytical calculations for both random and systematic errors and takes into account the presence of quadrupole, sextupole, and BPM misalignments, in addition to quadrupolar field errors. This new scheme, called the analytical N-BPM method, is much faster, further improves the measurement accuracy, and is applicable to very pushed beam optics where the existing numerical N-BPM method tends to fail.

  12. Applications of optical sensing for laser cutting and drilling.

    PubMed

    Fox, Mahlen D T; French, Paul; Peters, Chris; Hand, Duncan P; Jones, Julian D C

    2002-08-20

    Any reliable automated production system must include process control and monitoring techniques. Two laser processing techniques potentially lending themselves to automation are percussion drilling and cutting. For drilling we investigate the performance of a modification of a nonintrusive optical focus control system we previously developed for laser welding, which exploits the chromatic aberrations of the processing optics to determine focal error. We further developed this focus control system for closed-loop control of laser cutting. We show that an extension of the technique can detect deterioration in cut quality, and we describe practical trials carried out on different materials using both oxygen and nitrogen assist gas. We base our techniques on monitoring the light generated by the process, captured nonintrusively by the effector optics and processed remotely from the workpiece. We describe the relationship between the temporal and the chromatic modulation of the detected light and process quality and show how the information can be used as the basis of a process control system.

  13. On-line carbon balance of yeast fermentations using miniaturized optical sensors.

    PubMed

    Beuermann, Thomas; Egly, Dominik; Geoerg, Daniel; Klug, Kerris Isolde; Storhas, Winfried; Methner, Frank-Juergen

    2012-03-01

    Monitoring of microbiological processes using optical sensors and spectrometers has gained in importance over the past few years due to its advantage in enabling non-invasive on-line analysis. Near-infrared (NIR) and mid-infrared (MIR) spectrometer set-ups in combination with multivariate calibrations have already been successfully employed for the simultaneous determination of different metabolites in microbiological processes. Photometric sensors, in addition to their low price compared to spectrometer set-ups, have the advantage of being compact and are easy to calibrate and operate. In this work, the detection of ethanol and CO(2) in the exhaust gas during aerobic yeast fermentation was performed by two photometric gas analyzers, and dry yeast biomass was monitored using a fiber optic backscatter set-up. The optical sensors could be easily fitted to the bioreactor and exhibited high robustness during measuring. The ethanol content of the fermentation broth was monitored on-line by measuring the ethanol concentration in the fermentation exhaust and applying a conversion factor. The vapor/liquid equilibrium and the associated conversion factor strongly depend on the process parameter temperature but not on aeration and stirring rate. Dry yeast biomass was determined in-line by a backscattering signal applying a linear calibration. An on-line balance with a recovery rate of 95-97% for carbon was achieved with the use of three optical sensors (two infrared gas analyzers and one fiber optic backscatter set-up). Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Noninvasive assessment of hemodynamic and brain metabolism parameters following closed head injury in a mouse model by comparative diffuse optical reflectance approaches.

    PubMed

    Abookasis, David; Volkov, Boris; Shochat, Ariel; Kofman, Itamar

    2016-04-01

    Optical techniques have gained substantial interest over the past four decades for biomedical imaging due to their unique advantages, which may suggest their use as alternatives to conventional methodologies. Several optical techniques have been successfully adapted to clinical practice and biomedical research to monitor tissue structure and function in both humans and animal models. This paper reviews the analysis of the optical properties of brain tissue in the wavelength range between 500 and 1000 nm by three different diffuse optical reflectance methods: spatially modulated illumination, orthogonal diffuse light spectroscopy, and dual-wavelength laser speckle imaging, to monitor changes in brain tissue morphology, chromophore content, and metabolism following head injury. After induction of closed head injury upon anesthetized mice by weight-drop method, significant changes in hemoglobin oxygen saturation, blood flow, and metabolism were readily detectible by all three optical setups, up to 1 h post-trauma. Furthermore, the experimental results clearly demonstrate the feasibility and reliability of the three methodologies, and the differences between the system performances and capabilities are also discussed. The long-term goal of this line of study is to combine these optical systems to study brain pathophysiology in high spatiotemporal resolution using additional models of brain trauma. Such combined use of complementary algorithms should fill the gaps in each system's capabilities, toward the development of a noninvasive, quantitative tool to expand our knowledge of the principles underlying brain function following trauma, and to monitor the efficacy of therapeutic interventions in the clinic.

  15. Noninvasive assessment of hemodynamic and brain metabolism parameters following closed head injury in a mouse model by comparative diffuse optical reflectance approaches

    PubMed Central

    Abookasis, David; Volkov, Boris; Shochat, Ariel; Kofman, Itamar

    2016-01-01

    Abstract. Optical techniques have gained substantial interest over the past four decades for biomedical imaging due to their unique advantages, which may suggest their use as alternatives to conventional methodologies. Several optical techniques have been successfully adapted to clinical practice and biomedical research to monitor tissue structure and function in both humans and animal models. This paper reviews the analysis of the optical properties of brain tissue in the wavelength range between 500 and 1000 nm by three different diffuse optical reflectance methods: spatially modulated illumination, orthogonal diffuse light spectroscopy, and dual-wavelength laser speckle imaging, to monitor changes in brain tissue morphology, chromophore content, and metabolism following head injury. After induction of closed head injury upon anesthetized mice by weight-drop method, significant changes in hemoglobin oxygen saturation, blood flow, and metabolism were readily detectible by all three optical setups, up to 1 h post-trauma. Furthermore, the experimental results clearly demonstrate the feasibility and reliability of the three methodologies, and the differences between the system performances and capabilities are also discussed. The long-term goal of this line of study is to combine these optical systems to study brain pathophysiology in high spatiotemporal resolution using additional models of brain trauma. Such combined use of complementary algorithms should fill the gaps in each system’s capabilities, toward the development of a noninvasive, quantitative tool to expand our knowledge of the principles underlying brain function following trauma, and to monitor the efficacy of therapeutic interventions in the clinic. PMID:27175372

  16. Electron Induced Scintillation Testing of Commercially Available Optical Fibers for Space Flight

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    1999-01-01

    A test to verify the performance of several commercial and military optical fibers available on the market today was conducted, via usage of an electron accelerator, to monitor radiation induced scintillation or luminescence. The test results showed that no significant effects could be detected with the PMT system used, above a noise floor of 50 photons/sec that were due to optical fiber scintillation. Although some data appeared to show events taking place, noise scan results have correlated these events to arcing inside the electron accelerator facility. This test was to simply characterize for space flight, which optical fiber candidates were the largest scintillators among the eighteen optical fiber candidates tested.

  17. Fiber-optic security monitoring sensor

    NASA Astrophysics Data System (ADS)

    Englund, Marja; Ipatti, Ari; Karioja, Pentti

    1997-09-01

    In security monitoring, fiber-optic sensors are advantageous because strong and rugged optical fibers are thin, light, flexible and immune to electromagnetic interference. Optical fibers packaged into cables, such as, building and underground cables, can be used to detect even slightest disturbances, movements, vibrations, pressure changes and impacts along their entire length. When running an optical cable around a structure, and when using speckle pattern recognition technique for alarm monitoring, the distributed monitoring of the structure is possible. The sensing cable can be strung along fences, buried underground, embedded into concrete, mounted on walls, floors and ceilings, or wrapped around the specific components. In this paper, a fiber-optic security monitoring sensor based on speckle pattern monitoring is described. The description of the measuring method and the results of the experimental fiber installations are given. The applicability of embedded and surface mounted fibers to monitor the pressure and impact induced vibrations of fences and concrete structures as well as the loosening of critical parts in a power plant machinery were demonstrated in field and laboratory conditions. The experiences related to the applications and optical cable types are also discussed.

  18. Fiber optic security monitoring sensor

    NASA Astrophysics Data System (ADS)

    Englund, Marja; Ipatti, Ari; Karioja, Pentti

    1997-09-01

    In security monitoring, fiber-optic sensors are advantageous because strong and rugged optical fibers are thin, light, flexible and immune to electromagnetic interference. Optical fibers packaged into cables, such as, building and underground cables, can be used to detect even slightest disturbances, movements, vibrations, pressure changes and impacts along their entire length. When running an optical cable around a structure, and when using speckle pattern recognition technique for alarm monitoring, the distributed monitoring of the structure is possible. The sensing cable can be strung along fences, buried underground, embedded into concrete, mounted on walls, floors and ceilings, or wrapped around the specific components. In this paper, a fiber-optic security monitoring sensor based on speckle pattern monitoring is described. The description of the measuring method and the results of the experimental fiber installations are given. The applicability of embedded and surface mounted fibers to monitor the pressure and impact induced vibrations of fences and concrete structures as well as the loosening of critical parts in a power plant machinery were demonstrated in field and laboratory conditions. The experiences related to the applications and optical cable types are also discussed.

  19. Vapor and liquid optical monitoring with sculptured Bragg microcavities

    NASA Astrophysics Data System (ADS)

    Oliva-Ramirez, Manuel; Gil-Rostra, Jorge; López-Santos, Maria Carmen; González-Elipe, Agustín R.; Yubero, Francisco

    2017-10-01

    Sculptured porous Bragg microcavities (BMs) formed by the successive stacking of columnar SiO2 and TiO2 thin films with a zig-zag columnar microstructure are prepared by glancing angle deposition. These BMs act as wavelength-dependent optical retarders. This optical behavior is attributed to a self-structuration of the stacked layers involving the lateral association of nanocolumns in the direction perpendicular to the main flux of particles during the multilayer film growth, as observed by focused ion beam scanning electron microscopy. The retardance of these optically active BMs can be modulated by dynamic infiltration of their open porosity with vapors, liquids, or solutions with different refractive indices. The tunable birefringence of these nanostructured photonic systems has been successfully simulated with a simple model that assumes that each layer within the BMs stack has uniaxial birefringence. The sculptured BMs have been incorporated as microfluidic chips for optical transduction for label-free vapor and liquid sensing. Several examples of the detection performance of these chips, working either in reflection or transmission configuration, for the optical monitoring of vapor and liquids of different refractive indices and aqueous solutions of glucose flowing through the microfluidic chips are described.

  20. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique.

    PubMed

    Wada, Daichi; Igawa, Hirotaka; Kasai, Tokio

    2016-09-01

    We demonstrate a dynamic distributed monitoring technique using a long-length fiber Bragg grating (FBG) interrogated by optical frequency domain reflectometry (OFDR) that measures strain at a speed of 150 Hz, spatial resolution of 1 mm, and measurement range of 20 m. A 5 m FBG is bonded to a 5.5 m helicopter blade model, and vibration is applied by the step relaxation method. The time domain responses of the strain distributions are measured, and the blade deflections are calculated based on the strain distributions. Frequency response functions are obtained using the time domain responses of the calculated deflection induced by the preload release, and the modal parameters are retrieved. Experimental results demonstrated the dynamic monitoring performances and the applicability to the modal analysis of the OFDR-FBG technique.

  1. Weather and atmosphere observation with the ATOM all-sky camera

    NASA Astrophysics Data System (ADS)

    Jankowsky, Felix; Wagner, Stefan

    2015-03-01

    The Automatic Telescope for Optical Monitoring (ATOM) for H.E.S.S. is an 75 cm optical telescope which operates fully automated. As there is no observer present during observation, an auxiliary all-sky camera serves as weather monitoring system. This device takes an all-sky image of the whole sky every three minutes. The gathered data then undergoes live-analysis by performing astrometric comparison with a theoretical night sky model, interpreting the absence of stars as cloud coverage. The sky monitor also serves as tool for a meteorological analysis of the observation site of the the upcoming Cherenkov Telescope Array. This overview covers design and benefits of the all-sky camera and additionally gives an introduction into current efforts to integrate the device into the atmosphere analysis programme of H.E.S.S.

  2. Determination of LEDs degradation with entropy generation rate

    NASA Astrophysics Data System (ADS)

    Cuadras, Angel; Yao, Jiaqiang; Quilez, Marcos

    2017-10-01

    We propose a method to assess the degradation and aging of light emitting diodes (LEDs) based on irreversible entropy generation rate. We degraded several LEDs and monitored their entropy generation rate ( S ˙ ) in accelerated tests. We compared the thermoelectrical results with the optical light emission evolution during degradation. We find a good relationship between aging and S ˙ (t), because S ˙ is both related to device parameters and optical performance. We propose a threshold of S ˙ (t) as a reliable damage indicator of LED end-of-life that can avoid the need to perform optical measurements to assess optical aging. The method lays beyond the typical statistical laws for lifetime prediction provided by manufacturers. We tested different LED colors and electrical stresses to validate the electrical LED model and we analyzed the degradation mechanisms of the devices.

  3. First clinical evaluation of a new percutaneous optical fiber glucose sensor for continuous glucose monitoring in diabetes.

    PubMed

    Müller, Achim Josef; Knuth, Monika; Nikolaus, Katharina Sibylle; Krivánek, Roland; Küster, Frank; Hasslacher, Christoph

    2013-01-01

    This article describes a new fiber-coupled, percutaneous fluorescent continuous glucose monitoring (CGM) system that has shown 14 days of functionality in a human clinical trial. The new optical CGM system (FiberSense) consists of a transdermal polymer optical fiber containing a biochemical glucose sensor and a small fluorescence photometer optically coupled to the fiber. The glucose-sensitive optical fiber was implanted in abdominal and upper-arm subcutaneous tissue of six diabetes patients and remained there for up to 14 days. The performance of the system was monitored during six visits to the study center during the trial. Blood glucose changes were induced by oral carbohydrate intake and insulin injections, and capillary blood glucose samples were obtained from the finger tip. The data were analyzed using linear regression and the consensus error grid analysis. The FiberSense worn at the upper arm exhibited excellent results during 14 wearing days, with an overall mean absolute relative difference (MARD) of 8.3% and 94.6% of the data in zone A of the consensus error grid. At the abdominal application site, FiberSense resulted in a MARD of 11.4 %, with 93.8% of the data in zone A. The FiberSense CGM system provided consistent, reliable measurements of subcutaneous glucose levels in human clinical trial patients with diabetes for up to 14 days. © 2013 Diabetes Technology Society.

  4. Diffuse optical systems and methods to image physiological changes of the brain in response to focal TBI (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Volkov, Boris; Kofman, Itamar

    2017-02-01

    During the last four decades, various optical techniques have been proposed and intensively used for biomedical diagnosis and therapy both in animal model and in human. These techniques have several advantages over the traditional existing methods: simplicity in structure, low-cost, easy to handle, portable, can be used repeatedly over time near the patient bedside for continues monitoring, and offer high spatiotemporal resolution. In this work, we demonstrate the use of two optical imaging modalities namely, spatially modulated illumination and dual-wavelength laser speckle to image the changes in brain tissue chromophores, morphology, and metabolic before, during, and after the onset of focal traumatic brain injury in intact mouse head (n=15). Injury was applied in anesthetized mice by weight-drop apparatus using 50gram metal rod striking the mouse's head. Following data analysis, we show a series of hemodynamic and structural changes over time including higher deoxyhemoglobin, reduction in oxygen saturation and blood flow, cell swelling, etc., in comparison with baseline measurements. In addition, to validate the monitoring of cerebral blood flow by the imaging system, measurements with laser Doppler flowmetry were also performed (n=5), which confirmed reduction in blood flow following injury. Overall, our result demonstrates the capability of diffuse optical modalities to monitor and map brain tissue optical and physiological properties following brain trauma.

  5. Simultaneous monitoring of multiple contrast agents using a hybrid MR-DOT system

    NASA Astrophysics Data System (ADS)

    Gulsen, Gultekin; Unlu, Mehmet Burcin; Birgul, Ozlem; Nalcioglu, Orhan

    2007-02-01

    Frequency domain diffuse optical tomography (DOT) is a recently emerging technique that uses arrays of sources and detectors to obtain spatially dependent optical parameters of tissue. Here, we describe the design of a hybrid MR-DOT system for dynamic imaging cancer. The combined system acquires both MR and optical data simultaneously. The performance of the system is tested with phantom and in-vivo studies. Gd-DTPA and ICG was used for this purpose and the enhancement kinetics of both agents are recorded using the hybrid system.

  6. Modified tandem gratings anastigmatic imaging spectrometer with oblique incidence for spectral broadband

    NASA Astrophysics Data System (ADS)

    Cui, Chengguang; Wang, Shurong; Huang, Yu; Xue, Qingsheng; Li, Bo; Yu, Lei

    2015-09-01

    A modified spectrometer with tandem gratings that exhibits high spectral resolution and imaging quality for solar observation, monitoring, and understanding of coastal ocean processes is presented in this study. Spectral broadband anastigmatic imaging condition, spectral resolution, and initial optical structure are obtained based on geometric aberration theory. Compared with conventional tandem gratings spectrometers, this modified design permits flexibility in selecting gratings. A detailed discussion of the optical design and optical performance of an ultraviolet spectrometer with tandem gratings is also included to explain the advantage of oblique incidence for spectral broadband.

  7. Contamination control program for the Extreme Ultraviolet Explorer instruments

    NASA Technical Reports Server (NTRS)

    Ray, David C.; Malina, Roger F.; Welsh, Barry Y.; Austin, James D.; Teti, Bonnie Gray

    1989-01-01

    A contamination-control program has been instituted for the optical components of the EUV Explorer satellite, whose 80-900 A range performance is easily degraded by particulate and molecular contamination. Cleanliness requirements have been formulated for the design, fabrication, and test phases of these instruments; in addition, contamination-control steps have been taken which prominently include the isolation of sensitive components in a sealed optics cavity. Prelaunch monitoring systems encompass the use of quartz crystal microbalances, particle witness plates, direct flight hardware sampling, and optical witness sampling of EUV scattering and reflectivity.

  8. Optimizing Orbital Debris Monitoring with Optical Telescopes

    DTIC Science & Technology

    2010-09-01

    poses an increasing risk to manned space missions and operational satellites ; however, the majority of debris large enough to cause catastrophic...cameras hosted on GEO- based satellites for monitoring GEO. Performance analysis indicates significant potential contributions of these systems as a...concerns over the long term-viability of the space environment and the resulting economic impacts. The 2007 China anti- satellite test and the 2009

  9. Electro-optic electrodes based on Lithium Niobate Mach Zhender Interferometer Modulators for wearable bioelectric activity recording

    NASA Astrophysics Data System (ADS)

    Fernandes, Mariana S.; Correia, José H.; Mendes, Paulo M.

    2011-05-01

    Wearable devices are used to record several physiological signals, providing unobtrusive and continuous monitoring. A main challenge in these systems is to develop new recording sensors, specially envisioning bioelectric activity detection. Available devices are difficult to integrate, mainly due to the amount of electrical wires and components needed. This work proposes a fiber-optic based device, which basis of operation relies on the electro-optic effect. A Lithium Niobate (LiBnO3) Mach-Zehnder Interferometer (MZI) modulator is used as the core sensing component, followed by a signal conversion and processing stage. Tests were performed in order to validate the proposed acquisition system in terms of signal amplification and quality, stability and frequency response. A light source with a wavelength operation of 1530- 1565 nm was used. The modulated intensity is amplified and converted to an output voltage with a high transimpedance gain. The filtering and electric amplification included a 50Hz notch filter, a bandpass filter with a -3 dB bandwidth from 0.50 to 35 Hz. The obtained system performance on key elements such as sensitivity, frequency content, and signal quality, have shown that the proposed acquisition system allows the development of new wearable bioelectric monitoring solutions based on optical technologies.

  10. Optical monitor for real time thickness change measurements via lateral-translation induced phase-stepping interferometry

    DOEpatents

    Rushford, Michael C.

    2002-01-01

    An optical monitoring instrument monitors etch depth and etch rate for controlling a wet-etching process. The instrument provides means for viewing through the back side of a thick optic onto a nearly index-matched interface. Optical baffling and the application of a photoresist mask minimize spurious reflections to allow for monitoring with extremely weak signals. A Wollaston prism enables linear translation for phase stepping.

  11. Compact Multi-Gas Monitor for Life Support Systems Control in Space: Evaluation Under Realistic Environmental Conditions

    NASA Technical Reports Server (NTRS)

    Delgado, Jesus; Chullen, Cinda; Mendoza, Edgar

    2014-01-01

    Advanced space life support systems require lightweight, low-power, durable sensors for monitoring critical gas components. A luminescence-based optical flow-through cell to monitor carbon dioxide, oxygen, and humidity has been developed and was demonstrated using bench top instrumentation under environmental conditions relevant to portable life support systems, including initially pure oxygen atmosphere, pressure range from 3.5 to 14.7 psi, temperature range from 50 F to 150 F, and humidity from dry to 100% RH and under liquid water saturation. This paper presents the first compact readout unit for these optical sensors, designed for the volume, power, and weight restrictions of a spacesuit portable Life support system and the analytical characterization of the optical sensors interrogated by the novel optoelectronic system. Trace gas contaminants in a space suit, originating from hardware and material off-gassing and crew member metabolism, are from many chemical families. The result is a gas mix much more complex than the pure oxygen fed into the spacesuit, which may interfere with gas sensor readings. The paper also presents an evaluation of optical sensor performance when exposed to the most significant trace gases reported to be found in spacesuits. The studies were conducted with the spacecraft maximum allowable concentrations for those trace gases and the calculated 8-hr. concentrations resulting from having no trace contaminant control system in the ventilation loop. Finally, a profile of temperature, pressure, humidity, and gas composition for a typical EVA mission has been defined, and the performance of sensors operated repeatedly under simulated EVA mission conditions has been studied.

  12. Robot-assisted motor activation monitored by time-domain optical brain imaging

    NASA Astrophysics Data System (ADS)

    Steinkellner, O.; Wabnitz, H.; Schmid, S.; Steingräber, R.; Schmidt, H.; Krüger, J.; Macdonald, R.

    2011-07-01

    Robot-assisted motor rehabilitation proved to be an effective supplement to conventional hand-to-hand therapy in stroke patients. In order to analyze and understand motor learning and performance during rehabilitation it is desirable to develop a monitor to provide objective measures of the corresponding brain activity at the rehabilitation progress. We used a portable time-domain near-infrared reflectometer to monitor the hemodynamic brain response to distal upper extremity activities. Four healthy volunteers performed two different robot-assisted wrist/forearm movements, flexion-extension and pronation-supination in comparison with an unassisted squeeze ball exercise. A special headgear with four optical measurement positions to include parts of the pre- and postcentral gyrus provided a good overlap with the expected activation areas. Data analysis based on variance of time-of-flight distributions of photons through tissue was chosen to provide a suitable representation of intracerebral signals. In all subjects several of the four detection channels showed a response. In some cases indications were found of differences in localization of the activated areas for the various tasks.

  13. Potential for integrated optical circuits in advanced aircraft with fiber optic control and monitoring systems

    NASA Astrophysics Data System (ADS)

    Baumbick, Robert J.

    1991-02-01

    Fiber optic technology is expected to be used in future advanced weapons platforms as well as commercial aerospace applications. Fiber optic waveguides will be used to transmit noise free high speed data between a multitude of computers as well as audio and video information to the flight crew. Passive optical sensors connected to control computers with optical fiber interconnects will serve both control and monitoring functions. Implementation of fiber optic technology has already begun. Both the military and NASA have several programs in place. A cooperative program called FOCSI (Fiber Optic Control System Integration) between NASA Lewis and the NAVY to build environmentally test and flight demonstrate sensor systems for propul sion and flight control systems is currently underway. Integrated Optical Circuits (IOC''s) are also being given serious consideration for use in advanced aircraft sys tems. IOC''s will result in miniaturization and localization of components to gener ate detect optical signals and process them for use by the control computers. In some complex systems IOC''s may be required to perform calculations optically if the technology is ready replacing some of the electronic systems used today. IOC''s are attractive because they will result in rugged components capable of withstanding severe environments in advanced aerospace vehicles. Manufacturing technology devel oped for microelectronic integrated circuits applied to IOC''s will result in cost effective manufacturing. This paper reviews the current FOCSI program and describes the role of IOC''s in FOCSI applications.

  14. Non-invasive blood glucose monitor based on spectroscopy using a smartphone.

    PubMed

    Dantu, Vishnu; Vempati, Jagannadh; Srivilliputhur, Srinivasan

    2014-01-01

    Development of a novel method for non-invasive measurement of blood glucose concentration using smartphone is discussed. Our research work has three major contributions to society and science. First, we modified and extended the Beer-Lambert's law in physics to accommodate for multiple wavelengths. This extension can aid researchers who wish to perform optical spectroscopy. Second, we successfully developed a creative and non-invasive way for diabetic patients to measure glucose levels via a smartphone. Researchers and chemists can now use their smartphones to determine the absorbance and, therefore, concentration of a chemical. Third, we created an inexpensive way to perform optical spectroscopy by using a smartphone. Monitoring blood glucose using a smartphone application that simply uses equipment already available on smartphones will improve the lives of diabetic patients who can continuously check their blood glucose levels while avoiding the current inconvenient, unhygienic, and costly invasive glucose meters.

  15. Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Essner, Jeremy B.; Baker, Gary A.

    2014-07-01

    We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers.We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers. Electronic supplementary information (ESI) available: Supplemental figures and experimental details. See DOI: 10.1039/c4nr02069c

  16. Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.

    2009-01-01

    A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.

  17. Fiber-optically sensorized composite wing

    NASA Astrophysics Data System (ADS)

    Costa, Joannes M.; Black, Richard J.; Moslehi, Behzad; Oblea, Levy; Patel, Rona; Sotoudeh, Vahid; Abouzeida, Essam; Quinones, Vladimir; Gowayed, Yasser; Soobramaney, Paul; Flowers, George

    2014-04-01

    Electromagnetic interference (EMI) immune and light-weight, fiber-optic sensor based Structural Health Monitoring (SHM) will find increasing application in aerospace structures ranging from aircraft wings to jet engine vanes. Intelligent Fiber Optic Systems Corporation (IFOS) has been developing multi-functional fiber Bragg grating (FBG) sensor systems including parallel processing FBG interrogators combined with advanced signal processing for SHM, structural state sensing and load monitoring applications. This paper reports work with Auburn University on embedding and testing FBG sensor arrays in a quarter scale model of a T38 composite wing. The wing was designed and manufactured using fabric reinforced polymer matrix composites. FBG sensors were embedded under the top layer of the composite. Their positions were chosen based on strain maps determined by finite element analysis. Static and dynamic testing confirmed expected response from the FBGs. The demonstrated technology has the potential to be further developed into an autonomous onboard system to perform load monitoring, SHM and Non-Destructive Evaluation (NDE) of composite aerospace structures (wings and rotorcraft blades). This platform technology could also be applied to flight testing of morphing and aero-elastic control surfaces.

  18. Simulated microsurgery monitoring using intraoperative multimodal surgical microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Donghyun; Lee, Changho; Kim, Sehui; Zhou, Qifa; Kim, Jeehyun; Kim, Chulhong

    2016-03-01

    We have developed an intraoperative multimodal surgical microscopy system that provides simultaneous real-time enlarged surface views and subsurface anatomic information during surgeries by integrating spectral domain optical coherence tomography (SD-OCT), optical-resolution photoacoustic microscopy (OR-PAM), and conventional surgical microscopy. By sharing the same optical path, both OCT and PAM images were simultaneously acquired. Additionally, the custom-made needle-type transducer received the generated PA signals enabling convenient surgical operation without using a water bath. Using a simple augmented device, the OCT and PAM images were projected on the view plane of the surgical microscope. To quantify the performance of our system, we measured spatial resolutions of our system. Then, three microsurgery simulation and analysis were processed: (1) ex vivo needle tracking and monitoring injection of carbon particles in biological tissues, (2) in vivo needle tracking and monitoring injection of carbon particles in tumor-bearing mice, and (3) in vivo guiding of melanoma removal in melanoma-bearing mice. The results indicate that this triple modal system is useful for intraoperative purposes, and can potentially be a vital tool in microsurgeries.

  19. Data Optical Networking Architecture Using Wavelength-Division Multiplexing Method for Optical Sensors

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.

    2008-01-01

    Recently there has been a growth in the number of fiber optical sensors used for health monitoring in the hostile environment of commercial aircraft. Health monitoring to detect the onset of failure in structural systems from such causes as corrosion, stress corrosion cracking, and fatigue is a critical factor in safety as well in aircraft maintenance costs. This report presents an assessment of an analysis model of optical data networking architectures used for monitoring data signals among these optical sensors. Our model is focused on the design concept of the wavelength-division multiplexing (WDM) method since most of the optical sensors deployed in the aircraft for health monitoring typically operate in a wide spectrum of optical wavelengths from 710 to 1550 nm.

  20. The Performance Analysis of Distributed Brillouin Corrosion Sensors for Steel Reinforced Concrete Structures

    PubMed Central

    Wei, Heming; Zhao, Xuefeng; Kong, Xianglong; Zhang, Pinglei; Cui, Yanjun; Sun, Changsen

    2014-01-01

    The Brillouin optical time-domain analysis (BOTDA)-based optical fiber method has been proposed to measure strain variations caused by corrosion expansion. Spatial resolutions of 1 m can be achieved with this kind of Brillouin sensor for detecting the distributed strain. However, when the sensing fiber is wound around the steel rebar in a number of circles in a range of several meters, this spatial resolution still has limitations for corrosion monitoring. Here, we employed a low-coherent fiber-optic strain sensor (LCFS) to survey the performance of Brillouin sensors based on the fact that the deformation measured by the LCFS equals the integral of the strains obtained from Brillouin sensors. An electrochemical accelerated corrosion experiment was carried out and the corrosion expansion was monitored by both BOTDA and the LCFS. Results demonstrated that the BOTDA can only measure the expansion strain of about 1,000 με, which was generated by the 18 mm steel rebar corrosion, but, the LCFS had high sensitivity from the beginning of corrosion to the destruction of the structure, and no obvious difference in expansion speed was observed during the acceleration stage of the corrosion developed in the reinforced concrete (RC) specimens. These results proved that the BOTDA method could only be employed to monitor the corrosion inside the structure in the early stage. PMID:24379048

  1. Monitoring of catalyst performance in CO2 lasers using frequency modulation spectroscopy with diode lasers

    NASA Technical Reports Server (NTRS)

    Wang, Liang-Guo; Sachse, Glen

    1990-01-01

    Closed-cycle CO2 laser operation with removal of O2 and regeneration of CO2 can be achieved by catalytic CO-O2 recombination. Both parametric studies of the optimum catalyst formulation and long-term performance tests require on line monitoring of CO, O2 and CO2 concentrations. There are several existing methods for molecular oxygen detection. These methods are either intrusive (such as electrochemical method or mass spectrometry) or very expensive (such as CARS, UV laser absorption). Researchers demonstrated a high-sensitivity spectroscopic measurement of O2 using the two-tone frequency modulation spectroscopy (FMS) technique with a near infrared GaAlAs diode laser. Besides its inexpensive cost, fast response time, nonintrusive measurements and high sensitivity, this technique may also be used to differentiate between isotopes due to its high spectroscopic resolution. This frequency modulation spectroscopy technique could also be applied for the on-line monitoring of CO and CO2 using InGaAsP diode lasers operation in the 1.55 microns region and H2O in the 1.3 microns region. The existence of single mode optical fibers at the near infrared region makes it possible to combine FMS with optical fiber technology. Optical fiber FMS is particularly suitable for making point-measurements at one or more locations in the CO2 laser/catalyst system.

  2. The performance analysis of distributed Brillouin corrosion sensors for steel reinforced concrete structures.

    PubMed

    Wei, Heming; Zhao, Xuefeng; Kong, Xianglong; Zhang, Pinglei; Cui, Yanjun; Sun, Changsen

    2013-12-27

    The Brillouin optical time-domain analysis (BOTDA)-based optical fiber method has been proposed to measure strain variations caused by corrosion expansion. Spatial resolutions of 1 m can be achieved with this kind of Brillouin sensor for detecting the distributed strain. However, when the sensing fiber is wound around the steel rebar in a number of circles in a range of several meters, this spatial resolution still has limitations for corrosion monitoring. Here, we employed a low-coherent fiber-optic strain sensor (LCFS) to survey the performance of Brillouin sensors based on the fact that the deformation measured by the LCFS equals the integral of the strains obtained from Brillouin sensors. An electrochemical accelerated corrosion experiment was carried out and the corrosion expansion was monitored by both BOTDA and the LCFS. Results demonstrated that the BOTDA can only measure the expansion strain of about 1,000 με, which was generated by the 18 mm steel rebar corrosion, but, the LCFS had high sensitivity from the beginning of corrosion to the destruction of the structure, and no obvious difference in expansion speed was observed during the acceleration stage of the corrosion developed in the reinforced concrete (RC) specimens. These results proved that the BOTDA method could only be employed to monitor the corrosion inside the structure in the early stage.

  3. Development and testing of an optoacoustic imaging system for monitoring and guiding prostate cancer therapies

    NASA Astrophysics Data System (ADS)

    Spirou, Gloria M.; Vitkin, I. Alex; Wilson, B. C.; Whelan, William M.; Henrichs, Paul M.; Mehta, Ketan; Miller, Tom; Yee, Andrew; Meador, James; Oraevsky, Alexander A.

    2004-07-01

    Laser Optoacoustic Imaging System (LOIS) combines high tissue contrast based on the optical properties of tissue and high spatial resolution based on ultrawide-band ultrasonic detection. Patients undergoing thermal or photodynamic therapy of prostate cancer may benefit from capability of LOIS to detect and monitor treatment-induced changes in tissue optical properties and blood flow. The performance of a prototype LOIS was evaluated via 2D optoacoustic images of dye-colored objects of various shapes, small tubes with blood simulating veins and arteries, and thermally coagulated portions of chicken breasts imbedded tissue-mimicking gelatin phantoms. The optoacoustic image contrast was proportional to the ratio of the absorption coefficient between the embedded objects and the surrounding gel. The contrast of the venous blood relative to the background exceeded 250%, and the contrast of the thermally coagulated portions of flesh relative to the untreated tissue ranged between -100% to +200%, dependent on the optical wavelength. We used a 32-element optoacoustic transducer array and a novel design of low-noise preamplifiers and wide-band amplifiers to perform these studies. The system was optimized for imaging at a depth of ~50 mm. The system spatial resolution was better than 1-mm. The advantages and limitations of various signal-processing methods were investigated. LOIS demonstrates clinical potential for non- or minimally-invasive monitoring of treatment-induced tissue changes.

  4. Application of acoustical thermometry to noninvasive monitoring of internal temperature during laser hyperthermia

    NASA Astrophysics Data System (ADS)

    Krotov, Eugene V.; Yakovlev, Ivan V.; Zhadobov, Maxim; Reyman, Alexander M.; Zharov, Vladimir P.

    2002-06-01

    This work present the results of experimental study of applicability of acoustical brightness thermometry (ABT) in monitoring of internal temperature during laser hyperthermia and interstitial therapy. In these experiments the radiation of pulse repetition Nd:YAG laser (1064 nm) and continuous diode laser (800 nm) were used as heating sources. Experiments were performed in vitro by insertion of optical fiber inside the objects - optically transparent gelatin with incorporated light absorbing heterogeneities and samples of biological tissues (e.g. liver). During laser heating, internal temperature in absorbing heterogeneity and at fiber end were monitored by means of multi-channel ABT. The independent temperature control was performed with tiny electronic thermometer incorporated in heated zones. The results of experiments demonstrated reasonable sensitivity and accuracy of ABT for real-time temperature control during different kind of laser thermal therapies. According to preliminary data, ABT allow to measure temperature in depth up to 3-5 cm (depends on tissue properties) with spatial resolution some mm. Obtained data show that ABT is a very promising tool to give quantitative measure for different types of energy deposition (laser, microwave, focused ultrasound etc) at the depth commonly encountered in tumors of vital organs. Besides, ABT could give information about diffusion effects in heated zones or optical absorption. This work was supported by Russian Foundation for Basic Research and 6th competition-expertise of young scientists of Russian Academy of Sciences.

  5. Investigation of Structural Properties of Carbon-Epoxy Composites Using Embedded Fiber-Optic Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Osei, Albert J.

    2003-01-01

    Real time monitoring of the mechanical integrity and stresses on key aerospace composite structures like aircraft wings, walls of pressure vessels and fuel tanks or any other structurally extended components and panels as in space telescopes is very important to NASA. Future military and commercial aircraft as well as NASA space systems such as Space Based Radar and International Space Station will incorporate a monitoring system to sense any degradation to the structure. In the extreme flight conditions of an aerospace vehicle it might be desirable to measure the strain every ten centimeters and thus fully map out the strain field of a composite component. A series of missions and vehicle health management requirements call for these measurements. At the moment thousands of people support a few vehicle launches per year. This number can be significantly reduced by implementing intelligent vehicles with integral nervous systems (smart structures). This would require maintenance to be performed only as needed. Military and commercial aircrafts have an equally compelling case. Annual maintenance costs are currently reaching astronomical heights. Monitoring techniques are therefore required that allow for maintenance to be performed only when needed. This would allow improved safety by insuring that necessary tasks are performed while reducing costs by eliminating procedures that are costly and not needed. The advantages fiber optical sensors have over conventional electro-mechanical systems like strain gauges have been widely extolled in the research literature. These advantages include their small size, low weight, immunity to electrical resistance, corrosion resistance, compatibility with composite materials and process conditions, and multiplexing capabilities. One fiber optic device which is suitable for distributed sensing is the fiber Bragg grating (FBG). This is a periodic perturbation in the refractive index of the fiber core. When a broadband light is coupled into the optical fiber sensor, a reflection peak will be obtained centered around a wavelength called Bragg-wavelength. The Bragg-wavelength depends on the refractive index and the period of the grating, which both change due to mechanical and thermal strain applied to the sensor. The shift in the Bragg-wavelength is directly proportional to the strain. Researchers at NASA MSFC are currently developing techniques for using FBGs for monitoring the integrity of advanced structural materials expected to become the mainstay of the current and future generation space structures. Since carbon-epoxy composites are the materials of choice for the current space structures, the initial study is concentrated on this type of composite. The goals of this activity are to use embedded FBG sensors for measuring strain and temperature of composite structures, and to investigate the effects of various parameters such as composite fiber orientation with respect to the optical sensor, unidirectional fiber composite, fabrication process etc., on the optical performance of the sensor. This paper describes an experiment to demonstrate the use of an embedded FBG for measuring strain in a composite material. The performance of the fiber optic sensor is determined by direct comparison with results from more conventional instrumentation.

  6. The center of curvature optical assembly for the JWST primary mirror cryogenic optical test: optical verification

    NASA Astrophysics Data System (ADS)

    Wells, Conrad; Olczak, Gene; Merle, Cormic; Dey, Tom; Waldman, Mark; Whitman, Tony; Wick, Eric; Peer, Aaron

    2010-08-01

    The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, allreflective, three-mirror anastigmat. The 18-segment primary mirror (PM) presents unique and challenging assembly, integration, alignment and testing requirements. A full aperture center of curvature optical test is performed in cryogenic vacuum conditions at the integrated observatory level to verify PM performance requirements. The Center of Curvature Optical Assembly (CoCOA), designed and being built by ITT satisfies the requirements for this test. The CoCOA contains a multi wave interferometer, patented reflective null lens, actuation for alignment, full in situ calibration capability, coarse and fine alignment sensing systems, as well as a system for monitoring changes in the PM to CoCOA distance. Two wave front calibration tests are utilized to verify the low and Mid/High spatial frequencies, overcoming the limitations of the standard null/hologram configuration in its ability to resolve mid and high spatial frequencies. This paper will introduce the systems level architecture and optical test layout for the CoCOA.

