Sample records for optical potential parameters

  1. PROBLEMS OF THE OPTICAL MODEL FOR DEUTERONS. I. PARAMETERS OF THE OPTICAL POTENTIAL (in Polish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grotowski, K.

    1963-01-01

    S>Problems concerning the optical model are discussed. Some special properties of deuterons as projectiles influence the optical model describing their interaction with nuclei. Several experiments were performed to obtain parameters of the optical model potential. (auth)

  2. PROBLEMS OF THE OPTICAL MODEL FOR DEUTERONS. II. EXPERIMENTS FOR DETERMINATION OF THE PARAMETERS OF THE OPTICAL POTENTIAL FOR DEUTERONS (in Polish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grotowski, K.

    1963-01-01

    An experiment for determination of the parameters of the optical potential for deuterons is presented. Total reaction cross sections for the interaction of deuterons with nuclei were determined by evaluating the cross sections for the emission of charged particles and neutrons. The angular distributions for the elastic scattering of deuterons were also measured. (auth)

  3. Global optical model potential for A=3 projectiles

    NASA Astrophysics Data System (ADS)

    Pang, D. Y.; Roussel-Chomaz, P.; Savajols, H.; Varner, R. L.; Wolski, R.

    2009-02-01

    A global optical model potential (GDP08) for He3 projectiles has been obtained by simultaneously fitting the elastic scattering data of He3 from targets of 40⩽AT⩽209 at incident energies of 30⩽Einc⩽217 MeV. Uncertainties and correlation coefficients between the global potential parameters were obtained by using the bootstrap statistical method. GDP08 was found to satisfactorily account for the elastic scattering of H3 as well, which makes it a global optical potential for the A=3 nuclei. Optical model calculations using the GDP08 global potential are compared with the experimental angular distributions of differential cross sections for He3-nucleus and H3-nucleus scattering from different targets of 6⩽AT⩽232 at incident energies of 4⩽Einc⩽450 MeV. The optical potential for the doubly-magic nucleus Ca40, the low-energy correction to the real potential for nuclei with 58≲AT≲120 at Einc<30 MeV, the comparison with double-folding model calculations and the CH89 potential, and the spin-orbit potential parameters are discussed.

  4. Long wavelength optical mode frequencies and the Anderson-Gruneisen parameter for alkali halide crystals

    NASA Astrophysics Data System (ADS)

    Gupta, A. P.; Shanker, Jai

    1980-02-01

    The relation between long wavelength optical mode frequencies and the Anderson-Gruneisen parameter δ for alkali halides studied by Madan suffers from a mathematical error which is rectified in the present communication. A theoretical analysis of δ is presented adopting six potential functions for the short range repulsion energy. Values of δ and γTO calculated from the Varshni-Shukla potential are found in closest agreement with experimental data.

  5. A trap potential model investigation of the optical activity induced in dye-DNA intercalation complexes

    NASA Astrophysics Data System (ADS)

    Kamiya, Mamoru

    1988-02-01

    The fundamental features of the optical activity induced in dye-DNA intercalation complexes are studied by application of the trap potential model which is useful to evaluate the induced rotational strength without reference to detailed geometrical information about the intercalation complexes. The specific effect of the potential depth upon the induced optical activity is explained in terms of the relative magnitudes of the wave-phase and helix-phase variations in the path of an electron moving on a restricted helical segment just like an exciton trapped around the dye intercalation site. The parallel and perpendicular components of the induced rotational strength well reflect basic properties of the helicity effects about the longitudinal and tangential axes of the DNA helical cylinder. The trap potential model is applied to optimize the potential parameters so as to reproduce the ionic strength effect upon the optical activity induced to proflavine-DNA intercalation complexes. From relationships between the optimized potential parameters and ionic strengths, it is inferred that increase in the ionic strength contributes to the optical activity induced by the nearest-neighbour interaction between intercalated proflavine and DNA base pairs.

  6. Experimental test of the mechanism of reaction for (e,e'p) coincidence experiment. [/sup 12/C(e,e'p): DWIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernheim, M.; Bussiere, A.; Frullani, S.

    1977-06-27

    In order to test the validity of the distorted wave impulse approximation to describe (e,e'p) reactions and/or the suitability of the available optical potential parameters to calculate the distortion, the spectral function was measured for /sub 12/C(e,e'p)/sub 11/B in different kinematical configurations. Experimental results are shown together with the distributions computed with several values of the optical potential parameters. Data seem to indicate the necessity of using different parameters for p hole states and s hole states.

  7. Vertical profile of cloud optical parameters derived from airborne measurements above, inside and below clouds

    NASA Astrophysics Data System (ADS)

    Melnikova, Irina; Gatebe, Charles K.

    2018-07-01

    Past strategies for retrieving cloud optical properties from remote sensing assumed significant limits for desired parameters such as semi-infinite optical thickness, single scattering albedo equaling unity (non-absorbing scattering), absence of spectral dependence of the optical thickness, etc., and only one optical parameter could be retrieved (either optical thickness or single scattering albedo). Here, we demonstrate a new method based on asymptotic theory for thick atmospheres, and the presence of a diffusion domain within the clouds that does not put restrictions and makes it possible to get two or even three optical parameters (optical thickness, single scattering albedo and phase function asymmetry parameter) for every wavelength independently. We applied this method to measurements of angular distribution of solar radiation above, inside and below clouds, obtained with NASA's Cloud Absorption Radiometer (CAR) over two cases of marine stratocumulus clouds; first case, offshore of Namibia and the second case, offshore of California. The observational and retrieval errors are accounted for by regularization, which allows stable and smooth solutions. Results show good potential for parameterization of the shortwave radiative properties (reflection, transmission, radiative divergence and heating rate) of water clouds.

  8. Elastic Scattering of 65 MeV Protons from Several Nuclei between 16O and 209Bi

    NASA Astrophysics Data System (ADS)

    Ahmed, Syed; Akther, Parvin; Ferdous, Nasima; Begum, Amena; Gupta, Hiranmay

    1997-10-01

    Elastic scattering of 65 MeV polarized protons from twenty five nuclei ranging from 16O to 209Bi have been analysed within the framework of the nine parameter optical model. A set of optical model parameters has been obtained which shows the systematic behaviour of the target mass dependence of the real potential, volume integral and the r.m.s. radius. The isotopic spin dependence of the real potential has also been studied. Parameters obtained by fitting the elastic scattering data have been able to reproduce the pickup and stripping reaction cross sections as studied in a few cases.

  9. Metallic nano-structures for polarization-independent multi-spectral filters

    NASA Astrophysics Data System (ADS)

    Tang, Yongan; Vlahovic, Branislav; Brady, David Jones

    2011-05-01

    Cross-shaped-hole arrays (CSHAs) are selected for diminishing the polarization-dependent transmission differences of incident plane waves. We investigate the light transmission spectrum of the CSHAs in a thin gold film over a wide range of features. It is observed that two well-separated and high transmission efficiency peaks could be obtained by designing the parameters in the CSHAs for both p-polarized and s-polarized waves; and a nice transmission band-pass is also observed by specific parameters of a CSHA too. It implicates the possibility to obtain a desired polarization-independent transmission spectrum from the CSHAs by designing their parameters. These findings provide potential applications of the metallic nano-structures in optical filters, optical band-pass, optical imaging, optical sensing, and biosensors.

  10. Synergistic estimation of surface parameters from jointly using optical and microwave observations in EOLDAS

    NASA Astrophysics Data System (ADS)

    Timmermans, Joris; Gomez-Dans, Jose; Lewis, Philip; Loew, Alexander; Schlenz, Florian

    2017-04-01

    The large amount of remote sensing data nowadays available provides a huge potential for monitoring crop development, drought conditions and water efficiency. This potential however not been realized yet because algorithms for land surface parameter retrieval mostly use data from only a single sensor. Consequently products that combine different low-level observations from different sensors are hard to find. The lack of synergistic retrieval is caused because it is easier to focus on single sensor types/footprints and temporal observation times, than to find a way to compensate for differences. Different sensor types (microwave/optical) require different radiative transfer (RT) models and also require consistency between the models to have any impact on the retrieval of soil moisture by a microwave instrument. Varying spatial footprints require first proper collocation of the data before one can scale between different resolutions. Considering these problems, merging optical and microwave observations have not been performed yet. The goal of this research was to investigate the potential of integrating optical and microwave RT models within the Earth Observation Land Data Assimilation System (EOLDAS) synergistically to derive biophysical parameters. This system uses a Bayesian data assimilation approach together with observation operators such as the PROSAIL model to estimate land surface parameters. For the purpose of enabling the system to integrate passive microwave radiation (from an ELBARRA II passive microwave radiometer), the Community Microwave Emission Model (CMEM) RT-model, was integrated within the EOLDAS system. In order to quantify the potential, a variety of land surface parameters was chosen to be retrieved from the system, in particular variables that a) impact only optical RT (such as leaf water content and leaf dry matter), b) only impact the microwave RT (such as soil moisture and soil temperature), and c) Leaf Area Index (LAI) that impacts both optical and microwave RT. The results show a high potential when both optical and microwave are used independently. Using only RapidEye only with SAIL RT model, LAI was estimated with R=0.68 with p=0.09, although estimating leaf water content and dry matter showed lower correlations |R|<0.4. The results for retrieving soil temperature and leaf area index retrievals using only (passive microwave) Elbarra-II observations were good with respectively R=[0.85, 0.79], P=[0.0, 0.0], when focusing on dry-spells (of at least 9 days) only the results respectively [R=0.73, and P=0.0], and R=0.89 and R=0.77 for respectively the trend and anomalies. Synergistically using optical and microwave shows also a good potential. This scenario shows that absolute errors improved (with RMSE=1.22 and S=0.89), but with degrading correlations (R=0.59 and P=0.04); the sparse optical observations only improved part of the temporal domain. However in general the synergistic retrieval showed good potential; microwave data provides better information concerning the overall trend of the retrieved LAI due to the regular acquisitions, while optical data provides better information concerning the absolute values of the LAI.

  11. Soft-Rotator Coupled Channels Global Optical Potential for A=24-122 Mass Region Nuclides up to 200-MeV Incident Nucleon Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soukhovitski, Efrem Sh.; Chiba, Satoshi; Lee, Jeong-Yeon

    2005-05-24

    A coupled-channels optical model with a coupling scheme based on nuclear wave functions of the soft-rotator model was applied to analyze experimental nucleon-nucleus interaction data for even-even nuclides with mass number A=24-122. We found that all the available data (total cross sections, angular distributions of elastically and inelastically scattered nucleons, and reaction cross sections) for these nuclides can be described to a good accuracy using an optical potential having smooth dependencies of potential values, radii, and diffuseness on the mass number. The individual properties of the target nuclides are accounted for by individuality of the nuclear Hamiltonian parameters, adjusted tomore » reproduce the low-lying collective level structure, Fermi energies, and deformation parameters.« less

  12. Global alpha-particle optical potentials

    NASA Astrophysics Data System (ADS)

    Ferdous, N.

    1991-12-01

    A search for a global optical potential (for alpha-particles) is described. It was not possible to find a potential that was valid for a wide range of energies and nuclei, even treating the absorbing potential as an adjustable parameter for each nucleus. For practical purposes the best that can be done is to define an average potential, and such a potential is compared with a wide range of experimental data. Its energy variation is determined by fitting the total reaction cross-section.

  13. Nonlinear Optical Properties of Organic and Polymeric Thin Film Materials of Potential for Microgravity Processing Studies

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin; Witherow, William K.; Bank, Curtis; Shields, Angela; Hicks, Rosline; Ashley, Paul R.

    1996-01-01

    In this paper, we will take a closer look at the state of the art of polydiacetylene, and metal-free phthalocyanine films, in view of the microgravity impact on their optical properties, their nonlinear optical properties and their potential advantages for integrated optics. These materials have many attractive features with regard to their use in integrated optical circuits and optical switching. Thin films of these materials processed in microgravity environment show enhanced optical quality and better molecular alignment than those processed in unit gravity. Our studies of these materials indicate that microgravity can play a major role in integrated optics technology. Polydiacetylene films are produced by UV irradiation of monomer solution through an optical window. This novel technique of forming polydiacetylene thin films has been modified for constructing sophisticated micro-structure integrated optical patterns using a pre-programmed UV-Laser beam. Wave guiding through these thin films by the prism coupler technique has been demonstrated. The third order nonlinear parameters of these films have been evaluated. Metal-free phthalocyanine films of good optical quality are processed in our laboratories by vapor deposition technique. Initial studies on these films indicate that they have excellent chemical, laser, and environmental stability. They have large nonlinear optical parameters and show intrinsic optical bistability. This bistability is essential for optical logic gates and optical switching applications. Waveguiding and device making investigations of these materials are underway.

  14. Topology, edge states, and zero-energy states of ultracold atoms in one-dimensional optical superlattices with alternating on-site potentials or hopping coefficients

    NASA Astrophysics Data System (ADS)

    He, Yan; Wright, Kevin; Kouachi, Said; Chien, Chih-Chun

    2018-02-01

    One-dimensional superlattices with periodic spatial modulations of onsite potentials or tunneling coefficients can exhibit a variety of properties associated with topology or symmetry. Recent developments of ring-shaped optical lattices allow a systematic study of those properties in superlattices with or without boundaries. While superlattices with additional modulating parameters are shown to have quantized topological invariants in the augmented parameter space, we also found localized or zero-energy states associated with symmetries of the Hamiltonians. Probing those states in ultracold atoms is possible by utilizing recently proposed methods analyzing particle depletion or the local density of states. Moreover, we summarize feasible realizations of configurable optical superlattices using currently available techniques.

  15. Bayesian parameter estimation in spectral quantitative photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Pulkkinen, Aki; Cox, Ben T.; Arridge, Simon R.; Kaipio, Jari P.; Tarvainen, Tanja

    2016-03-01

    Photoacoustic tomography (PAT) is an imaging technique combining strong contrast of optical imaging to high spatial resolution of ultrasound imaging. These strengths are achieved via photoacoustic effect, where a spatial absorption of light pulse is converted into a measurable propagating ultrasound wave. The method is seen as a potential tool for small animal imaging, pre-clinical investigations, study of blood vessels and vasculature, as well as for cancer imaging. The goal in PAT is to form an image of the absorbed optical energy density field via acoustic inverse problem approaches from the measured ultrasound data. Quantitative PAT (QPAT) proceeds from these images and forms quantitative estimates of the optical properties of the target. This optical inverse problem of QPAT is illposed. To alleviate the issue, spectral QPAT (SQPAT) utilizes PAT data formed at multiple optical wavelengths simultaneously with optical parameter models of tissue to form quantitative estimates of the parameters of interest. In this work, the inverse problem of SQPAT is investigated. Light propagation is modelled using the diffusion equation. Optical absorption is described with chromophore concentration weighted sum of known chromophore absorption spectra. Scattering is described by Mie scattering theory with an exponential power law. In the inverse problem, the spatially varying unknown parameters of interest are the chromophore concentrations, the Mie scattering parameters (power law factor and the exponent), and Gruneisen parameter. The inverse problem is approached with a Bayesian method. It is numerically demonstrated, that estimation of all parameters of interest is possible with the approach.

  16. Control of operating parameters of laser ceilometers with the application of fiber optic delay line imitation

    NASA Astrophysics Data System (ADS)

    Kim, A. A.; Klochkov, D. V.; Konyaev, M. A.; Mihaylenko, A. S.

    2017-11-01

    The article considers the problem of control and verification of the laser ceilometers basic performance parameters and describes an alternative method based on the use of multi-length fiber optic delay line, simulating atmospheric track. The results of the described experiment demonstrate the great potential of this method for inspection and verification procedures of laser ceilometers.

  17. On Madelung systems in nonlinear optics: A reciprocal invariance

    NASA Astrophysics Data System (ADS)

    Rogers, Colin; Malomed, Boris

    2018-05-01

    The role of the de Broglie-Bohm potential, originally established as central to Bohmian quantum mechanics, is examined for two canonical Madelung systems in nonlinear optics. In a seminal case, a Madelung system derived by Wagner et al. via the paraxial approximation and in which the de Broglie-Bohm potential is present is shown to admit a multi-parameter class of what are here introduced as "q-gaussons." In the limit, as the Tsallis parameter q → 1, the q-gaussons are shown to lead to standard gausson solitons, as admitted by the logarithmic nonlinear Schrödinger equation encapsulating the Madelung system. The q-gaussons are obtained for optical media with dual power-law refractive index. In the second case, a Madelung system originally derived via an eikonal approximation in the context of laser beam propagation and in which the de Broglie Bohm term is neglected is shown to admit invariance under a novel class of two-parameter class of reciprocal transformations. Model optical laws analogous to the celebrated Kármán-Tsien law of classical gas dynamics are introduced.

  18. α -induced reactions on 115In: Cross section measurements and statistical model analysis

    NASA Astrophysics Data System (ADS)

    Kiss, G. G.; Szücs, T.; Mohr, P.; Török, Zs.; Huszánk, R.; Gyürky, Gy.; Fülöp, Zs.

    2018-05-01

    Background: α -nucleus optical potentials are basic ingredients of statistical model calculations used in nucleosynthesis simulations. While the nucleon+nucleus optical potential is fairly well known, for the α +nucleus optical potential several different parameter sets exist and large deviations, reaching sometimes even an order of magnitude, are found between the cross section predictions calculated using different parameter sets. Purpose: A measurement of the radiative α -capture and the α -induced reaction cross sections on the nucleus 115In at low energies allows a stringent test of statistical model predictions. Since experimental data are scarce in this mass region, this measurement can be an important input to test the global applicability of α +nucleus optical model potentials and further ingredients of the statistical model. Methods: The reaction cross sections were measured by means of the activation method. The produced activities were determined by off-line detection of the γ rays and characteristic x rays emitted during the electron capture decay of the produced Sb isotopes. The 115In(α ,γ )119Sb and 115In(α ,n )Sb118m reaction cross sections were measured between Ec .m .=8.83 and 15.58 MeV, and the 115In(α ,n )Sb118g reaction was studied between Ec .m .=11.10 and 15.58 MeV. The theoretical analysis was performed within the statistical model. Results: The simultaneous measurement of the (α ,γ ) and (α ,n ) cross sections allowed us to determine a best-fit combination of all parameters for the statistical model. The α +nucleus optical potential is identified as the most important input for the statistical model. The best fit is obtained for the new Atomki-V1 potential, and good reproduction of the experimental data is also achieved for the first version of the Demetriou potentials and the simple McFadden-Satchler potential. The nucleon optical potential, the γ -ray strength function, and the level density parametrization are also constrained by the data although there is no unique best-fit combination. Conclusions: The best-fit calculations allow us to extrapolate the low-energy (α ,γ ) cross section of 115In to the astrophysical Gamow window with reasonable uncertainties. However, still further improvements of the α -nucleus potential are required for a global description of elastic (α ,α ) scattering and α -induced reactions in a wide range of masses and energies.

  19. Constraining the optical potential in the search for η-mesic 4He

    NASA Astrophysics Data System (ADS)

    Skurzok, M.; Moskal, P.; Kelkar, N. G.; Hirenzaki, S.; Nagahiro, H.; Ikeno, N.

    2018-07-01

    A consistent description of the dd →4Heη and dd → (4Heη)bound→ X cross sections was recently proposed with a broad range of real (V0) and imaginary (W0), η-4He optical potential parameters leading to a good agreement with the dd →4Heη data. Here we compare the predictions of the model below the η production threshold, with the WASA-at-COSY excitation functions for the dd →3HeNπ reactions to put stronger constraints on (V0 ,W0). The allowed parameter space (with |V0 | < ∼ 60 MeV and |W0 | < ∼ 7 MeV estimated at 90% CL) excludes most optical model predictions of η-4He nuclei except for some loosely bound narrow states.

  20. Optical eye simulator for laser dazzle events.

    PubMed

    Coelho, João M P; Freitas, José; Williamson, Craig A

    2016-03-20

    An optical simulator of the human eye and its application to laser dazzle events are presented. The simulator combines optical design software (ZEMAX) with a scientific programming language (MATLAB) and allows the user to implement and analyze a dazzle scenario using practical, real-world parameters. Contrary to conventional analytical glare analysis, this work uses ray tracing and the scattering model and parameters for each optical element of the eye. The theoretical background of each such element is presented in relation to the model. The overall simulator's calibration, validation, and performance analysis are achieved by comparison with a simpler model based uponCIE disability glare data. Results demonstrate that this kind of advanced optical eye simulation can be used to represent laser dazzle and has the potential to extend the range of applicability of analytical models.

  1. Study of ground state optical transfer for ultracold alkali dimers

    NASA Astrophysics Data System (ADS)

    Bouloufa-Maafa, Nadia; Londono, Beatriz; Borsalino, Dimitri; Vexiau, Romain; Mahecha, Jorge; Dulieu, Olivier; Luc-Koenig, Eliane

    2013-05-01

    Control of molecular states by laser pulses offer promising potential applications. The manipulation of molecules by external fields requires precise knowledge of the molecular structure. Our motivation is to perform a detailed analysis of the spectroscopic properties of alkali dimers, with the aim to determine efficient optical paths to form molecules in the absolute ground state and to determine the optimal parameters of the optical lattices where those molecules are manipulated to avoid losses by collisions. To this end, we use state of the art molecular potentials, R-dependent spin-orbit coupling and transition dipole moment to perform our calculations. R-dependent SO coupling are of crucial importance because the transitions occur at internuclear distances where they are affected by this R-dependence. Efficient schemes to transfer RbCs, KRb and KCs to the absolute ground state as well as the optimal parameters of the optical lattices will be presented. This work was supported in part by ``Triangle de la Physique'' under contract 2008-007T-QCCM (Quantum Control of Cold Molecules).

  2. Photonic jet etching: Justifying the shape of optical fiber tip

    NASA Astrophysics Data System (ADS)

    Abdurrochman, Andri; Zelgowski, Julien; Lecler, Sylvain; Mermet, Frédéric; Tumbelaka, Bernard; Fontaine, Joël

    2016-02-01

    Photonic jet (PJ) is a low diverging and highly concentrated beam in the shadow side of dielectric particle (cylinder or sphere). The concentration can be more than 200 times higher than the incidence wave. It is a non-resonance phenomenon in the near-field can propagate in a few wavelengths. Many potential applications have been proposed, including PJ etching. Hence, a guided-beam is considered increasing the PJ mobility control. While the others used a combination of classical optical fibers and spheres, we are concerned on a classical optical fiber with spherical tip to generate the PJ. This PJ driven waveguide has been realized using Gaussian mode beam inside the core. It has different variable parameters compared to classical PJ, which will be discussed in correlation with the etching demonstrations. The parameters dependency between the tip and PJ properties are complex; and theoretical aspect of this interaction will be exposed to justify the shape of our tip and optical fiber used in our demonstrations. Methods to achieve such a needed optical fiber tip will also be described. Finally the ability to generate PJ out of the shaped optical fiber will be experimentally demonstrated and the potential applications for material processing will be exposed.

  3. The optical potential on the lattice

    DOE PAGES

    Agadjanov, Dimitri; Doring, Michael; Mai, Maxim; ...

    2016-06-08

    The extraction of hadron-hadron scattering parameters from lattice data by using the Luscher approach becomes increasingly complicated in the presence of inelastic channels. We propose a method for the direct extraction of the complex hadron-hadron optical potential on the lattice, which does not require the use of the multi-channel Luscher formalism. Furthermore, this method is applicable without modifications if some inelastic channels contain three or more particles.

  4. Damage modeling and statistical analysis of optics damage performance in MJ-class laser systems.

    PubMed

    Liao, Zhi M; Raymond, B; Gaylord, J; Fallejo, R; Bude, J; Wegner, P

    2014-11-17

    Modeling the lifetime of a fused silica optic is described for a multiple beam, MJ-class laser system. This entails combining optic processing data along with laser shot data to account for complete history of optic processing and shot exposure. Integrating with online inspection data allows for the construction of a performance metric to describe how an optic performs with respect to the model. This methodology helps to validate the damage model as well as allows strategic planning and identifying potential hidden parameters that are affecting the optic's performance.

  5. Ultra-fast nonlinear optical properties and photophysical mechanism of a novel pyrene derivative

    NASA Astrophysics Data System (ADS)

    Zhang, Youwei; Yang, Junyi; Xiao, Zhengguo; Song, Yinglin

    2016-10-01

    The third-order nonlinear optical properties of 1-(pyrene-1-y1)-3-(3-methylthiophene) acrylic keton named PMTAK was investigated by using Z-scan technique. The light sources for picoseconds(ps) and femtosecond(fs) Z-scan were a mode-locked Nd: YAG laser (21 ps, 532 nm,10 Hz) and an Yb: KGW based fiber laser (190 fs, 515 nm,532 nm, 20 Hz), respectively. In the two cases, reverse saturation absorption(RSA) are observed. The dynamics of the sample's optical nonlinearity is discussed via the femtosecond time-resolved pump probe with phase object at 515nm. We believe that the molecules in excited state of particle population count is caused by two-photon absorption(TPA). The five-level theoretical model is used to analysis the optical nonlinear mechanism. Combining with the result of picosecond Z-scan experiment, a set of optical nonlinear parameters are calculated out. The femtosecond Z-scan experiment is taken to confirm these parameters. The obvious excited-state nonlinearity is found by the set of parameters. The result shows that the sample has good optical nonlinearity which indicates it has potential applications in nonlinear optics field.

  6. Pulsed laser versus electrical energy for peripheral nerve stimulation

    PubMed Central

    Wells, Jonathon; Konrad, Peter; Kao, Chris; Jansen, E. Duco; Mahadevan-Jansen, Anita

    2010-01-01

    Transient optical neural stimulation has previously been shown to elicit highly controlled, artifact-free potentials within the nervous system in a non-contact fashion without resulting in damage to tissue. This paper presents the physiologic validity of elicited nerve and muscle potentials from pulsed laser induced stimulation of the peripheral nerve in a comparative study with the standard method of electrically evoked potentials. Herein, the fundamental physical properties underlying the two techniques are contrasted. Key laser parameters for efficient optical stimulation of the peripheral nerve are detailed. Strength response curves are shown to be linear for each stimulation modality, although fewer axons can be recruited with optically evoked potentials. Results compare the relative transient energy requirements for stimulation using each technique and demonstrate that optical methods can selectively excite functional nerve stimulation. Adjacent stimulation and recording of compound nerve potentials in their entirety from optical and electrical stimulation are presented, with optical responses shown to be free of any stimulation artifact. Thus, use of a pulsed laser exhibits some advantages when compared to standard electrical means for excitation of muscle potentials in the peripheral nerve in the research domain and possibly for clinical diagnostics in the future. PMID:17537515

  7. Controlling electric, magnetic, and chiral dipolar emission with PT-symmetric potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alaeian, Hadiseh; Dionne, Jennifer A.

    We investigate the effect of parity-time (PT) symmetric optical potentials on the radiation of achiral and chiral dipole sources. Two properties unique to PT-symmetric potentials are observed. First, the dipole can be tuned to behave as a strong optical emitter or absorber based on the non-Hermiticity parameter and the dipole location. Second, exceptional points give rise to new system resonances that lead to orders-of-magnitude enhancements in the dipolar emitted or absorbed power. Utilizing these properties, we show that enantiomers of chiral molecules near PT-symmetric metamaterials exhibit a 4.5-fold difference in their emitted power and decay rate. The results of thismore » work could enable new atom-cavity interactions for quantum optics, as well as all-optical enantioselective separation.« less

  8. SKA weak lensing - I. Cosmological forecasts and the power of radio-optical cross-correlations

    NASA Astrophysics Data System (ADS)

    Harrison, Ian; Camera, Stefano; Zuntz, Joe; Brown, Michael L.

    2016-12-01

    We construct forecasts for cosmological parameter constraints from weak gravitational lensing surveys involving the Square Kilometre Array (SKA). Considering matter content, dark energy and modified gravity parameters, we show that the first phase of the SKA (SKA1) can be competitive with other Stage III experiments such as the Dark Energy Survey and that the full SKA (SKA2) can potentially form tighter constraints than Stage IV optical weak lensing experiments, such as those that will be conducted with LSST, WFIRST-AFTA or Euclid-like facilities. Using weak lensing alone, going from SKA1 to SKA2 represents improvements by factors of ˜10 in matter, ˜10 in dark energy and ˜5 in modified gravity parameters. We also show, for the first time, the powerful result that comparably tight constraints (within ˜5 per cent) for both Stage III and Stage IV experiments, can be gained from cross-correlating shear maps between the optical and radio wavebands, a process which can also eliminate a number of potential sources of systematic errors which can otherwise limit the utility of weak lensing cosmology.

  9. The Optical Flow Technique on the Research of Solar Non-potentiality

    NASA Astrophysics Data System (ADS)

    Liu, Ji-hong; Zhang, Hong-qi

    2010-06-01

    Several optical flow techniques, which have being applied to the researches of solar magnetic non-potentiality recently, have been summarized here. And a few new non-potential parameters which can be derived from them have been discussed, too. The main components of the work are presented as follows: (1) The optical flow techniques refers to a series of new image analyzing techniques arisen recently on the researches of solar magnetic non-potentiality. They mainly include LCT (local correlation tracking), ILCT (inductive equation combining with LCT), MEF (minimum energy effect), DAVE (differential affine velocity estimator) and NAVE (nonlinear affine velocity estimator). Their calculating and applying conditions, merits and deficiencies, all have been discussed detailedly in this work. (2) Benefit from the optical flow techniques, the transverse velocity fields of the magnetic features on the solar surface may be determined by a time sequence of high-quality images currently produced by high-resolution observations either from the ground or in space. Consequently, several new non-potential parameters may be acquired, such as the magnetic helicity flux, the induced electric field in the photosphere, the non-potential magnetic stress (whose area integration is the Lorentz force), etc. Then we can determine the energy flux across the photosphere, and subsequently evaluate the energy budget. Former works on them by small or special samples have shown that they are probably related closely to the erupting events, such as flare, filament eruptions and coronal mass ejections.

  10. HYPERSPECTRAL REMOTE SENSING OF WATER QUALITY PARAMETERS FOR LARGE RIVERS IN THE OHIO RIVER BASIN

    EPA Science Inventory

    Optical indicators of water quality have the potential of enhancing the abilities of resource managers to monitor water bodies in a timely and cost-effective manner. However, the degree to which optical indicators are useful may depend on their applicability to data collected fr...

  11. Estimation of forest biomass using remote sensing

    NASA Astrophysics Data System (ADS)

    Sarker, Md. Latifur Rahman

    Forest biomass estimation is essential for greenhouse gas inventories, terrestrial carbon accounting and climate change modelling studies. The availability of new SAR, (C-band RADARSAT-2 and L-band PALSAR) and optical sensors (SPOT-5 and AVNIR-2) has opened new possibilities for biomass estimation because these new SAR sensors can provide data with varying polarizations, incidence angles and fine spatial resolutions. 'Therefore, this study investigated the potential of two SAR sensors (RADARSAT-2 with C-band and PALSAR with L-band) and two optical sensors (SPOT-5 and AVNIR2) for the estimation of biomass in Hong Kong. Three common major processing steps were used for data processing, namely (i) spectral reflectance/intensity, (ii) texture measurements and (iii) polarization or band ratios of texture parameters. Simple linear and stepwise multiple regression models were developed to establish a relationship between the image parameters and the biomass of field plots. The results demonstrate the ineffectiveness of raw data. However, significant improvements in performance (r2) (RADARSAT-2=0.78; PALSAR=0.679; AVNIR-2=0.786; SPOT-5=0.854; AVNIR-2 + SPOT-5=0.911) were achieved using texture parameters of all sensors. The performances were further improved and very promising performances (r2) were obtained using the ratio of texture parameters (RADARSAT-2=0.91; PALSAR=0.823; PALSAR two-date=0.921; AVNIR-2=0.899; SPOT-5=0.916; AVNIR-2 + SPOT-5=0.939). These performances suggest four main contributions arising from this research, namely (i) biomass estimation can be significantly improved by using texture parameters, (ii) further improvements can be obtained using the ratio of texture parameters, (iii) multisensor texture parameters and their ratios have more potential than texture from a single sensor, and (iv) biomass can be accurately estimated far beyond the previously perceived saturation levels of SAR and optical data using texture parameters or the ratios of texture parameters. A further important contribution resulting from the fusion of SAR & optical images produced accuracies (r2) of 0.706 and 0.77 from the simple fusion, and the texture processing of the fused image, respectively. Although these performances were not as attractive as the performances obtained from the other four processing steps, the wavelet fusion procedure improved the saturation level of the optical (AVNIR-2) image very significantly after fusion with SAR, image. Keywords: biomass, climate change, SAR, optical, multisensors, RADARSAT-2, PALSAR, AVNIR-2, SPOT-5, texture measurement, ratio of texture parameters, wavelets, fusion, saturation

  12. Optical-model potential for electron and positron elastic scattering by atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvat, Francesc

    2003-07-01

    An optical-model potential for systematic calculations of elastic scattering of electrons and positrons by atoms and positive ions is proposed. The electrostatic interaction is determined from the Dirac-Hartree-Fock self-consistent atomic electron density. In the case of electron projectiles, the exchange interaction is described by means of the local-approximation of Furness and McCarthy. The correlation-polarization potential is obtained by combining the correlation potential derived from the local density approximation with a long-range polarization interaction, which is represented by means of a Buckingham potential with an empirical energy-dependent cutoff parameter. The absorption potential is obtained from the local-density approximation, using the Born-Ochkurmore » approximation and the Lindhard dielectric function to describe the binary collisions with a free-electron gas. The strength of the absorption potential is adjusted by means of an empirical parameter, which has been determined by fitting available absolute elastic differential cross-section data for noble gases and mercury. The Dirac partial-wave analysis with this optical-model potential provides a realistic description of elastic scattering of electrons and positrons with energies in the range from {approx}100 eV up to {approx}5 keV. At higher energies, correlation-polarization and absorption corrections are small and the usual static-exchange approximation is sufficiently accurate for most practical purposes.« less

  13. Nuclear matter parameters and optical model analysis of proton elastic scattering on the doubly magic nucleus 40Ca

    NASA Astrophysics Data System (ADS)

    Khalaf, A. M.; Khalifa, M. M.; Solieman, A. H. M.; Comsan, M. N. H.

    2018-01-01

    Owing to its doubly magic nature having equal numbers of protons and neutrons, the 40Ca nuclear scattering can be successfully described by the optical model that assumes a spherical nuclear potential. Therefore, optical model analysis was employed to calculate the elastic scattering cross section for p +40Ca interaction at energies from 9 to 22 MeV as well as the polarization at energies from 10 to 18.2 MeV. New optical model parameters (OMPs) were proposed based on the best fitting to experimental data. It is found that the best fit OMPs depend on the energy by smooth relationships. The results were compared with other OMPs sets regarding their chi square values (χ2). The obtained OMP's set was used to calculate the volume integral of the potentials and the root mean square (rms) value of nuclear matter radius of 40Ca. In addition, 40Ca bulk nuclear matter properties were discussed utilizing both the obtained rms radius and the Thomas-Fermi rms radius calculated using spherical Hartree-Fock formalism employing Skyrme type nucleon-nucleon force. The nuclear scattering SCAT2000 FORTRAN code was used for the optical model analysis.

  14. Characterization of PDMS samples with variation of its synthesis parameters for tunable optics applications

    NASA Astrophysics Data System (ADS)

    Marquez-Garcia, Josimar; Cruz-Félix, Angel S.; Santiago-Alvarado, Agustin; González-García, Jorge

    2017-09-01

    Nowadays the elastomer known as polydimethylsiloxane (PDMS, Sylgard 184), due to its physical properties, low cost and easy handle, have become a frequently used material for the elaboration of optical components such as: variable focal length liquid lenses, optical waveguides, solid elastic lenses, etc. In recent years, we have been working in the characterization of this material for applications in visual sciences; in this work, we describe the elaboration of PDMSmade samples, also, we present physical and optical properties of the samples by varying its synthesis parameters such as base: curing agent ratio, and both, curing time and temperature. In the case of mechanical properties, tensile and compression tests were carried out through a universal testing machine to obtain the respective stress-strain curves, and to obtain information regarding its optical properties, UV-vis spectroscopy is applied to the samples to obtain transmittance and absorbance curves. Index of refraction variation was obtained through an Abbe refractometer. Results from the characterization will determine the proper synthesis parameters for the elaboration of tunable refractive surfaces for potential applications in robotics.

  15. Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX{sub 2}: X = S, Se, Te)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Sheetal; Department of Physics, Panjab University, Chandigarh 160014; Verma, A.S., E-mail: ajay_phy@rediffmail.com

    2014-05-01

    Graphical abstract: - Highlights: • FP-LAPW method has been used to compute the solid state properties of AgGaX{sub 2} (X = S, Se, Te). • Electronic and optical properties reported with recently developed mBJ potential. • Thermal expansion, heat capacity, Debye temperature, entropy and Grüneisen parameter were evaluated. • Hardness was calculated for the first time at different temperature and pressure. - Abstract: We have performed ab initio calculations for the structural, electronic, optical, elastic and thermal properties of the silver gallium dichalcogenides (AgGaX{sub 2}: X = S, Se, Te). In this study, we have used the accurate full potentialmore » linearized augmented plane wave (FP-LAPW) method to find the equilibrium structural parameters and to compute the six elastic constants (C{sub 11}, C{sub 12}, C{sub 13}, C{sub 33}, C{sub 44} and C{sub 66}). We have reported electronic and optical properties with the recently developed density functional theory of Tran and Blaha, and this theory is used along with the Wu-Cohen generalized gradient approximation (WC-GGA) for the exchange-correlation potential. Furthermore, optical features such as dielectric functions, refractive indices, extinction coefficient, optical reflectivity, absorption coefficients and optical conductivities were calculated for photon energies up to 40 eV. The thermodynamical properties such as thermal expansion, heat capacity, debye temperature, entropy, Grüneisen parameter and bulk modulus were calculated employing the quasi-harmonic Debye model at different temperatures (0–900 K) and pressures (0–8 GPa) and the silent results were interpreted. Hardness of the materials was calculated for the first time at different temperatures and pressures.« less

  16. An infrared optical pacing system for high-throughput screening of cardiac electrophysiology in human cardiomyocytes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McPheeters, Matt T.; Wang, Yves T.; Laurita, Kenneth R.; Jenkins, Michael W.

    2017-02-01

    Cardiomyocytes derived from human induced pluripotent stem cells (hiPS-HCM) have the potential to provide individualized therapies for patients and to test drug candidates for cardiac toxicity. In order for hiPS-CM to be useful for such applications, there is a need for high-throughput technology to rapidly assess cardiac electrophysiology parameters. Here, we designed and tested a fully contactless optical mapping (OM) and optical pacing (OP) system capable of imaging and point stimulation of hiPS-CM in small wells. OM allowed us to characterize cardiac electrophysiological parameters (conduction velocity, action potential duration, etc.) using voltage-sensitive dyes with high temporal and spatial resolution over the entire well. To improve OM signal-to-noise ratio, we tested a new voltage-sensitive dye (Fluovolt) for accuracy and phototoxicity. Stimulation is essential because most electrophysiological parameters are rate dependent; however, traditional methods utilizing electrical stimulation is difficult in small wells. To overcome this limitation, we utilized OP (λ = 1464 nm) to precisely control heart rate with spatial precision without the addition of exogenous agents. We optimized OP parameters (e.g., well size, pulse width, spot size) to achieve robust pacing and minimize the threshold radiant exposure. Finally, we tested system sensitivity using Flecainide, a drug with well described action on multiple electrophysiological properties.

  17. Twelve-hour reproducibility of retinal and optic nerve blood flow parameters in healthy individuals.

    PubMed

    Luksch, Alexandra; Lasta, Michael; Polak, Kaija; Fuchsjäger-Mayrl, Gabriele; Polska, Elzbieta; Garhöfer, Gerhard; Schmetterer, Leopold

    2009-11-01

    The aim of the present study was to investigate the reproducibility and potential diurnal variation of optic nerve head and retinal blood flow parameters in healthy individuals over a period of 12 hr. We measured optic nerve head and retinal blood flow parameters in 16 healthy male non-smoking individuals at five time-points during the day (08:00, 11:00, 14:00, 17:00 and 20:00 hr). Outcome parameters were perimacular white blood cell flux (as assessed with the blue field entoptic technique), blood velocities in retinal veins (as assessed with bi-directional laser Doppler velocimetry), retinal arterial and venous diameters (as assessed with the retinal vessel analyser), optic nerve head blood flow, volume and velocity (as assessed with single point and scanning laser Doppler flowmetry) and blood velocities in the central retinal artery (as assessed with colour Doppler imaging). The coefficient of variation and the maximum change from baseline in an individual were calculated for each outcome parameter. No diurnal variation in optic nerve head or retinal blood flow was observed with any of the techniques employed. Coefficients of variation were between 1.6% and 18.5% for all outcome parameters. The maximum change from baseline in an individual was much higher, ranging from 3.7% to 78.2%. Our data indicate that in healthy individuals the selected techniques provide adequate reproducibility to be used in clinical studies. However, in patients with eye diseases and reduced vision the reproducibility may be considerably worse.

  18. Time-Resolved Diffuse Optical Spectroscopy and Imaging Using Solid-State Detectors: Characteristics, Present Status, and Research Challenges.

    PubMed

    Alayed, Mrwan; Deen, M Jamal

    2017-09-14

    Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are emerging non-invasive imaging modalities that have wide spread potential applications in many fields, particularly for structural and functional imaging in medicine. In this article, we review time-resolved diffuse optical imaging (TR-DOI) systems using solid-state detectors with a special focus on Single-Photon Avalanche Diodes (SPADs) and Silicon Photomultipliers (SiPMs). These TR-DOI systems can be categorized into two types based on the operation mode of the detector (free-running or time-gated). For the TR-DOI prototypes, the physical concepts, main components, figures-of-merit of detectors, and evaluation parameters are described. The performance of TR-DOI prototypes is evaluated according to the parameters used in common protocols to test DOI systems particularly basic instrumental performance (BIP). In addition, the potential features of SPADs and SiPMs to improve TR-DOI systems and expand their applications in the foreseeable future are discussed. Lastly, research challenges and future developments for TR-DOI are discussed for each component in the prototype separately and also for the entire system.

  19. Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography.

    PubMed

    Guo, Shuguang; Zhang, Jun; Wang, Lei; Nelson, J Stuart; Chen, Zhongping

    2004-09-01

    Conventional polarization-sensitive optical coherence tomography (PS-OCT) can provide depth-resolved Stokes parameter measurements of light reflected from turbid media. A new algorithm that takes into account changes in the optical axis is introduced to provide depth-resolved birefringence and differential optical axis orientation images by use of fiber-based PS-OCT. Quaternion, a convenient mathematical tool, is used to represent an optical element and simplify the algorithm. Experimental results with beef tendon and rabbit tendon and muscle show that this technique has promising potential for imaging the birefringent structure of multiple-layer samples with varying optical axes.

  20. Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer.

    PubMed

    Rajaram, Narasimhan; Reichenberg, Jason S; Migden, Michael R; Nguyen, Tri H; Tunnell, James W

    2010-12-01

    Several research groups have demonstrated the non-invasive diagnostic potential of diffuse optical spectroscopy (DOS) and laser-induced fluorescence (LIF) techniques for early cancer detection. By combining both modalities, one can simultaneously measure quantitative parameters related to the morphology, function and biochemical composition of tissue and use them to diagnose malignancy. The objective of this study was to use a quantitative reflectance/fluorescence spectroscopic technique to determine the optical properties of normal skin and non-melanoma skin cancers and the ability to accurately classify them. An additional goal was to determine the ability of the technique to differentiate non-melanoma skin cancers from normal skin. The study comprised 48 lesions measured from 40 patients scheduled for a biopsy of suspected non-melanoma skin cancers. White light reflectance and laser-induced fluorescence spectra (wavelength range = 350-700 nm) were collected from each suspected lesion and adjacent clinically normal skin using a custom-built, optical fiber-based clinical instrument. After measurement, the skin sites were biopsied and categorized according to histopathology. Using a quantitative model, we extracted various optical parameters from the measured spectra that could be correlated to the physiological state of tissue. Scattering from cancerous lesions was significantly lower than normal skin for every lesion group, whereas absorption parameters were significantly higher. Using numerical cut-offs for our optical parameters, our clinical instrument could classify basal cell carcinomas with a sensitivity and specificity of 94% and 89%, respectively. Similarly, the instrument classified actinic keratoses and squamous cell carcinomas with a sensitivity of 100% and specificity of 50%. The measured optical properties and fluorophore contributions of normal skin and non-melanoma skin cancers are significantly different from each other and correlate well with tissue pathology. A diagnostic algorithm that combines these extracted properties holds promise for the potential non-invasive diagnosis of skin cancer. Copyright © 2010 Wiley-Liss, Inc.

  1. Contribution of multitemporal polarimetric synthetic aperture radar data for monitoring winter wheat and rapeseed crops

    NASA Astrophysics Data System (ADS)

    Betbeder, Julie; Fieuzal, Remy; Philippets, Yannick; Ferro-Famil, Laurent; Baup, Frederic

    2016-04-01

    This paper aims to evaluate the contribution of multitemporal polarimetric synthetic aperture radar (SAR) data for winter wheat and rapeseed crops parameters [height, leaf area index, and dry biomass (DB)] estimation, during their whole vegetation cycles in comparison to backscattering coefficients and optical data. Angular sensitivities and dynamics of polarimetric indicators were also analyzed following the growth stages of these two common crop types using, in total, 14 radar images (Radarsat-2), 16 optical images (Formosat-2, Spot-4/5), and numerous ground data. The results of this study show the importance of correcting the angular effect on SAR signals especially for copolarized signals and polarimetric indicators associated to single-bounce scattering mechanisms. The analysis of the temporal dynamic of polarimetric indicators has shown their high potential to detect crop growth changes. Moreover, this study shows the high interest of using SAR parameters (backscattering coefficients and polarimetric indicators) for crop parameters estimation during the whole vegetation cycle instead of optical vegetation index. They particularly revealed their high potential for rapeseed height and DB monitoring [i.e., Shannon entropy polarimetry (r2=0.70) and radar vegetation index (r2=0.80), respectively].

  2. Optical trapping performance of dielectric-metallic patchy particles

    PubMed Central

    Lawson, Joseph L.; Jenness, Nathan J.; Clark, Robert L.

    2015-01-01

    We demonstrate a series of simulation experiments examining the optical trapping behavior of composite micro-particles consisting of a small metallic patch on a spherical dielectric bead. A full parameter space of patch shapes, based on current state of the art manufacturing techniques, and optical properties of the metallic film stack is examined. Stable trapping locations and optical trap stiffness of these particles are determined based on the particle design and potential particle design optimizations are discussed. A final test is performed examining the ability to incorporate these composite particles with standard optical trap metrology technologies. PMID:26832054

  3. Acousto-optical Transducer with Surface Plasmons

    NASA Astrophysics Data System (ADS)

    Kolomenskii, A. A.; Surovic, E.; Schuessler, H. A.

    2018-04-01

    The surface plasmon resonance (SPR) is a sensitive technique for the detection of changes in dielectric parameters in close proximity to a metal film supporting surface plasmon waves. Here we study the application of the SPR effect to an efficient conversion of an acoustic signal into an optical one. Such a transducer potentially has a large bandwidth and good sensitivity. When an acoustic wave is incident onto a receiving plate positioned within the penetration depth of the surface plasmons, it creates displacements of the surface of the plate and, thus, modulates the dielectric properties in the proximity of the gold film. This modulation, in turn, modifies the light reflection under surface plasmon resonance conditions. We simulate characteristics of this acousto-optical transducer with surface plasmons and provide sets of parameters at the optical wavelength of 800 nm and 633 nm for its realization.

  4. Binding energy of donor impurity states and optical absorption in the Tietz-Hua quantum well under an applied electric field

    NASA Astrophysics Data System (ADS)

    Al, E. B.; Kasapoglu, E.; Sakiroglu, S.; Duque, C. A.; Sökmen, I.

    2018-04-01

    For a quantum well which has the Tietz-Hua potential, the ground and some excited donor impurity binding energies and the total absorption coefficients, including linear and third order nonlinear terms for the transitions between the related impurity states with respect to the structure parameters and the impurity position as well as the electric field strength are investigated. The binding energies were obtained using the effective-mass approximation within a variational scheme and the optical transitions between any two impurity states were calculated by using the density matrix formalism and the perturbation expansion method. Our results show that the effects of the electric field and the structure parameters on the optical transitions are more pronounced. So we can adjust the red or blue shift in the peak position of the absorption coefficient by changing the strength of the electric field as well as the structure parameters.

  5. Problem of the Optical Model for Deuterons; ZAGADNIENIA MODELU OPTYCZNEGO DLA DEUTERONOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grotowski, K.

    1963-01-01

    Problems concerning parameters of the optical potential for deuterons are presented. Total cross-sections for the interaction of deuterons with nuclei were determined by the evaluation of the cross-sections for the emission of charged particles and neutrons. The angular distributions for the elastic scattering of deuterons were also measured, 47 references. (auth)

  6. Investigation on nonautonomous soliton management in generalized external potentials via dispersion and nonlinearity

    NASA Astrophysics Data System (ADS)

    Vijayalekshmi, S.; Mani Rajan, M. S.; Mahalingam, A.; Uthayakumar, A.

    2015-09-01

    We investigate the controllable behavior of nonautonomous soliton in external potentials with variable dispersion and nonlinearity management functions, which describes the propagation of optical pulses in an inhomogeneous fiber system. We derive the Lax pair with a variable spectral parameter and the exact multi-soliton solution is generated via Darboux transformation. Based on these solutions, several novel optical solitons are constructed by selecting appropriate functions and the main evolution features of these waves are shown by some interesting figures with computer simulation. As few examples, breathers in periodic potential, soliton compression in an exponentially dispersion decreasing fiber and interaction of boomerang solitons are discussed. The presented results have applications in the study of nonautonomous soliton birefringence-managed switching architecture. These results are potentially useful in the management of nonautonomous soliton with external potentials in the optical soliton communications and long-haul telecommunication networks.

  7. Metrological reliability of optical coherence tomography in biomedical applications

    NASA Astrophysics Data System (ADS)

    Goloni, C. M.; Temporão, G. P.; Monteiro, E. C.

    2013-09-01

    Optical coherence tomography (OCT) has been proving to be an efficient diagnostics technique for imaging in vivo tissues, an optical biopsy with important perspectives as a diagnostic tool for quantitative characterization of tissue structures. Despite its established clinical use, there is no international standard to address the specific requirements for basic safety and essential performance of OCT devices for biomedical imaging. The present work studies the parameters necessary for conformity assessment of optoelectronics equipment used in biomedical applications like Laser, Intense Pulsed Light (IPL), and OCT, targeting to identify the potential requirements to be considered in the case of a future development of a particular standard for OCT equipment. In addition to some of the particular requirements standards for laser and IPL, also applicable for metrological reliability analysis of OCT equipment, specific parameters for OCT's evaluation have been identified, considering its biomedical application. For each parameter identified, its information on the accompanying documents and/or its measurement has been recommended. Among the parameters for which the measurement requirement was recommended, including the uncertainty evaluation, the following are highlighted: optical radiation output, axial and transverse resolution, pulse duration and interval, and beam divergence.

  8. An optical model description of momentum transfer in heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Khan, F.; Khandelwal, G. S.; Townsend, Lawrence W.; Wilson, J. W.; Norbury, John W.

    1989-01-01

    An optical model description of momentum transfer in relativistic heavy ion collisions, based upon composite particle multiple scattering theory, is presented. The imaginary component of the complex momentum transfer, which comes from the absorptive part of the optical potential, is identified as the longitudinal momentum downshift of the projectile. Predictions of fragment momentum distribution observables are made and compared with experimental data. Use of the model as a tool for estimating collision impact parameters is discussed.

  9. The Invigoration of Deep Convective Clouds Over the Atlantic: Aerosol Effect, Meteorology or Retrieval Artifact?

    NASA Technical Reports Server (NTRS)

    Koren, Ilan; Feingold, Graham; Remer, Lorraine A.

    2010-01-01

    Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case that the aerosol does play a role in invigorating convective clouds.

  10. Time-Resolved Diffuse Optical Spectroscopy and Imaging Using Solid-State Detectors: Characteristics, Present Status, and Research Challenges

    PubMed Central

    Alayed, Mrwan

    2017-01-01

    Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are emerging non-invasive imaging modalities that have wide spread potential applications in many fields, particularly for structural and functional imaging in medicine. In this article, we review time-resolved diffuse optical imaging (TR-DOI) systems using solid-state detectors with a special focus on Single-Photon Avalanche Diodes (SPADs) and Silicon Photomultipliers (SiPMs). These TR-DOI systems can be categorized into two types based on the operation mode of the detector (free-running or time-gated). For the TR-DOI prototypes, the physical concepts, main components, figures-of-merit of detectors, and evaluation parameters are described. The performance of TR-DOI prototypes is evaluated according to the parameters used in common protocols to test DOI systems particularly basic instrumental performance (BIP). In addition, the potential features of SPADs and SiPMs to improve TR-DOI systems and expand their applications in the foreseeable future are discussed. Lastly, research challenges and future developments for TR-DOI are discussed for each component in the prototype separately and also for the entire system. PMID:28906462

  11. Modeling transmission parameters of polymer microstructured fibers for applications in FTTH networks

    NASA Astrophysics Data System (ADS)

    Gdula, P.; Welikow, K.; Szczepański, P.; Buczyński, R.; Piramidowicz, R.

    2011-10-01

    This paper is focused on selected aspects of designing and modeling of transmission parameters of plastic optical fibers (POFs), considered in the context of their potential applications in optical access networks and, specifically, in Fiber-To- The-Home (FTTH) systems. The survey of state-of-the-art solutions is presented and possibility of improving transmission properties of POFs by microstructurization is discussed on the basis of the first results of numerical modeling. In particular, the microstructured POF was designed supporting propagation of limited number of modes while keeping relatively large mode area and, simultaneously, significantly lowered bending losses.

  12. Resonant indirect optical absorption in germanium

    NASA Astrophysics Data System (ADS)

    Menéndez, José; Noël, Mario; Zwinkels, Joanne C.; Lockwood, David J.

    2017-09-01

    The optical absorption coefficient of pure Ge has been determined from high-accuracy, high-precision optical measurements at photon energies covering the spectral range between the indirect and direct gaps. The results are compared with a theoretical model that fully accounts for the resonant nature of the energy denominators that appear in perturbation-theory expansions of the absorption coefficient. The model generalizes the classic Elliott approach to indirect excitons, and leads to a predicted optical absorption that is in excellent agreement with the experimental values using just a single adjustable parameter: the average deformation potential DΓ L coupling electrons at the bottom of the direct and indirect valleys in the conduction band. Remarkably, the fitted value, DΓ L=4.3 ×108eV /cm , is in nearly perfect agreement with independent measurements and ab initio predictions of this parameter, confirming the validity of the proposed theory, which has general applicability.

  13. Polymer waveguide grating sensor integrated with a thin-film photodetector

    PubMed Central

    Song, Fuchuan; Xiao, Jing; Xie, Antonio Jou; Seo, Sang-Woo

    2014-01-01

    This paper presents a planar waveguide grating sensor integrated with a photodetector (PD) for on-chip optical sensing systems which are suitable for diagnostics in the field and in-situ measurements. III–V semiconductor-based thin-film PD is integrated with a polymer based waveguide grating device on a silicon platform. The fabricated optical sensor successfully discriminates optical spectral characteristics of the polymer waveguide grating from the on-chip PD. In addition, its potential use as a refractive index sensor is demonstrated. Based on a planar waveguide structure, the demonstrated sensor chip may incorporate multiple grating waveguide sensing regions with their own optical detection PDs. In addition, the demonstrated processing is based on a post-integration process which is compatible with silicon complementary metal-oxide semiconductor (CMOS) electronics. Potentially, this leads a compact, chip-scale optical sensing system which can monitor multiple physical parameters simultaneously without need for external signal processing. PMID:24466407

  14. SU-E-J-161: Inverse Problems for Optical Parameters in Laser Induced Thermal Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahrenholtz, SJ; Stafford, RJ; Fuentes, DT

    Purpose: Magnetic resonance-guided laser-induced thermal therapy (MRgLITT) is investigated as a neurosurgical intervention for oncological applications throughout the body by active post market studies. Real-time MR temperature imaging is used to monitor ablative thermal delivery in the clinic. Additionally, brain MRgLITT could improve through effective planning for laser fiber's placement. Mathematical bioheat models have been extensively investigated but require reliable patient specific physical parameter data, e.g. optical parameters. This abstract applies an inverse problem algorithm to characterize optical parameter data obtained from previous MRgLITT interventions. Methods: The implemented inverse problem has three primary components: a parameter-space search algorithm, a physicsmore » model, and training data. First, the parameter-space search algorithm uses a gradient-based quasi-Newton method to optimize the effective optical attenuation coefficient, μ-eff. A parameter reduction reduces the amount of optical parameter-space the algorithm must search. Second, the physics model is a simplified bioheat model for homogeneous tissue where closed-form Green's functions represent the exact solution. Third, the training data was temperature imaging data from 23 MRgLITT oncological brain ablations (980 nm wavelength) from seven different patients. Results: To three significant figures, the descriptive statistics for μ-eff were 1470 m{sup −1} mean, 1360 m{sup −1} median, 369 m{sup −1} standard deviation, 933 m{sup −1} minimum and 2260 m{sup −1} maximum. The standard deviation normalized by the mean was 25.0%. The inverse problem took <30 minutes to optimize all 23 datasets. Conclusion: As expected, the inferred average is biased by underlying physics model. However, the standard deviation normalized by the mean is smaller than literature values and indicates an increased precision in the characterization of the optical parameters needed to plan MRgLITT procedures. This investigation demonstrates the potential for the optimization and validation of more sophisticated bioheat models that incorporate the uncertainty of the data into the predictions, e.g. stochastic finite element methods.« less

  15. Fiber optic sensor technology - An opportunity for smart aerospace structures

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Rogowski, R. S.; Claus, R. O.

    1988-01-01

    Fiber optic sensors provide the opportunity for fabricating materials with internal sensors which can serve as lifetime health monitors, analogous to a central nervous system. The embedded fiber optic sensors can be interrogated by various techniques to measure internal strain, temperature, pressure, acoustic waves and other parameters indicative of structural integrity. Experiments have been conducted with composite samples with embedded sensors to measure strain using optical time domain reflectometry, modal interference and an optical phase locked loop. Fiber optic sensors have been developed to detect acoustic emission and impact damage and have been demonstrated for cure monitoring. These sensors have the potential for lifetime monitoring of structural properties, providing real time nondestructive evaluation.

  16. Fiber optic sensors for corrosion detection

    NASA Technical Reports Server (NTRS)

    Smith, Alphonso C.

    1993-01-01

    The development of fiber optic sensors for the detection of a variety of material parameters has grown tremendously over the past several years. Additionally, the potential for analytical applications of fiber optic sensors have become more widely used. New pH sensors have also been developed using fiber optic techniques to detect fluorescence characteristics from immobilized fluorogenic reagent chemicals. The primary purpose of this research was to investigate the feasibility of using fiber optic sensors to detect the presence of Al(sup 3+) ions made in the process of environmental corrosion of aluminum materials. The Al(sup 3+) ions plus a variety of other type of metal ions can be detected using analytical techniques along with fiber optic sensors.

  17. Experimental realization of a subwavelength optical potential based on atomic dark state

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Subhankar, Sarthak; Rolston, Steven; Porto, James

    2017-04-01

    As a well-established tool optical lattice (OL) provides the unique opportunity to exploit the rich manybody physics. However, ``traditional'' OL, either via laser beam interference or direct projection with spatial light modulator, has a length scale around the wavelength (0.1 10 λ) that is set by diffraction, a fundamental limit from the wave nature of the light. Recent theoretical proposals suggest an alternative route, where the geometric potential, stemming from light-atom interaction, can be engineered to generate a much finer potential landscape which is essentially limited by the wave nature of the slow moving cold atoms. We report on the progress towards an experimental realization of these ideas using degenerate fermionic ytterbium atoms. Such subwavelength optical potential could open the gate to study physics beyond currently available parameter regimes, such as enhanced super-exchange coupling, magnetic dipolar coupling, and tunnel junction in atomtronics.

  18. Nanosecond electric modification of order parameters

    NASA Astrophysics Data System (ADS)

    Borshch, Volodymyr

    In this Dissertation, we study a nanosecond electro-optic response of a nematic liquid crystal in a geometry where an applied electric field E modifies the tensor order parameter but does not change the orientation of the optic axis (director N̂). We use nematics with negative dielectric anisotropy with the electric field applied perpendicularly to N̂. The field changes the dielectric tensor at optical frequencies (optic tensor), due to the following mechanisms: (a) nanosecond creation of biaxial orientational order; (b) uniaxial modification of the orientational order that occurs over the timescales of tens of nanoseconds, and (c) quenching of director fluctuations with a wide range of characteristic times up to milliseconds. We develop a model to describe the dynamics of all three mechanisms. We design the experimental conditions to selectively suppress the contributions from the quenching of director fluctuations (c) and from the biaxial order effect (a) and thus, separate the contributions of the three mechanisms in the electro-optic response. As a result, the experimental data can be well fitted with the model parameters. The analysis provides a rather detailed physical picture of how the liquid crystal responds to a strong electric field, E ˜ 108 V/m, on a timescale of nanoseconds. This work provides a useful guide in the current search of the biaxial nematic phase. Namely, the temperature dependence of the biaxial susceptibility allows one to estimate the temperature of the potential uniaxial-to-biaxial phase transition. An analysis of the quenching of director fluctuations indicates that on a timescale of nanoseconds, the classic model with constant viscoelastic material parameters might reach its limit of validity. The effect of nanosecond electric modification of the order parameter (NEMOP) can be used in applications in which one needs to achieve ultrafast (nanosecond) changes of optical characteristics, such as birefringence.

  19. Possible Experiment for the Demonstration of Neutron Waves Interaction with Spatially Oscillating Potential

    NASA Astrophysics Data System (ADS)

    Miloi, Mădălina Mihaela; Goryunov, Semyon; Kulin, German

    2018-04-01

    A wide range of problems in neutron optics is well described by a theory based on application of the effective potential model. It was assumed that the concept of the effective potential in neutron optics have a limited region of validity and ceases to be correct in the case of the giant acceleration of a matter. To test this hypothesis a new Ultra Cold neutron experiment for the observation neutron interaction with potential structure oscillating in space was proposed. The report is focused on the model calculations of the topography of sample surface that oscillate in space. These calculations are necessary to find an optimal parameters and geometry of the planned experiment.

  20. Investigations of dark, bright, combined dark-bright optical and other soliton solutions in the complex cubic nonlinear Schrödinger equation with δ-potential

    NASA Astrophysics Data System (ADS)

    Baskonus, Haci Mehmet; Sulaiman, Tukur Abdulkadir; Bulut, Hasan; Aktürk, Tolga

    2018-03-01

    In this study, using the extended sinh-Gordon equation expansion method, we construct the dark, bright, combined dark-bright optical, singular, combined singular solitons and singular periodic waves solutions to the complex cubic nonlinear Schrödinger equation with δ-potential. The conditions for the existence of the obtained solutions are given. To present the physical feature of the acquired result, the 2D and 3D graphs are plotted under the choice of suitable values of the parameters.

  1. Semimicroscopic, Lane-consistent nucleon-nucleus optical model potential up to 200 MeV

    NASA Astrophysics Data System (ADS)

    Bauge, Eric; Delaroche, Jean-Paul; Girod, Michel

    2000-10-01

    Our semimicroscopic optical model potential (E. Bauge et al., Phys. Rev. C 58), 1118 (1998). is re-evaluated in order to obtain a Lane-consistent description of (p,p), (n,n) and (p,n IAS) elastic scattering and reaction observables. The re-assessed nuclear matter interaction (which includes sizable renormalizations of the isovector potentials) is folded with microscopic HFB nuclear densities, producing OMPs that are free of adjustable parameters for nuclei with A >= 40. With Lane-consistency of the interaction, and the predictive nature of our HFB calculations, this scheme can be used to calculate observables for nuclei far from the stability line with good predictivity.

  2. Ovarian tissue characterization using bulk optical properties

    NASA Astrophysics Data System (ADS)

    Tavakoli, B.; Xu, Y.; Zhu, Q.

    2013-03-01

    Ovarian cancer, the deadliest of all gynecologic cancers, is not often found in its early stages due to few symptoms and no reliable screening test. Optical imaging has a great potential to improve the ovarian cancer detection and diagnosis. In this study we have characterized the bulk optical properties of 26 ex-vivo human ovaries using a Diffuse Optical Tomography system. The quantitative values indicated that, in the postmenopausal group, malignant ovaries showed significantly lower scattering coefficient than normal ones. The scattering parameter is largely related to the collagen content that has shown a strong correlation with the cancer development.

  3. Fibre Optic Sensors for Selected Wastewater Characteristics

    PubMed Central

    Chong, Su Sin; Abdul Aziz, A. R.; Harun, Sulaiman W.

    2013-01-01

    Demand for online and real-time measurements techniques to meet environmental regulation and treatment compliance are increasing. However the conventional techniques, which involve scheduled sampling and chemical analysis can be expensive and time consuming. Therefore cheaper and faster alternatives to monitor wastewater characteristics are required as alternatives to conventional methods. This paper reviews existing conventional techniques and optical and fibre optic sensors to determine selected wastewater characteristics which are colour, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). The review confirms that with appropriate configuration, calibration and fibre features the parameters can be determined with accuracy comparable to conventional method. With more research in this area, the potential for using FOS for online and real-time measurement of more wastewater parameters for various types of industrial effluent are promising. PMID:23881131

  4. Multi-Modal Nano-Probes for Radionuclide and 5-color Near Infrared Optical Lymphatic Imaging

    PubMed Central

    Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A. S.; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H.; Choyke, Peter L.; Urano, Yasuteru

    2008-01-01

    Current contrast agents generally have one function and can only be imaged in monochrome, therefore, the majority of imaging methods can only impart uniparametric information. A single nano-particle has the potential to be loaded with multiple payloads. Such multi-modality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multi-color in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near infrared emission. To this end, we synthesized nano-probes with multi-modal and multi-color potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and 5-color near infrared optical lymphatic imaging using a multiple excitation spectrally-resolved fluorescence imaging technique. PMID:19079788

  5. Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging.

    PubMed

    Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A S; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H; Choyke, Peter L; Urano, Yasuteru

    2007-11-01

    Current contrast agents generally have one function and can only be imaged in monochrome; therefore, the majority of imaging methods can only impart uniparametric information. A single nanoparticle has the potential to be loaded with multiple payloads. Such multimodality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multicolor in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near-infrared emission. To this end, we synthesized nanoprobes with multimodal and multicolor potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and five-color near-infrared optical lymphatic imaging using a multiple-excitation spectrally resolved fluorescence imaging technique.

  6. Characterization of the Optical Properties of Turbid Media by Supervised Learning of Scattering Patterns.

    PubMed

    Hassaninia, Iman; Bostanabad, Ramin; Chen, Wei; Mohseni, Hooman

    2017-11-10

    Fabricated tissue phantoms are instrumental in optical in-vitro investigations concerning cancer diagnosis, therapeutic applications, and drug efficacy tests. We present a simple non-invasive computational technique that, when coupled with experiments, has the potential for characterization of a wide range of biological tissues. The fundamental idea of our approach is to find a supervised learner that links the scattering pattern of a turbid sample to its thickness and scattering parameters. Once found, this supervised learner is employed in an inverse optimization problem for estimating the scattering parameters of a sample given its thickness and scattering pattern. Multi-response Gaussian processes are used for the supervised learning task and a simple setup is introduced to obtain the scattering pattern of a tissue sample. To increase the predictive power of the supervised learner, the scattering patterns are filtered, enriched by a regressor, and finally characterized with two parameters, namely, transmitted power and scaled Gaussian width. We computationally illustrate that our approach achieves errors of roughly 5% in predicting the scattering properties of many biological tissues. Our method has the potential to facilitate the characterization of tissues and fabrication of phantoms used for diagnostic and therapeutic purposes over a wide range of optical spectrum.

  7. Evanescent-wave bonding between optical waveguides.

    PubMed

    Povinelli, Michelle L; Loncar, Marko; Ibanescu, Mihai; Smythe, Elizabeth J; Johnson, Steven G; Capasso, Federico; Joannopoulos, John D

    2005-11-15

    Forces arising from overlap between the guided waves of parallel, microphotonic waveguides are calculated. Both attractive and repulsive forces, determined by the choice of relative input phase, are found. Using realistic parameters for a silicon-on-insulator material system, we estimate that the forces are large enough to cause observable displacements. Our results illustrate the potential for a broader class of optically tunable microphotonic devices and microstructured artificial materials.

  8. Signal and response properties indicate an optoacoustic effect underlying the intra-cochlear laser-optical stimulation

    NASA Astrophysics Data System (ADS)

    Kallweit, Nicole; Baumhoff, Peter; Krueger, Alexander; Tinne, Nadine; Heisterkamp, Alexander; Kral, Andrej; Maier, Hannes; Ripken, Tammo

    2016-02-01

    Optical cochlea stimulation is under investigation as a potential alternative to conventional electric cochlea implants in treatment of sensorineural hearing loss. If direct optical stimulation of spiral ganglion neurons (SGNs) would be feasible, a smaller stimulation volume and, therefore, an improved frequency resolution could be achieved. However, it is unclear whether the mechanism of optical stimulation is based on direct neuronal stimulation or on optoacoustics. Animal studies on hearing vs. deafened guinea pigs already identified the optoacoustic effect as potential mechanism for intra-cochlear optical stimulation. In order to characterize the optoacoustic stimulus more thoroughly the acoustic signal along the beam path of a pulsed laser in water was quantified and compared to the neuronal response properties of hearing guinea pigs stimulated with the same laser parameters. Two pulsed laser systems were used for analyzing the influence of variable pulse duration, pulse energy, pulse peak power and absorption coefficient. Preliminary results of the experiments in water and in vivo suggesta similar dependency of response signals on the applied laser parameters: Both datasets show an onset and offset signal at the beginning and the end of the laser pulse. Further, the resulting signal amplitude depends on the pulse peak power as well as the temporal development of the applied laser pulse. The data indicates the maximum of the first derivative of power as the decisive factor. In conclusion our findings strengthen the hypothesis of optoacoustics as the underlying mechanism for optical stimulation of the cochlea.

  9. Unified Model Deformation and Flow Transition Measurements

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W.; Liu, Tianshu; Garg, Sanjay; Bell, James H.; Morgan, Daniel G.

    1999-01-01

    The number of optical techniques that may potentially be used during a given wind tunnel test is continually growing. These include parameter sensitive paints that are sensitive to temperature or pressure, several different types of off-body and on-body flow visualization techniques, optical angle-of-attack (AoA), optical measurement of model deformation, optical techniques for determining density or velocity, and spectroscopic techniques for determining various flow field parameters. Often in the past the various optical techniques were developed independently of each other, with little or no consideration for other techniques that might also be used during a given test. Recently two optical techniques have been increasingly requested for production measurements in NASA wind tunnels. These are the video photogrammetric (or videogrammetric) technique for measuring model deformation known as the video model deformation (VMD) technique, and the parameter sensitive paints for making global pressure and temperature measurements. Considerations for, and initial attempts at, simultaneous measurements with the pressure sensitive paint (PSP) and the videogrammetric techniques have been implemented. Temperature sensitive paint (TSP) has been found to be useful for boundary-layer transition detection since turbulent boundary layers convect heat at higher rates than laminar boundary layers of comparable thickness. Transition is marked by a characteristic surface temperature change wherever there is a difference between model and flow temperatures. Recently, additional capabilities have been implemented in the target-tracking videogrammetric measurement system. These capabilities have permitted practical simultaneous measurements using parameter sensitive paint and video model deformation measurements that led to the first successful unified test with TSP for transition detection in a large production wind tunnel.

  10. Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis.

    PubMed

    Kolbe, Scott C; van der Walt, Anneke; Butzkueven, Helmut; Klistorner, Alexander; Egan, Gary F; Kilpatrick, Trevor J

    2016-01-01

    Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of -2.6% per annum (control = -0.51%; p = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R = 0.450, p = 0.006; RD: R = -0.428, p = 0.009; MD: R = -0.365, p = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R = 0.489, p = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage.

  11. Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis

    PubMed Central

    van der Walt, Anneke; Butzkueven, Helmut; Klistorner, Alexander; Egan, Gary F.; Kilpatrick, Trevor J.

    2016-01-01

    Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of −2.6% per annum (control = −0.51%; p = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R = 0.450, p = 0.006; RD: R = −0.428, p = 0.009; MD: R = −0.365, p = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R = 0.489, p = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage. PMID:27555964

  12. A method of rapidly evaluating image quality of NED optical system

    NASA Astrophysics Data System (ADS)

    Sun, Qi; Qiu, Chuankai; Yang, Huan

    2014-11-01

    In recent years, with the development of technology of micro-display, advanced optics and the software and hardware, near-to-eye display ( NED) optical system will have a wide range of potential applications in the fields of amusement and virtual reality. However, research on the evaluating image quality of this kind optical system is comparatively lagging behind. Although now there are some methods and equipment for evaluation, they can't be applied in commercial production because of their complex operation and inaccuracy. In this paper, an academic method is proposed and a Rapid Evaluation System (RES) is designed to evaluate the image of optical system rapidly and exactly. Firstly, a set of parameters that eyes are sensitive to and also express the quality of system should be extracted and quantized to be criterion, so the evaluation standards can be established. Then, some parameters can be detected by RES consisted of micro-display, CCD camera and computer and so on. By process of scaling, the measuring results of the RES are exact and creditable, relationship between object measurement, subjective evaluation and the RES will be established. After that, image quality of optical system can be evaluated just by detecting parameters of that. The RES is simple and the results of evaluation are exact and keeping with human vision. So the method can be used not only for optimizing design of optical system, but also for evaluation in commercial production.

  13. Integrated optical signal processing with magnetostatic waves

    NASA Technical Reports Server (NTRS)

    Fisher, A. D.; Lee, J. N.

    1984-01-01

    Magneto-optical devices based on Bragg diffraction of light by magnetostatic waves (MSW's) offer the potential of large time-bandwidth optical signal processing at microwave frequencies of 1 to 20 GHz and higher. A thin-film integrated-optical configuration, with the interacting MSW and guided-optical wave both propagating in a common ferrite layer, is necessary to avoid shape-factor demagnetization effects. The underlying theory of the MSW-optical interaction is outlined, including the development of expressions for optical diffraction efficiency as a function of MSW power and other relevant parameters. Bradd diffraction of guided-optical waves by transversely-propagating magnetostatic waves and collinear TE/TM mode conversion included by MSW's have been demonstrated in yttrium iron garnet (YIG) thin films. Diffraction levels as large as 4% (7 mm interaction length) and a modulation dynamic range of approx 30 dB have been observed. Advantages of these MSW-based devices over the analogous acousto-optical devices include: much greater operating frequencies, tunability of the MSW dispersion relation by varying either the RF frequency or the applied bias magnetic field, simple broad-band MSW transducer structures (e.g., a single stripline), and the potential for very high diffraction efficiencies.

  14. Tight focusing of radially polarized circular Airy vortex beams

    NASA Astrophysics Data System (ADS)

    Chen, Musheng; Huang, Sujuan; Shao, Wei

    2017-11-01

    Tight focusing properties of radially polarized circular Airy vortex beams (CAVB) are studied numerically. The light field expressions for the focused fields are derived based on vectorial Debye theory. We also study the relationship between focal profiles, such as light intensity distribution, radius of focal spot and focal length, and the parameters of CAVB. Numerical results demonstrate that we can generate a radially polarized CAVB with super-long focal length, super-strong longitudinal intensity or subwavelength focused spot at the focal plane by properly choosing the parameters of incident light and high numerical aperture (NA) lens. These results have potential applications for optical trapping, optical storage and particle acceleration.

  15. Application Of Optical Techniques To Command, Control, And Communications (C3) Systems

    NASA Astrophysics Data System (ADS)

    Weinberg, M.; Steensma, P. D.

    1981-02-01

    This paper identifies and discusses specific applications of the optical transmission technology to various Command Control and Communications (C3) systems. Candidate C3 systems will first be identified and discussed briefly. These will include: 407L/485L Tactical Air Defense Systems (USAF) TAOC-85 Tactical Air Operations Central (USMC) SACDIN Strategic Air Command Digital Integrated Network (USAF) MX-C3 Missile "X" Command Control Communications Network The first tr are classified as tactical C3 systems while the latter two are classified as strategic C systems. Potential optical applications will be identified along with the benefits derived. Each application will be discussed with key parameters, cost performance benefits, potential problem areas, time frame for development identified.

  16. Molecular effective coverage surface area of optical clearing agents for predicting optical clearing potential

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Ma, Ning; Zhu, Dan

    2015-03-01

    The improvement of methods for optical clearing agent prediction exerts an important impact on tissue optical clearing technique. The molecular dynamic simulation is one of the most convincing and simplest approaches to predict the optical clearing potential of agents by analyzing the hydrogen bonds, hydrogen bridges and hydrogen bridges type forming between agents and collagen. However, the above analysis methods still suffer from some problem such as analysis of cyclic molecule by reason of molecular conformation. In this study, a molecular effective coverage surface area based on the molecular dynamic simulation was proposed to predict the potential of optical clearing agents. Several typical cyclic molecules, fructose, glucose and chain molecules, sorbitol, xylitol were analyzed by calculating their molecular effective coverage surface area, hydrogen bonds, hydrogen bridges and hydrogen bridges type, respectively. In order to verify this analysis methods, in vitro skin samples optical clearing efficacy were measured after 25 min immersing in the solutions, fructose, glucose, sorbitol and xylitol at concentration of 3.5 M using 1951 USAF resolution test target. The experimental results show accordance with prediction of molecular effective coverage surface area. Further to compare molecular effective coverage surface area with other parameters, it can show that molecular effective coverage surface area has a better performance in predicting OCP of agents.

  17. High-resolution x-ray guided three-dimensional diffuse optical tomography of joint tissues in hand osteoarthritis: Morphological and functional assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan Zhen; Zhang Qizhi; Sobel, Eric S.

    Purpose: The aim of this study was to investigate the potential use of multimodality functional imaging techniques to identify the quantitative optical findings that can be used to distinguish between osteoarthritic and normal finger joints. Methods: Between 2006 and 2009, the distal interphalangeal finger joints from 40 female subjects including 22 patients and 18 healthy controls were examined clinically and scanned by a hybrid imaging system. This system integrated x-ray tomosynthetic setup with a diffuse optical imaging system. Optical absorption and scattering images were recovered based on a regularization-based hybrid reconstruction algorithm. A receiver operating characteristic curve was used tomore » calculate the statistical significance of specific optical features obtained from osteoarthritic and healthy joints groups. Results: The three-dimensional optical and x-ray images captured made it possible to quantify optical properties and joint space width of finger joints. Based on the recovered optical absorption and scattering parameters, the authors observed statistically significant differences between healthy and osteoarthritis finger joints. Conclusions: The statistical results revealed that sensitivity and specificity values up to 92% and 100%, respectively, can be achieved when optical properties of joint tissues were used as classifiers. This suggests that these optical imaging parameters are possible indicators for diagnosing osteoarthritis and monitoring its progression.« less

  18. Computational analysis of the effectiveness of blood flushing with saline injection from an intravascular diagnostic catheter

    PubMed Central

    Ghata, Narugopal; Aldredge, Ralph C.; Bec, Julien; Marcu, Laura

    2015-01-01

    SUMMARY Optical techniques including fluorescence lifetime spectroscopy have demonstrated potential as a tool for study and diagnosis of arterial vessel pathologies. However, their application in the intravascular diagnostic procedures has been hampered by the presence of blood hemoglobin that affects the light delivery to and the collection from the vessel wall. We report a computational fluid dynamics model that allows for the optimization of blood flushing parameters in a manner that minimizes the amount of saline needed to clear the optical field of view and reduces any adverse effects caused by the external saline jet. A 3D turbulence (k−ω) model was employed for Eulerian–Eulerian two-phase flow to simulate the flow inside and around a side-viewing fiber-optic catheter. Current analysis demonstrates the effects of various parameters including infusion and blood flow rates, vessel diameters, and pulsatile nature of blood flow on the flow structure around the catheter tip. The results from this study can be utilized in determining the optimal flushing rate for given vessel diameter, blood flow rate, and maximum wall shear stress that the vessel wall can sustain and subsequently in optimizing the design parameters of optical-based intravascular catheters. PMID:24953876

  19. Effect of optic neuritis on progressive axonal damage in multiple sclerosis patients.

    PubMed

    Garcia-Martin, E; Pueyo, V; Ara, J R; Almarcegui, C; Martin, J; Pablo, L; Dolz, I; Sancho, E; Fernandez, F J

    2011-07-01

    The objective of this research was to study the effect of optic neuritis (ON) on axonal damage in multiple sclerosis (MS) patients. Specifically, we compared changes over 2 years in the retinal nerve fibre layer (RNFL) between affected and contralateral eyes in MS patients with a prior history of ON. Thirty-four patients with one unilateral definitive episode of ON were included and underwent a complete ophthalmic examination, optical coherence tomography (OCT), scanning laser polarimetry, visual evoked potentials (VEP) and pattern electroretinogram (pERG). All patients were re-evaluated at 12 and 24 months. Parameters were compared between ON-affected and contralateral eyes in an initial exploration and over the course of the follow-up. Correlations between parameter changes were analysed. RNFL thickness and functional parameters showed more affection in ON eyes (p ≤ 0.05), but changes in measurements during the study were similar between both groups of eyes. Progressive axonal loss can be detected in the optic nerve, but ON is not a risk factor for increased chronic damage in MS patients without ophthalmic relapses. Loss of the RNFL is caused by progressive degeneration associated with the disease.

  20. Structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Benahmed, A.; Bouhemadou, A.; Alqarni, B.; Guechi, N.; Al-Douri, Y.; Khenata, R.; Bin-Omran, S.

    2018-05-01

    First-principles calculations were performed to investigate the structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba) using two complementary approaches based on density functional theory. The pseudopotential plane-wave method was used to explore the structural and elastic properties whereas the full-potential linearised augmented plane wave approach was used to study the structural, electronic, optical and thermoelectric properties. The calculated structural parameters are in good consistency with the corresponding measured ones. The single-crystal and polycrystalline elastic constants and related properties were examined in details. The electronic properties, including energy band dispersions, density of states and charge-carrier effective masses, were computed using Tran-Blaha modified Becke-Johnson functional for the exchange-correlation potential. It is found that both studied compounds are direct band gap semiconductors. Frequency-dependence of the linear optical functions were predicted for a wide photon energy range up to 15 eV. Charge carrier concentration and temperature dependences of the basic parameters of the thermoelectric properties were explored using the semi-classical Boltzmann transport model. Our calculations unveil that the studied compounds are characterised by a high thermopower for both carriers, especially the p-type conduction is more favourable.

  1. Multi-parameter measurements using optical fibre long period gratings for indoor air quality monitoring

    NASA Astrophysics Data System (ADS)

    Hromadka, J.; Korposh, S.; Partridge, M. C.; James, S.; Davis, F.; Crump, D.; Lee, S.-W.; Tatam, R. P.

    2017-04-01

    An array of three long period gratings (LPGs) fabricated in a single optical fibre and multiplexed in the wavelength domain was used to measure simultaneously temperature, relative humidity (RH) and volatile organic compounds (VOCs). Each LPG sensor was designed to optimize its response to a desired measurand. The LPGs were fabricated with periods such that they operated at or near the phase matching turning point. The sensors were calibrated in the laboratory and the simultaneous measurement of the key indoor air quality parameters was undertaken in laboratory and office environments. It was demonstrated successfully that the data produced by the LPG sensor array under real conditions was in a good agreement with that produced by commercially available sensors. Further, the potential application of fibre optic sensors for VOCs detection at high levels has been demonstrated.

  2. Electronic and optical properties of RESn{sub 3} (RE=Pr & Nd) intermetallics: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagare, G., E-mail: gita-pagare@yahoo.co.in; Abraham, Jisha A.; Department of Physics, National Defence Academy, Pune-411023

    2015-06-24

    A theoretical study of structural, electronic and optical properties of RESn{sub 3} (RE = Pr & Nd) intermetallics have been investigated systematically using first principles density functional theory. The calculations are carried out within the PBE-GGA and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and the calculated lattice parameters show well agreement with the experimental results. We first time predict elastic constants for these compounds. From energy dispersion curves, it is found that these compounds are metallic in nature. The linearmore » optical response of these compounds are also studied and the higher value of static dielectric constant shows the possibility to use them as good dielectric materials.« less

  3. The effect of laser ablation parameters on optical limiting properties of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Gursoy, Irmak; Yaglioglu, Halime Gul

    2017-09-01

    This paper presents the effect of laser ablation parameters on optical limiting properties of silver nanoparticles. The current applications of lasers such as range finding, guidance, detection, illumination and designation have increased the potential of damaging optical imaging systems or eyes temporary or permanently. The applications of lasers introduce risks for sensors or eyes, when laser power is higher than damage threshold of the detection system. There are some ways to protect these systems such as neutral density (nd) filters, shutters, etc. However, these limiters reduce the total amount of light that gets into the system. Also, response time of these limiters may not be fast enough to prevent damage and cause precipitation in performance due to deprivation of transmission or contrast. Therefore, optical limiting filters are needed that is transparent for low laser intensities and limit or block the high laser intensities. Metal nanoparticles are good candidates for such optical limiting filters for ns pulsed lasers or CW lasers due to their high damage thresholds. In this study we investigated the optical limiting performances of silver nanoparticles produced by laser ablation technique. A high purity silver target immersed in pure water was ablated with a Nd:YAG nanosecond laser at 532 nm. The effect of altering laser power and ablation time on laser ablation efficiency of nanoparticles was investigated experimentally and optimum values were specified. Open aperture Zscan experiment was used to investigate the effect of laser ablation parameters on the optical limiting performances of silver nanoparticles in pure water. It was found that longer ablation time decreases the optical limiting threshold. These results are useful for silver nanoparticles solutions to obtain high performance optical limiters.

  4. Pressure sensitivity analysis of fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Mrad, Nezih; Sridharan, Vasant; Kazemi, Alex

    2014-09-01

    Recent development in fiber optic sensing technology has mainly focused on discrete sensing, particularly, sensing systems with potential multiplexing and multi-parameter capabilities. Bragg grating fiber optic sensors have emerged as the non-disputed champion for multiplexing and simultaneous multi-parameter sensing for emerging high value structural components, advanced processing and manufacturing capabilities and increased critical infrastructure resilience applications. Although the number of potential applications for this sensing technology is large and spans the domains of medicine, manufacturing, aerospace, and public safety; critical issues such as fatigue life, sensitivity, accuracy, embeddability, material/sensor interface integrity, and universal demodulation systems still need to be addressed. The purpose of this paper is to primarily evaluate Commercial-Of-The-Shelf (COTS) Fiber Bragg Grating (FBG) sensors' sensitivity to pressure, often neglected in several applications. The COTS fiber sensitivity to pressure is further evaluated for two types of coatings (Polyimide and Acrylate), and different arrangements (arrayed and single).

  5. Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation.

    PubMed

    Yang, Y; Liu, A Q; Chin, L K; Zhang, X M; Tsai, D P; Lin, C L; Lu, C; Wang, G P; Zheludev, N I

    2012-01-31

    Transformation optics represents a new paradigm for designing light-manipulating devices, such as cloaks and field concentrators, through the engineering of electromagnetic space using materials with spatially variable parameters. Here we analyse liquid flowing in an optofluidic waveguide as a new type of controllable transformation optics medium. We show that a laminar liquid flow in an optofluidic channel exhibits spatially variable dielectric properties that support novel wave-focussing and interference phenomena, which are distinctively different from the discrete diffraction observed in solid waveguide arrays. Our work provides new insight into the unique optical properties of optofluidic waveguides and their potential applications.

  6. Optics measurement algorithms and error analysis for the proton energy frontier

    NASA Astrophysics Data System (ADS)

    Langner, A.; Tomás, R.

    2015-03-01

    Optics measurement algorithms have been improved in preparation for the commissioning of the LHC at higher energy, i.e., with an increased damage potential. Due to machine protection considerations the higher energy sets tighter limits in the maximum excitation amplitude and the total beam charge, reducing the signal to noise ratio of optics measurements. Furthermore the precision in 2012 (4 TeV) was insufficient to understand beam size measurements and determine interaction point (IP) β -functions (β*). A new, more sophisticated algorithm has been developed which takes into account both the statistical and systematic errors involved in this measurement. This makes it possible to combine more beam position monitor measurements for deriving the optical parameters and demonstrates to significantly improve the accuracy and precision. Measurements from the 2012 run have been reanalyzed which, due to the improved algorithms, result in a significantly higher precision of the derived optical parameters and decreased the average error bars by a factor of three to four. This allowed the calculation of β* values and demonstrated to be fundamental in the understanding of emittance evolution during the energy ramp.

  7. Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography.

    PubMed

    Jeoung, Jin Wook; Choi, Yun Jeong; Park, Ki Ho; Kim, Dong Myung

    2013-07-01

    We evaluated the diagnostic accuracy of macular ganglion cell-inner plexiform layer (GCIPL) measurements using a high-definition optical coherence tomography (Cirrus HD-OCT) ganglion cell analysis algorithm for detecting early and moderate-to-severe glaucoma. Totals of 119 normal subjects and 306 glaucoma patients (164 patients with early glaucoma and 142 with moderate-to-severe glaucoma) were enrolled from the Macular Ganglion Cell Imaging Study. Macular GCIPL, peripapillary retinal nerve fiber layer (RNFL) thickness, and optic nerve head (ONH) parameters were measured in each subject. Areas under the receiver operating characteristic curves (AUROCs) were calculated and compared. Based on the internal normative database, the sensitivity and specificity for detecting early and moderate-to-severe glaucoma were calculated. There was no statistically significant difference between the AUROCs for the best OCT parameters. For detecting early glaucoma, the sensitivity of the Cirrus GCIPL parameters ranged from 26.8% to 73.2% and that of the Cirrus RNFL parameters ranged from 6.1% to 61.6%. For the early glaucoma group, the best parameter from the GCIPL generally had a higher sensitivity than those of the RNFL and ONH parameters with comparable specificity (P < 0.05, McNemar's test). There were no significant differences between the AUROCs for Cirrus GCIPL, RNFL, and ONH parameters, indicating that these maps have similar diagnostic potentials for glaucoma. The minimum GCIPL showed better glaucoma diagnostic performance than the other parameters at comparable specificities. However, other GCIPL parameters showed performances comparable to those of the RNFL parameters.

  8. Optical response in a laser-driven quantum pseudodot system

    NASA Astrophysics Data System (ADS)

    Kilic, D. Gul; Sakiroglu, S.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2017-03-01

    We investigate theoretically the intense laser-induced optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system under an uniform magnetic field. The effects of non-resonant, monochromatic intense laser field upon the system are treated within the framework of high-frequency Floquet approach in which the system is supposed to be governed by a laser-dressed potential. Linear and nonlinear absorption coefficients and relative changes in the refractive index are obtained by means of the compact-density matrix approach and iterative method. The results of numerical calculations for a typical GaAs quantum dot reveal that the optical response depends strongly on the magnitude of external magnetic field and characteristic parameters of the confinement potential. Moreover, we have demonstrated that the intense laser field modifies the confinement and thereby causes remarkable changes in the linear and nonlinear optical properties of the system.

  9. Self-Focusing and the Talbot Effect in Conformal Transformation Optics.

    PubMed

    Wang, Xiangyang; Chen, Huanyang; Liu, Hui; Xu, Lin; Sheng, Chong; Zhu, Shining

    2017-07-21

    Transformation optics has been used to propose various novel optical devices. With the help of metamaterials, several intriguing designs, such as invisibility cloaks, have been implemented. However, as the basic units should be much smaller than the working wavelengths to achieve the effective material parameters, and the sizes of devices should be much larger than the wavelengths of illumination to work within the light-ray approximation, it is a big challenge to implement an experimental system that works simultaneously for both geometric optics and wave optics. In this Letter, by using a gradient-index microstructured optical waveguide, we realize a device of conformal transformation optics (CTO) and demonstrate its self-focusing property for geometry optics and the Talbot effect for wave optics. In addition, the Talbot effect in such a system has a potential application to transfer digital information without diffraction. Our findings demonstrate the photon controlling ability of CTO in a feasible experiment system.

  10. Self-Focusing and the Talbot Effect in Conformal Transformation Optics

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyang; Chen, Huanyang; Liu, Hui; Xu, Lin; Sheng, Chong; Zhu, Shining

    2017-07-01

    Transformation optics has been used to propose various novel optical devices. With the help of metamaterials, several intriguing designs, such as invisibility cloaks, have been implemented. However, as the basic units should be much smaller than the working wavelengths to achieve the effective material parameters, and the sizes of devices should be much larger than the wavelengths of illumination to work within the light-ray approximation, it is a big challenge to implement an experimental system that works simultaneously for both geometric optics and wave optics. In this Letter, by using a gradient-index microstructured optical waveguide, we realize a device of conformal transformation optics (CTO) and demonstrate its self-focusing property for geometry optics and the Talbot effect for wave optics. In addition, the Talbot effect in such a system has a potential application to transfer digital information without diffraction. Our findings demonstrate the photon controlling ability of CTO in a feasible experiment system.

  11. Effects of non-Gaussian Brownian motion on direct force optical tweezers measurements of the electrostatic forces between pairs of colloidal particles.

    PubMed

    Raudsepp, Allan; A K Williams, Martin; B Hall, Simon

    2016-07-01

    Measurements of the electrostatic force with separation between a fixed and an optically trapped colloidal particle are examined with experiment, simulation and analytical calculation. Non-Gaussian Brownian motion is observed in the position of the optically trapped particle when particles are close and traps weak. As a consequence of this motion, a simple least squares parameterization of direct force measurements, in which force is inferred from the displacement of an optically trapped particle as separation is gradually decreased, contains forces generated by the rectification of thermal fluctuations in addition to those originating directly from the electrostatic interaction between the particles. Thus, when particles are close and traps weak, simply fitting the measured direct force measurement to DLVO theory extracts parameters with modified meanings when compared to the original formulation. In such cases, however, physically meaningful DLVO parameters can be recovered by comparing the measured non-Gaussian statistics to those predicted by solutions to Smoluchowski's equation for diffusion in a potential.

  12. Electronic and optical properties of graphene-like InAs: An ab initio study

    NASA Astrophysics Data System (ADS)

    Sohrabi, Leila; Boochani, Arash; Ali Sebt, S.; Mohammad Elahi, S.

    2018-03-01

    The present work initially investigates structural, optical, and electronic properties of graphene-like InAs by using the full potential linear augmented plane wave method in the framework of density functional theory and is then compared with the bulk Indium Arsenide in the wurtzite phase. The lattice parameters are optimized with GGA-PBE and LDA approximations for both 2D- and 3D-InAs. In order to study the electronic properties of graphene-like InAs and bulk InAs in the wurtzite phase, the band gap is calculated by GGA-PBG and GGA-EV approximations. Moreover, optical parameters of graphene-like InAs and bulk InAs such as the real and imaginary parts of dielectric function, electron energy loss function, refractivity, extinction and absorption coefficients, and optical conductivity are investigated. Plasmonic frequencies of 2D- and 3D-InAs are also calculated by using maximum electron energy loss function and the roots of the real part of the dielectric function.

  13. Systematic study of the elastic, optoelectronic, and thermoelectric behavior of MRh2O4 (M = Zn, Cd) based on first principles calculations

    NASA Astrophysics Data System (ADS)

    Abbas, Syed Adeel; Rashid, Muhammad; Faridi, Muhammad Ayub; Saddique, Muhammad Bilal; Mahmood, Asif; Ramay, Shahid Muhammad

    2018-02-01

    In the present study, we performed first principles total energy calculations to explore the electronic, elastic, optical, and thermoelectric behavior of MRh2O4(M = Zn, Cd) spinel oxides. We employed Perdew-Burke-Ernzerhof-sol as well as the modified Becke and Johnson potential to compute the elastic, optoelectronic, and thermoelectric behavior of MRh2O4(M = Zn, Cd). The optical behavior was investigated by calculating the complex dielectric constant, refractive index, optical reflectivity, absorption coefficient, and optical conductivity. All of the optical parameters indicated a shift to lower energies as the atomic size increased from Zn to Cd, thereby suggesting potential applications of the spinel oxides in optoelectronic device. Moreover, the thermoelectric properties of MRh2O4(M = Zn, Cd) spinel oxides were computed in terms of the electrical conductivity (σ), Seebeck coefficient (S), thermal conductivity (k), and power factor (σS2) using the BoltzTraP code.

  14. Medical smart textiles based on fiber optic technology: an overview.

    PubMed

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-04-13

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.

  15. Medical Smart Textiles Based on Fiber Optic Technology: An Overview

    PubMed Central

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-01-01

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest. PMID:25871010

  16. HiPEP Ion Optics System Evaluation Using Gridlets

    NASA Technical Reports Server (NTRS)

    Willliams, John D.; Farnell, Cody C.; Laufer, D. Mark; Martinez, Rafael A.

    2004-01-01

    Experimental measurements are presented for sub-scale ion optics systems comprised of 7 and 19 aperture pairs with geometrical features that are similar to the HiPEP ion optics system. Effects of hole diameter and grid-to-grid spacing are presented as functions of applied voltage and beamlet current. Recommendations are made for the beamlet current range where the ion optics system can be safely operated without experiencing direct impingement of high energy ions on the accelerator grid surface. Measurements are also presented of the accelerator grid voltage where beam plasma electrons backstream through the ion optics system. Results of numerical simulations obtained with the ffx code are compared to both the impingement limit and backstreaming measurements. An emphasis is placed on identifying differences between measurements and simulation predictions to highlight areas where more research is needed. Relatively large effects are observed in simulations when the discharge chamber plasma properties and ion optics geometry are varied. Parameters investigated using simulations include the applied voltages, grid spacing, hole-to-hole spacing, doubles-to-singles ratio, plasma potential, and electron temperature; and estimates are provided for the sensitivity of impingement limits on these parameters.

  17. Magneto-optical properties of semi-parabolic plus semi-inverse squared quantum wells

    NASA Astrophysics Data System (ADS)

    Tung, Luong V.; Vinh, Pham T.; Phuc, Huynh V.

    2018-06-01

    We theoretically study the optical absorption in a quantum well with the semi-parabolic potential plus the semi-inverse squared potential (SPSIS) in the presence of a static magnetic field in which both one- and two-photon absorption processes have been taken into account. The expression of the magneto-optical absorption coefficient (MOAC) is expressed by the second-order golden rule approximation including the electron-LO phonon interaction. We also use the profile method to obtain the full width at half maximum (FWHM) of the absorption peaks. Our numerical results show that either MOAC or FWHM strongly depends on the confinement frequency, temperature, and magnetic field but their dependence on the parameter β is very weak. The temperature dependence of FWHM is consistent with the previous theoretical and experimental works.

  18. Effects of time-temperature profiles on glow curves of germanium-doped optical fibre

    NASA Astrophysics Data System (ADS)

    Lam, S. E.; Alawiah, A.; Bradley, D. A.; Mohd Noor, N.

    2017-08-01

    The Germanium (Ge) doped silica optical fibres have demonstrated the great potential to be developed as a thermoluminescent (TL) dosimeter that can be used in various applications in radiotherapy, diagnostic radiology, UV dosimetry system and food irradiation industry. Different time-temperature profile (TTP) parameters of the TL reader have been employed by many researchers in various of TL studies. Nevertheless, none of those studies adequately addressed the effects of the reader's preheat temperature and heating rate on the kinetic parameters of the TL glow curve specifically, the Ge-doped silica optical fibres. This research addresses the issue of TTP parameters with special attention to the determination of the kinetic parameters of the glow curve. The glow curve responses were explored and the kinetic parameters were analyzed by the WinGCF software, to show the effect of the preheat temperature and heating rate of the reader on Ge-doped fibre irradiated with 18 Gy of 6 MV photons radiation. The effect of TTP parameters was discussed and compared against the commercial fibre and tailored made fibre of 6 mol% Ge-doped of flat and cylindrical shape. The deconvolution of glow peaks and the kinetic parameters were obtained by the WinGCF software. This enables to fit accurately (1.5%

  19. Reconfigurable nanomechanical photonic metamaterials

    NASA Astrophysics Data System (ADS)

    Zheludev, Nikolay I.; Plum, Eric

    2016-01-01

    The changing balance of forces at the nanoscale offers the opportunity to develop a new generation of spatially reconfigurable nanomembrane metamaterials in which electromagnetic Coulomb, Lorentz and Ampère forces, as well as thermal stimulation and optical signals, can be engaged to dynamically change their optical properties. Individual building blocks of such metamaterials, the metamolecules, and their arrays fabricated on elastic dielectric membranes can be reconfigured to achieve optical modulation at high frequencies, potentially reaching the gigahertz range. Mechanical and optical resonances enhance the magnitude of actuation and optical response within these nanostructures, which can be driven by electric signals of only a few volts or optical signals with power of only a few milliwatts. We envisage switchable, electro-optical, magneto-optical and nonlinear metamaterials that are compact and silicon-nanofabrication-technology compatible with functionalities surpassing those of natural media by orders of magnitude in some key design parameters.

  20. Predicting the optical observables for nucleon scattering on even-even actinides

    NASA Astrophysics Data System (ADS)

    Martyanov, D. S.; Soukhovitskiĩ, E. Sh.; Capote, R.; Quesada, J. M.; Chiba, S.

    2017-09-01

    The previously derived Lane consistent dispersive coupled-channel optical model for nucleon scattering on 232Th and 238U nuclei is extended to describe scattering on even-even actinides with Z = 90-98. A soft-rotator-model (SRM) description of the low-lying nuclear structure is used, where the SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate the coupling matrix elements of the generalized optical model. The “effective” deformations that define inter-band couplings are derived from the SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a dynamic monopolar term to the deformed potential, leading to additional couplings between rotational bands. The fitted static deformation parameters are in very good agreement with those derived by Wang and collaborators using the Weizsäcker-Skyrme global mass model (WS4), allowing use of the latter to predict cross sections for nuclei without experimental data. A good description of the scarce “optical” experimental database is achieved. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus formation cross sections, which is significantly different from that calculated with rigid-rotor potentials coupling the ground-state rotational band. The derived parameters can be used to describe both neutron- and proton-induced reactions. Supported by International Atomic Energy Agency, through the IAEA Research Contract 19263, by the Spanish Ministry of Economy and Competitivity under Contracts FPA2014-53290-C2-2-P and FPA2016-77689-C2-1-R.

  1. An optical potential for the statically deformed actinide nuclei derived from a global spherical potential

    NASA Astrophysics Data System (ADS)

    Al-Rawashdeh, S. M.; Jaghoub, M. I.

    2018-04-01

    In this work we test the hypothesis that a properly deformed spherical optical potential, used within a channel-coupling scheme, provides a good description for the scattering data corresponding to neutron induced reactions on the heavy, statically deformed actinides and other lighter deformed nuclei. To accomplish our goal, we have deformed the Koning-Delaroche spherical global potential and then used it in a channel-coupling scheme. The ground-state is coupled to a sufficient number of inelastic rotational channels belonging to the ground-state band to ensure convergence. The predicted total cross sections, elastic and inelastic angular distributions are in good agreement with the experimental data. As a further test, we compare our results to those obtained by a global channel-coupled optical model whose parameters were obtained by fitting elastic and inelastic angular distributions in addition to total cross sections. Our results compare quite well with those obtained by the fitted, channel-coupled optical model. Below neutron incident energies of about 1MeV, our results show that scattering into the rotational excited states of the ground-state band plays a significant role in the scattering process and must be explicitly accounted for using a channel-coupling scheme.

  2. Glass-based integrated optical splitters: engineering oriented research

    NASA Astrophysics Data System (ADS)

    Hao, Yinlei; Zheng, Weiwei; Yang, Jianyi; Jiang, Xiaoqing; Wang, Minghua

    2010-10-01

    Optical splitter is one of most typical device heavily demanded in implementation of Fiber To The Home (FTTH) system. Due to its compatibility with optical fibers, low propagation loss, flexibility, and most distinguishingly, potentially costeffectiveness, glass-based integrated optical splitters made by ion-exchange technology promise to be very attractive in application of optical communication networks. Aiming at integrated optical splitters applied in optical communication network, glass ion-exchange waveguide process is developed, which includes two steps: thermal salts ion-exchange and field-assisted ion-diffusion. By this process, high performance optical splitters are fabricated in specially melted glass substrate. Main performance parameters of these splitters, including maximum insertion loss (IL), polarization dependence loss (PDL), and IL uniformity are all in accordance with corresponding specifications in generic requirements for optic branching components (GR-1209-CORE). In this paper, glass based integrated optical splitters manufacturing is demonstrated, after which, engineering-oriented research work results on glass-based optical splitter are presented.

  3. Secure chaotic transmission of electrocardiography signals with acousto-optic modulation under profiled beam propagation.

    PubMed

    Almehmadi, Fares S; Chatterjee, Monish R

    2015-01-10

    Electrocardiography (ECG) signals are used for both medical purposes and identifying individuals. It is often necessary to encrypt this highly sensitive information before it is transmitted over any channel. A closed-loop acousto-optic hybrid device acting as a chaotic modulator is applied to ECG signals to achieve this encryption. Recently improved modeling of this approach using profiled optical beams has shown it to be very sensitive to key parameters that characterize the encryption and decryption process, exhibiting its potential for secure transmission of analog and digital signals. Here the encryption and decryption is demonstrated for ECG signals, both analog and digital versions, illustrating strong encryption without significant distortion. Performance analysis pertinent to both analog and digital transmission of the ECG waveform is also carried out using output signal-to-noise, signal-to-distortion, and bit-error-rate measures relative to the key parameters and presence of channel noise in the system.

  4. Accurate motion parameter estimation for colonoscopy tracking using a regression method

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.

    2010-03-01

    Co-located optical and virtual colonoscopy images have the potential to provide important clinical information during routine colonoscopy procedures. In our earlier work, we presented an optical flow based algorithm to compute egomotion from live colonoscopy video, permitting navigation and visualization of the corresponding patient anatomy. In the original algorithm, motion parameters were estimated using the traditional Least Sum of squares(LS) procedure which can be unstable in the context of optical flow vectors with large errors. In the improved algorithm, we use the Least Median of Squares (LMS) method, a robust regression method for motion parameter estimation. Using the LMS method, we iteratively analyze and converge toward the main distribution of the flow vectors, while disregarding outliers. We show through three experiments the improvement in tracking results obtained using the LMS method, in comparison to the LS estimator. The first experiment demonstrates better spatial accuracy in positioning the virtual camera in the sigmoid colon. The second and third experiments demonstrate the robustness of this estimator, resulting in longer tracked sequences: from 300 to 1310 in the ascending colon, and 410 to 1316 in the transverse colon.

  5. Aerosol Retrievals over the Ocean using Channel 1 and 2 AVHRR Data: A Sensitivity Analysis and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Geogdzhayev, Igor V.; Cairns, Brian; Rossow, William B.; Lacis, Andrew A.

    1999-01-01

    This paper outlines the methodology of interpreting channel 1 and 2 AVHRR radiance data over the oceans and describes a detailed analysis of the sensitivity of monthly averages of retrieved aerosol parameters to the assumptions made in different retrieval algorithms. The analysis is based on using real AVHRR data and exploiting accurate numerical techniques for computing single and multiple scattering and spectral absorption of light in the vertically inhomogeneous atmosphere-ocean system. We show that two-channel algorithms can be expected to provide significantly more accurate and less biased retrievals of the aerosol optical thickness than one-channel algorithms and that imperfect cloud screening and calibration uncertainties are by far the largest sources of errors in the retrieved aerosol parameters. Both underestimating and overestimating aerosol absorption as well as the potentially strong variability of the real part of the aerosol refractive index may lead to regional and/or seasonal biases in optical thickness retrievals. The Angstrom exponent appears to be the most invariant aerosol size characteristic and should be retrieved along with optical thickness as the second aerosol parameter.

  6. Imaging objects behind small obstacles using axicon lens

    NASA Astrophysics Data System (ADS)

    Perinchery, Sandeep M.; Shinde, Anant; Murukeshan, V. M.

    2017-06-01

    Axicon lenses are conical prisms, which are known to focus a light source to a line comprising of multiple points along the optical axis. In this study, we analyze the potential of axicon lenses to view, image and record the object behind opaque obstacles in free space. The advantage of an axicon lens over a regular lens is demonstrated experimentally. Parameters such as obstacle size, object and the obstacle position in the context of imaging behind obstacles are tested using Zemax optical simulation. This proposed concept can be easily adapted to most of the optical imaging methods and microscopy modalities.

  7. Design and Performance of the Terrestrial Planet Finder Coronagraph

    NASA Technical Reports Server (NTRS)

    White, Mary L.; Shaklan, Stuart; Lisman, P. Doulas; Ho, Timothy; Mouroulis, Pantazis; Basinger, Scott; Ledeboer, Bill; Kwack, Eug; Kissil, Andy; Mosier, Gary; hide

    2004-01-01

    Terrestrial Planet Finder Coronagraph, one of two potential architectures, is described. The telescope is designed to make a visible wavelength survey of the habitable zones of at least thirty stars in search of earth-like planets. The preliminary system requirements, optical parameters, mechanical and thermal design, operations scenario and predicted performance is presented. The 6-meter aperture telescope has a monolithic primary mirror, which along with the secondary tower, are being designed to meet the stringent optical tolerances of the planet-finding mission. Performance predictions include dynamic and thermal finite element analysis of the telescope optics and structure, which are used to make predictions of the optical performance of the system.

  8. Fiber optic, Fabry-Perot high temperature sensor

    NASA Technical Reports Server (NTRS)

    James, K.; Quick, B.

    1984-01-01

    A digital, fiber optic temperature sensor using a variable Fabry-Perot cavity as the sensor element was analyzed, designed, fabricated, and tested. The fiber transmitted cavity reflection spectra is dispersed then converted from an optical signal to electrical information by a charged coupled device (CCD). A microprocessor-based color demodulation system converts the wavelength information to temperature. This general sensor concept not only utilizes an all-optical means of parameter sensing and transmitting, but also exploits microprocessor technology for automated control, calibration, and enhanced performance. The complete temperature sensor system was evaluated in the laboratory. Results show that the Fabry-Perot temperature sensor has good resolution (0.5% of full seale), high accuracy, and potential high temperature ( 1000 C) applications.

  9. Enhanced secure 4-D modulation space optical multi-carrier system based on joint constellation and Stokes vector scrambling.

    PubMed

    Liu, Bo; Zhang, Lijia; Xin, Xiangjun

    2018-03-19

    This paper proposes and demonstrates an enhanced secure 4-D modulation optical generalized filter bank multi-carrier (GFBMC) system based on joint constellation and Stokes vector scrambling. The constellation and Stokes vectors are scrambled by using different scrambling parameters. A multi-scroll Chua's circuit map is adopted as the chaotic model. Large secure key space can be obtained due to the multi-scroll attractors and independent operability of subcarriers. A 40.32Gb/s encrypted optical GFBMC signal with 128 parallel subcarriers is successfully demonstrated in the experiment. The results show good resistance against the illegal receiver and indicate a potential way for the future optical multi-carrier system.

  10. Nonlinear Optical Properties and Subpicosecond Dynamics of Excitons and Electron-Hole Plasmas in Multiple Quantum Well Structures.

    DTIC Science & Technology

    1987-12-01

    estimated from 10 S Ee 0.916 O(Pe) (7)rs Vel / y 7 where ve is the valley degeneracy factor, and $ is an anisotropy factor 10 1/6 sin- [(I Pe)l 124O...nergy, an potential, (2V,), have been deduced from the bro adening parameters of the jt structure The growth parameters with n-i p-i 498 having

  11. Nuclear physics uncertainties of the astrophysical γ-process studied through the 64Zn(p,α)61Cu and 64Zn(p,γ)65Ga reactions

    NASA Astrophysics Data System (ADS)

    Gyürky, Gy.; Fülöp, Zs.; Halász, Z.; Kiss, G. G.; Szücs, T.

    2018-01-01

    In a recent work, the cross section measurement of the 64Zn(p,α)61Cu reaction was used to prove that the standard α-nucleus optical potentials used in astrophysical network calculation fail to reproduce the experimental data at energies relevant for heavy element nucleosynthesis. In the present paper the analysis of the obtained experimental data are continued by comparing the results with the predictions using different parameters. It is shown that the recently suggested modification of the standard optical potential leads to a better description of the data.

  12. Retrieving the optical parameters of biological tissues using diffuse reflectance spectroscopy and Fourier series expansions. I. theory and application.

    PubMed

    Muñoz Morales, Aarón A; Vázquez Y Montiel, Sergio

    2012-10-01

    The determination of optical parameters of biological tissues is essential for the application of optical techniques in the diagnosis and treatment of diseases. Diffuse Reflection Spectroscopy is a widely used technique to analyze the optical characteristics of biological tissues. In this paper we show that by using diffuse reflectance spectra and a new mathematical model we can retrieve the optical parameters by applying an adjustment of the data with nonlinear least squares. In our model we represent the spectra using a Fourier series expansion finding mathematical relations between the polynomial coefficients and the optical parameters. In this first paper we use spectra generated by the Monte Carlo Multilayered Technique to simulate the propagation of photons in turbid media. Using these spectra we determine the behavior of Fourier series coefficients when varying the optical parameters of the medium under study. With this procedure we find mathematical relations between Fourier series coefficients and optical parameters. Finally, the results show that our method can retrieve the optical parameters of biological tissues with accuracy that is adequate for medical applications.

  13. Airyprime beams and their propagation characteristics

    NASA Astrophysics Data System (ADS)

    Zhou, Guoquan; Chen, Ruipin; Ru, Guoyun

    2014-02-01

    A type of Airyprime beam is introduced in this document. An analytical expression of Airyprime beams passing through a separable ABCD paraxial optical system is derived. The beam propagation factor of the Airyprime beam is proved to be 3.676. An analytical expression of the kurtosis parameter of an Airyprime beam passing through a separable ABCD paraxial optical system is also presented. The kurtosis parameter of the Airyprime beam passing through a separable ABCD paraxial optical system depends on the two ratios B/(Azrx) and B/(Azry). As a numerical example, the propagation characteristics of an Airyprime beam is demonstrated in free space. In the source plane, the Airyprime beam has nine lobes, one of which is the central dominant lobe. In the far field, the Airyprime beam becomes a dark-hollow beam with four uniform lobes. The evolvement of an Airyprime beam propagating in free space is well exhibited. Upon propagation, the intensity distribution of the Airyprime beam becomes flatter and the kurtosis parameter decreases from the maximum value 2.973 to a saturated value 1.302. The Airyprime beam is also compared with the second-order elegant Hermite-Gaussian beam. The novel propagation characteristics of Airyprime beams denote that they could have potential application prospects such as optical trapping.

  14. Optical spectral singularities as threshold resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafazadeh, Ali

    2011-04-15

    Spectral singularities are among generic mathematical features of complex scattering potentials. Physically they correspond to scattering states that behave like zero-width resonances. For a simple optical system, we show that a spectral singularity appears whenever the gain coefficient coincides with its threshold value and other parameters of the system are selected properly. We explore a concrete realization of spectral singularities for a typical semiconductor gain medium and propose a method of constructing a tunable laser that operates at threshold gain.

  15. Study of Lateral Misalignment Tolerance of a Symmetric Free-Space Optical Link for Intra International Space Station Communication

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Schoenholz, Bryan; Suddath, Shannon N.

    2016-01-01

    This paper describes the study of lateral misalignment tolerance of a symmetric high-rate free-space optical link (FSOL) for use between International Space Station (ISS) payload sites and the main cabin. The link will enable gigabit per second (Gbps) transmission of data, which is up to three orders of magnitude greater than the current capabilities. This application includes 10-20 meter links and requires minimum size, weight, and power (SWaP). The optical power must not present an eye hazard and must be easily integrated into the existing ISS infrastructure. On the ISS, rapid thermal changes and astronaut movement will cause flexure of the structure which will potentially misalign the free space transmit and receive optics 9 cm laterally and 0.2 degrees angularly. If this misalignment is not accounted for, a loss of the link or degradation of link performance will occur. Power measurements were collected to better understand the effect of various system design parameters on lateral misalignment. Parameters that were varied include: the type of small form pluggable (SFP) transceivers, type of fiber, and transmitted power level. A potential solution was identified that can reach the lateral misalignment tolerance (decenter span) required to create an FSOL on the ISS by using 105 m core fibers, a duplex SFP, two channels of light, and two fiber amplifiers.

  16. Effect of source tuning parameters on the plasma potential of heavy ions in the 18 GHz high temperature superconducting electron cyclotron resonance ion source.

    PubMed

    Rodrigues, G; Baskaran, R; Kukrety, S; Mathur, Y; Kumar, Sarvesh; Mandal, A; Kanjilal, D; Roy, A

    2012-03-01

    Plasma potentials for various heavy ions have been measured using the retarding field technique in the 18 GHz high temperature superconducting ECR ion source, PKDELIS [C. Bieth, S. Kantas, P. Sortais, D. Kanjilal, G. Rodrigues, S. Milward, S. Harrison, and R. McMahon, Nucl. Instrum. Methods B 235, 498 (2005); D. Kanjilal, G. Rodrigues, P. Kumar, A. Mandal, A. Roy, C. Bieth, S. Kantas, and P. Sortais, Rev. Sci. Instrum. 77, 03A317 (2006)]. The ion beam extracted from the source is decelerated close to the location of a mesh which is polarized to the source potential and beams having different plasma potentials are measured on a Faraday cup located downstream of the mesh. The influence of various source parameters, viz., RF power, gas pressure, magnetic field, negative dc bias, and gas mixing on the plasma potential is studied. The study helped to find an upper limit of the energy spread of the heavy ions, which can influence the design of the longitudinal optics of the high current injector being developed at the Inter University Accelerator Centre. It is observed that the plasma potentials are decreasing for increasing charge states and a mass effect is clearly observed for the ions with similar operating gas pressures. In the case of gas mixing, it is observed that the plasma potential minimizes at an optimum value of the gas pressure of the mixing gas and the mean charge state maximizes at this value. Details of the measurements carried out as a function of various source parameters and its impact on the longitudinal optics are presented.

  17. Effect of source tuning parameters on the plasma potential of heavy ions in the 18 GHz high temperature superconducting electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, G.; Mathur, Y.; Kumar, Sarvesh

    2012-03-15

    Plasma potentials for various heavy ions have been measured using the retarding field technique in the 18 GHz high temperature superconducting ECR ion source, PKDELIS [C. Bieth, S. Kantas, P. Sortais, D. Kanjilal, G. Rodrigues, S. Milward, S. Harrison, and R. McMahon, Nucl. Instrum. Methods B 235, 498 (2005); D. Kanjilal, G. Rodrigues, P. Kumar, A. Mandal, A. Roy, C. Bieth, S. Kantas, and P. Sortais, Rev. Sci. Instrum. 77, 03A317 (2006)]. The ion beam extracted from the source is decelerated close to the location of a mesh which is polarized to the source potential and beams having different plasmamore » potentials are measured on a Faraday cup located downstream of the mesh. The influence of various source parameters, viz., RF power, gas pressure, magnetic field, negative dc bias, and gas mixing on the plasma potential is studied. The study helped to find an upper limit of the energy spread of the heavy ions, which can influence the design of the longitudinal optics of the high current injector being developed at the Inter University Accelerator Centre. It is observed that the plasma potentials are decreasing for increasing charge states and a mass effect is clearly observed for the ions with similar operating gas pressures. In the case of gas mixing, it is observed that the plasma potential minimizes at an optimum value of the gas pressure of the mixing gas and the mean charge state maximizes at this value. Details of the measurements carried out as a function of various source parameters and its impact on the longitudinal optics are presented.« less

  18. Environmental effects on underwater optical transmission

    NASA Astrophysics Data System (ADS)

    Chu, Peter C.; Breshears, Brian F.; Cullen, Alexander J.; Hammerer, Ross F.; Martinez, Ramon P.; Phung, Thai Q.; Margolina, Tetyana; Fan, Chenwu

    2017-05-01

    Optical communication/detection systems have potential to get around some limitations of current acoustic communications and detection systems especially increased fleet and port security in noisy littoral waters. Identification of environmental effects on underwater optical transmission is the key to the success of using optics for underwater communication and detection. This paper is to answer the question "What are the transfer and correlation functions that relate measurements of hydrographic to optical parameters?" Hydrographic and optical data have been collected from the Naval Oceanographic Office survey ships with the High Intake Defined Excitation (HIDEX) photometer and sea gliders with optical back scattering sensor in various Navy interested areas such as the Arabian Gulf, Gulf of Oman, east Asian marginal seas, and Adriatic Sea. The data include temperature, salinity, bioluminescence, chlorophyll-a fluorescence, transmissivity at two different wavelengths (TRed at 670 nm, TBlue at 490 nm), and back scattering coefficient (bRed at 700 nm, bBlue at 470 nm). Transfer and correlation functions between the hydrographic and optical parameters are obtained. Bioluminescence and fluorescence maxima, transmissivity minimum with their corresponding depths, red and blue laser beam peak attenuation coefficients are identified from the optical profiles. Evident correlations are found between the ocean mixed layer depth and the blue and red laser beam peak attenuation coefficients, bioluminescence and fluorescence maxima in the Adriatic Sea, Arabian Gulf, Gulf of Oman, and Philippine Sea. Based on the observational data, an effective algorithm is recommended for solving the radiative transfer equation (RTE) for predicting underwater laser radiance.

  19. Numerical aperture limits on efficient ball lens coupling of laser diodes to single-mode fibers with defocus to balance spherical aberration

    NASA Technical Reports Server (NTRS)

    Wilson, R. Gale

    1994-01-01

    The potential capabilities and limitations of single ball lenses for coupling laser diode radiation to single-mode optical fibers have been analyzed; parameters important to optical communications were specifically considered. These parameters included coupling efficiency, effective numerical apertures, lens radius, lens refractive index, wavelength, magnification in imaging the laser diode on the fiber, and defocus to counterbalance spherical aberration of the lens. Limiting numerical apertures in object and image space were determined under the constraint that the lens perform to the Rayleigh criterion of 0.25-wavelength (Strehl ratio = 0.80). The spherical aberration-defocus balance to provide an optical path difference of 0.25 wavelength units was shown to define a constant coupling efficiency (i.e., 0.56). The relative numerical aperture capabilities of the ball lens were determined for a set of wavelengths and associated fiber-core diameters of particular interest for single-mode fiber-optic communication. The results support general continuing efforts in the optical fiber communications industry to improve coupling links within such systems with emphasis on manufacturing simplicity, system packaging flexibility, relaxation of assembly alignment tolerances, cost reduction of opto-electronic components and long term reliability and stability.

  20. Noncontact three-dimensional quantitative profiling of fast aspheric lenses by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Goud, Bujagouni Karthik; Udupa, Dinesh Venkatesh; Prathap, Chilakala; Shinde, Deepak Dilip; Rao, Kompalli Divakar; Sahoo, Naba Kishore

    2016-12-01

    The use of optical coherence tomography (OCT) for noncontact three-dimensional aspheric lens profiling and retrieval of aspheric surface parameters is demonstrated. Two commercially available aspheric lenses with different focal length-to-diameter ratio have been imaged using OCT, and the measured optical path length distribution has been least square fitted with the aspheric lens surface retrieving the radius of curvature, aspheric constant, and conic constants. The refractive index of these lenses has also been measured referencing with a standard Zerodur glass flat. The fitted aspheric surface coefficients of the lenses are in close agreement with the manufacturer's values, thus, envisaging the potential of OCT in rapid screening, testing of aspheric lenses, and other micro-optical components such as those used in illumination optics.