  7. Repetitive laser ignition by optical breakdown of a LOX/H2 rocket combustion chamber with multi-injector head configuration

    NASA Astrophysics Data System (ADS)

    Börner, Michael; Manfletti, Chiara; Kroupa, Gerhard; Oschwald, Michael

    2017-09-01

    This paper reports on the repetitive laser ignition by optical breakdown within an experimental rocket combustion chamber. Ignition was performed by focusing a laser pulse generated by a miniaturized diode-pumped Nd:YAG laser system. The system, which delivers 33.2 mJ in 2.3 ns, was mounted directly to the combustion chamber. The ignition process and flame stabilization was investigated using an optical probe system monitoring the flame attachment across the 15 coaxial injector configuration. 1195 successful ignitions were performed proving the reliability of this laser ignition system and its applicability to the propellant combination LOX/hydrogen at temperatures of T_{{{H}_{ 2} }} = 120-282 K and T_{{{O}_{ 2} }} = 110-281 K.

  8. Demonstration of a Fiber Optic Regression Probe in a High-Temperature Flow

    NASA Technical Reports Server (NTRS)

    Korman, Valentin; Polzin, Kurt

    2011-01-01

    The capability to provide localized, real-time monitoring of material regression rates in various applications has the potential to provide a new stream of data for development testing of various components and systems, as well as serving as a monitoring tool in flight applications. These applications include, but are not limited to, the regression of a combusting solid fuel surface, the ablation of the throat in a chemical rocket or the heat shield of an aeroshell, and the monitoring of erosion in long-life plasma thrusters. The rate of regression in the first application is very fast, while the second and third are increasingly slower. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor is optical, using two different, co-located fiber-optics to perform the regression measurement. The disparate optical transmission properties of the two fiber-optics makes it possible to measure the regression rate by monitoring the relative light attenuation through the fibers. As the fibers regress along with the parent material in which they are embedded, the relative light intensities through the two fibers changes, providing a measure of the regression rate. The optical nature of the system makes it relatively easy to use in a variety of harsh, high temperature environments, and it is also unaffected by the presence of electric and magnetic fields. In addition, the sensor could be used to perform optical spectroscopy on the light emitted by a process and collected by fibers, giving localized measurements of various properties. The capability to perform an in-situ measurement of material regression rates is useful in addressing a variety of physical issues in various applications. An in-situ measurement allows for real-time data regarding the erosion rates, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over an operating envelope could also be useful in the modeling detailed physical processes. The sensor has been embedded in many regressing media to demonstrate the capabilities in a number of regressing environments. In the present work, sensors were installed in the eroding/regressing throat region of a converging-diverging flow, with the working gas heated to high temperatures by means of a high-pressure arc discharge at steady-state discharge power levels up to 500 kW. The amount of regression observed in each material sample was quantified using a later profilometer, which was compared to the in-situ erosion measurements to demonstrate the efficacy of the measurement technique in very harsh, high-temperature environments.

  9. Recent Status of SIM Lite Astrometric Observatory Mission: Flight Engineering Risk Reduction Activities

    NASA Technical Reports Server (NTRS)

    Goullioud, Renaud; Dekens, Frank; Nemati, Bijan; An, Xin; Carson, Johnathan

    2010-01-01

    The SIM Lite Astrometric Observatory is a mission concept for a space-borne instrument to perform micro-arc-second narrow-angle astrometry to search 60 to 100 nearby stars for Earth-like planets, and to perform global astrometry for a broad astrophysics program. The instrument consists of two Michelson stellar interferometers and a telescope. The first interferometer chops between the target star and a set of reference stars. The second interferometer monitors the attitude of the instrument in the direction of the target star. The telescope monitors the attitude of the instrument in the other two directions. The main enabling technology development for the mission was completed during phases A & B. The project is currently implementing the developed technology onto flight-ready engineering models. These key engineering tasks will significantly reduce the implementation risks during the flight phases C & D of the mission. The main optical interferometer components, including the astrometric beam combiner, the fine steering optical mechanism, the path-length-control and modulation optical mechanisms, focal-plane camera electronics and cooling heat pipe, are currently under development. Main assemblies are built to meet flight requirements and will be subjected to flight qualification level environmental testing (random vibration and thermal cycling) and performance testing. This paper summarizes recent progress in engineering risk reduction activities.

  10. Implementation of a High-Speed FPGA and DSP Based FFT Processor for Improving Strain Demodulation Performance in a Fiber-Optic-Based Sensing System

    NASA Technical Reports Server (NTRS)

    Farley, Douglas L.

    2005-01-01

    NASA's Aviation Safety and Security Program is pursuing research in on-board Structural Health Management (SHM) technologies for purposes of reducing or eliminating aircraft accidents due to system and component failures. Under this program, NASA Langley Research Center (LaRC) is developing a strain-based structural health-monitoring concept that incorporates a fiber optic-based measuring system for acquiring strain values. This fiber optic-based measuring system provides for the distribution of thousands of strain sensors embedded in a network of fiber optic cables. The resolution of strain value at each discrete sensor point requires a computationally demanding data reduction software process that, when hosted on a conventional processor, is not suitable for near real-time measurement. This report describes the development and integration of an alternative computing environment using dedicated computing hardware for performing the data reduction. Performance comparison between the existing and the hardware-based system is presented.

  11. Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry.

    PubMed

    Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco

    2017-02-25

    In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time.

  12. Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry

    PubMed Central

    Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco

    2017-01-01

    In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time. PMID:28245603

  13. Integrated structural and optical modeling of the orbiting stellar interferometer

    NASA Astrophysics Data System (ADS)

    Shaklan, Stuart B.; Yu, Jeffrey W.; Briggs, Hugh C.

    1993-11-01

    The Integrated Modeling of Optical Systems (IMOS) Integration Workbench at JPL has been used to model the effects of structural perturbations on the optics in the proposed Orbiting Stellar Interferometer (OSI). OSI consists of 3 pairs of interferometers and delay lines attached to a 7.5 meter truss. They are interferometrically monitored from a separate boom by a laser metrology system. The spatially distributed nature of the science instrument calls for a high level of integration between the optics and support structure. Because OSI is designed to achieve micro-arcsecond astrometry, many of its alignment, stability, and knowledge tolerances are in the submicron regime. The spacecraft will be subject to vibrations caused by reaction wheels and on-board equipment, as well as thermal strain due to solar and terrestrial heating. These perturbations affect optical parameters such as optical path differences and beam co-parallelism which are critical to instrument performance. IMOS provides an environment that allows one to design and perturb the structure, attach optics to structural or non-structural nodes, trace rays, and analyze the impact of mechanical perturbations on optical performance. This tool makes it simple to change the structure and immediately see performance enhancement/degradation. We have employed IMOS to analyze the effect of reaction wheel disturbances on the optical path difference in both the science and metrology interferometers.

  14. Real-time trace ambient ammonia monitor for haze prevention

    NASA Astrophysics Data System (ADS)

    Nishimura, Katsumi; Sakaguchi, Yuhei; Crosson, Eric; Wahl, Edward; Rella, Chris

    2007-05-01

    In photolithography, haze prevention is of critical importance to integrated circuit chip manufacturers. Numerous studies have established that the presence of ammonia in the photolithography tool can cause haze to form on optical surfaces resulting in permanent damage to costly deep ultra-violet optics. Ammonia is emitted into wafer fab air by various semiconductor processes including coating steps in the track and CMP. The workers in the clean room also emit a significant amount of ammonia. Chemical filters are typically used to remove airborne contamination from critical locations but their lifetime and coverage cannot offer complete protection. Therefore, constant or periodic monitoring of airborne ammonia at parts-per-trillion (ppt) levels is critical to insure the integrity of the lithography process. Real time monitoring can insure that an accidental ammonia release in the clean room is detected before any optics is damaged. We have developed a transportable, highly accurate, highly specific, real-time trace gas monitor that detects ammonia using Cavity Ring-Down Spectroscopy (CRDS). The trace gas monitor requires no calibration gas standards, and can measure ammonia with 200 ppt sensitivity in five minutes with little or no baseline drift. In addition, the high spectral resolution of CRDS makes the analyzer less susceptible to interference from other gases when compared to other detection methods. In this paper we describe the monitor, focus on its performance, discuss the results of a careful comparison with ion chromatography (IC), and present field data measured inside the aligner and the reticule stocker at a semiconductor fab.

  15. Current developments in optical engineering and diffraction phenomena; Proceedings of the Meeting, San Diego, CA, Aug. 21, 22, 1986

    NASA Astrophysics Data System (ADS)

    Fischer, Robert E.; Smith, Warren J.; Harvey, James

    1986-01-01

    Papers dealing with current materials for gradient-index optics, an intelligent data-base system for optical designers; tilted mirror systems; a null-lens design approach for centrally obscured components; the use of the vector aberration theory to optimize an unobscured optical system; multizone bifocal contact lens design; and the concentric meniscus element are presented. Topics discussed include optical manufacturing in the Far East; the optical performance of molded-glass lenses for optical memory applications; through-wafer optical interconnects for multiwafer wafer-scale integrated architecture; optical thin-flim monitoring using optical fibers; aerooptical testing; optical inspection; and a system analysis program for a 32K microcomputer. Consideration is given to various theories, algorithms, and applications of diffraction, a vector formulation of a ray-equivalent method for Gaussian beam propagation; Fourier optical analysis of aberrations in focused laser beams; holography and moire interferometry; and phase-conjugate optical correctors for diffraction-limited applications.

  16. Optical sensing method to analyze germination rate of Capsicum annum seeds treated with growth-promoting chemical compounds using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Ruchire Eranga; Lee, Seung-Yeol; Kim, Pilun; Jung, Hee-Young; Jeon, Mansik; Kim, Jeehyun

    2017-09-01

    Seed germination rate differs based on chemical treatments, and nondestructive measurements of germination rate have become an essential requirement in the field of agriculture. Seed scientists and other biologists are interested in optical sensing technologies-based biological discoveries due to nondestructive detection capability. Optical coherence tomography (OCT) has recently emerged as a powerful method for biological and plant material discoveries. We report an extended application of OCT by monitoring the germination rate acceleration of chemically primed seeds. To validate the versatility of the method, Capsicum annum seeds were primed using three chemical compounds: sterile distilled water (SDW), butandiol, and 1-hexadecene. Monitoring was performed using a 1310-nm swept source OCT system. The results confirmed more rapid morphological variations in the seeds treated with 1-hexadecene medium than the seeds treated with SDW and butandiol within 8 consecutive days. In addition, fresh weight measurements (gold standard) of seeds were monitored for 15 days, and the obtained results were correlated with the OCT results. Thus, such a method can be used in various agricultural fields, and OCT shows potential as a rigorous sensing method for selecting the optimal plant growth-promoting chemical compounds rapidly, when compared with the gold standard methods.

  17. In Situ Fiber-Optic Reflectance Monitor

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Gray, Perry A.

    1996-01-01

    In situ fiber-optic reflectance monitor serves as simple means of monitoring changes in reflectance of specimen exposed to simulated outerspace or other environments in vacuum chamber. Eliminates need to remove specimen from vacuum chamber, eliminating optical changes and bleaching such removal causes in coatings.

  18. Manipulating the Interfacial Electrical and Optical Properties of Dissimilar Materials with Metallic Nanostructures

    DTIC Science & Technology

    2016-07-30

    27TH STREET STE 4308 AUSTIN , TX 78712 08/03/2016 Final Report DISTRIBUTION A: Distribution approved for public release. Air Force Research ...4308 Austin , TX 78712-1500 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Office of...AFRL-AFOSR-VA-TR-2016-0281 MANIPULATING THE INTERFACIAL ELECTRIAL & OPTICAL PROPERTIES OF DISSIMILA Seth Bank UNIVERSITY OF TEXAS AT AUSTIN 101 EAST

  19. Integrating Nanostructured Artificial Receptors with Whispering Gallery Mode Optical Microresonators via Inorganic Molecular Imprinting Techniques

    PubMed Central

    Hammond, G. Denise; Vojta, Adam L.; Grant, Sheila A.; Hunt, Heather K.

    2016-01-01

    The creation of label-free biosensors capable of accurately detecting trace contaminants, particularly small organic molecules, is of significant interest for applications in environmental monitoring. This is achieved by pairing a high-sensitivity signal transducer with a biorecognition element that imparts selectivity towards the compound of interest. However, many environmental pollutants do not have corresponding biorecognition elements. Fortunately, biomimetic chemistries, such as molecular imprinting, allow for the design of artificial receptors with very high selectivity for the target. Here, we perform a proof-of-concept study to show how artificial receptors may be created from inorganic silanes using the molecular imprinting technique and paired with high-sensitivity transducers without loss of device performance. Silica microsphere Whispering Gallery Mode optical microresonators are coated with a silica thin film templated by a small fluorescent dye, fluorescein isothiocyanate, which serves as our model target. Oxygen plasma degradation and solvent extraction of the template are compared. Extracted optical devices are interacted with the template molecule to confirm successful sorption of the template. Surface characterization is accomplished via fluorescence and optical microscopy, ellipsometry, optical profilometry, and contact angle measurements. The quality factors of the devices are measured to evaluate the impact of the coating on device sensitivity. The resulting devices show uniform surface coating with no microstructural damage with Q factors above 106. This is the first report demonstrating the integration of these devices with molecular imprinting techniques, and could lead to new routes to biosensor creation for environmental monitoring. PMID:27314397

  20. POFBG-Embedded Cork Insole for Plantar Pressure Monitoring

    PubMed Central

    Vilarinho, Débora; Theodosiou, Antreas; Domingues, Maria de Fátima; André, Paulo; Marques, Carlos

    2017-01-01

    We propose a novel polymer optical fiber (POF) sensing system based on fiber Bragg gratings (FBGs) to measure foot plantar pressure. The plantar pressure signals are detected by five FBGs, in the same piece of cyclic transparent optical polymer (CYTOP) fiber, which are embedded in a cork insole for the dynamic monitoring of gait. The calibration and measurements performed with the suggested system are presented, and the results obtained demonstrate the accuracy and reliability of the sensing platform to monitor the foot plantar pressure distribution during gait motion and the application of pressure. This architecture does not compromise the patient’s mobility nor interfere in their daily activities. The results using the CYTOP fiber showed a very good response when compared with solutions using silica optical fibers, resulting in a sensitivity almost twice as high, with excellent repeatability and ease of handling. The advantages of POF (e.g., high flexibility and robustness) proved that this is a viable solution for this type of application, since POF’s high fracture toughness enables its application in monitoring patients with higher body mass compared with similar systems based on silica fiber. This study has demonstrated the viability of the proposed system based on POF technology as a useful alternative for plantar pressure detection systems. PMID:29258166

  1. POFBG-Embedded Cork Insole for Plantar Pressure Monitoring.

    PubMed

    Vilarinho, Débora; Theodosiou, Antreas; Leitão, Cátia; Leal-Junior, Arnaldo G; Domingues, Maria de Fátima; Kalli, Kyriacos; André, Paulo; Antunes, Paulo; Marques, Carlos

    2017-12-16

    We propose a novel polymer optical fiber (POF) sensing system based on fiber Bragg gratings (FBGs) to measure foot plantar pressure. The plantar pressure signals are detected by five FBGs, in the same piece of cyclic transparent optical polymer (CYTOP) fiber, which are embedded in a cork insole for the dynamic monitoring of gait. The calibration and measurements performed with the suggested system are presented, and the results obtained demonstrate the accuracy and reliability of the sensing platform to monitor the foot plantar pressure distribution during gait motion and the application of pressure. This architecture does not compromise the patient's mobility nor interfere in their daily activities. The results using the CYTOP fiber showed a very good response when compared with solutions using silica optical fibers, resulting in a sensitivity almost twice as high, with excellent repeatability and ease of handling. The advantages of POF (e.g., high flexibility and robustness) proved that this is a viable solution for this type of application, since POF's high fracture toughness enables its application in monitoring patients with higher body mass compared with similar systems based on silica fiber. This study has demonstrated the viability of the proposed system based on POF technology as a useful alternative for plantar pressure detection systems.

  2. Optical fiber sensors: Accelerating applications in Navy ships

    NASA Astrophysics Data System (ADS)

    Day, G. W.; Lovely, P. S.; Whitesel, H. K.; Hickernell, R. K.

    1994-05-01

    The Navy needs new sensors for shipboard machinery monitoring and control, condition-based maintenance, and damage assessment. Optical fiber sensors are strongly preferred because of their immunity to electrical disturbances, as well as potential size, weight, and performance advantages. But despite well over a decade of development and promise, relatively few optical fiber sensors available today can meet the Navy's needs with acceptable performance and cost. This report examines the reasons and recommends strategies to help the Navy achieve its goals. Some of the recommendations confirm approaches that the Navy is already implementing. Optical fiber sensors have very valuable potential advantages, but those that the Navy can use may remain too expensive to be deployed if the Navy uses traditional methods of writing specifications and soliciting development and procurement bids. For this reason, the study focuses on cooperation with industry and promoting commercial off-the-shelf and dual-use technology.

  3. Optical fiber sensors and signal processing for intelligent structure monitoring

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert; Claus, R. O.; Lindner, D. K.; Thomas, Daniel; Cox, Dave

    1988-01-01

    The analytic and experimental performance of optical fiber sensors for the control of vibration of large aerospace and other structures are investigated. In particular, model domain optical fiber sensor systems, are being studied due to their apparent potential as distributed, low mass sensors of vibration over appropriate ranges of both low frequency and low amplitude displacements. Progress during the past three months is outlined. Progress since September is divided into work in the areas of experimental hardware development, analytical analysis, control design and sensor development. During the next six months, tests of a prototype closed-loop control system for a beam are planned which will demonstrate the solution of several optical fiber instrumentation device problems, the performance of the control system theory which incorporates the model of the modal domain sensor, and the potential for distributed control which this sensor approach offers.

  4. Precise Spatially Selective Photothermolysis Using Modulated Femtosecond Lasers and Real-time Multimodal Microscopy Monitoring.

    PubMed

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; Wu, Zhenguo; Zeng, Haishan

    2017-01-01

    The successful application of lasers in the treatment of skin diseases and cosmetic surgery is largely based on the principle of conventional selective photothermolysis which relies strongly on the difference in the absorption between the therapeutic target and its surroundings. However, when the differentiation in absorption is not sufficient, collateral damage would occur due to indiscriminate and nonspecific tissue heating. To deal with such cases, we introduce a novel spatially selective photothermolysis method based on multiphoton absorption in which the radiant energy of a tightly focused near-infrared femtosecond laser beam can be directed spatially by aiming the laser focal point to the target of interest. We construct a multimodal optical microscope to perform and monitor the spatially selective photothermolysis. We demonstrate that precise alteration of the targeted tissue is achieved while leaving surrounding tissue intact by choosing appropriate femtosecond laser exposure with multimodal optical microscopy monitoring in real time.

  5. Precise Spatially Selective Photothermolysis Using Modulated Femtosecond Lasers and Real-time Multimodal Microscopy Monitoring

    PubMed Central

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; Wu, Zhenguo; Zeng, Haishan

    2017-01-01

    The successful application of lasers in the treatment of skin diseases and cosmetic surgery is largely based on the principle of conventional selective photothermolysis which relies strongly on the difference in the absorption between the therapeutic target and its surroundings. However, when the differentiation in absorption is not sufficient, collateral damage would occur due to indiscriminate and nonspecific tissue heating. To deal with such cases, we introduce a novel spatially selective photothermolysis method based on multiphoton absorption in which the radiant energy of a tightly focused near-infrared femtosecond laser beam can be directed spatially by aiming the laser focal point to the target of interest. We construct a multimodal optical microscope to perform and monitor the spatially selective photothermolysis. We demonstrate that precise alteration of the targeted tissue is achieved while leaving surrounding tissue intact by choosing appropriate femtosecond laser exposure with multimodal optical microscopy monitoring in real time. PMID:28255346

  6. Amplified OTDR systems for multipoint corrosion monitoring.

    PubMed

    Nascimento, Jehan F; Silva, Marcionilo J; Coêlho, Isnaldo J S; Cipriano, Eliel; Martins-Filho, Joaquim F

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations.

  7. Amplified OTDR Systems for Multipoint Corrosion Monitoring

    PubMed Central

    Nascimento, Jehan F.; Silva, Marcionilo J.; Coêlho, Isnaldo J. S.; Cipriano, Eliel; Martins-Filho, Joaquim F.

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations. PMID:22737017

  8. Fiber optic Raman sensor to monitor the concentration ratio of nitrogen and oxygen in a cryogenic mixture

    NASA Astrophysics Data System (ADS)

    Tiwari, Vidhu S.; Kalluru, Rajamohan R.; Yueh, Fang Y.; Singh, Jagdish P.; St. Cyr, William; Khijwania, Sunil K.

    2007-06-01

    A spontaneous Raman scattering optical fiber sensor was developed for a specific need of the National Aeronautics and Space Administration (NASA) for long-term detection and monitoring of the purity of liquid oxygen (LO2) in the oxidizer feed line during ground testing of rocket engines. The Raman peak intensity ratios for liquid nitrogen (LN2) and LO2 with varied weight ratios (LN2/LO2) were analyzed for their applicability to impurity sensing. The study of the sensor performance with different excitation light sources has helped to design a miniaturized, cost-effective system for this application. The optimal system response time of this miniaturized sensor for LN2/LO2 measurement was found to be in the range of a few seconds. It will need to be further reduced to the millisecond range for real-time, quantitative monitoring of the quality of cryogenic fluids in a harsh envioronment.

  9. Safe Detection System for Hydrogen Leaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieberman, Robert A.; Beshay, Manal

    2012-02-29

    Hydrogen is an "environmentally friendly" fuel for future transportation and other applications, since it produces only pure ("distilled") water when it is consumed. Thus, hydrogen-powered vehicles are beginning to proliferate, with the total number of such vehicles expected to rise to nearly 100,000 within the next few years. However, hydrogen is also an odorless, colorless, highly flammable gas. Because of this, there is an important need for hydrogen safety monitors that can warn of hazardous conditions in vehicles, storage facilities, and hydrogen production plants. To address this need, IOS has developed a unique intrinsically safe optical hydrogen sensing technology, andmore » has embodied it in detector systems specifically developed for safety applications. The challenge of using light to detect a colorless substance was met by creating chemically-sensitized optical materials whose color changes in the presence of hydrogen. This reversible reaction provides a sensitive, reliable, way of detecting hydrogen and measuring its concentration using light from low-cost LEDs. Hydrogen sensors based on this material were developed in three completely different optical formats: point sensors ("optrodes"), integrated optic sensors ("optical chips"), and optical fibers ("distributed sensors") whose entire length responds to hydrogen. After comparing performance, cost, time-to-market, and relative market need for these sensor types, the project focused on designing a compact optrode-based single-point hydrogen safety monitor. The project ended with the fabrication of fifteen prototype units, and the selection of two specific markets: fuel cell enclosure monitoring, and refueling/storage safety. Final testing and development of control software for these markets await future support.« less

  10. Depth-resolved monitoring of analytes diffusion in ocular tissues

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Ghosn, Mohamad G.; Tuchin, Valery V.

    2007-02-01

    Optical coherence tomography (OCT) is a noninvasive imaging technique with high in-depth resolution. We employed OCT technique for monitoring and quantification of analyte and drug diffusion in cornea and sclera of rabbit eyes in vitro. Different analytes and drugs such as metronidazole, dexamethasone, ciprofloxacin, mannitol, and glucose solution were studied and whose permeability coefficients were calculated. Drug diffusion monitoring was performed as a function of time and as a function of depth. Obtained results suggest that OCT technique might be used for analyte diffusion studies in connective and epithelial tissues.

  11. Monitoring industrial facilities using principles of integration of fiber classifier and local sensor networks

    NASA Astrophysics Data System (ADS)

    Korotaev, Valery V.; Denisov, Victor M.; Rodrigues, Joel J. P. C.; Serikova, Mariya G.; Timofeev, Andrey V.

    2015-05-01

    The paper deals with the creation of integrated monitoring systems. They combine fiber-optic classifiers and local sensor networks. These systems allow for the monitoring of complex industrial objects. Together with adjacent natural objects, they form the so-called geotechnical systems. An integrated monitoring system may include one or more spatially continuous fiber-optic classifiers based on optic fiber and one or more arrays of discrete measurement sensors, which are usually combined in sensor networks. Fiber-optic classifiers are already widely used for the control of hazardous extended objects (oil and gas pipelines, railways, high-rise buildings, etc.). To monitor local objects, discrete measurement sensors are generally used (temperature, pressure, inclinometers, strain gauges, accelerometers, sensors measuring the composition of impurities in the air, and many others). However, monitoring complex geotechnical systems require a simultaneous use of continuous spatially distributed sensors based on fiber-optic cable and connected local discrete sensors networks. In fact, we are talking about integration of the two monitoring methods. This combination provides an additional way to create intelligent monitoring systems. Modes of operation of intelligent systems can automatically adapt to changing environmental conditions. For this purpose, context data received from one sensor (e.g., optical channel) may be used to change modes of work of other sensors within the same monitoring system. This work also presents experimental results of the prototype of the integrated monitoring system.

  12. Utilization of optical emission endpoint in photomask dry etch processing

    NASA Astrophysics Data System (ADS)

    Faure, Thomas B.; Huynh, Cuc; Lercel, Michael J.; Smith, Adam; Wagner, Thomas

    2002-03-01

    Use of accurate and repeatable endpoint detection during dry etch processing of photomask is very important for obtaining good mask mean-to-target and CD uniformity performance. It was found that the typical laser reflectivity endpoint detecting system used on photomask dry etch systems had several key limitations that caused unnecessary scrap and non-optimum image size performance. Consequently, work to develop and implement use of a more robust optical emission endpoint detection system for chrome dry etch processing of photomask was performed. Initial feasibility studies showed that the emission technique was sensitive enough to monitor pattern loadings on contact and via level masks down to 3 percent pattern coverage. Additional work was performed to further improve this to 1 percent pattern coverage by optimizing the endpoint detection parameters. Comparison studies of mask mean-to-target performance and CD uniformity were performed with the use of optical emission endpoint versus laser endpoint for masks built using TOK IP3600 and ZEP 7000 resist systems. It was found that an improvement in mean-to-target performance and CD uniformity was realized on several types of production masks. In addition, part-to-part endpoint time repeatability was found to be significantly improved with the use of optical emission endpoint.

  13. Variable Accuracy of Wearable Heart Rate Monitors during Aerobic Exercise.

    PubMed

    Gillinov, Stephen; Etiwy, Muhammad; Wang, Robert; Blackburn, Gordon; Phelan, Dermot; Gillinov, A Marc; Houghtaling, Penny; Javadikasgari, Hoda; Desai, Milind Y

    2017-08-01

    Athletes and members of the public increasingly rely on wearable HR monitors to guide physical activity and training. The accuracy of newer, optically based monitors is unconfirmed. We sought to assess the accuracy of five optically based HR monitors during various types of aerobic exercise. Fifty healthy adult volunteers (mean ± SD age = 38 ± 12 yr, 54% female) completed exercise protocols on a treadmill, a stationary bicycle, and an elliptical trainer (±arm movement). Each participant underwent HR monitoring with an electrocardiogaphic chest strap monitor (Polar H7), forearm monitor (Scosche Rhythm+), and two randomly assigned wrist-worn HR monitors (Apple Watch, Fitbit Blaze, Garmin Forerunner 235, and TomTom Spark Cardio), one on each wrist. For each exercise type, HR was recorded at rest, light, moderate, and vigorous intensity. Agreement between HR measurements was assessed using Lin's concordance correlation coefficient (rc). Across all exercise conditions, the chest strap monitor (Polar H7) had the best agreement with ECG (rc = 0.996) followed by the Apple Watch (rc = 0.92), the TomTom Spark (rc = 0.83), and the Garmin Forerunner (rc = 0.81). Scosche Rhythm+ and Fitbit Blaze were less accurate (rc = 0.75 and rc = 0.67, respectively). On treadmill, all devices performed well (rc = 0.88-0.93) except the Fitbit Blaze (rc = 0.76). While bicycling, only the Garmin, Apple Watch, and Scosche Rhythm+ had acceptable agreement (rc > 0.80). On the elliptical trainer without arm levers, only the Apple Watch was accurate (rc = 0.94). None of the devices was accurate during elliptical trainer use with arm levers (all rc < 0.80). The accuracy of wearable, optically based HR monitors varies with exercise type and is greatest on the treadmill and lowest on elliptical trainer. Electrode-containing chest monitors should be used when accurate HR measurement is imperative.

  14. Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Antony S.; Vani, Sundeep; Taylor, Thomas D.; Anderson, Melody M.

    2002-01-01

    Monitoring and regulating the pH of the solution in a bioprocess is one of the key steps in the success of bioreactor operation. An in-line optical pH sensor, based on the optical absorption properties of phenol red present in the medium, was developed and tested in this work for use in NASA space bioreactors based on a rotating wall-perfused vessel system supporting a baby hamster kidney (BHK-21) cell culture. The sensor was tested over three 30-day and one 124-day cell runs. The pH sensor initially was calibrated and then used during the entire cell culture interval. The pH reported by the sensor was compared to that measured by a fiber optically coupled Shimadzu spectrophotometer and a blood gas analyzer. The maximum standard error of prediction for all the four cell runs for development pH sensor against BGA was +/-0.06 pH unit and for the fiber optically coupled Shimadzu spectrophotometer against the blood gas analyzer was +/-0.05 pH unit. The pH sensor system performed well without need of recalibration for 124 days. Copyright 2002 Wiley Periodicals, Inc.

  15. An Optical System to Monitor the Displacement Field of Glass-fibre Posts Subjected to Thermal Loading

    PubMed Central

    Corsalini, Massimo; Pettini, Francesco; Di Venere, Daniela; Ballini, Andrea; Chiatante, Giuseppe; Lamberti, Luciano; Pappalettere, Carmine; Fiorentino, Michele; Uva, Antonio E.; Monno, Giuseppe; Boccaccio, Antonio

    2016-01-01

    Endocanalar posts are necessary to build up and retain coronal restorations but they do not reinforce dental roots. It was observed that the dislodgement of post-retained restorations commonly occurs after several years of function and long-term retention may be influenced by various factors such as temperature changes. Temperature changes, in fact, produce micrometric deformations of post and surrounding tissues/materials that may generate high stress concentrations at the interface thus leading to failure. In this study we present an optical system based on the projection moiré technique that has been utilized to monitor the displacement field of endocanalar glass-fibre posts subjected to temperature changes. Measurements were performed on forty samples and the average displacement values registered at the apical and middle region were determined for six different temperature levels. A total of 480 displacement measurements was hence performed. The values of the standard deviation computed for each of the tested temperatures over the forty samples appear reasonably small which proves the robustness and the reliability of the proposed optical technique. The possible implications for the use of the system in the applicative context were discussed. PMID:27990186

  16. Reflectively Coupled Waveguide Photodetector for High Speed Optical Interconnection

    PubMed Central

    Hsu*, Shih-Hsiang

    2010-01-01

    To fully utilize GaAs high drift mobility, techniques to monolithically integrate In0.53Ga0.47As p-i-n photodetectors with GaAs based optical waveguides using total internal reflection coupling are reviewed. Metal coplanar waveguides, deposited on top of the polyimide layer for the photodetector’s planarization and passivation, were then uniquely connected as a bridge between the photonics and electronics to illustrate the high-speed monitoring function. The photodetectors were efficiently implemented and imposed on the echelle grating circle for wavelength division multiplexing monitoring. In optical filtering performance, the monolithically integrated photodetector channel spacing was 2 nm over the 1,520–1,550 nm wavelength range and the pass band was 1 nm at the −1 dB level. For high-speed applications the full-width half-maximum of the temporal response and 3-dB bandwidth for the reflectively coupled waveguide photodetectors were demonstrated to be 30 ps and 11 GHz, respectively. The bit error rate performance of this integrated photodetector at 10 Gbit/s with 27-1 long pseudo-random bit sequence non-return to zero input data also showed error-free operation. PMID:22163502

  17. Monitoring of mirror degradation of fluorescence detectors at the Pierre Auger Observatory due to dust sedimentation

    NASA Astrophysics Data System (ADS)

    Nozka, L.; Hiklova, H.; Horvath, P.; Hrabovsky, M.; Mandat, D.; Palatka, M.; Pech, M.; Ridky, J.; Schovanek, P.

    2018-05-01

    We present results of the monitoring method we have used to characterize the optical performance deterioration due to the dust of our mirror segments produced for fluorescence detectors used in astrophysics experiments. The method is based on the measurement of scatter profiles of reflected light. The scatter profiles and the reflectivity of the mirror segments sufficiently describe the performance of the mirrors from the perspective of reconstruction algorithms. The method is demonstrated on our mirror segments installed in frame of the Pierre Auger Observatory project. Although installed in air-conditioned buildings, both the dust sedimentation and the natural aging of the reflective layer deteriorate the optical throughput of the segments. In the paper, we summarized data from ten years of operation of the fluorescence detectors. During this time, we periodically measured in-situ scatter characteristics represented by the specular reflectivity and the reflectivity of the diffusion part at the wavelength of 670 nm of the segment surface (measured by means of the optical scatter technique as well). These measurements were extended with full Bidirectional Reflectance Distribution Functions (BRDF) profiles of selected segments made in the laboratory. Cleaning procedures are also discussed in the paper.

  18. Optical-fibre sensor system for monitoring the performance of the gas propellant centrifuge separator of a spacecraft

    NASA Astrophysics Data System (ADS)

    Romo-Medrano, Katya E.; Khotiaintsev, Sergei N.; García-Garduño, Victor

    2004-08-01

    An optical-fibre sensor system is presented for monitoring void fraction distribution in a spacecraft's gas and propellant centrifuge separator. The system could be used at the separator development stage or for monitoring, during ground tests, the elements of the spacecraft propulsion system. Our sensor system employs an array of point optical-fibre refractometric transducers installed in the form of several linear radial arrays on the separator rotating blades. We employed a small-size hemispherical optical detection element as the transducer and we optimized its parameters through numerical ray-tracing. The aim is to minimize the effect of the thin film of liquid that forms on the transducer's surface in this application. The features of this sensor system are: (1) an efficient matrix-type multiplexing scheme, (2) the installation of the main optoelectronic unit of the sensor in a hermetically sealed container inside the separator tank located on the rotating shaft and (3) the spark-proof and explosion-proof design of the sensor circuits and elements. The sensor is simple, reliable, low-cost and is capable of withstanding the factors involved during operation of the propulsion system such as cryogenic temperatures and chemically aggressive liquids. The novel elements and design concepts implemented in this sensor system can also find applications in other sensors for spacecraft propulsion systems and also in a variety of optical-fibre sensors used in scientific research and industry.

  19. Reducing motion artifacts for long-term clinical NIRS monitoring using collodion-fixed prism-based optical fibers

    PubMed Central

    Yücel, Meryem A.; Selb, Juliette; Boas, David A.; Cash, Sydney S.; Cooper, Robert J.

    2013-01-01

    As the applications of near-infrared spectroscopy (NIRS) continue to broaden and long-term clinical monitoring becomes more common, minimizing signal artifacts due to patient movement becomes more pressing. This is particularly true in applications where clinically and physiologically interesting events are intrinsically linked to patient movement, as is the case in the study of epileptic seizures. In this study, we apply an approach common in the application of EEG electrodes to the application of specialized NIRS optical fibers. The method provides improved optode-scalp coupling through the use of miniaturized optical fiber tips fixed to the scalp using collodion, a clinical adhesive. We investigate and quantify the performance of this new method in minimizing motion artifacts in healthy subjects, and apply the technique to allow continuous NIRS monitoring throughout epileptic seizures in two epileptic in-patients. Using collodion-fixed fibers reduces the percent signal change of motion artifacts by 90 % and increases the SNR by 6 and 3 fold at 690 and 830 nm wavelengths respectively when compared to a standard Velcro-based array of optical fibers. The change in both HbO and HbR during motion artifacts is found to be statistically lower for the collodion-fixed fiber probe. The collodion-fixed optical fiber approach has also allowed us to obtain good quality NIRS recording of three epileptic seizures in two patients despite excessive motion in each case. PMID:23796546

  20. Optical Fiber Distributed Sensing Structural Health Monitoring (SHM) Strain Measurements Taken During Cryotank Y-Joint Test Article Load Cycling at Liquid Helium Temperatures

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Prosser, William H.; Hare, David A.; Moore, Thomas C.; Kenner, Winfred S.

    2007-01-01

    This paper outlines cryogenic Y-joint testing at Langley Research Center (LaRC) to validate the performance of optical fiber Bragg grating strain sensors for measuring strain at liquid helium temperature (-240 C). This testing also verified survivability of fiber sensors after experiencing 10 thermal cool-down, warm-up cycles and 400 limit load cycles. Graphite composite skins bonded to a honeycomb substrate in a sandwich configuration comprised the Y-joint specimens. To enable SHM of composite cryotanks for consideration to future spacecraft, a light-weight, durable monitoring technology is needed. The fiber optic distributed Bragg grating strain sensing system developed at LaRC is a viable substitute for conventional strain gauges which are not practical for SHM. This distributed sensing technology uses an Optical Frequency Domain Reflectometer (OFDR). This measurement approach has the advantage that it can measure hundreds of Bragg grating sensors per fiber and the sensors are all written at one frequency, greatly simplifying fiber manufacturing. Fiber optic strain measurements compared well to conventional strain gauge measurements obtained during these tests. These results demonstrated a high potential for a successful implementation of a SHM system incorporating LaRC's fiber optic sensing system on the composite cryotank and other future cryogenic applications.

  1. Measurement of the accumulation of water ice on optical components in cryogenic vacuum environments

    NASA Astrophysics Data System (ADS)

    Moeller, Trevor M.; Montgomery Smith, L.; Collins, Frank G.; Labello, Jesse M.; Rogers, James P.; Lowry, Heard S.; Crider, Dustin H.

    2012-11-01

    Standard vacuum practices mitigate the presence of water vapor and contamination inside cryogenic vacuum chambers. However, anomalies can occur in the facility that can cause the accumulation of amorphous water ice on optics and test articles. Under certain conditions, the amorphous ice on optical components shatters, which leads to a reduction in signal or failure of the component. An experiment was performed to study and measure the deposition of water (H2O) ice on optical surfaces under high-vacuum cryogenic conditions. Water was introduced into a cryogenic vacuum chamber, via a hydrated molecular sieve zeolite, through an effusion cell and impinged upon a quartz-crystal microbalance (QCM) and first-surface gold-plated mirror. A laser and photodiode setup, external to the vacuum chamber, monitored the multiple-beam interference reflectance of the ice-mirror configuration while the QCM measured the mass deposition. Data indicates that water ice, under these conditions, accumulates as a thin film on optical surfaces to thicknesses over 45 microns and can be detected and measured by nonintrusive optical methods which are based upon multiple-beam interference phenomena. The QCM validated the interference measurements. This experiment established proof-of-concept for a miniature system for monitoring ice accumulation within the chamber.

  2. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays.

    PubMed

    Steemers, F J; Ferguson, J A; Walt, D R

    2000-01-01

    We have developed a randomly ordered fiber-optic gene array for rapid, parallel detection of unlabeled DNA targets with surface immobilized molecular beacons (MB) that undergo a conformational change accompanied by a fluorescence change in the presence of a complementary DNA target. Microarrays are prepared by randomly distributing MB-functionalized 3-microm diameter microspheres in an array of wells etched in a 500-microm diameter optical imaging fiber. Using several MBs, each designed to recognize a different target, we demonstrate the selective detection of genomic cystic fibrosis related targets. Positional registration and fluorescence response monitoring of the microspheres was performed using an optical encoding scheme and an imaging fluorescence microscope system.

  3. Recycling microcavity optical biosensors.

    PubMed

    Hunt, Heather K; Armani, Andrea M

    2011-04-01

    Optical biosensors have tremendous potential for commercial applications in medical diagnostics, environmental monitoring, and food safety evaluation. In these applications, sensor reuse is desirable to reduce costs. To achieve this, harsh, wet chemistry treatments are required to remove surface chemistry from the sensor, typically resulting in reduced sensor performance and increased noise due to recognition moiety and optical transducer degradation. In the present work, we suggest an alternative, dry-chemistry method, based on O2 plasma treatment. This approach is compatible with typical fabrication of substrate-based optical transducers. This treatment completely removes the recognition moiety, allowing the transducer surface to be refreshed with new recognition elements and thus enabling the sensor to be recycled.