  1. On the use of the generalized SPRT method in the equivalent hard sphere approximation for nuclear data evaluation

    NASA Astrophysics Data System (ADS)

    Noguere, Gilles; Archier, Pascal; Bouland, Olivier; Capote, Roberto; Jean, Cyrille De Saint; Kopecky, Stefan; Schillebeeckx, Peter; Sirakov, Ivan; Tamagno, Pierre

    2017-09-01

    A consistent description of the neutron cross sections from thermal energy up to the MeV region is challenging. One of the first steps consists in optimizing the optical model parameters using average resonance parameters, such as the neutron strength functions. They can be derived from a statistical analysis of the resolved resonance parameters, or calculated with the generalized form of the SPRT method by using scattering matrix elements provided by optical model calculations. One of the difficulties is to establish the contributions of the direct and compound nucleus reactions. This problem was solved by using a slightly modified average R-Matrix formula with an equivalent hard sphere radius deduced from the phase shift originating from the potential. The performances of the proposed formalism are illustrated with results obtained for the 238U+n nuclear systems.

  2. 3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea.

    PubMed

    Zhao, Mingtao; Kuo, Anthony N; Izatt, Joseph A

    2010-04-26

    Capable of three-dimensional imaging of the cornea with micrometer-scale resolution, spectral domain-optical coherence tomography (SDOCT) offers potential advantages over Placido ring and Scheimpflug photography based systems for accurate extraction of quantitative keratometric parameters. In this work, an SDOCT scanning protocol and motion correction algorithm were implemented to minimize the effects of patient motion during data acquisition. Procedures are described for correction of image data artifacts resulting from 3D refraction of SDOCT light in the cornea and from non-idealities of the scanning system geometry performed as a pre-requisite for accurate parameter extraction. Zernike polynomial 3D reconstruction and a recursive half searching algorithm (RHSA) were implemented to extract clinical keratometric parameters including anterior and posterior radii of curvature, central cornea optical power, central corneal thickness, and thickness maps of the cornea. Accuracy and repeatability of the extracted parameters obtained using a commercial 859nm SDOCT retinal imaging system with a corneal adapter were assessed using a rigid gas permeable (RGP) contact lens as a phantom target. Extraction of these parameters was performed in vivo in 3 patients and compared to commercial Placido topography and Scheimpflug photography systems. The repeatability of SDOCT central corneal power measured in vivo was 0.18 Diopters, and the difference observed between the systems averaged 0.1 Diopters between SDOCT and Scheimpflug photography, and 0.6 Diopters between SDOCT and Placido topography.

  3. Distributed Fiber-Optic Sensors for Vibration Detection

    PubMed Central

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-01-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach–Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications. PMID:27472334

  4. Distributed Fiber-Optic Sensors for Vibration Detection.

    PubMed

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  5. Insight into the optoelectronic and thermoelectric properties of Ca-based Zintl phase CaCd2X2 (X = P, As) from first principles calculation

    NASA Astrophysics Data System (ADS)

    Belfarh, T.; Batouche, M.; Seddik, T.; Uğur, G.; Omran, S. Bin; Bouhemadou, A.; Sandeep; Wang, Xiaotian; Sun, Xiao-Wei; Khenata, R.

    2018-06-01

    We have studied the structural, optical, electronic and thermoelectric properties of the CaCd2X2 (X = P, As) compounds by using the full-potential augmented plane wave plus local orbitals method (FP-APW + lo). The exchange-correlation potential was treated using both the gradient generalized approximation (WC-GGA) and local density approximation (LDA). The estimated structural parameters, including the lattice parameters and internal coordinates agree well with the available experimental data. Our computed band structure shows that both studied compounds are semiconductors, with direct band gaps (Γ-Γ) of approximately 1.78 eV and 1.2 eV for CaCd2P2 and CaCd2As2, respectively, using GGA-TB-mBJ approach. The calculated optical spectra reveal a strong response of these materials in the energy range between the visible light and extreme UV regions, making them a good candidate for optoelectronic devices. Thermoelectric parameters, such as thermal conductivity, electrical conductivity, Seebeck coefficient, power factor and figure of merit were calculated. We note that both the CaCd2P2 and CaCd2As2 compounds show promising thermoelectric properties.

  6. Investigations on nucleation, HRXRD, optical, piezoelectric, polarizability and Z-scan analysis of L-arginine maleate dihydrate single crystals

    NASA Astrophysics Data System (ADS)

    Sakthy Priya, S.; Alexandar, A.; Surendran, P.; Lakshmanan, A.; Rameshkumar, P.; Sagayaraj, P.

    2017-04-01

    An efficient organic nonlinear optical single crystal of L-arginine maleate dihydrate (LAMD) has been grown by slow evaporation solution technique (SEST) and slow cooling technique (SCT). The crystalline perfection of the crystal was examined using high-resolution X-ray diffractometry (HRXRD) analysis. Photoluminescence study confirmed the optical properties and defects level in the crystal lattice. Electromechanical behaviour was observed using piezoelectric co-efficient (d33) analysis. The photoconductivity analysis confirmed the negative photoconducting nature of the material. The dielectric constant and loss were measured as a function of frequency with varying temperature and vice-versa. The laser damage threshold (LDT) measurement was carried out using Nd:YAG Laser with a wavelength of 1064 nm (Focal length is 35 cm) and the obtained results showed that LDT value of the crystal is high compared to KDP crystal. The high laser damage threshold of the grown crystal makes it a potential candidate for second and higher order nonlinear optical device application. The third order nonlinear optical parameters of LAMD crystal is determined by open-aperture and closed-aperture studies using Z-scan technique. The third order linear and nonlinear optical parameters such as the nonlinear refractive index (n2), two photon absorption coefficient (β), Real part (Reχ3) and imaginary part (Imχ3) of third-order nonlinear optical susceptibility are calculated.

  7. Optical components damage parameters database system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Jin, Yuquan; Xie, Dongmei; Tang, Dingyong

    2012-10-01

    Optical component is the key to large-scale laser device developed by one of its load capacity is directly related to the device output capacity indicators, load capacity depends on many factors. Through the optical components will damage parameters database load capacity factors of various digital, information technology, for the load capacity of optical components to provide a scientific basis for data support; use of business processes and model-driven approach, the establishment of component damage parameter information model and database systems, system application results that meet the injury test optical components business processes and data management requirements of damage parameters, component parameters of flexible, configurable system is simple, easy to use, improve the efficiency of the optical component damage test.

  8. Toward a hyperspectral optical signature of extra virgin olive oil

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Thienpont, H.; Ottevaere, H.; Attilio, C.; Cimato, A.

    2007-05-01

    Italian extra virgin olive oils bearing labels of certified area of origin were considered. Their multispectral digital signature was measured by means of absorption spectroscopy in the 200-1700 nm spectral range. The instrumentation was a fiber optic-based, cheap, and compact device. The spectral data were processed by means of multivariate analysis and plotted on a 2D classification map. The map showed sharp clusters according to the geographical origin of the oils, thus demonstrating the potentials of UV-VIS-NIR spectroscopy for optical fingerprinting. Then, the spectral data were correlated to the content of the most important fatty acids. The good fitting achieved demonstrated that the optical fingerprinting can be used also for predicting nutritional and chemical parameters.

  9. Multifocal Visual Evoked Potential in Eyes With Temporal Hemianopia From Chiasmal Compression: Correlation With Standard Automated Perimetry and OCT Findings.

    PubMed

    Sousa, Rafael M; Oyamada, Maria K; Cunha, Leonardo P; Monteiro, Mário L R

    2017-09-01

    To verify whether multifocal visual evoked potential (mfVEP) can differentiate eyes with temporal hemianopia due to chiasmal compression from healthy controls. To assess the relationship between mfVEP, standard automated perimetry (SAP), and Fourier domain-optical coherence tomography (FD-OCT) macular and peripapillary retinal nerve fiber layer (RNFL) thickness measurements. Twenty-seven eyes with permanent temporal visual field (VF) defects from chiasmal compression on SAP and 43 eyes of healthy controls were submitted to mfVEP and FD-OCT scanning. Multifocal visual evoked potential was elicited using a stimulus pattern of 60 sectors and the responses were averaged for the four quadrants and two hemifields. Optical coherence tomography macular measurements were averaged in quadrants and halves, while peripapillary RNFL thickness was averaged in four sectors around the disc. Visual field loss was estimated in four quadrants and each half of the 24-2 strategy test points. Multifocal visual evoked potential measurements in the two groups were compared using generalized estimated equations, and the correlations between mfVEP, VF, and OCT findings were quantified. Multifocal visual evoked potential-measured temporal P1 and N2 amplitudes were significantly smaller in patients than in controls. No significant difference in amplitude was observed for nasal parameters. A significant correlation was found between mfVEP amplitudes and temporal VF loss, and between mfVEP amplitudes and the corresponding OCT-measured macular and RNFL thickness parameters. Multifocal visual evoked potential amplitude parameters were able to differentiate eyes with temporal hemianopia from controls and were significantly correlated with VF and OCT findings, suggesting mfVEP is a useful tool for the detection of visual abnormalities in patients with chiasmal compression.

  10. Thin plastic foil X-ray optics with spiral geometry

    NASA Astrophysics Data System (ADS)

    Barbera, Marco; Mineo, Teresa; Perinati, Emanuele; Schnopper, Herbert W.; Taibi, Angelo

    2007-09-01

    Winding a plastic foil ribbon into spiral cylinder or spiral cones we can design and build single or multiple reflection X-ray grazing incidence focusing optics with potential applications in Astronomy as well as experimental physics. The use of thin plastic foils from common industrial applications and of a mounting technique which does not require the construction of mandrels make these optics very cost effective. A spiral geometry focusing optic produces an annular image of a point source with the angular size of the annulus depending mainly on the pitch of the winding and the focal length. We use a ray-tracing code to evaluate the performances of cylindrical, and double conical spiral geometry as a function of the design parameters e.g. focal length, diameter, optic length. Some preliminary results are presented on X-ray imaging tests performed on spiral cylindrical optics.

  11. Recent flight-test results of optical airdata techniques

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.

    1993-01-01

    Optical techniques for measuring airdata parameters were demonstrated with promising results on high performance fighter aircraft. These systems can measure the airspeed vector, and some are not as dependent on special in-flight calibration processes as current systems. Optical concepts for measuring freestream static temperature and density are feasible for in-flight applications. The best feature of these concepts is that the air data measurements are obtained nonintrusively, and for the most part well into the freestream region of the flow field about the aircraft. Current requirements for measuring air data at high angle of attack, and future need to measure the same information at hypersonic flight conditions place strains on existing techniques. Optical technology advances show outstanding potential for application in future programs and promise to make common use of optical concepts a reality. Results from several flight-test programs are summarized, and the technology advances required to make optical airdata techniques practical are identified.

  12. Optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamidi, S. M.

    2012-01-15

    In this paper, the optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals have been investigated. We use transfer matrix method to solve our magnetized coupled resonator plasma photonic crystals consist of dielectric and magnetized plasma layers. The results of the change in the optical and magneto-optical properties of structure as a result of the alteration in the structural properties such as thickness, plasma frequency and collision frequency, plasma filling factor, number of resonators and dielectric constant of dielectric layers and external magnetic field have been reported. The main feature of this structure is a good magneto-opticalmore » rotation that takes place at the defect modes and the edge of photonic band gap of our proposed optical magnetized plasma waveguide. Our outcomes demonstrate the potential applications of the device for tunable and adjustable filters or reflectors and active magneto-optic in microwave devices under structural parameter and external magnetic field.« less

  13. Optical spectroscopy for quantitative sensing in human pancreatic tissues

    NASA Astrophysics Data System (ADS)

    Wilson, Robert H.; Chandra, Malavika; Lloyd, William; Chen, Leng-Chun; Scheiman, James; Simeone, Diane; McKenna, Barbara; Mycek, Mary-Ann

    2011-07-01

    Pancreatic adenocarcinoma has a five-year survival rate of only 6%, largely because current diagnostic methods cannot reliably detect the disease in its early stages. Reflectance and fluorescence spectroscopies have the potential to provide quantitative, minimally-invasive means of distinguishing pancreatic adenocarcinoma from normal pancreatic tissue and chronic pancreatitis. The first collection of wavelength-resolved reflectance and fluorescence spectra and time-resolved fluorescence decay curves from human pancreatic tissues was acquired with clinically-compatible instrumentation. Mathematical models of reflectance and fluorescence extracted parameters related to tissue morphology and biochemistry that were statistically significant for distinguishing between pancreatic tissue types. These results suggest that optical spectroscopy has the potential to detect pancreatic disease in a clinical setting.

  14. Development of a coherent optical particle spectrometer for industrial applications: a feasibility investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H.T.; Bachalo, W.D.

    1984-10-01

    The feasibility of developing a particle-sizing instrument for in-situ measurements in industrial environments, based on the method of optical heterodyne or coherent detection, was investigated. The instrument, a coherent optical particle spectrometer, or COPS, is potentially capable of measuring several important particle parameters, such as particle size, number density, and speed, because of the versatility of the optical heterodyne method. Water droplets generated by an aerosol/particle generator were used to test the performance of the COPS. Study findings have shown that the optical setup of the COPS is extremely sensitive to even minute mechanical or acoustic vibrations. At the optimalmore » setup, the COPS performs satisfactorily and has more than adequate signal-to-noise even with a 0.5 mW He-Ne laser.« less

  15. Optical Properties of the Crescent–Shaped Nanohole Antenna

    PubMed Central

    Wu, Liz Y.; Ross, Benjamin M.; Lee, Luke P.

    2009-01-01

    We present the first optical study of large–area random arrays of crescent–shaped nanoholes. The crescent–shaped nanohole antennae, fabricated using wafer–scale nanosphere lithography, provide a complement to crescent–shaped nanostructures, called nanocrescents, which have been established as powerful plasmonic biosensors. With both systematic experimental and computational analysis, we characterize the optical properties of crescent–shaped nanohole antennae, and demonstrate tunability of their optical response by varying all key geometric parameters. Crescent–shaped nanoholes have reproducible sub–10 nm tips and are sharper than corresponding nanocrescents, resulting in higher local field enhancement (LFE), which is predicted to be |E|/|E0| = 1500. In addition, the crescent–shaped nanohole hole–based geometry offers increased integratability and the potential to nanoconfine analyte in “hot–spot” regions—increasing biomolecular sensitivity and allowing localized nanoscale optical control of biological functions. PMID:19354226

  16. Cooling optically levitated dielectric nanoparticles via parametric feedback

    NASA Astrophysics Data System (ADS)

    Neukirch, Levi; Rodenburg, Brandon; Bhattacharya, Mishkatul; Vamivakas, Nick

    2015-05-01

    The inability to leverage resonant scattering processes involving internal degrees of freedom differentiates optical cooling experiments performed with levitated dielectric nanoparticles, from similar atomic and molecular traps. Trapping in optical cavities or the application of active feedback techniques have proven to be effective ways to circumvent this limitation. We present our nanoparticle optical cooling apparatus, which is based on parametric feedback modulation of a single-beam gradient force optical trap. This scheme allows us to achieve effective center-of-mass temperatures well below 1 kelvin for our ~ 1 ×10-18 kg particles, at modest vacuum pressures. The method provides a versatile platform, with parameter tunability not found in conventional tethered nanomechanical systems. Potential applications include investigations of nonequilibrium nanoscale thermodynamics, ultra-sensitive force metrology, and mesoscale quantum mechanics and hybrid systems. Supported by the office of Naval Research award number N000141410442.

  17. Application of Fiber Optic Instrumentation

    NASA Technical Reports Server (NTRS)

    Richards, William Lance; Parker, Allen R., Jr.; Ko, William L.; Piazza, Anthony; Chan, Patrick

    2012-01-01

    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented.

  18. Cell death monitoring using quantitative optical coherence tomography methods

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Yang, Victor X. D.; Kolios, Michael C.; Czarnota, Gregory J.

    2011-03-01

    Cell death is characterized by a series of predictable morphological changes, which modify the light scattering properties of cells. We present a multi-parametric approach to detecting changes in subcellular morphology related to cell death using optical coherence tomography (OCT). Optical coherence tomography data were acquired from acute myeloid leukemia (AML) cells undergoing apoptosis over a period of 48 hours. Integrated backscatter (IB) and spectral slope (SS) were computed from OCT backscatter spectra and statistical parameters were extracted from a generalized gamma (GG) distribution fit to OCT signal intensity histograms. The IB increased by 2-fold over 48 hours with significant increases observed as early as 4 hours. The SS increased in steepness by 2.5-fold with significant changes at 12 hours, while the GG parameters were sensitive to apoptotic changes at 24 to 48 hours. Histology slides indicated nuclear condensation and fragmentation at 24 hours, suggesting the late scattering changes could be related to nuclear structure. A second series of measurements from AML cells treated with cisplatin, colchicine or ionizing radiation suggested that the GG parameters could potentially differentiate between modes of cell death. Distinct cellular morphology was observed in histology slides obtained from cells treated under each condition.

  19. Ultra-thin enhanced-absorption long-wave infrared detectors

    NASA Astrophysics Data System (ADS)

    Wang, Shaohua; Yoon, Narae; Kamboj, Abhilasha; Petluru, Priyanka; Zheng, Wanhua; Wasserman, Daniel

    2018-02-01

    We propose an architecture for enhanced absorption in ultra-thin strained layer superlattice detectors utilizing a hybrid optical cavity design. Our detector architecture utilizes a designer-metal doped semiconductor ground plane beneath the ultra-subwavelength thickness long-wavelength infrared absorber material, upon which we pattern metallic antenna structures. We demonstrate the potential for near 50% detector absorption in absorber layers with thicknesses of approximately λ0/50, using realistic material parameters. We investigate detector absorption as a function of wavelength and incidence angle, as well as detector geometry. The proposed device architecture offers the potential for high efficiency detectors with minimal growth costs and relaxed design parameters.

  20. Multifocal visual evoked potential in optic neuritis, ischemic optic neuropathy and compressive optic neuropathy

    PubMed Central

    Jayaraman, Manju; Gandhi, Rashmin Anilkumar; Ravi, Priya; Sen, Parveen

    2014-01-01

    Purpose: To investigate the effect of optic neuritis (ON), ischemic optic neuropathy (ION) and compressive optic neuropathy (CON) on multifocal visual evoked potential (mfVEP) amplitudes and latencies, and to compare the parameters among three optic nerve disorders. Materials and Methods: mfVEP was recorded for 71 eyes of controls and 48 eyes of optic nerve disorders with subgroups of optic neuritis (ON, n = 21 eyes), ischemic optic neuropathy (ION, n = 14 eyes), and compressive optic neuropathy (CON, n = 13 eyes). The size of defect in mfVEP amplitude probability plots and relative latency plots were analyzed. The pattern of the defect in amplitude probability plot was classified according to the visual field profile of optic neuritis treatment trail (ONTT). Results: Median of mfVEP amplitude (log SNR) averaged across 60 sectors were reduced in ON (0.17 (0.13-0.33)), ION (0.14 (0.12-0.21)) and CON (0.21 (0.14-0.30)) when compared to controls. The median mfVEP relative latencies compared to controls were significantly prolonged in ON and CON group of 10.53 (2.62-15.50) ms and 5.73 (2.67-14.14) ms respectively compared to ION group (2.06 (-4.09-13.02)). The common mfVEP amplitude defects observed in probability plots were diffuse pattern in ON, inferior altitudinal defect in ION and temporal hemianopia in CON eyes. Conclusions: Optic nerve disorders cause reduction in mfVEP amplitudes. The extent of delayed latency noted in ischemic optic neuropathy was significantly lesser compared to subjects with optic neuritis and compressive optic neuropathy. mfVEP amplitudes can be used to objectively assess the topography of the visual field defect. PMID:24088641

  1. First-principles study of structural stability, electronic, optical and elastic properties of binary intermetallic: PtZr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in; Jain, Ekta, E-mail: jainekta05@gmail.com; Sanyal, S. P., E-mail: sps.physicsbu@gmail.com

    2016-05-06

    Structural, electronic, optical and elastic properties of PtZr have been studied using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). The energy against volume and enthalpy vs. pressure variation in three different structures i.e. B{sub 1}, B{sub 2} and B{sub 3} for PtZr has been presented. The equilibrium lattice parameter, bulk modulus and its pressure derivative have been obtained using optimization method for all the three phases. Furthermore, electronic structure was discussed to reveal the metallic character of the present compound. The linear optical properties are also studied under zero pressure for the first time.more » Results on elastic properties are obtained using generalized gradient approximation (GGA) for exchange correlation potentials. Ductile nature of PtZr compound is predicted in accordance with Pugh’s criteria.« less

  2. A FORTRAN Program for Elastic Scattering of Deuterons with an Optical Model Containing Tensorial Potentials; PROGRAMME FORTRAN POUR LA DIFFUSION ELASTIQUE DE DEUTONS AVEC UN MODELE OPTIQUE CONTENANT DES TERMES TENSORIELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raynal, J.

    1963-01-01

    The FORTRAN program 5PM 037 calculates the effective elastic scattering cross section, polarizations, the effective total reaction cross section, and the polarization transfer coefficients for spin-1 particles of low charge and mass incident on a low charge and mass target at medium energy. The number of partial waves can not exceed 38, and calculations for different values of parameters for the optical model used can be made. The effect of tensorial potentials constructed from the distance of the deuteron from the target, and its angular momentum with respect to it, can also be studied. The optical model, necessary data, numericalmore » methods, and description of the problem are discussed. The program is described, and tables of equivalent statements necessary for modifying it are included. (auth)« less

  3. Design of all-optical, hot-electron current-direction-switching device based on geometrical asymmetry

    PubMed Central

    Kumarasinghe, Chathurangi S.; Premaratne, Malin; Gunapala, Sarath D.; Agrawal, Govind P.

    2016-01-01

    We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors. PMID:26887286

  4. Optical model with multiple band couplings using soft rotator structure

    NASA Astrophysics Data System (ADS)

    Martyanov, Dmitry; Soukhovitskii, Efrem; Capote, Roberto; Quesada, Jose Manuel; Chiba, Satoshi

    2017-09-01

    A new dispersive coupled-channel optical model (DCCOM) is derived that describes nucleon scattering on 238U and 232Th targets using a soft-rotator-model (SRM) description of the collective levels of the target nucleus. SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate coupling matrix elements of the generalized optical model. Five rotational bands are coupled: the ground-state band, β-, γ-, non-axial- bands, and a negative parity band. Such coupling scheme includes almost all levels below 1.2 MeV of excitation energy of targets. The "effective" deformations that define inter-band couplings are derived from SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a monopolar deformed potential leading to additional couplings between rotational bands. The present DCCOM describes the total cross section differences between 238U and 232Th targets within experimental uncertainty from 50 keV up to 200 MeV of neutron incident energy. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus (CN) formation cross sections, which is significantly different from the one calculated with rigid-rotor potentials with any number of coupled levels.

  5. Design of all-optical, hot-electron current-direction-switching device based on geometrical asymmetry.

    PubMed

    Kumarasinghe, Chathurangi S; Premaratne, Malin; Gunapala, Sarath D; Agrawal, Govind P

    2016-02-18

    We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors.

  6. Translamina Cribrosa Pressure Difference as Potential Element in the Pathogenesis of Glaucomatous Optic Neuropathy.

    PubMed

    Jonas, Jost B; Wang, Ningli; Yang, Diya

    2016-01-01

    The main proven risk factor for glaucomatous optic neuropathy (GON) is an intraocular pressure (IOP) higher than the pressure sensibility of the optic nerve head allows. Fulfilling Koch postulates, numerous studies have shown that the presence of high IOP leads to GON, that lowering IOP stops the progression of GON, and that a re-increase in IOP again causes the progression of GON. There are, however, many patients with glaucoma who have statistically normal or low IOP, and despite low IOP values, they develop progressing GON. These observations led to findings that IOP is only 1 of 2 determinants of the translamina cribrosa pressure difference (TLCPD), which is the main pressure-related parameter for the physiology and pathophysiology of the optic nerve head. The second parameter influencing TLCPD is orbital cerebrospinal fluid pressure (CSFP) as the counter pressure against IOP across the lamina cribrosa. Recent experimental and clinical studies have suggested that a low CSFP could be associated with GON in normal-pressure glaucoma. These investigations included studies with an experimental long-term reduction in CSFP in monkeys, population-based studies, and clinical retrospective and prospective investigations on patients with normal-pressure glaucoma. Besides TLCPD, other ocular parameters influenced by CSFP may be choroidal thickness, retinal vein pressure and diameter, occurrence of retinal vein occlusions, and occurrence and severity of diabetic retinopathy.

  7. Experimental determination of the bulk Rashba parameters in BiTeBr

    NASA Astrophysics Data System (ADS)

    Martin, C.; Suslov, A. V.; Buvaev, S.; Hebard, A. F.; Bugnon, P.; Berger, H.; Magrez, A.; Tanner, D. B.

    2016-12-01

    Shubnikov-de Haas (SdH) oscillations, Hall effect, and optical reflectance (R(ω)) measurements have been performed on single crystals of BiTeBr. Under magnetic fields up to 32 tesla and at temperatures as low as 0.4 K, the SdH data shows a single oscillation frequency F = 102 +/- 5 \\text{tesla} . The combined transport and optical studies establish that the SdH effect originates from the Rashba spin-split bulk conduction band, with the chemical potential situated about 13 meV below the crossing (Dirac) point. The bulk carrier concentration was ne≈5×1018 \\text{cm}-3 and the effective mass m1*= 0.16m0 . Combining SdH and optical data, we reliably determine the Rashba parameters for the bulk conduction band of BiTeBr: the Rashba energy ER = 28 \\text{meV} and the momentum spin-split kR = 0.033 \\unicode{8491}-1 . Hence, the bulk Rashba coupling strength αR = 2ER/kR is found to be 1.7 eVÅ.

  8. Controllable light capsules employing modified Bessel-Gauss beams

    PubMed Central

    Gong, Lei; Liu, Weiwei; Zhao, Qian; Ren, Yuxuan; Qiu, Xingze; Zhong, Mincheng; Li, Yinmei

    2016-01-01

    We report, in theory and experiment, on a novel class of controlled light capsules with nearly perfect darkness, directly employing intrinsic properties of modified Bessel-Gauss beams. These beams are able to naturally create three-dimensional bottle-shaped region during propagation as long as the parameters are properly chosen. Remarkably, the optical bottle can be controlled to demonstrate various geometries through tuning the beam parameters, thereby leading to an adjustable light capsule. We provide a detailed insight into the theoretical origin and characteristics of the light capsule derived from modified Bessel-Gauss beams. Moreover, a binary digital micromirror device (DMD) based scheme is first employed to shape the bottle beams by precise amplitude and phase manipulation. Further, we demonstrate their ability for optical trapping of core-shell magnetic microparticles, which play a particular role in biomedical research, with holographic optical tweezers. Therefore, our observations provide a new route for generating and controlling bottle beams and will widen the potentials for micromanipulation of absorbing particles, aerosols or even individual atoms. PMID:27388558

  9. A low-threshold nanolaser based on hybrid plasmonic waveguides at the deep subwavelength scale

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Quan; Piao, Rui-Qi; Zhao, Jing-Jing; Meng, Xiao-Yun; Tong, Kai

    2015-07-01

    A novel nanolaser structure based on a hybrid plasmonic waveguide is proposed and investigated. The coupling between the metal nanowire and the high-index semiconductor nanowire with optical gain leads to a strong field enhancement in the air gap region and low propagation loss, which enables the realization of lasing at the deep subwavelength scale. By optimizing the geometric parameters of the structure, a minimal lasing threshold is achieved while maintaining the capacity of ultra-deep subwavelength mode confinement. Compared with the previous coupled nanowire pair based hybrid plasmonic structure, a lower threshold can be obtained with the same geometric parameters. The proposed nanolaser can be integrated into a miniature chip as a nanoscale light source and has the potential to be widely used in optical communication and optical sensing technology. Project supported by the National Natural Science Foundation of China (Grant No. 61172044) and the Natural Science Foundation of Hebei Province, China (Grant No. F2014501150).

  10. Dynamics of optically levitated microparticles in vacuum placed in 2D and 3D optical potentials possessing orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Arita, Yoshihiko; Mazilu, Michael; Chen, Mingzhou; Vettenburg, Tom; Auñón, Juan M.; Wright, Ewan M.; Dholakia, Kishan

    2017-04-01

    We demonstrate the transfer of orbital angular momentum to optically levitated microparticles in vacuum [1]. We prepare two-dimensional and three-dimensional optical potentials. In the former case the microparticle is placed within a Laguerre-Gaussian beam and orbits the annular beam profile with increasing angular velocity as the air drag coefficient is reduced. We explore the particle dynamics as a function of the topological charge of the levitating beam. Our results reveal that there is a fundamental limit to the orbital angular momentum that may be transferred to a trapped particle, dependent upon the beam parameters and inertial forces present. This effect was predicted theoretically [2] and can be understood considering the underlying dynamics arising from the link between the magnitude of the azimuthal index and the beam radius [3]. Whilst a Laguerre-Gaussian beam scales in size with azimuthal index `, recently we have created a "perfect" vortex beam whose radial intensity profile and radius are both independent of topological charge [4, 5]. As the Fourier transform of a perfect vortex yields a Bessel beam. Imaging a perfect vortex, with its subsequent propagation thus realises a complex three dimensional optical field. In this scenario we load individual silica microparticles into this field and observe their trajectories. The optical gradient and scattering forces interplay with the inertial and gravitational forces acting on the trapped particle, including the rotational degrees of freedom. As a result the trapped microparticle exhibits a complex three dimensional motion that includes a periodic orbital motion between the Bessel and the perfect vortex beam. We are able to determine the three dimensional optical potential in situ by tracking the particle. This first demonstration of trapping microparticles within a complex three dimensional optical potential in vacuum opens up new possibilities for fundamental studies of many-body dynamics, mesoscopic entanglement [6, 7], and optical binding [8, 9].

  11. Optically-gated Non-latched High Gain Power Device

    DTIC Science & Technology

    2008-11-21

    parameters such as power conversion efficiency, dv/dt and di/dt stress on PSD and electromagnetic noise emission spectrum, which depend directly on the...4. EXPERIMENTAL STUDIES ON OTPT AND OPTICAL INTENSITY MODULATION OF OTPT PARAMETERS 33 4.1 Optical source, driver, and fiber details 33 4.2...off dynamics characterizations 36 4.5. Optical intensity modulation of OTPT parameters 37 5. EXPERIMENTAL STUDIES ON HYBRID OTPT-PSD AND OPTICAL

  12. Effect of shorter pulse duration in cochlear neural activation with an 810-nm near-infrared laser.

    PubMed

    Wang, Jingxuan; Tian, Lan; Lu, Jianren; Xia, Ming; Wei, Ying

    2017-02-01

    Optical neural stimulation in the cochlea has been presented as an alternative technique to the electrical stimulation due to its potential in spatially selectivity enhancement. So far, few studies have selected the near-infrared (NIR) laser in cochlear neural stimulation and limited optical parameter space has been examined. This paper focused on investigating the optical parameter effect on NIR stimulation of auditory neurons, especially under shorter pulse durations. The spiral ganglion neurons in the cochlea of deafened guinea pigs were stimulated with a pulsed 810-nm NIR laser in vivo. The laser radiation was delivered by an optical fiber and irradiated towards the modiolus. Optically evoked auditory brainstem responses (OABRs) with various optical parameters were recorded and investigated. The OABRs could be elicited with the cochlear deafened animals by using the 810-nm laser in a wide pulse duration ranged from 20 to 1000 μs. Results showed that the OABR intensity increased along with the increasing laser radiant exposure of limited range at each specific pulse duration. In addition, for the pulse durations from 20 to 300 μs, the OABR intensity increased monotonically along with the pulse duration broadening. While for pulse durations above 300 μs, the OABR intensity basically kept stable with the increasing pulse duration. The 810-nm NIR laser could be an effective stimulus in evoking the cochlear neuron response. Our experimental data provided evidence to optimize the pulse duration range, and the results suggested that the pulse durations from 20 to 300 μs could be the optimized range in cochlear neural activation with the 810-nm-wavelength laser.

  13. Optical perturbation of atoms in weak localization

    NASA Astrophysics Data System (ADS)

    Yedjour, A.

    2018-01-01

    We determine the microscopic transport parameters that are necessary to describe the diffusion process of the atomic gas in optical speckle. We use the self-consistent theory to calculate the self-energy of the atomic gas. We compute the spectral function numerically by an average over disorder realizations in terms of the Greens function. We focus mainly on the behaviour of the energy distribution of the atoms to estimate a correction to the mobility edge. Our results show that the energy distribution of the atoms locates the mobility edge position under the disorder amplitude. This behaviour changes for each disorder parameter. We conclude that the disorder amplitude potential induced modification of the energy distribution of the atoms that plays a major role for the prediction of the mobility edge.

  14. Third-order optical nonlinearity of N-doped graphene oxide nanocomposites at different GO ratios

    NASA Astrophysics Data System (ADS)

    Kimiagar, Salimeh; Abrinaei, Fahimeh

    2018-05-01

    In the present work, the influence of GO ratios on the structural, linear and nonlinear optical properties of nitrogen-doped graphene oxide nanocomposites (N-GO NCs) has been studied. N-GO NCs were synthesized by hydrothermal method. The XRD, FTIR, SEM, and TEM results confirmed the reduction of GO by nitrogen doping. The energy band gaps of N-GO NCs calculated from UV-Vis analyzed by using Tauc plot. To obtain further insight into potential optical changes in the N-GO NCs by increasing GO contents, Z-scan analysis was performed with nanosecond Nd-YAG laser at 532 nm. The nonlinear absorption coefficient, β, and nonlinear refractive index, n2, for N-GO NCs at the laser intensity of 113 MW/cm were measured and an increase was observed in both parameters after addition of nitrogen to GO. The third-order nonlinear optical susceptibilities of N-GO NCs were measured in the order of 10-9 esu. The results showed that N-GO NCs have negative nonlinearity which can be controlled by GO contents to obtain the highest values for nonlinear optical parameters. The nonlinear optical results not only imply that N-GO NCs can serve as an important material in the advancing of optoelectronics but also open new possibilities for the design of new graphene-based materials by variation of N and GO ratios as well as manufacturing conditions.

  15. Assessment of commercial optical amplifiers for potential use in space applications

    NASA Astrophysics Data System (ADS)

    Barbero, Juan; Sotom, Michel; Benazet, Benoit; Esquivias, Ignacio; López Hernández, Francisco José

    2017-11-01

    This paper describes the activities and results of an ESA-funded project concerned with the assessment of optical amplifier technologies and products for applications in fiber optic subsystems of future satellite payloads. On-board applications are briefly introduced, together with associated system-level requirements. Optical amplifier technologies, research achievements and products are reviewed. They are compared in terms of current performance, perspectives and suitability for the target space applications. Optical fibre amplifiers, not limited to Erbium-doped amplifiers, Erbium-doped waveguide amplifiers and Semiconductor Optical Amplifiers are covered. The review includes analysis and trade-off of all performance parameters including saturation output power, noise figure, polarisation maintaining capability, wall-plug efficiency, and mass and size. A selection of optical amplifier products for further evaluation and testing is presented. Results of extensive testing covering both functional performance and environmental behaviour (mechanical, thermal vacuum, radiations) aspects are reported. Most of the work has been completed, but an extension has been proposed for checking and comparing the behaviour of doped fibers under gamma radiation.

  16. Tailoring optical complex field with spiral blade plasmonic vortex lens

    PubMed Central

    Rui, Guanghao; Zhan, Qiwen; Cui, Yiping

    2015-01-01

    Optical complex fields have attracted increasing interests because of the novel effects and phenomena arising from the spatially inhomogeneous state of polarizations and optical singularities of the light beam. In this work, we propose a spiral blade plasmonic vortex lens (SBPVL) that offers unique opportunities to manipulate these novel fields. The strong interaction between the SBPVL and the optical complex fields enable the synthesis of highly tunable plasmonic vortex. Through theoretical derivations and numerical simulations we demonstrated that the characteristics of the plasmonic vortex are determined by the angular momentum (AM) of the light, and the geometrical topological charge of the SBPVL, which is govern by the nonlinear superposition of the pitch and the number of blade element. In addition, it is also shown that by adjusting the geometric parameters, SBPVL can be utilized to focus and manipulate optical complex field with fractional AM. This miniature plasmonic device may find potential applications in optical trapping, optical data storage and many other related fields. PMID:26335894

  17. Observation of the asymmetric Bessel beams with arbitrary orientation using a digital micromirror device.

    PubMed

    Gong, Lei; Qiu, Xing-Ze; Ren, Yu-Xuan; Zhu, Hui-Qing; Liu, Wei-Wei; Zhou, Jin-Hua; Zhong, Min-Cheng; Chu, Xiu-Xiang; Li, Yin-Mei

    2014-11-03

    Recently, V. V. Kotlyar et al. [Opt. Lett.39, 2395 (2014)] have theoretically proposed a novel kind of three-parameter diffraction-free beam with a crescent profile, namely, the asymmetric Bessel (aB) beam. The asymmetry degree of such nonparaxial modes was shown to depend on a nonnegative real parameter c. We present a more generalized asymmetric Bessel mode in which the parameter c is a complex constant. This parameter controls not only the asymmetry degree of the mode but also the orientation of the optical crescent, and affects the energy distribution and orbital angular momentum (OAM) of the beam. As a proof of concept, the high-quality generation of asymmetric Bessel-Gauss beams was demonstrated with the super-pixel method using a digital micromirror device (DMD). We investigated the near-field properties as well as the far field features of such beams, and the experimental observations were in good agreement with the theoretical predictions. Additionally, we provided an effective way to control the beam's asymmetry and orientation, which may find potential applications in light-sheet microscopy and optical manipulation.

  18. A numerical analysis of GeO2-doped multi-step index single-mode fiber for stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Xiao, H.; Ren, G.; Dong, Y.; Li, H.; Xiao, S.; Wu, B.; Jian, S.

    2018-06-01

    A numerical analysis of a GeO2-doped single-mode optical fiber with a multi-step index core toward stimulated Brillouin scattering (SBS) based dual-parameter sensing applications is proposed. Adjusting the parameters in the fiber design, higher-order acoustic modes are sufficiently enhanced, making the fiber feasible for discriminative measurements of temperature and strain in the meantime. Numerical simulations indicate that the Brillouin frequency shifts and peak SBS efficiencies are strongly dependent on the doping concentration and the thickness of low-index ring in the proposed fiber. With appropriate structural and optical parameters, this fiber could support two distinct acoustic modes with comparable peak SBS efficiencies and well-spaced Brillouin frequency shifts. The sensing characteristics contributed by the dual-peak feature in the Brillouin gain spectrum are explored. Calculated accuracies of temperature and strain in simultaneous measurements can be up to 0.64 °C and 15.4 με, respectively. The proposed fiber might have potential applications for long-haul distributed dual-parameter simultaneous measurements.

  19. Classical and quantum non-linear optical applications using the Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Prescod, Andru

    Mach Zehnder (MZ) modulators are widely employed in a variety of applications, such as optical communications, optical imaging, metrology and encryption. In this dissertation, we explore two non-linear MZ applications; one classified as classical and one as quantum, in which the Mach Zehnder interferometer is used. In the first application, a classical non-linear application, we introduce and study a new electro-optic highly linear (e.g., >130 dB) modulator configuration. This modulator makes use of a phase modulator (PM) in one arm of the MZ interferometer (MZI) and a ring resonator (RR) located on the other arm. The modulator performance is obtained through the control of a combination of internal and external parameters. These parameters include the RR-coupling ratio (internal parameter); the RF power split ratio and the RF phase bias (external parameters). Results show the unique and superior features, such as high linearity (SFDR˜133 dB), modulation bandwidth extension (as much as 70%) over the previously proposed and demonstrated Resonator-Assisted Mach Zehnder (RAMZ) design. Furthermore the proposed electro-optic modulator of this dissertation also provides an inherent SFDR compensation capability, even in cases where a significant waveguide optical loss exists. This design also shows potential for increased flexibility, practicality and ease of use. In the second application, a quantum non-linear application, we experimentally demonstrate quantum optical coherence tomography (QOCT) using a type II non-linear crystal (periodically-poled potassium titanyl phosphate (KTiOPO4) or PPKTP). There have been several publications discussing the merits and disadvantages of QOCT compared to OCT and other imaging techniques. First, we discuss the issues and solutions for increasing the efficiency of the quantum entangled photons. Second, we use a free space QOCT experiment to generate a high flux of these quantum entangled photons in two orthogonal polarizations, by parametric down-conversion. Third, by ensuring that these down-converted photons have the same frequency, spatial-temporal mode, and the same polarization when they interfere at a beam splitter, quantum interference should occur. Quantum interference of these entangled photons enables high resolution probing of dispersive samples.

  20. Multimodal optical setup based on spectrometer and cameras combination for biological tissue characterization with spatially modulated illumination

    NASA Astrophysics Data System (ADS)

    Baruch, Daniel; Abookasis, David

    2017-04-01

    The application of optical techniques as tools for biomedical research has generated substantial interest for the ability of such methodologies to simultaneously measure biochemical and morphological parameters of tissue. Ongoing optimization of optical techniques may introduce such tools as alternative or complementary to conventional methodologies. The common approach shared by current optical techniques lies in the independent acquisition of tissue's optical properties (i.e., absorption and reduced scattering coefficients) from reflected or transmitted light. Such optical parameters, in turn, provide detailed information regarding both the concentrations of clinically relevant chromophores and macroscopic structural variations in tissue. We couple a noncontact optical setup with a simple analysis algorithm to obtain absorption and scattering coefficients of biological samples under test. Technically, a portable picoprojector projects serial sinusoidal patterns at low and high spatial frequencies, while a spectrometer and two independent CCD cameras simultaneously acquire the reflected diffuse light through a single spectrometer and two separate CCD cameras having different bandpass filters at nonisosbestic and isosbestic wavelengths in front of each. This configuration fills the gaps in each other's capabilities for acquiring optical properties of tissue at high spectral and spatial resolution. Experiments were performed on both tissue-mimicking phantoms as well as hands of healthy human volunteers to quantify their optical properties as proof of concept for the present technique. In a separate experiment, we derived the optical properties of the hand skin from the measured diffuse reflectance, based on a recently developed camera model. Additionally, oxygen saturation levels of tissue measured by the system were found to agree well with reference values. Taken together, the present results demonstrate the potential of this integrated setup for diagnostic and research applications.

  1. Effects of acoustic- and optical-phonon sidebands on the fundamental optical-absorption edge in crystals and disordered semiconductors

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1990-04-01

    We present the results of a parameter-free first-principles theory for the fine structure of the Urbach optical-absorption edge in crystalline and disordered semiconductors. The dominant features are recaptured by means of a simple physical argument based on the most probable potential-well analogy. At finite temperatures, the overall linear exponential Urbach behavior of the subgap optical-absorption coefficient is a consequence of multiple LA-phonon emission and absorption sidebands that accompany the electronic transition. The fine structure of subgap absorption spectra observed in some materials is accounted for by multiple TO-, LO-, and TA-phonon absorption and emission sidebands. Good agreement is found with experimental data on crystalline silicon. The effects of nonadiabaticity in the electron-phonon interaction are calculated.

  2. Palo Alto Research Center - Smart Embedded Network of Sensors with an Optical Readout

    ScienceCinema

    Raghavan, Ajay; Sahu, Saroj; Bringans, Ross; Johnson, Noble; Kiesel, Peter; Saha, Bhaskar

    2018-05-18

    PARC is developing new fiber optic sensors that would be embedded into batteries to monitor and measure key internal parameters during charge and discharge cycles. Two significant problems with today's best batteries are their lack of internal monitoring capabilities and their design oversizing. The lack of monitoring interferes with the ability to identify and manage performance or safety issues as they arise, which are presently managed by very conservative design oversizing and protection approaches that result in cost inefficiencies. PARC's design combines low-cost, embedded optical battery sensors and smart algorithms to overcome challenges faced by today's best battery management systems. These advanced fiber optic sensing technologies have the potential to dramatically improve the safety, performance, and life-time of energy storage systems.

  3. 206Pb+n resonances for E=600-900 keV: Neutron strength functions

    NASA Astrophysics Data System (ADS)

    Horen, D. J.; Harvey, J. A.; Hill, N. W.

    1981-11-01

    Data from high resolution neutron transmission and differential scattering measurements performed on 206Pb have been analyzed for E=600-900 keV. Resonance parameters (i.e., E, l, J, and Γn) have been deduced for many of the 161 resonances observed. Strength functions and potential phase shifts for s-, p-, and d-wave neutrons for En-0-900 keV are compared with optical model calculations. It is found that the phase contributed by the external R function as well as the integrated neutron strength functions can be reproduced for the s and d waves with a well depth of V0=50.4 MeV for the real potential and WD=6.0 MeV for an imaginary surface potential. Somewhat smaller values (V0=48.7 MeV and WD=2.0 MeV) are required to reproduce the p-wave data. These values of the real potential are also found to give the experimentally observed binding energies for the 4s12, 3d32, and 3d52 single particle levels (V0=50.4 MeV), and the 3p12 single particle level (V0=48.7 MeV). Nuclear level densities for s and d waves are found to be well represented by a constant temperature model. However, the model under estimates the number of p-wave resonances. NUCLEAR REACTIONS 206Pb(n), (n,n), E=600-900 keV; measured σT(E), σ(E,θ). 207Pb deduced resonance parameters, Jπ, Γn, neutron strength functions, optical model parameters for l=0,1,2.

  4. Optical impedance spectroscopy with single-mode electro-active-integrated optical waveguides.

    PubMed

    Han, Xue; Mendes, Sergio B

    2014-02-04

    An optical impedance spectroscopy (OIS) technique based on a single-mode electro-active-integrated optical waveguide (EA-IOW) was developed to investigate electron-transfer processes of redox adsorbates. A highly sensitive single-mode EA-IOW device was used to optically follow the time-dependent faradaic current originated from a submonolayer of cytochrome c undergoing redox exchanges driven by a harmonic modulation of the electric potential at several dc bias potentials and at several frequencies. To properly retrieve the faradaic current density from the ac-modulated optical signal, we introduce here a mathematical formalism that (i) accounts for intrinsic changes that invariably occur in the optical baseline of the EA-IOW device during potential modulation and (ii) provides accurate results for the electro-chemical parameters. We are able to optically reconstruct the faradaic current density profile against the dc bias potential in the working electrode, identify the formal potential, and determine the energy-width of the electron-transfer process. In addition, by combining the optically reconstructed faradaic signal with simple electrical measurements of impedance across the whole electrochemical cell and the capacitance of the electric double-layer, we are able to determine the time-constant connected to the redox reaction of the adsorbed protein assembly. For cytochrome c directly immobilized onto the indium tin oxide (ITO) surface, we measured a reaction rate constant of 26.5 s(-1). Finally, we calculate the charge-transfer resistance and pseudocapacitance associated with the electron-transfer process and show that the frequency dependence of the redox reaction of the protein submonolayer follows as expected the electrical equivalent of an RC-series admittance diagram. Above all, we show here that OIS with single-mode EA-IOW's provide strong analytical signals that can be readily monitored even for small surface-densities of species involved in the redox process (e.g., fmol/cm(2), 0.1% of a full protein monolayer). This experimental approach, when combined with the analytical formalism described here, brings additional sensitivity, accuracy, and simplicity to electro-chemical analysis and is expected to become a useful tool in investigations of redox processes.

  5. The Information Content of Interferometric Synthetic Aperture Radar: Vegetation and Underlying Surface Topography

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.

    1996-01-01

    This paper first gives a heuristic description of the sensitivity of Interferometric Synthetic Aperture Radar to vertical vegetation distributions and underlying surface topography. A parameter estimation scenario is then described in which the Interferometric Synthetic Aperture Radar cross-correlation amplitude and phase are the observations from which vegetation and surface topographic parameters are estimated. It is shown that, even in the homogeneous-layer model of the vegetation, the number of parameters needed to describe the vegetation and underlying topography exceeds the number of Interferometric Synthetic Aperture Radar observations for single-baseline, single-frequency, single-incidence-angle, single-polarization Interferometric Synthetic Aperture Radar. Using ancillary ground-truth data to compensate for the underdetermination of the parameters, forest depths are estimated from the INSAR data. A recently-analyzed multibaseline data set is also discussed and the potential for stand-alone Interferometric Synthetic Aperture Radar parameter estimation is assessed. The potential of combining the information content of Interferometric Synthetic Aperture Radar with that of infrared/optical remote sensing data is briefly discussed.

  6. The Information Content of Interferometric Synthetic Aperture Radar: Vegetation and Underlying Surface Topography

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.

    1996-01-01

    Drawing from recently submitted work, this paper first gives a heuristic description of the sensitivity of interferometric synthetic aperture radar (INSAR) to vertical vegetation distribution and under laying surface topography. A parameter estimation scenario is then described in which the INSAR cross correlation amplitude and phase are the observations from which vegetation and surface topographic parameters are estimated. It is shown that, even in the homogeneous layer model of the vegetation, the number of parameters needed to describe the vegetation and underlying topography exceeds the number of INSAR observations for single baseline, single frequency, single incidence-angle, single polarization INSAR. Using ancillary ground truth data to compensate for the under determination of the parameters, forest depths are estimated from the INSAR data. A recently analyzed multi-baseline data set is also discussed and the potential for stand alone INSAR parameter estimation is assessed. The potential of combining the information content of INSAR with that of infrared/optical remote sensing data is briefly discussed.

  7. Measurement of nanoparticle size, suspension polydispersity, and stability using near-field optical trapping and light scattering (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Schein, Perry; O'Dell, Dakota; Erickson, David

    2017-02-01

    Nanoparticles are becoming ubiquitous in applications including diagnostic assays, drug delivery and therapeutics. However, there remain challenges in the quality control of these products. Here we present methods for the orthogonal measurement of these parameters by tracking the motion of the nanoparticle in all three special dimensions as it interacts with an optical waveguide. These simultaneous measurements from a single particle basis address some of the gaps left by current measurement technologies such as nanoparticle tracking analysis, ζ-potential measurements, and absorption spectroscopy. As nanoparticles suspended in a microfluidic channel interact with the evanescent field of an optical waveguide, they experience forces and resulting motion in three dimensions: along the propagation axis of the waveguide (x-direction) they are propelled by the optical forces, parallel to the plane of the waveguide and perpendicular to the optical propagation axis (y-direction) they experience an optical gradient force generated from the waveguide mode profile which confines them in a harmonic potential well, and normal to the surface of the waveguide they experience an exponential downward optical force balanced by the surface interactions that confines the particle in an asymmetric well. Building on our Nanophotonic Force Microscopy technique, in this talk we will explain how to simultaneously use the motion in the y-direction to estimate the size of the particle, the comparative velocity in the x-direction to measure the polydispersity of a particle population, and the motion in the z-direction to measure the potential energy landscape of the interaction, providing insight into the colloidal stability.

  8. Electronic structure and optical band gap determination of NiFe2O4.

    PubMed

    Meinert, Markus; Reiss, Günter

    2014-03-19

    In a theoretical study we investigate the electronic structure and band gap of the inverse spinel ferrite NiFe2O4. The experimental optical absorption spectrum is accurately reproduced by fitting the Tran-Blaha parameter in the modified Becke-Johnson potential. The accuracy of the commonly applied Tauc plot to find the optical gap is assessed based on the computed spectra and we find that this approach can lead to a misinterpretation of the experimental data. The minimum gap of NiFe2O4 is found to be a 1.53 eV wide indirect gap, which is located in the minority spin channel.

  9. Nuclear fragmentation energy and momentum transfer distributions in relativistic heavy-ion collisions

    NASA Technical Reports Server (NTRS)

    Khandelwal, Govind S.; Khan, Ferdous

    1989-01-01

    An optical model description of energy and momentum transfer in relativistic heavy-ion collisions, based upon composite particle multiple scattering theory, is presented. Transverse and longitudinal momentum transfers to the projectile are shown to arise from the real and absorptive part of the optical potential, respectively. Comparisons of fragment momentum distribution observables with experiments are made and trends outlined based on our knowledge of the underlying nucleon-nucleon interaction. Corrections to the above calculations are discussed. Finally, use of the model as a tool for estimating collision impact parameters is indicated.

  10. Spread spectrum phase modulation for coherent X-ray diffraction imaging.

    PubMed

    Zhang, Xuesong; Jiang, Jing; Xiangli, Bin; Arce, Gonzalo R

    2015-09-21

    High dynamic range, phase ambiguity and radiation limited resolution are three challenging issues in coherent X-ray diffraction imaging (CXDI), which limit the achievable imaging resolution. This paper proposes a spread spectrum phase modulation (SSPM) method to address the aforementioned problems in a single strobe. The requirements on phase modulator parameters are presented, and a practical implementation of SSPM is discussed via ray optics analysis. Numerical experiments demonstrate the performance of SSPM under the constraint of available X-ray optics fabrication accuracy, showing its potential to real CXDI applications.

  11. Designing generalized conic concentrators for conventional optical systems

    NASA Technical Reports Server (NTRS)

    Eichhorn, W. L.

    1985-01-01

    Generalized nonimaging concentrators can be incorporated into conventional optical systems in situations where flux concentration rather than imaging is required. The parameters of the concentrator for maximum flux concentration depend on the design of the particular optical system under consideration. Rationale for determining the concentrator parameters is given for one particular optical system and the procedure used for calculation of these parameters is outlined. The calculations are done for three concentrators applicable to the optical system.

  12. Relationship between Structural and Functional Assessment of the Visual System in Mildly Disabled Relapsing-Remitting Multiple Sclerosis Patients

    PubMed Central

    Huseyinoglu, Nergiz; Ekinci, Metin; Ozben, Serkan; Buyukuysal, Cagatay

    2014-01-01

    Abstract Studies that explored the anterior visual pathway in the patients with multiple sclerosis (MS) have demonstrated contradictory results about the correlation between structural and functional status of optic nerve and retina. We aimed to investigate the functional and structural findings in our cohort of mildly disabled relapsing-remitting MS patients. A total of 134 eyes (80 eyes of the patients with MS and 54 eyes of the control group) were investigated. Eyes of MS patients were divided into two groups—as eyes with history of optic neuritis (ON group) and without history of optic neuritis (NON group). Ophthalmological investigation including visual evoked potentials, standard automated perimetry, and optical coherence tomography were performed for all participants. Retinal and macular thicknesses were significantly decreased in ON and NON groups compared with controls. Also, visual evoked potential latencies and visual field loss were worse in the both MS groups compared with control group. We did not find any correlation between visual evoked potentials and retinal or macular thickness values but visual field parameters were correlated between retinal and macular layer loss in the NON group. According to our results and some previous studies, although both functional and structural changes were detected in patients with MS, functional status markers do not always show parallelism (or synchrony) with structural changes, especially in eyes with history of optic neuritis. PMID:27928266

  13. An infrared optical pacing system for screening cardiac electrophysiology in human cardiomyocytes.

    PubMed

    McPheeters, Matthew T; Wang, Yves T; Werdich, Andreas A; Jenkins, Michael W; Laurita, Kenneth R

    2017-01-01

    Human cardiac myocytes derived from pluripotent stem cells (hCM) have invigorated interest in genetic disease mechanisms and cardiac safety testing; however, the technology to fully assess electrophysiological function in an assay that is amenable to high throughput screening has lagged. We describe a fully contactless system using optical pacing with an infrared (IR) laser and multi-site high fidelity fluorescence imaging to assess multiple electrophysiological parameters from hCM monolayers in a standard 96-well plate. Simultaneous multi-site action potentials (FluoVolt) or Ca2+ transients (Fluo4-AM) were measured, from which high resolution maps of conduction velocity and action potential duration (APD) were obtained in a single well. Energy thresholds for optical pacing were determined for cell plating density, laser spot size, pulse width, and wavelength and found to be within ranges reported previously for reliable pacing. Action potentials measured using FluoVolt and a microelectrode exhibited the same morphology and rate of depolarization. Importantly, we show that this can be achieved accurately with minimal damage to hCM due to optical pacing or fluorescence excitation. Finally, using this assay we demonstrate that hCM exhibit reproducible changes in repolarization and impulse conduction velocity for Flecainide and Quinidine, two well described reference compounds. In conclusion, we demonstrate a high fidelity electrophysiological screening assay that incorporates optical pacing with IR light to control beating rate of hCM monolayers.

  14. Multi-modal approach using Raman spectroscopy and optical coherence tomography for the discrimination of colonic adenocarcinoma from normal colon

    PubMed Central

    Ashok, Praveen C.; Praveen, Bavishna B.; Bellini, Nicola; Riches, Andrew; Dholakia, Kishan; Herrington, C. Simon

    2013-01-01

    We report a multimodal optical approach using both Raman spectroscopy and optical coherence tomography (OCT) in tandem to discriminate between colonic adenocarcinoma and normal colon. Although both of these non-invasive techniques are capable of discriminating between normal and tumour tissues, they are unable individually to provide both the high specificity and high sensitivity required for disease diagnosis. We combine the chemical information derived from Raman spectroscopy with the texture parameters extracted from OCT images. The sensitivity obtained using Raman spectroscopy and OCT individually was 89% and 78% respectively and the specificity was 77% and 74% respectively. Combining the information derived using the two techniques increased both sensitivity and specificity to 94% demonstrating that combining complementary optical information enhances diagnostic accuracy. These data demonstrate that multimodal optical analysis has the potential to achieve accurate non-invasive cancer diagnosis. PMID:24156073

  15. Research on the peculiarity of optical parameters of atmospheric aerosol in Guangzhou coastal areas

    NASA Astrophysics Data System (ADS)

    Li, Shasha; Li, Xuebin; Zhang, Wenzhong; Bai, Shiwei; Liu, Qing; Zhu, Wenyue; Weng, Ningquan

    2018-02-01

    The long-term measurement of atmospheric aerosol is constructed via such equipment as visibility meter, optical particle counter, solar radiometer, automatic weather station, aerosol laser radar and aerosol scattering absorption coefficient measurer and so on during the year of 2010 and 2017 in the coastal areas of Guangzhou, China to study the optical parameter characteristics of atmospheric aerosol and establish the aerosol optical parameter mode in such areas. The effects of temperature and humidity on aerosol concentration, extinction and absorption coefficient are analyzed and the statistical characteristics of atmospheric temperature and humidity, visibility, extinction profiles and other parameters in different months are tallied, preliminarily establishing the atmospheric aerosol optical parameter pattern in Guangzhou coastal areas.

  16. Ab-initio investigations for opto-electronic response of (Cd, Zn)Ga2Te4: Promising solar PV materials

    NASA Astrophysics Data System (ADS)

    Sahariya, Jagrati; Soni, Amit; Kumar, Pancham

    2018-04-01

    In this paper, the first principle calculations are performed to analyze the structural, electronic and optical behavior of promising solar materials (Cd,Zn)Ga2Te4. To perform these calculations we have used one of the most accurate Full Potential Linearized Augmented Plane Wave (FP-LAPW) method. The ground state properties of these compounds are confirmed over here after proper examination of energy and charge convergence using Perdew-Burke-Ernzerhof (PBE-sol) exchange correlation potential. The investigations performed such as energy band structure, Density of States (DOS), optical parameters like complex dielectric function and absorption co-efficient are discussed over here to understand the overall response of the chosen system.

  17. Uncertainties of α-particle optical potential assessment around and below the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Avrigeanu, V.; Avrigeanu, M.; Mǎnǎilescu, C.

    2017-06-01

    A competition of the low-energy Coulomb excitation (CE) with the compound nucleus (CN) formation in α-induced reactions below the Coulomb barrier has recently been assumed in order to make possible the description of the latter as well as the α-particle emission by the same optical model (OM) potential. However, we show in the present work that the corresponding partial waves and integration radii provide evidence for the distinct account of the CE cross section and OM total-reaction cross section σR. Thus the largest contribution to CE cross section comes by far from partial waves larger than the ones contributing to the σR values. Finally, effects of statistical model parameters are comparatively discussed.

  18. Theoretical analysis for scaling law of thermal blooming based on optical phase deference

    NASA Astrophysics Data System (ADS)

    Sun, Yunqiang; Huang, Zhilong; Ren, Zebin; Chen, Zhiqiang; Guo, Longde; Xi, Fengjie

    2016-10-01

    In order to explore the laser propagation influence of thermal blooming effect of pipe flow and to analysis the influencing factors, scaling law theoretical analysis of the thermal blooming effects in pipe flow are carry out in detail based on the optical path difference caused by thermal blooming effects in pipe flow. Firstly, by solving the energy coupling equation of laser beam propagation, the temperature of the flow is obtained, and then the optical path difference caused by the thermal blooming is deduced. Through the analysis of the influence of pipe size, flow field and laser parameters on the optical path difference, energy scaling parameters Ne=nTαLPR2/(ρɛCpπR02) and geometric scaling parameters Nc=νR2/(ɛL) of thermal blooming for the pipe flow are derived. Secondly, for the direct solution method, the energy coupled equations have analytic solutions only for the straight tube with Gauss beam. Considering the limitation of directly solving the coupled equations, the dimensionless analysis method is adopted, the analysis is also based on the change of optical path difference, same scaling parameters for the pipe flow thermal blooming are derived, which makes energy scaling parameters Ne and geometric scaling parameters Nc have good universality. The research results indicate that when the laser power and the laser beam diameter are changed, thermal blooming effects of the pipeline axial flow caused by optical path difference will not change, as long as you keep energy scaling parameters constant. When diameter or length of the pipe changes, just keep the geometric scaling parameters constant, the pipeline axial flow gas thermal blooming effects caused by optical path difference distribution will not change. That is to say, when the pipe size and laser parameters change, if keeping two scaling parameters with constant, the pipeline axial flow thermal blooming effects caused by the optical path difference will not change. Therefore, the energy scaling parameters and the geometric scaling parameters can really describe the gas thermal blooming effect in the axial pipe flow. These conclusions can give a good reference for the construction of the thermal blooming test system of laser system. Contrasted with the thermal blooming scaling parameters of the Bradley-Hermann distortion number ND and Fresnel number NF, which were derived based on the change of far field beam intensity distortion, the scaling parameters of pipe flow thermal blooming deduced from the optical path deference variation are very suitable for the optical system with short laser propagation distance, large Fresnel number and obviously changed optical path deference.

  19. First-principles calculations of two cubic fluoropervskite compounds: RbFeF3 and RbNiF3

    NASA Astrophysics Data System (ADS)

    Mubarak, A. A.; Al-Omari, Saleh

    2015-05-01

    We present first-principles calculations of the structural, elastic, electronic, magnetic and optical properties for RbFeF3 and RbNiF3. The full-potential linear augmented plan wave (FP-LAPW) method within the density functional theory was utilized to perform the present calculations. We employed the generalized gradient approximation as exchange-correlation potential. It was found that the calculated analytical lattice parameters agree with previous studies. The analysis of elastic constants showed that the present compounds are elastically stable and anisotropic. Moreover, both compounds are classified as a ductile compound. The calculations of the band structure and density functional theory revealed that the RbFeF3 compound has a half-metallic behavior while the RbNiF3 compound has a semiconductor behavior with indirect (M-Γ) band gap. The ferromagnetic behavior was studied for both compounds. The optical properties were calculated for the radiation of up to 40 eV. A beneficial optics technology is predicted as revealed from the optical spectra.

  20. Dynamics of nonautonomous discrete rogue wave solutions for an Ablowitz-Musslimani equation with PT-symmetric potential.

    PubMed

    Yu, Fajun

    2017-02-01

    Starting from a discrete spectral problem, we derive a hierarchy of nonlinear discrete equations which include the Ablowitz-Ladik (AL) equation. We analytically study the discrete rogue-wave (DRW) solutions of AL equation with three free parameters. The trajectories of peaks and depressions of profiles for the first- and second-order DRWs are produced by means of analytical and numerical methods. In particular, we study the solutions with dispersion in parity-time ( PT) symmetric potential for Ablowitz-Musslimani equation. And we consider the non-autonomous DRW solutions, parameters controlling and their interactions with variable coefficients, and predict the long-living rogue wave solutions. Our results might provide useful information for potential applications of synthetic PT symmetric systems in nonlinear optics and condensed matter physics.

  1. Long-term agroecosystem research in the Central Mississippi River Basin: hyperspectral remote sensing of reservoir water quality

    USDA-ARS?s Scientific Manuscript database

    In-situ methods for estimating water quality parameters would facilitate efforts in spatial and temporal monitoring, and optical reflectance sensing has shown potential in this regard, particularly for chlorophyll, suspended sediment and turbidity. The objective of this research was to develop and e...

  2. Single-sensor system for spatially resolved, continuous, and multiparametric optical mapping of cardiac tissue

    PubMed Central

    Lee, Peter; Bollensdorff, Christian; Quinn, T. Alexander; Wuskell, Joseph P.; Loew, Leslie M.; Kohl, Peter

    2011-01-01

    Background Simultaneous optical mapping of multiple electrophysiologically relevant parameters in living myocardium is desirable for integrative exploration of mechanisms underlying heart rhythm generation under normal and pathophysiologic conditions. Current multiparametric methods are technically challenging, usually involving multiple sensors and moving parts, which contributes to high logistic and economic thresholds that prevent easy application of the technique. Objective The purpose of this study was to develop a simple, affordable, and effective method for spatially resolved, continuous, simultaneous, and multiparametric optical mapping of the heart, using a single camera. Methods We present a new method to simultaneously monitor multiple parameters using inexpensive off-the-shelf electronic components and no moving parts. The system comprises a single camera, commercially available optical filters, and light-emitting diodes (LEDs), integrated via microcontroller-based electronics for frame-accurate illumination of the tissue. For proof of principle, we illustrate measurement of four parameters, suitable for ratiometric mapping of membrane potential (di-4-ANBDQPQ) and intracellular free calcium (fura-2), in an isolated Langendorff-perfused rat heart during sinus rhythm and ectopy, induced by local electrical or mechanical stimulation. Results The pilot application demonstrates suitability of this imaging approach for heart rhythm research in the isolated heart. In addition, locally induced excitation, whether stimulated electrically or mechanically, gives rise to similar ventricular propagation patterns. Conclusion Combining an affordable camera with suitable optical filters and microprocessor-controlled LEDs, single-sensor multiparametric optical mapping can be practically implemented in a simple yet powerful configuration and applied to heart rhythm research. The moderate system complexity and component cost is destined to lower the threshold to broader application of functional imaging and to ease implementation of more complex optical mapping approaches, such as multiparametric panoramic imaging. A proof-of-principle application confirmed that although electrically and mechanically induced excitation occur by different mechanisms, their electrophysiologic consequences downstream from the point of activation are not dissimilar. PMID:21459161

  3. Influence of optical activity on rogue waves propagating in chiral optical fibers.

    PubMed

    Temgoua, D D Estelle; Kofane, T C

    2016-06-01

    We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.

  4. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince–Gaussian modes for optical trapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun Dong; Yu He; Xiao Zhou

    2016-03-31

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peakmore » power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping. (control of laser radiation parameters)« less

  5. Combined effects of nonparaxiality, optical activity, and walk-off on rogue wave propagation in optical fibers filled with chiral materials.

    PubMed

    Temgoua, D D Estelle; Tchokonte, M B Tchoula; Kofane, T C

    2018-04-01

    The generalized nonparaxial nonlinear Schrödinger (NLS) equation in optical fibers filled with chiral materials is reduced to the higher-order integrable Hirota equation. Based on the modified Darboux transformation method, the nonparaxial chiral optical rogue waves are constructed from the scalar model with modulated coefficients. We show that the parameters of nonparaxiality, third-order dispersion, and differential gain or loss term are the main keys to control the amplitude, linear, and nonlinear effects in the model. Moreover, the influence of nonparaxiality, optical activity, and walk-off effect are also evidenced under the defocusing and focusing regimes of the vector nonparaxial NLS equations with constant and modulated coefficients. Through an algorithm scheme of wider applicability on nonparaxial beam propagation methods, the most influential effect and the simultaneous controllability of combined effects are underlined, showing their properties and their potential applications in optical fibers and in a variety of complex dynamical systems.

  6. Combined effects of nonparaxiality, optical activity, and walk-off on rogue wave propagation in optical fibers filled with chiral materials

    NASA Astrophysics Data System (ADS)

    Temgoua, D. D. Estelle; Tchokonte, M. B. Tchoula; Kofane, T. C.

    2018-04-01

    The generalized nonparaxial nonlinear Schrödinger (NLS) equation in optical fibers filled with chiral materials is reduced to the higher-order integrable Hirota equation. Based on the modified Darboux transformation method, the nonparaxial chiral optical rogue waves are constructed from the scalar model with modulated coefficients. We show that the parameters of nonparaxiality, third-order dispersion, and differential gain or loss term are the main keys to control the amplitude, linear, and nonlinear effects in the model. Moreover, the influence of nonparaxiality, optical activity, and walk-off effect are also evidenced under the defocusing and focusing regimes of the vector nonparaxial NLS equations with constant and modulated coefficients. Through an algorithm scheme of wider applicability on nonparaxial beam propagation methods, the most influential effect and the simultaneous controllability of combined effects are underlined, showing their properties and their potential applications in optical fibers and in a variety of complex dynamical systems.

  7. Advanced optic fabrication using ultrafast laser radiation

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2016-03-01

    Advanced fabrication and finishing techniques are desired for freeform optics and integrated photonics. Methods including grinding, polishing and magnetorheological finishing used for final figuring and polishing of such optics are time consuming, expensive, and may be unsuitable for complex surface features while common photonics fabrication techniques often limit devices to planar geometries. Laser processing has been investigated as an alternative method for optic forming, surface polishing, structure writing, and welding, as direct tuning of laser parameters and flexible beam delivery are advantageous for complex freeform or photonics elements and material-specific processing. Continuous wave and pulsed laser radiation down to the nanosecond regime have been implemented to achieve nanoscale surface finishes through localized material melting, but the temporal extent of the laser-material interaction often results in the formation of a sub-surface heat affected zone. The temporal brevity of ultrafast laser radiation can allow for the direct vaporization of rough surface asperities with minimal melting, offering the potential for smooth, final surface quality with negligible heat affected material. High intensities achieved in focused ultrafast laser radiation can easily induce phase changes in the bulk of materials for processing applications. We have experimentally tested the effectiveness of ultrafast laser radiation as an alternative laser source for surface processing of monocrystalline silicon. Simulation of material heating associated with ultrafast laser-material interaction has been performed and used to investigate optimized processing parameters including repetition rate. The parameter optimization process and results of experimental processing will be presented.

  8. Inter-eye Asymmetry of Optical Coherence Tomography Angiography Vessel Density in Bilateral Glaucoma, Glaucoma Suspect, and Healthy Eyes.

    PubMed

    Hou, Huiyuan; Moghimi, Sasan; Zangwill, Linda M; Shoji, Takuhei; Ghahari, Elham; Manalastas, Patricia Isabel C; Penteado, Rafaella C; Weinreb, Robert N

    2018-03-23

    To investigate inter-eye retinal vessel density asymmetry in healthy, glaucoma suspect, and mild to moderate glaucoma subjects, and its potential utility for early detection of glaucomatous damage. Cross-sectional study. 153 subjects including 55 healthy, 32 glaucoma suspect, and 66 glaucoma subjects enrolled in the Diagnostic Innovations in Glaucoma Study(DIGS). Vessel density was obtained from optical coherence tomography angiography (OCT-A) macular and optic nerve head scans. Thickness of peripapillary retinal nerve fiber layer (RNFL) and macular ganglion cell complex (mGCC) was measured with spectral-domain optical coherence tomography (SD-OCT) scans. Inter-eye asymmetry was calculated by taking the absolute value of difference in vessel density and thickness between the right and left eyes. Inter-eye retinal vessel density asymmetry parameters were significantly different among the three groups. Glaucoma suspects had significantly higher peripapillary and macular inter-eye vessel density asymmetries compared to healthy groups in univariate (1.1% vs. 2.0%, P=0.014 and 1.2% vs. 2.5%, P=0.027, respectively) and multivariate analyses (P=0.007 and 0.038, respectively). No significant differences in asymmetry of thickness parameters were found between glaucoma suspect and healthy groups (all P> 0.718). However significant differences in asymmetry of thickness parameters between glaucoma suspects and glaucoma patients (P<0.01) were found for all parameters. Inter-eye vessel density asymmetry can be quantified by OCT-A measurement. Glaucoma suspects have significantly greater vessel density asymmetry than healthy eyes. Longitudinal studies are needed to better characterize the relationship of vessel density asymmetry with the development and progression of glaucoma. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Differences in Optic Nerve Head, Retinal Nerve Fiber Layer, and Ganglion Cell Complex Parameters Between Caucasian and Chinese Subjects.

    PubMed

    Chansangpetch, Sunee; Huang, Guofu; Coh, Paul; Oldenburg, Catherine; Amoozgar, Behzad; He, Mingguang; Lin, Shan C

    2018-04-01

    To compare optic nerve head, peripapillary retinal nerve fiber layer (pRNFL), and ganglion cell complex (GCC) parameters between Caucasian and ethnic Chinese. Normal subjects above 40 years old and self-identified as being Caucasian and Chinese were recruited. They were evaluated with spectral-domain optical coherence tomography (RTVue-100). Parameters related to the optic nerve head, pRNFL, and GCC analysis protocols were acquired. Multivariable linear regression was performed adjusting for potential confounders. Data from 116 Caucasian and 130 Chinese subjects were available for analysis. Mean age of all participants was 66.72 (SD 10.82) years. There were statistically significant differences for disc area (DA), area cup-to-disc, vertical cup-to-disc, and cup volume (P=0.02, 0.004, 0.02, and 0.03, respectively), greater in Chinese. After adjusting for age, sex, axial length (AL), intraocular pressure (IOP), DA, and GCC thickness, Chinese subjects had significantly greater thickness in all pRNFL parameters (mean differences ranged between 4.29 and 9.93 μm; all P<0.001) except the nasal quadrant. GCC outcomes were also adjusted for DA and pRNFL; Caucasians had significantly higher average GCC and inferior GCC (mean difference 2.97 and 3.45 μm, respectively; P<0.01), whereas the Chinese group had significantly higher ganglion cell global loss volume (mean difference 2.47 %, P<0.001). This study suggests there is significantly greater pRNFL thickness in Chinese, which were independent of age, AL, IOP, and DA, and possibly greater GCC in Caucasians after adjustment for age, AL, IOP, DA, and pRNFL thickness.

  10. Optical absorption by indirect excitons in a transition metal dichalcogenide/hexagonal boron nitride heterostructure

    NASA Astrophysics Data System (ADS)

    Brunetti, Matthew N.; Berman, Oleg L.; Kezerashvili, Roman Ya

    2018-06-01

    We study optical transitions in spatially indirect excitons in transition metal dichalcogenide (TMDC) heterostructures separated by an integer number of hexagonal boron nitride (h-BN) monolayers. By solving the Schrödinger equation with the Keldysh potential for a spatially indirect exciton, we obtain eigenfunctions and eigenenergies for the ground and excited states and study their dependence on the interlayer separation, controlled by varying the number of h-BN monolayers. The oscillator strength, optical absorption coefficient, and optical absorption factor, the fraction of incoming photons absorbed in the TMDC/h-BN/TMDC heterostructure, are evaluated and studied as a function of the interlayer separation. Using input parameters from the existing literature which give the largest and the smallest spatially indirect exciton binding energy, we provide upper and lower bounds on all quantities presented.

  11. Propagation of hypergeometric Gaussian beams in strongly nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Bian, Lirong; Zhou, Xin; Chen, Kai

    2018-01-01

    Optical vortex beams have attracted lots of interest due to its potential application in image processing, optical trapping and optical communications, etc. In this work, we theoretically and numerically investigated the propagation properties of hypergeometric Gaussian (HyGG) beams in strongly nonlocal nonlinear media. Based on the Snyder-Mitchell model, analytical expressions for propagation of the HyGG beams in strongly nonlocal nonlinear media were obtained. The influence of input power and optical parameters on the evolutions of the beam width and radius of curvature is illustrated, respectively. The results show that the beam width and radius of curvature of the HyGG beams remain invariant, like a soliton when the input power is equal to the critical power. Otherwise, it varies periodically like a breather, which is the result of competition between the beam diffraction and nonlinearity of the medium.

  12. Rotational strength of dye-helix complexes as studied by a potential model theory

    NASA Astrophysics Data System (ADS)

    Kamiya, Mamoru

    1988-03-01

    The fundamental features of the induced optical activity in dye-helix complexes are clarified by the trap potential model. The effect of the potential depth on the induced rotational strength is explained in terms of the relative magnitudes of the wave-phase and helix-phase variations in the path of an electron moving along a restricted helix segment just like an exciton trapped around a dye intercalation site. The potential parameters have been optimized so as to reproduce the ionic strength effect upon the rotational strengths induced in proflavine-DNA intercalation complexes.

  13. Scattering of charged particles on two spatially separated time-periodic optical fields

    NASA Astrophysics Data System (ADS)

    Szabó, Lóránt Zs.; Benedict, Mihály G.; Földi, Péter

    2017-12-01

    We consider a monoenergetic beam of moving charged particles interacting with two separated oscillating electric fields. Time-periodic linear potential is assumed to model the light-particle interaction using a nonrelativistic, quantum mechanical description based on Gordon-Volkov states. Applying Floquet theory, we calculate transmission probabilities as a function of the laser field parameters. The transmission resonances in this Ramsey-like setup are interpreted as if they originated from a corresponding static double-potential barrier with heights equal to the ponderomotive potential resulting from the oscillating field. Due to the opening of new "Floquet channels," the resonances are repeated at input energies when the corresponding frequency is shifted by an integer multiple of the exciting frequency. These narrow resonances can be used as precise energy filters. The fine structure of the transmission spectra is determined by the phase difference between the two oscillating light fields, allowing for the optical control of the transmission.

  14. Wireless optical transceiver design, link analisys and alignment control for mobile communication

    NASA Astrophysics Data System (ADS)

    Zhou, Dayong

    Pointing, acquisition and tracking of a free-space optical node in a mobile network experiencing misalignment due to adverse factors including vibration, motion and atmospheric turbulence requires a different approach than traditional free-space optical transceivers. A recent fiber-bundle approach for beam steering at the transmitter was investigated to provide continuous beam coverage at the receiver without the application of mechanical devices. Utilizing multiple fibers-lenses sets at the receiver was also proposed to enhance the tolerance of optical link misalignment. In this work, both laboratory experiments and software simulation were implemented to evaluate the optical link performance for different fiber-bundle-based transceiver setups as the link parameters were varied. The performance was evaluated in terms of the coverage area at the receiver, which is a measure of misalignment tolerance and is dependent not only on wavelength but on other key parameters such as link length, transmitted power, the pattern of transmitters, beam divergence, and the receiver construction. The results showed that fiber-bindle-based transceivers reveal significant potential to maximize the up time of the link, and the results also provide guidance on the further development of the overall system. To incorporate the proposed transceiver designs, an alignment control system was developed and evaluated as well. The laboratory results show that the optical control system successfully recovered and maintained the link while the receiver was in motion and the signal coverage at the target area was enhanced significantly.

  15. Throughput and latency programmable optical transceiver by using DSP and FEC control.

    PubMed

    Tanimura, Takahito; Hoshida, Takeshi; Kato, Tomoyuki; Watanabe, Shigeki; Suzuki, Makoto; Morikawa, Hiroyuki

    2017-05-15

    We propose and experimentally demonstrate a proof-of-concept of a programmable optical transceiver that enables simultaneous optimization of multiple programmable parameters (modulation format, symbol rate, power allocation, and FEC) for satisfying throughput, signal quality, and latency requirements. The proposed optical transceiver also accommodates multiple sub-channels that can transport different optical signals with different requirements. Multi-degree-of-freedom of the parameters often leads to difficulty in finding the optimum combination among the parameters due to an explosion of the number of combinations. The proposed optical transceiver reduces the number of combinations and finds feasible sets of programmable parameters by using constraints of the parameters combined with a precise analytical model. For precise BER prediction with the specified set of parameters, we model the sub-channel BER as a function of OSNR, modulation formats, symbol rates, and power difference between sub-channels. Next, we formulate simple constraints of the parameters and combine the constraints with the analytical model to seek feasible sets of programmable parameters. Finally, we experimentally demonstrate the end-to-end operation of the proposed optical transceiver with offline manner including low-density parity-check (LDPC) FEC encoding and decoding under a specific use case with latency-sensitive application and 40-km transmission.

  16. Optimization and throughput estimation of optical ground networks for LEO-downlinks, GEO-feeder links and GEO-relays

    NASA Astrophysics Data System (ADS)

    Fuchs, Christian; Poulenard, Sylvain; Perlot, Nicolas; Riedi, Jerome; Perdigues, Josep

    2017-02-01

    Optical satellite communications play an increasingly important role in a number of space applications. However, if the system concept includes optical links to the surface of the Earth, the limited availability due to clouds and other atmospheric impacts need to be considered to give a reliable estimate of the system performance. An OGS network is required for increasing the availability to acceptable figures. In order to realistically estimate the performance and achievable throughput in various scenarios, a simulation tool has been developed under ESA contract. The tool is based on a database of 5 years of cloud data with global coverage and can thus easily simulate different optical ground station network topologies for LEO- and GEO-to-ground links. Further parameters, like e.g. limited availability due to sun blinding and atmospheric turbulence, are considered as well. This paper gives an overview about the simulation tool, the cloud database, as well as the modelling behind the simulation scheme. Several scenarios have been investigated: LEO-to-ground links, GEO feeder links, and GEO relay links. The key results of the optical ground station network optimization and throughput estimations will be presented. The implications of key technical parameters, as e.g. memory size aboard the satellite, will be discussed. Finally, potential system designs for LEO- and GEO-systems will be presented.

  17. Liquid crystalline phases in suspensions of pigments in non-polar solvents

    NASA Astrophysics Data System (ADS)

    Klein, Susanne; Richardson, Robert M.; Eremin, Alexey

    We will discuss colloid suspensions of pigments and compare their electro-optic properties with those of traditional dyed low molecular weight liquid crystal systems. There are several potential advantages of colloidal suspensions over low molecular weight liquid crystal systems: a very high contrast because of the high orientational order parameter of suspensions of rod shaped nano-particles, the excellent light fastness of pigments as compared to dyes and high colour saturations resulting from the high loading of the colour stuff. Although a weak `single-particle' electro-optic response can be observed in dilute suspensions, the response is very much enhanced when the concentration of the particles is sufficient to lead to a nematic phase. Excellent stability of suspensions is beneficial for experimental observation and reproducibility, but it is a fundamental necessity for display applications. We therefore discuss a method to achieve long term stability of dispersed pigments and the reasons for its success. Small angle X-ray scattering was used to determine the orientational order parameter of the suspensions as a function of concentration and the dynamic response to an applied electric field. Optical properties were investigated for a wide range of pigment concentrations. Electro-optical phenomena, such as field-induced birefringence and switching, were characterised. In addition, mixtures of pigment suspensions with small amounts of ferrofluids show promise as future magneto-optical materials.

  18. Underwater superoleophobicity, anti-oil and ultra-broadband enhanced absorption of metallic surfaces produced by a femtosecond laser inspired by fish and chameleons

    NASA Astrophysics Data System (ADS)

    Yin, K.; Song, Y. X.; Dong, X. R.; Wang, C.; Duan, J. A.

    2016-11-01

    Reported here is the bio-inspired and robust function of underwater superoleophobic, anti-oil metallic surfaces with ultra-broadband enhanced optical absorption obtained through femtosecond laser micromachining. Three distinct surface structures are fabricated using a wide variety of processing parameters. Underwater superoleophobic and anti-oil surfaces containing coral-like microstructures with nanoparticles and mount-like microstructures are achieved. These properties of the as-prepared surfaces exhibit good chemical stability when exposed to various types of oils and when immersed in water with a wide range of pH values. Moreover, coral-like microstructures with nanoparticle surfaces show strongly enhanced optical absorption over a broadband wavelength range from 0.2-25 μm. The potential mechanism for the excellent performance of the coral-like microstructures with a nanoparticle surface is also discussed. This multifunctional surface has potential applications in military submarines, amphibious military aircraft and tanks, and underwater anti-oil optical counter-reconnaissance devices.

  19. Application of an Optical Model to the Interaction of the $pi$ Meson with the Nucleus in the $pi$ Mesic Atom (thesis); APPLICATION D'UN MODELE OPTIQUE POUR L'INTERACTION DU MESON $pi$ MESIQUE (THESE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berthet, M.

    1963-01-01

    The energy levels and their displacement DELTA E with respect to that of a meson placed in a coulomb potential are determined and compared with the experimental values. This comparison permits the selection of values for the parameters introduced by the hypothesis of the optical model. The absorption in the nucleus is studied using the hamiltonian of the nucleon- pi meson interaction and not th optical model. The results are compared with experimen values. As an introduction, the exact form of the interac tion of mesons with nuclei is defined by adopting the opti model. (J.S.R.)

  20. Electro-optic chaotic system based on the reverse-time chaos theory and a nonlinear hybrid feedback loop.

    PubMed

    Jiang, Xingxing; Cheng, Mengfan; Luo, Fengguang; Deng, Lei; Fu, Songnian; Ke, Changjian; Zhang, Minming; Tang, Ming; Shum, Ping; Liu, Deming

    2016-12-12

    A novel electro-optic chaos source is proposed on the basis of the reverse-time chaos theory and an analog-digital hybrid feedback loop. The analog output of the system can be determined by the numeric states of shift registers, which makes the system robust and easy to control. The dynamical properties as well as the complexity dependence on the feedback parameters are investigated in detail. The correlation characteristics of the system are also studied. Two improving strategies which were established in digital field and analog field are proposed to conceal the time-delay signature. The proposed scheme has the potential to be used in radar and optical secure communication systems.

  1. Floquet-Engineered Valleytronics in Dirac Systems.

    PubMed

    Kundu, Arijit; Fertig, H A; Seradjeh, Babak

    2016-01-08

    Valley degrees of freedom offer a potential resource for quantum information processing if they can be effectively controlled. We discuss an optical approach to this problem in which intense light breaks electronic symmetries of a two-dimensional Dirac material. The resulting quasienergy structures may then differ for different valleys, so that the Floquet physics of the system can be exploited to produce highly polarized valley currents. This physics can be utilized to realize a valley valve whose behavior is determined optically. We propose a concrete way to achieve such valleytronics in graphene as well as in a simple model of an inversion-symmetry broken Dirac material. We study the effect numerically and demonstrate its robustness against moderate disorder and small deviations in optical parameters.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, S. Arun; Malathi, V.; Mani Rajan, M. S., E-mail: senthilmanirajanofc@gmail.com

    We obtain the bright similariton solutions for generalized inhomogeneous nonlinear Schrödinger equation (GINLSE) which governs the pulse propagation in a tapered graded index diffraction decreasing waveguide (DDW). The exact solutions have been worked out by employing similarity transformations which involve the mapping of the GINLSE to standard NLSE for the certain conditions of the parameters. By making use of the exact analytical solutions, we have investigated the dynamical behavior of optical similariton pairs and have suggested the methods to control them as they propagate through DDW. Moreover, pulse width of similariton is controlled through various profiles. These results are helpfulmore » to understand the similaritons in DDW and can be potentially useful for future experiments in optical communications which involve optical amplifiers and long-haul telecommunication networks.« less

  3. First-principle calculations of structural, electronic, optical, elastic and thermal properties of MgXAs2 (X=Si, Ge) compounds

    NASA Astrophysics Data System (ADS)

    Cheddadi, S.; Boubendira, K.; Meradji, H.; Ghemid, S.; Hassan, F. El Haj; Lakel, S.; Khenata, R.

    2017-12-01

    First-principle calculations on the structural, electronic, optical, elastic and thermal properties of the chalcopyrite MgXAs2 (X=Si, Ge) have been performed within the density functional theory (DFT) using the full-potential linearized augmented plane wave (FP-LAPW) method. The obtained equilibrium structural parameters are in good agreement with the available experimental data and theoretical results. The calculated band structures reveal a direct energy band gap for the interested compounds. The predicted band gaps using the modified Becke-Johnson (mBJ) exchange approximation are in fairly good agreement with the experimental data. The optical constants such as the dielectric function, refractive index, and the extinction coefficient are calculated and analysed. The independent elastic parameters namely, C_{11}, C_{12}, C_{13}, C_{33}, C_{44} and C_{66 } are evaluated. The effects of temperature and pressure on some macroscopic properties of MgSiAs2 and MgGeAs2 are predicted using the quasiharmonic Debye model in which the lattice vibrations are taken into account.

  4. Optical and microphysical parameters of dense stratocumulus clouds during mission 206 of EUCREX '94 as retrieved from measurements made with the airborne lidar LEANDRE 1

    NASA Astrophysics Data System (ADS)

    Pelon, J.; Flamant, C.; Trouillet, V.; Flamant, P. H.

    Cloud parameters derived from measurements performed with the airborne backscatter lidar LEANDRE 1 during mission 206 of the EUCREX '94 campaign are reported. A new method has been developed to retrieve the extinction coefficient at the top of the dense stratocumulus deck under scrutiny during this mission. The largest extinction values are found to be related to the highest cloud top altitude revealing the small-scale structure of vertical motions within the stratocumulus field. Cloud optical depth (COD) is estimated from extinction retrievals, as well as cloud top and cloud base altitude using nadir and zenith lidar observations, respectively. Lidar-derived CODs are compared with CODs deduced from radiometric measurements made onboard the French research aircraft Avion de Recherche Atmosphérique et de Télédétection (ARAT/F27). A fair agreement is obtained (within 20%) for COD's larger than 10. Our results show the potential of lidar measurements to analyze cloud properties at optical depths larger than 5.

  5. Intelligent Systems for Stabilizing Mode-Locked Lasers and Frequency Combs: Machine Learning and Equation-Free Control Paradigms for Self-Tuning Optics

    NASA Astrophysics Data System (ADS)

    Kutz, J. Nathan; Brunton, Steven L.

    2015-12-01

    We demonstrate that a software architecture using innovations in machine learning and adaptive control provides an ideal integration platform for self-tuning optics. For mode-locked lasers, commercially available optical telecom components can be integrated with servocontrollers to enact a training and execution software module capable of self-tuning the laser cavity even in the presence of mechanical and/or environmental perturbations, thus potentially stabilizing a frequency comb. The algorithm training stage uses an exhaustive search of parameter space to discover best regions of performance for one or more objective functions of interest. The execution stage first uses a sparse sensing procedure to recognize the parameter space before quickly moving to the near optimal solution and maintaining it using the extremum seeking control protocol. The method is robust and equationfree, thus requiring no detailed or quantitatively accurate model of the physics. It can also be executed on a broad range of problems provided only that suitable objective functions can be found and experimentally measured.

  6. Differences in the Optical Characteristics of Continental US Ground and Cloud Flashes as Observed from Space

    NASA Technical Reports Server (NTRS)

    Koshak, William

    2007-01-01

    Continental US lightning flashes observed by the Optical Transient Detector (OTD) are categorized according to flash type (ground or cloud flash) using US National Lightning Detection Network (TM) (NLDN) data. The statistics of the ground and cloud flash optical parameters (e.g., radiance, area, duration, number of optical groups, and number of optical events) are inter-compared. On average, the ground flash cloud-top emissions are more radiant, illuminate a larger area, are longer lasting, and have more optical groups and optical events than those cloud-top emissions associated with cloud flashes. Given these differences, it is suggested that the methods of Bayesian Inference could be used to help discriminate between ground and cloud flashes. The ability to discriminate flash type on-orbit is highly desired since such information would help researchers and operational decision makers better assess the intensification, evolutionary state, and severe weather potential of thunderstorms. This work supports risk reduction activities presently underway for the future launch of the GOES-R Geostationary Lightning Mapper (GLM).

  7. Surface slope metrology of highly curved x-ray optics with an interferometric microscope

    NASA Astrophysics Data System (ADS)

    Gevorkyan, Gevork S.; Centers, Gary; Polonska, Kateryna S.; Nikitin, Sergey M.; Lacey, Ian; Yashchuk, Valeriy V.

    2017-09-01

    The development of deterministic polishing techniques has given rise to vendors that manufacture high quality threedimensional x-ray optics. The surface metrology on these optics remains a difficult task. For the fabrication, vendors usually use unique surface metrology tools, generally developed on site, that are not available in the optical metrology labs at x-ray facilities. At the Advanced Light Source X-Ray Optics Laboratory, we have developed a rather straightforward interferometric-microscopy-based procedure capable of sub microradian characterization of sagittal slope variation of x-ray optics for two-dimensionally focusing and collimating (such as ellipsoids, paraboloids, etc.). In the paper, we provide the mathematical foundation of the procedure and describe the related instrument calibration. We also present analytical expression describing the ideal surface shape in the sagittal direction of a spheroid specified by the conjugate parameters of the optic's beamline application. The expression is useful when analyzing data obtained with such optics. The high efficiency of the developed measurement and data analysis procedures is demonstrated in results of measurements with a number of x-ray optics with sagittal radius of curvature between 56 mm and 480 mm. We also discuss potential areas of further improvement.

  8. High-sensitivity silicon nanowire phototransistors

    NASA Astrophysics Data System (ADS)

    Tan, Siew Li; Zhao, Xingyan; Dan, Yaping

    2014-08-01

    Silicon nanowires (SiNWs) have emerged as a promising material for high-sensitivity photodetection in the UV, visible and near-infrared spectral ranges. In this work, we demonstrate novel planar SiNW phototransistors on silicon-oninsulator (SOI) substrate using CMOS-compatible processes. The device consists of a bipolar transistor structure with an optically-injected base region. The electronic and optical properties of the SiNW phototransistors are investigated. Preliminary simulation and experimental results show that nanowire geometry, doping densities and surface states have considerable effects on the device performance, and that a device with optimized parameters can potentially outperform conventional Si photodetectors.

  9. Particle model for optical noisy image recovery via stochastic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Yongbin; Liu, Hongjun; Huang, Nan; Wang, Zhaolu; Han, Jing

    2017-10-01

    We propose a particle model for investigating the optical noisy image recovery via stochastic resonance. The light propagating in nonlinear media is regarded as moving particles, which are used for analyzing the nonlinear coupling of signal and noise. Owing to nonlinearity, a signal seeds a potential to reinforce itself at the expense of noise. The applied electric field, noise intensity, and correlation length are important parameters that influence the recovery effects. The noise-hidden image with the signal-to-noise intensity ratio of 1:30 is successfully restored and an optimal cross-correlation gain of 6.1 is theoretically obtained.

  10. Steps Towards Industrialization of Cu–III–VI2Thin‐Film Solar Cells:Linking Materials/Device Designs to Process Design For Non‐stoichiometric Photovoltaic Materials

    PubMed Central

    Chang, Hsueh‐Hsin; Sharma, Poonam; Letha, Arya Jagadhamma; Shao, Lexi; Zhang, Yafei; Tseng, Bae‐Heng

    2016-01-01

    The concept of in‐line sputtering and selenization become industrial standard for Cu–III–VI2 solar cell fabrication, but still it's very difficult to control and predict the optical and electrical parameters, which are closely related to the chemical composition distribution of the thin film. The present review article addresses onto the material design, device design and process design using parameters closely related to the chemical compositions. Its variation leads to change in the Poisson equation, current equation, and continuity equation governing the device design. To make the device design much realistic and meaningful, we need to build a model that relates the opto‐electrical properties to the chemical composition. The material parameters as well as device structural parameters are loaded into the process simulation to give a complete set of process control parameters. The neutral defect concentrations of non‐stoichiometric CuMSe2 (M = In and Ga) have been calculated under the specific atomic chemical potential conditions using this methodology. The optical and electrical properties have also been investigated for the development of a full‐function analytical solar cell simulator. The future prospects regarding the development of copper–indium–gallium–selenide thin film solar cells have also been discussed. PMID:27840790

  11. Steps Towards Industrialization of Cu-III-VI2Thin-Film Solar Cells:Linking Materials/Device Designs to Process Design For Non-stoichiometric Photovoltaic Materials.

    PubMed

    Hwang, Huey-Liang; Chang, Hsueh-Hsin; Sharma, Poonam; Letha, Arya Jagadhamma; Shao, Lexi; Zhang, Yafei; Tseng, Bae-Heng

    2016-10-01

    The concept of in-line sputtering and selenization become industrial standard for Cu-III-VI 2 solar cell fabrication, but still it's very difficult to control and predict the optical and electrical parameters, which are closely related to the chemical composition distribution of the thin film. The present review article addresses onto the material design, device design and process design using parameters closely related to the chemical compositions. Its variation leads to change in the Poisson equation, current equation, and continuity equation governing the device design. To make the device design much realistic and meaningful, we need to build a model that relates the opto-electrical properties to the chemical composition. The material parameters as well as device structural parameters are loaded into the process simulation to give a complete set of process control parameters. The neutral defect concentrations of non-stoichiometric CuMSe 2 (M = In and Ga) have been calculated under the specific atomic chemical potential conditions using this methodology. The optical and electrical properties have also been investigated for the development of a full-function analytical solar cell simulator. The future prospects regarding the development of copper-indium-gallium-selenide thin film solar cells have also been discussed.

  12. Structural, morphological, and optical characterizations of Mo, CrN and Mo:CrN sputtered coatings for potential solar selective applications

    NASA Astrophysics Data System (ADS)

    Ibrahim, Khalil; Mahbubur Rahman, M.; Taha, Hatem; Mohammadpour, Ehsan; Zhou, Zhifeng; Yin, Chun-Yang; Nikoloski, Aleksandar; Jiang, Zhong-Tao

    2018-05-01

    Mo, CrN, and Mo:CrN sputtered coatings synthesized onto silicon Si(100) substrates were investigated as solar selective surfaces and their potential applications in optical devices. These coatings were characterized using XRD, SEM, UV-vis, and FTIR techniques. XRD investigation, showed a change in CrN thin film crystallite characteristic due to Mo doping. Compared to the CrN coating, the Mo:CrN film has a higher lattice parameter and lower grain size of 4.19 nm and 106.18 nm, respectively. FESEM morphology confirmed the decrement in Mo:CrN crystal size due to Mo doping. Optical analysis showed that in the visible range of the solar spectrum, the CrN coatings exhibit the highest solar absorptance of 66% while the lowest thermal emittance value of 5.67 was recorded for the CrN coating doped with Mo. Consequently, the highest solar selectivity of 9.6, and the energy band-gap of 2.88 eV were achieved with the Mo-doped CrN coatings. Various optical coefficients such as optical absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constants, and energy loss functions of these coatings were also estimated from the optical reflectance data recorded in the wavelength range of 190-2300 nm.

  13. Optical coherence tomography platforms and parameters for glaucoma diagnosis and progression.

    PubMed

    Mwanza, Jean-Claude; Budenz, Donald L

    2016-03-01

    Optical coherence tomography (OCT) aids in the diagnosis and long-term monitoring of various ocular diseases, including glaucoma. Initially, the retinal nerve fiber layer was the only OCT structural parameter used in glaucoma. Subsequent research has resulted in more retinal and optic nerve head parameters. In addition, OCT is being investigated for its ability to assess ocular hemodynamics. This review summarizes these spectral domain-optical coherence tomography (SDOCT) parameters in the context of glaucoma. Several new SDOCT retinal nerve fiber layer, optic nerve head, and macular parameters with good glaucoma diagnostic ability have been added to existing ones recently. The combination of SDOCT and Doppler or angiography has also resulted in hemodynamic parameters that may prove to be useful in the functional assessment in glaucoma. OCT technology is advancing not only as a tool for structural assessment, but also as a multimodality tool to assess both structure and function to enhance our understanding of glaucoma, and ultimately clinical decisions.

  14. Quantitative evaluation of redox ratio and collagen characteristics during breast cancer chemotherapy using two-photon intrinsic imaging.

    PubMed

    Wu, Shulian; Huang, Yudian; Tang, Qinggong; Li, Zhifang; Horng, Hannah; Li, Jiatian; Wu, Zaihua; Chen, Yu; Li, Hui

    2018-03-01

    Preoperative neoadjuvant treatment in locally advanced breast cancer is recognized as an effective adjuvant therapy, as it improves treatment outcomes. However, the potential complications remain a threat, so there is an urgent clinical need to assess both the tumor response and changes in its microenvironment using non-invasive and precise identification techniques. Here, two-photon microscopy was employed to detect morphological alterations in breast cancer progression and recession throughout chemotherapy. The changes in structure were analyzed based on the autofluorescence and collagen of differing statuses. Parameters, including optical redox ratio, the ratio of second harmonic generation and auto-fluorescence signal, collagen density, and collagen shape orientation, were studied. Results indicate that these parameters are potential indicators for evaluating breast tumors and their microenvironment changes during progression and chemotherapy. Combined analyses of these parameters could provide a quantitative, novel method for monitoring tumor therapy.

  15. A small animal time-resolved optical tomography platform using wide-field excitation

    NASA Astrophysics Data System (ADS)

    Venugopal, Vivek

    Small animal imaging plays a critical role in present day biomedical research by filling an important gap in the translation of research from the bench to the bedside. Optical techniques constitute an emerging imaging modality which have tremendous potential in preclinical applications. Optical imaging methods are capable of non-invasive assessment of the functional and molecular characteristics of biological tissue. The three-dimensional optical imaging technique, referred to as diffuse optical tomography, provides an approach for the whole-body imaging of small animal models and can provide volumetric maps of tissue functional parameters (e.g. blood volume, oxygen saturation etc.) and/or provide 3D localization and quantification of fluorescence-based molecular markers in vivo. However, the complex mathematical reconstruction problem associated with optical tomography and the cumbersome instrumental designs limits its adoption as a high-throughput quantitative whole-body imaging modality in current biomedical research. The development of new optical imaging paradigms is thus necessary for a wide-acceptance of this new technology. In this thesis, the design, development, characterization and optimization of a small animal optical tomography system is discussed. Specifically, the platform combines a highly sensitive time-resolved imaging paradigm with multi-spectral excitation capability and CCD-based detection to provide a system capable of generating spatially, spectrally and temporally dense measurement datasets. The acquisition of such data sets however can take long and translate to often unrealistic acquisition times when using the classical point source based excitation scheme. The novel approach in the design of this platform is the adoption of a wide-field excitation scheme which employs extended excitation sources and in the process allows an estimated ten-fold reduction in the acquisition time. The work described herein details the design of the imaging platform employing DLP-based excitation and time-gated intensified CCD detection and the optimal system operation parameters are determined. The feasibility this imaging approach and accuracy of the system in reconstructing functional parameters and fluorescence markers based on lifetime contrast is established through phantom studies. As a part of the system characterization, the effect of noise in time-resolved optical tomography is investigated and propagation of system noise in optical reconstructions is established. Furthermore, data processing and measurement calibration techniques aimed at reducing the effect of noise in reconstructions are defined. The optimization of excitation pattern selection is established through a novel measurement-guided iterative pattern correction scheme. This technique referred to as Adaptive Full-Field Optical Tomography was shown to improve reconstruction performances in murine models by reducing the dynamic range in photon flux measurements on the surface. Lastly, the application of the unique attributes of this platform to a biologically relevant imaging application, referred to as Forster Resonance Energy Transfer is described. The tomographic imaging of FRET interaction in vivo on a whole-body scale is achieved using the wide-field imaging approach based on lifetime contrast. This technique represents the first demonstration of tomographic FRET imaging in small animals and has significant potential in the development of optical imaging techniques in varied applications ranging from drug discovery to in vivo study of protein-protein interaction.

  16. Experimentally Determined Plasma Parameters in a 30 cm Ion Engine

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Goebel, Dan; Fitzgerald, Dennis; Owens, Al; Tynan, George; Dorner, Russ

    2004-01-01

    Single planar Langmuir probes and fiber optic probes are used to concurrently measure the plasma properties and neutral density variation in a 30cm diameter ion engine discharge chamber, from the immediate vicinity of the keeper to the near grid plasma region. The fiber optic probe consists of a collimated optical fiber recessed into a double bore ceramic tube fitted with a stainless steel light-limiting window. The optical fiber probe is used to measure the emission intensity of excited neutral xenon for a small volume of plasma, at various radial and axial locations. The single Langmuir probes, are used to generate current-voltage characteristics at a total of 140 spatial locations inside the discharge chamber. Assuming a maxwellian distribution for the electron population, the Langmuir probe traces provide spatially resolved measurements of plasma potential, electron temperature, and plasma density. Data reduction for the NSTAR TH8 and TH15 throttle points indicates an electron temperature range of 1 to 7.9 eV and an electron density range of 4e10 to le13 cm(sup -3), throughout the discharge chamber, consistent with the results in the literature. Plasma potential estimates, computed from the first derivative of the probe characteristic, indicate potential from 0.5V to 11V above the discharge voltage along the thruster centerline. These values are believed to be excessively high due to the sampling of the primary electron population along the thruster centerline. Relative neutral density profiles are also obtained with a fiber optic probe sampling photon flux from the 823.1 nm excited to ground state transition. Plasma parameter measurements and neutral density profiles will be presented as a function of probe location and engine discharge conditions. A discussion of the measured electron energy distribution function will also be presented, with regards to variation from pure maxwellian. It has been found that there is a distinct primary population found along the thruster centerline, which causes estimates of electron temperature, electron density, and plasma potential, to err on the high side, due this energetic population. Computation of the energy distribution fimction of the plasma clearly indicates the presence of primaries, whose presence become less obvious with radial distance from the main discharge plume.

  17. Design of Magnetic Charged Particle Lens Using Analytical Potential Formula

    NASA Astrophysics Data System (ADS)

    Al-Batat, A. H.; Yaseen, M. J.; Abbas, S. R.; Al-Amshani, M. S.; Hasan, H. S.

    2018-05-01

    In the current research was to benefit from the potential of the two cylindrical electric lenses to be used in the product a mathematical model from which, one can determine the magnetic field distribution of the charged particle objective lens. With aid of simulink in matlab environment, some simulink models have been building to determine the distribution of the target function and their related axial functions along the optical axis of the charged particle lens. The present study showed that the physical parameters (i.e., the maximum value, Bmax, and the half width W of the field distribution) and the objective properties of the charged particle lens have been affected by varying the main geometrical parameter of the lens named the bore radius R.

  18. First principles study of structural, electronic and optical properties of perovskites CaZrO3 and CaHfO3 in cubic phase

    NASA Astrophysics Data System (ADS)

    Hoat, D. M.; Silva, J. F. Rivas; Blas, A. Méndez

    2018-07-01

    In this work, we present the first principles calculations for structural, electronic and optical properties of perovskites CaZrO3 and CaHfO3 using the full-potential linearized augmented plane wave method (FP-LAPW) within the framework of density functional theory (DFT) as implemented in WIEN2k package. The exchange-correlation potential is treated with local density approximation (LDA) and generalized gradient approximation (GGA-PBE and PBESol). Additionally, the Tran Blaha modified Becke-Johnson exchange potential (mBJ) also is employed for electronic and optical calculations due to that it gives very accurate band gap of solids. Our obtained structural parameters are in good agreement with experimental datas and other theoretical results. The energy band gap obtained with mBJ is 4.56 eV for CaZrO3 and 5.27 eV for CaHfO3. The hybridization of states of O atom with those of Zr and Hf atoms in CaZrO3 and CaHfO3, respectively, is observed. The spin-orbit coupling effect on electronic properties of considered compounds also is investigated. Finally, the linear optical properties of CaZrO3 and CaHfO3 are derived from their complex dielectric function calculated with mBJ potential for wide energy range up to 45 eV, and all of them analyzed in details.

  19. Optical Nano Antennas: State of the Art, Scope and Challenges as a Biosensor Along with Human Exposure to Nano-Toxicology

    PubMed Central

    Kausar, Abu Sulaiman Mohammad Zahid; Reza, Ahmed Wasif; Latef, Tarik Abdul; Ullah, Mohammad Habib; Karim, Mohammad Ershadul

    2015-01-01

    The concept of optical antennas in physical optics is still evolving. Like the antennas used in the radio frequency (RF) regime, the aspiration of optical antennas is to localize the free propagating radiation energy, and vice versa. For this purpose, optical antennas utilize the distinctive properties of metal nanostructures, which are strong plasmonic coupling elements at the optical regime. The concept of optical antennas is being advanced technologically and they are projected to be substitute devices for detection in the millimeter, infrared, and visible regimes. At present, their potential benefits in light detection, which include polarization dependency, tunability, and quick response times have been successfully demonstrated. Optical antennas also can be seen as directionally responsive elements for point detectors. This review provides an overview of the historical background of the topic, along with the basic concepts and parameters of optical antennas. One of the major parts of this review covers the use of optical antennas in biosensing, presenting biosensing applications with a broad description using different types of data. We have also mentioned the basic challenges in the path of the universal use of optical biosensors, where we have also discussed some legal matters. PMID:25884787

  20. Comprehensive design of omnidirectional high-performance perovskite solar cells

    PubMed Central

    Zhang, Yutao; Xuan, Yimin

    2016-01-01

    The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight. PMID:27405419

  1. Comprehensive design of omnidirectional high-performance perovskite solar cells.

    PubMed

    Zhang, Yutao; Xuan, Yimin

    2016-07-13

    The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight.

  2. Structural, optoelectronic, and thermoelectric properties of AZn13 (A=Na, K, Ca, Sr, Ba) compounds

    NASA Astrophysics Data System (ADS)

    Basit, Abdul; Murtaza, G.; Mahmood, Asif; Yar, Abdullah; Muhammad, S.

    2016-08-01

    We report the structural, electronic, optical, and thermoelectric properties of the five cubic alkali-earth transition-metals AZn13 (A-Na, K, Ca, Sr, Ba) using density functional theory. Structural properties, electronic structures and optical behaviors are calculated explicitly via highly accurate contemporary full potential-linearized augmented plane wave (FP-LAPW) method. The investigated ground state data of these materials is quite close to the experimental information. The modified Becke-Johnson (mBJ) predicts the intermetallic nature of AZn13 (A-Na, K, Ca, Sr, Ba) materials. The complex dielectric function of these intermetallic compounds has been calculated and the observed noticeable peaks are examined through mBJ. With the help of complex dielectric function, the other important optical parameters like reflectivities, conductivities and refractive indices of AZn13 (A-Na, K, Ca, Sr, Ba) have been calculated as a function of energy. The optical response suggests that AZn13 (A-Na, K, Ca, Sr, Ba) compounds can be used for the optoelectronic devices. Further, the thermoelectric properties have been calculated through BoltzTraP program, the calculated values for different thermoelectric parameters recommend that these AZn13 (A-Na, K, Ca, Sr, Ba) materials are the suitable candidates for thermoelectric applications.

  3. Optical rogue waves for the inhomogeneous generalized nonlinear Schrödinger equation.

    PubMed

    Loomba, Shally; Kaur, Harleen

    2013-12-01

    We present optical rogue wave solutions for a generalized nonlinear Schrodinger equation by using similarity transformation. We have predicted the propagation of rogue waves through a nonlinear optical fiber for three cases: (i) dispersion increasing (decreasing) fiber, (ii) periodic dispersion parameter, and (iii) hyperbolic dispersion parameter. We found that the rogue waves and their interactions can be tuned by properly choosing the parameters. We expect that our results can be used to realize improved signal transmission through optical rogue waves.

  4. Synthesis, structure, and optoelectronic properties of II-IV-V 2 materials

    DOE PAGES

    Martinez, Aaron D.; Fioretti, Angela N.; Toberer, Eric S.; ...

    2017-03-07

    II-IV-V 2 materials offer the promise of enhanced functionality in optoelectronic devices due to their rich ternary chemistry. In this review, we consider the potential for new optoelectronic devices based on nitride, phosphide, and arsenide II-IV-V 2 materials. As ternary analogs to the III-V materials, these compounds share many of the attractive features that have made the III-Vs the basis of modern optoelectronic devices (e.g. high mobility, strong optical absorption). Control of cation order parameter in the II-IV-V 2 materials can produce significant changes in optoelectronic properties at fixed chemical composition, including decoupling band gap from lattice parameter. Recent progressmore » has begun to resolve outstanding questions concerning the structure, dopability, and optical properties of the II-IV-V 2 materials. Furthermore, remaining research challenges include growth optimization and integration into heterostructures and devices.« less

  5. Structuring of material parameters in lithium niobate crystals with low-mass, high-energy ion radiation

    NASA Astrophysics Data System (ADS)

    Peithmann, K.; Eversheim, P.-D.; Goetze, J.; Haaks, M.; Hattermann, H.; Haubrich, S.; Hinterberger, F.; Jentjens, L.; Mader, W.; Raeth, N. L.; Schmid, H.; Zamani-Meymian, M.-R.; Maier, K.

    2011-10-01

    Ferroelectric lithium niobate crystals offer a great potential for applications in modern optics. To provide powerful optical components, tailoring of key material parameters, especially of the refractive index n and the ferroelectric domain landscape, is required. Irradiation of lithium niobate crystals with accelerated ions causes strong structured modifications in the material. The effects induced by low-mass, high-energy ions (such as 3He with 41 MeV, which are not implanted, but transmit through the entire crystal volume) are reviewed. Irradiation yields large changes of the refractive index Δn, improved domain engineering capability within the material along the ion track, and waveguiding structures. The periodic modification of Δn as well as the formation of periodically poled lithium niobate (PPLN) (supported by radiation damage) is described. Two-step knock-on displacement processes, 3He→Nb and 3He→O causing thermal spikes, are identified as origin for the material modifications.

  6. Calculation and analysis of cross-sections for p+184W reactions up to 200 MeV

    NASA Astrophysics Data System (ADS)

    Sun, Jian-Ping; Zhang, Zheng-Jun; Han, Yin-Lu

    2015-08-01

    A set of optimal proton optical potential parameters for p+ 184W reactions are obtained at incident proton energy up to 250 MeV. Based on these parameters, the reaction cross-sections, elastic scattering angular distributions, energy spectra and double differential cross sections of proton-induced reactions on 184W are calculated and analyzed by using theoretical models which integrate the optical model, distorted Born wave approximation theory, intra-nuclear cascade model, exciton model, Hauser-Feshbach theory and evaporation model. The calculated results are compared with existing experimental data and good agreement is achieved. Supported by National Basic Research Program of China, Technology Research of Accelerator Driven Sub-critical System for Nuclear Waste Transmutation (2007CB209903) and Strategic Priority Research Program of Chinese Academy of Sciences, Thorium Molten Salt Reactor Nuclear Energy System (XDA02010100)

  7. Vibrational spectroscopic and DFT calculation studies of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile

    NASA Astrophysics Data System (ADS)

    Premkumar, S.; Jawahar, A.; Mathavan, T.; Kumara Dhas, M.; Milton Franklin Benial, A.

    2015-03-01

    The vibrational spectra of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile were recorded using fourier transform-infrared and fourier transform-Raman spectrometer. The optimized structural parameters, vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals, thermodynamic properties, temperature dependence of thermodynamic parameters, first order hyperpolarizability and natural bond orbital calculations of the molecule were performed using the Gaussian 09 program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program. The calculated first order hyperpolarizability of ABOBPC molecule was obtained as 6.908 × 10-30 issue, which was 10.5 times greater than urea. The nonlinear optical activity of the molecule was also confirmed by the frontier molecular orbitals and natural bond orbital analysis. The frontier molecular orbitals analysis shows that the lower energy gap of the molecule, which leads to the higher value of first order hyperpolarizability. The natural bond orbital analysis indicates that the nonlinear optical activity of the molecule arises due to the π → π∗ transitions. The Mulliken atomic charge distribution confirms the presence of intramolecular charge transfer within the molecule. The reactive site of the molecule was predicted from the molecular electrostatic potential contour map. The values of thermo dynamic parameters were increasing with increasing temperature.

  8. Optical pseudomotors for soft x-ray beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedreira, P., E-mail: ppedreira@cells.es; Sics, I.; Sorrentino, A.

    2016-05-15

    Optical elements of soft x-ray beamlines usually have motorized translations and rotations that allow for the fine alignment of the beamline. This is to steer the photon beam at some positions and to correct the focus on slits or on sample. Generally, each degree of freedom of a mirror induces a change of several parameters of the beam. Inversely, several motions are required to actuate on a single optical parameter, keeping the others unchanged. We define optical pseudomotors as combinations of physical motions of the optical elements of a beamline, which allow modifying one optical parameter without affecting the others.more » We describe a method to obtain analytic relationships between physical motions of mirrors and the corresponding variations of the beam parameters. This method has been implemented and tested at two beamlines at ALBA, where it is used to control the focus of the photon beam and its position independently.« less

  9. Optical spectral signatures of liquids by means of fiber optic technology for product and quality parameter identification

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Mencaglia, A. A.; Diaz-Herrera, N.; Garcia-Allende, P. B.; Ottevaere, H.; Thienpont, H.; Attilio, C.; Cimato, A.; Francalanci, S.; Paccagnini, A.; Pavone, F. S.

    2009-01-01

    Absorption spectroscopy in the wide 200-1700 nm spectral range is carried out by means of optical fiber instrumentation to achieve a digital mapping of liquids for the prediction of important quality parameters. Extra virgin olive oils from Italy and lubricant oils from turbines with different degrees of degradation were considered as "case studies". The spectral data were processed by means of multivariate analysis so as to obtain a correlation to quality parameters. In practice, the wide range absorption spectra were considered as an optical signature of the liquids from which to extract product quality information. The optical signatures of extra virgin olive oils were used to predict the content of the most important fatty acids. The optical signatures of lubricant oils were used to predict the concentration of the most important parameters for indicating the oil's degree of degradation, such as TAN, JOAP anti-wear index, and water content.

  10. AFM investigation and optical band gap study of chemically deposited PbS thin films

    NASA Astrophysics Data System (ADS)

    Zaman, S.; Mansoor, M.; Abubakar; Asim, M. M.

    2016-08-01

    The interest into deposition of nanocrystalline PbS thin films, the potential of designing and tailoring both the topographical features and the band gap energy (Eg) by controlling growth parameters, has significant technological importance. Nanocrystalline thin films of lead sulfide were grown onto glass substrates by chemical bath deposition (CBD) method. The experiments were carried out by varying deposition temperature. We report on the modification of structural and optical properties as a function of deposition temperature. The morphological changes of the films were analyzed by using SEM and AFM. AFM was also used to calculate average roughness of the films. XRD spectra indicated preferred growth of cubic phase of PbS films in (200) direction with increasing deposition time. Optical properties have been studied by UV-Spectrophotometer. From the diffused reflectance spectra we have calculated the optical Eg shift from 0.649-0.636 eV with increasing deposition time.

  11. Advanced Imaging Optics Utilizing Wavefront Coding.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scrymgeour, David; Boye, Robert; Adelsberger, Kathleen

    2015-06-01

    Image processing offers a potential to simplify an optical system by shifting some of the imaging burden from lenses to the more cost effective electronics. Wavefront coding using a cubic phase plate combined with image processing can extend the system's depth of focus, reducing many of the focus-related aberrations as well as material related chromatic aberrations. However, the optimal design process and physical limitations of wavefront coding systems with respect to first-order optical parameters and noise are not well documented. We examined image quality of simulated and experimental wavefront coded images before and after reconstruction in the presence of noise.more » Challenges in the implementation of cubic phase in an optical system are discussed. In particular, we found that limitations must be placed on system noise, aperture, field of view and bandwidth to develop a robust wavefront coded system.« less

  12. Coupled matter-wave solitons in optical lattices

    NASA Astrophysics Data System (ADS)

    Golam Ali, Sk; Talukdar, B.

    2009-06-01

    We make use of a potential model to study the dynamics of two coupled matter-wave or Bose-Einstein condensate (BEC) solitons loaded in optical lattices. With separate attention to linear and nonlinear lattices we find some remarkable differences for response of the system to effects of these lattices. As opposed to the case of linear optical lattice (LOL), the nonlinear lattice (NOL) can be used to control the mutual interaction between the two solitons. For a given lattice wave number k, the effective potentials in which the two solitons move are such that the well (Veff(NOL)), resulting from the juxtaposition of soliton interaction and nonlinear lattice potential, is deeper than the corresponding well Veff(LOL). But these effective potentials have opposite k dependence in the sense that the depth of Veff(LOL) increases as k increases and that of Veff(NOL) decreases for higher k values. We verify that the effectiveness of optical lattices to regulate the motion of the coupled solitons depends sensitively on the initial locations of the motionless solitons as well as values of the lattice wave number. For both LOL and NOL the two solitons meet each other due to mutual interaction if their initial locations are taken within the potential wells with the difference that the solitons in the NOL approach each other rather rapidly and take roughly half the time to meet as compared with the time needed for such coalescence in the LOL. In the NOL, the soliton profiles can move freely and respond to the lattice periodicity when the separation between their initial locations are as twice as that needed for a similar free movement in the LOL. We observe that, in both cases, slow tuning of the optical lattices by varying k with respect to a time parameter τ drags the oscillatory solitons apart to take them to different locations. In our potential model the oscillatory solitons appear to propagate undistorted. But a fully numerical calculation indicates that during evolution they exhibit decay and revival.

  13. AB INITIO STUDY OF OPTOELECTRONIC PROPERTIES OF SPINEL ZnAl2O4 BEYOND GGA AND LDA

    NASA Astrophysics Data System (ADS)

    Yousaf, Masood; Saeed, M. A.; Isa, Ahmad Radzi Mat; Rahnamaye Aliabad, H. A.; Noor, N. A.

    2012-12-01

    Electronic band structure and optical parameters of ZnAl2O4 are investigated by first-principles technique based on a new potential approximation, known as modified Becke-Johnson (mBJ). This method describes the excited states of insulators and semiconductors more accurately The recent direct band gap result by EV-GGA is underestimated by about 15% compared to our band gap value using mBJ-GGA. The value of the band gap of ZnAl2O4 decreases as follows: Eg(mBJ-GGA/LDA) > Eg(GGA) > Eg(LDA). The band structure base optical parametric quantities (dielectric constant, index of refraction, reflectivity and optical conductivity) are also calculated, and their variations with energy range are discussed. The first critical point (optical absorption's edge) in ZnAl2O4 occurs at about 5.26 eV in case of mBJ. This study about the optoelectronic properties indicates that ZnAl2O4 can be used in optical devices.

  14. Quantum optical effective-medium theory and transformation quantum optics for metamaterials

    NASA Astrophysics Data System (ADS)

    Wubs, Martijn; Amooghorban, Ehsan; Zhang, Jingjing; Mortensen, N. Asger

    2016-09-01

    While typically designed to manipulate classical light, metamaterials have many potential applications for quantum optics as well. We argue why a quantum optical effective-medium theory is needed. We present such a theory for layered metamaterials that is valid for light propagation in all spatial directions, thereby generalizing earlier work for one-dimensional propagation. In contrast to classical effective-medium theory there is an additional effective parameter that describes quantum noise. Our results for metamaterials are based on a rather general Lagrangian theory for the quantum electrodynamics of media with both loss and gain. In the second part of this paper, we present a new application of transformation optics whereby local spontaneous-emission rates of quantum emitters can be designed. This follows from an analysis how electromagnetic Green functions trans- form under coordinate transformations. Spontaneous-emission rates can be either enhanced or suppressed using invisibility cloaks or gradient index lenses. Furthermore, the anisotropic material profile of the cloak enables the directional control of spontaneous emission.

  15. Ab-initio study of thermodynamic stability, thermoelectric and optical properties of perovskites ATiO3 (A=Pb, Sn)

    NASA Astrophysics Data System (ADS)

    Noor, N. A.; Mahmood, Q.; Rashid, Muhammad; Ul Haq, Bakhtiar; Laref, A.; Ahmad, S. A.

    2018-07-01

    The physical behavior of perovskites ATiO3 (A=Pb, Sn) has been explored by using density functional theory based full-potential linearized-augmented-plane-wave plus local-orbital (FP-LAPW+lo) method. The lattice parameters calculated from the optimized structures by using Murnaghan equation of state and Chapin's method have been found in good agreement with the available literature that ensures the reliability of the adopted methodology. Moreover, the optoelectronic and thermoelectric properties have been elaborated by using modified Becke-Johnson exchange potential. The optical behavior has been explored in terms the dielectric constants, refractive indices, absorption spectra and optical loss factors. The absorption spectra of these materials reveal a large absorption in the visible and low ultraviolet part of incident light. The thermoelectric properties of ATiO3 are explained in terms of electrical conductivities, thermal conductivities, power factors, and the specific heat capacities. The ATiO3family of pervoskites has been found to exhibit the bandgaps falling in the visible region of solar spectrum and show high values of thermal efficiency that make them potential multifunctional candidates for optoelectronic and energy harvesting applications.