  4. Optical effects module and passive sample array

    NASA Technical Reports Server (NTRS)

    Linton, R. C.

    1983-01-01

    The Optical Effects Module (OEM) has the objective to monitor the effects of the deposition and adhesion of both molecular species and particles on optical surfaces in the Shuttle cargo bay environment. The OEM performs inflight measurements of the ultraviolet (253.7 nm) transmittance and diffuse reflectance of five optical samples at regular intervals throughout the orbital mission. Most of the obtained results indicates or implies the absence of a significant accumulation of contamination other than particulates on the samples. The contaminant species (or particulates) adhering to the samples of the Passive Sample Array (PSA) were identified by means of Auger and X-ray energy dispersive analyses. The elements silicon, chlorine, and phosphorus were discovered.

  5. Field comparison of optical and clark cell dissolved-oxygen sensors

    USGS Publications Warehouse

    Fulford, J.M.; Davies, W.J.; Garcia, L.

    2005-01-01

    Three multi-parameter water-quality monitors equipped with either Clark cell type or optical type dissolved-oxygen sensors were deployed for 30 days in a brackish (salinity <10 parts per thousand) environment to determine the sensitivity of the sensors to biofouling. The dissolved-oxygen sensors compared periodically to a hand-held dissolved oxygen sensor, but were not serviced or cleaned during the deployment. One of the Clark cell sensors and the optical sensor performed similarly during the deployment. The remaining Clark cell sensor was not aged correctly prior to deployment and did not perform as well as the other sensors. All sensors experienced substantial biofouling that gradually degraded the accuracy of the dissolved-oxygen measurement during the last half of the deployment period. Copyright ASCE 2005.

  6. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors.

    PubMed

    Sachat, Alexandros El; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos

    2017-03-11

    Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3-11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants' ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications.

  7. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node—Enabled Fiber Optic Sensors

    PubMed Central

    El Sachat, Alexandros; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos

    2017-01-01

    Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3–11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants’ ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications. PMID:28287488

  8. High-Temperature Optical Sensor

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  9. Embedded infrared fiber-optic sensor for thermometry in a high temperature/pressure environment

    NASA Astrophysics Data System (ADS)

    Yoo, Wook Jae; Jang, Kyoung Won; Moon, Jinsoo; Han, Ki-Tek; Jeon, Dayeong; Lee, Bongsoo; Park, Byung Gi

    2012-11-01

    In this study, we developed an embedded infrared fiber-optic temperature sensor for thermometry in high temperature/pressure and water-chemistry environments by using two identical silver-halide optical fibers. The performance of the fabricated temperature sensor was assessed in an autoclave filled with an aqueous coolant solution containing boric acid and lithium hydroxide. We carried out real-time monitoring of the infrared radiation emitted from the signal and reference probes for various temperatures over a temperature range from 95 to 225 °C. In order to decide the temperature of the synthetic coolant solution, we measured the difference between the infrared radiation emitted from the two temperature-sensing probes. Thermometry with the proposed sensor is immune to any changes in the physical conditions and the emissivity of the heat source. From the experimental results, the embedded infrared fiber-optic temperature sensor can withstand, and normally operate in a high temperature/pressure test loop system corresponding to the coolant system used for nuclear power plant simulation. We expect that the proposed sensor can be developed to accurately monitor temperatures in harsh environments.

  10. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications

    PubMed Central

    Barrias, António; Casas, Joan R.; Villalba, Sergi

    2016-01-01

    The application of structural health monitoring (SHM) systems to civil engineering structures has been a developing studied and practiced topic, that has allowed for a better understanding of structures’ conditions and increasingly lead to a more cost-effective management of those infrastructures. In this field, the use of fiber optic sensors has been studied, discussed and practiced with encouraging results. The possibility of understanding and monitor the distributed behavior of extensive stretches of critical structures it’s an enormous advantage that distributed fiber optic sensing provides to SHM systems. In the past decade, several R & D studies have been performed with the goal of improving the knowledge and developing new techniques associated with the application of distributed optical fiber sensors (DOFS) in order to widen the range of applications of these sensors and also to obtain more correct and reliable data. This paper presents, after a brief introduction to the theoretical background of DOFS, the latest developments related with the improvement of these products by presenting a wide range of laboratory experiments as well as an extended review of their diverse applications in civil engineering structures. PMID:27223289

  11. Verification of the windings axial clamping forces for high voltage power transformers by using passively mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Şchiopu, IonuÅ£ Romeo; ǎgulinescu, Andrei, Dr; Iordǎnescu, Raluca; Marinescu, Andrei

    2015-02-01

    The current paper describes an optoelectronic method for direct monitoring of the axial clamping forces both in static and in dynamic duty. As advantages of this method we can state that it can be applied both to new and refurbished transformers without performing constructive changes or affecting in any way the transformer safety in operation. For monitoring the axial clamping forces for high-voltage (HV) power transformers, we use an optical fiber that we integrate into the laser cavity of a passively mode-locked fiber laser (PMFL). To each axial clamp corresponds a solitonic optical spectrum that is changed at the periodical passing of the fundamental soliton pulse through the sensitive fiber inside the transformer. Moreover, as a specific characteristic, the laser stability is unique for each set of axial clamping forces. Other important advantages of using an optical fiber as compared to the classical approach in which electronic sensors are used consist in the good reliability and insulator properties of the optical fiber, avoiding any risk of fire or damage of the transformer.

  12. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications.

    PubMed

    Barrias, António; Casas, Joan R; Villalba, Sergi

    2016-05-23

    The application of structural health monitoring (SHM) systems to civil engineering structures has been a developing studied and practiced topic, that has allowed for a better understanding of structures' conditions and increasingly lead to a more cost-effective management of those infrastructures. In this field, the use of fiber optic sensors has been studied, discussed and practiced with encouraging results. The possibility of understanding and monitor the distributed behavior of extensive stretches of critical structures it's an enormous advantage that distributed fiber optic sensing provides to SHM systems. In the past decade, several R & D studies have been performed with the goal of improving the knowledge and developing new techniques associated with the application of distributed optical fiber sensors (DOFS) in order to widen the range of applications of these sensors and also to obtain more correct and reliable data. This paper presents, after a brief introduction to the theoretical background of DOFS, the latest developments related with the improvement of these products by presenting a wide range of laboratory experiments as well as an extended review of their diverse applications in civil engineering structures.

  13. Gold nanoparticle-assisted all optical localized stimulation and monitoring of Ca2+ signaling in neurons

    PubMed Central

    Lavoie-Cardinal, Flavie; Salesse, Charleen; Bergeron, Éric; Meunier, Michel; De Koninck, Paul

    2016-01-01

    Light-assisted manipulation of cells to control membrane activity or intracellular signaling has become a major avenue in life sciences. However, the ability to perform subcellular light stimulation to investigate localized signaling has been limited. Here, we introduce an all optical method for the stimulation and the monitoring of localized Ca2+ signaling in neurons that takes advantage of plasmonic excitation of gold nanoparticles (AuNPs). We show with confocal microscopy that 800 nm laser pulse application onto a neuron decorated with a few AuNPs triggers a transient increase in free Ca2+, measured optically with GCaMP6s. We show that action potentials, measured electrophysiologically, can be induced with this approach. We demonstrate activation of local Ca2+ transients and Ca2+ signaling via CaMKII in dendritic domains, by illuminating a single or few functionalized AuNPs specifically targeting genetically-modified neurons. This NP-Assisted Localized Optical Stimulation (NALOS) provides a new complement to light-dependent methods for controlling neuronal activity and cell signaling. PMID:26857748

  14. Measurement of tissue optical properties with optical coherence tomography: Implication for noninvasive blood glucose concentration monitoring

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.

    Approximately 14 million people in the USA and more than 140 million people worldwide suffer from diabetes mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for analysis. There have been enormous efforts by many scientific groups and companies to quantify glucose concentration noninvasively using different optical techniques. However, these techniques face limitations associated with low sensitivity, accuracy, and insufficient specificity of glucose concentrations over a physiological range. Optical coherence tomography (OCT), a new technology, is being applied for noninvasive imaging in tissues with high resolution. OCT utilizes sensitive detection of photons coherently scattered from tissue. The high resolution of this technique allows for exceptionally accurate measurement of tissue scattering from a specific layer of skin compared with other optical techniques and, therefore, may provide noninvasive and continuous monitoring of blood glucose concentration with high accuracy. In this dissertation work I experimentally and theoretically investigate feasibility of noninvasive, real-time, sensitive, and specific monitoring of blood glucose concentration using an OCT-based biosensor. The studies were performed in scattering media with stable optical properties (aqueous suspensions of polystyrene microspheres and milk), animals (New Zealand white rabbits and Yucatan micropigs), and normal subjects (during oral glucose tolerance tests). The results of these studies demonstrated: (1) capability of the OCT technique to detect changes in scattering coefficient with the accuracy of about 1.5%; (2) a sharp and linear decrease of the OCT signal slope in the dermis with the increase of blood glucose concentration; (3) the change in the OCT signal slope measured during bolus glucose injection experiments (characterized by a sharp increase of blood glucose concentration) is higher than that measured in the glucose clamping experiments (characterized by slow, controlled increase of the blood glucose concentration); and (4) the accuracy of glucose concentration monitoring may substantially be improved if optimal dimensions of the probed skin area are used. The results suggest that high-resolution OCT technique has a potential for noninvasive, accurate, and continuous glucose monitoring with high sensitivity.

  15. Experimental Study into the Performance Impact of the Environmental Noise on Undersea Pulsed Laser Serial Imagers

    DTIC Science & Technology

    2011-10-01

    lighter line) the multiple backscatter peak is stronger and the target return is weaker. Finally, the reflection from the target in the object plane... beam attenuation lengths). Optical properties were monitored by a Wetlabs ac-9 meter with attenuation and absorption being adjusted for scattering...UNCLASSIFIED UNCLASSIFIED 923 center of the imager optical axis between two positions, such that in one position the laser beam clearly passed through the hole

  16. Fabrication and evaluation of a weak zone plate for monitoring performance of large orbiting telescopes

    NASA Technical Reports Server (NTRS)

    Erickson, K. E.

    1972-01-01

    An experimental study of the feasibility of monitoring the optical performance of a large telescope by means of a very faint phase hologram imprinted upon the primary mirror is reported. Tests have been made using an f/5 telescope with a 0.3 m aperture. The results indicate that a usable hologram can be so faint and so restricted in area that it will probably not interfere significantly with normal operation of a 3.0 m telescope at wavelengths longer than 100 nm for stars brighter than magnitude 29.

  17. Layered acoustofluidic resonators for the simultaneous optical and acoustic characterisation of cavitation dynamics, microstreaming, and biological effects.

    PubMed

    Pereno, V; Aron, M; Vince, O; Mannaris, C; Seth, A; de Saint Victor, M; Lajoinie, G; Versluis, M; Coussios, C; Carugo, D; Stride, E

    2018-05-01

    The study of the effects of ultrasound-induced acoustic cavitation on biological structures is an active field in biomedical research. Of particular interest for therapeutic applications is the ability of oscillating microbubbles to promote both cellular and tissue membrane permeabilisation and to improve the distribution of therapeutic agents in tissue through extravasation and convective transport. The mechanisms that underpin the interaction between cavitating agents and tissues are, however, still poorly understood. One challenge is the practical difficulty involved in performing optical microscopy and acoustic emissions monitoring simultaneously in a biologically compatible environment. Here we present and characterise a microfluidic layered acoustic resonator ( μ LAR) developed for simultaneous ultrasound exposure, acoustic emissions monitoring, and microscopy of biological samples. The μ LAR facilitates in vitro ultrasound experiments in which measurements of microbubble dynamics, microstreaming velocity fields, acoustic emissions, and cell-microbubble interactions can be performed simultaneously. The device and analyses presented provide a means of performing mechanistic in vitro studies that may benefit the design of predictable and effective cavitation-based ultrasound treatments.

  18. Optical Fiber Sensors for Advanced Civil Structures

    NASA Astrophysics Data System (ADS)

    de Vries, Marten Johannes Cornelius

    1995-01-01

    The objective of this dissertation is to develop, analyze, and implement optical fiber-based sensors for the nondestructive quantitative evaluation of advanced civil structures. Based on a comparative evaluation of optical fiber sensors that may be used to obtain quantitative information related to physical perturbations in the civil structure, the extrinsic Fabry-Perot interferometric (EFPI) optical fiber sensor is selected as the most attractive sensor. The operation of the EFPI sensor is explained using the Kirchhoff diffraction approach. As is shown in this dissertation, this approach better predicts the signal-to-noise ratio as a function of gap length than methods employed previously. The performance of the optical fiber sensor is demonstrated in three different implementations. In the first implementation, performed with researchers in the Civil Engineering Department at the University of Southern California in Los Angeles, optical fiber sensors were used to obtain quantitative strain information from reinforced concrete interior and exterior column-to-beam connections. The second implementation, performed in cooperation with researchers at the United States Bureau of Mines in Spokane, Washington, used optical fiber sensors to monitor the performance of roof bolts used in mines. The last implementation, performed in cooperation with researchers at the Turner-Fairbanks Federal Highway Administration Research Center in McLean, Virginia, used optical fiber sensors, attached to composite prestressing strands used for reinforcing concrete, to obtain absolute strain information. Multiplexing techniques including time, frequency and wavelength division multiplexing are briefly discussed, whereas the principles of operation of spread spectrum and optical time domain reflectometery (OTDR) are discussed in greater detail. Results demonstrating that spread spectrum and OTDR techniques can be used to multiplex optical fiber sensors are presented. Finally, practical considerations that have to be taken into account when implementing optical fiber sensors into a civil structure environment are discussed, and possible solutions to some of these problems are proposed.

  19. Compact Multi-Gas Monitor for Life Support Systems Control in Space: Evaluation Under Realistic Environmental Conditions

    NASA Technical Reports Server (NTRS)

    Alonso, Jesus Delgado; Phillips, Straun; Chullen, Cinda; Mendoza, Edgar

    2014-01-01

    Advanced space life support systems require lightweight, low-power, durable sensors for monitoring critical gas components. A luminescence-based optical flow-through cell to monitor carbon dioxide, oxygen, and humidity has been developed and was demonstrated using bench-top instrumentation under environmental conditions relevant to portable life support systems, including initially pure oxygen atmosphere, temperature range from 50 F to 150 F, and humidity from dry to 100% RH and under conditions of water condensation. This paper presents the most recent progress in the development of this sensor technology. Trace gas contaminants in a space suit, originating from hardware and material off-gassing and crew member metabolism, are from many chemical families. The result is a gas mix much more complex than the pure oxygen fed into the space suit, and this complexity may interfere with gas sensor readings. This paper presents an evaluation of optical sensor performance when exposed to the most significant trace gases reported to be found in space suits. A study of the calibration stability of the sensors is also presented. For that purpose, a profile of temperature, pressure, humidity, and gas composition for the duration of an EVA has been defined, and the performance of sensors operated repeatedly under those conditions has been studied. Finally, this paper presents the first compact readout unit for these optical sensors, designed for the volume, power, and weight restrictions of a PLSS.

  20. Limiting Short-term Noise versus Optical Density in a Direct Absorption Spectrometer for Trace Gas Detection

    NASA Astrophysics Data System (ADS)

    Jervis, D.

    2016-12-01

    Field-deployable trace gas monitors are important for understanding a multitude of atmospheric processes: from forest photosynthesis and respiration [1], to fugitive methane emissions [2] and satellite measurement validation [3]. Consequently, a detailed knowledge of the performance limitations of these instruments is essential in order to establish reliable datasets. We present the short-term ( >1 Hz) performance of a long-pass direct absorption spectrometer as a function of the optical density of the absorption transition being probed. In particular, we identify fluctuations in the laser intensity as limiting the optical density uncertainty to 4x10-6/√Hz for weak transitions, and noise in the laser drive current as limiting the fractional noise in the optical density to 4x10-5/√Hz for deep transitions. We provide numerical and analytical predictions for both effects, as well as using the understanding of this phenomena to estimate how noise on neighboring strong and weak transitions couple to each other. All measurements were performed using the Aerodyne Research TILDAS Monitor, but are general to any instrument that uses direct absorption spectroscopy as a detection method. Wehr, R., et al. "Seasonality of temperate forest photosynthesis and daytime respiration." Nature 534.7609 (2016): 680-683. Conley, S., et al. "Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA." Science 351.6279 (2016): 1317-1320. Emmons, L. K., et al. "Validation of Measurements of Pollution in the Troposphere (MOPITT) CO retrievals with aircraft in situ profiles." Journal of Geophysical Research: Atmospheres 109.D3 (2004).

  1. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 1; Bragg Grating Strain and Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-01-01

    Fiber optic sensors are being developed for health monitoring of future aircraft. Aircraft health monitoring involves the use of strain, temperature, vibration and chemical sensors to infer integrity of the aircraft structure. Part 1 of this two part series describes sensors that will measure load and temperature signatures of these structures. In some cases a single fiber may be used for measuring these parameters. Part 2 will describe techniques for using optical fibers to monitor composite cure in real time during manufacture and to monitor in-service integrity of composite structures using a single fiber optic sensor capable of measuring multiple chemical and physical parameters. The facilities for fabricating optical fiber and associated sensors and the methods of demodulating Bragg gratings for strain measurement will be described.

  2. Impact of different environmental conditions on lithium-ion batteries performance through the thermal monitoring with fiber sensors

    NASA Astrophysics Data System (ADS)

    Nascimento, Micael; Ferreira, Marta S.; Pinto, João. L.

    2017-08-01

    In this work, an optical fiber sensing network has been developed to assess the impact of different environmental conditions on lithium batteries performance through the real time thermal monitoring. The battery is submitted to constant current charge and different discharge C-rates, under normal and abusive operating conditions. The results show that for the discharge C-rate of 5.77C, the LiB under cold and dry climates had 32.5% and 27.2% lower temperature variations, when compared with temperate climates, respectively. The higher temperature shift detected in the temperate climate was related to the battery better performance regarding discharge capacity and power capabilities.

  3. Fuel level sensor based on polymer optical fiber Bragg gratings for aircraft applications

    NASA Astrophysics Data System (ADS)

    Marques, C. A. F.; Pospori, A.; Sáez-Rodríguez, D.; Nielsen, K.; Bang, O.; Webb, D. J.

    2016-04-01

    Safety in civil aviation is increasingly important due to the increase in flight routes and their more challenging nature. Like other important systems in aircraft, fuel level monitoring is always a technical challenge. The most frequently used level sensors in aircraft fuel systems are based on capacitive, ultrasonic and electric techniques, however they suffer from intrinsic safety concerns in explosive environments combined with issues relating to reliability and maintainability. In the last few years, optical fiber liquid level sensors (OFLLSs) have been reported to be safe and reliable and present many advantages for aircraft fuel measurement. Different OFLLSs have been developed, such as the pressure type, float type, optical radar type, TIR type and side-leaking type. Amongst these, many types of OFLLSs based on fiber gratings have been demonstrated. However, these sensors have not been commercialized because they exhibit some drawbacks: low sensitivity, limited range, long-term instability, or limited resolution. In addition, any sensors that involve direct interaction of the optical field with the fuel (either by launching light into the fuel tank or via the evanescent field of a fiber-guided mode) must be able to cope with the potential build up of contamination - often bacterial - on the optical surface. In this paper, a fuel level sensor based on microstructured polymer optical fiber Bragg gratings (mPOFBGs), including poly (methyl methacrylate) (PMMA) and TOPAS fibers, embedded in diaphragms is investigated in detail. The mPOFBGs are embedded in two different types of diaphragms and their performance is investigated with aviation fuel for the first time, in contrast to our previous works, where water was used. Our new system exhibits a high performance when compared with other previously published in the literature, making it a potentially useful tool for aircraft fuel monitoring.

  4. Fiber Optic Sensors for Cure/Health Monitoring of Composite Materials

    NASA Technical Reports Server (NTRS)

    Wood, K. H.; Brown, T. L.; Wu, M. C.; Gause, C. B.

    2004-01-01

    The objective of the current program is to develop techniques for using optical fibers to monitor the cure of composite materials in real time during manufacture and to monitor the in-service structural health of composite structures. Single and multimode optical fibers containing Bragg gratings have been used to perform Near Infrared (NIR) spectroscopy on high refractive index resins and show promise as embedded sensors. In order for chemical spectroscopy to be possible, intimate contact must be achieved between the fiber core and the composite resin. This contact is often achieved by stripping the cladding off of a portion of the fiber, thus making it brittle and easily broken in the composite processing environment. To avoid weakening the fiber to this extent, high refractive index fibers have been fabricated that use a low refractive index acrylate coating which serves as the cladding. This is ideal, as the coating is easily solvent stripped and intimate contact with the glass core can be achieved. Real time resin and composite chemical spectra have been obtained, with possible multifunctional capability using Bragg gratings to assess physical properties such as strain, modulus and other parameters of interest.

  5. Photoelasticity and DIC as optical techniques for monitoring masonry specimens under mechanical loads

    NASA Astrophysics Data System (ADS)

    Colla, C.; Gabrielli, E.

    2017-01-01

    To evaluate the complex behaviour of masonry structures under mechanical loads, numerical models are developed and continuously implemented at diverse scales, whilst, from an experimental viewpoint, laboratory standard mechanical tests are usually carried out by instrumenting the specimens via traditional measuring devices. Extracted values collected in the few points where the tools were installed are assumed to represent the behaviour of the whole specimen but this may be quite optimistic or approximate. Optical monitoring techniques may help in overcoming some of these limitations by providing full-field visualization of mechanical parameters. Photoelasticity and the more recent DIC, employed to monitor masonry columns during compression tests are here presented and a lab case study is compared listing procedures, data acquisitions, advantages and limitations. It is shown that the information recorded by traditional measuring tools must be considered limited to the specific instrumented points. Instead, DIC in particular among the optical techniques, is proving both a very precise global and local picture of the masonry performance, opening new horizons towards a deeper knowledge of this complex construction material. The applicability of an innovative DIC procedure to cultural heritage constructions is also discussed.

  6. Applications of FBG sensors on telecom satellites

    NASA Astrophysics Data System (ADS)

    Abad, S.; Araújo, F. M.; Ferreira, L. A.; Pedersen, F.; Esteban, M. A.; McKenzie, I.; Karafolas, N.

    2017-11-01

    Monitoring needs of spacecraft are rapidly increasing due to new and more challenging missions, along with demands to reduce launching costs by minimizing the manufacture, assembly, integration and test time and employing new low weight materials balanced by the need for maximizing system lifetime while maintaining good reliability. Conventional electronic sensors are characterized by their low multiplexing capability and their EMI/RF susceptibility and it is in this scenario that Fiber Optic Sensors (FOS) in general, and more specifically Fiber Bragg Grating (FBG) technology offers important benefits, improving in various ways the already deployed sensing subsystems (e.g. reducing the weight associated with sensor cabling, increasing the number of sensing points) and enabling new monitoring applications that were not possible by using conventional sensing technologies. This work presents the activities performed and the lessons learnt in the frame of ESA's ARTES-5 project "Fiber Optic Sensing Subsystem for Spacecraft Health Monitoring in Telecommunication Satellites". This project finished in July 2009, with the implementation and testing of two different demonstrators employing FBG sensor technology: FBG sensors for temperature monitoring in high voltage environments, and in particular in several parts of electric propulsion subsystems [1], and FBG sensors for thermal monitoring of array-antennas during RF testing [2]. In addition, the contacts performed with different actors within the space community allowed the identification of a special area of interest for the substitution of regular thermocouple instrumentation by FBG technology for thermal vacuum ground testing of satellites.

  7. Real-time monitoring and fault locating using amplified spontaneous emission noise reflection for tree-structured Ethernet passive optical networks

    NASA Astrophysics Data System (ADS)

    Naim, Nani Fadzlina; Ab-Rahman, Mohammad Syuhaimi; Kamaruddin, Nur Hasiba; Bakar, Ahmad Ashrif A.

    2013-09-01

    Nowadays, optical networks are becoming dense while detecting faulty branches in the tree-structured networks has become problematic. Conventional methods are inconvenient as they require an engineer to visit the failure site to check the optical fiber using an optical time-domain reflectometer. An innovative monitoring technique for tree-structured network topology in Ethernet passive optical networks (EPONs) by using the erbium-doped fiber amplifier to amplify the traffic signal is demonstrated, and in the meantime, a residual amplified spontaneous emission spectrum is used as the input signal to monitor the optical cable from the central office. Fiber Bragg gratings with distinct center wavelengths are employed to reflect the monitoring signals. Faulty branches of the tree-structured EPONs can be identified using a simple and low-cost receiver. We will show that this technique is capable of providing monitoring range up to 32 optical network units using a power meter with a sensitivity of -65 dBm while maintaining the bit error rate of 10-13.

  8. Optic Disc and Optic Cup Segmentation Methodologies for Glaucoma Image Detection: A Survey

    PubMed Central

    Almazroa, Ahmed; Burman, Ritambhar; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2015-01-01

    Glaucoma is the second leading cause of loss of vision in the world. Examining the head of optic nerve (cup-to-disc ratio) is very important for diagnosing glaucoma and for patient monitoring after diagnosis. Images of optic disc and optic cup are acquired by fundus camera as well as Optical Coherence Tomography. The optic disc and optic cup segmentation techniques are used to isolate the relevant parts of the retinal image and to calculate the cup-to-disc ratio. The main objective of this paper is to review segmentation methodologies and techniques for the disc and cup boundaries which are utilized to calculate the disc and cup geometrical parameters automatically and accurately to help the professionals in the glaucoma to have a wide view and more details about the optic nerve head structure using retinal fundus images. We provide a brief description of each technique, highlighting its classification and performance metrics. The current and future research directions are summarized and discussed. PMID:26688751

  9. Comparison of Commercial EMI Test Techniques to NASA EMI Test Techniques

    NASA Astrophysics Data System (ADS)

    Smith, Valerie

    2000-11-01

    This systems report describes how the Optical Properties Monitor (OPM) experiment was developed. Pertinent design parameters are discussed, along with mission information and system requirements to successfully complete the mission. Environmental testing was performed on the OPM to certify it for spaceflight. This testing included vibration, thermal vacuum, electromagnetic interference and conductance, and toxicity tests. Instrument and monitor subsystem performances, including the reflectometer, vacuum ultraviolet, total integrated scatter, atomic oxygen monitor, irradiance monitor, and molecular contamination monitor during the mission are discussed. The OPM experiment was launched aboard the Space Shuttle on mission STS-81 in January 1997 and transferred to the Mir space station. An extravehicular activity (EVA) was performed in April 1997 to attach the OPM experiment to the outside of the Mir/Shuttle Docking Module for space environment exposure. The OPM conducted in situ measurements of a number of material samples. These data may be found in the OPM Science Report. OPM was retrieved during an EVA in January 1998 and was returned to Earth on board the Space Shuttle on mission STS-89.

  10. Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser

    2012-01-01

    Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the system can capture acoustic emission events that can be a prelude to structural failure, as well as piezoactuator-induced ultrasonic Lamb-waves-based techniques as a basis for damage detection.

  11. KR Aur - extremely high variations in optical bands

    NASA Astrophysics Data System (ADS)

    Boeva, S.; Latev, G.; Nikolov, Y.; Nikolov, P.; Nikolov, G.; Spassov, B.; Petrov, B.; Damljanovic, G.; Sekulic, M.; Zamanov, R.

    2017-03-01

    Since 2008, the cataclysmic variable star KR Aur is in deep minimum state with a short brightening in 2010. We performed photometric monitoring in 12 nights during the period August 2016 - February 2017 with the telescopes of Rozhen (Bulgaria), Belogradchik (Bulgaria) and Vidojevica (Serbia).

  12. Chemical, biochemical, and environmental fiber sensors III; Proceedings of the Meeting, Boston, MA, Sept. 4, 5, 1991

    NASA Astrophysics Data System (ADS)

    Lieberman, Robert A.

    Various papers on chemical, biochemical, and environmental fiber sensors are presented. Individual topics addressed include: fiber optic pressure sensor for combustion monitoring and control, viologen-based fiber optic oxygen sensors, renewable-reagent fiber optic sensor for ocean pCO2, transition metal complexes as indicators for a fiber optic oxygen sensor, fiber optic pH measurements using azo indicators, simple reversible fiber optic chemical sensors using solvatochromic dyes, totally integrated optical measuring sensors, integrated optic biosensor for environmental monitoring, radiation dosimetry using planar waveguide sensors, optical and piezoelectric analysis of polymer films for chemical sensor characterization, source polarization effects in an optical fiber fluorosensor, lens-type refractometer for on-line chemical analysis, fiber optic hydrocarbon sensor system, chemical sensors for environmental monitoring, optical fibers for liquid-crystal sensing and logic devices, suitability of single-mode fluoride fibers for evanescent-wave sensing, integrated modules for fiber optic sensors, optoelectronic sensors based on narrowband A3B5 alloys, fiber Bragg grating chemical sensor.

  13. Measuring temperature induced phase change kinetics in subcutaneous fatty tissues using near infrared spectroscopy, magnetic resonance imaging and optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sajjadi, Amir Y.; Carp, Stefan A.; Manstein, Dieter

    2017-02-01

    Monitoring phase transition in adipose tissue and formation of lipid crystals is important in Cryo-procedures such as cryosurgery or Selective Cryolipolysis (SC). In this work, we exploited a Near-Infrared Spectroscopy (NIRS) method to monitor the onset of fat freezing/melting. Concurrent measurements using frequency domain NIRS and MR Spectroscopy during cooling/heating were performed on an in vitro porcine skin sample with a thick subcutaneous fat layer in a human MR scanner. The NIRS probe was placed on the skin measuring the average optical scattering of the fatty layer. Two fiber optic temperature probes were inserted in the area of the MRS and NIRS measurements. To further investigate the microscopic features of the phase-transition, an identical cooling/heating procedure was replicated on the same fat tissue while being imaged by Optical Coherence Tomography. The temperature relationships of optical scattering, MRS peak characteristics and OCT reflection intensity were analyzed to find signatures related to the onset of phase transition. The optical scattering in the fatty tissues decreases during the heating and increases by cooling. However, there is an inflexion in the rate of change of the scattering while the phase transition happens in the fatty layer. The methylene fat peaks on the MR Spectrum are also shown to be broadened during the cooling. OCT intensity displays a sharp increase at the transition temperature. The results from multiple samples show two transition points around 5-10 ˚C (cooling) and 15-20 ˚C (heating) through all three methods, demonstrating that adipose tissue phase change can be monitored non-invasively.

  14. Normal and system lupus erythematosus red blood cell interactions studied by double trap optical tweezers: direct measurements of aggregation forces

    NASA Astrophysics Data System (ADS)

    Khokhlova, Maria D.; Lyubin, Eugeny V.; Zhdanov, Alexander G.; Rykova, Sophia Yu.; Sokolova, Irina A.; Fedyanin, Andrey A.

    2012-02-01

    Direct measurements of aggregation forces in piconewton range between two red blood cells in pair rouleau are performed under physiological conditions using double trap optical tweezers. Aggregation and disaggregation properties of healthy and pathologic (system lupus erythematosis) blood samples are analyzed. Strong difference in aggregation speed and behavior is revealed using the offered method which is proposed to be a promising tool for SLE monitoring at single cell level.

  15. Ultrawide Shipboard Electrooptic Electromagnetic Environment Monitoring

    DTIC Science & Technology

    1994-05-01

    ridge-waveguide modulator has a device length of 300 fpm, a waveguide thickness of 0.4 pm, a device capacitance of 0.2 pF, and a r x- 0.7. For digital ...important noise sources identified. Particular attention will be paid to the performance characteristics of the optical modulator. For digital ...1.32 tM for digital as well as analog optical link applications. The operation of the FKE modulator was discussed in Section 2.1.2 of this report. At

  16. Dental optical tomography with upconversion nanoparticles—a feasibility study

    PubMed Central

    Long, Feixiao; Intes, Xavier

    2017-01-01

    Abstract. Upconversion nanoparticles (UCNPs) have the unique ability to emit multiple colors upon excitation by near-infrared (NIR) light. Herein, we investigate the potential use of UCNPs as contrast agents for dental optical tomography, with a focus on monitoring the status of fillings after dental restoration. The potential of performing tomographic imaging using UCNP emission of visible or NIR light is established. This in silico and ex vivo study paves the way toward employing UCNPs as theranostic agents for dental applications. PMID:28586852

  17. TiO2 brookite nanostructured thin layer on magneto-optical surface plasmon resonance transductor for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Manera, M. G.; Colombelli, A.; Rella, R.; Caricato, A.; Cozzoli, P. D.; Martino, M.; Vasanelli, L.

    2012-09-01

    The sensing performance comparisons presented in this work were carried out by exploiting a suitable magneto-plasmonic sensor in both the traditional surface plasmon resonance configuration and the innovative magneto-optic surface plasmon resonance one. The particular multilayer transducer was functionalized with TiO2 Brookite nanorods layers deposited by matrix assisted pulsed laser evaporation, and its sensing capabilities were monitored in a controlled atmosphere towards different concentrations of volatile organic compounds mixed in dry air.

  18. Miniature integrated-optical wavelength analyzer chip

    NASA Astrophysics Data System (ADS)

    Kunz, R. E.; Dübendorfer, J.

    1995-11-01

    A novel integrated-optical chip suitable for realizing compact miniature wavelength analyzers with high linear dispersion is presented. The chip performs the complete task of converting the spectrum of an input beam into a corresponding spatial irradiance distribution without the need for an imaging function. We demonstrate the feasibility of this approach experimentally by monitoring the changes in the mode spectrum of a laser diode on varying its case temperature. Comparing the results with simultaneous measurements by a commercial spectrometer yielded a rms wavelength deviation of 0.01 nm.

  19. Dental optical tomography with upconversion nanoparticles—a feasibility study

    NASA Astrophysics Data System (ADS)

    Long, Feixiao; Intes, Xavier

    2017-06-01

    Upconversion nanoparticles (UCNPs) have the unique ability to emit multiple colors upon excitation by near-infrared (NIR) light. Herein, we investigate the potential use of UCNPs as contrast agents for dental optical tomography, with a focus on monitoring the status of fillings after dental restoration. The potential of performing tomographic imaging using UCNP emission of visible or NIR light is established. This in silico and ex vivo study paves the way toward employing UCNPs as theranostic agents for dental applications.

  20. Dental optical tomography with upconversion nanoparticles-a feasibility study.

    PubMed

    Long, Feixiao; Intes, Xavier

    2017-06-01

    Upconversion nanoparticles (UCNPs) have the unique ability to emit multiple colors upon excitation by near-infrared (NIR) light. Herein, we investigate the potential use of UCNPs as contrast agents for dental optical tomography, with a focus on monitoring the status of fillings after dental restoration. The potential of performing tomographic imaging using UCNP emission of visible or NIR light is established. This in silico and ex vivo study paves the way toward employing UCNPs as theranostic agents for dental applications.

  1. Optical assay for biotechnology and clinical diagnosis.

    PubMed

    Moczko, Ewa; Cauchi, Michael; Turner, Claire; Meglinski, Igor; Piletsky, Sergey

    2011-08-01

    In this paper, we present an optical diagnostic assay consisting of a mixture of environmental-sensitive fluorescent dyes combined with multivariate data analysis for quantitative and qualitative examination of biological and clinical samples. The performance of the assay is based on the analysis of spectrum of the selected fluorescent dyes with the operational principle similar to electronic nose and electronic tongue systems. This approach has been successfully applied for monitoring of growing cell cultures and identification of gastrointestinal diseases in humans.

  2. A Low-Cost Optical Remote Sensing Application for Glacier Deformation Monitoring in an Alpine Environment

    PubMed Central

    Giordan, Daniele; Allasia, Paolo; Dematteis, Niccolò; Dell’Anese, Federico; Vagliasindi, Marco; Motta, Elena

    2016-01-01

    In this work, we present the results of a low-cost optical monitoring station designed for monitoring the kinematics of glaciers in an Alpine environment. We developed a complete hardware/software data acquisition and processing chain that automatically acquires, stores and co-registers images. The system was installed in September 2013 to monitor the evolution of the Planpincieux glacier, within the open-air laboratory of the Grandes Jorasses, Mont Blanc massif (NW Italy), and collected data with an hourly frequency. The acquisition equipment consists of a high-resolution DSLR camera operating in the visible band. The data are processed with a Pixel Offset algorithm based on normalized cross-correlation, to estimate the deformation of the observed glacier. We propose a method for the pixel-to-metric conversion and present the results of the projection on the mean slope of the glacier. The method performances are compared with measurements obtained by GB-SAR, and exhibit good agreement. The system provides good support for the analysis of the glacier evolution and allows the creation of daily displacement maps. PMID:27775652

  3. A Low-Cost Optical Remote Sensing Application for Glacier Deformation Monitoring in an Alpine Environment.

    PubMed

    Giordan, Daniele; Allasia, Paolo; Dematteis, Niccolò; Dell'Anese, Federico; Vagliasindi, Marco; Motta, Elena

    2016-10-21

    In this work, we present the results of a low-cost optical monitoring station designed for monitoring the kinematics of glaciers in an Alpine environment. We developed a complete hardware/software data acquisition and processing chain that automatically acquires, stores and co-registers images. The system was installed in September 2013 to monitor the evolution of the Planpincieux glacier, within the open-air laboratory of the Grandes Jorasses, Mont Blanc massif (NW Italy), and collected data with an hourly frequency. The acquisition equipment consists of a high-resolution DSLR camera operating in the visible band. The data are processed with a Pixel Offset algorithm based on normalized cross-correlation, to estimate the deformation of the observed glacier. We propose a method for the pixel-to-metric conversion and present the results of the projection on the mean slope of the glacier. The method performances are compared with measurements obtained by GB-SAR, and exhibit good agreement. The system provides good support for the analysis of the glacier evolution and allows the creation of daily displacement maps.

  4. Transformer partial discharge monitoring based on optical fiber sensing

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Tong, Xinglin; Zhu, Xiaolong

    2014-06-01

    The power transformer is the most important equipment of the high voltage power grid, however, some traditional methods of online partial discharge monitoring have some limitations. Based on many advantages of the optical fiber sensing technology, we have done some research on fiber optics Fabry-Perot (FP) sensing which can be useful for the transformer on online partial discharge monitoring. This research aimed at improving the reliability of power system safety monitoring. We have done some work as follows: designing a set for fiber optics FP sensor preparation, according to the fabrication procedure strictly making out the sensors, building a reasonable signal demodulation system for fiber optics FP sensing, doing a preliminary analysis about online partial discharge signal monitoring, including the research on different discharge intensities with the same measuring distance and different measuring distances with the same discharge intensity, and then making a detailed analysis of the experimental results.

  5. Automated plasma control with optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, P. P.

    Plasma etching and desmear processes for printed wiring board (PWB) manufacture are difficult to predict and control. Non-uniformity of most plasma processes and sensitivity to environmental changes make it difficult to maintain process stability from day to day. To assure plasma process performance, weight loss coupons or post-plasma destructive testing must be used. These techniques are not real-time methods however, and do not allow for immediate diagnosis and process correction. These tests often require scrapping some fraction of a batch to insure the integrity of the rest. Since these tests verify a successful cycle with post-plasma diagnostics, poor test results often determine that a batch is substandard and the resulting parts unusable. These tests are a costly part of the overall fabrication cost. A more efficient method of testing would allow for constant monitoring of plasma conditions and process control. Process anomalies should be detected and corrected before the parts being treated are damaged. Real time monitoring would allow for instantaneous corrections. Multiple site monitoring would allow for process mapping within one system or simultaneous monitoring of multiple systems. Optical emission spectroscopy conducted external to the plasma apparatus would allow for this sort of multifunctional analysis without perturbing the glow discharge. In this paper, optical emission spectroscopy for non-intrusive, in situ process control will be explored along with applications of this technique to for process control, failure analysis and endpoint determination in PWB manufacture.

  6. Optical Diagnostics for High-Temperature Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    2009-01-01

    Thermal barrier coatings (TBCs) are typically composed of translucent ceramic oxides that provide thermal protection for metallic components exposed to high-temperature environments, such as in jet turbine engines. Taking advantage of the translucent nature of TBCs, optical diagnostics have been developed that can provide an informed assessment of TBC health that will allow mitigating action to be taken before TBC degradation threatens performance or safety. In particular, rare-earth-doped luminescent sublayers have been integrated into the TBC structure to produce luminescence that monitors TBC erosion, delamination, and temperature gradients. Erosion monitoring of TBC-coated specimens is demonstrated by utilizing visible luminescence that is excited from a sublayer that is exposed by erosion. TBC delamination monitoring is achieved in TBCs with a base rare-earth-doped luminescent sublayer by the reflectance-enhanced increase in luminescence produced in regions containing buried delamination cracks. TBC temperature monitoring is demonstrated using the temperature-dependent decay time for luminescence originating from the specific coating depth associated with a rare-earth-doped luminescent sublayer. The design and implementation of these TBCs with integrated luminescent sublayers is discussed, including co-doping strategies to produce more penetrating near-infrared luminescence. It is demonstrated that integration of the rare-earth-doped sublayers is achieved with no reduction in TBC life. In addition, results for multilayer TBCs designed to also perform as radiation barriers are also presented.

  7. Carbonaceous aerosols in the Western Mediterranean during summertime and their contribution to the aerosol optical properties at ground level: First results of the ChArMEx-ADRIMED 2013 intensive campaign in Corsica

    NASA Astrophysics Data System (ADS)

    Sciare, Jean; Dulac, Francois; Feron, Anais; Crenn, Vincent; Sarda Esteve, Roland; Baisnee, Dominique; Bonnaire, Nicolas; Hamonou, Eric; Mallet, Marc; Lambert, Dominique; Nicolas, Jose B.; Bourrianne, Thierry; Petit, Jean-Eudes; Favez, Olivier; Canonaco, Francesco; Prevot, Andre; Mocnik, Grisa; Drinovec, Luka; Marpillat, Alexandre; Serrie, Wilfrid

    2014-05-01

    As part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/), the CORSiCA (http://www.obs-mip.fr/corsica) and the ANR-ADRIMED programs, a large set of real-time measurements of carbonaceous aerosols was deployed in June 2013 at the Cape Corsica atmospheric supersite (http://gaw.empa.ch/gawsis/reports.asp?StationID=2076203042). Submicron organic aerosols (OA) were monitored every 30 min using an Aerosol Chemical Speciation Monitor (ACSM; Aerodyne Res. Inc. MA, USA); Fine (PM2.5) Organic Carbon (OC) and Elemental Carbon (EC) were measured every 2h using an OCEC Sunset Field Instrument (Sunset Lab, OR, USA) and every 12h using a low-vol (Leckel) filter sampler running at 2.3m3/h. Equivalent Black Carbon (BC) was monitored using two Aethalometers (models AE31 and AE33, Magee Scientific, US & Aerosol d.o.o., Slovenia) and a MAAP instrument (Thermo). Quality control of this large dataset was performed through chemical mass closure studies (using co-located SMPS and TEOM-FDMS) and direct comparisons with other real-time instruments running in parallel (Particle-Into-Liquid-Sampler-Ion-Chromatograph for ions, filter sampling, ...). Source apportionment of OA was then performed using the SourceFinder software (SoFi v4.5, http://www.psi.ch/acsm-stations/me-2) allowing the distinction between hydrogen- and oxygen-like organic aerosols (HOA and OOA, respectively) and highlighting the major contribution of secondary OA in the Western Mediterranean during summer. Using this time-resolved chemical information, reconstruction of the optical aerosol properties were performed and compared with integrating nephelometer (Model 3563, TSI, US) and photoacoustic extinctiometer (PAX, DMT, US) measurements performed in parallel. Results of these different closure studies (chemical/physical/optical) are presented and discussed here in details. They highlight the central role of carbonaceous aerosols on the optical properties of aerosols at ground level in the Western Mediterranean Sea during summertime. Acknowledgements: Aerosol measurements performed at Cape Corsica Station were mainly funded by ANR, CNRS-INSU, ADEME, Collectivité Territoriale de Corse through EU-FEDER Operational program 2007-2013, CEA, METEO-FRANCE, MGR-KROP, AEROSOL D.O.O., ECOMESURE, and ENVICONTROL

  8. Radiation imaging with optically read out GEM-based detectors

    NASA Astrophysics Data System (ADS)

    Brunbauer, F. M.; Lupberger, M.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.

    2018-02-01

    Modern imaging sensors allow for high granularity optical readout of radiation detectors such as MicroPattern Gaseous Detectors (MPGDs). Taking advantage of the high signal amplification factors achievable by MPGD technologies such as Gaseous Electron Multipliers (GEMs), highly sensitive detectors can be realised and employing gas mixtures with strong scintillation yield in the visible wavelength regime, optical readout of such detectors can provide high-resolution event representations. Applications from X-ray imaging to fluoroscopy and tomography profit from the good spatial resolution of optical readout and the possibility to obtain images without the need for extensive reconstruction. Sensitivity to low-energy X-rays and energy resolution permit energy resolved imaging and material distinction in X-ray fluorescence measurements. Additionally, the low material budget of gaseous detectors and the possibility to couple scintillation light to imaging sensors via fibres or mirrors makes optically read out GEMs an ideal candidate for beam monitoring detectors in high energy physics as well as radiotherapy. We present applications and achievements of optically read out GEM-based detectors including high spatial resolution imaging and X-ray fluorescence measurements as an alternative readout approach for MPGDs. A detector concept for low intensity applications such as X-ray crystallography, which maximises detection efficiency with a thick conversion region but mitigates parallax-induced broadening is presented and beam monitoring capabilities of optical readout are explored. Augmenting high resolution 2D projections of particle tracks obtained with optical readout with timing information from fast photon detectors or transparent anodes for charge readout, 3D reconstruction of particle trajectories can be performed and permits the realisation of optically read out time projection chambers. Combining readily available high performance imaging sensors with compatible scintillating gases and the strong signal amplification factors achieved by MPGDs makes optical readout an attractive alternative to the common concept of electronic readout of radiation detectors. Outstanding signal-to-noise ratios and robustness against electronic noise allow unprecedented imaging capabilities for various applications in fields ranging from high energy physics to medical instrumentation.

  9. High-performance optical projection controllable ZnO nanorod arrays for microweighing sensors.

    PubMed

    Wang, Hongbo; Jiang, Shulan; Zhang, Lei; Yu, Bingjun; Chen, Duoli; Yang, Weiqing; Qian, Linmao

    2018-03-08

    Optical microweighing sensors are an essential component of micro-force measurements in physical, chemical, and biological detection fields, although, their limited detection range (less than 15°) severely hinders their wide application. Such a limitation is mainly attributed to the essential restrictions of traditional light reflection and optical waveguide modes. Here, we report a high-performance optical microweighing sensor based on the synergistic effects of both a new optical projection mode and a ZnO nanorod array sensor. Ascribed to the unique configuration design of this sensing method, this optical microweighing sensor has a wide detection range (more than 80°) and a high sensitivity of 90 nA deg -1 , which is much larger than that of conventional microcantilever-based optical microweighing sensors. Furthermore, the location of the UV light source can be adjusted within a few millimeters, meaning that the microweighing sensor does not need repetitive optical calibration. More importantly, for low height and small incident angles of the UV light source, we can obtain highly sensitive microweighing properties on account of the highly sensitive ZnO nanorod array-based UV sensor. Therefore, this kind of large detection range, non-contact, and non-destructive microweighing sensor has potential applications in air quality monitoring and chemical and biological detection.

  10. Hybrid photonic signal processing

    NASA Astrophysics Data System (ADS)

    Ghauri, Farzan Naseer

    This thesis proposes research of novel hybrid photonic signal processing systems in the areas of optical communications, test and measurement, RF signal processing and extreme environment optical sensors. It will be shown that use of innovative hybrid techniques allows design of photonic signal processing systems with superior performance parameters and enhanced capabilities. These applications can be divided into domains of analog-digital hybrid signal processing applications and free-space---fiber-coupled hybrid optical sensors. The analog-digital hybrid signal processing applications include a high-performance analog-digital hybrid MEMS variable optical attenuator that can simultaneously provide high dynamic range as well as high resolution attenuation controls; an analog-digital hybrid MEMS beam profiler that allows high-power watt-level laser beam profiling and also provides both submicron-level high resolution and wide area profiling coverage; and all optical transversal RF filters that operate on the principle of broadband optical spectral control using MEMS and/or Acousto-Optic tunable Filters (AOTF) devices which can provide continuous, digital or hybrid signal time delay and weight selection. The hybrid optical sensors presented in the thesis are extreme environment pressure sensors and dual temperature-pressure sensors. The sensors employ hybrid free-space and fiber-coupled techniques for remotely monitoring a system under simultaneous extremely high temperatures and pressures.

  11. A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics.

    PubMed

    Wang, Li-Ju; Chang, Yu-Chung; Sun, Rongrong; Li, Lei

    2017-01-15

    Current reported smartphone spectrometers are only used to monitor or measure one sample at a time. For the first time, we demonstrate a multichannel smartphone spectrometer (MSS) as an optical biosensor that can simultaneously optical sense multiple samples. In this work, we developed a novel method to achieve the multichannel optical spectral sensing with nanometer resolution on a smartphone. A 3D printed cradle held the smartphone integrated with optical components. This optical sensor performed accurate and reliable spectral measurements by optical intensity changes at specific wavelength or optical spectral shifts. A custom smartphone multi-view App was developed to control the optical sensing parameters and to align each sample to the corresponding channel. The captured images were converted to the transmission spectra in the visible wavelength range from 400nm to 700nm with the high resolution of 0.2521nm per pixel. We validated the performance of this MSS via measuring the concentrations of protein and immunoassaying a type of human cancer biomarker. Compared to the standard laboratory instrument, the results sufficiently showed that this MSS can achieve the comparative analysis detection limits, accuracy and sensitivity. We envision that this multichannel smartphone optical biosensor will be useful in high-throughput point-of-care diagnostics with its minimizing size, light weight, low cost and data transmission function. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Liquid crystalline fiber optic colorimeter for hydrostatic pressure measurement

    NASA Astrophysics Data System (ADS)

    Wolinski, Tomasz R.; Bajdecki, Waldemar K.; Domanski, Andrzej W.; Karpierz, Miroslaw A.; Konopka, Witold; Nasilowski, T.; Sierakowski, Marek W.; Swillo, Marcin; Dabrowski, Roman S.; Nowinowski-Kruszelnicki, Edward; Wasowski, Janusz

    2001-08-01

    This paper presents results of tests performed on a fiber optic system of liquid crystalline transducer for hydrostatic pressure monitoring based on properties of colorimetry. The system employs pressure-induced deformations occurring in liquid crystalline (LC) cells configured in a homogeneous Frederiks geometry. The sensor is compared of a round LC cell placed inside a specially designed pressure chamber. As a light source we used a typical diode operating at red wavelength and modulated using standard techniques. The pressure transducer was connected to a computer with a specially designed interface built on the bas of advanced ADAM modules. Results indicate that the system offers high response to pressure with reduced temperature sensitivity and, depending on the LC cell used, can be adjusted for monitoring of low hydrostatic pressures up to 6 MPa. These studies have demonstrated the feasibility of fiber optic liquid crystal colorimeter for hydrostatic pressure sensing specially dedicated to pipe- lines, mining instrumentation, and process-control technologies.

  13. Monitoring tumor growth and treatment in small animals with magnetic resonance and optical tomographic imaging

    NASA Astrophysics Data System (ADS)

    Masciotti, J.; Provenzano, F.; Papa, J.; Klose, A.; Hur, J.; Gu, X.; Yamashiro, D.; Kandel, J.; Hielscher, A. H.

    2006-02-01

    Small animal models are employed to simulate disease in humans and to study its progression, what factors are important to the disease process, and to study the disease treatment. Biomedical imaging modalities such as magnetic resonance imaging (MRI) and Optical Tomography make it possible to non-invasively monitor the progression of diseases in living small animals and study the efficacy of drugs and treatment protocols. MRI is an established imaging modality capable of obtaining high resolution anatomical images and along with contrast agents allow the studying of blood volume. Optical tomography, on the other hand, is an emerging imaging modality, which, while much lower in spatial resolution, can separate the effects of oxyhemoglobin, deoxyhemoglobin, and blood volume with high temporal resolution. In this study we apply these modalities to imaging the growth of kidney tumors and then there treatment by an anti-VEGF agent. We illustrate how these imaging modalities have their individual uses, but can still supplement each other and cross validation can be performed.

  14. Cavity-Enhanced Raman Spectroscopy of Natural Gas with Optical Feedback cw-Diode Lasers.

    PubMed

    Hippler, Michael

    2015-08-04

    We report on improvements made on our previously introduced technique of cavity-enhanced Raman spectroscopy (CERS) with optical feedback cw-diode lasers in the gas phase, including a new mode-matching procedure which keeps the laser in resonance with the optical cavity without inducing long-term frequency shifts of the laser, and using a new CCD camera with improved noise performance. With 10 mW of 636.2 nm diode laser excitation and 30 s integration time, cavity enhancement achieves noise-equivalent detection limits below 1 mbar at 1 bar total pressure, depending on Raman cross sections. Detection limits can be easily improved using higher power diodes. We further demonstrate a relevant analytical application of CERS, the multicomponent analysis of natural gas samples. Several spectroscopic features have been identified and characterized. CERS with low power diode lasers is suitable for online monitoring of natural gas mixtures with sensitivity and spectroscopic selectivity, including monitoring H2, H2S, N2, CO2, and alkanes.

  15. Development and performance research of FBG strain sensor for monitoring on asphalt concrete pavement

    NASA Astrophysics Data System (ADS)

    Hu, Qingli; Wang, Chuan; Ou, Jinping

    2010-04-01

    Stiffness of asphalt concrete is very low, so ordinary FRP or steel packaged sensors are not suitable for measuring its strain accurately. In view of the problem, one innovative kind of optical fiber Bragg grating sensor packaged with polypropylene, a thermoplastic resin, was proposed in this article. Firstly, a conveniently assembled and dissembled steel die was designed and fabricated. Then, after characteristics study of polypropylene during heating and cooling repeatedly, the reliable grouting technique was formed. After this, real-time monitor of the entire sensor packaging process including die apartness was performed, and then, the sensor mechanics performance, the microscopic structure and other properties were studied thoroughly. Results of SEM indicate that interface of optical fiber and polypropylene is considerable tight. Measured strain during sensor making is reasonable. The FBG sensor was also embedded into a concrete column to measure its strain during continuously 7 day-long early-age solidification and compressive strain. Additionally, the FBG was also used to measure strain of asphalt concrete beam. Linearity and repeatability of the sensors are quit well and measured strains are quite believable. So, we can say that due to deformation compatibility between packaged material and FBG, FBG sensor and be measured material, especially low modulus of packaging materials, the strain of asphalt pavement can be monitored reliably by the sensor.

  16. High spatial resolution fiber optical sensors for simultaneous temperature and chemical sensing for energy industries

    NASA Astrophysics Data System (ADS)

    Yan, Aidong; Huang, Sheng; Li, Shuo; Zaghloul, Mohamed; Ohodnicki, Paul; Buric, Michael; Chen, Kevin P.

    2017-05-01

    This paper demonstrates optical fibers as high-temperature sensor platforms. Through engineering and onfiber integration of functional metal oxide sensory materials, we report the development of an integrated sensor solution to perform temperature and chemical measurements for high-temperature energy applications. Using the Rayleigh optical frequency domain reflectometry (OFDR) distributed sensing scheme, the temperature and hydrogen concentration were measured along the fiber. To overcome the weak Rayleighbackscattering intensity exhibited by conventional optical fibers, an ultrafast laser was used to enhance the Rayleigh scattering by a direct laser writing method. Using the Rayleigh-enhanced fiber as sensor platform, both temperature and hydrogen reaction were monitored at high temperature up to 750°C with 4-mm spatial resolution.

  17. Mitochondrial function and tissue vitality: bench-to-bedside real-time optical monitoring system

    NASA Astrophysics Data System (ADS)

    Mayevsky, Avraham; Walden, Raphael; Pewzner, Eliyahu; Deutsch, Assaf; Heldenberg, Eitan; Lavee, Jacob; Tager, Salis; Kachel, Erez; Raanani, Ehud; Preisman, Sergey; Glauber, Violete; Segal, Eran

    2011-06-01

    Background: The involvement of mitochondria in pathological states, such as neurodegenerative diseases, sepsis, stroke, and cancer, are well documented. Monitoring of nicotinamide adenine dinucleotide (NADH) fluorescence in vivo as an intracellular oxygen indicator was established in 1950 to 1970 by Britton Chance and collaborators. We use a multiparametric monitoring system enabling assessment of tissue vitality. In order to use this technology in clinical practice, the commercial developed device, the CritiView (CRV), is tested in animal models as well as in patients. Methods and Results: The new CRV enables the optical monitoring of four different parameters, representing the energy balance of various tissues in vivo. Mitochondrial NADH is measured by surface fluorometry/reflectometry. In addition, tissue microcirculatory blood flow, tissue reflectance and oxygenation are measured as well. The device is tested both in vitro and in vivo in a small animal model and in preliminary clinical trials in patients undergoing vascular or open heart surgery. In patients, the monitoring is started immediately after the insertion of a three-way Foley catheter (urine collection) to the patient and is stopped when the patient is discharged from the operating room. The results show that monitoring the urethral wall vitality provides information in correlation to the surgical procedure performed.

  18. Plastic optical fibre sensor for quality control in food industry

    NASA Astrophysics Data System (ADS)

    Novo, C.; Bilro, L.; Ferreira, R.; Alberto, N.; Antunes, P.; Leitão, C.; Nogueira, R.; Pinto, J. L.

    2013-05-01

    The present work addresses the need for new devices felt in the context of quality control, especially in the food industry. Due to the spectral dependence of the attenuation coefficient, a novel dual-parameter sensor for colour and refractive index was developed and tested. The sensor employs plastic optical fibres to measure the transmitted optical power in three measurement cells each with a different incident wavelength. The performance of the sensor was tested using several dyes at different concentrations and aqueous solutions of glycerine and ethanol. Results show that this technique allows the monitoring of refractive index and colour without cross-sensitivity.

  19. [Computer optical topography: a study of the repeatability of the results of human body model examination].

    PubMed

    Sarnadskiĭ, V N

    2007-01-01

    The problem of repeatability of the results of examination of a plastic human body model is considered. The model was examined in 7 positions using an optical topograph for kyphosis diagnosis. The examination was performed under television camera monitoring. It was shown that variation of the model position in the camera view affected the repeatability of the results of topographic examination, especially if the model-to-camera distance was changed. A study of the repeatability of the results of optical topographic examination can help to increase the reliability of the topographic method, which is widely used for medical screening of children and adolescents.

  20. Changes in optical properties of electroporated cells as revealed by digital holographic microscopy

    PubMed Central

    Calin, Violeta L.; Mihailescu, Mona; Mihale, Nicolae; Baluta, Alexandra V.; Kovacs, Eugenia; Savopol, Tudor; Moisescu, Mihaela G.

    2017-01-01

    Changes in optical and shape-related characteristics of B16F10 cells after electroporation were investigated using digital holographic microscopy (DHM). Bipolar rectangular pulses specific for electrochemotherapy were used. Electroporation was performed in an “off-axis” DHM set-up without using exogenous markers. Two types of cell parameters were monitored seconds and minutes after pulse train application: parameters addressing a specifically defined area of the cell (refractive index and cell height) and global cell parameters (projected area, optical phase shift profile and dry mass). The biphasic behavior of cellular parameters was explained by water and mannitol dynamics through the electropermeabilized cell membrane. PMID:28736667

  1. Development and investigation of MOEMS type displacement-pressure sensor for biological information monitoring

    NASA Astrophysics Data System (ADS)

    Ostasevicius, Vytautas; Malinauskas, Karolis; Janusas, Giedrius; Palevicius, Arvydas; Cekas, Elingas

    2016-04-01

    The aim of this paper is to develop and investigate MOEMS displacement-pressure sensor for biological information monitoring. Developing computational periodical microstructure models using COMSOL Multiphysics modeling software for modal and shape analysis and implementation of these results for design MOEMS displacement-pressure sensor for biological information monitoring was performed. The micro manufacturing technology of periodical microstructure having good diffraction efficiency was proposed. Experimental setup for characterisation of optical properties of periodical microstructure used for design of displacement-pressure sensor was created. Pulsating human artery dynamic characteristics in this paper were analysed.

  2. Development of a High Spectral Resolution Lidar (HSRL) Based on a Confocal Optical Filter for Aerosol Studies

    NASA Astrophysics Data System (ADS)

    Repasky, K. S.; Hoffman, D. S.; Reagan, J. A.; Carlsten, J.

    2010-12-01

    Aerosols are an important constituent in atmospheric composition affecting climate, weather, and air quality. Active remote sensing instruments provide tools for in-situ studies of atmospheric aerosols that can help understand the role of aerosols on the radiative forcing of the climate system. In this paper, the design and initial performance of a high spectral resolution lidar (HSRL) based on a unique confocal cavity for optically filtering the aerosol and molecular returns is presented. An injection seeded pulsed Nd:YAG laser with a fundamental and frequency doubled output is used as the laser transmitter for the HSRL. A small portion of fiber coupled injection seeded signal at 1064 nm is split before the laser oscillator and, after modulation using an acousto-optic modulator, is used to produce a discriminating signal for locking a confocal cavity that is resonant at the 1064 and 532 nm wavelengths to the injection seeded source. Light scattered in the atmosphere is collected using a commercial telescope. After the telescope, the 1064 nm light is split from the 532 nm light using a dielectric mirror with the 1064 nm light monitored using a PMT. The 532 nm light is launched into a multimode fiber. The output from the fiber is next incident on a beamsplitter with part of the light sent to a PMT to monitor the total return for the 532 nm channel. The light that passes through the beamsplitter is mode matched into a confocal optical cavity that allows the light scattered by the atmospheric aerosols to be transmitted while the light scattered from the atmospheric molecules is reflected. The transmitted light from the aerosol scattering is incident on a PMT while the reflected molecular signal is incident on a PMT. The transmission of the confocal cavity is monitored before and after the data collection using a continuous wave frequency doubled Nd:YAG laser that is fiber coupled. Data is collected and processed in the following manner. Each of the four voltage signals from the PMT’s are monitored using a high speed A/D card. The inversion of the 1064 nm return signal is completed using the Fernald inversion technique with the additional constraint of the aerosol optical depth. The HSRL 532 nm signal is inverted using a Rayleigh backscatter model along with the inversion techniques described by Shipley et al. (Applied Optics, V22, N23, 3716-3724, 1983) and Sroga et al. (Applied Optics, V22, N23, 3725-3732, 1983). This presentation will focus on the design of the confocal optical filter, the locking of the confocal optical filter to the laser transmitter, and the performance of the high spectral resolution channel at 532 nm. Data will be presented showing the molecular returns, the aerosol returns and the range resolved lidar ratio.

  3. Diffuse Optical Monitoring of the Neoadjuvant Breast Cancer Therapy

    PubMed Central

    Choe, Regine; Durduran, Turgut

    2012-01-01

    Recent advances in the use of diffuse optical techniques for monitoring the hemodynamic, metabolic and physiological signatures of the neoadjuvant breast cancer therapy effectiveness is critically reviewed. An extensive discussion of the state-of-theart diffuse optical mammography is presented alongside a discussion of the current approaches to breast cancer therapies. Overall, the diffuse optics field is growing rapidly with a great deal of promise to fill an important niche in the current approaches to monitor, predict and personalize neoadjuvant breast cancer therapies. PMID:23243386

  4. A Fiber Optic Probe for Monitoring Protein Aggregation, Nucleation, and Crystallization

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.; Arabshahi, Alireza; Wilson, William W.; Bray, Terry L.; DeLucas, Lawrence J.

    1996-01-01

    Protein crystals are experimentally grown in hanging drops in microgravity experiments on-board the Space Shuttle orbiter. The technique of dynamic light scattering (DLS) can be used to monitor crystal growth process in hanging droplets (approx. 30 (L)) in microgravity experiments, but elaborate instrumentation and optical alignment problems have made in-situ applications difficult. In this paper we demonstrate that such experiments are now feasible. We apply a newly developed fiber optic probe to various earth and space (micro- gravity) bound protein crystallization system configurations to test its capability. These include conventional batch (cuvette or capillary) systems, hanging drop method in a six-pack hanging drop vapor diffusion apparatus (HDVDA), a modified HDVDA for temperature- induced nucleation and aggregation studies, and a newly envisioned dynamically controlled vapor diffusion system (DCVDS) configuration. Our compact system exploits the principles of DLS and offers a fast (within a few seconds) means of quantitatively and non-invasively monitoring the various growth stages of protein crystallization. In addition to DLS capability, the probe can also be used for performing single-angle static light scattering measurements. It utilizes extremely low levels of laser power (approx. few (W)) without a need of having any optical alignment and vibration isolation. The compact probe is also equipped with a miniaturized microscope for visualization of macroscopic protein crystals. This new optical diagnostic system opens up enormous opportunity for exploring new ways to grow good quality crystals suitable for x-ray crystallographic analysis and may help develop a concrete scientific basis for understanding the process of crystallization.

  5. Fiber optic strain measurements using an optically-active polymer

    NASA Astrophysics Data System (ADS)

    Buckley, Leonard J.; Neumeister, Gary C.

    1992-03-01

    A study encompassing the use of an optically-active polymer as the strain-sensing medium in an organic matrix composite was performed. Several compounds were synthesized for use as the inner cladding material for silica fiber-optic cores. These materials include a diacetylene containing polyamide. It is possible to dynamically modify the optical properties of these materials through changes in applied strain or temperature. By doing so the characteristic absorption in the visible is reversibly shifted to a higher energy state. The polymer-coated fiber-optic cores were initially studied in epoxy resin. Additionally, one of the polyamide/diacetylene polymers was studied in a spin-fiber form consisting of 15 micron filaments assembled in multifilament tows. The most promising configuration and materials were then investigated further by embedding in graphite/epoxy composite laminates. In each case the shift in the visible absorption peak was monitored as a function of applied mechanical strain.

  6. Optical radiation measurements and instrumentation.

    PubMed

    Andersen, F A; Landry, R J

    1981-07-01

    Accurate measurement of optical radiation is required when sources of optical radiation are used in biological research. Such measurement of broad-band noncoherent optical radiations usually must be performed by a highly trained specialist using sophisticated, complex, and expensive instruments. Presentation of the results of such measurement requires correct use of quantities and units with which many biological researchers are unfamiliar. The measurement process, quantities, units, measurement systems and instruments, and uncertainties associated with optical radiation measurements are reviewed in this paper. A conventional technique for evaluating the potential hazards associated with broad-band sources of optical radiation and a spectroradiometer developed to measure spectral quantities is described. A new prototype ultraviolet radiation hazard monitor which has recently been developed is also presented. This new instrument utilizes a spectrograph and a spectral weighting mechanical mask and provides a direct reading of the effective irradiance for wavelengths less than 315 nm.

  7. PECASE: All-Optical Photonic Integrated Circuits in Silicon

    DTIC Science & Technology

    2011-01-14

    COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION...REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) 11

  8. Fiber optic sensor technology - An opportunity for smart aerospace structures

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Rogowski, R. S.; Claus, R. O.

    1988-01-01

    Fiber optic sensors provide the opportunity for fabricating materials with internal sensors which can serve as lifetime health monitors, analogous to a central nervous system. The embedded fiber optic sensors can be interrogated by various techniques to measure internal strain, temperature, pressure, acoustic waves and other parameters indicative of structural integrity. Experiments have been conducted with composite samples with embedded sensors to measure strain using optical time domain reflectometry, modal interference and an optical phase locked loop. Fiber optic sensors have been developed to detect acoustic emission and impact damage and have been demonstrated for cure monitoring. These sensors have the potential for lifetime monitoring of structural properties, providing real time nondestructive evaluation.

  9. Space Gator: a giant leap for fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Evenblij, R. S.; Leijtens, J. A. P.

    2017-11-01

    Fibre Optic Sensing is a rapidly growing application field for Photonics Integrated Circuits (PIC) technology. PIC technology is regarded enabling for required performances and miniaturization of next generation fibre optic sensing instrumentation. So far a number of Application Specific Photonics Integrated Circuits (ASPIC) based interrogator systems have been realized as operational system-on-chip devices. These circuits have shown that all basic building blocks are working and complete interrogator on chip solutions can be produced. Within the Saristu (FP7) project several high reliability solutions for fibre optic sensing in Aeronautics are being developed, combining the specifically required performance aspects for the different sensing applications: damage detection, impact detection, load monitoring and shape sensing (including redundancy aspects and time division features). Further developments based on devices and taking into account specific space requirements (like radiation aspects) will lead to the Space Gator, which is a radiation tolerant highly integrated Fibre Bragg Grating (FBG) interrogator on chip. Once developed and qualified the Space Gator will be a giant leap for fibre optic sensing in future space applications.

  10. The effect on surgical skills of expert surgeons using 3D/HD and 2D/4K resolution monitors in laparoscopic phantom tasks.

    PubMed

    Harada, Hitoshi; Kanaji, Shingo; Hasegawa, Hiroshi; Yamamoto, Masashi; Matsuda, Yoshiko; Yamashita, Kimihiro; Matsuda, Takeru; Oshikiri, Taro; Sumi, Yasuo; Nakamura, Tetsu; Suzuki, Satoshi; Kakeji, Yoshihiro

    2018-03-30

    Recently, several new imaging technologies, such as three-dimensional (3D)/high-definition (HD) stereovision and high-resolution two-dimensional (2D)/4K monitors, have been introduced in laparoscopic surgery. However, it is still unclear whether these technologies actually improve surgical performance. Participants were 11 expert laparoscopic surgeons. We designed three laparoscopic suturing tasks (task 1: simple suturing, task 2: knotting thread in a small box, and task 3: suturing in a narrow space) in training boxes. Performances were recorded by an optical position tracker. All participants first performed each task five times consecutively using a conventional 2D/HD monitor. Then they were randomly divided into two groups: six participants performed the tasks using 3D/HD before using 2D/4K; the other five participants performed the tasks using a 2D/4K monitor before the 3D/HD monitor. After the trials, we evaluated the performance scores (operative time, path length of forceps, and technical errors) and compared performance scores across all monitors. Surgical performances of participants were ranked in decreasing order: 3D/HD, 2D/4K, and 2D/HD using the total scores for each task. In task 1 (simple suturing), some surgical performances using 3D/HD were significantly better than those using 2D/4K (P = 0.017, P = 0.033, P = 0.492 for operative time, path length, and technical errors, respectively). On the other hand, with operation in narrow spaces such as in tasks 2 and 3, performances using 2D/4K were not inferior to 3D/HD performances. The high-resolution images from the 2D/4K monitor may enhance depth perception in narrow spaces and may complement stereoscopic vision almost as well as using 3D/HD. Compared to a 2D/HD monitor, a 3D/HD monitor improved the laparoscopic surgical technique of expert surgeons more than a 2D/4K monitor. However, the advantage of 2D/4K high-resolution images may be comparable to a 3D/HD monitor especially in narrow spaces.

  11. The Cloud Detection and UV Monitoring Experiment (CLUE)

    NASA Technical Reports Server (NTRS)

    Barbier, L.; Loh, E.; Sokolsky, P.; Streitmatter, R.

    2004-01-01

    We propose a large-area, low-power instrument to perform CLoud detection and Ultraviolet monitoring, CLUE. CLUE will combine the W detection capabilities of the NIGHTGLOW payload, with an array of infrared sensors to perform cloud slicing measurements. Missions such as EUSO and OWL which seek to measure UHE cosmic-rays at 1W20 eV use the atmosphere as a fluorescence detector. CLUE will provide several important correlated measurements for these missions, including: monitoring the atmospheric W emissions &om 330 - 400 nm, determining the ambient cloud cover during those W measurements (with active LIDAR), measuring the optical depth of the clouds (with an array of narrow band-pass IR sensors), and correlating LIDAR and IR cloud cover measurements. This talk will describe the instrument as we envision it.

  12. Bluetooth Heart Rate Monitors For Spaceflight

    NASA Technical Reports Server (NTRS)

    Buxton, R. E.; West, M. R.; Kalogera, K. L.; Hanson, A. M.

    2016-01-01

    Heart rate monitoring is required for crewmembers during exercise aboard the International Space Station (ISS) and will be for future exploration missions. The cardiovascular system must be sufficiently stressed throughout a mission to maintain the ability to perform nominal and contingency/emergency tasks. High quality heart rate data are required to accurately determine the intensity of exercise performed by the crewmembers and show maintenance of VO2max. The quality of the data collected on ISS is subject to multiple limitations and is insufficient to meet current requirements. PURPOSE: To evaluate the performance of commercially available Bluetooth heart rate monitors (BT_HRM) and their ability to provide high quality heart rate data to monitor crew health aboard the ISS and during future exploration missions. METHODS: Nineteen subjects completed 30 data collection sessions of various intensities on the treadmill and/or cycle. Subjects wore several BT_HRM technologies for each testing session. One electrode-based chest strap (CS) was worn, while one or more optical sensors (OS) were worn. Subjects were instrumented with a 12-lead ECG to compare the heart rate data from the Bluetooth sensors. Each BT_HRM data set was time matched to the ECG data and a +/-5bpm threshold was applied to the difference between the 2 data sets. Percent error was calculated based on the number of data points outside the threshold and the total number of data points. RESULTS: The electrode-based chest straps performed better than the optical sensors. The best performing CS was CS1 (1.6% error), followed by CS4 (3.3% error), CS3 (6.4% error), and CS2 (9.2% error). The OS resulted in 10.4% error for OS1 and 14.9% error for OS2. CONCLUSIONS: The highest quality data came from CS1, but unfortunately it has been discontinued by the manufacturer. The optical sensors have not been ruled out for use, but more investigation is needed to determine how to obtain the best quality data. CS2 will be used in an ISS Bluetooth validation study, because it simultaneously transmits magnetic pulse that is integrated with existing exercise hardware on ISS. The simultaneous data streams allow for beat-to-beat comparison between the current ISS standard and CS2. Upon Bluetooth validation aboard ISS, the research team will down select a new BT_HRM for operational use.

  13. Bluetooth(Registered Trademark) Heart Rate Monitors for Spaceflight

    NASA Technical Reports Server (NTRS)

    Buxton, Roxanne E.; West, Michael R.; Kalogera, Kent L.; Hanson, Andrea M.

    2016-01-01

    Heart rate monitoring is required during exercise for crewmembers aboard the International Space Station (ISS) and will be for future exploration missions. The cardiovascular system must be sufficiently stressed throughout a mission to maintain the ability to perform nominal and contingency/emergency tasks. High quality heart rate data is required to accurately determine the intensity of exercise performed by the crewmembers and show maintenance of VO2max. The quality of the data collected on ISS is subject to multiple limitations and is insufficient to meet current requirements. PURPOSE: To evaluate the performance of commercially available Bluetooth® heart rate monitors (BT_HRM) and their ability to provide high quality heart rate data to monitor crew health on board ISS and during future exploration missions. METHODS: Nineteen subjects completed 30 data collection sessions of various intensities on the treadmill and/or cycle. Subjects wore several BT_HRM technologies for each testing session. One electrode-based chest strap (CS) was worn, while one or more optical sensors (OS) was worn. Subjects were instrumented with a 12-lead ECG to compare the heart rate data from the Bluetooth sensors. Each BT_RHM data set was time matched to the ECG data and a +/-5bpm threshold was applied to the difference between the two data sets. Percent error was calculated based on the number of data points outside the threshold and the total number of data points. REULTS: The electrode-based chest straps performed better than the optical sensors. The best performing CS was CS1 (1.6%error), followed by CS4 (3.3%error), CS3 (6.4%error), and CS2 (9.2%error). The OS resulted in 10.4% error for OS1 and 14.9% error for OS2. CONCLUSIONS: The highest quality data came from CS1, unfortunately it has been discontinued by the manufacturer. The optical sensors have not been ruled out for use, but more investigation is needed to determine how to get the best quality data. CS2 will be used in an ISS Bluetooth validation study, because it simultaneously transmits Magnetic Pulse which is integrated with existing exercise hardware on ISS. The simultaneous data streams allow for beat to beat comparison between the current ISS standard and CS2.Upon Bluetooth(Registered Trademark) validation aboard ISS, down select of a new BT_HRM for operational use will be made.

  14. Metrology Optical Power Budgeting in SIM Using Statistical Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Kuan, Gary M

    2008-01-01

    The Space Interferometry Mission (SIM) is a space-based stellar interferometry instrument, consisting of up to three interferometers, which will be capable of micro-arc second resolution. Alignment knowledge of the three interferometer baselines requires a three-dimensional, 14-leg truss with each leg being monitored by an external metrology gauge. In addition, each of the three interferometers requires an internal metrology gauge to monitor the optical path length differences between the two sides. Both external and internal metrology gauges are interferometry based, operating at a wavelength of 1319 nanometers. Each gauge has fiber inputs delivering measurement and local oscillator (LO) power, split into probe-LO and reference-LO beam pairs. These beams experience power loss due to a variety of mechanisms including, but not restricted to, design efficiency, material attenuation, element misalignment, diffraction, and coupling efficiency. Since the attenuation due to these sources may degrade over time, an accounting of the range of expected attenuation is needed so an optical power margin can be book kept. A method of statistical optical power analysis and budgeting, based on a technique developed for deep space RF telecommunications, is described in this paper and provides a numerical confidence level for having sufficient optical power relative to mission metrology performance requirements.

  15. Optical characterization of agricultural pest insects: a methodological study in the spectral and time domains

    NASA Astrophysics Data System (ADS)

    Li, Y. Y.; Zhang, H.; Duan, Z.; Lian, M.; Zhao, G. Y.; Sun, X. H.; Hu, J. D.; Gao, L. N.; Feng, H. Q.; Svanberg, S.

    2016-08-01

    Identification of agricultural pest insects is an important aspect in insect research and agricultural monitoring. We have performed a methodological study of how spectroscopic techniques and wing-beat frequency analysis might provide relevant information. An optical system based on the combination of close-range remote sensing and reflectance spectroscopy was developed to study the optical characteristics of different flying insects, collected in Southern China. The results demonstrate that the combination of wing-beat frequency assessment and reflectance spectral analysis has the potential to successfully differentiate between insect species. Further, studies of spectroscopic characteristics of fixed specimen of insects, also from Central China, showed the possibility of refined agricultural pest identification. Here, in addition to reflectance recordings also laser-induced fluorescence spectra were investigated for all the species of insects under study and found to provide complementary information to optically distinguish insects. In order to prove the practicality of the techniques explored, clearly fieldwork aiming at elucidating the variability of parameters, even within species, must be performed.