  16. Multi-parameter fiber optic sensors based on fiber random grating

    NASA Astrophysics Data System (ADS)

    Xu, Yanping; Zhang, Mingjiang; Lu, Ping; Mihailov, Stephen; Bao, Xiaoyi

    2017-04-01

    Two novel configurations of multi-parameter fiber-optic sensing systems based on the fiber random grating are reported. The fiber random grating is fabricated through femtosecond laser induced refractive index modification over a 10cm standard telecom single mode fiber. In one configuration, the reflective spectrum of the fiber random grating is directly detected and a wavelength-division spectral cross-correlation algorithm is adopted to extract the spectral shifts for simultaneous measurement of temperature, axial strain, and surrounding refractive index. In the other configuration, a random fiber ring laser is constructed by incorporating the random feedback from the random grating. Numerous polarization-dependent spectral filters are formed along the random grating and superimposed to provide multiple lasing lines with high signal-to-noise ratio up to 40dB, which enables a high-fidelity multi-parameter sensing scheme by monitoring the spectral shifts of the lasing lines. Without the need of phase mask for fabrication and with the high physical strength, the random grating based sensors are much simpler and more compact, which could be potentially an excellent alternative for liquid medical sample sensing in biomedical and biochemical applications.

  17. Hybrid electronic tongue based on optical and electrochemical microsensors for quality control of wine.

    PubMed

    Gutiérrez, Manuel; Llobera, Andreu; Vila-Planas, Jordi; Capdevila, Fina; Demming, Stefanie; Büttgenbach, Stephanus; Mínguez, Santiago; Jiménez-Jorquera, Cecilia

    2010-07-01

    A multiparametric system able to classify red and white wines according to the grape varieties and for analysing some specific parameters is presented. The system, known as hybrid electronic tongue, consists of an array of electrochemical microsensors and a colorimetric optofluidic system. The array of electrochemical sensors is composed of six ISFETs based sensors, a conductivity sensor, a redox potential sensor and two amperometric electrodes, an Au microelectrode and a microelectrode for sensing electrochemical oxygen demand. The optofluidic system is entirely fabricated in polymer technology and comprises a hollow structure, air mirrors, microlenses and self-alignment structures. The data obtained from these sensors has been treated with multivariate advanced tools; Principal Component Analysis (PCA), for the patterning recognition and classification of wine samples, and Partial-Least Squares (PLS) regression, for quantification of several chemical and optical parameters of interest in wine quality. The results have demonstrated the utility of this system for distinguishing the samples according to the grape variety and year vintage and for quantifying several sample parameters of interest in wine quality control.

  18. Multiple sclerosis and optic nerve: an analysis of retinal nerve fiber layer thickness and color Doppler imaging parameters

    PubMed Central

    Akçam, H T; Capraz, I Y; Aktas, Z; Batur Caglayan, H Z; Ozhan Oktar, S; Hasanreisoglu, M; Irkec, C

    2014-01-01

    Purpose To compare both retinal nerve fiber layer thickness and orbital color Doppler ultrasonography parameters in patients with multiple sclerosis (MS) versus healthy controls. Methods This is an observational case–control study. Forty eyes from MS patients and twenty eyes from healthy volunteers were examined. Eyes were classified into three groups as group 1, eyes from MS patients with previous optic neuritis (n=20); group 2, eyes from MS patients without previous optic neuritis (n=20); and group 3, eyes from healthy controls (n=20). Following complete ophthalmologic examination and retinal nerve fiber layer thickness measurement for each group, blood flow velocities of posterior ciliary arteries, central retinal artery, ophthalmic artery, and superior ophthalmic vein were measured. Pourcelot index (resistive index), an indicator of peripheral vascular resistance, was also calculated. The statistical assessment was performed with the assistance of Pearson's Chi-square test, Mann–Whitney U-test, Kruskal–Wallis test, and Spearman's correlation test. Results The studied eyes exposed similar values in terms of intraocular pressure and central corneal thickness, implying no evidence in favor of glaucoma. All nerve fiber layer thickness values, except superior nasal quadrants, in group 1 were found to be significantly thinner than groups 2 and 3. Blood flow velocity and mean resistivity index parameters were similar in all the groups. Conclusions In MS patients, especially with previous optic neuritis, diminished retinal nerve fiber layer thickness was observed. Contrary to several studies in the current literature, no evidence supporting potential vascular origin of ocular involvement in MS was found. PMID:25081285

  19. The detection of oral cancer using differential pathlength spectroscopy

    NASA Astrophysics Data System (ADS)

    Sterenborg, H. J. C. M.; Kanick, S.; de Visscher, S.; Witjes, M.; Amelink, A.

    2010-02-01

    The development of optical techniques for non-invasive diagnosis of cancer is an ongoing challenge to biomedical optics. For head and neck cancer we see two main fields of potential application 1) Screening for second primaries in patients with a history of oral cancer. This requires imaging techniques or an approach where a larger area can be scanned quickly. 2) Distinguishing potentially malignant visible primary lesions from benign ones. Here fiberoptic point measurements can be used as the location of the lesion is known. This presentation will focus on point measurement techniques. Various techniques for point measurements have been developed and investigated clinically for different applications. Differential Pathlength Spectroscopy is a recently developed fiberoptic point measurement technique that measures scattered light in a broad spectrum. Due to the specific fiberoptic geometry we measure only scattered photons that have travelled a predetermined pathlength. This allows us to analyse the spectrum mathematically and translate the measured curve into a set of parameters that are related to the microvasculature and to the intracellular morphology. DPS has been extensively evaluated on optical phantoms and tested clinically in various clinical applications. The first measurements in biopsy proven squamous cell carcinoma showed significant changes in both vascular and morphological parameters. Measurements on thick keratinized lesions however failed to generate any vascular signatures. This is related to the sampling depth of the standard optical fibers used. Recently we developed a fiberoptic probe with a ~1 mm sampling depth. Measurements on several leukoplakias showed that with this new probe we sample just below the keratin layer and can obtain vascular signatures. The results of a first set of clinical measurements will be presented and the significance for clinical diagnostics will be discussed.

  20. A comparison of methods using optical coherence tomography to detect demineralized regions in teeth

    PubMed Central

    Sowa, Michael G.; Popescu, Dan P.; Friesen, Jeri R.; Hewko, Mark D.; Choo-Smith, Lin-P’ing

    2013-01-01

    Optical coherence tomography (OCT) is a three- dimensional optical imaging technique that can be used to identify areas of early caries formation in dental enamel. The OCT signal at 850 nm back-reflected from sound enamel is attenuated stronger than the signal back-reflected from demineralized regions. To quantify this observation, the OCT signal as a function of depth into the enamel (also known as the A-scan intensity), the histogram of the A-scan intensities and three summary parameters derived from the A-scan are defined and their diagnostic potential compared. A total of 754 OCT A-scans were analyzed. The three summary parameters derived from the A-scans, the OCT attenuation coefficient as well as the mean and standard deviation of the lognormal fit to the histogram of the A-scan ensemble show statistically significant differences (p < 0.01) when comparing parameters from sound enamel and caries. Furthermore, these parameters only show a modest correlation. Based on the area under the curve (AUC) of the receiver operating characteristics (ROC) plot, the OCT attenuation coefficient shows higher discriminatory capacity (AUC=0.98) compared to the parameters derived from the lognormal fit to the histogram of the A-scan. However, direct analysis of the A-scans or the histogram of A-scan intensities using linear support vector machine classification shows diagnostic discrimination (AUC = 0.96) comparable to that achieved using the attenuation coefficient. These findings suggest that either direct analysis of the A-scan, its intensity histogram or the attenuation coefficient derived from the descending slope of the OCT A-scan have high capacity to discriminate between regions of caries and sound enamel. PMID:22052833

  1. Thermo-optic characteristics and switching power limit of slow-light photonic crystal structures on a silicon-on-insulator platform.

    PubMed

    Chahal, Manjit; Celler, George K; Jaluria, Yogesh; Jiang, Wei

    2012-02-13

    Employing a semi-analytic approach, we study the influence of key structural and optical parameters on the thermo-optic characteristics of photonic crystal waveguide (PCW) structures on a silicon-on-insulator (SOI) platform. The power consumption and spatial temperature profile of such structures are given as explicit functions of various structural, thermal and optical parameters, offering physical insight not available in finite-element simulations. Agreement with finite-element simulations and experiments is demonstrated. Thermal enhancement of the air-bridge structure is analyzed. The practical limit of thermo-optic switching power in slow light PCWs is discussed, and the scaling with key parameters is analyzed. Optical switching with sub-milliwatt power is shown viable.

  2. Optical ensemble analysis of intraocular lens performance through a simulated clinical trial with ZEMAX.

    PubMed

    Zhao, Huawei

    2009-01-01

    A ZEMAX model was constructed to simulate a clinical trial of intraocular lenses (IOLs) based on a clinically oriented Monte Carlo ensemble analysis using postoperative ocular parameters. The purpose of this model is to test the feasibility of streamlining and optimizing both the design process and the clinical testing of IOLs. This optical ensemble analysis (OEA) is also validated. Simulated pseudophakic eyes were generated by using the tolerancing and programming features of ZEMAX optical design software. OEA methodology was verified by demonstrating that the results of clinical performance simulations were consistent with previously published clinical performance data using the same types of IOLs. From these results we conclude that the OEA method can objectively simulate the potential clinical trial performance of IOLs.

  3. Plasmonic gold nanostars as optical nano-additives for injection molded polymer composites

    NASA Astrophysics Data System (ADS)

    Boyne, Devon A.; Orlicki, Joshua A.; Walck, Scott D.; Savage, Alice M.; Li, Thomas; Griep, Mark H.

    2017-10-01

    Nanoscale engineering of noble metal particles has provided numerous material configurations to selectively confine and manipulate light across the electromagnetic spectrum. Transitioning these materials to a composite form while maintaining the desired resonance properties has proven challenging. In this work, the successful integration of plasmon-focusing gold nanostars (GNSs) into polymer nanocomposites (PNCs) is demonstrated. Tailored GNSs are produced with over a 90% yield and methods to control the branching structures are shown. A protective silica capping shell is employed on the nanomaterials to facilitate survivability in the high temperate/high shear processing parameters to create optically-tuned injection molded PNCs. The developed GNS PNCs possess dichroic scattering and absorption behavior, opening up potential applications in the fields of holographic imaging, optical filtering and photovoltaics.

  4. Nonlinear optical studies on 1,3-disubstituent chalcones doped polymer films

    NASA Astrophysics Data System (ADS)

    Poornesh, P.; Shettigar, Seetharam; Umesh, G.; Manjunatha, K. B.; Prakash Kamath, K.; Sarojini, B. K.; Narayana, B.

    2009-04-01

    We report the measurements of the third-order nonlinear optical properties of recently synthesized and characterized two different 1,3-disubstituent chalcones doped PMMA films, with the prospective of reaching a good compromise between processability and high nonlinear optical properties. The measurements were done using nanosecond Z-scan at 532 nm. The Z-scan spectra reveal a large negative nonlinear refraction coefficient n2 of the order 10 -11 esu and the molecular two photon absorption cross section is 10 -46 cm 4 s/photon. The doped films exhibit good optical power limiting property under nanosecond regime and the two photon absorption (TPA) is the dominating process leading to the nonlinear behavior. The improvement in the nonlinear properties has been observed when methylenedioxy group is replaced by dimethoxy group due to increase in conjugation length. The observed nonlinear parameters of chalcone derivatives doped PMMA film is comparable with stilbazolieum derivatives, a well-known class of optical materials for photonics and biophotonics applications, which suggests that, these moieties have potential for the application of all-optical limiting and switching devices.

  5. Optics-based compressibility parameter for pharmaceutical tablets obtained with the aid of the terahertz refractive index.

    PubMed

    Chakraborty, Mousumi; Ridgway, Cathy; Bawuah, Prince; Markl, Daniel; Gane, Patrick A C; Ketolainen, Jarkko; Zeitler, J Axel; Peiponen, Kai-Erik

    2017-06-15

    The objective of this study is to propose a novel optical compressibility parameter for porous pharmaceutical tablets. This parameter is defined with the aid of the effective refractive index of a tablet that is obtained from non-destructive and contactless terahertz (THz) time-delay transmission measurement. The optical compressibility parameter of two training sets of pharmaceutical tablets with a priori known porosity and mass fraction of a drug was investigated. Both pharmaceutical sets were compressed with one of the most commonly used excipients, namely microcrystalline cellulose (MCC) and drug Indomethacin. The optical compressibility clearly correlates with the skeletal bulk modulus determined by mercury porosimetry and the recently proposed terahertz lumped structural parameter calculated from terahertz measurements. This lumped structural parameter can be used to analyse the pattern of arrangement of excipient and drug particles in porous pharmaceutical tablets. Therefore, we propose that the optical compressibility can serve as a quality parameter of a pharmaceutical tablet corresponding with the skeletal bulk modulus of the porous tablet, which is related to structural arrangement of the powder particles in the tablet. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Spectroscopic characterisation of Er-doped LuVO4 single crystals

    NASA Astrophysics Data System (ADS)

    Lisiecki, R.; Dominiak-Dzik, G.; Solarz, P.; Strzęp, A.; Ryba-Romanowski, W.; Łukasiewicz, T.

    2010-12-01

    The LuVO4:Er single crystals were grown by the Czochralski technique. The crystal-field split energy levels of Er3+ ion were derived experimentally employing absorption and emission spectra measured at T=10 K. The Judd-Ofelt phenomenological method was used to estimate intensity parameters, radiative lifetimes and branching ratios of luminescence. The excited state dynamics of the LuVO4:Er systems was investigated and experimental lifetimes of emitting levels were measured. The emission cross section of the 4I13/2→4I15/2 transition in the infrared was calculated by the Füchtbauer-Ladenburg method. The gain cross section, estimated for several inverse-population parameters, allowed us to evaluate a potential laser activity of the LuVO4:Er system at 1.6 μm. Also, the potential range of the optical pumping was assessed based on absorption spectra achieved at the room temperature. The optical losses related to the green up-converted emission, encountered under the 978 nm excitation between 300 and 670 K were indicated and discussed. Spectroscopic peculiarities of the Er3+-doped LuVO4 crystal were discussed in relation to optical properties of the YVO4:Er and GdVO4:Er crystals. Taking into account the high quantum efficiency of the 4I13/2 level, and satisfactory absorption and emission features, the LuVO4:Er crystal can be considered as a promising active material for laser operation near 1.6 μm.

  7. Filter performance parameters for vectorial high-aperture wave fields.

    PubMed

    Sheppard, Colin J R; Martinez-Corral, M

    2008-03-01

    Performance parameters have been presented that can be used to compare the focusing performance of different optical systems, including the effect of pupil filters. These were originally given for the paraxial case and recently extended to the high-aperture scalar regime. We generalize these parameters to the full vectorial case for an aplanatic optical system illuminated by a plane-polarized wave. The behavior of different optical systems is compared.

  8. CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces

    DTIC Science & Technology

    2002-09-30

    CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces Alan W. Decho Department...TITLE AND SUBTITLE CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces 5a. CONTRACT...structures produced by bacteria. Their growth appears to depend on biofilm processes and light distributions ( photosynthesis ). Therefore, the data acquired

  9. CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces

    DTIC Science & Technology

    2003-09-30

    CoBOP: MICROBIAL BIOFILMS: A PARAMETER ALTERING THE APPARENT OPTICAL PROPERTIES OF SEDIMENTS, SEAGRASSES AND SURFACES. Alan W. Decho Department...AND SUBTITLE CoBOP: Microbial Biofilms: A Parameter Altering The Apparent Optical Properties Of Sediments, Seagrasses And Surfaces 5a. CONTRACT...biofilm processes and light distributions ( photosynthesis ). Therefore, the data acquired from this project will be closely paired with results of

  10. Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa

    NASA Astrophysics Data System (ADS)

    Vilupuru, Abhiram S.; Rangaswamy, Nalini V.; Frishman, Laura J.; Smith, Earl L., III; Harwerth, Ronald S.; Roorda, Austin

    2007-05-01

    The lamina cribrosa has been postulated from in vitro studies as an early site of damage in glaucoma. Prior in vivo measures of laminar morphology have been confounded by ocular aberrations. In this study the lamina cribrosa was imaged after correcting for ocular aberrations using the adaptive optics scanning laser ophthalmoscope (AOSLO) in normal and glaucomatous eyes of rhesus monkeys. All measured laminar morphological parameters showed increased magnitudes in glaucomatous eyes relative to fellow control eyes, indicating altered structure. The AOSLO provides high-quality images of the lamina cribrosa and may have potential as a tool for early identification of glaucoma.

  11. Clinical evaluation of melanomas and common nevi by spectral imaging

    PubMed Central

    Diebele, Ilze; Kuzmina, Ilona; Lihachev, Alexey; Kapostinsh, Janis; Derjabo, Alexander; Valeine, Lauma; Spigulis, Janis

    2012-01-01

    A clinical trial on multi-spectral imaging of malignant and non-malignant skin pathologies comprising 17 melanomas and 65 pigmented common nevi was performed. Optical density data of skin pathologies were obtained in the spectral range 450–950 nm using the multispectral camera Nuance EX. An image parameter and maps capable of distinguishing melanoma from pigmented nevi were proposed. The diagnostic criterion is based on skin optical density differences at three fixed wavelengths: 540nm, 650nm and 950nm. The sensitivity and specificity of this method were estimated to be 94% and 89%, respectively. The proposed methodology and potential clinical applications are discussed. PMID:22435095

  12. Photoacoustic resonance spectroscopy for biological tissue characterization

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin; Ohl, Claus-Dieter

    2014-06-01

    By "listening to photons," photoacoustics allows the probing of chromosomes in depth beyond the optical diffusion limit. Here we report the photoacoustic resonance effect induced by multiburst modulated laser illumination, which is theoretically modeled as a damped mass-string oscillator and a resistor-inductor-capacitor (RLC) circuit. Through sweeping the frequency of multiburst modulated laser, the photoacoustic resonance effect is observed experimentally on phantoms and porcine tissues. Experimental results demonstrate different spectra for each phantom and tissue sample to show significant potential for spectroscopic analysis, fusing optical absorption and mechanical vibration properties. Unique RLC circuit parameters are extracted to quantitatively characterize phantom and biological tissues.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minissale, S.; Yerci, S.; Dal Negro, L.

    We investigate the nonlinear optical properties of Si-rich silicon oxide (SRO) and Si-rich silicon nitride (SRN) samples as a function of silicon content, annealing temperature, and excitation wavelength. Using the Z-scan technique, we measure the non-linear refractive index n{sub 2} and the nonlinear absorption coefficient {beta} for a large number of samples fabricated by reactive co-sputtering. Moreover, we characterize the nonlinear optical parameters of SRN in the broad spectral region 1100-1500 nm and show the strongest nonlinearity at 1500 nm. These results demonstrate the potential of the SRN matrix for the engineering of compact devices with enhanced Kerr nonlinearities formore » silicon photonics applications.« less

  14. OPC modeling by genetic algorithm

    NASA Astrophysics Data System (ADS)

    Huang, W. C.; Lai, C. M.; Luo, B.; Tsai, C. K.; Tsay, C. S.; Lai, C. W.; Kuo, C. C.; Liu, R. G.; Lin, H. T.; Lin, B. J.

    2005-05-01

    Optical proximity correction (OPC) is usually used to pre-distort mask layouts to make the printed patterns as close to the desired shapes as possible. For model-based OPC, a lithographic model to predict critical dimensions after lithographic processing is needed. The model is usually obtained via a regression of parameters based on experimental data containing optical proximity effects. When the parameters involve a mix of the continuous (optical and resist models) and the discrete (kernel numbers) sets, the traditional numerical optimization method may have difficulty handling model fitting. In this study, an artificial-intelligent optimization method was used to regress the parameters of the lithographic models for OPC. The implemented phenomenological models were constant-threshold models that combine diffused aerial image models with loading effects. Optical kernels decomposed from Hopkin"s equation were used to calculate aerial images on the wafer. Similarly, the numbers of optical kernels were treated as regression parameters. This way, good regression results were obtained with different sets of optical proximity effect data.

  15. Solitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian PT-symmetric potentials.

    PubMed

    Chen, Yong; Yan, Zhenya

    2016-03-22

    Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields.

  16. Solitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian PT-symmetric potentials

    PubMed Central

    Chen, Yong; Yan, Zhenya

    2016-01-01

    Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields. PMID:27002543

  17. Electron impact ionization of cycloalkanes, aldehydes, and ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Dhanoj; Antony, Bobby, E-mail: bka.ism@gmail.com

    The theoretical calculations of electron impact total ionization cross section for cycloalkane, aldehyde, and ketone group molecules are undertaken from ionization threshold to 2 keV. The present calculations are based on the spherical complex optical potential formalism and complex scattering potential ionization contribution method. The results of most of the targets studied compare fairly well with the recent measurements, wherever available and the cross sections for many targets are predicted for the first time. The correlation between the peak of ionization cross sections with number of target electrons and target parameters is also reported. It was found that the crossmore » sections at their maximum depend linearly with the number of target electrons and with other target parameters, confirming the consistency of the values reported here.« less

  18. Multicore fiber beamforming network for broadband satellite communications

    NASA Astrophysics Data System (ADS)

    Zainullin, Airat; Vidal, Borja; Macho, Andres; Llorente, Roberto

    2017-02-01

    Multi-core fiber (MCF) has been one of the main innovations in fiber optics in the last decade. Reported work on MCF has been focused on increasing the transmission capacity of optical communication links by exploiting space-division multiplexing. Additionally, MCF presents a strong potential in optical beamforming networks. The use of MCF can increase the compactness of the broadband antenna array controller. This is of utmost importance in platforms where size and weight are critical parameters such as communications satellites and airplanes. Here, an optical beamforming architecture that exploits the space-division capacity of MCF to implement compact optical beamforming networks is proposed, being a new application field for MCF. The experimental demonstration of this system using a 4-core MCF that controls a four-element antenna array is reported. An analysis of the impact of MCF on the performance of antenna arrays is presented. The analysis indicates that the main limitation comes from the relatively high insertion loss in the MCF fan-in and fan-out devices, which leads to angle dependent losses which can be mitigated by using fixed optical attenuators or a photonic lantern to reduce MCF insertion loss. The crosstalk requirements are also experimentally evaluated for the proposed MCF-based architecture. The potential signal impairment in the beamforming network is analytically evaluated, being of special importance when MCF with a large number of cores is considered. Finally, the optimization of the proposed MCF-based beamforming network is addressed targeting the scalability to large arrays.

  19. The effect of hydrogen on the parameters of plastic deformation localization in low carbon steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunev, Aleksey G., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru; Nadezhkin, Mikhail V., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru; Shlyakhova, Galina V., E-mail: shgv@ispms.tsc.ru

    2014-11-14

    In the present study, the effect of interstitial hydrogen atoms on the mechanical properties and plastic strain localization patterns in tensile tested polycrystals of low-carbon steel Fe-0.07%C has been studied using double exposure speckle photography technique. The main parameters of plastic flow localization at various stages of deformation hardening have been determined in polycrystals of steel electrolytically saturated with hydrogen in a three-electrode electrochemical cell at a controlled constant cathode potential. Also, the effect of hydrogen on changing of microstructure by using optical microscopy has been demonstrated.

  20. Regular and Chaotic Spatial Distribution of Bose-Einstein Condensed Atoms in a Ratchet Potential

    NASA Astrophysics Data System (ADS)

    Li, Fei; Xu, Lan; Li, Wenwu

    2018-02-01

    We study the regular and chaotic spatial distribution of Bose-Einstein condensed atoms with a space-dependent nonlinear interaction in a ratchet potential. There exists in the system a space-dependent atomic current that can be tuned via Feshbach resonance technique. In the presence of the space-dependent atomic current and a weak ratchet potential, the Smale-horseshoe chaos is studied and the Melnikov chaotic criterion is obtained. Numerical simulations show that the ratio between the intensities of optical potentials forming the ratchet potential, the wave vector of the laser producing the ratchet potential or the wave vector of the modulating laser can be chosen as the controlling parameters to result in or avoid chaotic spatial distributional states.

  1. The Calculation Study of Electronic Properties of Doped RE (Eu, Er and Tm)-GaN using Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Zaharo, Aflah; Purqon, Acep

    2017-07-01

    The calculation of the structure and electronic properties of Rare Earth (RE) at the wurtzite Gallium Nitride (GaN) based on DFT has completed. GGA approximation used for exchange correlation and Ultra soft pseudo potential too. The stability structure of GaN is seen that difference lattice parameter 11% lower than another calculation and experiment result. It is shown the stability structure GaN have direct band gap energy on Gamma point hexagonal lattice Brillouin zone. The width Eg is 2.6 eV. When one atom Ga is substituted with one atom RE, the bond length is change 12 % longest. An in good agreement with theoretical doping RE concentration increases, the edge of energy level shifted towards to make the band gap narrow which is allow the optical transitions and help to improve the optical performance of GaN. The RE doped GaN is potentially applicable for various color of LED with lower energy consumption and potentially energy saving application

  2. Red light emission from europium doped zinc sodium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Hegde, Vinod; Viswanath, C. S. Dwaraka; Upadhyaya, Vyasa; Mahato, K. K.; Kamath, Sudha D.

    2017-12-01

    Zinc sodium bismuth borate (ZNBB) glasses doped with different concentrations of europium were prepared by conventional melt quenching method and characterized through the measurements of density, refractive index, X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectra, optical absorption, luminescence and radiative lifetimes. FTIR spectra showed seven characteristic peaks of bismuth and borate functional groups in the range of 400-1600 cm-1. The optical band gap and bonding parameters have been calculated from absorption spectra. Photoluminescence spectra recorded in the visible region with 394 nm excitation are used to calculate the Judd-Ofelt (JO) intensity parameters (Ω2 and Ω4). The JO intensity parameters have been used to calculate the radiative parameters such as branching ratio (β), stimulated emission cross-section (σse), transition probability (A) for the fluorescent level of 5D0→7F2. Decay rates through single exponential are used to calculate the lifetime (τm) of the meta-stable state 5D0 of (Eu3+ ion) these glasses. The radiative parameters measured for all these glasses show 0.7 mol% europium doped zinc sodium bismuth borate glass 5D0→7F2 transition has the potential for red laser applications. The quality of the colour emitted by the present glasses are estimated quantitatively by CIE chromaticity coordinates, which confirms the suitability of these glasses as a red emitting material for field emission technologies and LEDs.

  3. Charge transfer optical absorption and fluorescence emission of 4-(9-acridyl)julolidine from long-range-corrected time dependent density functional theory in polarizable continuum approach.

    PubMed

    Kityk, A V

    2014-07-15

    A long-range-corrected time-dependent density functional theory (LC-TDDFT) in combination with polarizable continuum model (PCM) have been applied to study charge transfer (CT) optical absorption and fluorescence emission energies basing on parameterized LC-BLYP xc-potential. The molecule of 4-(9-acridyl)julolidine selected for this study represents typical CT donor-acceptor dye with strongly solvent dependent optical absorption and fluorescence emission spectra. The result of calculations are compared with experimental spectra reported in the literature to derive an optimal value of the model screening parameter ω. The first absorption band appears to be quite well predictable within DFT/TDDFT/PCM with the screening parameter ω to be solvent independent (ω ≈ 0.245 Bohr(-1)) whereas the fluorescence emission exhibits a strong dependence on the range separation with ω-value varying on a rising solvent polarity from about 0.225 to 0.151 Bohr(-1). Dipolar properties of the initial state participating in the electronic transition have crucial impact on the effective screening. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Green disease in optical coherence tomography diagnosis of glaucoma.

    PubMed

    Sayed, Mohamed S; Margolis, Michael; Lee, Richard K

    2017-03-01

    Optical coherence tomography (OCT) has become an integral component of modern glaucoma practice. Utilizing color codes, OCT analysis has rendered glaucoma diagnosis and follow-up simpler and faster for the busy clinician. However, green labeling of OCT parameters suggesting normal values may confer a false sense of security, potentially leading to missed diagnoses of glaucoma and/or glaucoma progression. Conditions in which OCT color coding may be falsely negative (i.e., green disease) are identified. Early glaucoma in which retinal nerve fiber layer (RNFL) thickness and optic disc parameters, albeit labeled green, are asymmetric in both eyes may result in glaucoma being undetected. Progressively decreasing RNFL thickness may reveal the presence of progressive glaucoma that, because of green labeling, can be missed by the clinician. Other ocular conditions that can increase RNFL thickness can make the diagnosis of coexisting glaucoma difficult. Recently introduced progression analysis features of OCT may help detect green disease. Recognition of green disease is of paramount importance in diagnosing and treating glaucoma. Understanding the limitations of imaging technologies coupled with evaluation of serial OCT analyses, prompt clinical examination, and structure-function correlation is important to avoid missing real glaucoma requiring treatment.

  5. Average intensity and beam quality of optical coherence lattices in oceanic turbulence with anisotropy.

    PubMed

    Huang, Xianwei; Deng, Zhixiang; Shi, Xiaohui; Bai, Yanfeng; Fu, Xiquan

    2018-02-19

    Based on the extended Huygens-Fresnel principle, we have derived the analytical expression of the average intensity of optical coherence lattices (OCLs) in oceanic turbulence with anisotropy, and then the beam quality parameters including the Strehl ratio (SR) and the power-in-the-bucket (PIB) are obtained. One can find that the OCLs will eventually evolve into Gaussian shape with the periodicity reciprocity gradually breaking down when propagating through the anisotropic ocean water, and that the trend of evolving into Gaussian can be accelerated for increasing the ratio of temperature and salinity contributions to the refractive index spectrum ω, the lattice constant a and the rate of dissipation of mean square temperature χT or decreasing the anisotropic factor ξ and the rate of dissipation of turbulent kinetic energy per unit mass of fluid ε. Further, the SR and PIB in the target plane under the effects of oceanic parameters are discussed in detail, and the SR and PIB can be increased for the larger ξ and ε or the smaller χT and ω, namely, the beam quality becomes better. Our results can find potential application in the future optical communication system in an oceanic environment.

  6. Synthesis, DFT calculations, spectroscopic and photovoltaic of the novel N″, N‴-bis[(4,9-dimethoxy-5-oxo-5H-furo[3,2-g]chromen-6-yl)methylidene] thiocarbonohydrazide (BFCMT) and its photodiode application

    NASA Astrophysics Data System (ADS)

    Farag, A. A. M.; Ibrahim, Magdy A.; Halim, Shimaa Abdel; Roushdy, N.; El-Gohary, Nasser M.

    2018-03-01

    Condensation reaction of 6-formylkhellin (1) with thiocarbohydrazide in 2:1 M ratio afforded the novel N″, N‴-bis [(4, 9-dimethoxy-5-oxo-5H-furo [3,2-g]chromen-6-yl) methylidene]thiocarbonohydrazide (BFCMT) and its electronic absorption spectrum was interpreted by TD-DFT calculations. The electronic transition is direct allowed with onset and fundamental energy gaps of 1.06 and 3.36 eV, respectively. The estimated optical constants were applied to evaluate the optical transition type as well as the effective optical parameters. The current density-voltage characteristics of BFCMT/p-Si heterojunction at 300 K in dark and under illumination of 100 mW/cm2 showed rectifying characteristics. The capacitance-voltage characteristic parameters under illumination showed a reduction in the built-in potential and increasing the active carrier concentration. The loaded J-V characteristics of BFCMT/p-Si heterojunction under illumination were investigated and showed a remarkable power conversion efficiency of 0.83% without consideration of the refection correction or losses from the upper electrode absorption.

  7. Additive manufacturing of glass for optical applications

    NASA Astrophysics Data System (ADS)

    Luo, Junjie; Gilbert, Luke J.; Bristow, Douglas A.; Landers, Robert G.; Goldstein, Jonathan T.; Urbas, Augustine M.; Kinzel, Edward C.

    2016-04-01

    Glasses including fused quartz have significant scientific and engineering applications including optics, communications, electronics, and hermetic seals. This paper investigates a filament fed process for Additive Manufacturing (AM) of fused quartz. Additive manufacturing has several potential benefits including increased design freedom, faster prototyping, and lower processing costs for small production volumes. However, current research in AM of glasses is limited and has focused on non-optical applications. Fused quartz is studied here because of its desirability for high-quality optics due to its high transmissivity and thermal stability. Fused quartz also has a higher working temperature than soda lime glass which poses a challenge for AM. In this work, fused quartz filaments are fed into a CO2 laser generated melt pool, smoothly depositing material onto the work piece. Single tracks are printed to explore the effects that different process parameters have on the morphology of printed fused quartz. A spectrometer is used to measure the thermal radiation incandescently emitted from the melt pool. Thin-walls are printed to study the effects of layer-to-layer height. Finally, a 3D fused quartz cube is printed using the newly acquired layer height and polished on each surface. The transmittance and index homogeneity of the polished cube are both measured. These results show that the filament fed process has the potential to print fused quartz with optical transparency and of index of refraction uniformity approaching bulk processed glass.

  8. Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne.

    PubMed

    Zhang, Shangjian; Wang, Heng; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-06-15

    An extinction-ratio-independent electrical method is proposed for measuring chirp parameters of Mach-Zehnder electric-optic intensity modulators based on frequency-shifted optical heterodyne. The method utilizes the electrical spectrum analysis of the heterodyne products between the intensity modulated optical signal and the frequency-shifted optical carrier, and achieves the intrinsic chirp parameters measurement at microwave region with high-frequency resolution and wide-frequency range for the Mach-Zehnder modulator with a finite extinction ratio. Moreover, the proposed method avoids calibrating the responsivity fluctuation of the photodiode in spite of the involved photodetection. Chirp parameters as a function of modulation frequency are experimentally measured and compared to those with the conventional optical spectrum analysis method. Our method enables an extinction-ratio-independent and calibration-free electrical measurement of Mach-Zehnder intensity modulators by using the high-resolution frequency-shifted heterodyne technique.

  9. Three-parameter optical studies in Scottish coastal waters

    NASA Astrophysics Data System (ADS)

    McKee, David; Cunningham, Alex; Jones, Ken

    1997-02-01

    A new submersible optical instrument has been constructed which allows chlorophyll fluorescence, attenuation and wide- angle scattering measurements to be made simultaneously at he same point in a body of water. The instrument sues a single xenon flashlamp as the light source, and incorporates its own power supply and microprocessor based data logging system. It has ben cross-calibrated against commercial single-parameter instruments using a range of non-algal particles and phytoplankton cultures. The equipment has been deployed at sea in the Firth of Clyde and Loch Linnhe, where is has been used to study seasonal variability in optical water column structure. Results will be presented to illustrate how ambiguity in the interpretation of measurements of a single optical parameter can be alleviated by measuring several parameters simultaneously. Comparative studies of differences in winter and spring relationships between optical variable shave also ben carried out.

  10. Improved performance of analog and digital acousto-optic modulation with feedback under profiled beam propagation for secure communication using chaos

    NASA Astrophysics Data System (ADS)

    Almehmadi, Fares S.; Chatterjee, Monish R.

    2014-12-01

    Using intensity feedback, the closed-loop behavior of an acousto-optic hybrid device under profiled beam propagation has been recently shown to exhibit wider chaotic bands potentially leading to an increase in both the dynamic range and sensitivity to key parameters that characterize the encryption. In this work, a detailed examination is carried out vis-à-vis the robustness of the encryption/decryption process relative to parameter mismatch for both analog and pulse code modulation signals, and bit error rate (BER) curves are used to examine the impact of additive white noise. The simulations with profiled input beams are shown to produce a stronger encryption key (i.e., much lower parametric tolerance thresholds) relative to simulations with uniform plane wave input beams. In each case, it is shown that the tolerance for key parameters drops by factors ranging from 10 to 20 times below those for uniform plane wave propagation. Results are shown to be at consistently lower tolerances for secure transmission of analog and digital signals using parameter tolerance measures, as well as BER performance measures for digital signals. These results hold out the promise for considerably greater information transmission security for such a system.

  11. The study of optimization on process parameters of high-accuracy computerized numerical control polishing

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Ren; Huang, Shih-Pu; Tsai, Tsung-Yueh; Lin, Yi-Jyun; Yu, Zong-Ru; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Young, Hong-Tsu

    2017-09-01

    Spherical lenses lead to forming spherical aberration and reduced optical performance. Consequently, in practice optical system shall apply a combination of spherical lenses for aberration correction. Thus, the volume of the optical system increased. In modern optical systems, aspherical lenses have been widely used because of their high optical performance with less optical components. However, aspherical surfaces cannot be fabricated by traditional full aperture polishing process due to their varying curvature. Sub-aperture computer numerical control (CNC) polishing is adopted for aspherical surface fabrication in recent years. By using CNC polishing process, mid-spatial frequency (MSF) error is normally accompanied during this process. And the MSF surface texture of optics decreases the optical performance for high precision optical system, especially for short-wavelength applications. Based on a bonnet polishing CNC machine, this study focuses on the relationship between MSF surface texture and CNC polishing parameters, which include feed rate, head speed, track spacing and path direction. The power spectral density (PSD) analysis is used to judge the MSF level caused by those polishing parameters. The test results show that controlling the removal depth of single polishing path, through the feed rate, and without same direction polishing path for higher total removal depth can efficiently reduce the MSF error. To verify the optical polishing parameters, we divided a correction polishing process to several polishing runs with different direction polishing paths. Compare to one shot polishing run, multi-direction path polishing plan could produce better surface quality on the optics.

  12. Characterization of photochromic and photorefractive chromophores

    NASA Astrophysics Data System (ADS)

    Moylan, Christopher R.; McComb, I. H.; Twieg, Robert J.; Wortmann, Ruediger W.

    1997-01-01

    Although photorefractive materials are those that exhibit both appreciable electro-optic and photoconductive behavior, the chromophore parameters that lead to large electro-optic coefficients have not so far led to similar photorefractive performance. Recently, it has been shown that the electro- optic contribution is one of two principal contributions to the overall photorefractive behavior, and that it is usually the smaller of the two. The larger factor, first referred to in the literature as an 'orientational enhancement,' is due to the birefringence of the chromophore: the difference in polarizability parallel to the dipole moment and perpendicular to it. A figure of merit incorporating both effects has been derived, although its determination is more difficult than that for purely electro-optic materials. The polarizability anisotropy is a function of all three components of the diagonalized polarizability tensor. Two expressions for these three parameters can be obtained by index of refraction and light scattering measurements on chromophores in solution. The third must be estimated. Results from this new characterization protocol are presented and compared with the results of photorefractive experiments on materials containing the tested chromophores. Another class of compounds has also been found to be of potential use in holographic storage, in this case write- once applications. These chromophores undergo an irreversible photochromic reaction that is triplet sensitized. A mechanism is proposed for this reaction and supporting data provided.

  13. Vibrational spectroscopic and DFT calculation studies of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile.

    PubMed

    Premkumar, S; Jawahar, A; Mathavan, T; Kumara Dhas, M; Milton Franklin Benial, A

    2015-03-05

    The vibrational spectra of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile were recorded using fourier transform-infrared and fourier transform-Raman spectrometer. The optimized structural parameters, vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals, thermodynamic properties, temperature dependence of thermodynamic parameters, first order hyperpolarizability and natural bond orbital calculations of the molecule were performed using the Gaussian 09 program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program. The calculated first order hyperpolarizability of ABOBPC molecule was obtained as 6.908×10(-30) issue, which was 10.5 times greater than urea. The nonlinear optical activity of the molecule was also confirmed by the frontier molecular orbitals and natural bond orbital analysis. The frontier molecular orbitals analysis shows that the lower energy gap of the molecule, which leads to the higher value of first order hyperpolarizability. The natural bond orbital analysis indicates that the nonlinear optical activity of the molecule arises due to the π→π(∗) transitions. The Mulliken atomic charge distribution confirms the presence of intramolecular charge transfer within the molecule. The reactive site of the molecule was predicted from the molecular electrostatic potential contour map. The values of thermo dynamic parameters were increasing with increasing temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. {sup 110,116}Cd({alpha},{alpha}){sup 110,116}Cd elastic scattering and systematic investigation of elastic {alpha} scattering cross sections along the Z=48 isotopic and N=62 isotonic chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiss, G. G.; Fueloep, Zs.; Gyuerky, Gy.

    2011-06-15

    The elastic scattering cross sections for the reactions {sup 110,116}Cd({alpha},{alpha}){sup 110,116}Cd at energies above and below the Coulomb barrier are presented to provide a sensitive test for the {alpha}-nucleus optical potential parameter sets. Additional constraints for the optical potential are taken from the analysis of elastic scattering excitation functions at backward angles which are available in literature. Moreover, the variation of the elastic {alpha} scattering cross sections along the Z=48 isotopic and N=62 isotonic chain is investigated by the study of the ratios of the {sup 106,110,116}Cd({alpha},{alpha}){sup 106,110,116}Cd scattering cross sections at E{sub cm{approx_equal}}15.6and18.8 MeV and the ratio of themore » {sup 110}Cd({alpha},{alpha}){sup 110}Cd and {sup 112}Sn({alpha},{alpha}){sup 112}Sn reaction cross sections at E{sub cm{approx_equal}}18.8 MeV, respectively. These ratios are sensitive probes for the {alpha}-nucleus optical potential parametrizations. The potentials under study are a basic prerequisite for the prediction of {alpha}-induced reaction cross sections (e.g., for the calculation of stellar reaction rates in the astrophysical p or {gamma} process).« less

  15. Combined analysis of whole human blood parameters by Raman spectroscopy and spectral-domain low-coherence interferometry

    NASA Astrophysics Data System (ADS)

    Gnyba, M.; Wróbel, M. S.; Karpienko, K.; Milewska, D.; Jedrzejewska-Szczerska, M.

    2015-07-01

    In this article the simultaneous investigation of blood parameters by complementary optical methods, Raman spectroscopy and spectral-domain low-coherence interferometry, is presented. Thus, the mutual relationship between chemical and physical properties may be investigated, because low-coherence interferometry measures optical properties of the investigated object, while Raman spectroscopy gives information about its molecular composition. A series of in-vitro measurements were carried out to assess sufficient accuracy for monitoring of blood parameters. A vast number of blood samples with various hematological parameters, collected from different donors, were measured in order to achieve a statistical significance of results and validation of the methods. Preliminary results indicate the benefits in combination of presented complementary methods and form the basis for development of a multimodal system for rapid and accurate optical determination of selected parameters in whole human blood. Future development of optical systems and multivariate calibration models are planned to extend the number of detected blood parameters and provide a robust quantitative multi-component analysis.

  16. Dependence of optic disc parameters on disc area according to Heidelberg Retina Tomograph: Part II.

    NASA Astrophysics Data System (ADS)

    Machekhin, V.; Manaenkova, G.; Bondarenko, O.

    2007-05-01

    With the help of Heidelberg Retina Tomograph (HRT-II) optic disc parameters in 211 eyes of 115 healthy patients with refraction Em +/- 3,0 D and 96 eyes of 72 patients with myopia 3,5-14,0 D without any signs of glaucoma were studied. Analysis of optic disc parameters were carried out in 5 groups of patients according to disc area: less than 1,5 mm2, 1,5- 2,5 mm2, 2,5-3,0 mm2, 3,0-3,5 mm2 and more than 3,5 mm2. An accurate depending on disc area was revealed for all optic disc parameters in all sectors, which was manifested by increasing cup disc and rim disc (area and volume) and other parameters. We consider it is necessary to use the proper tables for right interpretation of received data for early diagnosis of glaucoma.

  17. Colloids exposed to random potential energy landscapes: From particle number density to particle-potential and particle-particle interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bewerunge, Jörg; Capellmann, Ronja F.; Platten, Florian

    2016-07-28

    Colloidal particles were exposed to a random potential energy landscape that has been created optically via a speckle pattern. The mean particle density as well as the potential roughness, i.e., the disorder strength, were varied. The local probability density of the particles as well as its main characteristics were determined. For the first time, the disorder-averaged pair density correlation function g{sup (1)}(r) and an analogue of the Edwards-Anderson order parameter g{sup (2)}(r), which quantifies the correlation of the mean local density among disorder realisations, were measured experimentally and shown to be consistent with replica liquid state theory results.

  18. Modeling the focusing efficiency of lobster-eye optics for image shifting depending on the soft x-ray wavelength.

    PubMed

    Su, Luning; Li, Wei; Wu, Mingxuan; Su, Yun; Guo, Chongling; Ruan, Ningjuan; Yang, Bingxin; Yan, Feng

    2017-08-01

    Lobster-eye optics is widely applied to space x-ray detection missions and x-ray security checks for its wide field of view and low weight. This paper presents a theoretical model to obtain spatial distribution of focusing efficiency based on lobster-eye optics in a soft x-ray wavelength. The calculations reveal the competition mechanism of contributions to the focusing efficiency between the geometrical parameters of lobster-eye optics and the reflectivity of the iridium film. In addition, the focusing efficiency image depending on x-ray wavelengths further explains the influence of different geometrical parameters of lobster-eye optics and different soft x-ray wavelengths on focusing efficiency. These results could be beneficial to optimize parameters of lobster-eye optics in order to realize maximum focusing efficiency.

  19. Optical Analog to Electromagnetically Induced Transparency in Cascaded Ring-Resonator Systems.

    PubMed

    Wang, Yonghua; Zheng, Hua; Xue, Chenyang; Zhang, Wendong

    2016-07-25

    The analogue of electromagnetically induced transparency in optical methods has shown great potential in slow light and sensing applications. Here, we experimentally demonstrated a coupled resonator induced transparency system with three cascaded ring coupled resonators in a silicon chip. The structure was modeled by using the transfer matrix method. Influences of various parameters including coupling ratio of couplers, waveguide loss and additional loss of couplers on transmission characteristic and group index have been investigated theoretically and numerically in detail. The transmission character of the system was measured by the vertical grating coupling method. The enhanced quality factor reached 1.22 × 10⁵. In addition, we further test the temperature performance of the device. The results provide a new method for the manipulation of light in highly integrated optical circuits and sensing applications.

  20. Systematic investigation of structural, electronic, optical and thermal properties of ternary MoAlB; an ab initio approach

    NASA Astrophysics Data System (ADS)

    Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.

    2018-02-01

    Structural, electronic, optical and thermal properties of molybdenum aluminum boride (MoAlB) have been analyzed systematically using the full potential linearized augmented plane wave method based on density functional theory at ambient condition as well as high pressure and high temperature. Density of states and band structure calculation reflect the metallic character of MoAlB. In addition to this, the electron charge density calculation reveals the strong covalent bonding, in between ‘B’ atoms as well as ‘Mo’ and ‘B’ atoms. Optical parameters exhibit anisotropic nature and MoAlB become transparent in ultraviolet region for the radiation of energy above 25 eV. The thermal properties were investigated by using the quasi-harmonic Debye model at high temperature and high pressure.

  1. Nonparaxial rogue waves in optical Kerr media.

    PubMed

    Temgoua, D D Estelle; Kofane, T C

    2015-06-01

    We consider the inhomogeneous nonparaxial nonlinear Schrödinger (NLS) equation with varying dispersion, nonlinearity, and nonparaxiality coefficients, which governs the nonlinear wave propagation in an inhomogeneous optical fiber system. We present the similarity and Darboux transformations and for the chosen specific set of parameters and free functions, the first- and second-order rational solutions of the nonparaxial NLS equation are generated. In particular, the features of rogue waves throughout polynomial and Jacobian elliptic functions are analyzed, showing the nonparaxial effects. It is shown that the nonparaxiality increases the intensity of rogue waves by increasing the length and reducing the width simultaneously, by the way it increases their speed and penalizes interactions between them. These properties and the characteristic controllability of the nonparaxial rogue waves may give another opportunity to perform experimental realizations and potential applications in optical fibers.

  2. Controllable optical bistability in a three-mode optomechanical system with atom-cavity-mirror couplings

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Wang, Xiao-Fang; Yan, Jia-Kai; Zhu, Xiao-Fei; Jiang, Cheng

    2018-01-01

    We theoretically investigate the optical bistable behavior in a three-mode optomechanical system with atom-cavity-mirror couplings. The effects of the cavity-pump detuning and the pump power on the bistable behavior are discussed detailedly, the impacts of the atom-pump detuning and the atom-cavity coupling strength on the bistability of the system are also explored, and the influences of the cavity-resonator coupling strength and the cavity decay rate are also taken into consideration. The numerical results demonstrate that by tuning these parameters the bistable behavior of the system can be freely switched on or off, and the threshold of the pump power for the bistability as well as the bistable region width can also be effectively controlled. These results can find potential applications in optical bistable switch in the quantum information processing.

  3. In-Fiber Optic Salinity Sensing: A Potential Application for Offshore Concrete Structure Protection.

    PubMed

    Luo, Dong; Li, Peng; Yue, Yanchao; Ma, Jianxun; Yang, Hangzhou

    2017-05-04

    The protection of concrete structures against corrosion in marine environments has always been a challenge due to the presence of a saline solution-A natural corrosive agent to the concrete paste and steel reinforcements. The concentration of salt is a key parameter influencing the rate of corrosion. In this paper, we propose an optical fiber-based salinity sensor based on bundled multimode plastic optical fiber (POF) as a sensor probe and a concave mirror as a reflector in conjunction with an intensity modulation technique. A refractive index (RI) sensing approach is analytically investigated and the findings are in agreement with the experimental results. A maximum sensitivity of 14,847.486/RIU can be achieved at RI = 1.3525. The proposed technique is suitable for in situ measurement and monitoring of salinity in liquid.

  4. Influence of Ca2+ doped on structural and optical properties of RPO4 (R = Ce3+, Nd3+ and Pr3+) compounds

    NASA Astrophysics Data System (ADS)

    Lemdek, El Mokhtar; Benkhouja, Khalil; Touhtouh, Samira; Sbiaai, Khalid; Arbaoui, Abdezzahid; Bakasse, Mina; Hajjaji, Abdelowahed; Boughaleb, Yahia; Saez-Puche, Regino

    2013-11-01

    This paper investigates the effect of doping by Ca2+ ions on the structural and optical properties of RPO4 (R = Ce3+, Nd3+ and Pr3+) compounds. A simple ceramic method in air at 900 °C was used to prepare all compounds. The structural characterization of compounds was carried out by using X-ray powder diffraction (XRD) and IR spectroscopy. Optical properties were characterized by reflectance spectral data and by colorimeter. The results reveal a single monazite phase for x values up to 0.4. The lattice parameters of the synthesized samples decrease linearly with the reduction of ionic radius of the Ce3+. These rare earth phosphates based materials have a potential to be adopted for the eco-friendly colorants for paints and plastics.

  5. Line width measurement below 60 nm using an optical interferometer and artificial neural network

    NASA Astrophysics Data System (ADS)

    See, Chung W.; Smith, Richard J.; Somekh, Michael G.; Yacoot, Andrew

    2007-03-01

    We have recently described a technique for optical line-width measurements. The system currently is capable of measuring line-width down to 60 nm with a precision of 2 nm, and potentially should be able to measure down to 10nm. The system consists of an ultra-stable interferometer and artificial neural networks (ANNs). The former is used to generate optical profiles which are input to the ANNs. The outputs of the ANNs are the desired sample parameters. Different types of samples have been tested with equally impressive results. In this paper we will discuss the factors that are essential to extend the application of the technique. Two of the factors are signal conditioning and sample classification. Methods, including principal component analysis, that are capable of performing these tasks will be considered.

  6. Analysis and investigation of temperature and hydrostatic pressure effects on optical characteristics of multiple quantum well slow light devices.

    PubMed

    Abdolhosseini, Saeed; Kohandani, Reza; Kaatuzian, Hassan

    2017-09-10

    This paper represents the influences of temperature and hydrostatic pressure variations on GaAs/AlGaAs multiple quantum well slow light systems based on coherence population oscillations. An analytical model in non-integer dimension space is used to study the considerable effects of these parameters on optical properties of the slow light apparatus. Exciton oscillator strength and fractional dimension constants have special roles on the analytical model in fractional dimension. Hence, the impacts of hydrostatic pressure and temperature on exciton oscillator strength and fractional dimension quantity are investigated theoretically in this paper. Based on the achieved results, temperature and hydrostatic pressure play key roles on optical parameters of the slow light systems, such as the slow down factor and central energy of the device. It is found that the slope and value of the refractive index real part change with alterations of temperature and hydrostatic pressure in the range of 5-40 deg of Kelvin and 1 bar to 2 kbar, respectively. Thus, the peak value of the slow down factor can be adjusted by altering these parameters. Moreover, the central energy of the device shifts when the hydrostatic pressure is applied to the slow light device or temperature is varied. In comparison with previous reported experimental results, our simulations follow them successfully. It is shown that the maximum value of the slow down factor is estimated close to 5.5×10 4 with a fine adjustment of temperature and hydrostatic pressure. Meanwhile, the central energy shift of the slow light device rises up to 27 meV, which provides an appropriate basis for different optical devices in which multiple quantum well slow light is one of their essential subsections. This multiple quantum well slow light device has potential applications for use as a tunable optical buffer and pressure/temperature sensors.

  7. Statistical estimation of the potential possibilities for panoramic hydro-optic laser sensing

    NASA Astrophysics Data System (ADS)

    Shamanaev, Vitalii S.; Lisenko, Andrey A.

    2017-11-01

    For statistical estimation of the potential possibilities of the lidar with matrix photodetector placed on board an aircraft, the nonstationary equation of laser sensing of a complex multicomponent sea water medium is solved by the Monte Carlo method. The lidar return power is estimated for various optical sea water characteristics in the presence of solar background radiation. For clear waters and brightness of external background illumination of 50, 1, and 10-3 W/(m2ṡμmṡsr), the signal/noise ratio (SNR) exceeds 10 to water depths h = 45-50 m. For coastal waters, SNR >= 10 for h = 17-24 m, whereas for turbid sea waters, SNR >= 10 only to depths h = 8-12 m. Results of statistical simulation have shown that the lidar system with optimal parameters can be used for water sensing to depths of 50 m.

  8. Investigations of optical and thermoelectric response of direct band gap Ca3XO (X = Si, Ge) anti-perovskites stabilized in cubic and orthorhombic phases

    NASA Astrophysics Data System (ADS)

    Mahmood, Q.; Ashraf, A.; Hassan, M.

    2018-02-01

    We predict the phase dependent electronic properties for elaborating the optical and thermoelectric behaviors of both cubic (Pm-3m) and orthorhombic (Pbnm) Ca3XO (X = Si, Ge) antiperovskites using first-principles density functional theory (DFT) computations. The mBJ functional is employed for computing the most accurate electronic characteristics. A direct band gap semiconducting nature has been found appearing due to hybridization between O and Si/Ge p-states. The calculated band gaps lying in the infrared energy region suggest that the studied anti-perovskites can absorb visible and ultraviolet energy revealing potential optoelectronics device applications. Moreover, the important thermoelectric parameters are computed for illustrating the potential thermoelectric applications. Hence, the studied anti-perovskites can simultaneously exhibit various flexible material properties, which reveal their worth for the devices demonstrating versatile characteristics.

  9. Energetic and dynamical instability of spin-orbit coupled Bose-Einstein condensate in a deep optical lattice

    NASA Astrophysics Data System (ADS)

    Yu, Zi-Fa; Chai, Xu-Dan; Xue, Ju-Kui

    2018-05-01

    We investigate the energetic and dynamical instability of spin-orbit coupled Bose-Einstein condensate in a deep optical lattice via a tight-binding model. The stability phase diagram is completely revealed in full parameter space, while the dependence of superfluidity on the dispersion relation is illustrated explicitly. In the absence of spin-orbit coupling, the superfluidity only exists in the center of the Brillouin zone. However, the combination of spin-orbit coupling, Zeeman field, nonlinearity and optical lattice potential can modify the dispersion relation of the system, and change the position of Brillouin zone for generating the superfluidity. Thus, the superfluidity can appear in either the center or the other position of the Brillouin zone. Namely, in the center of the Brillouin zone, the system is either superfluid or Landau unstable, which depends on the momentum of the lowest energy. Therefore, the superfluidity can occur at optional position of the Brillouin zone by elaborating spin-orbit coupling, Zeeman splitting, nonlinearity and optical lattice potential. For the linear case, the system is always dynamically stable, however, the nonlinearity can induce the dynamical instability, and also expand the superfluid region. These predicted results can provide a theoretical evidence for exploring the superfluidity of the system experimentally.

  10. Systematic analysis of α elastic scattering with the São Paulo potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charry-Pastrana, F. E., E-mail: feecharrypa@unal.edu.co; Pinilla, E. C.

    2016-07-07

    We describe systematically by collision energy and target mass, alpha elastic scattering angular distributions by using the São Paulo potential as the real part of the optical potential. The imaginary part is proportional to the real one by a factor N{sub i}. We find this parameter by fitting the theoretical angular distributions to the experimental cross sections through a χ{sup 2} minimization. The N{sub i} and their respective uncertainties, σ{sub Ni}, fall in the range 0.4 ≤ N{sub i} ± σ{sub N{sub i}} ≤ 0.8 for all the systems studied.

  11. Study of linear optical parameters of sodium sulphide nano-particles added ADP crystals

    NASA Astrophysics Data System (ADS)

    Kochuparampil, A. P.; Joshi, J. H.; Dixit, K. P.; Jethva, H. O.; Joshi, M. J.

    2017-05-01

    Ammonium Dihydrogen Phosphate (ADP) is one of the nonlinear optical crystals. It is having various applications like optical mixing, electro-optical modulator, harmonic generators, etc. Chalcogenide compounds are poorly soluble in water and difficult to add in the water soluble ADP crystals. The solubility of Chalcogenide compounds can be increased by synthesizing the nano-structured samples with suitable capping agent. In the present study sodium sulphide was added in to ADP to modify its linear optical parameters. Sodium sulphide nano particles were synthesized by co-precipitation technique using Ethylene diamine as capping agent followed by microwave irradiation. The powder XRD confirmed the nano-structured nature of sodium sulphide nano particles. The solubility of nanoparticles of sodium sulphide increased significantly in water compared to the bulk. Pure and Na2S added ADP crystals were grown by slow solvent evaporation method at room temperature. The presence of sodium in ADP was confirmed by AAS. The UV-Vis spectra were recorded for all crystals. Various optical parameters like, transmittance, energy band gap, extinction coefficient, refractive index, optical conductivity, etc. were evaluated. The electronic polarizibility of pure and doped crystals calculated from energy band gap. The effect of doping concentration was found on various parameters.

  12. A Method for Medical Diagnosis Based on Optical Fluence Rate Distribution at Tissue Surface.

    PubMed

    Hamdy, Omnia; El-Azab, Jala; Al-Saeed, Tarek A; Hassan, Mahmoud F; Solouma, Nahed H

    2017-09-20

    Optical differentiation is a promising tool in biomedical diagnosis mainly because of its safety. The optical parameters' values of biological tissues differ according to the histopathology of the tissue and hence could be used for differentiation. The optical fluence rate distribution on tissue boundaries depends on the optical parameters. So, providing image displays of such distributions can provide a visual means of biomedical diagnosis. In this work, an experimental setup was implemented to measure the spatially-resolved steady state diffuse reflectance and transmittance of native and coagulated chicken liver and native and boiled breast chicken skin at 635 and 808 nm wavelengths laser irradiation. With the measured values, the optical parameters of the samples were calculated in vitro using a combination of modified Kubelka-Munk model and Bouguer-Beer-Lambert law. The estimated optical parameters values were substituted in the diffusion equation to simulate the fluence rate at the tissue surface using the finite element method. Results were verified with Monte-Carlo simulation. The results obtained showed that the diffuse reflectance curves and fluence rate distribution images can provide discrimination tools between different tissue types and hence can be used for biomedical diagnosis.

  13. The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part I: The ray tracing with diffraction on facets method

    NASA Astrophysics Data System (ADS)

    Baran, A. J.; Hesse, Evelyn; Sourdeval, Odran

    2017-03-01

    Future satellite missions, from 2022 onwards, will obtain near-global measurements of cirrus at microwave and sub-millimetre frequencies. To realise the potential of these observations, fast and accurate light-scattering methods are required to calculate scattered millimetre and sub-millimetre intensities from complex ice crystals. Here, the applicability of the ray tracing with diffraction on facets method (RTDF) in predicting the bulk scalar optical properties and phase functions of randomly oriented hexagonal ice columns and hexagonal ice aggregates at millimetre frequencies is investigated. The applicability of RTDF is shown to be acceptable down to size parameters of about 18, between the frequencies of 243 and 874 GHz. It is demonstrated that RTDF is generally well within about 10% of T-matrix solutions obtained for the scalar optical properties assuming hexagonal ice columns. Moreover, on replacing electromagnetic scalar optical property solutions obtained for the hexagonal ice aggregate with the RTDF counterparts at size parameter values of about 18 or greater, the bulk scalar optical properties can be calculated to generally well within ±5% of an electromagnetic-based database. The RTDF-derived bulk scalar optical properties result in brightness temperature errors to generally within about ±4 K at 874 GHz. Differing microphysics assumptions can easily exceed such errors. Similar findings are found for the bulk scattering phase functions. This finding is owing to the scattering solutions being dominated by the processes of diffraction and reflection, both being well described by RTDF. The impact of centimetre-sized complex ice crystals on interpreting cirrus polarisation measurements at sub-millimetre frequencies is discussed.

  14. Using radiance predicted by the P3 approximation in a spherical geometry to predict tissue optical properties

    NASA Astrophysics Data System (ADS)

    Dickey, Dwayne J.; Moore, Ronald B.; Tulip, John

    2001-01-01

    For photodynamic therapy of solid tumors, such as prostatic carcinoma, to be achieved, an accurate model to predict tissue parameters and light dose must be found. Presently, most analytical light dosimetry models are fluence based and are not clinically viable for tissue characterization. Other methods of predicting optical properties, such as Monet Carlo, are accurate but far too time consuming for clinical application. However, radiance predicted by the P3-Approximation, an anaylitical solution to the transport equation, may be a viable and accurate alternative. The P3-Approximation accurately predicts optical parameters in intralipid/methylene blue based phantoms in a spherical geometry. The optical parameters furnished by the radiance, when introduced into fluence predicted by both P3- Approximation and Grosjean Theory, correlate well with experimental data. The P3-Approximation also predicts the optical properties of prostate tissue, agreeing with documented optical parameters. The P3-Approximation could be the clinical tool necessary to facilitate PDT of solid tumors because of the limited number of invasive measurements required and the speed in which accurate calculations can be performed.

  15. Model of optical phantoms thermal response upon irradiation with 975 nm dermatological laser

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Bashkatov, A. N.; Yakunin, A. N.; Avetisyan, Yu. A.; Genina, E. A.; Galla, S.; Sekowska, A.; Truchanowicz, D.; Cenian, A.; Jedrzejewska-Szczerska, M.; Tuchin, V. V.

    2018-04-01

    We have developed a numerical model describing the optical and thermal behavior of optical tissue phantoms upon laser irradiation. According to our previous studies, the phantoms can be used as substitute of real skin from the optical, as well as thermal point of view. However, the thermal parameters are not entirely similar to those of real tissues thus there is a need to develop mathematical model, describing the thermal and optical response of such materials. This will facilitate the correction factors, which would be invaluable in translation between measurements on skin phantom to real tissues, and gave a good representation of a real case application. Here, we present the model dependent on the data of our optical phantoms fabricated and measured in our previous preliminary study. The ambiguity between the modeling and the thermal measurements depend on lack of accurate knowledge of material's thermal properties and some exact parameters of the laser beam. Those parameters were varied in the simulation, to provide an overview of possible parameters' ranges and the magnitude of thermal response.

  16. Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium-zinc-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Algradee, M. A.; Sultan, M.; Samir, O. M.; Alwany, A. Elwhab B.

    2017-08-01

    The Nd3+-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.

  17. Optical Testing Using Portable Laser Coordinate Measuring Instruments

    NASA Technical Reports Server (NTRS)

    Khreishi, Manal; Ohl, Raymond G.; Mclean, Kyle F.; Hadjimichael, Theodore J.; Hayden, Joseph E.

    2017-01-01

    High precision, portable coordinate measuring instruments (CMI) such as laser radars (LR) and laser trackers (LT) have been used for optical system alignment and integration. The LR's ability to perform a non-contact scan of surfaces was previously utilized to characterize large spherical and aspheric mirrors. In this paper, we explore the use of a CMI as an accurate, fast, robust, and non-contact tool for prescription characterization of powered optical surfaces. Using Nikon's MV-224/350 LR and Leica's Absolute Tracker AT401/402 instruments, proof of concept measurements were performed to characterize a variety of optical components by measuring the actual and apparent, or equivalently the "direct and through" (D&T), coordinates of calibrated metrology targets. Custom macros in metrology software and other data reduction code were developed to compute surface-ray intercepts and surface slopes from the D&T shots. The calculated data is fit to an aspheric surface formula to obtain the optimum prescription. The results were compared to the nominal parameters and were crosschecked using LR scans or other approaches. We discuss potential applications across the fields of optical component fabrication and system alignment and testing.

  18. Ellipsometric and optical study of some uncommon insulator films on 3-5 semiconductors

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Warner, J. D.; Liu, D. C.; Pouch, J. J.

    1985-01-01

    Optical properties of three types of insulating films that show promise in potential applications in the 3-4 semiconductor technology were evaluated, namely a-C:H, BN and CaF2. The plasma deposited a-C:H shows an amorphous behavior with optical energy gaps of approximately 2 to 2.4 eV. These a-C:H films have higher density and/or hardness, higher refractive index and lower optical energy gaps with increasing energy of the particles in the plasma, while the density of states remains unchanged. These results are in agreement, and give a fine-tuned positive confirmation to an existing conjecture on the nature of a-C:H films (1). Ion beam deposited BN films show amorphous behavior with energy gap of 5 eV. These films are nonstoichiometric (B/N approximately 2) and have refractive index, density and/or hardness which are dependent on the deposition conditions. The epitaxially grown CaF2 on GaAs films have optical parameters equal to bulk, but evidence of damage was found in the GaAs at the interface.

  19. Synthesis, growth, structural characterization, Hirshfeld analysis and nonlinear optical studies of a methyl substituted chalcone

    NASA Astrophysics Data System (ADS)

    Prabhu, Shobha R.; Jayarama, A.; Chandrasekharan, K.; Upadhyaya, V.; Ng, Seik Weng

    2017-05-01

    A new chalcone compound (2E)-3-(3-methylphenyl)-1-(4-nitrophenyl)prop-2-en-1-one (3MPNP) with molecular formula C16H13NO3 has been synthesized and crystallized by slow solvent evaporation technique. The Fourier transform infrared, Fourier transform Raman and nuclear magnetic resonance techniques were used for structural characterization. UV-visible absorption studies were carried out to study the transparency of the crystal in the visible region. Differential scanning calorimetry study shows thermal stability of crystals up to temperature 122 °C. Single crystal X-ray diffraction and powder X-ray diffraction techniques were used to study crystal structure and cell parameters. The Hirshfeld surface and 2-D fingerprint analysis were performed to study the nature of interactions and their quantitative contributions towards the crystal packing. The third order non-linear optical properties have been studied using single beam Z-scan technique and the results show that the material is a potential candidate for optical device applications such as optical limiters and optical switches.

  20. GaN Nanowire Arrays for Efficient Optical Read-Out and Optoelectronic Control of NV Centers in Diamond.

    PubMed

    Hetzl, Martin; Wierzbowski, Jakob; Hoffmann, Theresa; Kraut, Max; Zuerbig, Verena; Nebel, Christoph E; Müller, Kai; Finley, Jonathan J; Stutzmann, Martin

    2018-06-13

    Solid-state quantum emitters embedded in a semiconductor crystal environment are potentially scalable platforms for quantum optical networks operated at room temperature. Prominent representatives are nitrogen-vacancy (NV) centers in diamond showing coherent entanglement and interference with each other. However, these emitters suffer from inefficient optical outcoupling from the diamond and from fluctuations of their charge state. Here, we demonstrate the implementation of regular n-type gallium nitride nanowire arrays on diamond as photonic waveguides to tailor the emission direction of surface-near NV centers and to electrically control their charge state in a p-i-n nanodiode. We show that the electrical excitation of single NV centers in such a diode can efficiently replace optical pumping. By the engineering of the array parameters, we find an optical read-out efficiency enhanced by a factor of 10 and predict a lateral NV-NV coupling 3 orders of magnitude stronger through evanescently coupled nanowire antennas compared to planar diamond not covered by nanowires, which opens up new possibilities for large-scale on-chip quantum-computing applications.

  1. Optical Testing Using Portable Laser Coordinate Measuring Instruments

    NASA Technical Reports Server (NTRS)

    Khreishi, M.; Ohl, R.; Mclean, K.; Hadjimichael, T.; Hayden, J.

    2017-01-01

    High precision, portable coordinate measuring instruments (CMI) such as laser radars (LR) and laser trackers (LT) have been used for optical system alignment and integration. The LRs ability to perform a non-contact scan of surfaces was previously utilized to characterize large spherical and aspheric mirrors. In this paper, we explore the use of a CMI as an accurate, fast, robust, and non-contact tool for prescription characterization of powered optical surfaces. Using Nikons MV-224350 LR and Leicas Absolute Tracker AT401402 instruments, proof of concept measurements were performed to characterize a variety of optical components by measuring the actual and apparent, or equivalently the direct and through (DT), coordinates of calibrated metrology targets. Custom macros in metrology software and other data reduction code were developed to compute surface-ray intercepts and surface slopes from the DT shots. The calculated data is fit to an aspheric surface formula to obtain the optimum prescription. The results were compared to the nominal parameters and were crosschecked using LR scans or other approaches. We discuss potential applications across the fields of optical component fabrication and system alignment and testing.

  2. A top-down design methodology and its implementation for VCSEL-based optical links design

    NASA Astrophysics Data System (ADS)

    Li, Jiguang; Cao, Mingcui; Cai, Zilong

    2005-01-01

    In order to find the optimal design for a given specification of an optical communication link, an integrated simulation of electronic, optoelectronic, and optical components of a complete system is required. It is very important to be able to simulate at both system level and detailed model level. This kind of model is feasible due to the high potential of Verilog-AMS language. In this paper, we propose an effective top-down design methodology and employ it in the development of a complete VCSEL-based optical links simulation. The principle of top-down methodology is that the development would proceed from the system to device level. To design a hierarchical model for VCSEL based optical links, the design framework is organized in three levels of hierarchy. The models are developed, and implemented in Verilog-AMS. Therefore, the model parameters are fitted to measured data. A sample transient simulation demonstrates the functioning of our implementation. Suggestions for future directions in top-down methodology used for optoelectronic systems technology are also presented.

  3. AirMSPI ORACLES Cloud Droplet Data V001

    Atmospheric Science Data Center

    2018-05-05

    AirMSPI_ORACLES_Cloud_Droplet_Size_and_Cloud_Optical_Depth L2 Derived Geophysical Parameters ... Order: Earthdata Search Parameters:  Cloud Optical Depth Cloud Droplet Effective Radius Cloud Droplet ...

  4. Optical characterization of agricultural pest insects: a methodological study in the spectral and time domains

    NASA Astrophysics Data System (ADS)

    Li, Y. Y.; Zhang, H.; Duan, Z.; Lian, M.; Zhao, G. Y.; Sun, X. H.; Hu, J. D.; Gao, L. N.; Feng, H. Q.; Svanberg, S.

    2016-08-01

    Identification of agricultural pest insects is an important aspect in insect research and agricultural monitoring. We have performed a methodological study of how spectroscopic techniques and wing-beat frequency analysis might provide relevant information. An optical system based on the combination of close-range remote sensing and reflectance spectroscopy was developed to study the optical characteristics of different flying insects, collected in Southern China. The results demonstrate that the combination of wing-beat frequency assessment and reflectance spectral analysis has the potential to successfully differentiate between insect species. Further, studies of spectroscopic characteristics of fixed specimen of insects, also from Central China, showed the possibility of refined agricultural pest identification. Here, in addition to reflectance recordings also laser-induced fluorescence spectra were investigated for all the species of insects under study and found to provide complementary information to optically distinguish insects. In order to prove the practicality of the techniques explored, clearly fieldwork aiming at elucidating the variability of parameters, even within species, must be performed.

  5. Quantitative Analysis of the Efficiency of OLEDs.

    PubMed

    Sim, Bomi; Moon, Chang-Ki; Kim, Kwon-Hyeon; Kim, Jang-Joo

    2016-12-07

    We present a comprehensive model for the quantitative analysis of factors influencing the efficiency of organic light-emitting diodes (OLEDs) as a function of the current density. The model takes into account the contribution made by the charge carrier imbalance, quenching processes, and optical design loss of the device arising from various optical effects including the cavity structure, location and profile of the excitons, effective radiative quantum efficiency, and out-coupling efficiency. Quantitative analysis of the efficiency can be performed with an optical simulation using material parameters and experimental measurements of the exciton profile in the emission layer and the lifetime of the exciton as a function of the current density. This method was applied to three phosphorescent OLEDs based on a single host, mixed host, and exciplex-forming cohost. The three factors (charge carrier imbalance, quenching processes, and optical design loss) were influential in different ways, depending on the device. The proposed model can potentially be used to optimize OLED configurations on the basis of an analysis of the underlying physical processes.

  6. Stable dissipative optical vortex clusters by inhomogeneous effective diffusion.

    PubMed

    Li, Huishan; Lai, Shiquan; Qui, Yunli; Zhu, Xing; Xie, Jianing; Mihalache, Dumitru; He, Yingji

    2017-10-30

    We numerically show the generation of robust vortex clusters embedded in a two-dimensional beam propagating in a dissipative medium described by the generic cubic-quintic complex Ginzburg-Landau equation with an inhomogeneous effective diffusion term, which is asymmetrical in the two transverse directions and periodically modulated in the longitudinal direction. We show the generation of stable optical vortex clusters for different values of the winding number (topological charge) of the input optical beam. We have found that the number of individual vortex solitons that form the robust vortex cluster is equal to the winding number of the input beam. We have obtained the relationships between the amplitudes and oscillation periods of the inhomogeneous effective diffusion and the cubic gain and diffusion (viscosity) parameters, which depict the regions of existence and stability of vortex clusters. The obtained results offer a method to form robust vortex clusters embedded in two-dimensional optical beams, and we envisage potential applications in the area of structured light.

  7. Vectorial diffraction properties of THz vortex Bessel beams.

    PubMed

    Wu, Zhen; Wang, Xinke; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Ye, Jiasheng; Yu, Yue; Zhang, Yan

    2018-01-22

    A vortex Bessel beam combines the merits of an optical vortex and a Bessel beam, including a spiral wave front and a non-diffractive feature, which has immense application potentials in optical trapping, optical fabrication, optical communications, and so on. Here, linearly and circularly polarized vortex Bessel beams in the terahertz (THz) frequency range are generated by utilizing a THz quarter wave plate, a spiral phase plate, and Teflon axicons with different opening angles. Taking advantage of a THz focal-plane imaging system, vectorial diffraction properties of the THz vortex Bessel beams are comprehensively characterized and discussed, including the transverse (Ex, Ey) and longitudinal (Ez) polarization components. The experimental phenomena are accurately simulated by adopting the vectorial Rayleigh diffraction integral. By varying the opening angle of the axicon, the characteristic parameters of these THz vortex Bessel beams are exhibited and compared, including the light spot size, the diffraction-free range, and the phase evolution process. This work provides the precise experimental and theoretical bases for the comprehension and application of a THz vortex Bessel beam.

  8. DPSSL for direct dicing and drilling of dielectrics

    NASA Astrophysics Data System (ADS)

    Ashkenasi, David; Schwagmeier, M.

    2007-02-01

    New strategies in laser micro processing of glasses and other optically transparent materials are being developed with increasing interest and intensity using diode pumped solid state laser (DPSSL) systems generating short or ultra-short pulses in the optical spectra at good beam quality. Utilizing non-linear absorption channels, it can be demonstrated that ns green (532 nm) laser light can scribe, dice, full body cut and drill (flat) borofloat and borosilicate glasses at good quality. Outside of the correct choice in laser parameters, an intelligent laser beam management plays an important role in successful micro processing of glass. This application characterizes a very interesting alternative where standard methods demonstrate severe limitations such as diamond dicing, CO2 laser treatment or water jet cutting, especially for certain type of optical materials and/or geometric conditions. Application near processing examples using different DPSSL systems generating ns pulsed light at 532 nm in TEM 00 at average powers up to 10 W are presented and discussed in respect to potential applications in display technology, micro electronics and optics.

  9. Computationally effective solution of the inverse problem in time-of-flight spectroscopy.

    PubMed

    Kamran, Faisal; Abildgaard, Otto H A; Subash, Arman A; Andersen, Peter E; Andersson-Engels, Stefan; Khoptyar, Dmitry

    2015-03-09

    Photon time-of-flight (PTOF) spectroscopy enables the estimation of absorption and reduced scattering coefficients of turbid media by measuring the propagation time of short light pulses through turbid medium. The present investigation provides a comparison of the assessed absorption and reduced scattering coefficients from PTOF measurements of intralipid 20% and India ink-based optical phantoms covering a wide range of optical properties relevant for biological tissues and dairy products. Three different models are used to obtain the optical properties by fitting to measured temporal profiles: the Liemert-Kienle model (LKM), the diffusion model (DM) and a white Monte-Carlo (WMC) simulation-based algorithm. For the infinite space geometry, a very good agreement is found between the LKM and WMC, while the results obtained by the DM differ, indicating that the LKM can provide accurate estimation of the optical parameters beyond the limits of the diffusion approximation in a computational effective and accurate manner. This result increases the potential range of applications for PTOF spectroscopy within industrial and biomedical applications.

  10. Photo-manipulated photonic bandgap devices based on optically tristable chiral-tilted homeotropic nematic liquid crystal.

    PubMed

    Huang, Kuan-Chung; Hsiao, Yu-Cheng; Timofeev, Ivan V; Zyryanov, Victor Ya; Lee, Wei

    2016-10-31

    We report on the spectral properties of an optically switchable tristable chiral-tilted homeotropic nematic liquid crystal (LC) incorporated as a tunable defect layer in one-dimensional photonic crystal. By varying the polarization angle of the incident light and modulating the light intensity ratio between UV and green light, various transmission characteristics of the composite were obtained. The hybrid structure realizes photo-tunability in transmission of defect-mode peaks within the photonic bandgap in addition to optical switchability among three distinct sets of defect modes via photoinduced tristable state transitions. Because the fabrication process is easier and less critical in terms of cell parameters or sample preparation conditions and the LC layer itself possesses an extra stable state compared with the previously reported bistable counterpart operating on the basis of biased-voltage dual-frequency switching, it has much superior potential for photonic applications such as a low-power-consumption multichannel filter and an optically controllable intensity modulator.

  11. Design Parameters for Subwavelength Transparent Conductive Nanolattices

    DOE PAGES

    Diaz Leon, Juan J.; Feigenbaum, Eyal; Kobayashi, Nobuhiko P.; ...

    2017-09-29

    Recent advancements with the directed assembly of block copolymers have enabled the fabrication over cm 2 areas of highly ordered metal nanowire meshes, or nanolattices, which are of significant interest as transparent electrodes. Compared to randomly dispersed metal nanowire networks that have long been considered the most promising next-generation transparent electrode material, such ordered nanolattices represent a new design paradigm that is yet to be optimized. Here in this paper, through optical and electrical simulations, we explore the potential design parameters for such nanolattices as transparent conductive electrodes, elucidating relationships between the nanowire dimensions, defects, and the nanolattices’ conductivity andmore » transmissivity. We find that having an ordered nanowire network significantly decreases the length of nanowires required to attain both high transmissivity and high conductivity, and we quantify the network’s tolerance to defects in relation to other design constraints. Furthermore, we explore how both optical and electrical anisotropy can be introduced to such nanolattices, opening an even broader materials design space and possible set of applications.« less

  12. Design Parameters for Subwavelength Transparent Conductive Nanolattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz Leon, Juan J.; Feigenbaum, Eyal; Kobayashi, Nobuhiko P.

    Recent advancements with the directed assembly of block copolymers have enabled the fabrication over cm 2 areas of highly ordered metal nanowire meshes, or nanolattices, which are of significant interest as transparent electrodes. Compared to randomly dispersed metal nanowire networks that have long been considered the most promising next-generation transparent electrode material, such ordered nanolattices represent a new design paradigm that is yet to be optimized. Here in this paper, through optical and electrical simulations, we explore the potential design parameters for such nanolattices as transparent conductive electrodes, elucidating relationships between the nanowire dimensions, defects, and the nanolattices’ conductivity andmore » transmissivity. We find that having an ordered nanowire network significantly decreases the length of nanowires required to attain both high transmissivity and high conductivity, and we quantify the network’s tolerance to defects in relation to other design constraints. Furthermore, we explore how both optical and electrical anisotropy can be introduced to such nanolattices, opening an even broader materials design space and possible set of applications.« less

  13. Interferometric Fiber Optic Sensors

    PubMed Central

    Lee, Byeong Ha; Kim, Young Ho; Park, Kwan Seob; Eom, Joo Beom; Kim, Myoung Jin; Rho, Byung Sup; Choi, Hae Young

    2012-01-01

    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair. PMID:22736961

  14. Comparative study of diode-pumped alkali vapor laser and exciplex-pumped alkali laser systems and selection principal of parameters

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Tan, Rongqing; Li, Zhiyong; Han, Gaoce; Li, Hui

    2017-03-01

    A theoretical model based on common pump structure is proposed to analyze the output characteristics of a diode-pumped alkali vapor laser (DPAL) and XPAL (exciplex-pumped alkali laser). Cs-DPAL and Cs-Ar XPAL systems are used as examples. The model predicts that an optical-to-optical efficiency approaching 80% can be achieved for continuous-wave four- and five-level XPAL systems with broadband pumping, which is several times the pumped linewidth for DPAL. Operation parameters including pumped intensity, temperature, cell's length, mixed gas concentration, pumped linewidth, and output coupler are analyzed for DPAL and XPAL systems based on the kinetic model. In addition, the predictions of selection principal of temperature and cell's length are also presented. The concept of the equivalent "alkali areal density" is proposed. The result shows that the output characteristics with the same alkali areal density but different temperatures turn out to be equal for either the DPAL or the XPAL system. It is the areal density that reflects the potential of DPAL or XPAL systems directly. A more detailed analysis of similar influences of cavity parameters with the same areal density is also presented.

  15. Quality parameters analysis of optical imaging systems with enhanced focal depth using the Wigner distribution function

    PubMed

    Zalvidea; Colautti; Sicre

    2000-05-01

    An analysis of the Strehl ratio and the optical transfer function as imaging quality parameters of optical elements with enhanced focal length is carried out by employing the Wigner distribution function. To this end, we use four different pupil functions: a full circular aperture, a hyper-Gaussian aperture, a quartic phase plate, and a logarithmic phase mask. A comparison is performed between the quality parameters and test images formed by these pupil functions at different defocus distances.

  16. Downhole telemetry system

    DOEpatents

    Normann, R.A.; Kadlec, E.R.

    1994-11-08

    A downhole telemetry system is described for optically communicating to the surface operating parameters of a drill bit during ongoing drilling operations. The downhole telemetry system includes sensors mounted with a drill bit for monitoring at least one operating parameter of the drill bit and generating a signal representative thereof. The downhole telemetry system includes means for transforming and optically communicating the signal to the surface as well as means at the surface for producing a visual display of the optically communicated operating parameters of the drill bit. 7 figs.

  17. Downhole telemetry system

    DOEpatents

    Normann, Randy A.; Kadlec, Emil R.

    1994-01-01

    A downhole telemetry system is described for optically communicating to the surface operating parameters of a drill bit during ongoing drilling operations. The downhole telemetry system includes sensors mounted with a drill bit for monitoring at least one operating parameter of the drill bit and generating a signal representative thereof. The downhole telemetry system includes means for transforming and optically communicating the signal to the surface as well as means at the surface for producing a visual display of the optically communicated operating parameters of the drill bit.

  18. Diagnostic power of optic disc morphology, peripapillary retinal nerve fiber layer thickness, and macular inner retinal layer thickness in glaucoma diagnosis with fourier-domain optical coherence tomography.

    PubMed

    Huang, Jehn-Yu; Pekmezci, Melike; Mesiwala, Nisreen; Kao, Andrew; Lin, Shan

    2011-02-01

    To evaluate the capability of the optic disc, peripapillary retinal nerve fiber layer (P-RNFL), macular inner retinal layer (M-IRL) parameters, and their combination obtained by Fourier-domain optical coherent tomography (OCT) in differentiating a glaucoma suspect from perimetric glaucoma. Two hundred and twenty eyes from 220 patients were enrolled in this study. The optic disc morphology, P-RNFL, and M-IRL were assessed by the Fourier-domain OCT (RTVue OCT, Model RT100, Optovue, Fremont, CA). A linear discriminant function was generated by stepwise linear discriminant analysis on the basis of OCT parameters and demographic factors. The diagnostic power of these parameters was evaluated with receiver operating characteristic (ROC) curve analysis. The diagnostic power in the clinically relevant range (specificity ≥ 80%) was presented as the partial area under the ROC curve (partial AROC). The individual OCT parameter with the largest AROC and partial AROC in the high specificity (≥ 80%) range were cup/disc vertical ratio (AROC = 0.854 and partial AROC = 0.142) for the optic disc parameters, average thickness (AROC = 0.919 and partial AROC = 0.147) for P-RNFL parameters, inferior hemisphere thickness (AROC = 0.871 and partial AROC = 0.138) for M-IRL parameters, respectively. The linear discriminant function further enhanced the ability in detecting perimetric glaucoma (AROC = 0.970 and partial AROC = 0.172). Average P-RNFL thickness is the optimal individual OCT parameter to detect perimetric glaucoma. Simultaneous evaluation on disc morphology, P-RNFL, and M-IRL thickness can improve the diagnostic accuracy in diagnosing glaucoma.

  19. Effect of electron-hole asymmetry on optical conductivity in 8 -P m m n borophene

    NASA Astrophysics Data System (ADS)

    Verma, Sonu; Mawrie, Alestin; Ghosh, Tarun Kanti

    2017-10-01

    We present a detailed theoretical study of the Drude weight and optical conductivity of 8-P m m n borophene having tilted anisotropic Dirac cones. We provide exact analytical expressions of x x and y y components of the Drude weight as well as maximum optical conductivity. We also obtain exact analytical expressions of the minimum energy (ɛ1) required to trigger the optical transitions and energy (ɛ2) needed to attain maximum optical conductivity. We find that the Drude weight and optical conductivity are highly anisotropic as a consequence of the anisotropic Dirac cone. The optical conductivities have a nonmonotonic behavior with photon energy in the regime between ɛ1 and ɛ2, as a result of the tilted parameter vt. The tilted parameter can be extracted by knowing ɛ1 and ɛ2 from optical measurements. The maximum values of the components of the optical conductivity do not depend on the carrier density and the tilted parameter. The product of the maximum values of the anisotropic conductivities has the universal value (e2/4ℏ ) 2. The tilted anisotropic Dirac cones in 8-P m m n borophene can be realized by the optical conductivity measurement.

  20. Cytotoxicity of ZnO Nanoparticles Can Be Tailored by Modifying Their Surface Structure: A Green Chemistry Approach for Safer Nanomaterials.

    PubMed

    Punnoose, Alex; Dodge, Kelsey; Rasmussen, John W; Chess, Jordan; Wingett, Denise; Anders, Catherine

    2014-07-07

    ZnO nanoparticles (NP) are extensively used in numerous nanotechnology applications; however, they also happen to be one of the most toxic nanomaterials. This raises significant environmental and health concerns and calls for the need to develop new synthetic approaches to produce safer ZnO NP, while preserving their attractive optical, electronic, and structural properties. In this work, we demonstrate that the cytotoxicity of ZnO NP can be tailored by modifying their surface-bound chemical groups, while maintaining the core ZnO structure and related properties. Two equally sized (9.26 ± 0.11 nm) ZnO NP samples were synthesized from the same zinc acetate precursor using a forced hydrolysis process, and their surface chemical structures were modified by using different reaction solvents. X-ray diffraction and optical studies showed that the lattice parameters, optical properties, and band gap (3.44 eV) of the two ZnO NP samples were similar. However, FTIR spectroscopy showed significant differences in the surface structures and surface-bound chemical groups. This led to major differences in the zeta potential, hydrodynamic size, photocatalytic rate constant, and more importantly, their cytotoxic effects on Hut-78 cancer cells. The ZnO NP sample with the higher zeta potential and catalytic activity displayed a 1.5-fold stronger cytotoxic effect on cancer cells. These results suggest that by modifying the synthesis parameters/conditions and the surface chemical structures of the nanocrystals, their surface charge density, catalytic activity, and cytotoxicity can be tailored. This provides a green chemistry approach to produce safer ZnO NP.

  1. Measurement of Instantaneous Velocity Vectors of Organelle Transport: Mitochondrial Transport and Bioenergetics in Hippocampal Neurons

    PubMed Central

    Gerencser, Akos A.; Nicholls, David G.

    2008-01-01

    Impaired transport of mitochondria, in dendrites and axons of neurons, and bioenergetic deficit are increasingly recognized to be of pathological importance in neurodegenerative diseases. To study the relationship between transport and bioenergetics, we have developed what to our knowledge is a novel technique to quantify organelle velocity in cultured cells. The aim was to combine measurement of motion and bioenergetic parameters while minimizing photodynamic oxidative artifacts evoked by fluorescence excitation. Velocity determination from sequential fluorescence images is not trivial, and here we describe an application of “optical flow”, the flow of gray values in grayscale images, to this problem. Based on the principles of photon shot noise occurring in low light level fluorescence microscopy, we describe and validate here an optical flow-based, robust method to measure velocity vectors for organelles expressing fluorescent proteins. This method features instantaneous velocity determination from a pair of images by detecting motion of edges, with no assumptions about the separation or shapes of the objects in the image. Optical flow was used in combination with single mitochondrion assay of mitochondrial thiol redox status by mitochondrially targeted redox-sensitive green fluorescent protein and measurement of mitochondrial membrane potential by tetramethylrhodamine methyl ester. Mitochondrial populations of resting cultured hippocampal neurons were analyzed. It was found that mitochondria with more oxidized thiol redox status have lower membrane potentials and are smaller in size. These mitochondria are more motile than the average; however, mitochondrial motility is only slightly dependent on the observed bioenergetic parameters and is correlated the best to the size of the mitochondria. PMID:18757564

  2. AB INITIO STUDY OF STRUCTURAL, ELECTRONIC AND OPTICAL PROPERTIES OF MgxCd1-xX (X = S, Se, Te) ALLOYS

    NASA Astrophysics Data System (ADS)

    Noor, N. A.; Shaukat, A.

    2012-12-01

    This study describes structural, electronic and optical properties of MgxCd1-xX (X = S, Se, Te) alloys in the complete range 0≤x ≤1 of composition x in the zinc-blende (ZB) phase with the help of full-potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method within density functional theory (DFT). In order to calculate total energy, generalized gradient approximation (Wu-Cohen GGA) has been applied, which is based on optimization energy. For electronic structure calculations, the corresponding potential is being optimized by Engel-Vosko GGA formalism. Our calculations reveal the nonlinear variation of lattice constant and bulk modulus with different concentration for the end binary and their ternary alloys, which slightly deviates from Vegard's law. The calculated band structures show a direct band gap for all three alloys with increasing order in the complete range of the compositional parameter x. In addition, we have discussed the disorder parameter (gap bowing) and concluded that the total band gap bowing is substantially influenced by the chemical (electronegativity) contribution. The calculated density of states (DOS) of these alloys is discussed in terms of contribution from various s-, p- and d-states of the constituent atoms and charge density distributions plots are analyzed. Optical properties have been presented in the form of the complex dielectric function ɛ(ω), refractive index n(ω) and extinction coefficient k(ω) as function of the incident photon energy, and the results have been compared with existing experimental data and other theoretical calculations.

  3. The effect of mechanical drawing on optical and structural properties of nylon 6 fibres

    NASA Astrophysics Data System (ADS)

    El-Bakary, M. A.

    2007-09-01

    The Pluta polarizing double-refracting interference microscope was attached to a mechanical drawing device to study the effect of cold drawing on the optical and structural properties of nylon 6 fibres. The microscope was used in its two positions for determining the refractive indices and birefringence of fibres. Different applied stresses and strain rates were obtained using the mechanical-drawing device. The effect of the applied stresses on the optical and physical parameters was investigated. The resulting optical parameters were utilized to investigate the polarizability per unit volume, the optical orientation factor, the orientation angle and the average work per chain. The refractive index and birefringence profiles were measured. Relationships between the average work per chain and optical parameters at different strains rates were determined. An empirical formula was deduced for these fibres. Micro-interferograms are given for illustration.

  4. Body-monitoring and health supervision by means of optical fiber-based sensing systems in medical textiles.

    PubMed

    Quandt, Brit M; Scherer, Lukas J; Boesel, Luciano F; Wolf, Martin; Bona, Gian-Luca; Rossi, René M

    2015-02-18

    Long-term monitoring with optical fibers has moved into the focus of attention due to the applicability for medical measurements. Within this Review, setups of flexible, unobtrusive body-monitoring systems based on optical fibers and the respective measured vital parameters are in focus. Optical principles are discussed as well as the interaction of light with tissue. Optical fiber-based sensors that are already used in first trials are primarily selected for the section on possible applications. These medical textiles include the supervision of respiration, cardiac output, blood pressure, blood flow and its saturation with hemoglobin as well as oxygen, pressure, shear stress, mobility, gait, temperature, and electrolyte balance. The implementation of these sensor concepts prompts the development of wearable smart textiles. Thus, current sensing techniques and possibilities within photonic textiles are reviewed leading to multiparameter designs. Evaluation of these designs should show the great potential of optical fibers for the introduction into textiles especially due to the benefit of immunity to electromagnetic radiation. Still, further improvement of the signal-to-noise ratio is often necessary to develop a commercial monitoring system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. VIIP Bedrest Analog Roadmap

    NASA Technical Reports Server (NTRS)

    Villarreal, Jennifer D.

    2014-01-01

    The objective is to define successive bed rest campaigns leading to a potential VIIP (Vision Impairment and Intracranial Pressure) countermeasure. To determine if the analog is successful, changes need to occur in the following outcome measures (dependent variables): Intracranial pressure; Retinal nerve fiber layer; Choroidal engorgement; Globe flattening; Axial biometry; Optic nerve sheath diameter distention; Cycloplegic refraction; Visual acuity. Study parameters (independent variables) to include: CO2; Sodium; Exercise (resistive & aerobic); Strict tilt angle.

  6. Optical vortices as potential indicators of biophysical dynamics

    NASA Astrophysics Data System (ADS)

    Majumdar, Anindya; Kirkpatrick, Sean J.

    2017-03-01

    Laser speckle patterns are granular patterns produced as a result of random interference of light waves. Optical vortices (OVs) are phase singularities in such speckle fields, characterized by zero intensity and an undefined phase. Decorrelation of the speckle fields causes these OVs to move in both time and space. In this work, a variety of parameters of these OVs have been studied. The speckle fields were simulated to undergo three distinct decorrelation behaviors- Gaussian, Lorentzian and constant decorrelations. Different decorrelation behaviors represent different dynamics. For example, Lorentzian and Gaussian decorrelations represent Brownian and ordered motions, respectively. Typical dynamical systems in biophysics are generally argued to be a combination of these. For each of the decorrelation behaviors under study, the vortex trails were tracked while varying the rate of decorrelation. Parameters such as the decorrelation length, average trail length and the deviation of the vortices as they traversed in the speckle field, were studied. Empirical studies were also performed to define the distinction between trails arising from different speckle decorrelation behaviors. The initial studies under stationary speckle fields were followed up by similar studies on shifting fields. A new idea to employ Poincaŕe plots in speckle analysis has also been introduced. Our studies indicate that tracking OVs can be a potential method to study cell and tissue dynamics.

  7. In vivo sweat film layer thickness measured with Fourier-domain optical coherence tomography (FD-OCT)

    NASA Astrophysics Data System (ADS)

    Jonathan, Enock

    2008-06-01

    While human sweat secretion is accepted as a mechanism by which the body cools off, excessive sweating (hyperhidrosis) is now appreciated as a medical condition and the primary site for diagnosis is the palm of the hand. We propose sweat film layer thickness as a potential clinical diagnostic parameter when screening for excessive sweating. In this preliminary study we demonstrate the usefulness of Fourier-domain optical coherence tomography (FD-OCT) for measurement of sweat film thickness in vivo with micron-scale resolution on the hand of a human volunteer. FD-OCT has a superior image acquisition time and identification of active sweat glands, ducts and pores is also possible.

  8. Photoacoustic imaging velocimetry for flow-field measurement.

    PubMed

    Ma, Songbo; Yang, Sihua; Xing, Da

    2010-05-10

    We present the photoacoustic imaging velocimetry (PAIV) method for flow-field measurement based on a linear transducer array. The PAIV method is realized by using a Q-switched pulsed laser, a linear transducer array, a parallel data-acquisition equipment and dynamic focusing reconstruction. Tracers used to track liquid flow field were real-timely detected, two-dimensional (2-D) flow visualization was successfully reached, and flow parameters were acquired by measuring the movement of the tracer. Experimental results revealed that the PAIV method would be developed into 3-D imaging velocimetry for flow-field measurement, and potentially applied to research the security and targeting efficiency of optical nano-material probes. (c) 2010 Optical Society of America.

  9. Novel core-shell (TiO2@Silica) nanoparticles for scattering medium in a random laser: higher efficiency, lower laser threshold and lower photodegradation.

    PubMed

    Jimenez-Villar, Ernesto; Mestre, Valdeci; de Oliveira, Paulo C; de Sá, Gilberto F

    2013-12-21

    There has been growing interest in scattering media in recent years, due to their potential applications as solar collectors, photocatalyzers, random lasers and other novel optical devices. Here, we have introduced a novel core-shell scattering medium for a random laser composed of TiO2@Silica nanoparticles. Higher efficiency, lower laser threshold and long photobleaching lifetime in random lasers were demonstrated. This has introduced a new method or parameter (fraction of absorbed pumping), which opens a new avenue to characterize and study the scattering media. Optical chemical and colloidal stabilities were combined by coating a suitable silica shell onto TiO2 nanoparticles.

  10. Band Structure Simulations of the Photoinduced Changes in the MgB₂:Cr Films.

    PubMed

    Kityk, Iwan V; Fedorchuk, Anatolii O; Ozga, Katarzyna; AlZayed, Nasser S

    2015-04-02

    An approach for description of the photoinduced nonlinear optical effects in the superconducting MgB₂:Cr₂O₃ nanocrystalline film is proposed. It includes the molecular dynamics step-by-step optimization of the two separate crystalline phases. The principal role for the photoinduced nonlinear optical properties plays nanointerface between the two phases. The first modified layers possess a form of slightly modified perfect crystalline structure. The next layer is added to the perfect crystalline structure and the iteration procedure is repeated for the next layer. The total energy here is considered as a varied parameter. To avoid potential jumps on the borders we have carried out additional derivative procedure.

  11. Method for Calculating the Optical Diffuse Reflection Coefficient for the Ocular Fundus

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.

    2016-07-01

    We have developed a method for calculating the optical diffuse reflection coefficient for the ocular fundus, taking into account multiple scattering of light in its layers (retina, epithelium, choroid) and multiple refl ection of light between layers. The method is based on the formulas for optical "combination" of the layers of the medium, in which the optical parameters of the layers (absorption and scattering coefficients) are replaced by some effective values, different for cases of directional and diffuse illumination of the layer. Coefficients relating the effective optical parameters of the layers and the actual values were established based on the results of a Monte Carlo numerical simulation of radiation transport in the medium. We estimate the uncertainties in retrieval of the structural and morphological parameters for the fundus from its diffuse reflectance spectrum using our method. We show that the simulated spectra correspond to the experimental data and that the estimates of the fundus parameters obtained as a result of solving the inverse problem are reasonable.

  12. Design of an optical PPM communication link in the presence of component tolerances

    NASA Technical Reports Server (NTRS)

    Chen, C.-C.

    1988-01-01

    A systematic approach is described for estimating the performance of an optical direct detection pulse position modulation (PPM) communication link in the presence of parameter tolerances. This approach was incorporated into the JPL optical link analysis program to provide a useful tool for optical link design. Given a set of system parameters and their tolerance specifications, the program will calculate the nominal performance margin and its standard deviation. Through use of these values, the optical link can be designed to perform adequately even under adverse operating conditions.

  13. Jones matrix polarization-correlation mapping of biological crystals networks

    NASA Astrophysics Data System (ADS)

    Ushenko, O. G.; Ushenko, Yu. O.; Pidkamin, L. Y.; Sidor, M. I.; Vanchuliak, O.; Motrich, A. V.; Gorsky, M. P.; Meglinskiy, I.; Marchuk, Yu. F.

    2017-08-01

    It has been proposed the optical model of Jones-matrix description of mechanisms of optical anisotropy of polycrystalline films of human bile, namely optical activity and birefringence. The algorithm of reconstruction of distributions of parameters - optical rotation angles and phase shifts of the indicated anisotropy types has been elaborated. The objective criteria of differentiation of bile films taken from healthy donors and patients with cholelithiasis by means of statistic analysis of such distributions have been determined. The operational characteristics (sensitivity, specificity and accuracy) of Jones-matrix reconstruction method of optical anisotropy parameters were defined.

  14. Towards optical spectroscopic anatomical mapping (OSAM) for lesion validation in cardiac tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh-Moon, Rajinder P.; Zaryab, Mohammad; Hendon, Christine P.

    2017-02-01

    Electroanatomical mapping (EAM) is an invaluable tool for guiding cardiac radiofrequency ablation (RFA) therapy. The principle roles of EAM is the identification of candidate ablation sites by detecting regions of abnormal electrogram activity and lesion validation subsequent to RF energy delivery. However, incomplete lesions may present interim electrical inactivity similar to effective treatment in the acute setting, despite efforts to reveal them with pacing or drugs, such as adenosine. Studies report that the misidentification and recovery of such lesions is a leading cause of arrhythmia recurrence and repeat procedures. In previous work, we demonstrated spectroscopic characterization of cardiac tissues using a fiber optic-integrated RF ablation catheter. In this work, we introduce OSAM (optical spectroscopic anatomical mapping), the application of this spectroscopic technique to obtain 2-dimensional biodistribution maps. We demonstrate its diagnostic potential as an auxiliary method for lesion validation in treated swine preparations. Endocardial lesion sets were created on fresh swine cardiac samples using a commercial RFA system. An optically-integrated catheter console fabricated in-house was used for measurement of tissue optical spectra between 600-1000nm. Three dimensional, Spatio-spectral datasets were generated by raster scanning of the optical catheter across the treated sample surface in the presence of whole blood. Tissue optical parameters were recovered at each spatial position using an inverse Monte Carlo method. OSAM biodistribution maps showed stark correspondence with gross examination of tetrazolium chloride stained tissue specimens. Specifically, we demonstrate the ability of OSAM to readily distinguish between shallow and deeper lesions, a limitation faced by current EAM techniques. These results showcase the OSAMs potential for lesion validation strategies for the treatment of cardiac arrhythmias.

  15. Evaluation of transcranial surgical decompression of the optic canal as a treatment option for traumatic optic neuropathy.

    PubMed

    He, Zhenhua; Li, Qiang; Yuan, Jingmin; Zhang, Xinding; Gao, Ruiping; Han, Yanming; Yang, Wenzhen; Shi, Xuefeng; Lan, Zhengbo

    2015-07-01

    Traumatic optic neuropathy (TON) is a serious complication of head trauma, with the incidence rate ranging from 0.5% to 5%. The two treatment options widely practiced for TON are: (i) high-dose corticosteroid therapy and (ii) surgical decompression. However, till date, there is no consensus on the treatment protocol. This study aimed to evaluate the therapeutic efficacy of transcranial decompression of optic canal in TON patients. A total of 39 patients with visual loss resulting from TON between January 2005 and June 2013 were retrospectively reviewed for preoperative vision, preoperative image, visual evoked potential (VEP), surgical approach, postoperative visual acuity, complications, and follow-up results. All these patients underwent transcranial decompression of optic canal. During the three-month follow-up period, among the 39 patients, 21 showed an improvement in their eyesight, 6 recovered to standard logarithmic visual acuity chart "visible," 10 could count fingers, 2 could see hand movement, and 3 regained light sensation. Visual evoked potential could be used as an important preoperative and prognostic evaluation parameter for TON patients. Once TON was diagnosed, surgery is a promising therapeutic option, especially when a VEP wave is detected, irrespective of the HRCT scan findings. Operative time between trauma and operation is not necessary reference to assess the therapeutic effect of surgical decompression. The poor results of this procedure may be related to the severity of optic nerve injury. The patient's age is an important factor affecting the surgical outcomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Dual Optical Comb LWIR Source and Sensor

    DTIC Science & Technology

    2017-10-12

    Figure 39. Locking loop only controls one parameter, whereas there are two free- running parameters to control...optical frequency, along with a 12 point running average (black) equivalent to a 4 cm -1 resolution. .............................. 52 Figure 65...and processed on a single epitaxial substrate. Each OFC will be electrically driven and free- running (requiring no optical locking mechanisms). This

  17. Changes in optical properties of electroporated cells as revealed by digital holographic microscopy

    PubMed Central

    Calin, Violeta L.; Mihailescu, Mona; Mihale, Nicolae; Baluta, Alexandra V.; Kovacs, Eugenia; Savopol, Tudor; Moisescu, Mihaela G.

    2017-01-01

    Changes in optical and shape-related characteristics of B16F10 cells after electroporation were investigated using digital holographic microscopy (DHM). Bipolar rectangular pulses specific for electrochemotherapy were used. Electroporation was performed in an “off-axis” DHM set-up without using exogenous markers. Two types of cell parameters were monitored seconds and minutes after pulse train application: parameters addressing a specifically defined area of the cell (refractive index and cell height) and global cell parameters (projected area, optical phase shift profile and dry mass). The biphasic behavior of cellular parameters was explained by water and mannitol dynamics through the electropermeabilized cell membrane. PMID:28736667

  18. Tunable Holstein model with cold polar molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Felipe; Krems, Roman V.

    2011-11-15

    We show that an ensemble of polar molecules trapped in an optical lattice can be considered as a controllable open quantum system. The coupling between collective rotational excitations and the motion of the molecules in the lattice potential can be controlled by varying the strength and orientation of an external dc electric field as well as the intensity of the trapping laser. The system can be described by a generalized Holstein Hamiltonian with tunable parameters and can be used as a quantum simulator of excitation energy transfer and polaron phenomena. We show that the character of excitation energy transfer canmore » be modified by tuning experimental parameters.« less

  19. Absolute Scale Quantitative Off-Axis Electron Holography at Atomic Resolution

    NASA Astrophysics Data System (ADS)

    Winkler, Florian; Barthel, Juri; Tavabi, Amir H.; Borghardt, Sven; Kardynal, Beata E.; Dunin-Borkowski, Rafal E.

    2018-04-01

    An absolute scale match between experiment and simulation in atomic-resolution off-axis electron holography is demonstrated, with unknown experimental parameters determined directly from the recorded electron wave function using an automated numerical algorithm. We show that the local thickness and tilt of a pristine thin WSe2 flake can be measured uniquely, whereas some electron optical aberrations cannot be determined unambiguously for a periodic object. The ability to determine local specimen and imaging parameters directly from electron wave functions is of great importance for quantitative studies of electrostatic potentials in nanoscale materials, in particular when performing in situ experiments and considering that aberrations change over time.

  20. Data bank of optical properties of biological tissue and blood in the visible and near infrared spectral region

    NASA Astrophysics Data System (ADS)

    Khairullina, Alphiya Y.; Bui, Lilia; Oleinik, Tatiana V.; Artishevsky, Nelli; Prigoun, Natalia; Sevkovsky, Jakov; Mokhort, Tatiana

    1996-12-01

    The data bank contains optical, ordinary biochemical and biophysical information on 120 venous blood samples of donors, healthy persons, patients with high pathology, 60 tissue samples. The optical parameters include diffuse reflection R((lambda) ) and transmission T((lambda) ) coefficients for optically thick layers, the absorption K((lambda) ) and extinction (epsilon) ((lambda) ) spectra, oxygenation degree CO2, parameter p determined by sizes and shapes of cells and their aggregates, refractive index of a disperse phase relative to surrounding media, and cooperative effects at high relative concentration. The peculiarities in absorption K((lambda) spectra are connected with different pathologies. It is shown from K((lambda) ) that the grade of pathology connected with the concentration of hemoglobin and mithohondrion together with oxygenation degree of blood and tissues, with the pathological hemoglobin's forms and its decomposition products of different levels. Parameter p is an important diagnostic parameter. We consider that it is necessary to include the oxygenation degree and erythrocyte's aggregation parameter to extend the range of common diagnostic parameters of blood by the first rota.

  1. Ultra-large nonlinear parameter in graphene-silicon waveguide structures.

    PubMed

    Donnelly, Christine; Tan, Dawn T H

    2014-09-22

    Mono-layer graphene integrated with optical waveguides is studied for the purpose of maximizing E-field interaction with the graphene layer, for the generation of ultra-large nonlinear parameters. It is shown that the common approach used to minimize the waveguide effective modal area does not accurately predict the configuration with the maximum nonlinear parameter. Both photonic and plasmonic waveguide configurations and graphene integration techniques realizable with today's fabrication tools are studied. Importantly, nonlinear parameters exceeding 10(4) W(-1)/m, two orders of magnitude larger than that in silicon on insulator waveguides without graphene, are obtained for the quasi-TE mode in silicon waveguides incorporating mono-layer graphene in the evanescent part of the optical field. Dielectric loaded surface plasmon polariton waveguides incorporating mono-layer graphene are observed to generate nonlinear parameters as large as 10(5) W(-1)/m, three orders of magnitude larger than that in silicon on insulator waveguides without graphene. The ultra-large nonlinear parameters make such waveguides promising platforms for nonlinear integrated optics at ultra-low powers, and for previously unobserved nonlinear optical effects to be studied in a waveguide platform.

  2. Crystal structure, vibrational spectra, optical and DFT studies of bis (3-azaniumylpropyl) azanium pentachloroantimonate (III) chloride monohydrate (C6H20N3)SbCl5·Cl·H2O.

    PubMed

    Ahmed, Houssem Eddine; Kamoun, Slaheddine

    2017-09-05

    The crystal structure of (C 6 H 20 N 3 )SbCl 5 ·Cl·H 2 O is built up of [NH 3 (CH 2 ) 3 NH 2 (CH 2 ) 3 NH 3 ] 3+ cations, [SbCl 5 ] 2- anions, free Cl - anions and neutral water molecules connected together by NH⋯Cl, NH⋯O and OH⋯Cl hydrogen bonds. The optical band gap determined by diffuse reflection spectroscopy (DRS) is 3.78eV for a direct allowed transition. Optimized molecular geometry, atomic Mulliken charges, harmonic vibrational frequencies, HOMO-LUMO and related molecular properties of the (C 6 H 20 N 3 )SbCl 5 ·Cl·H 2 O compound were calculated by Density functional theory (DFT) using B3LYP method with GenECP sets. The calculated structural parameters (bond lengths and angles) are in good agreement with the experimental XRD data. The vibrational unscaled wavenumbers were calculated and scaled by a proper scaling factor of 0.984. Acceptable consistency was observed between calculated and experimental results. The assignments of wavenumbers were made on the basis of potential energy distribution (PED) using Vibrational Energy Distribution Analysis (VEDA) software. The HOMO-LUMO study was extended to calculate various molecular parameters like ionization potential, electron affinity, global hardness, electro-chemical potential, electronegativity and global electrophilicity of the given molecule. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Crystal structure, vibrational spectra, optical and DFT studies of bis (3-azaniumylpropyl) azanium pentachloroantimonate (III) chloride monohydrate (C6H20N3)SbCl5·Cl·H2O

    NASA Astrophysics Data System (ADS)

    Ahmed, Houssem Eddine; Kamoun, Slaheddine

    2017-09-01

    The crystal structure of (C6H20N3)SbCl5·Cl·H2O is built up of [NH3(CH2)3NH2(CH2)3NH3]3 + cations, [SbCl5]2 - anions, free Cl- anions and neutral water molecules connected together by Nsbnd H ⋯ Cl, Nsbnd H ⋯ O and Osbnd H ⋯ Cl hydrogen bonds. The optical band gap determined by diffuse reflection spectroscopy (DRS) is 3.78 eV for a direct allowed transition. Optimized molecular geometry, atomic Mulliken charges, harmonic vibrational frequencies, HOMO-LUMO and related molecular properties of the (C6H20N3)SbCl5·Cl·H2O compound were calculated by Density functional theory (DFT) using B3LYP method with GenECP sets. The calculated structural parameters (bond lengths and angles) are in good agreement with the experimental XRD data. The vibrational unscaled wavenumbers were calculated and scaled by a proper scaling factor of 0.984. Acceptable consistency was observed between calculated and experimental results. The assignments of wavenumbers were made on the basis of potential energy distribution (PED) using Vibrational Energy Distribution Analysis (VEDA) software. The HOMO-LUMO study was extended to calculate various molecular parameters like ionization potential, electron affinity, global hardness, electro-chemical potential, electronegativity and global electrophilicity of the given molecule.

  4. Theoretical analysis of the electronic, optical and thermal properties of lead strontium telluride alloys Pb1-xSrxTe (x = 0.0-1.0)

    NASA Astrophysics Data System (ADS)

    Chouit, F.; Sifi, C.; Slimani, M.; Meradji, H.; Ghemid, S.; Khenata, R.; Rai, D. P.; Bin Omran, S.

    2018-02-01

    We have simulated different physical properties of Pb1-xSrxTe semiconductors, using the Ab-initio full potential augmented plane wave (FP-LAPW) method. The two commonly used exchange potentials viz., PBE-GGA and WC-GGA are used along with the most recently developed modified Becke and Johnson (mBJ) potential to study the electronic and optical properties. In this study, we have observed an increase in band gap values as well as the lattice parameter with increasing the concentration of Sr atoms in Pb1-xSrxTe alloys while the bulk modulus and the refractive index have reverse effect. The microscopic origin of the band gap bowing is explained using the approach of Zunger and co-workers. At ambient conditions (p = 0, T = 0), the calculations indicate that Pb1-xSrxTe is a direct band gap semiconductor R-R with x = 0.125, 0.25, 0.375, 0.5, 0.625, 0.75 and 0.875. The refractive indices are also calculated using the FP-LAPW method and the models of Moss, Ravindra and the Herve-Vandame. The obtained results are in consistent with the previous available data. To study the thermal effects, the temperature effect on the lattice parameters, thermal expansions, heat capacities the quasi-harmonic Debye model is applied. The Debye temperature is determined from the non-equilibrium Gibbs function.

  5. Analysis of the selected optical parameters of filters protecting against hazardous infrared radiation.

    PubMed

    Gralewicz, Grzegorz; Owczarek, Grzegorz

    2016-09-01

    The paper analyses the selected optical parameters of protective optic filters used for protection of the eyes against hazardous radiation within the visible (VIS) and near infrared (NIR) spectrum range. The indexes characterizing transmission and reflection of optic radiation incident on the filter are compared. As it follows from the completed analysis, the newly developed interference filters provide more effective blocking of infrared radiation in comparison with the currently used protective filters.

  6. Accuracy of parameter estimates for closely spaced optical targets using multiple detectors

    NASA Astrophysics Data System (ADS)

    Dunn, K. P.

    1981-10-01

    In order to obtain the cross-scan position of an optical target, more than one scanning detector is used. As expected, the cross-scan position estimation performance degrades when two nearby optical targets interfere with each other. Theoretical bounds on the two-dimensional parameter estimation performance for two closely spaced optical targets are found. Two particular classes of scanning detector arrays, namely, the crow's foot and the brickwall (or mosaic) patterns, are considered.

  7. Exploiting Auto-Collimation for Real-Time Onboard Monitoring of Space Optical Camera Geometric Parameters

    NASA Astrophysics Data System (ADS)

    Liu, W.; Wang, H.; Liu, D.; Miu, Y.

    2018-05-01

    Precise geometric parameters are essential to ensure the positioning accuracy for space optical cameras. However, state-of-the-art onorbit calibration method inevitably suffers from long update cycle and poor timeliness performance. To this end, in this paper we exploit the optical auto-collimation principle and propose a real-time onboard calibration scheme for monitoring key geometric parameters. Specifically, in the proposed scheme, auto-collimation devices are first designed by installing collimated light sources, area-array CCDs, and prisms inside the satellite payload system. Through utilizing those devices, the changes in the geometric parameters are elegantly converted into changes in the spot image positions. The variation of geometric parameters can be derived via extracting and processing the spot images. An experimental platform is then set up to verify the feasibility and analyze the precision index of the proposed scheme. The experiment results demonstrate that it is feasible to apply the optical auto-collimation principle for real-time onboard monitoring.

  8. Optical properties of functional composite silver nanoparticles and their potential use in reproductive medicine

    NASA Astrophysics Data System (ADS)

    Syrvatka, Vasyl J.; Slyvchuk, Yurij I.; Rozgoni, Ivan I.; Gevkan, Ivan I.; Bilyy, Oleksandr I.

    2013-06-01

    Silver nanoparticles are promising product of nanotechnology with attractive physicochemical and biological properties. The main aim of the study was to investigate optical properties of functional silver nanoparticles with different composite agents: polyvinylpyrrolidone, bovine serum albumin, hyaluronan and to explore their potential using in reproductive medicine. The date obtained in the study showed that surface modification of nanoparticles leads to change of their optical, physicochemical and biological properties. The optical properties of silver nanoparticles display, that AgNPs with PVP and BSA is most stable in PBS than AgNPs with HA. However the absorption curves after 120 hours of storage show, that AgNPs-HA were the most stable in ethanol. Results show, that silver nanoparticles did not effect on sperm viability and motility, but cause a changes of some biochemical parameters of conditioned medium, particular increase the concentration of triglycerides, activity of alkaline phosphatase, lactate dehydrogenase and decrease the activity of aspartate aminotransferase and alanine aminotransferase after 3 h of in vitro cultivation at 37°C. According to our latest data AgNPs with HA have a less toxic effect on biological processes in rabbits sperm compared with AgNPs with PVP and BSA. Nevertheless all functional composites of silver nanoparticles at the concentration of 0.1 μg/mL have no toxic effect on spermatozoa and can be successfully applied in reproductive medicine at low concentrations as signal enhancers, optical sensors, and biomarkers.

  9. The cloud radiation impact from optics simulation and airborne observation

    NASA Astrophysics Data System (ADS)

    Melnikova, Irina; Kuznetsov, Anatoly; Gatebe, Charles

    2017-02-01

    The analytical approach of inverse asymptotic formulas of the radiative transfer theory is used for solving inverse problems of cloud optics. The method has advantages because it does not impose strict constraints, but it is tied to the desired solution. Observations are accomplished in extended stratus cloudiness, above a homogeneous ocean surface. Data from NASA`s Cloud Absorption Radiometer (CAR) during two airborne experiments (SAFARI-2000 and ARCTAS-2008) were analyzed. The analytical method of inverse asymptotic formulas was used to retrieve cloud optical parameters (optical thickness, single scattering albedo and asymmetry parameter of the phase function) and ground albedo in all 8 spectral channels independently. The method is free from a priori restrictions and there is no links to parameters, and it has been applied to data set of different origin and geometry of observations. Results obtained from different airborne, satellite and ground radiative experiments appeared consistence and showed common features of values of cloud parameters and its spectral dependence (Vasiluev, Melnikova, 2004; Gatebe et al., 2014). Optical parameters, retrieved here, are used for calculation of radiative divergence, reflected and transmitted irradiance and heating rates in cloudy atmosphere, that agree with previous observational data.

  10. Multispectral and polarimetric photodetection using a plasmonic metasurface

    NASA Astrophysics Data System (ADS)

    Pelzman, Charles; Cho, Sang-Yeon

    2018-01-01

    We present a metasurface-integrated Si 2-D CMOS sensor array for multispectral and polarimetric photodetection applications. The demonstrated sensor is based on the polarization selective extraordinary optical transmission from periodic subwavelength nanostructures, acting as artificial atoms, known as meta-atoms. The meta-atoms were created by patterning periodic rectangular apertures that support optical resonance at the designed spectral bands. By spatially separating meta-atom clusters with different lattice constants and orientations, the demonstrated metasurface can convert the polarization and spectral information of an optical input into a 2-D intensity pattern. As a proof-of-concept experiment, we measured the linear components of the Stokes parameters directly from captured images using a CMOS camera at four spectral bands. Compared to existing multispectral polarimetric sensors, the demonstrated metasurface-integrated CMOS system is compact and does not require any moving components, offering great potential for advanced photodetection applications.

  11. Reversible unidirectional reflection and absorption of PT-symmetry structure under electro-optical modulation

    NASA Astrophysics Data System (ADS)

    Fang, Yun-tuan; Zhang, Yi-chi; Xia, Jing

    2018-06-01

    In order to obtain tunable unidirectional device, we assumed an ideal periodic layered Parity-Time (PT) symmetry structure inserted by doped LiNbO3 (LN) interlayers. LN is a typical electro-optical material of which the refractive index depends on the external electric field. In our work, we theoretically investigate the modulation effect of the external electric field on the transmittance and reflectance of the structure through numerical method. Through selected structural parameters, the one-way enhanced reflection and high absorption (above 0.9) behaviors are found. Within a special frequency band (not a single frequency), our theoretical model performs enhanced reflection in one incidence direction and high absorption in the other direction. Furthermore, the directions of enhanced reflection and absorption can be reversed through reversing the direction of applied electric field. Such structure with reversible properties has the potential in designing new optical devices.

  12. Influence of Population Variation of Physiological Parameters in Computational Models of Space Physiology

    NASA Technical Reports Server (NTRS)

    Myers, J. G.; Feola, A.; Werner, C.; Nelson, E. S.; Raykin, J.; Samuels, B.; Ethier, C. R.

    2016-01-01

    The earliest manifestations of Visual Impairment and Intracranial Pressure (VIIP) syndrome become evident after months of spaceflight and include a variety of ophthalmic changes, including posterior globe flattening and distension of the optic nerve sheath. Prevailing evidence links the occurrence of VIIP to the cephalic fluid shift induced by microgravity and the subsequent pressure changes around the optic nerve and eye. Deducing the etiology of VIIP is challenging due to the wide range of physiological parameters that may be influenced by spaceflight and are required to address a realistic spectrum of physiological responses. Here, we report on the application of an efficient approach to interrogating physiological parameter space through computational modeling. Specifically, we assess the influence of uncertainty in input parameters for two models of VIIP syndrome: a lumped-parameter model (LPM) of the cardiovascular and central nervous systems, and a finite-element model (FEM) of the posterior eye, optic nerve head (ONH) and optic nerve sheath. Methods: To investigate the parameter space in each model, we employed Latin hypercube sampling partial rank correlation coefficient (LHSPRCC) strategies. LHS techniques outperform Monte Carlo approaches by enforcing efficient sampling across the entire range of all parameters. The PRCC method estimates the sensitivity of model outputs to these parameters while adjusting for the linear effects of all other inputs. The LPM analysis addressed uncertainties in 42 physiological parameters, such as initial compartmental volume and nominal compartment percentage of total cardiac output in the supine state, while the FEM evaluated the effects on biomechanical strain from uncertainties in 23 material and pressure parameters for the ocular anatomy. Results and Conclusion: The LPM analysis identified several key factors including high sensitivity to the initial fluid distribution. The FEM study found that intraocular pressure and intracranial pressure had dominant impact on the peak strains in the ONH and retro-laminar optic nerve, respectively; optic nerve and lamina cribrosa stiffness were also important. This investigation illustrates the ability of LHSPRCC to identify the most influential physiological parameters, which must therefore be well-characterized to produce the most accurate numerical results.