  16. Effect of optical aberrations on intraocular pressure measurements using a microscale optical implant in ex vivo rabbit eyes

    NASA Astrophysics Data System (ADS)

    Han, Samuel J.; Park, Haeri; Lee, Jeong Oen; Choo, Hyuck

    2018-04-01

    Elevated intraocular pressure (IOP) is the only modifiable major risk factor of glaucoma. Recently, accurate and continuous IOP monitoring has been demonstrated in vivo using an implantable sensor based on optical resonance with remote optical readout to improve patient outcomes. Here, we investigate the relationship between optical aberrations of ex vivo rabbit eyes and the performance of the IOP sensor using a custom-built setup integrated with a Shack-Hartmann sensor. The sensor readouts became less accurate as the aberrations increased in magnitude, but they remained within the clinically acceptable range. For root-mean-square wavefront errors of 0.10 to 0.94 μm, the accuracy and the signal-to-noise ratio were 0.58 ± 0.32 mm Hg and 15.57 ± 4.85 dB, respectively.

  17. Downhole fiber optic sensing: the oilfield service provider's perspective: from the cradle to the grave

    NASA Astrophysics Data System (ADS)

    Skinner, Neal G.; Maida, John L.

    2014-06-01

    For almost three decades, interest has continued to increase with respect to the application of fiber-optic sensing techniques for the upstream oil and gas industry. This paper reviews optical sensing technologies that have been and are being adopted downhole, as well as their drivers. A brief description of the life of a well, from the cradle to the grave, and the roles fiber-optic sensing can play in optimizing production, safety, and protection of the environment are also presented. The performance expectations (accuracy, resolution, stability, and operational lifetime) that oil companies and oil service companies have for fiber-optic sensing systems is described. Additionally, the environmental conditions (high hydrostatic pressures, high temperatures, shock, vibration, crush, and chemical exposure) that these systems must tolerate to provide reliable and economically attractive oilfield monitoring solutions are described.

  18. Nanoimprinting on optical fiber end faces for chemical sensing

    NASA Astrophysics Data System (ADS)

    Kostovski, G.; White, D. J.; Mitchell, A.; Austin, M. W.; Stoddart, P. R.

    2008-04-01

    Optical fiber surface-enhanced Raman scattering (SERS) sensors offer a potential solution to monitoring low chemical concentrations in-situ or in remote sensing scenarios. We demonstrate the use of nanoimprint lithography to fabricate SERS-compatible nanoarrays on the end faces of standard silica optical fibers. The antireflective nanostructure found on cicada wings was used as a convenient template for the nanoarray, as high sensitivity SERS substrates have previously been demonstrated on these surfaces. Coating the high fidelity replicas with silver creates a dense array of regular nanoscale plasmonic resonators. A monolayer of thiophenol was used as a low concentration analyte, from which strong Raman spectra were collected using both direct endface illumination and through-fiber interrogation. This unique combination of nanoscale replication with optical fibers demonstrates a high-resolution, low-cost approach to fabricating high-performance optical fiber chemical sensors.

  19. Failure prediction using machine learning and time series in optical network.

    PubMed

    Wang, Zhilong; Zhang, Min; Wang, Danshi; Song, Chuang; Liu, Min; Li, Jin; Lou, Liqi; Liu, Zhuo

    2017-08-07

    In this paper, we propose a performance monitoring and failure prediction method in optical networks based on machine learning. The primary algorithms of this method are the support vector machine (SVM) and double exponential smoothing (DES). With a focus on risk-aware models in optical networks, the proposed protection plan primarily investigates how to predict the risk of an equipment failure. To the best of our knowledge, this important problem has not yet been fully considered. Experimental results showed that the average prediction accuracy of our method was 95% when predicting the optical equipment failure state. This finding means that our method can forecast an equipment failure risk with high accuracy. Therefore, our proposed DES-SVM method can effectively improve traditional risk-aware models to protect services from possible failures and enhance the optical network stability.

  20. Advanced materials and techniques for fibre-optic sensing

    NASA Astrophysics Data System (ADS)

    Henderson, Philip J.

    2014-06-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  1. Monitoring service for the Gran Telescopio Canarias control system

    NASA Astrophysics Data System (ADS)

    Huertas, Manuel; Molgo, Jordi; Macías, Rosa; Ramos, Francisco

    2016-07-01

    The Monitoring Service collects, persists and propagates the Telescope and Instrument telemetry, for the Gran Telescopio CANARIAS (GTC), an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). A new version of the Monitoring Service has been developed in order to improve performance, provide high availability, guarantee fault tolerance and scalability to cope with high volume of data. The architecture is based on a distributed in-memory data store with a Product/Consumer pattern design. The producer generates the data samples. The consumers either persists the samples to a database for further analysis or propagates them to the consoles in the control room to monitorize the state of the whole system.

  2. Remote coding scheme based on waveguide Bragg grating in PLC splitter chip for PON monitoring.

    PubMed

    Zhang, Xuan; Lu, Fengjun; Chen, Si; Zhao, Xingqun; Zhu, Min; Sun, Xiaohan

    2016-03-07

    A distributing arranged waveguide Bragg gratings (WBGs) in PLC splitter chip based remote coding scheme is proposed and analyzed for passive optical network (PON) monitoring, by which the management system can identify each drop fiber link through the same reflector in the terminal of each optical network unit, even though there exist several equidistant users. The corresponding coding and capacity models are respectively established and investigated so that we can obtain a minimum number of the WBGs needed under the condition of the distributed structure. Signal-to-noise ratio (SNR) model related to the number of equidistant users is also developed to extend the analyses for the overall performance of the system. Simulation results show the proposed scheme is feasible and allow the monitoring of a 64 users PON with SNR range of 7.5~10.6dB. The scheme can solve some of difficulties of construction site at the lower user cost for PON system.

  3. Joule heating monitoring in a microfluidic channel by observing the Brownian motion of an optically trapped microsphere.

    PubMed

    Brans, Toon; Strubbe, Filip; Schreuer, Caspar; Vandewiele, Stijn; Neyts, Kristiaan; Beunis, Filip

    2015-09-01

    Electric fields offer a variety of functionalities to Lab-on-a-Chip devices. The use of these fields often results in significant Joule heating, affecting the overall performance of the system. Precise knowledge of the temperature profile inside a microfluidic device is necessary to evaluate the implications of heat dissipation. This article demonstrates how an optically trapped microsphere can be used as a temperature probe to monitor Joule heating in these devices. The Brownian motion of the bead at room temperature is compared with the motion when power is dissipated in the system. This gives an estimate of the temperature increase at a specific location in a microfluidic channel. We demonstrate this method with solutions of different ionic strengths, and establish a precision of 0.9 K and an accuracy of 15%. Furthermore, it is demonstrated that transient heating processes can be monitored with this technique, albeit with a limited time resolution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Monitoring of Thermal Protection Systems Using Robust Self-Organizing Optical Fiber Sensing Networks

    NASA Technical Reports Server (NTRS)

    Richards, Lance

    2013-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, and an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during re-entry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry

  5. Monitoring the process of pulmonary melanoma metastasis using large area and label-free nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Hua, Daozhu; Qi, Shuhong; Li, Hui; Zhang, Zhihong; Fu, Ling

    2012-06-01

    We performed large area nonlinear optical microscopy (NOM) for label-free monitoring of the process of pulmonary melanoma metastasis ex vivo with subcellular resolution in C57BL/6 mice. Multiphoton autofluorescence (MAF) and second harmonic generation (SHG) images of lung tissue are obtained in a volume of ~2.2 mm×2.2 mm×30 μm. Qualitative differences in morphologic features and quantitative measurement of pathological lung tissues at different time points are characterized. We find that combined with morphological features, the quantitative parameters, such as the intensity ratio of MAF and SHG between pathological tissue and normal tissue and the MAF to SHG index versus depth clearly shows the tissue physiological changes during the process of pulmonary melanoma metastasis. Our results demonstrate that large area NOM succeeds in monitoring the process of pulmonary melanoma metastasis, which can provide a powerful tool for the research in tumor pathophysiology and therapy evaluation.

  6. Efficient monitoring of the blood-stage infection in a malaria rodent model by the rotating-crystal magneto-optical method

    NASA Astrophysics Data System (ADS)

    Orbán, Ágnes; Rebelo, Maria; Molnár, Petra; Albuquerque, Inês S.; Butykai, Adam; Kézsmárki, István

    2016-03-01

    Intense research efforts have been focused on the improvement of the efficiency and sensitivity of malaria diagnostics, especially in resource-limited settings for the detection of asymptomatic infections. Our recently developed magneto-optical (MO) method allows the accurate quantification of malaria pigment crystals (hemozoin) in blood by their magnetically induced rotation. First evaluations of the method using β-hematin crystals and in vitro P. falciparum cultures implied its potential for high-sensitivity malaria diagnosis. To further investigate this potential, here we study the performance of the method in monitoring the in vivo onset and progression of the blood-stage infection in a rodent malaria model. Our results show that the MO method can detect the first generation of intraerythrocytic P. berghei parasites 66-76 hours after sporozoite injection, demonstrating similar sensitivity to Giesma-stained light microscopy and exceeding that of flow cytometric techniques. Magneto-optical measurements performed during and after the treatment of P. berghei infections revealed that both the follow up under treatment and the detection of later reinfections are feasible with this new technique. The present study demonstrates that the MO method - besides being label and reagent-free, automated and rapid - has a high in vivo sensitivity and is ready for in-field evaluation.

  7. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  8. Deploying Monitoring Trails for Fault Localization in All- Optical Networks and Radio-over-Fiber Passive Optical Networks

    NASA Astrophysics Data System (ADS)

    Maamoun, Khaled Mohamed

    Fault localization is the process of realizing the true source of a failure from a set of collected failure notifications. Isolating failure recovery within the network optical domain is necessary to resolve alarm storm problems. The introduction of the monitoring trail (m-trail) has been proven to deliver better performance by employing monitoring resources in a form of optical trails - a monitoring framework that generalizes all the previously reported counterparts. In this dissertation, the m-trail design is explored and a focus is given to the analysis on using m-trails with established lightpaths to achieve fault localization. This process saves network resources by reducing the number of the m-trails required for fault localization and therefore the number of wavelengths used in the network. A novel approach based on Geographic Midpoint Technique, an adapted version of the Chinese Postman's Problem (CPP) solution and an adapted version of the Traveling Salesman's Problem (TSP) solution algorithms is introduced. The desirable features of network architectures and the enabling of innovative technologies for delivering future millimeter-waveband (mm-WB) Radio-over-Fiber (RoF) systems for wireless services integrated in a Dense Wavelength Division Multiplexing (DWDM) is proposed in this dissertation. For the conceptual illustration, a DWDM RoF system with channel spacing of 12.5 GHz is considered. The mm-WB Radio Frequency (RF) signal is obtained at each Optical Network Unit (ONU) by simultaneously using optical heterodyning photo detection between two optical carriers. The generated RF modulated signal has a frequency of 12.5 GHz. This RoF system is easy, cost-effective, resistant to laser phase noise and also reduces maintenance needs, in principle. A revision of related RoF network proposals and experiments is also included. A number of models for Passive Optical Networks (PON)/ RoF-PON that combine both innovative and existing ideas along with a number of solutions for m-trail design problem of these models are proposed. The comparison between these models uses the expected survivability function which proved that these models are liable to be implemented in the new and existing PON/ RoF-PON systems. This dissertation is followed by recommendation of possible directions for future research in this area.

  9. Fiber Optic Bragg Grating Sensors for Thermographic Detection of Subsurface Anomalies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Winfree, William P.; Wu, Meng-Chou

    2009-01-01

    Conventional thermography with an infrared imager has been shown to be an extremely viable technique for nondestructively detecting subsurface anomalies such as thickness variations due to corrosion. A recently developed technique using fiber optic sensors to measure temperature holds potential for performing similar inspections without requiring an infrared imager. The structure is heated using a heat source such as a quartz lamp with fiber Bragg grating (FBG) sensors at the surface of the structure to detect temperature. Investigated structures include a stainless steel plate with thickness variations simulated by small platelets attached to the back side using thermal grease. A relationship is shown between the FBG sensor thermal response and variations in material thickness. For comparison, finite element modeling was performed and found to agree closely with the fiber optic thermography results. This technique shows potential for applications where FBG sensors are already bonded to structures for Integrated Vehicle Health Monitoring (IVHM) strain measurements and can serve dual-use by also performing thermographic detection of subsurface anomalies.

  10. Feasibility Studies of Optical Processing of Image Bandwidth Compression Schemes.

    DTIC Science & Technology

    1984-07-15

    c A T I O N s O w N G R A O ’N G SCMEULE distribution unlimited. aP $NEORMN ORGANIZATION REPORT NUMERI(S) S. MONITORING ORGANIZATION REPORT NUMBER(S...AFOSR.Tit. 8 5- 0 17 • OF PERFORMING ORGANIZATION b, OFFICE SYMB’OL 7 NAME OF MONITORING ORGANIZATION The University of Arizona AFOSR/N 4k, ADDRESS...20332-6448 ga. NAME OF PUNDING/SPONSORING Ob. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION if appiUcabfle AFOSR NE AFOSR-81

  11. Development of graphene process control by industrial optical spectroscopy setup

    NASA Astrophysics Data System (ADS)

    Fursenko, O.; Lukosius, M.; Lupina, G.; Bauer, J.; Villringer, C.; Mai, A.

    2017-06-01

    The successful integration of graphene into microelectronic devices depends strongly on the availability of fast and nondestructive characterization methods of graphene grown by CVD on large diameter production wafers [1-3] which are in the interest of the semiconductor industry. Here, a high-throughput optical metrology method for measuring the thickness and uniformity of large-area graphene sheets is demonstrated. The method is based on the combination of spectroscopic ellipsometry and normal incidence reflectometry in UV-Vis wavelength range (200-800 nm) with small light spots ( 30 μm2) realized in wafer optical metrology tool. In the first step graphene layers were transferred on a SiO2/Si substrate in order to determine the optical constants of graphene by the combination of multi-angle ellipsometry and reflectometry. Then these data were used for the development of a process control recipe of CVD graphene on 200 mm Ge(100)/Si(100) wafers. The graphene layer quality was additionally monitored by Raman spectroscopy. Atomic force microscopy measurements were performed for micro topography evaluation. In consequence, a robust recipe for unambiguous thickness monitoring of all components of a multilayer film stack, including graphene, surface residuals or interface layer underneath graphene and surface roughness is developed. Optical monitoring of graphene thickness uniformity over a wafer has shown an excellent long term stability (s=0.004 nm) regardless of the growth of interfacial GeO2 and surface roughness. The sensitivity of the optical identification of graphene during microelectronic processing was evaluated. This optical metrology technique with combined data collection exhibit a fast and highly precise method allowing one an unambiguous detection of graphene after transferring as well as after the CVD deposition process on a Ge(100)/Si(100) wafer. This approach is well suited for industrial applications due to its repeatability and flexibility.

  12. Laser metrology and optic active control system for GAIA

    NASA Astrophysics Data System (ADS)

    D'Angelo, F.; Bonino, L.; Cesare, S.; Castorina, G.; Mottini, S.; Bertinetto, F.; Bisi, M.; Canuto, E.; Musso, F.

    2017-11-01

    The Laser Metrology and Optic Active Control (LM&OAC) program has been carried out under ESA contract with the purpose to design and validate a laser metrology system and an actuation mechanism to monitor and control at microarcsec level the stability of the Basic Angle (angle between the lines of sight of the two telescopes) of GAIA satellite. As part of the program, a breadboard (including some EQM elements) of the laser metrology and control system has been built and submitted to functional, performance and environmental tests. In the followings we describe the mission requirements, the system architecture, the breadboard design, and finally the performed validation tests. Conclusion and appraisals from this experience are also reported.

  13. Integrated fiber optical and thermal sensor for noninvasive monitoring of blood and human tissue

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schiffner, Gerhard

    2007-05-01

    A novel concept of noninvasive monitoring of human tissue and blood based on optical diffuse reflective spectroscopy combined with metabolic heat measurements has been under development. A compact integrated fiber optical and thermal sensor has been developed. The idea of the method was to evaluate by optical spectroscopy haemoglobin and derivative concentrations and supplement with data associated with the oxidative metabolism of glucose. Body heat generated by glucose oxidation is based on the balance of capillary glucose and oxygen supply to the cells. The variation in glucose concentration is followed also by a difference from a distance (or depth) of scattered through the body radiation. So, blood glucose can be estimated by measuring the body heat and the oxygen supply. The sensor pickup contains of halogen lamp and LEDs combined with fiber optical bundle to deliver optical radiation inside and through the patient body, optical and thermal detectors. Fiber optical probe allows diffuse scattering measurement down to a depth of 2.5 mm in the skin including vascular system, which contributes to the control of the body temperature. The sensor pickup measures thermal generation, heat balance, blood flow rate, haemoglobin and derivative concentrations, environmental conditions. Multivariate statistical analysis was applied to convert various signals from the sensor pickup into physicochemical variables. By comparing the values from the noninvasive measurement with the venous plasma result, analytical functions for patient were obtained. Cluster analysis of patient groups was used to simplify a calibration procedure. Clinical testing of developed sensor is being performed.

  14. A label-free fiber-optic Turbidity Affinity Sensor (TAS) for continuous glucose monitoring.

    PubMed

    Dutt-Ballerstadt, Ralph; Evans, Colton; Pillai, Arun P; Gowda, Ashok

    2014-11-15

    In this paper, we describe the concept of a novel implantable fiber-optic Turbidity Affinity Sensor (TAS) and report on the findings of its in-vitro performance for continuous glucose monitoring. The sensing mechanism of the TAS is based on glucose-specific changes in light scattering (turbidity) of a hydrogel suspension consisting of small particles made of crosslinked dextran (Sephadex G100), and a glucose- and mannose-specific binding protein - Concanavalin A (ConA). The binding of ConA to Sephadex particles results in a significant turbidity increase that is much greater than the turbidity contribution by the individual components. The turbidity of the TAS was measured by determining the intensity of light passing through the suspension enclosed within a small semi-permeable hollow fiber (OD: 220 μm, membrane thickness: 20 μm, molecular weight cut-off: 10 kDa) using fiber optics. The intensity of measured light of the TAS was proportional to the glucose concentration over the concentration range from 50mg/dL to 400mg/dL in PBS and whole blood at 37°C (R>0.96). The response time was approximately 4 min. The stability of the glucose response of the TAS decreased only slightly (by 20%) over an 8-day study period at 37°C. In conclusion, this study demonstrated proof-of-concept of the TAS for interstitial glucose monitoring. Due to the large signal amplitude of the turbidity change, and the lack of need for wavelength-specific emission and excitation filters, a very small, robust and compact TAS device with an extremely short optical pathlength could be feasibly designed and implemented for in-vivo glucose monitoring in people with diabetes. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Fiber-optic sensing in cryogenic environments. [for rocket propellant tank monitoring

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Brooks, R. E.

    1980-01-01

    Passive optical sensors using fiber-optic signal transmission to a remote monitoring station are explored as an alternative to electrical sensors used to monitor the status of explosive propellants. The designs of passive optical sensors measuring liquid level, pressure, and temperature in cryogenic propellant tanks are discussed. Test results for an experimental system incorporating these sensors and operating in liquid nitrogen demonstrate the feasibility of passive sensor techniques and indicate that they can serve as non-hazardous replacements for more conventional measuring equipment in explosive environments.

  16. Assessment of Spacecraft Operational Status Using Electro-Optical Predictive Techniques

    DTIC Science & Technology

    2010-09-01

    panel appendages, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical sensors...observing and characterizing key spacecraft features. The simulation results are based on electro-optical signatures apparent to nonimaging sensors, along...and communication equipment, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical

  17. Early optical detection of cerebral edema in vivo.

    PubMed

    Gill, Amandip S; Rajneesh, Kiran F; Owen, Christopher M; Yeh, James; Hsu, Mike; Binder, Devin K

    2011-02-01

    Cerebral edema is a significant cause of morbidity and mortality in diverse disease states. Currently, the means to detect progressive cerebral edema in vivo includes the use of intracranial pressure (ICP) monitors and/or serial radiological studies. However, ICP measurements exhibit a high degree of variability, and ICP monitors detect edema only after it becomes sufficient to significantly raise ICP. The authors report the development of 2 distinct minimally invasive fiberoptic near-infrared (NIR) techniques able to directly detect early cerebral edema. Cytotoxic brain edema was induced in adult CD1 mice via water intoxication by intraperitoneal water administration (30% body weight intraperitoneally). An implantable dual-fiberoptic probe was stereotactically placed into the cerebral cortex and connected to optical source and detector hardware. Optical sources consisted of either broadband halogen illumination or a single-wavelength NIR laser diode, and the detector was a sensitive NIR spectrometer or optical power meter. In one subset of animals, a left-sided craniectomy was performed to obtain cortical biopsies for water-content determination to verify cerebral edema. In another subset of animals, an ICP transducer was placed on the contralateral cortex, which was synchronized to a computer and time stamped. Using either broadband illumination with NIR spectroscopy or single-wavelength laser diode illumination with optical power meter detection, the authors detected a reduction in NIR optical reflectance during early cerebral edema. The time intervals between water injection (Time Point 0), optical trigger (defined as a 2-SD change in optical reflectance from baseline), and defined threshold ICP values of 10, 15 and 20 mm Hg were calculated. Reduction in NIR reflectance occurred significantly earlier than any of the ICP thresholds (p < 0.001). Saline-injected control mice exhibited a steady baseline optical signal. There was a significant correlation between reflectance change and tissue specific gravity of the cortical biopsies, further validating the dual-fiberoptic probe as a direct measure of cerebral edema. Compared with traditional ICP monitoring, the aforementioned minimally invasive NIR techniques allow for the significantly earlier detection of cerebral edema, which may be of clinical utility in the identification and thus early treatment of cerebral edema.

  18. Analysis and correction of linear optics errors, and operational improvements in the Indus-2 storage ring

    NASA Astrophysics Data System (ADS)

    Husain, Riyasat; Ghodke, A. D.

    2017-08-01

    Estimation and correction of the optics errors in an operational storage ring is always vital to achieve the design performance. To achieve this task, the most suitable and widely used technique, called linear optics from closed orbit (LOCO) is used in almost all storage ring based synchrotron radiation sources. In this technique, based on the response matrix fit, errors in the quadrupole strengths, beam position monitor (BPM) gains, orbit corrector calibration factors etc. can be obtained. For correction of the optics, suitable changes in the quadrupole strengths can be applied through the driving currents of the quadrupole power supplies to achieve the desired optics. The LOCO code has been used at the Indus-2 storage ring for the first time. The estimation of linear beam optics errors and their correction to minimize the distortion of linear beam dynamical parameters by using the installed number of quadrupole power supplies is discussed. After the optics correction, the performance of the storage ring is improved in terms of better beam injection/accumulation, reduced beam loss during energy ramping, and improvement in beam lifetime. It is also useful in controlling the leakage in the orbit bump required for machine studies or for commissioning of new beamlines.

  19. Towards the use of bioresorbable fibers in time-domain diffuse optics.

    PubMed

    Di Sieno, Laura; Boetti, Nadia G; Dalla Mora, Alberto; Pugliese, Diego; Farina, Andrea; Konugolu Venkata Sekar, Sanathana; Ceci-Ginistrelli, Edoardo; Janner, Davide; Pifferi, Antonio; Milanese, Daniel

    2018-01-01

    In the last years bioresorbable materials are gaining increasing interest for building implantable optical components for medical devices. In this work we show the fabrication of bioresorbable optical fibers designed for diffuse optics applications, featuring large core diameter (up to 200 μm) and numerical aperture (0.17) to maximize the collection efficiency of diffused light. We demonstrate the suitability of bioresorbable fibers for time-domain diffuse optical spectroscopy firstly checking the intrinsic performances of the setup by acquiring the instrument response function. We then validate on phantoms the use of bioresorbable fibers by applying the MEDPHOT protocol to assess the performance of the system in measuring optical properties (namely, absorption and scattering coefficients) of homogeneous media. Further, we show an ex-vivo validation on a chicken breast by measuring the absorption and scattering spectra in the 500-1100 nm range using interstitially inserted bioresorbable fibers. This work represents a step toward a new way to look inside the body using optical fibers that can be implanted in patients. These fibers could be useful either for diagnostic (e. g. for monitoring the evolution after surgical interventions) or treatment (e. g. photodynamic therapy) purposes. Picture: Microscopy image of the 100 μm core bioresorbable fiber. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Characterization of fluids and fluid-fluid interaction by fiber optic refractive index sensor measurements

    NASA Astrophysics Data System (ADS)

    Schmidt-Hattenberger, C.; Weiner, M.; Liebscher, A.; Spangenberg, E.

    2009-04-01

    A fiber optic refractive index sensor is tested for continuous monitoring of fluid-fluid and fluid-gas interactions within the frame of laboratory investigations of CO2 storage, monitoring and safety technology research (COSMOS project, "Geotechnologien" program). The sensor bases on a Fabry-Perot white light interferometer technique, where the refractive index (RI) of the solution under investigation is measured by variation of the liquid-filled Fabry-Perot optical cavity length. Such sensor system is typically used for measuring and controlling oil composition and also fluid quality. The aim of this study is to test the application of the fiber optic refractive index sensor for monitoring the CO2 dissolution in formation fluids (brine, oil, gas) of CO2 storage sites. Monitoring and knowledge of quantity and especially rate of CO2 dissolution in the formation fluid is important for any assessment of long-term risks of CO2 storage sites. It is also a prerequisite for any precise reservoir modelling. As a first step we performed laboratory experiments in standard autoclaves on a variety of different fluids and fluid mixtures (technical alcohols, pure water, CO2, synthetic brines, natural formation brine from the Ketzin test site). The RI measurements are partly combined with default electrical conductivity and sonic velocity measurements. The fiber optic refractive index sensor system allows for RI measurements within the range 1.0000 to 1.7000 RI with a resolution of approximately 0.0001 RI. For simple binary fluid mixtures first results indicate linear relationships between refractive indices and fluid composition. Within the pressure range investigated (up to 60 bar) the data suggest only minor changes of RI with pressure. Further, planned experiments will focus on the determination of i) the temperature dependency of RI, ii) the combined effects of pressure and temperature on RI, and finally iii) the kinetics of CO2 dissolution in realistic formation fluids.

  1. Monitoring of vapor phase polycyclic aromatic hydrocarbons

    DOEpatents

    Vo-Dinh, Tuan; Hajaligol, Mohammad R.

    2004-06-01

    An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.

  2. Dual-Modulation, Dual-Wavelength, Optical Polarimetry System for Glucose Monitoring

    DTIC Science & Technology

    2016-08-26

    dual-wavelength, optical polarimetry system for glucose monitoring 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) 5d...JBO.21.8.087001] 14. ABSTRACT A dual modulation optical polarimetry system utilizing both laser intensity and polarization modulation was designed...varying birefringence, which is one of the major limitations to the realization of polarimetry for glucose monitoring in the eye. The high-speed less

  3. Optical reading of contaminants in aqueous media based on gold nanoparticles.

    PubMed

    Du, Jianjun; Zhu, Bowen; Peng, Xiaojun; Chen, Xiaodong

    2014-09-10

    With increasing trends of global population growth, urbanization, pollution over-exploitation, and climate change, the safe water supply has become a global issue and is threatening our society in terms of sustainable development. Therefore, there is a growing need for a water-monitoring platform with the capability of rapidness, specificity, low-cost, and robustness. This review summarizes the recent developments in the design and application of gold nanoparticles (AuNPs) based optical assays to detect contaminants in aqueous media with a high performance. First, a brief discussion on the correlation between the optical reading strategy and the optical properties of AuNPs is presented. Then, we summarize the principle behind AuNP-based optical assays to detect different contaminants, such as toxic metal ion, anion, and pesticides, according to different optical reading strategies: colorimetry, scattering, and fluorescence. Finally, the comparison of these assays and the outlook of AuNP-based optical detection are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fiber Optic Thermal Detection of Composite Delaminations

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.

    2011-01-01

    A recently developed technique is presented for thermographic detection of delaminations in composites by performing temperature measurements with fiber optic Bragg gratings. A single optical fiber with multiple Bragg gratings employed as surface temperature sensors was bonded to the surface of a composite with subsurface defects. The investigated structure was a 10-ply composite specimen with prefabricated delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared and found to be consistent with the calculations using numerical simulation techniques. Also discussed are methods including various heating sources and patterns, and their limitations for performing in-situ structural health monitoring.

  5. Sensitivity optimization of ZnO clad-modified optical fiber humidity sensor by means of tuning the optical fiber waist diameter

    NASA Astrophysics Data System (ADS)

    Azad, Saeed; Sadeghi, Ebrahim; Parvizi, Roghaieh; Mazaheri, Azardokht; Yousefi, M.

    2017-05-01

    In this work, the multimode optical fiber size effects on the performances of the clad-modified fiber with ZnO nanorods relative humidity (RH) sensor were experimentally investigated. Simple and controlled chemical etching method through on line monitoring was used to prepare different fiber waist diameter with long length of 15 mm. More precisely, the competition behavior of sensor performances with varying fiber waist diameter was studied to find appropriate size of maximizing evanescent fields. The obtained results revealed that evanescent wave absorption coefficient (γ) enhanced more than 10 times compare to bare fiber at the proposed optimum fiber diameter of 28 μm. Also, high linearity and fast recovery time about 7 s was obtained at the proposed fiber waist diameter. Applicable features of the proposed sensor allow this device to be used for humidity sensing applications, especially to be applied in remote sensing technologies.

  6. Depth-resolved monitoring of diffusion of hyperosmotic agents in normal and malignant human esophagus tissues using optical coherence tomography in-vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Qingliang; Guo Zhouyi; Wei Huajiang

    2011-10-31

    Depth-resolved monitoring with differentiation and quantification of glucose diffusion in healthy and abnormal esophagus tissues has been studied in vitro. Experiments have been performed using human normal esophagus and esophageal squamous cell carcinoma (ESCC) tissues by the optical coherence tomography (OCT). The images have been continuously acquired for 120 min in the experiments, and the depth-resolved and average permeability coefficients of the 40 % glucose solution have been calculated by the OCT amplitude (OCTA) method. We demonstrate the capability of the OCT technique for depth-resolved monitoring, differentiation, and quantifying of glucose diffusion in normal esophagus and ESCC tissues. It ismore » found that the permeability coefficients of the 40 % glucose solution are not uniform throughout the normal esophagus and ESCC tissues and increase from (3.30 {+-} 0.09) Multiplication-Sign 10{sup -6} and (1.57 {+-} 0.05) Multiplication-Sign 10{sup -5} cm s{sup -1} at the mucous membrane of normal esophagus and ESCC tissues to (1.82 {+-} 0.04) Multiplication-Sign 10{sup -5} and (3.53 {+-} 0.09) Multiplication-Sign 10{sup -5} cm s{sup -1} at the submucous layer approximately 742 {mu}m away from the epithelial surface of normal esophagus and ESCC tissues, respectively. (optical coherence tomography)« less

  7. Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review

    PubMed Central

    Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen

    2018-01-01

    Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on. PMID:29614024

  8. Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review.

    PubMed

    Ding, Zhenyang; Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen

    2018-04-03

    Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on.

  9. Radiation effects in materials for optical interferometric devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koumvakalis, N.; Jani, M.G.; Halliburton, L.E.

    The effects of ionizing radiation have been investigated in a series of materials commonly used in optical interferometric devices. Included in the study were three glass-ceramics (Zerodur, Cer-Vit 101, and Cer-Vit 142) and one Faraday-rotator glass (SF-57). Each glass-ceramic was irradiated at room temperature with 1.5-MeV electrons from a Van De Graaff accelerator. Similar irradiations were done on the Faraday-rotator glass at room temperature and 77 K. Optical absorption and electron spin resonance measurements provided a monitor of the radiation-induced point defects in all cases. The spectral characteristics and the production and thermal annealing behavior of these defects are described,more » and their possible effect on the performance of optical devices which incorporate these materials is considered.« less

  10. Remotely Monitored Sealing Array Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-09-12

    The Remotely Monitored Sealing Array (RMSA) utilizes the Secure Sensor Platform (SSP) framework to establish the fundamental operating capabilities for communication, security, power management, and cryptography. In addition to the SSP framework the RMSA software has unique capabilities to support monitoring a fiber optic seal. Fiber monitoring includes open and closed as well as parametric monitoring to detect tampering attacks. The fiber monitoring techniques, using the SSP power management processes, allow the seals to last for years while maintaining the security requirements of the monitoring application. The seal is enclosed in a tamper resistant housing with software to support activemore » tamper monitoring. New features include LED notification of fiber closure, the ability to retrieve the entire fiber optic history via translator command, separate memory storage for fiber optic events, and a more robust method for tracking and resending failed messages.« less

  11. Design and implementation of ATCA-based 100Gbps DP-QPSK optical signal test instrument

    NASA Astrophysics Data System (ADS)

    Su, Shaojing; Qin, Jiangyi; Huang, Zhiping; Liu, Chenwu

    2014-11-01

    In order to achieve the receiving task of 100Gbps Dual Polarization-Quadrature Phase Shift Keying (DP-QPSK) optical signal acquisition instrument, improve acquisition performance of the instrument, this paper has deeply researched DP-QPSK modulation principles, demodulation techniques and the key technologies of optical signal acquisition. The theories of DP-QPSK optical signal transmission are researched. The DP-QPSK optical signal transmission model is deduced. And the clock and data recovery in high-speed data acquisition and offset correction of multi-channel data are researched. By reasonable hardware circuit design and software system construction, the utilization of high performance Advanced Telecom Computing Architecture (ATCA), this paper proposes a 100Gbps DP-QPSK optical signal acquisition instrument which is based on ATCA. The implementations of key modules are presented by comparison and argumentation. According to the modularization idea, the instrument can be divided into eight modules. Each module performs the following functions. (1) DP-QPSK coherent detection demodulation module; (2) deceleration module; (3) FPGA (Field Programmable Gate Array); (4) storage module; (5) data transmission module; (6) clock module; (7) power module; (8) JTAG debugging, configuration module; What is more, this paper has put forward two solutions to test optical signal acquisition instrument performance. The first scenario is based on a standard STM-256 optical signal format and exploits the SignalTap of QuartusII software to monitor the optical signal data. Another scenario is to use a pseudo-random signal series to generate data, acquisition module acquires a certain amount of data signals, and then the signals are transferred to a computer by the Gigabit Ethernet to analyze. Two testing results show that the bit error rate of optical signal acquisition instrument is low. And the instrument fully meets the requirements of signal receiving system. At the same time this design has an important significance in practical applications.

  12. Tracking the eye non-invasively: simultaneous comparison of the scleral search coil and optical tracking techniques in the macaque monkey

    PubMed Central

    Kimmel, Daniel L.; Mammo, Dagem; Newsome, William T.

    2012-01-01

    From human perception to primate neurophysiology, monitoring eye position is critical to the study of vision, attention, oculomotor control, and behavior. Two principal techniques for the precise measurement of eye position—the long-standing sclera-embedded search coil and more recent optical tracking techniques—are in use in various laboratories, but no published study compares the performance of the two methods simultaneously in the same primates. Here we compare two popular systems—a sclera-embedded search coil from C-N-C Engineering and the EyeLink 1000 optical system from SR Research—by recording simultaneously from the same eye in the macaque monkey while the animal performed a simple oculomotor task. We found broad agreement between the two systems, particularly in positional accuracy during fixation, measurement of saccade amplitude, detection of fixational saccades, and sensitivity to subtle changes in eye position from trial to trial. Nonetheless, certain discrepancies persist, particularly elevated saccade peak velocities, post-saccadic ringing, influence of luminance change on reported position, and greater sample-to-sample variation in the optical system. Our study shows that optical performance now rivals that of the search coil, rendering optical systems appropriate for many if not most applications. This finding is consequential, especially for animal subjects, because the optical systems do not require invasive surgery for implantation and repair of search coils around the eye. Our data also allow laboratories using the optical system in human subjects to assess the strengths and limitations of the technique for their own applications. PMID:22912608

  13. Optics measurement and correction for the Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Shen, Xiaozhe

    The quality of beam optics is of great importance for the performance of a high energy accelerator like the Relativistic Heavy Ion Collider (RHIC). The turn-by-turn (TBT) beam position monitor (BPM) data can be used to derive beam optics. However, the accuracy of the derived beam optics is often limited by the performance and imperfections of instruments as well as measurement methods and conditions. Therefore, a robust and model-independent data analysis method is highly desired to extract noise-free information from TBT BPM data. As a robust signal-processing technique, an independent component analysis (ICA) algorithm called second order blind identification (SOBI) has been proven to be particularly efficient in extracting physical beam signals from TBT BPM data even in the presence of instrument's noise and error. We applied the SOBI ICA algorithm to RHIC during the 2013 polarized proton operation to extract accurate linear optics from TBT BPM data of AC dipole driven coherent beam oscillation. From the same data, a first systematic estimation of RHIC BPM noise performance was also obtained by the SOBI ICA algorithm, and showed a good agreement with the RHIC BPM configurations. Based on the accurate linear optics measurement, a beta-beat response matrix correction method and a scheme of using horizontal closed orbit bumps at sextupoles for arc beta-beat correction were successfully applied to reach a record-low beam optics error at RHIC. This thesis presents principles of the SOBI ICA algorithm and theory as well as experimental results of optics measurement and correction at RHIC.

  14. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    USDA-ARS?s Scientific Manuscript database

    Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and ...

  15. Initial study and verification of a distributed fiber optic corrosion monitoring system for transportation structures.

    DOT National Transportation Integrated Search

    2012-07-01

    For this study, a novel optical fiber sensing system was developed and tested for the monitoring of corrosion in : transportation systems. The optical fiber sensing system consists of a reference long period fiber gratings (LPFG) sensor : for corrosi...

  16. Computational manufacturing as a bridge between design and production.

    PubMed

    Tikhonravov, Alexander V; Trubetskov, Michael K

    2005-11-10

    Computational manufacturing of optical coatings is a research area that can be placed between theoretical designing and practical manufacturing in the same way that computational physics can be placed between theoretical and experimental physics. Investigations in this area have been performed for more than 30 years under the name of computer simulation of manufacturing and monitoring processes. Our goal is to attract attention to the increasing importance of computational manufacturing at the current state of the art in the design and manufacture of optical coatings and to demonstrate possible applications of this research tool.

  17. Computational manufacturing as a bridge between design and production

    NASA Astrophysics Data System (ADS)

    Tikhonravov, Alexander V.; Trubetskov, Michael K.

    2005-11-01

    Computational manufacturing of optical coatings is a research area that can be placed between theoretical designing and practical manufacturing in the same way that computational physics can be placed between theoretical and experimental physics. Investigations in this area have been performed for more than 30 years under the name of computer simulation of manufacturing and monitoring processes. Our goal is to attract attention to the increasing importance of computational manufacturing at the current state of the art in the design and manufacture of optical coatings and to demonstrate possible applications of this research tool.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingold, G., E-mail: gerhard.ingold@psi.ch; Rittmann, J., E-mail: jochen.rittmann@psi.ch; Beaud, P.

    The ESB instrument at the SwissFEL ARAMIS hard X-ray free electron laser is designed to perform pump-probe experiments in condensed matter and material science employing photon-in and photon-out techniques. It includes a femtosecond optical laser system to generate a variety of pump beams, a X-ray optical scheme to tailor the X-ray probe beam, shot-to-shot diagnostics to monitor the X-ray intensity and arrival time, and two endstations operated at a single focus position that include multi-purpose sample environments and 2D pixel detectors for data collection.

  19. Quantitative optical coherence microscopy for the in situ investigation of the biofilm

    NASA Astrophysics Data System (ADS)

    Meleppat, Ratheesh Kumar; Shearwood, Christopher; Keey, Seah Leong; Matham, Murukeshan Vadakke

    2016-12-01

    This paper explores the potential of optical coherence microscopy (OCM) for the in situ monitoring of biofilm growth. The quantitative imaging of the early developmental biology of a representative biofilm, Klebsiella pneumonia (KP-1), was performed using a swept source-based Fourier domain OCM system. The growth dynamics of the KP-1 biofilms and their transient response under perturbation was investigated using the enface visualization of microcolonies and their spatial localization. Furthermore, the optical density (OD) and planar density of the biofilms are calculated using an OCM technique and compared with OD and colony forming units measured using standard procedures via the sampling of the flow-cell effluent.