  13. Study of the Spin Dependent 3HE-NUCLEUS Interaction at 450 Mev

    NASA Astrophysics Data System (ADS)

    Kamiya, J.; Hatanaka, K.; Sakemi, Y.; Wakasa, T.; Yoshida, H. P.; Obayashi, E.; Hara, K.; Kitamura, K.; Shimizu, Y.; Fujita, K.; Sakamoto, N.; Shimbara, Y.; Adachi, T.; Sakaguchi, H.; Yosoi, M.; Uchida, M.; Yasuda, Y.; Kawabata, T.; Noro, T.

    2003-04-01

    Differential cross sections and induced polarizations of 3He+12C, 58Ni, and 90Zr elastic scattering were measured at E3He = 450 MeV. This is the first measurement of the polarization for 3He scattering at intermediate energies. The optical potential parameters including the spin-orbit potential were determined with small uncertainties. The volume integrals per nucleon of the potentials were investigated for 3He and their energy dependence showed the similar behavior to that for protons at intermediate energies. The single folding calculations were compared with the data. The real central and spin-orbit parts of the folded potentials had to be reduced by a few tens of percent in order to reproduce the experimental results.

  14. The importance of scattering, surface potential, and vanguard counter-potential in terahertz emission from gallium arsenide

    NASA Astrophysics Data System (ADS)

    Cortie, D. L.; Lewis, R. A.

    2012-06-01

    It is well established that under excitation by short (<1 ps), above-band-gap optical pulses, semiconductor surfaces may emit terahertz-frequency electromagnetic radiation via photocarrier diffusion (the dominant mechanism in InAs) or photocarrier drift (dominant in GaAs). Our three-dimensional ensemble Monte Carlo simulations allow multiple physical parameters to vary over wide ranges and provide unique direct insight into the factors controlling terahertz emission. We find for GaAs (in contrast to InAs), scattering and the surface potential are key factors. We further delineate in GaAs (as in InAs) the role of a vanguard counter-potential. The effects of varying dielectric constant, band-gap, and effective mass are similar in both emitter types.

  15. [Influence of dissolved gases on highly diluted aqueous media].

    PubMed

    Belovolova, L V; Glushkov, M V; Vinogradov, E A

    2014-01-01

    In the experiments on redox potential measurement for a series of identical samples of purified and presettled water it was found that the response to ultraviolet irradiation varies appreciably within a few days after treatment, including stepwise changes. In a few hours after exposure, leading to a higher content of reactive oxygen species as compared with the equilibrium values, long-term changes including variations in redox potential and optical system parameters are recorded in water and diluted aqueous media. We propose a heuristic organization model of the water-gas system with an increased content of reactive oxygen species.

  16. A novel method for simultaneous measurement of doped optical fiber parameters

    NASA Astrophysics Data System (ADS)

    Karimi, M.; Seraji, F. E.

    2010-05-01

    Simultaneous measurement technique of evaluating the doped optical fibers (DOF) parameters is a suitable scheme for DOF production industries. In this paper, we introduce a novel technique to characterize simultaneously the main parameters of DOF such as absorption and emission cross-sections (ACS, ECS), background loss coefficient (BLC), and low dopant concentration using the gain equation of DOFs. We used this new method to determine the ACS, ECS, BLC in a standard sample of Al-P-Erbium doped optical fiber. The results have been analyzed and compared with other reports.

  17. Optical properties of a multibarrier structure under intense laser fields

    NASA Astrophysics Data System (ADS)

    Ospina, D. A.; Akimov, V.; Mora-Ramos, M. E.; Morales, A. L.; Tulupenko, V.; Duque, C. A.

    2015-11-01

    Using the diagonalization method and within the effective mass and parabolic band approximations, the energy spectrum and the wave functions are investigated in biased multibarrier structure taking into account the effects of nonresonant intense laser fields. We calculated the optical properties from the susceptibility using a nonperturbative formalism recently reported. We study the changes in the intersubband optical absorption coefficients and refraction index for several values of the dressing laser parameter and for some specific values of the electric field applied along the growth direction of the heterostructure. It is concluded from our study that the peaks in the optical absorption spectrum have redshifts or blueshifts as a function of the laser parameter and the electric field. These parameters could be suitable tools for tuning the electronic and optical properties of the multibarrier structure.

  18. Electronic states and optical properties of single donor in GaN conical quantum dot with spherical edge

    NASA Astrophysics Data System (ADS)

    El Aouami, A.; Feddi, E.; El-Yadri, M.; Aghoutane, N.; Dujardin, F.; Duque, C. A.; Phuc, Huynh Vinh

    2018-02-01

    In this paper we present a theoretical investigation of quantum confinement effects on the electron and single donor states in GaN conical quantum dot with spherical edge. In the framework of the effective mass approximation, the Schrödinger equations of electron and donor have been solved analytically in an infinite potential barrier model. Our calculations show that the energies of electron and donor impurity are affected by the two characteristic parameters of the structure which are the angle Ω and the radial dimension R. We show that, despite the fact that the reduction of the two parameters Ω and R leads to the same confinement effects, the energy remains very sensitive to the variation of the radial part than the variation of the angular part. The analysis of the photoionization cross-section corresponding to optical transitions between the conduction band and the first donor energy level shows clearly that the reduction of the radius R causes a shift in resonance peaks towards the high energies. On the other hand, the optical transitions between 1 s - 1 p , 1 p - 1 d and 1 p - 2 s show that the increment of the conical aperture Ω (or reduction of R) implies a displacement of the excitation energy to higher energies.

  19. (Almost) Dark Galaxies in the ALFALFA Survey: Isolated H I-bearing Ultra-diffuse Galaxies

    NASA Astrophysics Data System (ADS)

    Leisman, Lukas; Haynes, Martha P.; Janowiecki, Steven; Hallenbeck, Gregory; Józsa, Gyula; Giovanelli, Riccardo; Adams, Elizabeth A. K.; Bernal Neira, David; Cannon, John M.; Janesh, William F.; Rhode, Katherine L.; Salzer, John J.

    2017-06-01

    We present a sample of 115 very low optical surface brightness, highly extended, H I-rich galaxies carefully selected from the ALFALFA survey that have similar optical absolute magnitudes, surface brightnesses, and radii to recently discovered “ultra-diffuse” galaxies (UDGs). However, these systems are bluer and have more irregular morphologies than other UDGs, are isolated, and contain significant reservoirs of H I. We find that while these sources have normal star formation rates for H I-selected galaxies of similar stellar mass, they have very low star formation efficiencies. We further present deep optical and H I-synthesis follow-up imaging of three of these H I-bearing ultra-diffuse sources. We measure H I diameters extending to ˜40 kpc, but note that while all three sources have large H I diameters for their stellar mass, they are consistent with the H I mass-H I radius relation. We further analyze the H I velocity widths and rotation velocities for the unresolved and resolved sources, respectively, and find that the sources appear to inhabit halos of dwarf galaxies. We estimate spin parameters, and suggest that these sources may exist in high spin parameter halos, and as such may be potential H I-rich progenitors to the ultra-diffuse galaxies observed in cluster environments.

  20. A random optimization approach for inherent optic properties of nearshore waters

    NASA Astrophysics Data System (ADS)

    Zhou, Aijun; Hao, Yongshuai; Xu, Kuo; Zhou, Heng

    2016-10-01

    Traditional method of water quality sampling is time-consuming and highly cost. It can not meet the needs of social development. Hyperspectral remote sensing technology has well time resolution, spatial coverage and more general segment information on spectrum. It has a good potential in water quality supervision. Via the method of semi-analytical, remote sensing information can be related with the water quality. The inherent optical properties are used to quantify the water quality, and an optical model inside the water is established to analysis the features of water. By stochastic optimization algorithm Threshold Acceptance, a global optimization of the unknown model parameters can be determined to obtain the distribution of chlorophyll, organic solution and suspended particles in water. Via the improvement of the optimization algorithm in the search step, the processing time will be obviously reduced, and it will create more opportunity for the increasing the number of parameter. For the innovation definition of the optimization steps and standard, the whole inversion process become more targeted, thus improving the accuracy of inversion. According to the application result for simulated data given by IOCCG and field date provided by NASA, the approach model get continuous improvement and enhancement. Finally, a low-cost, effective retrieval model of water quality from hyper-spectral remote sensing can be achieved.

  1. SDSS J013127.34-032100.1: A Newly Discovered Radio-loud Quasar at z = 5.18 with Extremely High Luminosity

    NASA Astrophysics Data System (ADS)

    Yi, Wei-Min; Wang, Feige; Wu, Xue-Bing; Yang, Jinyi; Bai, Jin-Ming; Fan, Xiaohui; Brandt, William N.; Ho, Luis C.; Zuo, Wenwen; Kim, Minjin; Wang, Ran; Yang, Qian; Zhang, Ju-jia; Wang, Fang; Wang, Jian-Guo; Ai, Yanli; Fan, Yu-Feng; Chang, Liang; Wang, Chuan-Jun; Lun, Bao-Li; Xin, Yu-Xin

    2014-11-01

    Very few of the z > 5 quasars discovered to date have been radio-loud, with radio-to-optical flux ratios (radio-loudness parameters) higher than 10. Here we report the discovery of an optically luminous radio-loud quasar, SDSS J013127.34-032100.1 (J0131-0321 in short), at z = 5.18 ± 0.01 using the Lijiang 2.4 m and Magellan telescopes. J0131-0321 has a spectral energy distribution consistent with that of radio-loud quasars. With an i-band magnitude of 18.47 and a radio flux density of 33 mJy, its radio-loudness parameter is ~100. The optical and near-infrared spectra taken by Magellan enable us to estimate its bolometric luminosity to be L bol ~ 1.1 × 1048 erg s-1, approximately 4.5 times greater than that of the most distant quasar known to date. The black hole mass of J0131-0321 is estimated to be 2.7 × 109 M ⊙, with an uncertainty up to 0.4 dex. Detailed physical properties of this high-redshift, radio-loud, potentially super-Eddington quasar can be probed in the future with more dedicated and intensive follow-up observations using multi-wavelength facilities.

  2. Mechanical and magneto-opto-electronic investigation of transition metal based fluoro-perovskites: An ab-initio DFT study

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-09-01

    Detailed ab-initio calculations are performed to investigate structural, elastic, mechanical, magneto-electronic and optical properties of the KXF3 (X = V, Fe, Co, Ni) fluoro-perovskites using Full Potential Linearized Augmented Plane Wave (FP-LAPW) method within the framework of density functional theory (DFT). The calculated structural parameters by DFT and analytical methods are found consistent with the experimental results. From the elastic and mechanical properties, it can be inferred that these compounds are elastically stable and anisotropic while KCoF3 is harder than rest of the compounds. Furthermore, thermal behavior of these compounds is analyzed by calculating Debye temperature (θD). The calculated spin dependent magneto-electronic properties in these compounds reveal that exchange splitting is dominated by N-3d orbital. The stable magnetic phase optimizations verify the experimental observations at low temperature. Type of chemical bonding is analyzed with the help of variations in electron density difference distribution that is induced due to changes of the second cation. The linear optical properties are also discussed in terms of optical spectra. The present methodology represents an influential approach to calculate the whole set of mechanical and magneto-opto-electronic parameters, which would support to understand various physical phenomena and empower device engineers for implementing these materials in spintronic applications.

  3. Simple luminescence detectors using a light-emitting diode or a Xe lamp, optical fiber and charge-coupled device, or photomultiplier for determining proteins in capillary electrophoresis: a critical comparison.

    PubMed

    Casado-Terrones, Silvia; Fernández-Sánchez, Jorge F; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2007-06-01

    The performance of two homemade fluorescence-induced capillary electrophoresis detectors, one based on light-emitting diode (LED) as the excitation source and a charge-coupled device (CCD) photodetector and the other based on a commercial luminescence spectrometer (Xe lamp) as the excitation source and a photomultiplier tube as a detector, were compared for the determination of fluorescent proteins R-phycoerythrin and B-phycoerythrin. Both devices use commercially available, reasonably priced optical components that can be used by nonexperts. After fine optimization of several optical and separation parameters in both devices, a zone capillary electrophoresis methodology was achieved with 50mM borate buffer (pH 8.4) and 10mM phytic acid for the determination of two phycobiliproteins. Detection limits of 0.50 and 0.64microg/ml for R-phycoerythrin and B-phycoerythrin, respectively, were achieved by using the LED-induced fluorescence capillary electrophoresis (LED-IF-CE) system, and corresponding detection limits of 2.73 and 2.16microg/ml were achieved by using the Xe lamp-IF-CE system. Analytical performance and other parameters, such as cost and potential to miniaturization, are compared for both devices.

  4. Estimation of both optical and nonoptical surface water quality parameters using Landsat 8 OLI imagery and statistical techniques

    NASA Astrophysics Data System (ADS)

    Sharaf El Din, Essam; Zhang, Yun

    2017-10-01

    Traditional surface water quality assessment is costly, labor intensive, and time consuming; however, remote sensing has the potential to assess surface water quality because of its spatiotemporal consistency. Therefore, estimating concentrations of surface water quality parameters (SWQPs) from satellite imagery is essential. Remote sensing estimation of nonoptical SWQPs, such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), and dissolved oxygen (DO), has not yet been performed because they are less likely to affect signals measured by satellite sensors. However, concentrations of nonoptical variables may be correlated with optical variables, such as turbidity and total suspended sediments, which do affect the reflected radiation. In this context, an indirect relationship between satellite multispectral data and COD, BOD, and DO can be assumed. Therefore, this research attempts to develop an integrated Landsat 8 band ratios and stepwise regression to estimate concentrations of both optical and nonoptical SWQPs. Compared with previous studies, a significant correlation between Landsat 8 surface reflectance and concentrations of SWQPs was achieved and the obtained coefficient of determination (R2)>0.85. These findings demonstrated the possibility of using our technique to develop models to estimate concentrations of SWQPs and to generate spatiotemporal maps of SWQPs from Landsat 8 imagery.

  5. Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides.

    PubMed

    Nguyen, Huu-Dat; Ródenas, Airán; Vázquez de Aldana, Javier R; Martínez, Javier; Chen, Feng; Aguiló, Magdalena; Pujol, Maria Cinta; Díaz, Francesc

    2016-04-04

    Mid-infrared lithium niobate cladding waveguides have great potential in low-loss on-chip non-linear optical instruments such as mid-infrared spectrometers and frequency converters, but their three-dimensional femtosecond-laser fabrication is currently not well understood due to the complex interplay between achievable depressed index values and the stress-optic refractive index changes arising as a function of both laser fabrication parameters, and cladding arrangement. Moreover, both the stress-field anisotropy and the asymmetric shape of low-index tracks yield highly birefringent waveguides not useful for most applications where controlling and manipulating the polarization state of a light beam is crucial. To achieve true high performance devices a fundamental understanding on how these waveguides behave and how they can be ultimately optimized is required. In this work we employ a heuristic modelling approach based on the use of standard optical characterization data along with standard computational numerical methods to obtain a satisfactory approximate solution to the problem of designing realistic laser-written circuit building-blocks, such as straight waveguides, bends and evanescent splitters. We infer basic waveguide design parameters such as the complex index of refraction of laser-written tracks at 3.68 µm mid-infrared wavelengths, as well as the cross-sectional stress-optic index maps, obtaining an overall waveguide simulation that closely matches the measured mid-infrared waveguide properties in terms of anisotropy, mode field distributions and propagation losses. We then explore experimentally feasible waveguide designs in the search of a single-mode low-loss behaviour for both ordinary and extraordinary polarizations. We evaluate the overall losses of s-bend components unveiling the expected radiation bend losses of this type of waveguides, and finally showcase a prototype design of a low-loss evanescent splitter. Developing a realistic waveguide model with which robust waveguide designs can be developed will be key for exploiting the potential of the technology.

  6. Normal versus High Tension Glaucoma: A Comparison of Functional and Structural Defects

    PubMed Central

    Thonginnetra, Oraorn; Greenstein, Vivienne C.; Chu, David; Liebmann, Jeffrey M.; Ritch, Robert; Hood, Donald C.

    2009-01-01

    Purpose To compare visual field defects obtained with both multifocal visual evoked potential (mfVEP) and Humphrey visual field (HVF) techniques to topographic optic disc measurements in patients with normal tension glaucoma (NTG) and high tension glaucoma (HTG). Methods We studied 32 patients with NTG and 32 with HTG. All patients had reliable 24-2 HVFs with a mean deviation (MD) of −10 dB or better, a glaucomatous optic disc and an abnormal HVF in at least one eye. Multifocal VEPs were obtained from each eye and probability plots created. The mfVEP and HVF probability plots were divided into a central 10-degree (radius) and an outer arcuate subfield in both superior and inferior hemifields. Cluster analyses and counts of abnormal points were performed in each subfield. Optic disc images were obtained with the Heidelberg Retina Tomograph III (HRT III). Eleven stereometric parameters were calculated. Moorfields regression analysis (MRA) and the glaucoma probability score (GPS) were performed. Results There were no significant differences in MD and PSD values between NTG and HTG eyes. However, NTG eyes had a higher percentage of abnormal test points and clusters of abnormal points in the central subfields on both mfVEP and HVF than HTG eyes. For HRT III, there were no significant differences in the 11 stereometric parameters or in the MRA and GPS analyses of the optic disc images. Conclusions The visual field data suggest more localized and central defects for NTG than HTG. PMID:19223786

  7. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe

    PubMed Central

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R.; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    Purpose: The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/64Cu dual-labeled cyclic RGD peptide. Methods: The integrin αvβ3 binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. Results: The dual-labeled probe 64Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). Conclusion: The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models. PMID:22916074

  8. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe.

    PubMed

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/(64)Cu dual-labeled cyclic RGD peptide. The integrin α(v)β(3) binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. The dual-labeled probe (64)Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models.

  9. Boosting the optical performance and commutation speed of phototransistor using SiGe/Si/Ge tunneling structure

    NASA Astrophysics Data System (ADS)

    Ferhati, H.; Djeffal, F.

    2018-06-01

    In this paper, a new optically controlled tunneling field effect transistor (OC-TFET) based on SiGe/Si/Ge hetero-channel is proposed to improve optical commutation speed and reduce power consumption. An exhaustive study of the device switching behavior associated with different hetero-channel structures has been carried out using an accurate numerical simulation. Moreover, a new figure of Merit (FoM) parameter called optical swing factor that describes the phototransistor optical commutation speed is proposed. We demonstrate that the band-to-band tunneling effect can be beneficial for improving the device optical commutation speed. The impact of the Ge mole fraction of the SiGe source region on the device FoMs is investigated. It is found that the optimized design with 40% of Ge content offers the opportunity to overcome the trade-off between ultrafast and very sensitive photoreceiver performance, where it yields 48 mV/dec of optical swing factor and 155 dB of I ON /I OFF ratio. An overall performance comparison between the proposed OC-TFET device and the conventional designs is performed, where the proposed structure ensures high optical detectivity for very low optical powers (sub-1pW) as compared to that of the conventional counterparts. Therefore, the proposed OC-TFET provides the possibility for bridging the gap between improved optical commutation speed and reduced power consumption, which makes it a potential alternative for high-performance inter-chip data communication applications.

  10. Propagating modes in gain-guided optical fibers.

    PubMed

    Siegman, A E

    2003-08-01

    Optical fibers in which gain-guiding effects are significant or even dominant compared with conventional index guiding may become of practical interest for future high-power single-mode fiber lasers. I derive the propagation characteristics of symmetrical slab waveguides and cylindrical optical fibers having arbitrary amounts of mixed gain and index guiding, assuming a single uniform transverse profile for both the gain and the refractive-index steps. Optical fibers of this type are best characterized by using a complex-valued v-squared parameter in place of the real-valued v parameter commonly used to describe conventional index-guided optical fibers.

  11. Optical properties of the Tietz-Hua quantum well under the applied external fields

    NASA Astrophysics Data System (ADS)

    Kasapoglu, E.; Sakiroglu, S.; Ungan, F.; Yesilgul, U.; Duque, C. A.; Sökmen, I.

    2017-12-01

    In this study, the effects of the electric and magnetic fields as well as structure parameter- γ on the total absorption coefficient, including linear and third order nonlinear absorption coefficients for the optical transitions between any two subband in the Tietz-Hua quantum well have been investigated. The optical transitions were investigated by using the density matrix formalism and the perturbation expansion method. The Tietz-Hua quantum well becomes narrower (wider) when the γ - structure parameter increases (decreases) and so the energies of the bound states will be functions of this parameter. Therefore, we can provide the red or blue shift in the peak position of the absorption coefficient by changing the strength of the electric and magnetic fields as well as the structure parameters and these results can be used to adjust and control the optical properties of the Tietz-Hua quantum well.

  12. A Theory of Exoplanet Transits with Light Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Tyler D., E-mail: tydrobin@ucsc.edu

    Exoplanet transit spectroscopy enables the characterization of distant worlds, and will yield key results for NASA's James Webb Space Telescope . However, transit spectra models are often simplified, omitting potentially important processes like refraction and multiple scattering. While the former process has seen recent development, the effects of light multiple scattering on exoplanet transit spectra have received little attention. Here, we develop a detailed theory of exoplanet transit spectroscopy that extends to the full refracting and multiple scattering case. We explore the importance of scattering for planet-wide cloud layers, where the relevant parameters are the slant scattering optical depth, themore » scattering asymmetry parameter, and the angular size of the host star. The latter determines the size of the “target” for a photon that is back-mapped from an observer. We provide results that straightforwardly indicate the potential importance of multiple scattering for transit spectra. When the orbital distance is smaller than 10–20 times the stellar radius, multiple scattering effects for aerosols with asymmetry parameters larger than 0.8–0.9 can become significant. We provide examples of the impacts of cloud/haze multiple scattering on transit spectra of a hot Jupiter-like exoplanet. For cases with a forward and conservatively scattering cloud/haze, differences due to multiple scattering effects can exceed 200 ppm, but shrink to zero at wavelength ranges corresponding to strong gas absorption or when the slant optical depth of the cloud exceeds several tens. We conclude with a discussion of types of aerosols for which multiple scattering in transit spectra may be important.« less

  13. GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications

    NASA Astrophysics Data System (ADS)

    Adachi, Sadao

    1985-08-01

    The AlxGa1-xAs/GaAs heterostructure system is potentially useful material for high-speed digital, high-frequency microwave, and electro-optic device applications. Even though the basic AlxGa1-xAs/GaAs heterostructure concepts are understood at this time, some practical device parameters in this system have been hampered by a lack of definite knowledge of many material parameters. Recently, Blakemore has presented numerical and graphical information about many of the physical and electronic properties of GaAs [J. S. Blakemore, J. Appl. Phys. 53, R123 (1982)]. The purpose of this review is (i) to obtain and clarify all the various material parameters of AlxGa1-xAs alloy from a systematic point of view, and (ii) to present key properties of the material parameters for a variety of research works and device applications. A complete set of material parameters are considered in this review for GaAs, AlAs, and AlxGa1-xAs alloys. The model used is based on an interpolation scheme and, therefore, necessitates known values of the parameters for the related binaries (GaAs and AlAs). The material parameters and properties considered in the present review can be classified into sixteen groups: (1) lattice constant and crystal density, (2) melting point, (3) thermal expansion coefficient, (4) lattice dynamic properties, (5) lattice thermal properties, (6) electronic-band structure, (7) external perturbation effects on the band-gap energy, (8) effective mass, (9) deformation potential, (10) static and high-frequency dielectric constants, (11) magnetic susceptibility, (12) piezoelectric constant, (13) Fröhlich coupling parameter, (14) electron transport properties, (15) optical properties, and (16) photoelastic properties. Of particular interest is the deviation of material parameters from linearity with respect to the AlAs mole fraction x. Some material parameters, such as lattice constant, crystal density, thermal expansion coefficient, dielectric constant, and elastic constant, obey Vegard's rule well. Other parameters, e.g., electronic-band energy, lattice vibration (phonon) energy, Debye temperature, and impurity ionization energy, exhibit quadratic dependence upon the AlAs mole fraction. However, some kinds of the material parameters, e.g., lattice thermal conductivity, exhibit very strong nonlinearity with respect to x, which arises from the effects of alloy disorder. It is found that the present model provides generally acceptable parameters in good agreement with the existing experimental data. A detailed discussion is also given of the acceptability of such interpolated parameters from an aspect of solid-state physics. Key properties of the material parameters for use in research work and a variety of AlxGa1-xAs/GaAs device applications are also discussed in detail.

  14. Role of Retinal Nerve Fiber Layer Thickness and Optic Disk Measurement by OCT on Early Diagnosis of Glaucoma.

    PubMed

    Hua, Zanmei; Fang, Qiuyun; Sha, Xiangyin; Yang, Ruiming; Hong, Zuopeng

    2015-03-01

    Glaucoma is an eye disease that can lead to irreversible optic nerve damage and cause blindness. Optical coherence tomography (OCT) allows an early diagnosis of glaucoma by the measurements of the retinal nerve fiber and optic disc parameters. A retrospective study was designed to analyze the effects of the measurement of the retinal nerve fiber layer (RNFL) thickness and the optic disc tomography by spectral-domain OCT on the early diagnosis of suspected glaucoma and primary open angle glaucoma (POAG). This was a clinical case-control study. The RNFL thickness around the optic disc and optic disk tomographic parameters of the control (n = 51, 98 eyes), suspected glaucoma (n = 81, 146 eyes), and POAG groups (n = 55, 106 eyes) were measured by OCT. The parameters included superior, inferior, nasal and temporal mean RNFL thickness, disc area (DA), cup area (CA), rim area (RA), disc volume (DV), cup volume (CV), rim volume (RV), cup/disc area ratio (CA/DA), rim/disc area ratio (RA/DA), cup/disc volume ratio (CV/DV) and rim/disc volume ratio (RV/DV). Superior, nasal, and mean RNFL parameters, DA, CA,RA, DV, CV, CA/DA, RA/DA, CV/DV and RV/DV significantly differed among three groups by single-factorial ANOVA. Inferior and temporal RNFL thickness significantly differed between the control and POAG groups. No significant difference was observed in RV among three groups. In the POAG group, the maximum area under the ROC curve (AROC) of mean RNFL thickness was 0.845. The maximum AROC of optic disk parameters was RA/DA (0.998), followed by CA/DA (0.997). The AROC of CA, RA, CV, and DV were all > 0.900. OCT may serve as a useful diagnostic modality in distinguishing suspected glaucoma from POAG.

  15. Influence of optic disc leakage on objective optic nerve head assessment in patients with uveitis.

    PubMed

    Heinz, Carsten; Kogelboom, Katy; Heiligenhaus, Arnd

    2016-02-01

    Secondary glaucoma is a common complication in patients with uveitis. Heidelberg Retina Tomography (HRT) and retinal nerve fiber layer (RNFL) thickness on optical coherence tomography (OCT) are widely used for examining optic nerve head changes. We evaluated these parameters in patients with uveitis and secondary glaucoma and with inflammatory papillary leakage on fluorescein angiography. Prospective single-center analysis of patients with uveitis, evaluating the impact of optic disc leakage on objective optic disc imaging parameters. Overall, 96 eyes of 59 patients were included. Papillary leakage was found in 42 eyes (43.8 %), and secondary glaucoma was found in 41 eyes (42.7 %). Glaucoma and papillary leakage were present in 12 (29 %) eyes with leakage and in 29 (54 %) eyes without leakage (p = 0.023). Neuroretinal rim area (p = 0.004), rim volume on HRT (p = 0.004), and RNFL thickness on OCT (p = 0.0008) were significantly increased in eyes with papillary leakage, while RNFL on HRT was unchanged (p = 0.255). When only eyes with normal IOP were examined, all objective parameters on OCT and HRT were significantly increased, whereas in eyes with secondary glaucoma, there was only a trend in the same direction, which did not reach significance. A comparison of eyes with secondary glaucoma and optic disc leakage to normal eyes with no glaucoma or leakage revealed no difference in any of the parameters. The objective parameters of optic nerve head imaging tools are significantly influenced by papillary leakage. In patients with secondary glaucoma and papillary leakage, these techniques are unable to detect and monitor glaucomatous damage.

  16. Tunable multi-band absorption in metasurface of graphene ribbons based on composite structure

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Jiao, Zheng; Bao, Jie

    2017-05-01

    A tunable multiband absorption based on a graphene metasurface of composite structure at mid-infrared frequency was investigated by the finite difference time domain method. The composite structure were composed of graphene ribbons and a gold-MgF2 layer which was sandwiched in between two dielectric slabs. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. And the absorption of the composite structure can be tuned by the chemical potential of graphene at certain frequencies. The impedance matching was used to study the perfect absorption of the structure in our paper. The results show that multi-band absorption can be obtained and some absorption peaks of the composite structure can be tuned through the changing not only of the width of graphene ribbons and gaps, but also the dielectric and the chemical potential of graphene. However, another peak was hardly changed by parameters due to a different resonant mechanism in proposed structure. This flexibily tunable multiband absorption may be applied to optical communications such as optical absorbers, mid infrared stealth devices and filters.

  17. X-ray diffraction, crystal structure, and spectral features of the optical susceptibilities of single crystals of the ternary borate oxide lead bismuth tetraoxide, PbBiBO4.

    PubMed

    Reshak, Ali Hussain; Kityk, I V; Auluck, S; Chen, Xuean

    2009-05-14

    The all-electron full-potential linearized augmented plane-wave method has been used for an ab initio theoretical study of the band structure, the spectral features of the optical susceptibilities, the density of states, and the electron charge density for PbBiBO4. Our calculations show that the valence-band maximum (VBM) and conduction-band minimum (CBM) are located at the center of the Brillouin zone, resulting in a direct energy gap of about 3.2 eV. We have synthesized the PbBiBO4 crystal by employing a conventional solid-state reaction method. The theoretical calculations in this work are based on the structure built from our measured atomic parameters. We should emphasize that the observed experimental X-ray diffraction (XRD) pattern is in good agreement with the theoretical one, confirming that our structural model is valid. Our calculated bond lengths show excellent agreement with the experimental data. This agreement is attributed to our use of full-potential calculations. The spectral features of the optical susceptibilities show a small positive uniaxial anisotropy.

  18. Effect of Varying Pnictogen Elements (Pn=N, P, As, Sb, Bi) on the Optoelectronic Properties of SrZn2Pn2

    NASA Astrophysics Data System (ADS)

    Murtaza, G.; Yousaf, N.; Laref, A.; Yaseen, M.

    2018-03-01

    Pnictogen-based Zintl compounds have fascinating properties. Nowadays these compounds have gained exceptional interest in thermoelectric and optoelectronic fields. Therefore, in this work the structural, electronic and optical properties of SrZn2Pn2 (Pn=N, P, As, Sb, Bi) compounds were studied using state-of-the-art density functional theory. The optimised lattice parameters (ɑ, c, c/ɑ and bond lengths) are consistent with the experimental results. The bulk moduli and c/a showed a decrease when changing the Pnictogen (Pn) anion from N to Bi in SrZn2Pn2 (Pn=N, P, As, Sb, Bi). The modified Becke-Johnson potential is used for band structure calculations. All compounds show semiconducting behaviour except SrZn2Bi2, which is metallic. Pn-p, Zn-d and Sr-d play an important role in defining the electronic structure of the compounds. The optical conductivity and absorption coefficient strength are high in visible and ultraviolet regions. These band structures and optical properties clearly show that SrZn2Pn2 compounds are potential candidates in the fields of optoelectronic and photonic devices.

  19. Device applications and structural and optical properties of Indigo - A biodegradable, low-cost organic semiconductor

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjun; Pisane, Kelly L.; Sierros, Konstantinos; Seehra, Mohindar S.; Korakakis, Dimitris

    2015-03-01

    Currently, memory devices based on organic materials are attracting great attention due to their simplicity in device structure, mechanical flexibility, potential for scalability, low-cost potential, low-power operation, and large capacity for data storage. In a recent paper from our group, Indigo-based nonvolatile organic write-once-read-many-times (WORM) memory device, consisting of a 100nm layer of indigo sandwiched between an indium tin oxide (ITO) cathode and an Al anode, has been reported. This device is found to be at its low resistance state (ON state) and can be switched to high resistance state (OFF state) by applying a positive bias with ON/OFF current ratio of the device being up to 1.02 × e6. A summary of these results along with the structural and optical properties of indigo powder will be reported. Analysis of x-ray diffraction shows a monoclinic structure with lattice parameters a(b)[c] = 0.924(0.577)[0.1222]nm and β =117° . Optical absorption shows a band edge at 1.70 eV with peak of absorption occurring at 1.90 eV. These results will be interpreted in terms of the HOMO-LUMO bands of Indigo.

  20. A Diagnostic Calculator for Detecting Glaucoma on the Basis of Retinal Nerve Fiber Layer, Optic Disc, and Retinal Ganglion Cell Analysis by Optical Coherence Tomography.

    PubMed

    Larrosa, José Manuel; Moreno-Montañés, Javier; Martinez-de-la-Casa, José María; Polo, Vicente; Velázquez-Villoria, Álvaro; Berrozpe, Clara; García-Granero, Marta

    2015-10-01

    The purpose of this study was to develop and validate a multivariate predictive model to detect glaucoma by using a combination of retinal nerve fiber layer (RNFL), retinal ganglion cell-inner plexiform (GCIPL), and optic disc parameters measured using spectral-domain optical coherence tomography (OCT). Five hundred eyes from 500 participants and 187 eyes of another 187 participants were included in the study and validation groups, respectively. Patients with glaucoma were classified in five groups based on visual field damage. Sensitivity and specificity of all glaucoma OCT parameters were analyzed. Receiver operating characteristic curves (ROC) and areas under the ROC (AUC) were compared. Three predictive multivariate models (quantitative, qualitative, and combined) that used a combination of the best OCT parameters were constructed. A diagnostic calculator was created using the combined multivariate model. The best AUC parameters were: inferior RNFL, average RNFL, vertical cup/disc ratio, minimal GCIPL, and inferior-temporal GCIPL. Comparisons among the parameters did not show that the GCIPL parameters were better than those of the RNFL in early and advanced glaucoma. The highest AUC was in the combined predictive model (0.937; 95% confidence interval, 0.911-0.957) and was significantly (P = 0.0001) higher than the other isolated parameters considered in early and advanced glaucoma. The validation group displayed similar results to those of the study group. Best GCIPL, RNFL, and optic disc parameters showed a similar ability to detect glaucoma. The combined predictive formula improved the glaucoma detection compared to the best isolated parameters evaluated. The diagnostic calculator obtained good classification from participants in both the study and validation groups.

  1. Minimal residual method provides optimal regularization parameter for diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Jagannath, Ravi Prasad K.; Yalavarthy, Phaneendra K.

    2012-10-01

    The inverse problem in the diffuse optical tomography is known to be nonlinear, ill-posed, and sometimes under-determined, requiring regularization to obtain meaningful results, with Tikhonov-type regularization being the most popular one. The choice of this regularization parameter dictates the reconstructed optical image quality and is typically chosen empirically or based on prior experience. An automated method for optimal selection of regularization parameter that is based on regularized minimal residual method (MRM) is proposed and is compared with the traditional generalized cross-validation method. The results obtained using numerical and gelatin phantom data indicate that the MRM-based method is capable of providing the optimal regularization parameter.

  2. Minimal residual method provides optimal regularization parameter for diffuse optical tomography.

    PubMed

    Jagannath, Ravi Prasad K; Yalavarthy, Phaneendra K

    2012-10-01

    The inverse problem in the diffuse optical tomography is known to be nonlinear, ill-posed, and sometimes under-determined, requiring regularization to obtain meaningful results, with Tikhonov-type regularization being the most popular one. The choice of this regularization parameter dictates the reconstructed optical image quality and is typically chosen empirically or based on prior experience. An automated method for optimal selection of regularization parameter that is based on regularized minimal residual method (MRM) is proposed and is compared with the traditional generalized cross-validation method. The results obtained using numerical and gelatin phantom data indicate that the MRM-based method is capable of providing the optimal regularization parameter.

  3. Spatial Brain Control Interface using Optical and Electrophysiological Measures

    DTIC Science & Technology

    2013-08-27

    appropriate for implementing a reliable brain-computer interface ( BCI ). The LSVM method 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 27-08-2013 13...Machine (LSVM) was the most appropriate for implementing a reliable brain-computer interface ( BCI ). The LSVM method was applied to the imaging data...local field potentials proved to be fast and strongly tuned for the spatial parameters of the task. Thus, a reliable BCI that can predict upcoming

  4. Sulfurization effect on optical properties of Cu2SNS3 thin films grown by two-stage process

    NASA Astrophysics Data System (ADS)

    Reddy, G. Phaneendra; Reddy, K. T. Ramakrishna

    2017-05-01

    A good phase controlled and impurity free two stage process was used to prepare Cu2SnS3 layers on glass substrates. The layers were prepared by sulfurization of sputtered Cu-Sn metallic precursors by varying the sulfurization temperature (Ts) in the range, 150-450°C, keeping the other deposition parameters constant. A complete investigation of the optical properties of the layers with sulfurization temperature was made by using the optical transmittance and reflectance measurements versus wavelength. The absorption coefficient α, was evaluated using the optical data that showed a α > 104 cm-1 for all the as-grown films. The optical bandgap of the as grown layers was determined from the second derivative diffused reflectance spectra that varied from 1.96 eV to 0.99 eV. Consequently, refractive index and extinction coefficient were calculated from Pankov's relations. In addition, the other optical parameters such as the dielectric constants, dissipation factor and also optical conductivity calculated. A detailed analysis of the dependence of all the above parameters on Ts is reported and discussed.

  5. Correlation between the structural and optical properties of ion-assisted hafnia thin films

    NASA Astrophysics Data System (ADS)

    Scaglione, Salvatore; Sarto, Francesca; Alvisi, Marco; Rizzo, Antonella; Perrone, Maria R.; Protopapa, Maria L.

    2000-03-01

    The ion beam assistance during the film growth is one of the most useful method to obtain dense film along with improved optical and structural properties. Afnia material is widely used in optical coating operating in the UV region of the spectrum and its optical properties depend on the production method and the physical parameters of the species involved in the deposition process. In this work afnia thin films were evaporated by an e-gun and assisted during the growth process. The deposition parameters, ion beam energy, density of ions impinging on the growing film and the number of arrival atoms from the crucible, have been related to the optical and structural properties of the film itself. The absorption coefficient and the refractive index were measured by spectrophotometric technique while the microstructure has been studied by means of x-ray diffraction. A strictly correlation between the grain size, the optical properties and the laser damage threshold measurements at 248 nm was found for the samples deposited at different deposition parameters.

  6. Optical techniques for perfusion monitoring of the gastric tube after esophagectomy: a review of technologies and thresholds.

    PubMed

    Jansen, S M; de Bruin, D M; van Berge Henegouwen, M I; Strackee, S D; Veelo, D P; van Leeuwen, T G; Gisbertz, S S

    2018-06-01

    Anastomotic leakage is one of the most severe complications after esophageal resection with gastric tube reconstruction. Impaired perfusion of the gastric fundus is seen as the main contributing factor for this complication. Optical modalities show potential in recognizing compromised perfusion in real time, when ischemia is still reversible. This review provides an overview of optical techniques with the aim to evaluate the (1) quantitative measurement of change in perfusion in gastric tube reconstruction and (2) to test which parameters are the most predictive for anastomotic leakage.A Pubmed, MEDLINE, and Embase search was performed and articles on laser Doppler flowmetry (LDF), near-infrared spectroscopy (NIRS), laser speckle contrast imaging (LSCI), fluorescence imaging (FI), sidestream darkfield microscopy (SDF), and optical coherence tomography (OCT) regarding blood flow in gastric tube surgery were reviewed. Two independent reviewers critically appraised articles and extracted the data: Primary outcome was quantitative measure of perfusion change; secondary outcome was successful prediction of necrosis or anastomotic leakage by measured perfusion parameters.Thirty-three articles (including 973 patients and 73 animals) were selected for data extraction, quality assessment, and risk of bias (QUADAS-2). LDF, NIRS, LSCI, and FI were investigated in gastric tube surgery; all had a medium level of evidence. IDEAL stage ranges from 1 to 3. Most articles were found on LDF (n = 12), which is able to measure perfusion in arbitrary perfusion units with a significant lower amount in tissue with necrosis development and on FI (n = 12). With FI blood flow routes could be observed and flow was qualitative evaluated in rapid, slow, or low flow. NIRS uses mucosal oxygen saturation and hemoglobin concentration as perfusion parameters. With LSCI, a decrease of perfusion units is observed toward the gastric fundus intraoperatively. The perfusion units (LDF, LSCI), although arbitrary and not absolute values, and low flow or length of demarcation to the anastomosis (FI) both seem predictive values for necrosis intraoperatively. SDF and OCT are able to measure microvascular flow, intraoperative prediction of necrosis is not yet described.Optical techniques aim to improve perfusion monitoring by real-time, high-resolution, and high-contrast measurements and could therefore be valuable in intraoperative perfusion mapping. LDF and LSCI use perfusion units, and are therefore subjective in interpretation. FI visualizes influx directly, but needs a quantitative parameter for interpretation during surgery.

  7. Hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products

    NASA Astrophysics Data System (ADS)

    Cen, Haiyan

    Hyperspectral imaging-based spatially-resolved technique is promising for determining the optical properties and quality attributes of horticultural and food products. However, considerable challenges still exist for accurate determination of spectral absorption and scattering properties from intact horticultural products. The objective of this research was, therefore, to develop and optimize hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products. Monte Carlo simulations and experiments for model samples of known optical properties were performed to optimize the inverse algorithm of a single-layer diffusion model and the optical designs, for extracting the absorption (micro a) and reduced scattering (micros') coefficients from spatially-resolved reflectance profiles. The logarithm and integral data transformation and the relative weighting methods were found to greatly improve the parameter estimation accuracy with the relative errors of 10.4%, 10.7%, and 11.4% for micro a, and 6.6%, 7.0%, and 7.1% for micros', respectively. More accurate measurements of optical properties were obtained when the light beam was of Gaussian type with the diameter of less than 1 mm, and the minimum and maximum source-detector distances were 1.5 mm and 10--20 transport mean free paths, respectively. An optical property measuring prototype was built, based on the optimization results, and evaluated for automatic measurement of absorption and reduced scattering coefficients for the wavelengths of 500--1,000 nm. The instrument was used to measure the optical properties, and assess quality/maturity, of 500 'Redstar' peaches and 1039 'Golden Delicious' (GD) and 1040 'Delicious' (RD) apples. A separate study was also conducted on confocal laser scanning and scanning electron microscopic image analysis and compression test of fruit tissue specimens to measure the structural and mechanical properties of 'Golden Delicious' and 'Granny Smith' (GS) apples under accelerated softening at high temperature (22 ºC)/high humidity (95%) for up to 30 days. The absorption spectra of peach and apple fruit were featured with the absorption peaks of major pigments (i.e., chlorophylls and anthocyanin) and water, while the reduced scattering coefficient generally decreased with the increase of wavelength. Partial least squares regression resulted in various levels of correlation of microa and micros' with the firmness, soluble solids content, and skin and flesh color parameters of peaches (r = 0.204--0.855) and apples (r = 0.460--0.885), and the combination of the two optical parameters generally gave higher correlations (up to 0.893). The mean value of microa and micros' for GD and GS apples for each storage date was positively correlated with acoustic/impact firmness, Young's modulus, and cell parameters (r = 0.585--0.948 for GD and r = 0.292--0.993 for GS). A two-layer diffusion model for determining the optical properties of fruit skin and flesh was further investigated through solid model samples. The average errors of determining two and four optical parameters were 6.8% and 15.3%, respectively, for the Monte Carlo reflectance data. The errors of determining the first or surface layer of the model samples were approximately 23.0% for microa and 18.4% for micros', indicating the difficulty and also potential in applying the two-layer diffusion model for fruit. This research has demonstrated the usefulness of hyperspectral imaging-based spatially-resolved technique for determining the optical properties and maturity/quality of fruits. However, further research is needed to reduce measurement variability or error caused by irregular or rough surface of fruit and the presence of fruit skin, and apply the technique to other foods and biological materials.

  8. Optical absorption in planar graphene superlattice: The role of structural parameters

    NASA Astrophysics Data System (ADS)

    Azadi, L.; Shojaei, S.

    2018-04-01

    We theoretically studied the optically driven interband transitions in a planar graphene superlattices (PGSL) formed by patterning graphene sheet on laterally hetrostructured substrate as Sio2/hBN. A tunable optical transitions between minibands is observed based on engineering structural parameters. We derive analytically expression for optical absorption from two-band model. Considerable optical absorption is obtained for different ratios between widths of heterostructured substrate and is explained analytically from the view point of wavefunction engineering and miniband dispersion, in details. The role of different statuses of polarization as circular and linear are considered. Our study paves a way toward the control of optical properties of PGSLs to be implemented in optoelectronics devices.

  9. Multidisciplinary Biomarkers of Early Mammary Carcinogenesis

    DTIC Science & Technology

    2009-04-01

    ABSTRACT The purpose of the proposed research is to develop novel optical technologies to identify high-risk premalignant changes in the breast ...Our proposed research will first test specific optical parameters in breast cancer cell lines and models of early mammary carcinogenesis, and then...develop methods to test the optical parameters in random periareolar fine needle aspirate (RPFNA) samples from women at high-risk for developing breast

  10. Toward optical guidance during endoscopic ultrasound-guided fine needle aspirations of pancreatic masses using single fiber reflectance spectroscopy: a feasibility study

    NASA Astrophysics Data System (ADS)

    Stegehuis, Paulien L.; Boogerd, Leonora S. F.; Inderson, Akin; Veenendaal, Roeland A.; van Gerven, P.; Bonsing, Bert A.; Sven Mieog, J.; Amelink, Arjen; Veselic, Maud; Morreau, Hans; van de Velde, Cornelis J. H.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke; Robinson, Dominic J.; Vahrmeijer, Alexander L.

    2017-02-01

    Endoscopic ultrasound-guided fine needle aspirations (EUS-FNA) of pancreatic masses suffer from sample errors and low-negative predictive values. Fiber-optic spectroscopy in the visible to near-infrared wavelength spectrum can noninvasively extract physiological parameters from tissue and has the potential to guide the sampling process and reduce sample errors. We assessed the feasibility of single fiber (SF) reflectance spectroscopy measurements during EUS-FNA of pancreatic masses and its ability to distinguish benign from malignant pancreatic tissue. A single optical fiber was placed inside a 19-gauge biopsy needle during EUS-FNA and at least three reflectance measurements were taken prior to FNA. Spectroscopy measurements did not cause any related adverse events and prolonged procedure time with ˜5 min. An accurate correlation between spectroscopy measurements and cytology could be made in nine patients (three benign and six malignant). The oxygen saturation and bilirubin concentration were significantly higher in benign tissue compared with malignant tissue (55% versus 21%, p=0.038; 166 μmol/L versus 17 μmol/L, p=0.039, respectively). To conclude, incorporation of SF spectroscopy during EUS-FNA was feasible, safe, and relatively quick to perform. The optical properties of benign and malignant pancreatic tissue are different, implying that SF spectroscopy can potentially guide the FNA sampling.

  11. Adipocyte property evaluation with photoacoustic spectrum analysis: a feasibility study on human tissues

    NASA Astrophysics Data System (ADS)

    Cao, Meng; Zhu, Yunhao; O'Rourke, Robert; Wang, Huaideng; Yuan, Jie; Cheng, Qian; Xu, Guan; Wang, Xueding; Carson, Paul

    2017-03-01

    Photoacoustic spectrum analysis (PASA) offers potential advantages in identifying optically absorbing microstructures in biological tissues. Working at high ultrasound frequency, PASA is capable of identifying the morphological features of cells based on their intrinsic optical absorption. Adipocyte size is correlated with metabolic disease risk in the form of diabetes mellitus, thus it can be adopted as a pathology predictor to evaluate the condition of obese patient, and can be helpful for assessing the patient response to bariatric surgery. In order to acquire adipocyte size, usually adipose tissue biopsy is performed and histopathology analysis is conducted. The whole procedure is not well tolerated by patients, and is also labor and cost intensive. An unmet need is to quantify and predict adipocyte size in a mild and more efficient way. This work aims at studying the feasibility to analyze the adipocyte size of human fat tissue using the method of PASA. PA measurements were performed at the optical wavelength of 1210 nm where lipid has strong optical absorption, enabling the study of adipocyte without need of staining. Both simulation and ex vivo experiments have been completed. Good correlation between the quantified photoacoustic spectral parameter slope and the average adipocyte size obtained by the gold-standard histology has been established. This initial study suggests the potential opportunity of applying PASA to future clinical management of obesity.

  12. Numerical determination of visible/NIR optical constants from laboratory spectra of HED meteorites

    NASA Astrophysics Data System (ADS)

    Davalos, Jorge A. G.; Carvano, Jorge Márcio; Blanco, Julio

    2017-03-01

    Radiative transfer models in particulate media (Hapke, 1981, 1993, 2012b; Shkuratov et al., 1999) are the most versatile tool that can be used to retrieve both composition and surface physical properties from observation of asteroids and other atmosphereless bodies of the Solar System. One caveat is that these methods require as input a sufficiently comprehensive set of optical constants of suitable template materials. These optical constants are the real and imaginary parts of the refractive indexes of the material as function of wavelength, and have to be derived from laboratory measurements of samples of minerals and meteorites. Optical constants can be calculated from a variety of types of measurements, and each has its problems and limitations. In particular, a problem with the determination of optical constants from measurement of reflectance is that the measurements need to be themselves interpreted using radiative transfer models. This is an issue because the number of parameters used in the most accurate versions of the radiative transfer models is large, and for most of the samples many of these parameters were not measured independently. As a result, attempts in the literature to retrieve optical constants from reflectance measurements tend to assume values for the unknown parameters, which can lead to uncertainties in the retrieved optical constants that can be difficult to quantify. In this work we propose a numerical method that allows the simultaneous inversion of the optical constant and the model parameters. This model is then applied to a set of reflectance spectra of 5 HED meteorites from the RELAB database that were measured with the same setup for samples with several particle size intervals. Our results indicate that our method is able to retrieve optical constants which are able to reproduce the measured reflectance of the samples over a large range (25-500 μm) of particle diameters. It is also found that the solutions obtained in this way are non-unique, in the sense that many combination of the model parameters can yield different sets of optical constants that fit equally well the reflectance spectra. Thus, in the absence of the independent determination of at least some of the model parameter the method is unable to decide which solution correspond to the physical optical constants of the materials. Even so, the dispersion of the model parameters (in particular effective particle diameter and porosity) for acceptable solutions (defined as the ones that reproduce the measured reflectance spectra at all size range with residues smaller than 10%) is within a radius of around 30% of the value of the best fit solution for each parameter. Given the ability of the optical constants derived with this method to reproduce the sample spectra over a large range of particle sizes, they can be used without other restriction to assess if a given meteorite assemblage is contributing to the observed spectra of asteroids. However, quantitative informations that can also be derived using these optical constants, like particle sizes, porosity and volumetric fractions of each end-member in a mixture should be regarded only as rough estimates.

  13. Theoretical Models of Optical Transients. I. A Broad Exploration of the Duration-Luminosity Phase Space

    NASA Astrophysics Data System (ADS)

    Villar, V. Ashley; Berger, Edo; Metzger, Brian D.; Guillochon, James

    2017-11-01

    The duration-luminosity phase space (DLPS) of optical transients is used, mostly heuristically, to compare various classes of transient events, to explore the origin of new transients, and to influence optical survey observing strategies. For example, several observational searches have been guided by intriguing voids and gaps in this phase space. However, we should ask, do we expect to find transients in these voids given our understanding of the various heating sources operating in astrophysical transients? In this work, we explore a broad range of theoretical models and empirical relations to generate optical light curves and to populate the DLPS. We explore transients powered by adiabatic expansion, radioactive decay, magnetar spin-down, and circumstellar interaction. For each heating source, we provide a concise summary of the basic physical processes, a physically motivated choice of model parameter ranges, an overall summary of the resulting light curves and their occupied range in the DLPS, and how the various model input parameters affect the light curves. We specifically explore the key voids discussed in the literature: the intermediate-luminosity gap between classical novae and supernovae, and short-duration transients (≲ 10 days). We find that few physical models lead to transients that occupy these voids. Moreover, we find that only relativistic expansion can produce fast and luminous transients, while for all other heating sources events with durations ≲ 10 days are dim ({M}{{R}}≳ -15 mag). Finally, we explore the detection potential of optical surveys (e.g., Large Synoptic Survey Telescope) in the DLPS and quantify the notion that short-duration and dim transients are exponentially more difficult to discover in untargeted surveys.

  14. Blood coagulation profiling in patients using optical thromboelastography (OTEG) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tripathi, Markandey M.; Tshikudi, Diane M.; Hajjarian, Zeinab; Van Cott, Elizabeth M.; Nadkarni, Seemantini K.

    2016-02-01

    Impaired blood coagulation is often associated with increased postoperative mortality and morbidity in cardiovascular patients. The capability for blood coagulation profiling rapidly at the bedside will enable the timely detection of coagulation defects and open the opportunity for tailoring therapy to correct specific coagulation deficits Optical Thromboelastography (OTEG), is an optical approach to quantify blood coagulation status within minutes using a few drops of whole blood. The goal of the current study is to evaluate the diagnostic accuracy of OTEG for rapid coagulation profiling in patients. In OTEG, temporal laser speckle intensity fluctuations from a drop of clotting blood are measured using a CMOS camera. To quantify coagulation status, the speckle intensity autocorrelation function is measured, the mean square displacement of scattering particles is extracted, and viscoelastic modulus (G), during coagulation is measured via the generalized Stokes-Einstein relation. By quantifying time-resolved changes in G, the coagulation parameters, reaction time (R), clot progression time (K), clot progression rate (Angle), and maximum clot strength (MA) are derived. In this study, the above coagulation parameters were measured using OTEG in 269 patients and compared with standard mechanical Thromboelastography (TEG). Our results showed a strong correlation between OTEG and TEG measurements for all parameters: R-time (R=0.80, p<0.001), clotting time (R=0.78, p<0.001), Angle (R=0.58, p<0.001), and MA (R=0.60, p<0.001). These results demonstrate the unique capability of OTEG for rapid quantification of blood coagulation status to potentially improve clinical capability for identifying impaired coagulation in cardiovascular patients at the point of care.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latour, M.; Fontaine, G.; Brassard, P.

    As part of a multifaceted effort to better exploit the asteroseismological potential of the pulsating sdB star Feige 48, we present an improved spectroscopic analysis of that star based on new grids of NLTE, fully line-blanketed model atmospheres. To that end, we gathered four high signal-to-noise ratio time-averaged optical spectra of varying spectral resolutions from 1.0 Å to 8.7 Å, and we made use of the results of four independent studies to fix the abundances of the most important metals in the atmosphere of Feige 48. The mean atmospheric parameters we obtained from our four spectra of Feige 48 are:more » T {sub eff} = 29,850 ± 60 K, log g = 5.46 ± 0.01, and log N(He)/N(H) = –2.88 ± 0.02. We also modeled, for the first time, the He II line at 1640 Å from the STIS archive spectrum of the star, and with this line we found an effective temperature and a surface gravity that match well with the values obtained with the optical data. With some fine tuning of the abundances of the metals visible in the optical domain, we were able to achieve a very good agreement between our best available spectrum and our best-fitting synthetic one. Our derived atmospheric parameters for Feige 48 are in rather good agreement with previous estimates based on less sophisticated models. This underlines the relatively small effects of the NLTE approach combined with line blanketing in the atmosphere of this particular star, implying that the current estimates of the atmospheric parameters of Feige 48 are reliable and secure.« less

  16. Three-photon Gaussian-Gaussian-Laguerre-Gaussian excitation of a localized atom to a highly excited Rydberg state

    NASA Astrophysics Data System (ADS)

    Mashhadi, L.

    2017-12-01

    Optical vortices are currently one of the most intensively studied topics in light-matter interaction. In this work, a three-step axial Doppler- and recoil-free Gaussian-Gaussian-Laguerre-Gaussian (GGLG) excitation of a localized atom to the highly excited Rydberg state is presented. By assuming a large detuning for intermediate states, an effective quadrupole excitation related to the Laguerre-Gaussian (LG) excitation to the highly excited Rydberg state is obtained. This special excitation system radially confines the single highly excited Rydberg atom independently of the trapping system into a sharp potential landscape into the so-called ‘far-off-resonance optical dipole-quadrupole trap’ (FORDQT). The key parameters of the Rydberg excitation to the highly excited state, namely the effective Rabi frequency and the effective detuning including a position-dependent AC Stark shift, are calculated in terms of the basic parameters of the LG beam and of the polarization of the excitation lasers. It is shown that the obtained parameters can be tuned to have a precise excitation of a single atom to the desired Rydberg state as well. The features of transferring the optical orbital and spin angular momentum of the polarized LG beam to the atom via quadrupole Rydberg excitation offer a long-lived and controllable qudit quantum memory. In addition, in contrast to the Gaussian laser beam, the doughnut-shaped LG beam makes it possible to use a high intensity laser beam to increase the signal-to-noise ratio in quadrupole excitation with minimized perturbations coming from stray light broadening in the last Rydberg excitation process.

  17. Noninvasive measurement of glucose concentration on human fingertip by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, Tseng-Lin; Lo, Yu-Lung; Liao, Chia-Chi; Phan, Quoc-Hung

    2018-04-01

    A method is proposed for determining the glucose concentration on the human fingertip by extracting two optical parameters, namely the optical rotation angle and the depolarization index, using a Mueller optical coherence tomography technique and a genetic algorithm. The feasibility of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index of aqueous glucose solutions with low and high scattering, respectively. It is shown that for both solutions, the optical rotation angle and depolarization index vary approximately linearly with the glucose concentration. As a result, the ability of the proposed method to obtain the glucose concentration by means of just two optical parameters is confirmed. The practical applicability of the proposed technique is demonstrated by measuring the optical rotation angle and depolarization index on the human fingertip of healthy volunteers under various glucose conditions.

  18. Research and investigation of a communication chain on optical fiber with a Fabry-Perot power diode for the automotive industry

    NASA Astrophysics Data System (ADS)

    Bacis, Irina Bristena; Vasile, Alexandru; Ionescu, Ciprian; Marghescu, Cristina

    2016-12-01

    The purpose of this paper is to analyze different power devices - emitters of optical flow, from the point of view of optical coupling, emitted optical powers, optical fiber losses and receiver. The research and characterization of the transmission through a power optical system is done using a computer system specialized for the automotive industry. This system/platform can deliver current pulses that are controlled by a computer through a software (it is possible to set different parameters such as pulse repetition frequency, duty cycle, and current intensity). For the experiments a power Fabry Perot 1035 laser diode operating in pulse with μφ 1055 nm, Ith = 40 mA, and Iop =750 mA was used with a single-mode SFM 128 optical fiber and an EM type optical coupler connected through alignment. Two types of measurements were conducted to demonstrate the usefulness of the experimental structure. In the first case the amplitude of the voltage pulses was measured at the output of an optical detector with receiving diode in a built-in amplifier with a 50 kΩ load resistance. In the second stage measurements were conducted to determine the optical power injected in the optical fiber and received at the reception cell of a power meter. Another parameter of optical coupling that can be measured using the experimental structure is irradiation. This parameter is very important to determine the optimum cutting angle of the fiber for continuity welding.

  19. Structural and functional photoacoustic molecular tomography aided by emerging contrast agents

    PubMed Central

    Nie, Liming

    2015-01-01

    Photoacoustic tomography (PAT) can offer structural, functional and molecular contrasts at scalable observation level. By ultrasonically overcoming the strong optical scattering, this imaging technology can reach centimeters penetration depth while retaining high spatial resolution in biological tissue. Recent extensive research has been focused on developing new contrast agents to improve the imaging sensitivity, specificity and efficiency. These emerging materials have substantially accelerated PAT applications in signal sensing, functional imaging, biomarker labeling and therapy monitoring etc. Here, the potentials of different optical probes as PAT contrast agents were elucidated. We first describe the instrumental embodiments and the measured functional parameters, then focus on emerging contrast agent-based PAT applications, and finally discuss the challenges and prospects. PMID:24967718

  20. Estimating Soil and Vegetation Parameters using Synergies between Optical and Microwave Observations

    NASA Astrophysics Data System (ADS)

    Timmermans, J.; Gomez-Dans, J. L.; Lewis, P.; Loew, A.; Schlenz, F.; Mathieu, P. P.; Pounder, N. L.; Styles, J.

    2017-12-01

    The large amount of remote sensing data available provides a huge potential for various applications, such as crop monitoring. This potential has not been realized yet because inversion-algorithms mostly use a single sensor approach. Consequently, products that combine different low-level observations from different sensors are hard to find. The difficulty in a multi-sensor approach is that 1) different sensor types (microwave/ optical) require different radiative transfer (RT) models and 2) it require consistency between the models. The goal of this research was to investigate the synergistic potential of integrating optical (Opt) and passive microwave (PM) RT models within the Earth Observation Land Data Assimilation System (EOLDAS). EOLDAS uses a Bayesian data assimilation approach together with observation operators such as PROSAIL to estimate state variables. In order to use PM observations, the Community Microwave Emission Model was integrated into the system. Results show a high potential when both Opt and PM observations are used independently. Using only RapidEye only with SAIL RT model, LAI was estimated with R=0.68, with leaf water content and dry matter having lower correlations |R|<0.4. Results for retrieving soil temperature and leaf area index retrievals using only Elbarra observations were good with respectively R=[0.85, 0.79], and for soil moisture also very good with R=0.73 (focusing on dry-spells of at least 9 days only), and with R=0.89 and R=0.77 for respectively the trend and anomalies. Synergistically using Opt and MW observations also shows good potential. Results show that absolute errors decreased (with RMSE=1.22 and S=0.89), but with lower R=0.59; sparse optical observations only improved part of the temporal domain. This shows that PM observations provide good information for the overall trend of the retrieved LAI due to the regular acquisitions, while Opt observations provides better information of the absolute values of the LAI.