  20. Optical metrology for DMD™ characterization

    NASA Astrophysics Data System (ADS)

    Miller, Seth A.; Mezenner, Rabah; Doane, Dennis

    2001-01-01

    The Digital Micromirror Device™ (DMD™) developed at Texas Instruments is a spatial light modulator composed of 500,000 to 1.3 million movable micromachined aluminum mirrors. The DMD™ serves as the engine for the current generation of computer-driven slide and video projectors, and for next generation devices in digital television and movie projectors. Because of the unique architecture and applications of the device, Texas Instruments has developed a series of customized optical testers for characterizing DMD™ performance. This paper provides a general overview of the MirrorMaster, a custom optical inspection tool. Particular attention is given to Bias Adhesion Mapping (BAM) as a device performance metric. BAM is an optical test that monitors the performance of the mirrors as a function of an applied voltage. This voltage drives the mirrors to the `on' or `off' position, and as the bias is stepped down the mirrors return to their neutral orientations. Important forces involved in this process include the electrostatic field applied, the compliance of the hinge, and static friction (stiction). BAM curves can help characterize device stiction and allow us to examine the efficacy of the lubrication system over the lifetime of the device.

  1. TPS In-Flight Health Monitoring Project Progress Report

    NASA Technical Reports Server (NTRS)

    Kostyk, Chris; Richards, Lance; Hudston, Larry; Prosser, William

    2007-01-01

    Progress in the development of new thermal protection systems (TPS) is reported. New approaches use embedded lightweight, sensitive, fiber optic strain and temperature sensors within the TPS. Goals of the program are to develop and demonstrate a prototype TPS health monitoring system, develop a thermal-based damage detection algorithm, characterize limits of sensor/system performance, and develop ea methodology transferable to new designs of TPS health monitoring systems. Tasks completed during the project helped establish confidence in understanding of both test setup and the model and validated system/sensor performance in a simple TPS structure. Other progress included complete initial system testing, commencement of the algorithm development effort, generation of a damaged thermal response characteristics database, initial development of a test plan for integration testing of proven FBG sensors in simple TPS structure, and development of partnerships to apply the technology.

  2. Quantitative optical diagnostics in pathology recognition and monitoring of tissue reaction to PDT

    NASA Astrophysics Data System (ADS)

    Kirillin, Mikhail; Shakhova, Maria; Meller, Alina; Sapunov, Dmitry; Agrba, Pavel; Khilov, Alexander; Pasukhin, Mikhail; Kondratieva, Olga; Chikalova, Ksenia; Motovilova, Tatiana; Sergeeva, Ekaterina; Turchin, Ilya; Shakhova, Natalia

    2017-07-01

    Optical coherence tomography (OCT) is currently actively introduced into clinical practice. Besides diagnostics, it can be efficiently employed for treatment monitoring allowing for timely correction of the treatment procedure. In monitoring of photodynamic therapy (PDT) traditionally employed fluorescence imaging (FI) can benefit from complementary use of OCT. Additional diagnostic efficiency can be derived from numerical processing of optical diagnostics data providing more information compared to visual evaluation. In this paper we report on application of OCT together with numerical processing for clinical diagnostic in gynecology and otolaryngology, for monitoring of PDT in otolaryngology and on OCT and FI applications in clinical and aesthetic dermatology. Image numerical processing and quantification provides increase in diagnostic accuracy. Keywords: optical coherence tomography, fluorescence imaging, photod

  3. Real-time local experimental monitoring of the bleaching process.

    PubMed

    Rakic, Mario; Klaric, Eva; Sever, Ivan; Rakic, Iva Srut; Pichler, Goran; Tarle, Zrinka

    2015-04-01

    The purpose of this article was to investigate a new setup for tooth bleaching and monitoring of the same process in real time, so to prevent overbleaching and related sideeffects of the bleaching procedure. So far, known bleaching procedures cannot simultaneously monitor and perform the bleaching process or provide any local control over bleaching. The experimental setup was developed at the Institute of Physics, Zagreb. The setup consists of a camera, a controller, and optical fibers. The bleaching was performed with 25% hydrogen peroxide activated by ultraviolet light diodes, and the light for monitoring was emitted by white light diodes. The collected light was analyzed using a red-green-blue (RGB) index. A K-type thermocouple was used for temperature measurements. Pastilles made from hydroxylapatite powder as well as human teeth served as experimental objects. Optimal bleaching time substantially varied among differently stained specimens. To reach reference color (A1, Chromascop shade guide), measured as an RGB index, bleaching time for pastilles ranged from 8 to >20 min, whereas for teeth it ranged from 3.5 to >20 min. The reflected light intensity of each R, G, and B component at the end of bleaching process (after 20 min) had increased up to 56% of the baseline intensity. The presented experimental setup provides essential information about when to stop the bleaching process to achieve the desired optical results so that the bleaching process can be completely responsive to the characteristics of every individual, leading to more satisfying results.

  4. Utilization of optical sensors for phasor measurement units

    DOE PAGES

    Yao, Wenxuan; Wells, David; King, Daniel; ...

    2017-11-10

    With the help of GPS signals for synchronization, increasingly ubiquitous phasor measurement units (PMUs) provide power grid operators unprecedented system monitoring and control opportunities. However, the performance of PMUs is limited by the inherent deficiencies in traditional transformers. To address these issues, an optical sensor is used in PMU for signal acquisition to replace the traditional transformers. This is the first time the utilization of an optical sensor in PMUs has ever been reported. The accuracy of frequency, angle, and amplitude are evaluated via experiments. Lastly, the optical sensor based PMU can achieve the accuracy of 9.03 × 10 –4more » Hz for frequency, 6.38 × 10 –3 rad for angle and 6.73 × 10 –2 V for amplitude with real power grid signal, demonstrating the practicability of optical sensors in future PMUs.« less

  5. Utilization of optical sensors for phasor measurement units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Wenxuan; Wells, David; King, Daniel

    With the help of GPS signals for synchronization, increasingly ubiquitous phasor measurement units (PMUs) provide power grid operators unprecedented system monitoring and control opportunities. However, the performance of PMUs is limited by the inherent deficiencies in traditional transformers. To address these issues, an optical sensor is used in PMU for signal acquisition to replace the traditional transformers. This is the first time the utilization of an optical sensor in PMUs has ever been reported. The accuracy of frequency, angle, and amplitude are evaluated via experiments. Lastly, the optical sensor based PMU can achieve the accuracy of 9.03 × 10 –4more » Hz for frequency, 6.38 × 10 –3 rad for angle and 6.73 × 10 –2 V for amplitude with real power grid signal, demonstrating the practicability of optical sensors in future PMUs.« less

  6. A Fiber-Optic Probe Design for Combustion Chamber Flame Detection Applications-Design Criteria, Performance Specifications, and Fabrication Technique

    NASA Technical Reports Server (NTRS)

    Borg, Stephen E.; Harper, Samuel E.

    2001-01-01

    This paper documents the design and development of the fiber-optic probes utilized in the flame detection systems used in NASA Langley Research Center's 8-Foot High Temperature Tunnel (8-ft HTT). Two independent flame detection systems are utilized to monitor the presence and stability of the main-burner and pilot-level flames during facility operation. Due to the harsh environment within the combustor, the successful development of a rugged and efficient fiber-optic probe was a critical milestone in the development of these flame detection systems. The final optical probe design for the two flame detection systems resulted from research that was conducted in Langley's 7-in High Temperature Pilot Tunnel (7-in HTT). A detailed description of the manufacturing process behind the optical probes used in the 8-ft HTT is provided in Appendix A of this report.

  7. SWCNTs-based nanocomposites as sensitive coatings for advanced fiber optic chemical nanosensors

    NASA Astrophysics Data System (ADS)

    Consales, M.; Crescitelli, A.; Penza, M.; Aversa, P.; Giordano, M.; Cutolo, A.; Cusano, A.

    2008-04-01

    In this work, the feasibility of exploiting novel Cadmium Arachidate (CdA)/single-walled carbon nanotubes (SWCNTs) based composites as sensitive coatings for the development of robust and high performances optoelectronic chemosensors able to work in liquid environments has been investigated and proved. Here, nano-composite sensing layers have been transferred upon the distal end of standard optical fibers by the Langmuir-Blodgett (LB) technique. Reflectance measurements have been carried out to monitor ppm concentration of chemicals in water through the changes in the optical and geometrical features of the sensing overlay induced by the interaction with the analyte molecules. Preliminary experimental results evidence that such nanoscale coatings integrated with the optical fiber technology offers great potentialities for the room temperature detection of chemical traces in water and lead to significant improvements of the traditional fiber optic sensors based on SWCNTs layers.

  8. Theoretical Analysis of an Optical Accelerometer Based on Resonant Optical Tunneling Effect.

    PubMed

    Jian, Aoqun; Wei, Chongguang; Guo, Lifang; Hu, Jie; Tang, Jun; Liu, Jun; Zhang, Xuming; Sang, Shengbo

    2017-02-17

    Acceleration is a significant parameter for monitoring the status of a given objects. This paper presents a novel linear acceleration sensor that functions via a unique physical mechanism, the resonant optical tunneling effect (ROTE). The accelerometer consists of a fixed frame, two elastic cantilevers, and a major cylindrical mass comprised of a resonant cavity that is separated by two air tunneling gaps in the middle. The performance of the proposed sensor was analyzed with a simplified mathematical model, and simulated using finite element modeling. The simulation results showed that the optical Q factor and the sensitivity of the accelerometer reach up to 8.857 × 10⁷ and 9 pm/g, respectively. The linear measurement range of the device is ±130 g. The work bandwidth obtained is located in 10-1500 Hz. The results of this study provide useful guidelines to improve measurement range and resolution of integrated optical acceleration sensors.

  9. Theoretical Analysis of an Optical Accelerometer Based on Resonant Optical Tunneling Effect

    PubMed Central

    Jian, Aoqun; Wei, Chongguang; Guo, Lifang; Hu, Jie; Tang, Jun; Liu, Jun; Zhang, Xuming; Sang, Shengbo

    2017-01-01

    Acceleration is a significant parameter for monitoring the status of a given objects. This paper presents a novel linear acceleration sensor that functions via a unique physical mechanism, the resonant optical tunneling effect (ROTE). The accelerometer consists of a fixed frame, two elastic cantilevers, and a major cylindrical mass comprised of a resonant cavity that is separated by two air tunneling gaps in the middle. The performance of the proposed sensor was analyzed with a simplified mathematical model, and simulated using finite element modeling. The simulation results showed that the optical Q factor and the sensitivity of the accelerometer reach up to 8.857 × 107 and 9 pm/g, respectively. The linear measurement range of the device is ±130 g. The work bandwidth obtained is located in 10–1500 Hz. The results of this study provide useful guidelines to improve measurement range and resolution of integrated optical acceleration sensors. PMID:28218642

  10. Reducing motion artifacts for long-term clinical NIRS monitoring using collodion-fixed prism-based optical fibers.

    PubMed

    Yücel, Meryem A; Selb, Juliette; Boas, David A; Cash, Sydney S; Cooper, Robert J

    2014-01-15

    As the applications of near-infrared spectroscopy (NIRS) continue to broaden and long-term clinical monitoring becomes more common, minimizing signal artifacts due to patient movement becomes more pressing. This is particularly true in applications where clinically and physiologically interesting events are intrinsically linked to patient movement, as is the case in the study of epileptic seizures. In this study, we apply an approach common in the application of EEG electrodes to the application of specialized NIRS optical fibers. The method provides improved optode-scalp coupling through the use of miniaturized optical fiber tips fixed to the scalp using collodion, a clinical adhesive. We investigate and quantify the performance of this new method in minimizing motion artifacts in healthy subjects, and apply the technique to allow continuous NIRS monitoring throughout epileptic seizures in two epileptic in-patients. Using collodion-fixed fibers reduces the percent signal change of motion artifacts by 90% and increases the SNR by 6 and 3 fold at 690 and 830 nm wavelengths respectively when compared to a standard Velcro-based array of optical fibers. The SNR has also increased by 2 fold during rest conditions without motion with the new probe design because of better light coupling between the fiber and scalp. The change in both HbO and HbR during motion artifacts is found to be statistically lower for the collodion-fixed fiber probe. The collodion-fixed optical fiber approach has also allowed us to obtain good quality NIRS recording of three epileptic seizures in two patients despite excessive motion in each case. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Optical monitoring of cerebral microcirculation in neurointensive care.

    PubMed

    Rejmstad, Peter; Haj-Hosseini, Neda; Åneman, Oscar; Wårdell, Karin

    2017-12-08

    Continuous optical monitoring of local cerebral microcirculation could benefit neurointensive care patients treated for subarachnoid hemorrhage (SAH). The aim of the study was to evaluate laser Doppler flowmetry (LDF) and diffuse reflectance spectroscopy (DRS) for long-term monitoring of brain microcirculation and oxygen saturation (SO 2 ) in the neurointensive care unit (NICU). A fiber optic probe was designed for intraparenchymal use and connected to LDF and DRS for assessment of the local blood flow (perfusion and tissue reflectance (TLI)) and SO 2 in the brain. The optically monitored parameters were compared with conventional NICU monitors and Xe-CT. The LDF signals were low with median and 25 to 75% interquartiles of perfusion = 70 (59 to 83) a.u. and TLI = 2.0 (1.0 to 2.4) a.u. and showed correlation with the NICU monitors in terms of heart rate. Median and interquartiles of SO 2 were 17.4 (15.7 to 19.8) %. The lack of correlation between local perfusion and cerebral perfusion pressure indicated intact cerebral autoregulation. The systems were capable of monitoring both local perfusion and SO 2 with stable signals in the NICU over 4 days. Further clinical studies are required to evaluate the optical systems' potential for assessing the onset of secondary brain injury.

  12. Detection of Collapse and Crystallization of Saccharide, Protein, and Mannitol Formulations by Optical Fibers in Lyophilization

    PubMed Central

    Horn, Jacqueline; Friess, Wolfgang

    2018-01-01

    The collapse temperature (Tc) and the glass transition temperature of freeze-concentrated solutions (Tg') as well as the crystallization behavior of excipients are important physicochemical characteristics which guide the cycle development in freeze-drying. The most frequently used methods to determine these values are differential scanning calorimetry (DSC) and freeze-drying microscopy (FDM). The objective of this study was to evaluate the optical fiber system (OFS) unit as alternative tool for the analysis of Tc, Tg' and crystallization events. The OFS unit was also tested as a potential online monitoring tool during freeze-drying. Freeze/thawing and freeze-drying experiments of sucrose, trehalose, stachyose, mannitol, and highly concentrated IgG1 and lysozyme solutions were carried out and monitored by the OFS. Comparative analyses were performed by DSC and FDM. OFS and FDM results correlated well. The crystallization behavior of mannitol could be monitored by the OFS during freeze/thawing as it can be done by DSC. Online monitoring of freeze-drying runs detected collapse of amorphous saccharide matrices. The OFS unit enabled the analysis of both Tc and crystallization processes, which is usually carried out by FDM and DSC. The OFS can hence be used as novel measuring device. Additionally, detection of these events during lyophilization facilitates online-monitoring. Thus the OFS is a new beneficial tool for the development and monitoring of freeze-drying processes. PMID:29435445

  13. Detection of Collapse and Crystallization of Saccharide, Protein and Mannitol Formulations by Optical Fibers in Lyophilization

    NASA Astrophysics Data System (ADS)

    Horn, Jacqueline; Friess, Wolfgang

    2018-01-01

    The collapse temperature (Tc) and the glass transition temperature of freeze-concentrated solutions (Tg’) as well as the crystallization behavior of excipients are important physicochemical characteristics which guide the cycle development in freeze-drying. The most frequently used methods to determine these values are differential scanning calorimetry (DSC) and freeze-drying microscopy (FDM). The objective of this study was to evaluate the optical fiber system (OFS) unit as alternative tool for the analysis of Tc, Tg’ and crystallization events. The OFS unit was also tested as a potential online monitoring tool during freeze-drying. Freeze/thawing and freeze-drying experiments of sucrose, trehalose, stachyose, mannitol and highly concentrated IgG1 and lysozyme solutions were carried out and monitored by the OFS. Comparative analyses were performed by DSC and FDM. OFS and FDM results correlated well. The crystallization behavior of mannitol could be monitored by the OFS during freeze/thawing as it can be done by DSC. Online monitoring of freeze-drying runs detected collapse of amorphous saccharide matrices. The OFS unit enabled the analysis of both Tc and crystallization processes, which is usually carried out by FDM and DSC. The OFS can hence be used as novel measuring device. Additionally, detection of these events during lyophilization facilitate online-monitoring. Thus the OFS is a new beneficial tool for the development and monitoring of freeze-drying processes.

  14. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-06-01

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology-fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01-0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.

  15. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions

    PubMed Central

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-01-01

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology–fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01–0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics. PMID:27352840

  16. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions.

    PubMed

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-06-29

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology-fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01-0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.

  17. Real-Time Optical Monitoring of Pt Catalyst Under the Potentiodynamic Conditions

    NASA Astrophysics Data System (ADS)

    Song, Hyeon Don; Lee, Minzae; Kim, Gil-Pyo; Choi, Inhee; Yi, Jongheop

    2016-12-01

    In situ monitoring of electrode materials reveals detailed physicochemical transition in electrochemical device. The key challenge is to explore the localized features of electrode surfaces, since the performance of an electrochemical device is determined by the summation of local architecture of the electrode material. Adaptive in situ techniques have been developed for numerous investigations; however, they require restricted measurement environments and provide limited information, which has impeded their widespread application. In this study, we realised an optics-based electrochemical in situ monitoring system by combining a dark-field micro/spectroscopy with an electrochemical workstation to investigate the physicochemical behaviours of Pt catalyst. We found that the localized plasmonic trait of a Pt-decorated Au nanoparticle as a model system varied in terms of its intensity and wavelength during the iterations of a cyclic voltammetry test. Furthermore, we show that morphological and compositional changes of the Pt catalyst can be traced in real time using changes in quantified plasmonic characteristics, which is a distinct advantage over the conventional electrochemistry-based in situ monitoring systems. These results indicate the substantial promise of online operando observation in a wide range of electrical energy conversion systems and electrochemical sensing areas.

  18. Simultaneous chromatic dispersion, polarization-mode-dispersion and OSNR monitoring at 40Gbit/s.

    PubMed

    Baker-Meflah, Lamia; Thomsen, Benn; Mitchell, John; Bayvel, Polina

    2008-09-29

    A novel method for independent and simultaneous monitoring of chromatic dispersion (CD), first-order PMD and OSNR in 40Gbit/s systems is proposed and demonstrated. This is performed using in-band tone monitoring of 5GHz, optically down-converted to a low intermediate-frequency (IF) of 10kHz. The measurement provides a large monitoring range with good accuracies for CD (4742+/-100ps/nm), differential group delay (DGD) (200+/-4ps) and OSNR (23+/-1dB), independently of the bit-rate. In addition, the use of electro-absorption modulators (EAM) for the simultaneous down-conversion of all channels and the use of low-speed detectors makes it cost effective for multi-channel operation.

  19. Distributed condition monitoring techniques of optical fiber composite power cable in smart grid

    NASA Astrophysics Data System (ADS)

    Sun, Zhihui; Liu, Yuan; Wang, Chang; Liu, Tongyu

    2011-11-01

    Optical fiber composite power cable such as optical phase conductor (OPPC) is significant for the development of smart grid. This paper discusses the distributed cable condition monitoring techniques of the OPPC, which adopts embedded single-mode fiber as the sensing medium. By applying optical time domain reflection and laser Raman scattering, high-resolution spatial positioning and high-precision distributed temperature measurement is executed. And the OPPC cable condition parameters including temperature and its location, current carrying capacity, and location of fracture and loss can be monitored online. OPPC cable distributed condition monitoring experimental system is set up, and the main parts including pulsed fiber laser, weak Raman signal reception, high speed acquisition and cumulative average processing, temperature demodulation and current carrying capacity analysis are introduced. The distributed cable condition monitoring techniques of the OPPC is significant for power transmission management and security.

  20. Fatigue Damage Monitoring of a Composite Step Lap Joint Using Distributed Optical Fibre Sensors

    PubMed Central

    Wong, Leslie; Chowdhury, Nabil; Wang, John; Chiu, Wing Kong; Kodikara, Jayantha

    2016-01-01

    Over the past few decades, there has been a considerable interest in the use of distributed optical fibre sensors (DOFS) for structural health monitoring of composite structures. In aerospace-related work, health monitoring of the adhesive joints of composites has become more significant, as they can suffer from cracking and delamination, which can have a significant impact on the integrity of the joint. In this paper, a swept-wavelength interferometry (SWI) based DOFS technique is used to monitor the fatigue in a flush step lap joint composite structure. The presented results will show the potential application of distributed optical fibre sensor for damage detection, as well as monitoring the fatigue crack growth along the bondline of a step lap joint composite structure. The results confirmed that a distributed optical fibre sensor is able to enhance the detection of localised damage in a structure. PMID:28773496

  1. UV and IR laser radiation's interaction with metal film and teflon surfaces

    NASA Astrophysics Data System (ADS)

    Fedenev, A. V.; Alekseev, S. B.; Goncharenko, I. M.; Koval', N. N.; Lipatov, E. I.; Orlovskii, V. M.; Shulepov, M. A.; Tarasenko, V. F.

    2003-04-01

    The interaction of Xe ([lambda] [similar] 1.73 [mu]m) and XeCl (0.308 [mu]m) laser radiation with surfaces of metal and TiN-ceramic coatings on glass and steel substrates has been studied. Correlation between parameters of surface erosion versus laser-specific energy was investigated. Monitoring of laser-induced erosion on smooth polished surfaces was performed using optical microscopy. The correlation has been revealed between characteristic zones of thin coatings damaged by irradiation and energy distribution over the laser beam cross section allowing evaluation of defects and adhesion of coatings. The interaction of pulsed periodical CO2 ([lambda] [similar] 10.6 [mu]m), and Xe ([lambda] [similar] 1.73 [mu]m) laser radiation with surfaces of teflon (polytetrafluoroethylene—PTFE) has been studied. Monitoring of erosion track on surfaces was performed through optical microscopy. It has been shown that at pulsed periodical CO2-radiation interaction with teflon the sputtering of polymer with formation of submicron-size particles occurs. Dependencies of particle sizes, form, and sputtering velocity on laser pulse duration and target temperature have been obtained.

  2. Lens-free imaging-based low-cost microsensor for in-line wear debris detection in lube oils

    NASA Astrophysics Data System (ADS)

    Mabe, Jon; Zubia, Joseba; Gorritxategi, Eneko

    2017-02-01

    The current paper describes the application of lens-free imaging principles for the detection and classification of wear debris in lubricant oils. The potential benefits brought by the lens-free microscopy techniques in terms of resolution, deep of field and active areas have been tailored to develop a micro sensor for the in-line monitoring of wear debris in oils used in lubricated or hydraulic machines as gearboxes, actuators, engines, etc. The current work presents a laboratory test-bench used for evaluating the optical performance of the lens-free approach applied to the wear particle detection in oil samples. Additionally, the current prototype sensor is presented, which integrates a LED light source, CMOS imager, embedded CPU, the measurement cell and the appropriate optical components for setting up the lens-free system. The imaging performance is quantified using micro structured samples, as well as by imaging real used lubricant oils. Probing a large volume with a decent 2D spatial resolution, this lens-free micro sensor can provide a powerful tool at very low cost for inline wear debris monitoring.

  3. In-line monitoring technique with visible light from 1.3 microm-band SHG module for optical access systems.

    PubMed

    Kubo, Takahiro; Taniguchi, Tomohiro; Tadanaga, Osamu; Sakurai, Naoya; Kimura, Hideaki; Hadama, Hisaya; Asobe, Masaki

    2010-02-01

    We propose an in-line monitoring technique that uses 650 nm visible light for performing maintenance work on Fiber-to-the-home (FTTH) network quickly without the need for measuring skills or external devices. This technique is characterized by visible light (650 nm) generated by an SHG module from the 1.3 microm-band line signal. We fabricate a 1.3 microm-band quasi phase matched LiNbO(3) (QPM-LN) module, and the measure the 650 nm second harmonic (SH) power to test the proposed short-pulse modulation method. The results confirm the feasibility of the short-pulse modulation method with different peak factors (PFs) (1.0-7.3). We also examine the effect of short-pulse modulation on system performance at the optical receiver by measuring the bit error rate (BER) of received data (1.25 Gb/s). The BER is basically unaffected by the PF (1.0-5.5). This means that the proposed technique has little influence on data reception as regards PF (1.0-5.5).

  4. low-Cost, High-Performance Alternatives for Target Temperature Monitoring Using the Near-Infrared Spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virgo, Mathew; Quigley, Kevin J.; Chemerisov, Sergey

    A process is being developed for commercial production of the medical isotope Mo-99 through a photo-nuclear reaction on a Mo-100 target using a highpower electron accelerator. This process requires temperature monitoring of the window through which a high-current electron beam is transmitted to the target. For this purpose, we evaluated two near infrared technologies: the OMEGA Engineering iR2 pyrometer and the Ocean Optics Maya2000 spectrometer with infrared-enhanced charge-coupled device (CCD) sensor. Measuring in the near infrared spectrum, in contrast to the long-wavelength infrared spectrum, offers a few immediate advantages: (1) ordinary glass or quartz optical elements can be used; (2)more » alignment can be performed without heating the target; and (3) emissivity corrections to temperature are typically less than 10%. If spatial resolution is not required, the infrared pyrometer is attractive because of its accuracy, low cost, and simplicity. If spatial resolution is required, we make recommendations for near-infrared imaging based on our data augmented by calculations« less

  5. Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics

    PubMed Central

    Busch, David R.; Choe, Regine; Durduran, Turgut; Yodh, Arjun G.

    2013-01-01

    We review recent developments in diffuse optical imaging and monitoring of breast cancer, i.e. optical mammography. Optical mammography permits non-invasive, safe and frequent measurement of tissue hemodynamics oxygen metabolism and components (lipids, water, etc.), the development of new compound indices indicative of the risk and malignancy, and holds potential for frequent non-invasive longitudinal monitoring of therapy progression. PMID:24244206

  6. Optical Fiber Sensors For Monitoring Joint Articulation And Chest Expansion Of A Human Body

    DOEpatents

    Muhs, Jeffrey D.; Allison, Stephen W.

    1997-12-23

    Fiber-optic sensors employing optical fibers of elastomeric material are incorporated in devices adapted to be worn by human beings in joint and chest regions for the purpose of monitoring and measuring the extent of joint articulation and chest expansion especially with respect to time.

  7. Results of X-ray and optical monitoring of SCO X-1

    NASA Technical Reports Server (NTRS)

    Mook, D. E.; Messina, R. J.; Hiltner, W. A.; Belian, R.; Conner, J.; Evans, W. D.; Strong, I.; Blanco, V.; Hesser, J.; Kunkel, W.

    1974-01-01

    Sco X-1 was monitored at optical and X-ray wavelengths from 1970 April 26 to 1970 May 21. The optical observations were made at six observatories around the world and the X-ray observations were made by the Vela satellites. There was a tendency for the object to show greater variability in X-ray when the object is optically bright. A discussion of the intensity histograms is presented for both the optical and X-ray observations. No evidence for optical or X-ray periodicity was detected.

  8. Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation after Acute Spinal Cord Injury

    DTIC Science & Technology

    2017-09-01

    oxygen delivery and oxygen consumption . The oxygen portion of the Oxylite probe emits short pulses of blue LED light resulting in a fluorescent...Award Number: W81XWH-16-1-0602 TITLE: Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation after Acute Spinal Cord Injury...COVERED 1 Sep 2016 - 31 Aug 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation

  9. Structural health monitoring system of soccer arena based on optical sensors

    NASA Astrophysics Data System (ADS)

    Shishkin, Victor V.; Churin, Alexey E.; Kharenko, Denis S.; Zheleznova, Maria A.; Shelemba, Ivan S.

    2014-05-01

    A structural health monitoring system based on optical sensors has been developed and installed on the indoor soccer arena "Zarya" in Novosibirsk. The system integrates 119 fiber optic sensors: 85 strain, 32 temperature and 2 displacement sensors. In addition, total station is used for measuring displacement in 45 control points. All of the constituents of the supporting structure are subjects for monitoring: long-span frames with under floor ties, connections, purlins and foundation.

  10. Spatially-resolved probing of biological phantoms by point-radiance spectroscopy

    NASA Astrophysics Data System (ADS)

    Grabtchak, Serge; Palmer, Tyler J.; Whelan, William M.

    2011-03-01

    Interstitial fiber-optic based strategies for therapy monitoring and assessment rely on detecting treatment-induced changes in the light distribution in biological tissues. We present an optical technique to identify spectrally and spatially specific tissue chromophores in highly scattering turbid media. Typical optical sensors measure non-directional light intensity (i.e. fluence) and require fiber translation (i.e. 3-5 positions), which is difficult to implement clinically. Point radiance spectroscopy is based on directional light collection (i.e. radiance) at a single point with a side-firing fiber that can be rotated up to 360°. A side firing fiber accepts light within a well-defined solid angle thus potentially providing an improved spatial resolution. Experimental measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ~43° cleaved fiber (i.e. radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid (i.e. scattering medium). Light was collected at 1-5° increments through 360°-segment. Gold nanoparticles, placed into a 3.5 mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a non-invasive optical modality for prostate cancer monitoring.

  11. Catheter for Cleaning Surgical Optics During Surgical Procedures: A Possible Solution for Residue Buildup and Fogging in Video Surgery.

    PubMed

    de Abreu, Igor Renato Louro Bruno; Abrão, Fernando Conrado; Silva, Alessandra Rodrigues; Corrêa, Larissa Teresa Cirera; Younes, Riad Nain

    2015-05-01

    Currently, there is a tendency to perform surgical procedures via laparoscopic or thoracoscopic access. However, even with the impressive technological advancement in surgical materials, such as improvement in quality of monitors, light sources, and optical fibers, surgeons have to face simple problems that can greatly hinder surgery by video. One is the formation of "fog" or residue buildup on the lens, causing decreased visibility. Intracavitary techniques for cleaning surgical optics and preventing fog formation have been described; however, some of these techniques employ the use of expensive and complex devices designed solely for this purpose. Moreover, these techniques allow the cleaning of surgical optics when they becomes dirty, which does not prevent the accumulation of residue in the optics. To solve this problem we have designed a device that allows cleaning the optics with no surgical stops and prevents the fogging and residue accumulation. The objective of this study is to evaluate through experimental testing the effectiveness of a simple device that prevents the accumulation of residue and fogging of optics used in surgical procedures performed through thoracoscopic or laparoscopic access. Ex-vivo experiments were performed simulating the conditions of residue presence in surgical optics during a video surgery. The experiment consists in immersing the optics and catheter set connected to the IV line with crystalloid solution in three types of materials: blood, blood plus fat solution, and 200 mL of distilled water and 1 vial of methylene blue. The optics coupled to the device were immersed in 200 mL of each type of residue, repeating each immersion 10 times for each distinct residue for both thirty and zero degrees optics, totaling 420 experiments. A success rate of 98.1% was observed after the experiments, in these cases the device was able to clean and prevent the residue accumulation in the optics.

  12. Reliable recovery of the optical properties of multi-layer turbid media by iteratively using a layered diffusion model at multiple source-detector separations

    PubMed Central

    Liao, Yu-Kai; Tseng, Sheng-Hao

    2014-01-01

    Accurately determining the optical properties of multi-layer turbid media using a layered diffusion model is often a difficult task and could be an ill-posed problem. In this study, an iterative algorithm was proposed for solving such problems. This algorithm employed a layered diffusion model to calculate the optical properties of a layered sample at several source-detector separations (SDSs). The optical properties determined at various SDSs were mutually referenced to complete one round of iteration and the optical properties were gradually revised in further iterations until a set of stable optical properties was obtained. We evaluated the performance of the proposed method using frequency domain Monte Carlo simulations and found that the method could robustly recover the layered sample properties with various layer thickness and optical property settings. It is expected that this algorithm can work with photon transport models in frequency and time domain for various applications, such as determination of subcutaneous fat or muscle optical properties and monitoring the hemodynamics of muscle. PMID:24688828

  13. Dynamic and label-free high-throughput detection of biomolecular interactions based on phase-shift interferometry

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Huang, Guoliang; Gan, Wupeng; Chen, Shengyi

    2009-08-01

    Biomolecular interactions can be detected by many established technologies such as fluorescence imaging, surface plasmon resonance (SPR)[1-4], interferometry and radioactive labeling of the analyte. In this study, we have designed and constructed a label-free, real-time sensing platform and its operating imaging instrument that detects interactions using optical phase differences from the accumulation of biological material on solid substrates. This system allows us to monitor biomolecular interactions in real time and quantify concentration changes during micro-mixing processes by measuring the changes of the optical path length (OPD). This simple interferometric technology monitors the optical phase difference resulting from accumulated biomolecular mass. A label-free protein chip that forms a 4×4 probe array was designed and fabricated using a commercial microarray robot spotter on solid substrates. Two positive control probe lines of BSA (Bovine Serum Albumin) and two experimental human IgG and goat IgG was used. The binding of multiple protein targets was performed and continuously detected by using this label-free and real-time sensing platform.

  14. Hemodynamic monitoring in different cortical layers with a single fiber optical system

    NASA Astrophysics Data System (ADS)

    Yu, Linhui; Noor, M. Sohail; Kiss, Zelma H. T.; Murari, Kartikeya

    2018-02-01

    Functional monitoring of highly-localized deep brain structures is of great interest. However, due to light scattering, optical methods have limited depth penetration or can only measure from a large volume. In this research, we demonstrate continuous measurement of hemodynamics in different cortical layers in response to thalamic deep brain stimulation (DBS) using a single fiber optical system. A 200-μm-core-diameter multimode fiber is used to deliver and collect light from tissue. The fiber probe can be stereotaxically implanted into the brain region of interest at any depth to measure the di use reflectance spectra from a tissue volume of 0.02-0.03 mm3 near the fiber tip. Oxygenation is then extracted from the reflectance spectra using an algorithm based on Monte Carlo simulations. Measurements were performed on the surface (cortical layer I) and at 1.5 mm depth (cortical layer VI) of the motor cortex in anesthetized rats with thalamic DBS. Preliminary results revealed the oxygenation changes in response to DBS. Moreover, the baseline as well as the stimulus-evoked change in oxygenation were different at the two depths of cortex.

  15. Improving the precision of linear optics measurements based on turn-by-turn beam position monitor data after a pulsed excitation in lepton storage rings

    NASA Astrophysics Data System (ADS)

    Malina, L.; Coello de Portugal, J.; Persson, T.; Skowroński, P. K.; Tomás, R.; Franchi, A.; Liuzzo, S.

    2017-08-01

    Beam optics control is of critical importance for machine performance and protection. Nowadays, turn-by-turn (TbT) beam position monitor (BPM) data are increasingly exploited as they allow for fast and simultaneous measurement of various optics quantities. Nevertheless, so far the best documented uncertainty of measured β -functions is of about 10‰ rms. In this paper we compare the β -functions of the ESRF storage ring measured from two different TbT techniques—the N-BPM and the Amplitude methods—with the ones inferred from a measurement of the orbit response matrix (ORM). We show how to improve the precision of TbT techniques by refining the Fourier transform of TbT data with properly chosen excitation amplitude. The precision of the N-BPM method is further improved by refining the phase advance measurement. This represents a step forward compared to standard TbT measurements. First experimental results showing the precision of β -functions pushed down to 4‰ both in TbT and ORM techniques are reported and commented.

  16. RAPTOR: Closed-Loop monitoring of the night sky and the earliest optical detection of GRB 021211

    NASA Astrophysics Data System (ADS)

    Vestrand, W. T.; Borozdin, K.; Casperson, D. J.; Fenimore, E.; Galassi, M.; McGowan, K.; Starr, D.; White, R. R.; Wozniak, P.; Wren, J.

    2004-10-01

    We discuss the RAPTOR (Rapid Telescopes for Optical Response) sky monitoring system at Los Alamos National Laboratory. RAPTOR is a fully autonomous robotic system that is designed to identify and make follow-up observations of optical transients with durations as short as one minute. The RAPTOR design is based on Biomimicry of Human Vision. The sky monitor is composed of two identical arrays of telescopes, separated by 38 kilometers, which stereoscopically monitor a field of about 1300 square-degrees for transients. Both monitoring arrays are carried on rapidly slewing mounts and are composed of an ensemble of wide-field telescopes clustered around a more powerful narrow-field telescope called the ``fovea'' telescope. All telescopes are coupled to real-time analysis pipelines that identify candidate transients and relay the information to a central decision unit that filters the candidates to find real celestial transients and command a response. When a celestial transient is found, the system can point the fovea telescopes to any position on the sky within five seconds and begin follow-up observations. RAPTOR also responds to Gamma Ray Burst (GRB) alerts generated by GRB monitoring spacecraft. Here we present RAPTOR observations of GRB 021211 that constitute the earliest detection of optical emission from that event and are the second fastest achieved for any GRB. The detection of bright optical emission from GRB021211, a burst with modest gamma-ray fluence, indicates that prompt optical emission, detectable with small robotic telescopes, is more common than previously thought. Further, the very fast decline of the optical afterglow from GRB 021211 suggests that some so-called ``optically dark'' GRBs were not detected only because of the slow response of the follow-up telescopes.

  17. Validation of an optical encoder during free weight resistance movements and analysis of bench press sticking point power during fatigue.

    PubMed

    Drinkwater, Eric J; Galna, Brook; McKenna, Michael J; Hunt, Patrick H; Pyne, David B

    2007-05-01

    During the concentric movement of the bench press, there is an initial high-power push after chest contact, immediately followed by a characteristic area of low power, the so-called "sticking region." During high-intensity lifting, a decline in power can result in a failed lift attempt. The purpose of this study was to determine the validity of an optical encoder to measure power and then employ this device to determine power changes during the initial acceleration and sticking region during fatiguing repeated bench press training. Twelve subjects performed a free weight bench press, a Smith Machine back squat, and a Smith Machine 40-kg bench press throw for power validation measures. All barbell movements were simultaneously monitored using cinematography and an optical encoder. Eccentric and concentric mean and peak power were calculated using time and position data derived from each method. Validity of power measures between the video (criterion) and optical encoder scores were evaluated by standard error of the estimate (SEE) and coefficient of variation (CV). Seven subjects then performed 4 sets of 6 free weight bench press repetitions progressively increasing from 85 to 95% of their 6 repetition maximum, with each repetition continually monitored by an optical encoder. The SEE for power ranged from 3.6 to 14.4 W (CV, 1.0-3.0%; correlation, 0.97-1.00). During the free weight bench press training, peak power declined by approximately 55% (p < 0.01) during the initial acceleration phase of the final 2 repetitions of the final set. Although decreases in power of the sticking point were significant (p < 0.01), as early as repetition 5 (-40%) they reached critically low levels in the final 2 repetitions (>-95%). In conclusion, the optical encoder provided valid measures of kinetics during free weight resistance training movements. The decline in power during the initial acceleration phase appears a factor in a failed lift attempt at the sticking point.

  18. Enhancing the performance of coherent OTDR systems with polarization diversity complementary codes.

    PubMed

    Dorize, Christian; Awwad, Elie

    2018-05-14

    Monitoring the optical phase change in a fiber enables a wide range of applications where fast phase variations are induced by acoustic signals or by vibrations in general. However, the quality of the estimated fiber response strongly depends on the method used to modulate the light sent to the fiber and capture the variations of the optical field. In this paper, we show that distributed optical fiber sensing systems can advantageously exploit techniques from the telecommunication domain, as those used in coherent optical transmission, to enhance their performance in detecting mechanical events, while jointly offering a simpler setup than widespread pulse-cloning or spectral-sweep based schemes with acousto-optic modulators. We periodically capture an overall fiber Jones matrix estimate thanks to a novel probing technique using two mutually orthogonal complementary (Golay) pairs of binary sequences applied simultaneously in phase and quadrature on two orthogonal polarization states. A perfect channel response estimation of the sensor array is achieved, subject to conditions detailed in the paper, thus enhancing the sensitivity and bandwidth of coherent ϕ-OTDR systems. High sensitivity, linear response, and bandwidth coverage up to 18 kHz are demonstrated with a sensor array composed of 10 fiber Bragg gratings (FBGs).

  19. Enhancing the performance of coherent OTDR systems with polarization diversity complementary codes

    NASA Astrophysics Data System (ADS)

    Dorize, Christian; Awwad, Elie

    2018-05-01

    Monitoring the optical phase change in a fiber enables a wide range of applications where fast phase variations are induced by acoustic signals or vibrations in general. However, the quality of the estimated fiber response strongly depends on the method used to modulate the light sent to the fiber and capture the variations of the optical field. In this paper, we show that distributed optical fiber sensing systems can advantageously exploit techniques from the telecommunication domain, as those used in coherent optical transmission, to enhance their performance in detecting mechanical events, while jointly offering a simpler setup than widespread pulse-cloning or spectral-sweep based schemes with acousto-optic modulators. We periodically capture an overall fiber Jones matrix estimate thanks to a novel probing technique using two mutually orthogonal complementary (Golay) pairs of binary sequences applied simultaneously in phase and quadrature on two orthogonal polarization states. A perfect channel response estimation of the sensor array is achieved, subject to conditions detailed in the paper, thus enhancing the sensitivity and bandwidth of coherent phase-OTDR systems. High sensitivity, linear response, and bandwidth coverage up to 18 kHz are demonstrated with a sensor array composed of 10 fiber Bragg gratings (FBGs).

  20. Respiratory monitoring system based on fiber optic macro bending

    NASA Astrophysics Data System (ADS)

    Purnamaningsih, Retno Wigajatri; Widyakinanti, Astari; Dhia, Arika; Gumelar, Muhammad Raditya; Widianto, Arif; Randy, Muhammad; Soedibyo, Harry

    2018-02-01

    We proposed a respiratory monitoring system for living activities in human body based on fiber optic macro-bending for laboratory scale. The respiration sensor consists of a single-mode optical fiber and operating on a wavelength at around 1550 nm. The fiber optic was integrated into an elastic fabric placed on the chest and stomach of the monitored human subject. Deformations of the flexible textile involving deformations of the fiber optic bending curvature, which was proportional to the chest and stomach expansion. The deformation of the fiber was detected using photodetector and processed using microcontroller PIC18F14K50. The results showed that this system able to display various respiration pattern and rate for sleeping, and after walking and running activities in real time.

  1. Towards Optical Partial Discharge Detection with Micro Silicon Photomultipliers

    PubMed Central

    Ren, Ming; Song, Bo; Dong, Ming

    2017-01-01

    Optical detection is reliable in intrinsically characterizing partial discharges (PDs). Because of the great volume and high-level power supply of the optical devices that can satisfy the requirements in photosensitivity, optical PD detection can merely be used in laboratory studies. To promote the practical application of the optical approach in an actual power apparatus, a silicon photomultiplier (SiPM)-based PD sensor is introduced in this paper, and its basic properties, which include the sensitivity, pulse resolution, correlation with PD severity, and electromagnetic (EM) interference immunity, are experimentally evaluated. The stochastic phase-resolved PD pattern (PRPD) for three typical insulation defects are obtained by SiPM PD detector and are compared with those obtained using a high-frequency current transformer (HFCT) and a vacuum photomultiplier tube (PMT). Because of its good performances in the above aspects and its additional advantages, such as the small size, low power supply, and low cost, SiPM offers great potential in practical optical PD monitoring. PMID:29125544

  2. Towards Optical Partial Discharge Detection with Micro Silicon Photomultipliers.

    PubMed

    Ren, Ming; Zhou, Jierui; Song, Bo; Zhang, Chongxing; Dong, Ming; Albarracín, Ricardo

    2017-11-10

    Optical detection is reliable in intrinsically characterizing partial discharges (PDs). Because of the great volume and high-level power supply of the optical devices that can satisfy the requirements in photosensitivity, optical PD detection can merely be used in laboratory studies. To promote the practical application of the optical approach in an actual power apparatus, a silicon photomultiplier (SiPM)-based PD sensor is introduced in this paper, and its basic properties, which include the sensitivity, pulse resolution, correlation with PD severity, and electromagnetic (EM) interference immunity, are experimentally evaluated. The stochastic phase-resolved PD pattern (PRPD) for three typical insulation defects are obtained by SiPM PD detector and are compared with those obtained using a high-frequency current transformer (HFCT) and a vacuum photomultiplier tube (PMT). Because of its good performances in the above aspects and its additional advantages, such as the small size, low power supply, and low cost, SiPM offers great potential in practical optical PD monitoring.

  3. Development of side-chain NLO polymer materials with high electro-optic activity and long-term stability

    NASA Astrophysics Data System (ADS)

    Huang, Diyun; Parker, Timothy; Guan, Hann Wen; Cong, Shuxin; Jin, Danliang; Dinu, Raluca; Chen, Baoquan; Tolstedt, Don; Wolf, Nick; Condon, Stephen

    2005-01-01

    The electro-optic coefficient and long-term dipole alignment stability are two major factors in the development of high performance NLO materials for the application of high-speed EO devices. We have developed a high performance non-linear organic chromophore and incorporated it into a crosslinkable side-chain polyimide system. The polymer was synthesized through stepwise grafting of the crosslinker followed by the chromophore onto the polyimide backbone via esterification. Different chromophore loading levels were achieved by adjusting the crosslinker/chromophore feeding ratio. The polyimides films were contact-poled with second-harmonic generation monitoring. A large EO coefficient value was obtained and good long-term thermal stability at 85°C was observed.

  4. Central serous chorioretinopathy treatment with spironolactone: a challenge-rechallenge case.

    PubMed

    Ryan, Edwin H; Pulido, Christine M

    2015-01-01

    To present a case of central serous chorioretinopathy (CSC) treatment with spironolactone in a challenge-rechallenge pattern. At presentation, fundus photography, fluorescein angiography, spectral domain optical coherence tomography, and enhanced depth imaging ocular coherence tomography were performed in both eyes. The patient was prescribed 25 mg spironolactone daily along with serum potassium monitoring. At follow-ups, spectral domain optical coherence tomography and enhanced depth imaging ocular coherence tomography were performed. A 37-year-old white male accountant presenting with CSC. Spironolactone treatment resolved the CSC. After the patient discontinued treatment, it returned. After returning to daily treatment, the CSC again resolved. Spironolactone was an effective treatment of CSC in this case. Other groups have reported similar findings with eplerenone, a similar drug.

  5. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    PubMed Central

    Ye, X. W.; Su, Y. H.; Han, J. P.

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250

  6. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.

    PubMed

    Ye, X W; Su, Y H; Han, J P

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.

  7. Voltage-Sensitive Fluorescence of Indocyanine Green in the Heart

    PubMed Central

    Martišienė, Irma; Mačianskienė, Regina; Treinys, Rimantas; Navalinskas, Antanas; Almanaitytė, Mantė; Karčiauskas, Dainius; Kučinskas, Audrius; Grigalevičiūtė, Ramunė; Zigmantaitė, Vilma; Benetis, Rimantas; Jurevičius, Jonas

    2016-01-01

    So far, the optical mapping of cardiac electrical signals using voltage-sensitive fluorescent dyes has only been performed in experimental studies because these dyes are not yet approved for clinical use. It was recently reported that the well-known and widely used fluorescent dye indocyanine green (ICG), which has FDA approval, exhibits voltage sensitivity in various tissues, thus raising hopes that electrical activity could be optically mapped in the clinic. The aim of this study was to explore the possibility of using ICG to monitor cardiac electrical activity. Optical mapping experiments were performed on Langendorff rabbit hearts stained with ICG and perfused with electromechanical uncouplers. The residual contraction force and electrical action potentials were recorded simultaneously. Our research confirms that ICG is a voltage-sensitive dye with a dual-component (fast and slow) response to membrane potential changes. The fast component of the optical signal (OS) can have opposite polarities in different parts of the fluorescence spectrum. In contrast, the polarity of the slow component remains the same throughout the entire spectrum. Separating the OS into these components revealed two different voltage-sensitivity mechanisms for ICG. The fast component of the OS appears to be electrochromic in nature, whereas the slow component may arise from the redistribution of the dye molecules within or around the membrane. Both components quite accurately track the time of electrical signal propagation, but only the fast component is suitable for estimating the shape and duration of action potentials. Because ICG has voltage-sensitive properties in the entire heart, we suggest that it can be used to monitor cardiac electrical behavior in the clinic. PMID:26840736

  8. Optical state-of-charge monitor for batteries

    DOEpatents

    Weiss, Jonathan D.

    1999-01-01

    A method and apparatus for determining the instantaneous state-of-charge of a battery in which change in composition with discharge manifests itself as a change in optical absorption. In a lead-acid battery, the sensor comprises a fiber optic system with an absorption cell or, alternatively, an optical fiber woven into an absorbed-glass-mat battery. In a lithium-ion battery, the sensor comprises fiber optics for introducing light into the anode to monitor absorption when lithium ions are introduced.

  9. Monitoring of 2007 wildfires in GA and CA by GOES Aerosol/Smoke Product (ASP): Comparisons to MODIS and CALIPSO

    NASA Astrophysics Data System (ADS)

    Xu, C.; Kondragunta, S.

    2008-05-01

    The purpose of this study is to understand the potential for using the GOES Aerosol/Smoke Product (GASP) to monitor wild fires over the United States. GASP AOD is retrieved using visible imagery from Geostationary Operational Environment Satellite (GOES) at 30 minute interval. This high temporal estimate of AOD provides significantly dense information of air quality in near real time. Hourly or daily animations of GASP aerosol optical depth for smoke plumes suggest that development and variation of wild fires can be determined by GASP. Also, the performances of GASP AOD are compared to other satellite data from MODerate-resolution Imaging Spectro- radiometers (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). The results reveal that GOES AOD has same level performance for monitoring wild fires as those of MODIS and CALIPSO. Therefore, we believe that the retrieval accuracy of GOES is adequate for monitoring larger outbreaks of aerosol events.

  10. Low-loss interference filter arrays made by plasma-assisted reactive magnetron sputtering (PARMS) for high-performance multispectral imaging

    NASA Astrophysics Data System (ADS)

    Broßmann, Jan; Best, Thorsten; Bauer, Thomas; Jakobs, Stefan; Eisenhammer, Thomas

    2016-10-01

    Optical remote sensing of the earth from air and space typically utilizes several channels in the visible and near infrared spectrum. Thin-film optical interference filters, mostly of narrow bandpass type, are applied to select these channels. The filters are arranged in filter wheels, arrays of discrete stripe filters mounted in frames, or patterned arrays on a monolithic substrate. Such multi-channel filter assemblies can be mounted close to the detector, which allows a compact and lightweight camera design. Recent progress in image resolution and sensor sensitivity requires improvements of the optical filter performance. Higher demands placed on blocking in the UV and NIR and in between the spectral channels, in-band transmission and filter edge steepness as well as scattering lead to more complex filter coatings with thicknesses in the range of 10 - 25μm. Technological limits of the conventionally used ion-assisted evaporation process (IAD) can be overcome only by more precise and higher-energetic coating technologies like plasma-assisted reactive magnetron sputtering (PARMS) in combination with optical broadband monitoring. Optics Balzers has developed a photolithographic patterning process for coating thicknesses up to 15μm that is fully compatible with the advanced PARMS coating technology. This provides the possibility of depositing multiple complex high-performance filters on a monolithic substrate. We present an overview of the performance of recently developed filters with improved spectral performance designed for both monolithic filter-arrays and stripe filters mounted in frames. The pros and cons as well as the resulting limits of the filter designs for both configurations are discussed.

  11. Active photo-thermal self-healing of shape memory polyurethanes

    NASA Astrophysics Data System (ADS)

    Kazemi-Lari, Mohammad A.; Malakooti, Mohammad H.; Sodano, Henry A.

    2017-05-01

    Structural health monitoring (SHM) has received significant interest over the past decade and has led to the development of a wide variety of sensors and signal processing techniques to determine the presence of changes or damage in a structural system. The topic has attracted significant attention due to the safety and performance enhancing benefits as well as the potential lifesaving capabilities offered by the technology. While the resulting systems are capable of sensing their surrounding structural and environmental conditions, few methods exist for using the information to autonomously react and repair or protect the system. One of the major challenges in the future implementation of SHM systems is their coupling with materials that can react to the damage to heal themselves and return to normal function. The coupling of self-healing materials with SHM has the potential to significantly prolong the lifetime of structural systems and extend the required inspection intervals. In the present study, an optical fiber based self-healing system composed of mendable polyurethanes based on the thermally reversible Diels-Alder (DA) reaction is developed. Inspired by health monitoring techniques, active photo-thermal sensing and actuation is achieved using infrared laser light passing through an optical fiber and a thermal power sensor to detect the presence of cracking in the structure. Healing is triggered as the crack propagates through the polymer and fractures the embedded optical fiber. Through a feedback loop, the detected power drop by the sensor is utilized as a signal to heat the cracked area and stimulate the shape memory effect of the polyurethane and the retro-DA reaction. The healing performance results indicate that this novel integrated system can be effectively employed to monitor the incidence of damage and actively heal a crack in the polymer.

  12. Process and Structural Health Monitoring of Composite Structures with Embedded Fiber Optic Sensors and Piezoelectric Transducers

    NASA Astrophysics Data System (ADS)

    Keulen, Casey James

    Advanced composite materials are becoming increasingly more valuable in a plethora of engineering applications due to properties such as tailorability, low specific strength and stiffness and resistance to fatigue and corrosion. Compared to more traditional metallic and ceramic materials, advanced composites such as carbon, aramid or glass reinforced plastic are relatively new and still require research to optimize their capabilities. Three areas that composites stand to benefit from improvement are processing, damage detection and life prediction. Fiber optic sensors and piezoelectric transducers show great potential for advances in these areas. This dissertation presents the research performed on improving the efficiency of advanced composite materials through the use of embedded fiber optic sensors and surface mounted piezoelectric transducers. Embedded fiber optic sensors are used to detect the presence of resin during the injection stage of resin transfer molding, monitor the degree of cure and predict the remaining useful life while in service. A sophisticated resin transfer molding apparatus was developed with the ability of embedding fiber optics into the composite and a glass viewing window so that resin flow sensors could be verified visually. A novel technique for embedding optical fiber into both 2- and 3-D structures was developed. A theoretical model to predict the remaining useful life was developed and a systematic test program was conducted to verify this model. A network of piezoelectric transducers was bonded to a composite panel in order to develop a structural health monitoring algorithm capable of detecting and locating damage in a composite structure. A network configuration was introduced that allows for a modular expansion of the system to accommodate larger structures and an algorithm based on damage progression history was developed to implement the network. The details and results of this research are contained in four manuscripts that are included in Appendices A-D while the body of the dissertation provides background information and a summary of the results.

  13. Background: Preflight Screening, In-flight Capabilities, and Postflight Testing

    NASA Technical Reports Server (NTRS)

    Gibson, Charles Robert; Duncan, James

    2009-01-01

    Recommendations for minimal in-flight capabilities: Retinal Imaging - provide in-flight capability for the visual monitoring of ocular health (specifically, imaging of the retina and optic nerve head) with the capability of downlinking video/still images. Tonometry - provide more accurate and reliable in-flight capability for measuring intraocular pressure. Ultrasound - explore capabilities of current on-board system for monitoring ocular health. We currently have limited in-flight capabilities on board the International Space Station for performing an internal ocular health assessment. Visual Acuity, Direct Ophthalmoscope, Ultrasound, Tonometry(Tonopen):

  14. Automated system for the on-line monitoring of powder blending processes using near-infrared spectroscopy. Part I. System development and control.

    PubMed

    Hailey, P A; Doherty, P; Tapsell, P; Oliver, T; Aldridge, P K

    1996-03-01

    An automated system for the on-line monitoring of powder blending processes is described. The system employs near-infrared (NIR) spectroscopy using fibre-optics and a graphical user interface (GUI) developed in the LabVIEW environment. The complete supervisory control and data analysis (SCADA) software controls blender and spectrophotometer operation and performs statistical spectral data analysis in real time. A data analysis routine using standard deviation is described to demonstrate an approach to the real-time determination of blend homogeneity.

  15. Water Pollution Detection by Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Goolsby, A. D.

    1971-01-01

    Measurement of the intensity of light reflected from various planar liquid surfaces has been performed. The results of this brief study show that the presence of a film of foreign material floating on a reference substrate is easily detected by reflectance measurement if the two liquids possess significantly different refractive indices, for example, oil (n = 1.40) and water (n = 1.33). Additional study of various optical configurations, and the building and testing of a prototype monitoring device revealed that the method is sufficiently practical for application to continuous water quality monitoring.

  16. Thermal Evaluation of Fiber Bragg Gratings at Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Juergens, Jeffrey; Adamovsky, Grigory; Bhatt, Ramakrishna; Morscher, Gregory; Floyd, Bertram

    2005-01-01

    The development of integrated fiber optic sensors for use in aerospace health monitoring systems demands that the sensors be able to perform in extreme environments. In order to use fiber optic sensors effectively in an extreme environment one must have a thorough understanding of the sensor's capabilities, limitations, and performance under extreme environmental conditions. This paper reports on our current sensor evaluation examining the performance of freestanding fiber Bragg gratings (FBG) at extreme temperatures. While the ability of FBGs to survive at extreme temperatures has been established, their performance and long term survivability is not well documented. At extreme temperatures the grating structure would be expected to dissipate, degrading the sensors performance and eventually ceasing to return a detectable signal. The fiber jacket will dissipate leaving a brittle, unprotected fiber. For FBGs to be used in aerospace systems their performance and limitations need to be thoroughly understood at extreme temperatures. As the limits of the FBGs performance are pushed the long term survivability and performance of the sensor comes into question. We will not only examine the ability of FBGs to survive extreme temperatures but also look at their performance during many thermal cycles. This paper reports on test results of the performance of thermal cycling commercially available FBGs, at temperatures up to 1000 C, seen in aerospace applications. Additionally this paper will report on the performance of commercially available FBGs held at 1000 C for hundreds of hours. Throughout the evaluation process, various parameters of the FBGs performance were monitored and recorded. Several test samples were subjected to identical test conditions to allow for statistical analysis of the data. Test procedures, calibrations, referencing techniques, performance data, and interpretations and explanations of results are presented in the paper along with directions for future research.

  17. Development and evaluation of optical fiber NH3 sensors for application in air quality monitoring

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Wieck, Lucas; Tao, Shiquan

    2013-02-01

    Ammonia is a major air pollutant emitted from agricultural practices. Sources of ammonia include manure from animal feeding operations and fertilizer from cropping systems. Sensor technologies with capability of continuous real time monitoring of ammonia concentration in air are needed to qualify ammonia emissions from agricultural activities and further evaluate human and animal health effects, study ammonia environmental chemistry, and provide baseline data for air quality standard. We have developed fiber optic ammonia sensors using different sensing reagents and different polymers for immobilizing sensing reagents. The reversible fiber optic sensors have detection limits down to low ppbv levels. The response time of these sensors ranges from seconds to tens minutes depending on transducer design. In this paper, we report our results in the development and evaluation of fiber optic sensor technologies for air quality monitoring. The effect of change of temperature, humidity and carbon dioxide concentration on fiber optic ammonia sensors has been investigated. Carbon dioxide in air was found not interfere the fiber optic sensors for monitoring NH3. However, the change of humidity can cause interferences to some fiber optic NH3 sensors depending on the sensor's transducer design. The sensitivity of fiber optic NH3 sensors was found depends on temperature. Methods and techniques for eliminating these interferences have been proposed.

  18. Nuclear power plant prestressed concrete containment vessel structure monitoring during integrated leakage rate test using three kinds of fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Liao, Kaixing; Li, Jinke; Kong, Xianglong; Sun, Changsen; Zhao, Xuefeng

    2017-04-01

    After years of operation, the safety of the prestressed concrete containment vessel (PCCV) structure of Nuclear Power Plant (NPP) is an important aspect. In order to detect the strength degradation and the structure deformation, several sensors such as vibrating wire strain gauge, invar wires and pendulums were installed in PCCV. However, the amounts of sensors above are limited due to the cost. Due to the well durability of fiber optic sensors, three kinds of fiber optic sensors were chosen to install on the surface of PCCV to monitor the deformation during Integrated Leakage Rate Test (ILRT). The three kinds of fiber optic sensors which had their own advantages and disadvantages are Fiber Bragg Grating (FBG), white light interferometry (WLI) and Brillouin Optical Time Domain Analysis (BOTDA). According to the measuring data, the three fiber optic sensors worked well during the ILRT. After the ILRT, the monitoring strain was recoverable thus the PCCV was still in the elastic stage. If these three kinds of fiber optic sensors are widely used in the PCCV, the unusual deformations are easier to detect. As a consequence, the three fiber optic sensors have good potential in the structure health monitoring of PCCV.

  19. The LED and fiber based calibration system for the photomultiplier array of SNO+

    NASA Astrophysics Data System (ADS)

    Seabra, L.; Alves, R.; Andringa, S.; Bradbury, S.; Carvalho, J.; Clark, K.; Coulter, I.; Descamps, F.; Falk, L.; Gurriana, L.; Kraus, C.; Lefeuvre, G.; Maio, A.; Maneira, J.; Mottram, M.; Peeters, S.; Rose, J.; Sinclair, J.; Skensved, P.; Waterfield, J.; White, R.; Wilson, J.; SNO+ Collaboration

    2015-02-01

    A new external LED/fiber light injection calibration system was designed for the calibration and monitoring of the photomultiplier array of the SNO+ experiment at SNOLAB. The goal of the calibration system is to allow an accurate and regular measurement of the photomultiplier array's performance, while minimizing the risk of radioactivity ingress. The choice in SNO+ was to use a set of optical fiber cables to convey into the detector the light pulses produced by external LEDs. The quality control was carried out using a modified test bench that was used in QC of optical fibers for TileCal/ATLAS. The optical fibers were characterized for transmission, timing and angular dispersions. This article describes the setups used for the characterization and quality control of the system based on LEDs and optical fibers and their results.

  20. Laboratory evaluation of Fecker and Loral optical IR PWI systems

    NASA Technical Reports Server (NTRS)

    Gorstein, M.; Hallock, J. N.; Houten, M.; Mcwilliams, I. G.

    1971-01-01

    A previous flight test of two electro-optical pilot warning indicators, using a flashing xenon strobe and silicon detectors as cooperative elements, pointed out several design deficiencies. The present laboratory evaluation program corrected these faults and calibrated the sensitivity of both systems in azimuth elevation and range. The laboratory tests were performed on an optical bench and consisted of three basic components: (1) a xenon strobe lamp whose output is monitored at the indicator detector to give pulse to pulse information on energy content at the receiver; (2) a strobe light attenuating optical system which is calibrated photometrically to provide simulated range; and (3) a positioning table on which the indicator system under study is mounted and which provides spatial location coordinates for all data points. The test results for both systems are tabulated.

  1. Conceptual design of a monitoring system for the Charters of Freedom

    NASA Technical Reports Server (NTRS)

    Cutts, J. A.

    1984-01-01

    A conceptual design of a monitoring system for the Charters of Freedom was developed for the National Archives and Records Service. The monitoring system would be installed at the National Archives and used to document the condition of the Charters as part of a regular inspection program. The results of an experimental measurements program that led to the definition of analysis system requirements are presented, a conceptual design of the monitoring system is described and the alternative approaches to implementing this design were discussed. The monitoring system is required to optically detect and measure deterioration in documents that are permanently encapsulated in glass cases. An electronic imaging system with the capability for precise photometric measurements of the contrast of the script on the documents can perform this task. Two general types of imaging systems are considered (line and area array), and their suitability for performing these required measurements are compared. A digital processing capability for analyzing the electronic imaging data is also required, and several optional levels of complexity for this digital analysis system are evaluated.

  2. Optical polarimetry and photometry of X-ray selected BL Lacertae objects

    NASA Technical Reports Server (NTRS)

    Jannuzi, Buell T.; Smith, Paul S.; Elston, Richard

    1993-01-01

    We present the data from 3 years of monitoring the optical polarization and apparent brightness of 37 X-ray-selected BL Lacertae objects. The monitored objects include a complete sample drawn from the Einstein Extended Medium Sensitivity Survey. We confirm the BL Lac identifications for 15 of these 22 objects. We include descriptions of the objects and samples in our monitoring program and of the existing complete samples of BL Lac objects, highly polarized quasars, optically violent variable quasars, and blazars.

  3. Fiber Optics Deliver Real-Time Structural Monitoring

    NASA Technical Reports Server (NTRS)

    2013-01-01

    To alter the shape of aircraft wings during flight, researchers at Dryden Flight Research Center worked on a fiber optic sensor system with Austin-based 4DSP LLC. The company has since commercialized a new fiber optic system for monitoring applications in health and medicine, oil and gas, and transportation, increasing company revenues by 60 percent.

  4. Monitoring of cerebral hemodynamics and oxygenation by continuous-wave optical spectroscopy during asphyxia in newborn piglets

    NASA Astrophysics Data System (ADS)

    Stankovic, Miljan R.; Fujii, Alan M.; Kirby, Debra; Boas, David A.; Ntziachristos, Vasilis; Stubblefield, Phillip G.

    1997-12-01

    The present study demonstrated that optical variables HbT and SmcO2 can be used to monitor changes in cerebral hemodynamics and oxygenation during asphyxia. Unfortunately none of the individual optical variables alone could be used to monitor changes in cerebral hemodynamics and oxygenation under a variety of possible clinical circumstances. However, all variables together, forming patterns unique to the commonly occurring physiological conditions, might potentially serve as a `silver standard' to aid interpretations of optical signals in clinical settings where `gold standard' techniques are not available, i.g. in the human fetus and neonate.

  5. Monitoring of cerebral hemodynamics and oxygenation by continuous-wave optical spectroscopy during asphyxia in newborn piglets

    NASA Astrophysics Data System (ADS)

    Stankovic, Miljan R.; Fujii, Alan M.; Kirby, Debra; Boas, David A.; Ntziachristos, Vasilis; Stubblefield, Phillip G.

    1998-01-01

    The present study demonstrated that optical variables HbT and SmcO2 can be used to monitor changes in cerebral hemodynamics and oxygenation during asphyxia. Unfortunately none of the individual optical variables alone could be used to monitor changes in cerebral hemodynamics and oxygenation under a variety of possible clinical circumstances. However, all variables together, forming patterns unique to the commonly occurring physiological conditions, might potentially serve as a `silver standard' to aid interpretations of optical signals in clinical settings where `gold standard' techniques are not available, i.g. in the human fetus and neonate.

  6. An In-situ Real-Time Optical Fiber Sensor Based on Surface Plasmon Resonance for Monitoring the Growth of TiO2 Thin Films

    PubMed Central

    Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang

    2013-01-01

    An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings. PMID:23881144

  7. An in-situ real-time optical fiber sensor based on surface plasmon resonance for monitoring the growth of TiO2 thin films.

    PubMed

    Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang

    2013-07-23

    An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings.

  8. Preliminary research on monitoring the durability of concrete subjected to sulfate attack with optical fibre Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yue, Yanfei; Bai, Yun; Basheer, P. A. Muhammed; Boland, John J.; Wang, Jing Jing

    2013-04-01

    Formation of ettringite and gypsum from sulfate attack together with carbonation and chloride ingress have been considered as the most serious deterioration mechanisms of concrete structures. Although Electrical Resistance Sensors and Fibre Optic Chemical Sensors could be used to monitoring the latter two mechanisms in situ, currently there is no system for monitoring the deterioration mechanisms of sulfate attack and hence still needs to be developed. In this paper, a preliminary study was carried out to investigate the feasibility of monitoring the sulfate attack with optical fibre Raman spectroscopy through characterizing the ettringite and gypsum formed in deteriorated cementitious materials under an `optical fibre excitation + spectroscopy objective collection' configuration. Bench-mounted Raman spectroscopy analysis was also used to validate the spectrum obtained from the fibre-objective configuration. The results showed that the expected Raman bands of ettringite and gypsum in the sulfate attacked cement paste have been clearly identified by the optical fibre Raman spectroscopy and are in good agreement with those identified from bench-mounted Raman spectroscopy. Therefore, based on these preliminary results, there is a good potential of developing an optical fibre Raman spectroscopy-based system for monitoring the deterioration mechanisms of concrete subjected to the sulfate attack in the future.

  9. Monitoring of Thermal Protection Systems and MMOD using Robust Self-Organizing Optical Fiber Sensing Networks

    NASA Technical Reports Server (NTRS)

    Richards, Lance

    2014-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, such as those from Micrometeoroid Orbital Debris (MMOD). The approach uses an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during reentry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry.

  10. Optical Monitoring of Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Kar, Aman; Jang-Condell, Hannah; Kasper, David; Findlay, Joseph; Kobulnicky, Henry A.

    2018-06-01

    Observing Young Stellar Objects (YSOs) for variability in different wavelengths enables us to understand the evolution and structure of the protoplanetary disks around stars. The stars observed in this project are known YSOs that show variability in the Infrared. Targets were selected from the Spitzer Space Telescope Young Stellar Object Variability (YSOVAR) Program, which monitored star-forming regions in the mid-infrared. The goal of our project is to investigate any correlation between the variability in the infrared versus the optical. Infrared variability of YSOs is associated with the heating of the protoplanetary disk while accretion signatures are observed in the H-alpha region. We used the University of Wyoming’s Red Buttes Observatory to monitor these stars for signs of accretion using an H-alpha narrowband filter and the Johnson-Cousins filter set, over the Summer of 2017. We perform relative photometry and inspect for an image-to-image variation by observing these targets for a period of four months every two to three nights. The study helps us better understand the link between accretion and H-alpha activity and establish a disk-star connection.

  11. Compact laser transmitter delivering a long-range infrared beam aligned with a monitoring visible beam.

    PubMed

    Lee, Hong-Shik; Kim, Haeng-In; Lee, Sang-Shin

    2012-06-10

    A compact laser transmitter, which takes advantage of an optical subassembly module, was proposed and demonstrated, providing precisely aligned collinear IR and visible beams. The collimated IR beam acts as a long-range projectile for simulated combat, carrying an optical pulsed signal, whereas the visible beam plays the role of tracking the IR beam. The proposed laser transmitter utilizes IR (λ(1)=905 nm) and visible (λ(2)=660 nm) light sources, a fiber-optic collimator, and a beam combiner, which includes a wavelength division multiplexing (WDM) filter in conjunction with optical fiber. The device was built via the laser welding technique and then evaluated by investigating the characteristics of the generated light beams. The IR collimated beam produced had a Gaussian profile and a divergence angle of ~1.3 mrad, and the visible monitoring beam was appropriately collimated to be readily discernible in the vicinity of the transmitter. The two beams were highly aligned within an angle of 0.004 deg as anticipated. Finally, we performed a practical outdoor field test to assess the IR beam with the help of a receiver. An effective trajectory was observed ranging up to 660 m with an overall detectable beam width of ~60 cm.

  12. Optical measurement of medical aerosol media parameters

    NASA Astrophysics Data System (ADS)

    Sharkany, Josif P.; Zhytov, Nikolay B.; Sichka, Mikhail J.; Lemko, Ivan S.; Pintye, Josif L.; Chonka, Yaroslav V.

    2000-07-01

    The problem of aerosol media parameters measurements are presented in the work and these media are used for the treatment of the patients with bronchial asthma moreover we show the results of the development and the concentration and dispersity of the particles for the long-term monitoring under such conditions when the aggressive surroundings are available. The system for concentration measurements is developed, which consists of two identical photometers permitting to carry out the measurements of the transmission changes and the light dispersion depending on the concentration of the particles. The given system permits to take into account the error, connected with the deposition of the salt particles on the optical windows and the mirrors in the course of the long-term monitoring. For the controlling of the dispersity of the aggressive media aerosols the optical system is developed and used for the non-stop analysis of the Fure-spectra of the aerosols which deposit on the lavsan film. The registration of the information is performed with the help of the rule of the photoreceivers or CCD-chamber which are located in the Fure- plane. With the help of the developed optical system the measurements of the concentration and dispersity of the rock-salt aerosols were made in the medical mines of Solotvino (Ukraine) and in the artificial chambers of the aerosol therapy.

  13. Optical sensor based on hybrid FBG/titanium dioxide coated LPFG for monitoring organic solvents in edible oils.

    PubMed

    Coelho, Luís; Viegas, Diana; Santos, José Luís; de Almeida, José Manuel Marques Martins

    2016-01-01

    A hybrid optical sensing scheme based on a fiber Bragg grating (FBG) combined with a titanium dioxide coated long period fiber grating (LPFG) for monitoring organic solvents in high refractive index edible oils is reported. In order to investigate and optimize the sensor performance, two different FBG/LPFG interrogation systems were investigated. The readout of the sensor was implemented using either the wavelength shift of the LPFG resonance dip or the variation in the optical power level of the reflected/transmitted light at the FBG wavelength peak, which in turn depends on the wavelength position of the LPFG resonance. Hexane concentrations up to 20%V/V, corresponding to the refractive index range from 1.451 to 1.467, were considered. For the transmission mode of operation, sensitivities of 1.41 nm/%V/V and 0.11 dB/%V/V, with resolutions of 0.58%V/V and 0.29%V/V, were achieved when using the LPFG wavelength shift and the FBG transmitted optical power, respectively. For the FBG reflection mode of operation, a sensitivity of 0.07 dB/%V/V and a resolution better than 0.16%V/V were estimated. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Thermal Characterization of a Simulated Fission Engine via Distributed Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Duncan, Roger G.; Fielder, Robert S.; Seeley, Ryan J.; Kozikowski, Carrie L.; Raum, Matthew T.

    2005-02-01

    We report the use of distributed fiber Bragg gratings to monitor thermal conditions within a simulated nuclear reactor core located at the Early Flight Fission Test Facility of the NASA Marshall Space Flight Center. Distributed fiber-optic temperature measurements promise to add significant capability and advance the state-of-the-art in high-temperature sensing. For the work reported herein, seven probes were constructed with ten sensors each for a total of 70 sensor locations throughout the core. These discrete temperature sensors were monitored over a nine hour period while the test article was heated to over 700 °C and cooled to ambient through two operational cycles. The sensor density available permits a significantly elevated understanding of thermal effects within the simulated reactor. Fiber-optic sensor performance is shown to compare very favorably with co-located thermocouples where such co-location was feasible.

  15. A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor.

    PubMed

    Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Chen, Rong

    2014-04-15

    A new simple fiber-optic evanescent wave sensor was created to accurately monitor the growth and hydrogen production performance of biofilms. The proposed sensor consists of two probes (i.e., a sensor and reference probe), using the etched fibers with an appropriate surface roughness to improve its sensitivity. The sensor probe measures the biofilm growth and change of liquid-phase concentration inside the biofilm. The reference probe is coated with a hydrophilic polytetrafluoroethylene membrane to separate the liquids from photosynthetic bacteria Rhodopseudomonas palustris CQK 01 and to measure the liquid concentration. We also developed a model to demonstrate the accuracy of the measurement. The biofilm measurement was calibrated using an Olympus microscope. A linear relationship was obtained for the biofilm thickness range from 0 to 120 μm with a synthetic medium under continuous supply to the bioreactor. The highest level of hydrogen production rate occurred at a thickness of 115 μm.

  16. Fiber sensors for control and health monitoring system for mining machinery

    NASA Astrophysics Data System (ADS)

    Claus, Richard O.; Gunther, Michael F.; Greene, Jonathan A.; Tran, Tuan A.; Murphy, Kent A.

    1994-05-01

    This paper describes initial results of a fiber optic-based sensor during on-site testing performed by FEORC and Fiber and Sensor Technologies at Ingersol-Rand. Advantages of the fiber optic sensor are a demonstrated enhanced survivability, higher sensitivity, smaller size, electromagnetic interference immunity, and reduced risk of explosion. The conventional wire strain gages typically survive only a few minutes attached to the drill steel and drive chain, while the fiber sensors described here have survived over 400 hours and are currently still functioning properly. The tests described include the demonstration of strain energy measurements on the drive chain and drill steel, and displacement measurements of the piston within the drifter. All of the sensors tested can be used as both a laboratory evaluation and testing tools, as well as being an integral part of a proposed control and health monitoring system.

  17. Long-range distributed optical fiber hot-wire anemometer based on chirped-pulse ΦOTDR.

    PubMed

    Garcia-Ruiz, Andres; Dominguez-Lopez, Alejandro; Pastor-Graells, Juan; Martins, Hugo F; Martin-Lopez, Sonia; Gonzalez-Herraez, Miguel

    2018-01-08

    We demonstrate a technique allowing to develop a fully distributed optical fiber hot-wire anemometer capable of reaching a wind speed uncertainty of ≈ ±0.15m/s (±0.54km/h) at only 60 mW/m of dissipated power in the sensing fiber, and within only four minutes of measurement time. This corresponds to similar uncertainty values than previous papers on distributed optical fiber anemometry but requires two orders of magnitude smaller dissipated power and covers at least one order of magnitude longer distance. This breakthrough is possible thanks to the extreme temperature sensitivity and single-shot performance of chirped-pulse phase-sensitive optical time domain reflectometry (ΦOTDR), together with the availability of metal-coated fibers. To achieve these results, a modulated current is fed through the metal coating of the fiber, causing a modulated temperature variation of the fiber core due to Joule effect. The amplitude of this temperature modulation is strongly dependent on the wind speed at which the fiber is subject. Continuous monitoring of the temperature modulation along the fiber allows to determine the wind speed with singular low power injection requirements. Moreover, this procedure makes the system immune to temperature drifts of the fiber, potentially allowing for a simple field deployment. Being a much less power-hungry scheme, this method also allows for monitoring over much longer distances, in the orders of 10s of km. We expect that this system can have application in dynamic line rating and lateral wind monitoring in railway catenary wires.

  18. Laser metrology in food-related systems

    NASA Astrophysics Data System (ADS)

    Mendoza-Sanchez, Patricia; Lopez, Daniel; Kongraksawech, Teepakorn; Vazquez, Pedro; Torres, J. Antonio; Ramirez, Jose A.; Huerta-Ruelas, Jorge

    2005-02-01

    An optical system was developed using a low-cost semiconductor laser and commercial optical and electronic components, to monitor food processes by measuring changes in optical rotation (OR) of chiral compounds. The OR signal as a function of processing time and sample temperature were collected and recorded using a computer data acquisition system. System has been tested during two different processes: sugar-protein interaction and, beer fermentation process. To study sugar-protein interaction, the following sugars were used: sorbitol, trehalose and sucrose, and in the place of Protein, Serum Albumin Bovine (BSA, A-7906 Sigma-Aldrich). In some food processes, different sugars are added to protect damage of proteins during their processing, storage and/or distribution. Different sugar/protein solutions were prepared and heated above critical temperature of protein denaturation. OR measurements were performed during heating process and effect of different sugars in protein denaturation was measured. Higher sensitivity of these measurements was found compared with Differential Scanning Calorimetry, which needs higher protein concentration to study these interactions. The brewing fermentation process was monitored in-situ using this OR system and validated by correlation with specific density measurements and gas chromatography. This instrument can be implemented to monitor fermentation on-line, thereby determining end of process and optimizing process conditions in an industrial setting. The high sensitivity of developed OR system has no mobile parts and is more flexible than commercial polarimeters providing the capability of implementation in harsh environments, signifying the potential of this method as an in-line technique for quality control in food processing and for experimentation with optically active solutions.

  19. Fiber optic systems for colorimetry and scattered colorimetry

    NASA Astrophysics Data System (ADS)

    Mignani, Anna G.; Mencaglia, Andrea A.; Ciaccheri, Leonardo

    2005-09-01

    An innovative series of optical fiber sensors based on spectroscopic interrogation is presented. The sensors are custom-designed for a wide range of applications, including gasoline colorimetry, chromium monitoring of sewage, museum lighting control, for use with a platform for interrogating an array of absorption-based chemical sensors, as well as for color and turbidity measurements. Two types of custom-design instrumentation have been developed, both making use of LED light sources and a low-cost optical fiber spectrometer to perform broadband spectral measurements in the visible spectral range. The first was designed especially to address color-based sensors, while the second assessed the combined color and turbidity of edible liquids such as olive oil. Both are potentially exploitable in other industrial and environmental applications.

  20. Optical Design for a Survey X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2014-01-01

    Optical design trades are underway at the Goddard Space Flight Center to define a telescope for an x-ray survey mission. Top-level science objectives of the mission include the study of x-ray transients, surveying and long-term monitoring of compact objects in nearby galaxies, as well as both deep and wide-field x-ray surveys. In this paper we consider Wolter, Wolter-Schwarzschild, and modified Wolter-Schwarzschild telescope designs as basic building blocks for the tightly nested survey telescope. Design principles and dominating aberrations of individual telescopes and nested telescopes are discussed and we compare the off-axis optical performance at 1.0 KeV and 4.0 KeV across a 1.0-degree full field-of-view.

  1. Little bits of diamond: Optically detected magnetic resonance of nitrogen-vacancy centers

    NASA Astrophysics Data System (ADS)

    Zhang, Haimei; Belvin, Carina; Li, Wanyi; Wang, Jennifer; Wainwright, Julia; Berg, Robbie; Bridger, Joshua

    2018-03-01

    We give instructions for the construction and operation of a simple apparatus for performing optically detected magnetic resonance measurements on diamond samples containing high concentrations of nitrogen-vacancy (NV) centers. Each NV center has a spin degree of freedom that can be manipulated and monitored by a combination of visible and microwave radiation. We observe Zeeman shifts in the presence of small external magnetic fields and describe a simple method to optically measure magnetic field strengths with a spatial resolution of several microns. The activities described are suitable for use in an advanced undergraduate lab course, powerfully connecting core quantum concepts to cutting edge applications. An even simpler setup, appropriate for use in more introductory settings, is also presented.

  2. Integration of Optical Coherence Tomography Scan Patterns to Augment Clinical Data Suite

    NASA Technical Reports Server (NTRS)

    Mason, S.; Patel, N.; Van Baalen, M.; Tarver, W.; Otto, C.; Samuels, B.; Koslovsky, M.; Schaefer, C.; Taiym, W.; Wear, M.; hide

    2018-01-01

    Vision changes identified in long duration spaceflight astronauts has led Space Medicine at NASA to adopt a more comprehensive clinical monitoring protocol. Optical Coherence Tomography (OCT) was recently implemented at NASA, including on board the International Space Station in 2013. NASA is collaborating with Heidelberg Engineering to increase the fidelity of the current OCT data set by integrating the traditional circumpapillary OCT image with radial and horizontal block images at the optic nerve head. The retinal nerve fiber layer was segmented by two experienced individuals. Intra-rater (N=4 subjects and 70 images) and inter-rater (N=4 subjects and 221 images) agreement was performed. The results of this analysis and the potential benefits will be presented.

  3. Geomembrane barriers using integral fiber optics to monitor barrier integrity

    DOEpatents

    Staller, G.E.; Wemple, R.P.

    1996-10-22

    This invention provides a geomembrane or geotextile with embedded optical sensors that are used to monitor the status of containment site barriers. Fiber optic strands are used to form the sensors that can detect and monitor conditions at the sites such as breaches, slope creep, subsidence, leachate levels, fires, and types of materials present or leaking from the site. The strands are integral to the membrane or textile materials. The geosynthetic membrane is deployed at the site in a fashion similar to carpet laying. Edges of the membrane or textile are joined to form a liner and the ends of the membrane or textile become the connection zones for obtaining signals from the sensors. A connection interface with a control system to generate Optical Time Delay Response or other light signals for transmission to the optic fiber strands or sensors and also to receive reflected signals from the sensors is included in the system. Software to interpret the sensor signals can be used in the geosynthetic monitoring system. 6 figs.

  4. Monitoring system of hydraulic lifting device based on the fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Fajkus, Marcel; Nedoma, Jan; Novak, Martin; Martinek, Radek; Vanus, Jan; Mec, Pavel; Vasinek, Vladimir

    2017-10-01

    This article deals with the description of the monitoring system of hydraulic lifting device based on the fiber-optic sensors. For minimize the financial costs of the proposed monitoring system, the power evaluation of measured signal has been chosen. The solution is based on an evaluation of the signal obtained using the single point optic fiber sensors with overlapping reflective spectra. For encapsulation of the sensors was used polydimethylsiloxane (PDMS) polymer. To obtain a information of loading is uses the action of deformation of the lifting device on the pair single point optic fiber sensors mounted on the lifting device of the tested car. According to the proposed algorithm is determined information of pressure with an accuracy of +/- 5 %. Verification of the proposed system was realized on the various types of the tested car with different loading. The original contribution of the paper is to verify the new low-cost system for monitoring the hydraulic lifting device based on the fiber-optic sensors.

  5. Geomembrane barriers using integral fiber optics to monitor barrier integrity

    DOEpatents

    Staller, George E.; Wemple, Robert P.

    1996-01-01

    This invention provides a geomembrane or geotextile with embedded optical sensors that are used to monitor the status of containment site barriers. Fiber optic strands are used to form the sensors that can detect and monitor conditions at the sites such as breaches, slope creep, subsidence, leachate levels, fires, and types of materials present or leaking from the site. The strands are integral to the membrane or textile materials. The geosythetic membrane is deployed at the site in a fashion similar to carpet laying. Edges of the membrane or textile are joined to form a liner and the ends of the membrane or textile become the connection zones for obtaining signals from the sensors. A connection interface with a control system to generate Optical Time Delay Response or other light signals for transmission to the optic fiber strands or sensors and also to receive reflected signals from the sensors is included in the system. Software to interpret the sensor signals can be used in the geosythetic monitoring system.

  6. Measuring Optical Component Radiation Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenzl, Derek; Tesarek, Richard

    2017-08-01

    Scintillator based detectors are used to monitor beam losses in the Fermilab accelerator complex. These detectors are approximately 500 times faster than traditional ionization chamber loss monitors and can see beam losses 20 nanoseconds apart. These fast loss monitors are used in areas of the accelerator known to be sources of heavy beam loss and as such, are exposed to high doses of radiation. Over time, radiation exposure reduces the ability of optical components to transmit light by darkening the material. The most dramatic effects are seen in the optical cement and light guide materials comprising the detector. We exploremore » this darkening effect by measuring the transmittance spectra of the detector materials for varying irradiation exposures. Presented here, are the optical transmittance spectra for a variety of radiation exposures and optical materials. The data has revealed an epoxy which withstands exposure far better than traditional optical cements.« less

  7. OMCat: Catalogue of Serendipitous Sources Detected with the XMM-Newton Optical Monitor

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Harrus, Ilana; McGlynn, Thomas A.; Mushotsky, Richard F.; Snowden, Steven L.

    2007-01-01

    The Optical Monitor Catalogue of serendipitous sources (OMCat) contains entries for every source detected in the publically available XMM-Newton Optical Monitor (OM) images taken in either the imaging or "fast" modes. Since the OM records data simultaneously with the X-ray telescopes on XMM-Newton, it typically produces images in one or more near-UV/optical bands for every pointing of the observatory. As of the beginning of 2006, the public archive had covered roughly 0.5% of the sky in 2950 fields. The OMCat is not dominated by sources previously undetected at other wavelengths; the bulk of objects have optical counterparts. However, the OMCat can be used to extend optical or X-ray spectral energy distributions for known objects into the ultraviolet, to study at higher angular resolution objects detected with GALEX, or to find high-Galactic-latitude objects of interest for UV spectroscopy.

  8. A Distributed Fiber Optic Sensor Network for Online 3-D Temperature and Neutron Fluence Mapping in a VHTR Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsvetkov, Pavel; Dickerson, Bryan; French, Joseph

    2014-04-30

    Robust sensing technologies allowing for 3D in-core performance monitoring in real time are of paramount importance for already established LWRs to enhance their reliability and availability per year, and therefore, to further facilitate their economic competitiveness via predictive assessment of the in-core conditions.

  9. Gold Nanoparticle Labels Amplify Ellipsometric Signals

    NASA Technical Reports Server (NTRS)

    Venkatasubbarao, Srivatsa

    2008-01-01

    The ellipsometric method reported in the immediately preceding article was developed in conjunction with a method of using gold nanoparticles as labels on biomolecules that one seeks to detect. The purpose of the labeling is to exploit the optical properties of the gold nanoparticles in order to amplify the measurable ellipsometric effects and thereby to enable ultrasensitive detection of the labeled biomolecules without need to develop more-complex ellipsometric instrumentation. The colorimetric, polarization, light-scattering, and other optical properties of nanoparticles depend on their sizes and shapes. In the present method, these size-and-shape-dependent properties are used to magnify the polarization of scattered light and the diattenuation and retardance of signals derived from ellipsometry. The size-and-shape-dependent optical properties of the nanoparticles make it possible to interrogate the nanoparticles by use of light of various wavelengths, as appropriate, to optimally detect particles of a specific type at high sensitivity. Hence, by incorporating gold nanoparticles bound to biomolecules as primary or secondary labels, the performance of ellipsometry as a means of detecting the biomolecules can be improved. The use of gold nanoparticles as labels in ellipsometry has been found to afford sensitivity that equals or exceeds the sensitivity achieved by use of fluorescence-based methods. Potential applications for ellipsometric detection of gold nanoparticle-labeled biomolecules include monitoring molecules of interest in biological samples, in-vitro diagnostics, process monitoring, general environmental monitoring, and detection of biohazards.

  10. Comparative testing of pulse oximeter probes.

    PubMed

    van Oostrom, Johannes H; Melker, Richard J

    2004-05-01

    The testing of pulse oximeter probes is generally limited to the integrity of the electrical circuit and does not include the optical properties of the probes. Few pulse oximeter testers evaluate the accuracy of both the monitor and the probe. We designed a study to compare the accuracy of nonproprietary probes (OSS Medical) designed for use with Nellcor, Datex-Ohmeda, and Criticare pulse oximeter monitors with that of their corresponding proprietary probes by using a commercial off-the-shelf pulse oximeter tester (Index). The Index pulse oximeter tester does include testing of the optical properties of the pulse oximeter probes. The pulse oximeter tester was given a controlled input that simulated acute apnea. Desaturation curves were automatically recorded from the pulse oximeter monitors with a data-collection computer. Comparisons between equivalent proprietary and nonproprietary probes were performed. Data were analyzed by using univariate and multivariate general linear model analysis. Five OSS Medical probe models were statistically better than the equivalent proprietary probes. The remainder of the probes were statistically similar. Comparative and simulation studies can have significant advantages over human studies because they are cost-effective, evaluate equipment in a clinically relevant scenario, and pose no risk to patients, but they are limited by the realism of the simulation. We studied the performance of pulse oximeter probes in a simulated environment. Our results show significant differences between some probes that affect the accuracy of measurement.

  11. Optically Generated 2-Dimensional Photonic Cluster State from Coupled Quantum Dots

    DTIC Science & Technology

    2010-03-12

    coupled quantum dots 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Research Laboratory,,Washington,DC,20375 8. PERFORMING ORGANIZATION REPORT NUMBER...9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) 11. SPONSOR/MONITOR’S REPORT NUMBER( S ) 12. DISTRIBUTION

  12. Optical monitoring of scoliosis by 3D medical laser scanner

    NASA Astrophysics Data System (ADS)

    Rodríguez-Quiñonez, Julio C.; Sergiyenko, Oleg Yu.; Preciado, Luis C. Basaca; Tyrsa, Vera V.; Gurko, Alexander G.; Podrygalo, Mikhail A.; Lopez, Moises Rivas; Balbuena, Daniel Hernandez

    2014-03-01

    Three dimensional recording of the human body surface or anatomical areas have gained importance in many medical applications. In this paper, our 3D Medical Laser Scanner is presented. It is based on the novel principle of dynamic triangulation. We analyze the method of operation, medical applications, orthopedically diseases as Scoliosis and the most common types of skin to employ the system the most proper way. It is analyzed a group of medical problems related to the application of optical scanning in optimal way. Finally, experiments are conducted to verify the performance of the proposed system and its method uncertainty.

  13. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure

    PubMed Central

    Tang, Yongsheng; Wu, Zhishen

    2016-01-01

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures. PMID:26927110

  14. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure.

    PubMed

    Tang, Yongsheng; Wu, Zhishen

    2016-02-25

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures.

  15. Monitoring the Damage State of Fiber Reinforced Composites Using an FBG Network for Failure Prediction.

    PubMed

    Kocaman, Esat Selim; Akay, Erdem; Yilmaz, Cagatay; Turkmen, Halit Suleyman; Misirlioglu, Ibrahim Burc; Suleman, Afzal; Yildiz, Mehmet

    2017-01-03

    A structural health monitoring (SHM) study of biaxial glass fibre-reinforced epoxy matrix composites under a constant, high strain uniaxial fatigue loading is performed using fibre Bragg grating (FBG) optical sensors embedded in composites at various locations to monitor the evolution of local strains, thereby understanding the damage mechanisms. Concurrently, the temperature changes of the samples during the fatigue test have also been monitored at the same locations. Close to fracture, significant variations in local temperatures and strains are observed, and it is shown that the variations in temperature and strain can be used to predict imminent fracture. It is noted that the latter information cannot be obtained using external strain gages, which underlines the importance of the tracking of local strains internally.

  16. Monitoring the Damage State of Fiber Reinforced Composites Using an FBG Network for Failure Prediction

    PubMed Central

    Kocaman, Esat Selim; Akay, Erdem; Yilmaz, Cagatay; Turkmen, Halit Suleyman; Misirlioglu, Ibrahim Burc; Suleman, Afzal; Yildiz, Mehmet

    2017-01-01

    A structural health monitoring (SHM) study of biaxial glass fibre-reinforced epoxy matrix composites under a constant, high strain uniaxial fatigue loading is performed using fibre Bragg grating (FBG) optical sensors embedded in composites at various locations to monitor the evolution of local strains, thereby understanding the damage mechanisms. Concurrently, the temperature changes of the samples during the fatigue test have also been monitored at the same locations. Close to fracture, significant variations in local temperatures and strains are observed, and it is shown that the variations in temperature and strain can be used to predict imminent fracture. It is noted that the latter information cannot be obtained using external strain gages, which underlines the importance of the tracking of local strains internally. PMID:28772393

  17. Plasma process control with optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, P. P.

    Plasma processes for cleaning, etching and desmear of electronic components and printed wiring boards (PWB) are difficult to predict and control. Non-uniformity of most plasma processes and sensitivity to environmental changes make it difficult to maintain process stability from day to day. To assure plasma process performance, weight loss coupons or post-plasma destructive testing must be used. The problem with these techniques is that they are not real-time methods and do not allow for immediate diagnosis and process correction. These methods often require scrapping some fraction of a batch to insure the integrity of the rest. Since these methods verify a successful cycle with post-plasma diagnostics, poor test results often determine that a batch is substandard and the resulting parts unusable. Both of these methods are a costly part of the overall fabrication cost. A more efficient method of testing would allow for constant monitoring of plasma conditions and process control. Process failures should be detected before the parts being treated. are damaged. Real time monitoring would allow for instantaneous corrections. Multiple site monitoring would allow for process mapping within one system or simultaneous monitoring of multiple systems. Optical emission spectroscopy conducted external to the plasma apparatus would allow for this sort of multifunctional analysis without perturbing the glow discharge. In this paper, optical emission spectroscopy for non-intrusive, in situ process control will be explored. A discussion of this technique as it applies towards process control, failure analysis and endpoint determination will be conducted. Methods for identifying process failures, progress and end of etch back and desmear processes will be discussed.

  18. Ion-selective optical sensor for continuous on-line monitoring of dialysate sodium during dialysis

    NASA Astrophysics Data System (ADS)

    Sharma, Manoj K.; Frijns, Arjan J. H.; Mandamparambil, Rajesh; Kooman, Jeroen P.; Smeulders, David M. J.

    2017-02-01

    Patients with end stage renal disease are dependent on dialysis. In most outpatient centers, the dialysate is prepared with a fixed electrolyte concentration without taking into account the inter-individual differences of essential electrolytes (sodium, potassium and calcium). This one-size fits all approach can lead to acute and chronic cardiovascular complications in dialysis patients. On-line monitoring of these essential electrolytes is an important physiological step towards patient specific dialysate leading to individualized treatment. Currently, changes in electrolyte concentrations are indirectly measured by conductivity measurements, which are not ion- specific. In this paper, we present a novel optical sensor for on-line monitoring of sodium concentrations in dialysate. This sensor is ion-specific and can detect up to a single ion. The working principle is based on the selective fluorescence quenching of photo-induced electron transfer (PET) molecules. The PET molecules when complexed with sodium ions start fluorescing upon laser excitation. The emission intensity is directly correlated to the sodium concentration. To prove the working principle, a micro-optofluidic device has been fabricated in polydimethylsiloxane (PDMS) with integrated optical fibers for fluorescence light collection. The PET molecules are covalently grafted in the PDMS microchannel for continuous monitoring of the sodium dialysate concentrations. The experimental setup consists of a laser module (λ=450nm) operating at 4.5mW, a syringe pump to precisely control the sample flow and a spectrometer for fluorescence collection. The performance of the sensor has been evaluated for sodium ions ranging from 0-50mM. A clear signal and good response time was observed.

  19. Transcranial diffuse optical monitoring of microvascular cerebral hemodynamics after thrombolysis in ischemic stroke

    NASA Astrophysics Data System (ADS)

    Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut

    2014-01-01

    The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.

  20. Transcranial diffuse optical monitoring of microvascular cerebral hemodynamics after thrombolysis in ischemic stroke.

    PubMed

    Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut

    2014-01-01

    The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.

  1. Simultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer

    NASA Technical Reports Server (NTRS)

    Defrere, D.; Hinz, P.; Downey, E.; Boehm, M.; Danchi, W. C.; Durney, O.; Ertel, S.; Hill, J. M.; Hoffmann, W. F.; Mennesson, B.; hide

    2016-01-01

    The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feed forward approach to stabilize the path length fluctuations seen by the LBTI nuller uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feed forward approach to stabilize the path length fluctuations seen by the LBTI nuller.

  2. Fiber-Optic Distribution Of Pulsed Power To Multiple Sensors

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    1996-01-01

    Optoelectronic systems designed according to time-sharing scheme distribute optical power to multiple integrated-circuit-based sensors in fiber-optic networks. Networks combine flexibility of electronic sensing circuits with advantage of electrical isolation afforded by use of optical fibers instead of electrical conductors to transmit both signals and power. Fiber optics resist corrosion and immune to electromagnetic interference. Sensor networks of this type useful in variety of applications; for example, in monitoring strains in aircraft, buildings, and bridges, and in monitoring and controlling shapes of flexible structures.

  3. Optical coherence tomography technique for noninvasive blood glucose monitoring: phantom, animal, and human studies

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Ashitkov, Taras V.; Larina, Irina V.; Petrova, Irina Y.; Eledrisi, Mohsen S.; Motamedi, Massoud; Esenaliev, Rinat O.

    2002-06-01

    Continuous noninvasive monitoring of blood glucose concentration can improve management of Diabetes Mellitus, reduce mortality, and considerably improve quality of life of diabetic patients. Recently, we proposed to use the OCT technique for noninvasive glucose monitoring. In this paper, we tested noninvasive blood glucose monitoring with the OCT technique in phantoms, animals, and human subjects. An OCT system with the wavelength of 1300 nm was used in our experiments. Phantom studies performed on aqueous suspensions of polystyrene microspheres and milk showed 3.2% decrease of exponential slope of OCT signals when glucose concentration increased from 0 to 100 mM. Theoretical calculations based on the Mie theory of scattering support the results obtained in phantoms. Bolus glucose injections and glucose clamping experiments were performed in animals (New Zealand rabbits and Yucatan micropigs). Good correlation between changes in the OCT signal slope and actual blood glucose concentration were observed in these experiments. First studies were performed in healthy human subjects (using oral glucose tolerance tests). Dependence of the slope of the OCT signals on the actual blood glucose concentration was similar to that obtained in animal studies. Our studies suggest that the OCT technique can potentially be used for noninvasive blood glucose monitoring.

  4. Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes

    NASA Astrophysics Data System (ADS)

    Vieweg, N.; Krumbholz, N.; Hasek, T.; Wilk, R.; Bartels, V.; Keseberg, C.; Pethukhov, V.; Mikulics, M.; Wetenkamp, L.; Koch, M.

    2007-06-01

    We present a compact, robust, and transportable fiber-coupled THz system for inline monitoring of polymeric compounding processes in an industrial environment. The system is built on a 90cm x 90cm large shock absorbing optical bench. A sealed metal box protects the system against dust and mechanical disturbances. A closed loop controller unit is used to ensure optimum coupling of the laser beam into the fiber. In order to build efficient and stable fiber-coupled antennas we glue the fibers directly onto photoconductive switches. Thus, the antenna performance is very stable and it is secured from dust or misalignment by vibrations. We discuss fabrication details and antenna performance. First spectroscopic data obtained with this system is presented.

  5. AE Monitoring of Diamond Turned Rapidly Soldified Aluminium 443

    NASA Astrophysics Data System (ADS)

    Onwuka, G.; Abou-El-Hossein, K.; Mkoko, Z.

    2017-05-01

    The fast replacement of conventional aluminium with rapidly solidified aluminium alloys has become a noticeable trend in the current manufacturing industries involved in the production of optics and optical molding inserts. This is as a result of the improved performance and durability of rapidly solidified aluminium alloys when compared to conventional aluminium. Melt spinning process is vital for manufacturing rapidly solidified aluminium alloys like RSA 905, RSA 6061 and RSA 443 which are common in the industries today. RSA 443 is a newly developed alloy with few research findings and huge research potential. There is no available literature focused on monitoring the machining of RSA 443 alloys. In this research, Acoustic Emission sensing technique was applied to monitor the single point diamond turning of RSA 443 on an ultrahigh precision lathe machine. The machining process was carried out after careful selection of feed, speed and depths of cut. The monitoring process was achieved with a high sampling data acquisition system using different tools while concurrent measurement of the surface roughness and tool wear were initiated after covering a total feed distance of 13km. An increasing trend of raw AE spikes and peak to peak signal were observed with an increase in the surface roughness and tool wear values. Hence, acoustic emission sensing technique proves to be an effective monitoring method for the machining of RSA 443 alloy.

  6. In vivo swine myocardial tissue characterization and monitoring during open chest surgery by time-resolved diffuse near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Spinelli, Lorenzo; Contini, Davide; Farina, Andrea; Torricelli, Alessandro; Pifferi, Antonio; Cubeddu, Rinaldo; Ascari, Luca; Potì, Luca; Trivella, Maria Giovanna; L'Abbate, Antonio; Puzzuoli, Stefano

    2011-03-01

    Cardiovascular diseases are the main cause of death in industrialized countries. Worldwide, a large number of patients suffering from cardiac diseases are treated by surgery. Despite the advances achieved in the last decades with myocardial protection, surgical failure can still occur. This is due at least in part to the imperfect control of the metabolic status of the heart in the various phases of surgical intervention. At present, this is indirectly controlled by the electrocardiogram and the echographic monitoring of cardiac mechanics as direct measurements are lacking. Diffuse optical technologies have recently emerged as promising tools for the characterization of biological tissues like breast, muscles and bone, and for the monitoring of important metabolic parameters such as blood oxygenation, volume and flow. As a matter of fact, their utility has been demonstrated in a variety of applications for functional imaging of the brain, optical mammography and monitoring of muscle metabolism. However, due to technological and practical difficulties, their potential for cardiac monitoring has not yet been exploited. In this work we show the feasibility of the in-vivo determination of absorption and scattering spectra of the cardiac muscle in the 600-1100 nm range, and of monitoring myocardial tissue hemodynamics by time domain near-infrared spectroscopy at 690 nm and 830 nm. Both measurements have been performed on the exposed beating heart during open chest surgery in pigs, an experimental model closely mimicking the clinical cardio-surgical setting.

  7. Real-time monitoring implementation in a remote-pumped WDM PON

    NASA Astrophysics Data System (ADS)

    Liaw, S.-K.; Hong, K.-L.; Shei, Y.-S.

    2008-08-01

    We report on an improved configuration to monitor a passive optical network with high quality in service. This proposed system comprises fiber-Bragg gratings, a 1 × 4 optical switch, and an optical time-domain reflectometry to diagnose the broken point in real time. It could simultaneously detect multioptical network units in a WDM PON. The remote-pump integrated residual pumping reused function is implemented. Broken points in different optical paths can be detected simultaneously even when the distances to the central office are identical. The bit-error rate testing is verified with a small power penalty, making it an ideal solution for the real-time monitoring in a WDM PON.

  8. A review of fiber-optic corrosion sensor in civil engineering

    NASA Astrophysics Data System (ADS)

    Luo, Dong; Li, Junnan; Li, Yuanyuan

    2018-05-01

    Fiber-optical corrosion sensor (FOCS) is the research hotspot of corrosion monitoring sensor in recent years. It has the advantages of lightness, simplicity, anti-electromagnetic interference and distributed measurement, so it has an attractive application prospect. In this paper, the mechanism of metal corrosion is introduced. Several common methods for detecting optical fiber corrosion sensors are presented, and the latest progress of optical fiber corrosion sensors in recent years is described. We need to design a set of sensor devices that can directly monitor the corrosion of reinforcing steel bars directly, and propose a method of time dependent reliability assessment based on monitoring data, so as to form a complete research path.

  9. A rapid and practical technique for real-time monitoring of biomolecular interactions using mechanical responses of macromolecules

    NASA Astrophysics Data System (ADS)

    Tarhan, Mehmet C.; Lafitte, Nicolas; Tauran, Yannick; Jalabert, Laurent; Kumemura, Momoko; Perret, Grégoire; Kim, Beomjoon; Coleman, Anthony W.; Fujita, Hiroyuki; Collard, Dominique

    2016-06-01

    Monitoring biological reactions using the mechanical response of macromolecules is an alternative approach to immunoassays for providing real-time information about the underlying molecular mechanisms. Although force spectroscopy techniques, e.g. AFM and optical tweezers, perform precise molecular measurements at the single molecule level, sophisticated operation prevent their intensive use for systematic biosensing. Exploiting the biomechanical assay concept, we used micro-electro mechanical systems (MEMS) to develop a rapid platform for monitoring bio/chemical interactions of bio macromolecules, e.g. DNA, using their mechanical properties. The MEMS device provided real-time monitoring of reaction dynamics without any surface or molecular modifications. A microfluidic device with a side opening was fabricated for the optimal performance of the MEMS device to operate at the air-liquid interface for performing bioassays in liquid while actuating/sensing in air. The minimal immersion of the MEMS device in the channel provided long-term measurement stability (>10 h). Importantly, the method allowed monitoring effects of multiple solutions on the same macromolecule bundle (demonstrated with DNA bundles) without compromising the reproducibility. We monitored two different types of effects on the mechanical responses of DNA bundles (stiffness and viscous losses) exposed to pH changes (2.1 to 4.8) and different Ag+ concentrations (1 μM to 0.1 M).

  10. Optical fiber network sensor system for monitoring methane concentration

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-wei; Zhang, Ji-long

    2011-08-01

    With regard to the high accuracy optic-fiber sensor for monitoring methane concentration, the choice of light source depends on methane peak values. Besides, the environment of mine should be considered, that is to say other gas should be considered, such as vapor, CO and CO2 etc, without absorbent spectrum in the decided wavelength. It has been reported that vapor, CO and CO2 have no obvious absorption in 0.85μm, 1.3μm and 1.66μm area, CH4 has no obvious absorption in 0.85μm area. So diode laser with 1.3μm or 1.66μm peak wavelength is chosen as the optic-fiber sensor's light source for detecting methane concentration. On the basis of the principle of optic absorption varied with methane concentration at its characteristic absorbent wavelength, the advantage of optic-fiber sensor technology and the circumstance characteristic of the coal mine. An optic-fiber sensor system is presented for monitoring methane concentration. Space Division Multiple Access Technology (SDMAT) and long optical path absorbent pool technology are combined in the study. Considering the circumstance characteristic of the coal mine, the optic-fiber network sensors for detecting methane concentration from mix gas of vapor, CO, CH4 and CO2 are used. It introduces the principle of an optic-fiber sensor system for monitoring methane concentration in coal mine. It contains the structure block diagram of monitoring system, the system is mainly made up of diode laser for monitoring methane concentration, Y-shaped photo-coupler with coupled rate 50:50, optical switch 1×2, gas absorbent cell, the computer data process and control system and photoelectric transformer. In this study, in order to decrease to the influence of the dark-current of photodiode, intensity in light sources and temperature drifts of processing circuit on the system accuracy in measurement, a beam of light is broken down into two beams in the coupler of Y-shaped coupler, the one acts as the reference optical path, the other is known as the sensing optical path. The experimental result shows that diode laser with 1654.141nm in wavelength is taken as the optic source for detecting methane concentration, the detective limit of the sensor is below 4.274mg/m3 when the optical path of absorbent pool is 20 centimeters, and the prevision and stability could satisfy practical application. The whole instrument can also reach on-line measurement with multiple points on different spot.

  11. Applications for fiber optic sensing in the upstream oil and gas industry

    NASA Astrophysics Data System (ADS)

    Baldwin, Chris S.

    2015-05-01

    Fiber optic sensing has been used in an increasing number of applications in the upstream oil and gas industry over the past 20 years. In some cases, fiber optic sensing is providing measurements where traditional measurement technologies could not. This paper will provide a general overview of these applications and describe how the use of fiber optic sensing is enabling these applications. Technologies such as Bragg gratings, distributed temperature and acoustic sensing, interferometric sensing, and Brillouin scattering will be discussed. Applications for optic sensing include a range of possibilities from a single pressure measurement point in the wellbore to multizone pressure and flow monitoring. Some applications make use of fully distributed measurements including thermal profiling of the well. Outside of the wellbore, fiber optic sensors are used in applications for flowline and pipeline monitoring and for riser integrity monitoring. Applications to be described in this paper include in-flow profiling, well integrity, production monitoring, and steam chamber growth. These applications will cover well types such as injectors, producers, hydraulic fracturing, and thermal recovery. Many of these applications use the measurements provided by fiber optic sensing to improve enhanced oil recovery operations. The growing use of fiber optic sensors is providing improved measurement capabilities leading to the generation of actionable data for enhanced production optimization. This not only increases the recovered amount of production fluids but can also enhance wellbore integrity and safety.

  12. Cortical visual evoked potentials recorded after optic tract near field stimulation during GPi-DBS in non-cooperative patients.

    PubMed

    Landi, Andrea; Pirillo, David; Cilia, Roberto; Antonini, Angelo; Sganzerla, Erik P

    2011-02-01

    Neurophysiologic monitoring during deep brain stimulation (DBS) interventions in the globus pallidus internum (Gpi) for the treatment of Parkinson's disease or primary dystonia is generally based upon microelectrode recordings (MER); moreover, MER request sophisticated technology and high level trained personnel for a reliable monitoring. Recordings of cortical visual evoked potentials (CVEPs) obtained after stimulation of the optic tract may be a potential option to MER; since optic tract lies just beneath the best target for Gpi DBS, changes in CVEPs during intraoperative exploration may drive a correct electrode positioning. Cortical VEPs from optic tract stimulation (OT C-CEPs) have been recorded in seven patients during GPi-DBS for the treatment of Parkinson's disease and primary dystonia under general sedation. OT C-VEPs were obtained after near-field monopolar stimulation of the optic tract; recording electrodes were at the scalp. Cortical responses after optic tract versus standard visual stimulation were compared. After intraoperative near-field OT stimulation a biphasic wave, named N40-P70, was detected in all cases. N40-P70 neither change in morphology nor in latency at different depths, but increased in amplitude approaching the optic tract. The electrode tip was positioned just 1mm above the point where OT-CVEPs showed the larger amplitude. No MERs were obtained in these patients; OT CVEPs were the only method to detect the Gpi before positioning the electrodes. OT CVEPs seem to be as reliable as MER to detail the optimal target in Gpi surgery: in addition they are less expensive, faster to perform and easier to decode. Copyright © 2010. Published by Elsevier B.V.

  13. Method and apparatus for monitoring the power of a laser beam

    DOEpatents

    Paris, R.D.; Hackel, R.P.

    1996-02-06

    A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam. 6 figs.

  14. Method and apparatus for monitoring the power of a laser beam

    DOEpatents

    Paris, Robert D.; Hackel, Richard P.

    1996-01-01

    A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam.

  15. Optical design and development of near-range compact lidar

    NASA Astrophysics Data System (ADS)

    Shiina, Tatsuo

    2011-12-01

    There are large demands to monitor the atmosphere in the closed space (hall, factory and so on), to check vegetation remotely and to detect hazardous gases such as explosive gas and bio terror from explosion-proof distance. On the contrary, traditional lidars have blind area, it is hard to monitor the atmosphere and the gas in the near range. In this study, optical designs and concrete developments for the atmosphere monitoring and the certain gas detection in near range were accomplished. Unique optical designs are introduced and their practical setups are explained.

  16. Tilapia fish microbial spoilage monitored by a single optical gas sensor.

    PubMed

    Semeano, Ana T S; Maffei, Daniele F; Palma, Susana; Li, Rosamaria W C; Franco, Bernadette D G M; Roque, Ana C A; Gruber, Jonas

    2018-07-01

    As consumption of fish and fish-based foods increases, non-destructive monitoring of fish freshness also becomes more prominent. Fish products are very perishable and prone to microbiological growth, not always easily detected by organoleptic evaluation. The analysis of the headspace of fish specimens through gas sensing is an interesting approach to monitor fish freshness. Here we report a gas sensing method for monitoring Tilapia fish spoilage based on the application of a single gas sensitive gel material coupled to an optical electronic nose. The optical signals of the sensor and the extent of bacterial growth were followed over time, and results indicated good correlation between the two determinations, which suggests the potential application of this simple and low cost system for Tilapia fish freshness monitoring.

  17. Time-domain fiber loop ringdown sensor and sensor network

    NASA Astrophysics Data System (ADS)

    Kaya, Malik

    Optical fibers have been mostly used in fiber optic communications, imaging optics, sensing technology, etc. Fiber optic sensors have gained increasing attention for scientific and structural health monitoring (SHM) applications. In this study, fiber loop ringdown (FLRD) sensors were fabricated for scientific, SHM, and sensor networking applications. FLRD biosensors were fabricated for both bulk refractive index (RI)- and surface RI-based DNA sensing and one type of bacteria sensing. Furthermore, the effect of glucose oxidase (GOD) immobilization at the sensor head on sensor performance was evaluated for both glucose and synthetic urine solutions with glucose concentration between 0.1% and 10%. Detection sensitivities of the glucose sensors were achieved as low as 0.05%. For chemical sensing, heavy water, ranging from 97% to 10%, and several elemental solutions were monitored by using the FLRD chemical sensors. Bulk index-based FLRD sensing showed that trace elements can be detected in deionized water. For physical sensing, water and cracking sensors were fabricated and embedded into concrete. A partially-etched single-mode fiber (SMF) was embedded into a concrete bar for water monitoring while a bare SMF without any treatment was directly embedded into another concrete bar for monitoring cracks. Furthermore, detection sensitivities of water and crack sensors were investigated as 10 ml water and 0.5 mm surface crack width, respectively. Additionally fiber loop ringdown-fiber Bragg grating temperature sensors were developed in the laboratory; two sensor units for water, crack, and temperature sensing were deployed into a concrete cube in a US Department of Energy test bed (Miami, FL). Multi-sensor applications in a real concrete structure were accomplished by testing the six FLRD sensors. As a final stage, a sensor network was assembled by multiplexing two or three FLRD sensors in series and parallel. Additionally, two FLRD sensors were combined in series and parallel by using a 2x1 micro-electromechanical system optical switch to control sensors individually. For both configurations, contributions of each sensor to two or three coupled signals were simulated theoretically. Results show that numerous FLRD sensors can be connected in different configurations, and a sensor network can be built up for multi-function sensing applications.

  18. Miniaturisation of Pressure-Sensitive Paint Measurement Systems Using Low-Cost, Miniaturised Machine Vision Cameras.

    PubMed

    Quinn, Mark Kenneth; Spinosa, Emanuele; Roberts, David A

    2017-07-25

    Measurements of pressure-sensitive paint (PSP) have been performed using new or non-scientific imaging technology based on machine vision tools. Machine vision camera systems are typically used for automated inspection or process monitoring. Such devices offer the benefits of lower cost and reduced size compared with typically scientific-grade cameras; however, their optical qualities and suitability have yet to be determined. This research intends to show relevant imaging characteristics and also show the applicability of such imaging technology for PSP. Details of camera performance are benchmarked and compared to standard scientific imaging equipment and subsequent PSP tests are conducted using a static calibration chamber. The findings demonstrate that machine vision technology can be used for PSP measurements, opening up the possibility of performing measurements on-board small-scale model such as those used for wind tunnel testing or measurements in confined spaces with limited optical access.

  19. Miniaturisation of Pressure-Sensitive Paint Measurement Systems Using Low-Cost, Miniaturised Machine Vision Cameras

    PubMed Central

    Spinosa, Emanuele; Roberts, David A.

    2017-01-01

    Measurements of pressure-sensitive paint (PSP) have been performed using new or non-scientific imaging technology based on machine vision tools. Machine vision camera systems are typically used for automated inspection or process monitoring. Such devices offer the benefits of lower cost and reduced size compared with typically scientific-grade cameras; however, their optical qualities and suitability have yet to be determined. This research intends to show relevant imaging characteristics and also show the applicability of such imaging technology for PSP. Details of camera performance are benchmarked and compared to standard scientific imaging equipment and subsequent PSP tests are conducted using a static calibration chamber. The findings demonstrate that machine vision technology can be used for PSP measurements, opening up the possibility of performing measurements on-board small-scale model such as those used for wind tunnel testing or measurements in confined spaces with limited optical access. PMID:28757553

  20. High sensitive volumetric imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography

    NASA Astrophysics Data System (ADS)

    Zhi, Zhongwei; Jung, Yeongri; Jia, Yali; An, Lin; Wang, Ruikang K.

    2011-03-01

    We present a non-invasive, label-free imaging technique called Ultrahigh Sensitive Optical Microangiography (UHSOMAG) for high sensitive volumetric imaging of renal microcirculation. The UHS-OMAG imaging system is based on spectral domain optical coherence tomography (SD-OCT), which uses a 47000 A-line scan rate CCD camera to perform an imaging speed of 150 frames per second that takes only ~7 seconds to acquire a 3D image. The technique, capable of measuring slow blood flow down to 4 um/s, is sensitive enough to image capillary networks, such as peritubular capillaries and glomerulus within renal cortex. We show superior performance of UHS-OMAG in providing depthresolved volumetric images of rich renal microcirculation. We monitored the dynamics of renal microvasculature during renal ischemia and reperfusion. Obvious reduction of renal microvascular density due to renal ischemia was visualized and quantitatively analyzed. This technique can be helpful for the assessment of chronic kidney disease (CKD) which relates to abnormal microvasculature.

Top