  1. Cytotoxicity of ZnO Nanoparticles Can Be Tailored by Modifying Their Surface Structure: A Green Chemistry Approach for Safer Nanomaterials

    PubMed Central

    2015-01-01

    ZnO nanoparticles (NP) are extensively used in numerous nanotechnology applications; however, they also happen to be one of the most toxic nanomaterials. This raises significant environmental and health concerns and calls for the need to develop new synthetic approaches to produce safer ZnO NP, while preserving their attractive optical, electronic, and structural properties. In this work, we demonstrate that the cytotoxicity of ZnO NP can be tailored by modifying their surface-bound chemical groups, while maintaining the core ZnO structure and related properties. Two equally sized (9.26 ± 0.11 nm) ZnO NP samples were synthesized from the same zinc acetate precursor using a forced hydrolysis process, and their surface chemical structures were modified by using different reaction solvents. X-ray diffraction and optical studies showed that the lattice parameters, optical properties, and band gap (3.44 eV) of the two ZnO NP samples were similar. However, FTIR spectroscopy showed significant differences in the surface structures and surface-bound chemical groups. This led to major differences in the zeta potential, hydrodynamic size, photocatalytic rate constant, and more importantly, their cytotoxic effects on Hut-78 cancer cells. The ZnO NP sample with the higher zeta potential and catalytic activity displayed a 1.5-fold stronger cytotoxic effect on cancer cells. These results suggest that by modifying the synthesis parameters/conditions and the surface chemical structures of the nanocrystals, their surface charge density, catalytic activity, and cytotoxicity can be tailored. This provides a green chemistry approach to produce safer ZnO NP. PMID:25068096

  2. High-concentration zeta potential measurements using light-scattering techniques

    PubMed Central

    Kaszuba, Michael; Corbett, Jason; Watson, Fraser Mcneil; Jones, Andrew

    2010-01-01

    Zeta potential is the key parameter that controls electrostatic interactions in particle dispersions. Laser Doppler electrophoresis is an accepted method for the measurement of particle electrophoretic mobility and hence zeta potential of dispersions of colloidal size materials. Traditionally, samples measured by this technique have to be optically transparent. Therefore, depending upon the size and optical properties of the particles, many samples will be too concentrated and will require dilution. The ability to measure samples at or close to their neat concentration would be desirable as it would minimize any changes in the zeta potential of the sample owing to dilution. However, the ability to measure turbid samples using light-scattering techniques presents a number of challenges. This paper discusses electrophoretic mobility measurements made on turbid samples at high concentration using a novel cell with reduced path length. Results are presented on two different sample types, titanium dioxide and a polyurethane dispersion, as a function of sample concentration. For both of the sample types studied, the electrophoretic mobility results show a gradual decrease as the sample concentration increases and the possible reasons for these observations are discussed. Further, a comparison of the data against theoretical models is presented and discussed. Conclusions and recommendations are made from the zeta potential values obtained at high concentrations. PMID:20732896

  3. Raman spectroscopy for the control of the atmospheric bioindicators

    NASA Astrophysics Data System (ADS)

    Timchenko, E. V.; Timchenko, P. E.; Shamina, L. A.; Zherdeva, L. A.

    2015-09-01

    Experimental studies of optical parameters of different atmospheric bioindicators (arboreous and terricolous types of plants) have been performed with Raman spectroscopy. The change in the optical parameters has been explored for the objects under direct light exposure, as well as for the objects placed in the shade. The age peculiarities of the bioindicators have also been taken into consideration. It was established that the statistical variability of optical parameters for arboreous bioindicators was from 9% to 15% and for plants from 4% to 8.7%. On the basis of these results dandelion (Taraxacum) was chosen as a bioindicator of atmospheric emissions.

  4. Steady flow and heat transfer analysis of Phan-Thein-Tanner fluid in double-layer optical fiber coating analysis with Slip Conditions

    NASA Astrophysics Data System (ADS)

    Khan, Zeeshan; Shah, Rehan Ali; Islam, Saeed; Jan, Bilal; Imran, Muhammad; Tahir, Farisa

    2016-10-01

    Modern optical fibers require double-layer coating on the glass fiber to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low-high density polyethylene (LDPE/HDPE), nylon and Polysulfone. In this paper, double-layer optical fiber coating is performed using melt polymer satisfying PTT fluid model in a pressure type die using wet-on-wet coating process. The assumption of fully developed flow of Phan-Thien-Tanner (PTT) fluid model, two-layer liquid flows of an immiscible fluid is modeled in an annular die, where the fiber is dragged at a higher speed. The equations characterizing the flow and heat transfer phenomena are solved exactly and the effects of emerging parameters (Deborah and slip parameters, characteristic velocity, radii ratio and Brinkman numbers on the axial velocity, flow rate, thickness of coated fiber optics, and temperature distribution) are reported in graphs. It is shown that an increase in the non-Newtonian parameters increase the velocity in the absence or presence of slip parameters which coincides with related work. The comparison is done with experimental work by taking λ → 0 (non-Newtonian parameter).

  5. Steady flow and heat transfer analysis of Phan-Thein-Tanner fluid in double-layer optical fiber coating analysis with Slip Conditions

    PubMed Central

    Khan, Zeeshan; Shah, Rehan Ali; Islam, Saeed; Jan, Bilal; Imran, Muhammad; Tahir, Farisa

    2016-01-01

    Modern optical fibers require double-layer coating on the glass fiber to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low-high density polyethylene (LDPE/HDPE), nylon and Polysulfone. In this paper, double-layer optical fiber coating is performed using melt polymer satisfying PTT fluid model in a pressure type die using wet-on-wet coating process. The assumption of fully developed flow of Phan-Thien-Tanner (PTT) fluid model, two-layer liquid flows of an immiscible fluid is modeled in an annular die, where the fiber is dragged at a higher speed. The equations characterizing the flow and heat transfer phenomena are solved exactly and the effects of emerging parameters (Deborah and slip parameters, characteristic velocity, radii ratio and Brinkman numbers on the axial velocity, flow rate, thickness of coated fiber optics, and temperature distribution) are reported in graphs. It is shown that an increase in the non-Newtonian parameters increase the velocity in the absence or presence of slip parameters which coincides with related work. The comparison is done with experimental work by taking λ → 0 (non-Newtonian parameter). PMID:27708412

  6. Steady flow and heat transfer analysis of Phan-Thein-Tanner fluid in double-layer optical fiber coating analysis with Slip Conditions.

    PubMed

    Khan, Zeeshan; Shah, Rehan Ali; Islam, Saeed; Jan, Bilal; Imran, Muhammad; Tahir, Farisa

    2016-10-06

    Modern optical fibers require double-layer coating on the glass fiber to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low-high density polyethylene (LDPE/HDPE), nylon and Polysulfone. In this paper, double-layer optical fiber coating is performed using melt polymer satisfying PTT fluid model in a pressure type die using wet-on-wet coating process. The assumption of fully developed flow of Phan-Thien-Tanner (PTT) fluid model, two-layer liquid flows of an immiscible fluid is modeled in an annular die, where the fiber is dragged at a higher speed. The equations characterizing the flow and heat transfer phenomena are solved exactly and the effects of emerging parameters (Deborah and slip parameters, characteristic velocity, radii ratio and Brinkman numbers on the axial velocity, flow rate, thickness of coated fiber optics, and temperature distribution) are reported in graphs. It is shown that an increase in the non-Newtonian parameters increase the velocity in the absence or presence of slip parameters which coincides with related work. The comparison is done with experimental work by taking λ → 0 (non-Newtonian parameter).

  7. France's State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes.

    PubMed

    Delepine-Lesoille, Sylvie; Girard, Sylvain; Landolt, Marcel; Bertrand, Johan; Planes, Isabelle; Boukenter, Aziz; Marin, Emmanuel; Humbert, Georges; Leparmentier, Stéphanie; Auguste, Jean-Louis; Ouerdane, Youcef

    2017-06-13

    This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo's severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution.

  8. France’s State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes

    PubMed Central

    Delepine-Lesoille, Sylvie; Girard, Sylvain; Landolt, Marcel; Bertrand, Johan; Planes, Isabelle; Boukenter, Aziz; Marin, Emmanuel; Humbert, Georges; Leparmentier, Stéphanie; Auguste, Jean-Louis; Ouerdane, Youcef

    2017-01-01

    This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo’s severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution. PMID:28608831

  9. Controllably Inducing and Modeling Optical Response from Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Lombardo, Nicholas; Naumov, Anton

    Graphene, a novel 2-dimensional sp2-hybridized allotrope of Carbon, has unique electrical and mechanical properties. While it is naturally a highly conductive zero band gap semiconductor, graphene does not exhibit optical emission. It has been shown that functionalization with oxygen-containing groups elicits an opening of band gap in graphene. In this work, we aim to induce an optical response in graphene via controlled oxidation, and then explore potential origins of its photoluminescence through mathematical modeling. We employ timed ozone treatment of initially non-fluorescent reduced graphene oxide (RGO) to produce graphene oxide (GO) with specific optical properties. Oxidized material exhibits substantial changes in the absorption spectra and a broad photoluminescence feature, centered at 532 nm, which suggests the appearance of a band gap. We then explore a number of possible mechanisms for the origin of GO photoluminescence via PM3 and ab initio calculations on a functionalized single sheet of graphene. By adjusting modeling parameters to fit experimentally obtained optical transition energies we estimate the size of the sp2 graphitic regions in GO and the arrangement of functional groups that could be responsible for the observed emission.

  10. Stimulation of the human auditory nerve with optical radiation

    NASA Astrophysics Data System (ADS)

    Fishman, Andrew; Winkler, Piotr; Mierzwinski, Jozef; Beuth, Wojciech; Izzo Matic, Agnella; Siedlecki, Zygmunt; Teudt, Ingo; Maier, Hannes; Richter, Claus-Peter

    2009-02-01

    A novel, spatially selective method to stimulate cranial nerves has been proposed: contact free stimulation with optical radiation. The radiation source is an infrared pulsed laser. The Case Report is the first report ever that shows that optical stimulation of the auditory nerve is possible in the human. The ethical approach to conduct any measurements or tests in humans requires efficacy and safety studies in animals, which have been conducted in gerbils. This report represents the first step in a translational research project to initiate a paradigm shift in neural interfaces. A patient was selected who required surgical removal of a large meningioma angiomatum WHO I by a planned transcochlear approach. Prior to cochlear ablation by drilling and subsequent tumor resection, the cochlear nerve was stimulated with a pulsed infrared laser at low radiation energies. Stimulation with optical radiation evoked compound action potentials from the human auditory nerve. Stimulation of the auditory nerve with infrared laser pulses is possible in the human inner ear. The finding is an important step for translating results from animal experiments to human and furthers the development of a novel interface that uses optical radiation to stimulate neurons. Additional measurements are required to optimize the stimulation parameters.

  11. RMB identification based on polarization parameters inversion imaging

    NASA Astrophysics Data System (ADS)

    Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang

    2016-10-01

    Social order is threatened by counterfeit money. Conventional anti-counterfeit technology is much too old to identify its authenticity or not. The intrinsic difference between genuine notes and counterfeit notes is its paper tissue. In this paper a new technology of detecting RMB is introduced, the polarization parameter indirect microscopic imaging technique. A conventional reflection microscopic system is used as the basic optical system, and inserting into it with polarization-modulation mechanics. The near-field structural characteristics can be delivered by optical wave and material coupling. According to coupling and conduction physics, calculate the changes of optical wave parameters, then get the curves of the intensity of the image. By analyzing near-field polarization parameters in nanoscale, finally calculate indirect polarization parameter imaging of the fiber of the paper tissue in order to identify its authenticity.

  12. Optical nonlinearity of D-A-π-D and D-A-π-A type of new chalcones for potential applications in optical limiting and density functional theory studies

    NASA Astrophysics Data System (ADS)

    Chandra Shekhara Shetty, T.; Chidan Kumar, C. S.; Gagan Patel, K. N.; Chia, Tze Shyang; Dharmaprakash, S. M.; Ramasami, Ponnadurai; Umar, Yunusa; Chandraju, Siddegowda; Quah, Ching Kheng

    2017-09-01

    Two new chalcones namely, (2E)-1-(3-fluoro-4-methoxyphenyl)-3-(4-methoxyphenyl) prop-2-en-1-one and (2E)-3-(4-chlorophenyl)-1-(3-fluoro-4-methoxyphenyl)prop-2-en-1-one were synthesized and grown as single crystals by slow evaporation technique in methanol. The FTIR spectrum recorded confirms the presence of functional groups in these materials. The molecular conformation of the compounds was achieved by single crystal X-ray diffraction studies. The thermal stability of the crystals was determined from TGA/DSC curve. The third order optical nonlinearity of the chalcone compounds in DMF solution has been carried out using an Nd:YAG laser at 532 nm as the source of excitation. The nonlinear optical response was characterized by measuring the intensity dependent refractive index n2 of the medium using Z-scan technique. It is seen that the molecules exhibit a negative (defocusing) nonlinearity and large nonlinear refractive index of the order of -1.8 × 10-11 esu. The third-order nonlinearity of the studied chalcones is dominated by nonlinear refraction, which leads to strong optical limiting of laser. The result reveals that these two new chalcone molecules would be a promising material for optical limiting applications. In addition, the optimized molecular geometry, vibrational frequencies in gas, and the Molecular Electrostatic Potential (MEP) surface parameters of the two molecules were calculated using DFT/B3LYP method with 6-311++G(d,p) basis set in ground state. All the theoretical calculations were found in good agreement with experimental data.

  13. Characterizing the phytoplankton soup: pump and plumbing effects on the particle assemblage in underway optical seawater systems.

    PubMed

    Cetinić, Ivona; Poulton, Nicole; Slade, Wayne H

    2016-09-05

    Many optical and biogeochemical data sets, crucial for algorithm development and satellite data validation, are collected using underway seawater systems over the course of research cruises. Phytoplankton and particle size distribution (PSD) in the ocean is a key measurement, required in oceanographic research and ocean optics. Using a data set collected in the North Atlantic, spanning different oceanic water types, we outline the differences observed in concurrent samples collected from two different flow-through systems: a permanently plumbed science seawater supply with an impeller pump, and an independent system with shorter, clean tubing runs and a diaphragm pump. We observed an average of 40% decrease in phytoplankton counts, and significant changes to the PSD in 10-45 µm range, when comparing impeller and diaphragm pump systems. Change in PSD seems to be more dependent on the type of the phytoplankton, than the size, with photosynthetic ciliates displaying the largest decreases in cell counts (78%). Comparison of chlorophyll concentrations across the two systems demonstrated lower sensitivity to sampling system type. Observed changes in several measured biogeochemical parameters (associated with phytoplankton size distribution) using the two sampling systems, should be used as a guide towards building best practices when it comes to the deployment of flow-through systems in the field for examining optics and biogeochemistry. Using optical models, we evaluated potential impact of the observed change in measured phytoplankton size spectra onto scattering measurements, resulting in significant differences between modeled optical properties across systems (~40%). Researchers should be aware of the methods used with previously collected data sets, and take into consideration the potentially significant and highly variable ecosystem-dependent biases in designing field studies in the future.

  14. Optical absorption characteristics in the assessment of powder phosphor-based x-ray detectors: from nano- to micro-scale.

    PubMed

    Liaparinos, P F

    2015-11-21

    X-ray phosphor-based detectors have enormously improved the quality of medical imaging examinations through the optimization of optical diffusion. In recent years, with the development of science and technology in the field of materials, improved powder phosphors require structural and optical properties that contribute to better optical signal propagation. The purpose of this paper was to provide a quantitative and qualitative understanding of the optical absorption characteristics in the assessment of powder phosphor-based detectors (from nano- scale up to micro-scale). Variations on the optical absorption parameters (i.e. the light extinction coefficient [Formula: see text] and the percentage probability of light absorption p%) were evaluated based on Mie calculations examining a wide range of light wavelengths, particle refractive indices and sizes. To model and assess the effects of the aforementioned parameters on optical diffusion, Monte Carlo simulation techniques were employed considering: (i) phosphors of different layer thickness, 100 μm (thin layer) and 300 μm (thick layer), respectively, (ii) light extinction coefficient values, 1, 3 and 6 μm(-1), and (iii) percentage probability of light absorption p% in the range 10(-4)-10(-2). Results showed that the [Formula: see text] coefficient is high for phosphor grains in the submicron scale and for low light wavelengths. At higher wavelengths (above 650 nm), optical quanta follow approximately similar depths until interaction for grain diameter 500 nm and 1 μm. Regarding the variability of the refractive index, high variations of the [Formula: see text] coefficient occurred above 1.6. Furthermore, results derived from Monte Carlo modeling showed that high spatial resolution phosphors can be accomplished by increasing the [Formula: see text] parameter. More specifically, the FWHM was found to decrease (i.e. higher resolution): (i) 4.8% at 100 μm and (ii) 9.5%, at 300 μm layer thickness. This study attempted to examine the role of the optical absorption parameters on optical diffusion studies. A significant outcome of the present investigation was that the improvement of phosphor spatial resolution without decreasing the light collection efficiency too much can be better achieved by increasing the parameter [Formula: see text] rather than the parameter p%.

  15. Optical guidance vidicon test program

    NASA Technical Reports Server (NTRS)

    Eiseman, A. R.; Stanton, R. H.; Voge, C. C.

    1976-01-01

    A laboratory and field test program was conducted to quantify the optical navigation parameters of the Mariner vidicons. A scene simulator and a camera were designed and built for vidicon tests under a wide variety of conditions. Laboratory tests characterized error sources important to the optical navigation process and field tests verified star sensitivity and characterized comet optical guidance parameters. The equipment, tests and data reduction techniques used are described. Key test results are listed. A substantial increase in the understanding of the use of selenium vidicons as detectors for spacecraft optical guidance was achieved, indicating a reduction in residual offset errors by a factor of two to four to the single pixel level.

  16. Plasmon resonance enhanced optical transmission and magneto-optical Faraday effects in nanohole arrays blocked by metal antenna

    NASA Astrophysics Data System (ADS)

    Lei, Chengxin; Tang, Zhixiong; Wang, Sihao; Li, Daoyong; Chen, Leyi; Tang, Shaolong; Du, Youwei

    2017-07-01

    The properties of the optical and magneto-optical effects of an improved plasmonic nanohole arrays blocked by gold mushroom caps are investigated by using the finite difference time domain (FDTD) method. It is most noteworthy that the strongly enhanced Faraday rotation along with high transmittance has been achieved simultaneously by optimizing the parameters of nanostructure in a broad spectrum spanning visible to near-infrared frequencies, which is very important in practical application for designing novel optical and magneto-optical devices. In our designed structure, we obtained two extraordinary optical transmission (EOT) resonant peaks along with enhanced Faraday rotation and two peaks of the figure of merit (FOM). By optimizing the geometrical parameters of the structure, we can obtain an almost 10-fold enhancement of Faraday rotation with a corresponding transmittance 50%, and the FOM of 0.752 at the same wavelength. As expected, the optical and magneto-optical effects sensitively depends on the geometrical parameters of our structure, which can be simply tailored by the height of pillar, the diameter of mushroom cap, and the period of the structure, and so on. The physical mechanism of these physical phenomena in the paper has been explained in detail. These research findings are of great theoretical significance in developing the novel magneto-optical devices in the future.

  17. Mixing formula for tissue-mimicking silicone phantoms in the near infrared

    NASA Astrophysics Data System (ADS)

    Böcklin, C.; Baumann, D.; Stuker, F.; Fröhlich, Jürg

    2015-03-01

    The knowledge of accurate optical parameters of materials is paramount in biomedical optics applications and numerical simulations of such systems. Phantom materials with variable but predefined parameters are needed to optimise these systems. An optimised integrating sphere measurement setup and reconstruction algorithm are presented in this work to determine the optical properties of silicone rubber based phantoms whose absorption and scattering properties are altered with TiO2 and carbon black particles. A mixing formula for all constituents is derived and allows to create phantoms with predefined optical properties.

  18. Optic nerve head parameters of high-definition optical coherence tomography and Heidelberg retina tomogram in perimetric and preperimetric glaucoma.

    PubMed

    Begum, Viquar Unnisa; Addepalli, Uday Kumar; Senthil, Sirisha; Garudadri, Chandra Sekhar; Rao, Harsha Laxmana

    2016-04-01

    Heidelberg retina tomogram (HRT) and optical coherence tomography (OCT) are two widely used imaging modalities to evaluate the optic nerve head (ONH) in glaucoma. To compare the ONH parameters of HRT3 and high-definition OCT (HD-OCT) and evaluate their diagnostic abilities in perimetric and preperimetric glaucoma. Cross-sectional analysis. 35 control eyes (24 subjects), 21 preperimetric glaucoma eyes (15 patients), and 64 perimetric glaucoma eyes (44 patients) from the Longitudinal Glaucoma Evaluation Study underwent HRT3 and HD-OCT examinations. Agreement between the ONH parameters of HRT and HD-OCT were assessed using Bland-Altman plots. Diagnostic abilities of ONH parameters were evaluated using area under the receiver operating characteristic curves (AUCs), sensitivity at fixed specificity, and likelihood ratios (LR). Optic disc area, vertical cup to disc ratio, and cup volume with HD-OCT were larger than with HRT, while the rim area was smaller with HD-OCT (P < 0.001 for all comparisons). AUCs of all HD-OCT ONH parameters (0.90-0.97 in perimetric and 0.62-0.71 in preperimetric glaucoma) were comparable (P > 0.10) to the corresponding HRT ONH parameters (0.81-0.95 in perimetric and 0.55-0.72 in preperimetric glaucoma). LRs associated with diagnostic categorization of ONH parameters of both HD-OCT and HRT were associated with larger effects on posttest probability of perimetric compared to preperimetric glaucoma. ONH measurements of HD-OCT and HRT3 cannot be used interchangeably. Though the diagnostic abilities of ONH parameters of HD-OCT and HRT in glaucoma were comparable, the same were significantly lower in preperimetric compared to perimetric glaucoma.

  19. Optic nerve head parameters of high-definition optical coherence tomography and Heidelberg retina tomogram in perimetric and preperimetric glaucoma

    PubMed Central

    Begum, Viquar Unnisa; Addepalli, Uday Kumar; Senthil, Sirisha; Garudadri, Chandra Sekhar; Rao, Harsha Laxmana

    2016-01-01

    Background: Heidelberg retina tomogram (HRT) and optical coherence tomography (OCT) are two widely used imaging modalities to evaluate the optic nerve head (ONH) in glaucoma. Purpose: To compare the ONH parameters of HRT3 and high-definition OCT (HD-OCT) and evaluate their diagnostic abilities in perimetric and preperimetric glaucoma. Design: Cross-sectional analysis. Methods: 35 control eyes (24 subjects), 21 preperimetric glaucoma eyes (15 patients), and 64 perimetric glaucoma eyes (44 patients) from the Longitudinal Glaucoma Evaluation Study underwent HRT3 and HD-OCT examinations. Statistical Analysis: Agreement between the ONH parameters of HRT and HD-OCT were assessed using Bland-Altman plots. Diagnostic abilities of ONH parameters were evaluated using area under the receiver operating characteristic curves (AUCs), sensitivity at fixed specificity, and likelihood ratios (LR). Results: Optic disc area, vertical cup to disc ratio, and cup volume with HD-OCT were larger than with HRT, while the rim area was smaller with HD-OCT (P < 0.001 for all comparisons). AUCs of all HD-OCT ONH parameters (0.90-0.97 in perimetric and 0.62-0.71 in preperimetric glaucoma) were comparable (P > 0.10) to the corresponding HRT ONH parameters (0.81-0.95 in perimetric and 0.55-0.72 in preperimetric glaucoma). LRs associated with diagnostic categorization of ONH parameters of both HD-OCT and HRT were associated with larger effects on posttest probability of perimetric compared to preperimetric glaucoma. Conclusions: ONH measurements of HD-OCT and HRT3 cannot be used interchangeably. Though the diagnostic abilities of ONH parameters of HD-OCT and HRT in glaucoma were comparable, the same were significantly lower in preperimetric compared to perimetric glaucoma. PMID:27221679

  20. Automatic design of optical systems by digital computer

    NASA Technical Reports Server (NTRS)

    Casad, T. A.; Schmidt, L. F.

    1967-01-01

    Computer program uses geometrical optical techniques and a least squares optimization method employing computing equipment for the automatic design of optical systems. It evaluates changes in various optical parameters, provides comprehensive ray-tracing, and generally determines the acceptability of the optical system characteristics.

  1. Sensitivity of corneal biomechanical and optical behavior to material parameters using design of experiments method.

    PubMed

    Xu, Mengchen; Lerner, Amy L; Funkenbusch, Paul D; Richhariya, Ashutosh; Yoon, Geunyoung

    2018-02-01

    The optical performance of the human cornea under intraocular pressure (IOP) is the result of complex material properties and their interactions. The measurement of the numerous material parameters that define this material behavior may be key in the refinement of patient-specific models. The goal of this study was to investigate the relative contribution of these parameters to the biomechanical and optical responses of human cornea predicted by a widely accepted anisotropic hyperelastic finite element model, with regional variations in the alignment of fibers. Design of experiments methods were used to quantify the relative importance of material properties including matrix stiffness, fiber stiffness, fiber nonlinearity and fiber dispersion under physiological IOP. Our sensitivity results showed that corneal apical displacement was influenced nearly evenly by matrix stiffness, fiber stiffness and nonlinearity. However, the variations in corneal optical aberrations (refractive power and spherical aberration) were primarily dependent on the value of the matrix stiffness. The optical aberrations predicted by variations in this material parameter were sufficiently large to predict clinically important changes in retinal image quality. Therefore, well-characterized individual variations in matrix stiffness could be critical in cornea modeling in order to reliably predict optical behavior under different IOPs or after corneal surgery.

  2. Measurement accuracy of a stressed contact lens during its relaxation period

    NASA Astrophysics Data System (ADS)

    Compertore, David C.; Ignatovich, Filipp V.

    2018-02-01

    We examine the dioptric power and transmitted wavefront of a contact lens as it releases its handling stresses. Handling stresses are introduced as part of the contact lens loading process and are common across all contact lens measurement procedures and systems. The latest advances in vision correction require tighter quality control during the manufacturing of the contact lenses. The optical power of contact lenses is one of the critical characteristics for users. Power measurements are conducted in the hydrated state, where the lens is resting inside a solution-filled glass cuvette. In a typical approach, the contact lens must be subject to long settling times prior to any measurements. Alternatively, multiple measurements must be averaged. Apart from potential operator dependency of such approach, it is extremely time-consuming, and therefore it precludes higher rates of testing. Comprehensive knowledge about the settling process can be obtained by monitoring multiple parameters of the lens simultaneously. We have developed a system that combines co-aligned a Shack-Hartmann transmitted wavefront sensor and a time-domain low coherence interferometer to measure several optical and physical parameters (power, cylinder power, aberrations, center thickness, sagittal depth, and diameter) simultaneously. We monitor these parameters during the stress relaxation period and show correlations that can be used by manufacturers to devise methods for improved quality control procedures.

  3. The Chandra Deep Field South as a test case for Global Multi Conjugate Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Portaluri, E.; Viotto, V.; Ragazzoni, R.; Gullieuszik, M.; Bergomi, M.; Greggio, D.; Biondi, F.; Dima, M.; Magrin, D.; Farinato, J.

    2017-04-01

    The era of the next generation of giant telescopes requires not only the advent of new technologies but also the development of novel methods, in order to exploit fully the extraordinary potential they are built for. Global Multi Conjugate Adaptive Optics (GMCAO) pursues this approach, with the goal of achieving good performance over a field of view of a few arcmin and an increase in sky coverage. In this article, we show the gain offered by this technique to an astrophysical application, such as the photometric survey strategy applied to the Chandra Deep Field South as a case study. We simulated a close-to-real observation of a 500 × 500 arcsec2 extragalactic deep field with a 40-m class telescope that implements GMCAO. We analysed mock K-band images of 6000 high-redshift (up to z = 2.75) galaxies therein as if they were real to recover the initial input parameters. We attained 94.5 per cent completeness for source detection with SEXTRACTOR. We also measured the morphological parameters of all the sources with the two-dimensional fitting tools GALFIT. The agreement we found between recovered and intrinsic parameters demonstrates GMCAO as a reliable approach to assist extremely large telescope (ELT) observations of extragalactic interest.

  4. Potential efficiencies of open- and closed-cycle CO, supersonic, electric-discharge lasers

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1976-01-01

    Computed open- and closed-cycle system efficiencies (laser power output divided by electrical power input) are presented for a CW carbon monoxide, supersonic, electric-discharge laser. Closed-system results include the compressor power required to overcome stagnation pressure losses due to supersonic heat addition and a supersonic diffuser. The paper shows the effect on the system efficiencies of varying several important parameters. These parameters include: gas mixture, gas temperature, gas total temperature, gas density, total discharge energy loading, discharge efficiency, saturated gain coefficient, optical cavity size and location with respect to the discharge, and supersonic diffuser efficiency. Maximum open-cycle efficiency of 80-90% is predicted; the best closed-cycle result is 60-70%.

  5. An ATP System for Deep-Space Optical Communication

    NASA Technical Reports Server (NTRS)

    Lee, Shinhak; Irtuzm Gerardi; Alexander, James

    2008-01-01

    An acquisition, tracking, and pointing (ATP) system is proposed for aiming an optical-communications downlink laser beam from deep space. In providing for a direction reference, the concept exploits the mature technology of star trackers to eliminate the need for a costly and potentially hazardous laser beacon. The system would include one optical and two inertial sensors, each contributing primarily to a different portion of the frequency spectrum of the pointing signal: a star tracker (<10 Hz), a gyroscope (<50 Hz), and a precise fluid-rotor inertial angular-displacement sensor (sometimes called, simply, "angle sensor") for the frequency range >50 Hz. The outputs of these sensors would be combined in an iterative averaging process to obtain high-bandwidth, high-accuracy pointing knowledge. The accuracy of pointing knowledge obtainable by use of the system was estimated on the basis of an 8-cm-diameter telescope and known parameters of commercially available star trackers and inertial sensors: The single-axis pointing-knowledge error was found to be characterized by a standard deviation of 150 nanoradians - below the maximum value (between 200 and 300 nanoradians) likely to be tolerable in deep-space optical communications.

  6. Third-order nonlinear optical properties of acid green 25 dye by Z-scan method

    NASA Astrophysics Data System (ADS)

    Jeyaram, S.; Geethakrishnan, T.

    2017-03-01

    Third-order nonlinear optical (NLO) properties of aqueous solutions of an anthraquinone dye (Acid green 25 dye, color index: 61570) have been studied by Z-scan method with a 5 mW continuous wave (CW) diode laser operating at 635 nm. The nonlinear refractive index (n2) and the absorption coefficient (β) have been evaluated respectively from the closed and open aperture Z-scan data and the values of these parameters are found to increase with increase in concentration of the dye solution. The negative sign of the observed nonlinear refractive index (n2) indicates that the aqueous solution of acid green 25 dye exhibits self-defocusing type optical nonlinearity. The mechanism of the observed nonlinear absorption (NLA) and nonlinear refraction (NLR) is attributed respectively to reverse saturable absorption (RSA) and thermal nonlinear effects. The magnitudes of n2 and β are found to be of the order of 10-7 cm2/W and 10-3 cm/W respectively. With these experimental results, the authors suggest that acid green 25 dye may have potential applications in nonlinear optics.

  7. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O.

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ˜8 J cm-2. This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 1019 cm-2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  8. Transbulbar B-Mode Sonography in Multiple Sclerosis: Clinical and Biological Relevance.

    PubMed

    De Masi, Roberto; Orlando, Stefania; Conte, Aldo; Pasca, Sergio; Scarpello, Rocco; Spagnolo, Pantaleo; Muscella, Antonella; De Donno, Antonella

    2016-12-01

    Optic nerve sheath diameter quantification by transbulbar B-mode sonography is a recently validated technique, but its clinical relevance in relapse-free multiple sclerosis patients remains unexplored. In an open-label, comparative, cross-sectional study, we aimed to assess possible differences between patients and healthy controls in terms of optic nerve sheath diameter and its correlation with clinical/paraclinical parameters in this disease. Sixty unselected relapse-free patients and 35 matched healthy controls underwent transbulbar B-mode sonography. Patients underwent routine neurologic examination, brain magnetic resonance imaging and visual evoked potential tests. The mean optic nerve sheath diameter 3 and 5 mm from the eyeball was 22-25% lower in patients than controls and correlated with the Expanded Disability Status Scale (r = -0.34, p = 0.048, and r = -0.32, p = 0.042, respectively). We suggest that optic nerve sheath diameter quantified by transbulbar B-mode sonography should be included in routine assessment of the disease as an extension of the neurologic examination. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Spectrophotometric evaluation of optical performances of polarizing technologies for smart window applications

    NASA Astrophysics Data System (ADS)

    Levati, N.; Vitali, L.; Fustinoni, D.; Niro, A.

    2014-11-01

    In recent years, window-integrated solar protection systems are used and studied as a promising energy saving technology, both for cold and hot climates. In particular, smart windows, whose optical proprieties in the solar wavelength range can somehow be controlled, show interesting results, especially in reducing the air conditioning power consumption. With the improvement of nanolithography techniques as well as with the possibility of designing polarization intervals, coupled polarizing films show a good potential as a dynamic and wavelength-selective shading technology. In this paper, UV-Vis-NIR spectrophotometric measurements are carried out on two polarizing technologies, Polaroid crystalline polarizer and Wire Grid broadband polarizer, in single- and double- film layout, to evaluate their optical performances, i.e. spectral transmittance, reflectance and absorptivity. The solar radiation glazing factors, according to the standard UNI EN 410, are calculated. The measured data are also analyzed in detail to emphasize the optical peculiarities of the materials under study that do not stand out from the standard parameters, as well as the specific problems that arise in spectrophotometric evaluations of polarizing films.

  10. Feasibility of 3D Reconstruction of Neural Morphology Using Expansion Microscopy and Barcode-Guided Agglomeration

    PubMed Central

    Yoon, Young-Gyu; Dai, Peilun; Wohlwend, Jeremy; Chang, Jae-Byum; Marblestone, Adam H.; Boyden, Edward S.

    2017-01-01

    We here introduce and study the properties, via computer simulation, of a candidate automated approach to algorithmic reconstruction of dense neural morphology, based on simulated data of the kind that would be obtained via two emerging molecular technologies—expansion microscopy (ExM) and in-situ molecular barcoding. We utilize a convolutional neural network to detect neuronal boundaries from protein-tagged plasma membrane images obtained via ExM, as well as a subsequent supervoxel-merging pipeline guided by optical readout of information-rich, cell-specific nucleic acid barcodes. We attempt to use conservative imaging and labeling parameters, with the goal of establishing a baseline case that points to the potential feasibility of optical circuit reconstruction, leaving open the possibility of higher-performance labeling technologies and algorithms. We find that, even with these conservative assumptions, an all-optical approach to dense neural morphology reconstruction may be possible via the proposed algorithmic framework. Future work should explore both the design-space of chemical labels and barcodes, as well as algorithms, to ultimately enable routine, high-performance optical circuit reconstruction. PMID:29114215

  11. Feasibility of 3D Reconstruction of Neural Morphology Using Expansion Microscopy and Barcode-Guided Agglomeration.

    PubMed

    Yoon, Young-Gyu; Dai, Peilun; Wohlwend, Jeremy; Chang, Jae-Byum; Marblestone, Adam H; Boyden, Edward S

    2017-01-01

    We here introduce and study the properties, via computer simulation, of a candidate automated approach to algorithmic reconstruction of dense neural morphology, based on simulated data of the kind that would be obtained via two emerging molecular technologies-expansion microscopy (ExM) and in-situ molecular barcoding. We utilize a convolutional neural network to detect neuronal boundaries from protein-tagged plasma membrane images obtained via ExM, as well as a subsequent supervoxel-merging pipeline guided by optical readout of information-rich, cell-specific nucleic acid barcodes. We attempt to use conservative imaging and labeling parameters, with the goal of establishing a baseline case that points to the potential feasibility of optical circuit reconstruction, leaving open the possibility of higher-performance labeling technologies and algorithms. We find that, even with these conservative assumptions, an all-optical approach to dense neural morphology reconstruction may be possible via the proposed algorithmic framework. Future work should explore both the design-space of chemical labels and barcodes, as well as algorithms, to ultimately enable routine, high-performance optical circuit reconstruction.

  12. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic.

    PubMed

    Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm -2 . This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  13. Exploring plasmonic nanoantenna arrays as a platform for biosensing

    NASA Astrophysics Data System (ADS)

    Toussaint, Kimani C.

    2017-08-01

    In recent years, the PROBE Lab at the University of Illinois at Urbana-Champaign has made significant developments in plasmonic nanoantenna technology by more closely exploring the rich parameter space associated with these structures including geometry and material composition, as well as the optical excitation conditions. Indeed, plasmonic nanoantennas are attractive for a variety of potential applications in nanotechnology, biology, and photonics due to their ability to tightly confine and strongly enhance optical fields. This talk will discuss our work with arrays of Au bowtie nanoantennas (BNAs) with an emphasis on how their field enhancement properties could be harnessed for particle manipulation and sensing. We also present our work with pillar-supported BNAs (p-BNAs) and discuss their potential for sensing applications, particularly when adapted for response in the near-IR. The talk will conclude with a brief discussion of some of the future work pursued by the PROBE lab, including adapting BNAs for lab-on-a-chip applications.

  14. Forest Attributes from Radar Interferometric Structure and its Fusion with Optical Remote Sensing

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.; Law, Beverly E.; Asner, Gregory P.

    2004-01-01

    The possibility of global, three-dimensional remote sensing of forest structure with interferometric synthetic aperture radar (InSAR) bears on important forest ecological processes, particularly the carbon cycle. InSAR supplements two-dimensional remote sensing with information in the vertical dimension. Its strengths in potential for global coverage complement those of lidar (light detecting and ranging), which has the potential for high-accuracy vertical profiles over small areas. InSAR derives its sensitivity to forest vertical structure from the differences in signals received by two, spatially separate radar receivers. Estimation of parameters describing vertical structure requires multiple-polarization, multiple-frequency, or multiple-baseline InSAR. Combining InSAR with complementary remote sensing techniques, such as hyperspectral optical imaging and lidar, can enhance vertical-structure estimates and consequent biophysical quantities of importance to ecologists, such as biomass. Future InSAR experiments will supplement recent airborne and spaceborne demonstrations, and together with inputs from ecologists regarding structure, they will suggest designs for future spaceborne strategies for measuring global vegetation structure.

  15. First principle investigations of the physical properties of hydrogen-rich MgH2

    NASA Astrophysics Data System (ADS)

    Zarshenas, Mohammed; Ahmed, R.; Benali Kanoun, Mohammed; Haq, Bakhtiar ul; Radzi Mat Isa, Ahmad; Goumri-Said, Souraya

    2013-12-01

    Hydrogen being a cleaner energy carrier has increased the importance of hydrogen-containing light metal hydrides, in particular those with large gravimetric hydrogen density like magnesium hydride (MgH2). In this study, density functional and density functional perturbation theories are combined to investigate the structural, elastic, thermodynamic, electronic and optical properties of MgH2. Our structural parameters calculated with those proposed by Perdew, Burke and Ernzerof generalized gradient approximation (PBE-GGA) and Wu-Cohen GGA (WC-GGA) are in agreement with experimental measurements, however the underestimated band gap values calculated using PBE-GGA and WC-GGA were greatly improved with the GGA suggested by Engle and Vosko and the modified Becke-Johnson exchange correlation potential by Trans and Blaha. As for the thermodynamic properties the specific heat values at low temperatures were found to obey the T3 rule and at higher temperatures Dulong and Petit's law. Our analysis of the optical properties of MgH2 also points to its potential application in optoelectronics.

  16. Gap Solitons of Superfluid Fermi Gas in FS Optical Lattices

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Zhang, Ke-Zhi; He, Yong-Lin; Liu, Zhen-Lai; Zhu, Liao

    2018-01-01

    By employing the mean-field theory and hydrodynamic scheme, we study the gap solitons of superfluid Fermi gas in Fourier-Synthesized(FS) optical lattices. By means of numerical methods and variational approximation, the atomic interaction, the chemical potential, the potential depth of the lattice and relative phase of the Fermi system are derived along the Bose-Enstein condensation(BEC)side to the Bardeen-Cooper-Schrieffer (BCS)side. It means that the condition exciting gap solitons is obtained. Moreover, we analyze the fundamental gap soltions of the superfluid Fermi gas. It is found that the relative phase α impacts greatly on the properties of fundamental gap solitons for superfluid Fermi gas. Especially, the nonlinearity interaction term g decreases with α. Add, due to Fermi pressure, curvature changes of g in the BEC limit( γ = 1, here, γ is a function of an interaction parameter) is larger than that at unitary ( γ = 2/3). Spatial distribution of gap solitons exhibit very obvious different when the system transit from the BEC side to BCS side.

  17. Multi-scale Functional and Molecular Photoacoustic Tomography

    PubMed Central

    Yao, Junjie; Xia, Jun; Wang, Lihong V.

    2015-01-01

    Photoacoustic tomography (PAT) combines rich optical absorption contrast with the high spatial resolution of ultrasound at depths in tissue. The high scalability of PAT has enabled anatomical imaging of biological structures ranging from organelles to organs. The inherent functional and molecular imaging capabilities of PAT have further allowed it to measure important physiological parameters and track critical cellular activities. Integration of PAT with other imaging technologies provides complementary capabilities and can potentially accelerate the clinical translation of PAT. PMID:25933617

  18. Synthesis and spectroscopic characterization of gold nanoparticles via plasma-liquid interaction technique

    NASA Astrophysics Data System (ADS)

    Khatoon, N.; Yasin, H. M.; Younus, M.; Ahmed, W.; Rehman, N. U.; Zakaullah, M.; Iqbal, M. Zafar

    2018-01-01

    Fabrication of non-functionalized gold nanoparticles is interesting owing to their potential applications in sensing and biomedicine. We report on the synthesis of surfactant-free gold nanoparticles (AuNPs) by Plasma-Liquid Interaction (PLI) technique, using micro-atmospheric pressure D.C. plasma. The effects of discharge parameters, such as discharge current, precursor concentration and gas flow rates on the structure and morphology of AuNPs have been investigated. Optical Emission Spectroscopy (OES) was employed to estimate the UV radiation intensity and OH radical density. Scanning electron microscopy (SEM) and ultraviolet-visible (UV-Vis) optical spectroscopy were employed to study the morphology and structure of AuNPs. The normalized intensities of UV radiation and OH radical density found to increase with increase in discharge current. We observed that the particle size can be tuned by controlling any of the following parameters: intensity of the UV radiation, OH radical density, and concentration of the Au precursor. Interestingly, we found that addition of 1% Ar in the feedstock gas results in formation of relatively uniform size distribution of nanoparticles. The surfactant-free AuNPs, due to their bare-surface, exhibit excellent surface-enhanced Raman scattering (SERS) properties. The SERS study of Rhodamine 6G using AuNPs as substrates, shows significant Raman enhancement and fluorescence quenching, which makes our technique a potentially powerful route to detection of trace amounts of dangerous explosives and other materials.

  19. Er:YAG laser for endodontics: efficiency and safety

    NASA Astrophysics Data System (ADS)

    Hibst, Raimund; Stock, Karl; Gall, Robert; Keller, Ulrich

    1997-12-01

    Recently it has been shown that bacterias can be sterilized by Er:YAG laser irradiation. By optical fiber transmission the bactericidal effect can also be used in endodontics. In order to explore potential laser parameters, we further investigated sterilization of caries and measured temperatures in models simulating endodontic treatment. It was found out that the bactericidal effect is cumulative, with single pulses being active. This offers to choose all laser parameters except pulse energy (radiant exposure) from technical, practical or safety considerations. For clinical studies the following parameter set is proposed for efficient and safe application (teeth with a root wall thickness > 1 mm, and prepared up to ISO 50): pulse energy: 50 mJ, repetition rate: 15 Hz, fiber withdrawal velocity: 2 mm/s. With these settings 4 passes must be performed to accumulate the total dose for sterilization.

  20. Cloud-generated radiative heating and its generation of available potential energy

    NASA Technical Reports Server (NTRS)

    Stuhlmann, R.; Smith, G. L.

    1989-01-01

    The generation of zonal available potential energy (APE) by cloud radiative heating is discussed. The APE concept was mathematically formulated by Lorenz (1955) as a measure of the maximum amount of total potential energy that is available for conversion by adiabatic processes to kinetic energy. The rate of change of APE is the rate of the generation of APE minus the rate of conversion between potential and kinetic energy. By radiative transfer calculations, a mean cloud-generated radiative heating for a well defined set of cloud classes is derived as a function of cloud optical thickness. The formulation is suitable for using a general cloud parameter data set and has the advantage of taking into account nonlinearities between the microphysical and macrophysical cloud properties and the related radiation field.

  1. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging

    PubMed Central

    Zawadzki, Robert J.; Jones, Steven M.; Pilli, Suman; Balderas-Mata, Sandra; Kim, Dae Yu; Olivier, Scot S.; Werner, John S.

    2011-01-01

    We describe an ultrahigh-resolution (UHR) retinal imaging system that combines adaptive optics Fourier-domain optical coherence tomography (AO-OCT) with an adaptive optics scanning laser ophthalmoscope (AO-SLO) to allow simultaneous data acquisition by the two modalities. The AO-SLO subsystem was integrated into the previously described AO-UHR OCT instrument with minimal changes to the latter. This was done in order to ensure optimal performance and image quality of the AO- UHR OCT. In this design both imaging modalities share most of the optical components including a common AO-subsystem and vertical scanner. One of the benefits of combining Fd-OCT with SLO includes automatic co-registration between two acquisition channels for direct comparison between retinal structures imaged by both modalities (e.g., photoreceptor mosaics or microvasculature maps). Because of differences in the detection scheme of the two systems, this dual imaging modality instrument can provide insight into retinal morphology and potentially function, that could not be accessed easily by a single system. In this paper we describe details of the components and parameters of the combined instrument, including incorporation of a novel membrane magnetic deformable mirror with increased stroke and actuator count used as a single wavefront corrector. We also discuss laser safety calculations for this multimodal system. Finally, retinal images acquired in vivo with this system are presented. PMID:21698028

  2. Comprehensive validation scheme for in situ fiber optics dissolution method for pharmaceutical drug product testing.

    PubMed

    Mirza, Tahseen; Liu, Qian Julie; Vivilecchia, Richard; Joshi, Yatindra

    2009-03-01

    There has been a growing interest during the past decade in the use of fiber optics dissolution testing. Use of this novel technology is mainly confined to research and development laboratories. It has not yet emerged as a tool for end product release testing despite its ability to generate in situ results and efficiency improvement. One potential reason may be the lack of clear validation guidelines that can be applied for the assessment of suitability of fiber optics. This article describes a comprehensive validation scheme and development of a reliable, robust, reproducible and cost-effective dissolution test using fiber optics technology. The test was successfully applied for characterizing the dissolution behavior of a 40-mg immediate-release tablet dosage form that is under development at Novartis Pharmaceuticals, East Hanover, New Jersey. The method was validated for the following parameters: linearity, precision, accuracy, specificity, and robustness. In particular, robustness was evaluated in terms of probe sampling depth and probe orientation. The in situ fiber optic method was found to be comparable to the existing manual sampling dissolution method. Finally, the fiber optic dissolution test was successfully performed by different operators on different days, to further enhance the validity of the method. The results demonstrate that the fiber optics technology can be successfully validated for end product dissolution/release testing. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  3. Potential accuracy of translation estimation between radar and optical images

    NASA Astrophysics Data System (ADS)

    Uss, M.; Vozel, B.; Lukin, V.; Chehdi, K.

    2015-10-01

    This paper investigates the potential accuracy achievable for optical to radar image registration by area-based approach. The analysis is carried out mainly based on the Cramér-Rao Lower Bound (CRLB) on translation estimation accuracy previously proposed by the authors and called CRLBfBm. This bound is now modified to take into account radar image speckle noise properties: spatial correlation and signal-dependency. The newly derived theoretical bound is fed with noise and texture parameters estimated for the co-registered pair of optical Landsat 8 and radar SIR-C images. It is found that difficulty of optical to radar image registration stems more from speckle noise influence than from dissimilarity of the considered kinds of images. At finer scales (and higher speckle noise level), probability of finding control fragments (CF) suitable for registration is low (1% or less) but overall number of such fragments is high thanks to image size. Conversely, at the coarse scale, where speckle noise level is reduced, probability of finding CFs suitable for registration can be as high as 40%, but overall number of such CFs is lower. Thus, the study confirms and supports area-based multiresolution approach for optical to radar registration where coarse scales are used for fast registration "lock" and finer scales for reaching higher registration accuracy. The CRLBfBm is found inaccurate for the main scale due to intensive speckle noise influence. For other scales, the validity of the CRLBfBm bound is confirmed by calculating statistical efficiency of area-based registration method based on normalized correlation coefficient (NCC) measure that takes high values of about 25%.

  4. Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Nandy, Sreyankar; Mostafa, Atahar; Kumavor, Patrick D.; Sanders, Melinda; Brewer, Molly; Zhu, Quing

    2016-10-01

    A spatial frequency domain imaging (SFDI) system was developed for characterizing ex vivo human ovarian tissue using wide-field absorption and scattering properties and their spatial heterogeneities. Based on the observed differences between absorption and scattering images of different ovarian tissue groups, six parameters were quantitatively extracted. These are the mean absorption and scattering, spatial heterogeneities of both absorption and scattering maps measured by a standard deviation, and a fitting error of a Gaussian model fitted to normalized mean Radon transform of the absorption and scattering maps. A logistic regression model was used for classification of malignant and normal ovarian tissues. A sensitivity of 95%, specificity of 100%, and area under the curve of 0.98 were obtained using six parameters extracted from the SFDI images. The preliminary results demonstrate the diagnostic potential of the SFDI method for quantitative characterization of wide-field optical properties and the spatial distribution heterogeneity of human ovarian tissue. SFDI could be an extremely robust and valuable tool for evaluation of the ovary and detection of neoplastic changes of ovarian cancer.

  5. Time-dependent photon migration imaging

    NASA Astrophysics Data System (ADS)

    Sevick, Eva M.; Wang, NaiGuang; Chance, Britton

    1992-02-01

    Recently, the application of both time- and frequency-resolved fluorescence techniques for the determination of photon migration characteristics in strongly scattering media has been used to characterize the optical properties in strongly scattering media. Specifically, Chance and coworkers have utilized measurement of photon migration characteristics to determine tissue hemoglobin absorbance and ultimately oxygenation status in homogeneous tissues. In this study, we present simulation results and experimental measurements for both techniques to show the capacity of time-dependent photon migration characteristics to image optically obscure absorbers located in strongly scattering media. The applications of time-dependent photon imaging in the biomedical community include imaging of light absorbing hematomas, tumors, hypoxic tissue volumes, and other tissue abnormalities. Herein, we show that the time-resolved parameter of mean photon path length, , and the frequency- resolved parameter of phase-shift, (theta) , can be used similarly to obtain three dimensional information of absorber position from two-dimensional measurements. Finally, we show that unlike imaging techniques that monitor the intensity of light without regard to the migration characteristics, the resolution of time-dependent photon migration measurements is enhanced by tissue scattering, further potentiating their use for biomedical imaging.

  6. Application of speckle image correlation for real-time assessment of metabolic activity in herpes virus-infected cells

    NASA Astrophysics Data System (ADS)

    Vladimirov, A. P.; Malygin, A. S.; Mikhailova, J. A.; Borodin, E. M.; Bakharev, A. A.; Poryvayeva, A. P.

    2014-09-01

    Earlier we reported developing a speckle interferometry technique and a device designed to assess the metabolic activity of a cell monolayer cultivated on a glass substrate. This paper aimed at upgrading the technique and studying its potential for real-time assessment of herpes virus development process. Speckle dynamics was recorded in the image plane of intact and virus-infected cell monolayer. HLE-3, L-41 and Vero cells were chosen as research targets. Herpes simplex virus-1-(HSV-1)- infected cell cultures were studied. For 24 h we recorded the digital value of optical signal I in one pixel and parameter η characterizing change in the distribution of the optical signal on 10 × 10-pixel areas. The coefficient of multiple determination calculated by η time dependences for three intact cell cultures equals 0.94. It was demonstrated that the activity parameters are significantly different for intact and virus-infected cells. The difference of η value for intact and HSV-1-infected cells is detectable 10 minutes from the experiment start.

  7. Synthesis, Spectrofluorometric Studies, Micellization and non Linear Optical Properties of Blue Emitting Quinoline (AMQC) Dye.

    PubMed

    Afzal, S M; Asiri, Abdullah M; Razvi, M A N; Bakry, Ahmed H; Khan, Salman A; Zayed, Mohie E M

    2016-03-01

    Blue emitting 2-amino-4-(3, 4, 5-tri methoxyphenyl)-9-methoxy-5,6 dihydrobenzo[f]isoquinoline-1-carbonitrile (AMQC) dye was synthesized by one-pot multicomponent reactions (MCRs) of 3,4,5-trimethoxybenzaldehyd, malononitrile, 6-methoxy-1,2,3,4-tetrahydro-naphthalin-1-one and ammonium acetate. Results obtained from spectroscopic and elemental analysis of synthesized AMQC was in good agreement with their chemical structures. Fluorescence polarity study demonstrated that AMQC was sensitive to the polarity of the microenvironment provided by different solvents. In addition, spectroscopic and physicochemical parameters, including electronic absorption, excitation coefficient, stokes shift, oscillator strength, transition dipole moment and fluorescence quantum yield were investigated in order to explore the analytical potential of AMQC. Dye undergoes solubilization in different micelles and may be used as a quencher and a probe to determine the critical micelle concentration (CMC) of SDS and CTAB. Nonlinear optical parameters of AMQC dye shows relatively lower nonlinear refractive index and nonlinear absorption coefficient at the power levels. Variation of n2 with concentration is linear in the concentration range used in the present study.

  8. Bio-Optics Based Sensation Imaging for Breast Tumor Detection Using Tissue Characterization

    PubMed Central

    Lee, Jong-Ha; Kim, Yoon Nyun; Park, Hee-Jun

    2015-01-01

    The tissue inclusion parameter estimation method is proposed to measure the stiffness as well as geometric parameters. The estimation is performed based on the tactile data obtained at the surface of the tissue using an optical tactile sensation imaging system (TSIS). A forward algorithm is designed to comprehensively predict the tactile data based on the mechanical properties of tissue inclusion using finite element modeling (FEM). This forward information is used to develop an inversion algorithm that will be used to extract the size, depth, and Young's modulus of a tissue inclusion from the tactile data. We utilize the artificial neural network (ANN) for the inversion algorithm. The proposed estimation method was validated by a realistic tissue phantom with stiff inclusions. The experimental results showed that the proposed estimation method can measure the size, depth, and Young's modulus of a tissue inclusion with 0.58%, 3.82%, and 2.51% relative errors, respectively. The obtained results prove that the proposed method has potential to become a useful screening and diagnostic method for breast cancer. PMID:25785306

  9. Glaucoma Diagnostic Capabilities of Foveal Avascular Zone Parameters Using Optical Coherence Tomography Angiography According to Visual Field Defect Location.

    PubMed

    Kwon, Junki; Choi, Jaewan; Shin, Joong Won; Lee, Jiyun; Kook, Michael S

    2017-12-01

    To assess the diagnostic ability of foveal avascular zone (FAZ) parameters to discriminate glaucomatous eyes with visual field defects (VFDs) in different locations (central vs. peripheral) from normal eyes. Totally, 125 participants were separated into 3 groups: normal (n=45), glaucoma with peripheral VFD (PVFD, n=45), and glaucoma with central VFD (CVFD, n=35). The FAZ area, perimeter, and circularity and parafoveal vessel density were calculated from optical coherence tomography angiography images. The diagnostic ability of the FAZ parameters and other structural parameters was determined according to glaucomatous VFD location. Associations between the FAZ parameters and central visual function were evaluated. A larger FAZ area and longer FAZ perimeter were observed in the CVFD group than in the PVFD and normal groups. The FAZ area, perimeter, and circularity were better in differentiating glaucomatous eyes with CVFDs from normal eyes [areas under the receiver operating characteristic curves (AUC), 0.78 to 0.88] than in differentiating PVFDs from normal eyes (AUC, 0.51 to 0.64). The FAZ perimeter had a similar AUC value to the circumpapillary retinal nerve fiber layer and macular ganglion cell-inner plexiform layer thickness for differentiating eyes with CVFDs from normal eyes (all P>0.05, the DeLong test). The FAZ area was significantly correlated with central visual function (β=-112.7, P=0.035, multivariate linear regression). The FAZ perimeter had good diagnostic capability in differentiating glaucomatous eyes with CVFDs from normal eyes, and may be a potential diagnostic biomarker for detecting glaucomatous patients with CVFDs.

  10. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition

    PubMed Central

    Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei

    2017-01-01

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations. PMID:29057838

  11. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition

    NASA Technical Reports Server (NTRS)

    Belle, Jessica H.; Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang

    2017-01-01

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, approximately 70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations.

  12. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition.

    PubMed

    Belle, Jessica H; Chang, Howard H; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang

    2017-10-18

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM 2.5 ) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM 2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM 2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM 2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM 2.5 concentrations.

  13. Electro-optic Mach-Zehnder Interferometer based Optical Digital Magnitude Comparator and 1's Complement Calculator

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Raghuwanshi, Sanjeev Kumar

    2016-06-01

    The optical switching activity is one of the most essential phenomena in the optical domain. The electro-optic effect-based switching phenomena are applicable to generate some effective combinational and sequential logic circuits. The processing of digital computational technique in the optical domain includes some considerable advantages of optical communication technology, e.g. immunity to electro-magnetic interferences, compact size, signal security, parallel computing and larger bandwidth. The paper describes some efficient technique to implement single bit magnitude comparator and 1's complement calculator using the concepts of electro-optic effect. The proposed techniques are simulated on the MATLAB software. However, the suitability of the techniques is verified using the highly reliable Opti-BPM software. It is interesting to analyze the circuits in order to specify some optimized device parameter in order to optimize some performance affecting parameters, e.g. crosstalk, extinction ratio, signal losses through the curved and straight waveguide sections.

  14. Calculation of optical parameters for covalent binary alloys used in optical memories/solar cells: a modified approach

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Promod K.; Gupta, Poonam; Singh, Laxman

    2001-06-01

    Chalcogenide based alloys find applications in a number of devices like optical memories, IR detectors, optical switches, photovoltaics, compound semiconductor heterosrtuctures etc. We have modified the Gurman's statistical thermodynamic model (STM) of binary covalent alloys. In the Gurman's model, entropy calculations are based on the number of structural units present. The need to modify this model arose due to the fact that it gives equal probability for all the tetrahedra present in the alloy. We have modified the Gurman's model by introducing the concept that the entropy is based on the bond arrangement rather than that on the structural units present. In the present work calculation based on this modification have been presented for optical properties, which find application in optical switching/memories, solar cells and other optical devices. It has been shown that the calculated optical parameters (for a typical case of GaxSe1-x) based on modified model are closer to the available experimental results. These parameters include refractive index, extinction coefficient, dielectric functions, optical band gap etc. GaxSe1-x has been found to be suitable for reversible optical memories also, where phase change (a yields c and vice versa) takes place at specified physical conditions. DTA/DSC studies also suggest the suitability of this material for optical switching/memory applications. We have also suggested possible use of GaxSe1-x (x = 0.4) in place of oxide layer in a Metal - Oxide - Semiconductor type solar cells. The new structure is Metal - Ga2Se3 - GaAs. The I-V characteristics and other parameters calculated for this structure are found to be much better than that for Si based solar cells. Maximum output power is obtained at the intermediate layer thickness approximately 40 angstroms for this typical solar cell.

  15. A combined reconstruction-classification method for diffuse optical tomography.

    PubMed

    Hiltunen, P; Prince, S J D; Arridge, S

    2009-11-07

    We present a combined classification and reconstruction algorithm for diffuse optical tomography (DOT). DOT is a nonlinear ill-posed inverse problem. Therefore, some regularization is needed. We present a mixture of Gaussians prior, which regularizes the DOT reconstruction step. During each iteration, the parameters of a mixture model are estimated. These associate each reconstructed pixel with one of several classes based on the current estimate of the optical parameters. This classification is exploited to form a new prior distribution to regularize the reconstruction step and update the optical parameters. The algorithm can be described as an iteration between an optimization scheme with zeroth-order variable mean and variance Tikhonov regularization and an expectation-maximization scheme for estimation of the model parameters. We describe the algorithm in a general Bayesian framework. Results from simulated test cases and phantom measurements show that the algorithm enhances the contrast of the reconstructed images with good spatial accuracy. The probabilistic classifications of each image contain only a few misclassified pixels.

  16. A Method for Medical Diagnosis Based on Optical Fluence Rate Distribution at Tissue Surface

    PubMed Central

    Hamdy, Omnia; El-Azab, Jala; Al-Saeed, Tarek A.; Hassan, Mahmoud F.

    2017-01-01

    Optical differentiation is a promising tool in biomedical diagnosis mainly because of its safety. The optical parameters’ values of biological tissues differ according to the histopathology of the tissue and hence could be used for differentiation. The optical fluence rate distribution on tissue boundaries depends on the optical parameters. So, providing image displays of such distributions can provide a visual means of biomedical diagnosis. In this work, an experimental setup was implemented to measure the spatially-resolved steady state diffuse reflectance and transmittance of native and coagulated chicken liver and native and boiled breast chicken skin at 635 and 808 nm wavelengths laser irradiation. With the measured values, the optical parameters of the samples were calculated in vitro using a combination of modified Kubelka-Munk model and Bouguer-Beer-Lambert law. The estimated optical parameters values were substituted in the diffusion equation to simulate the fluence rate at the tissue surface using the finite element method. Results were verified with Monte-Carlo simulation. The results obtained showed that the diffuse reflectance curves and fluence rate distribution images can provide discrimination tools between different tissue types and hence can be used for biomedical diagnosis. PMID:28930158

  17. Dynamic contrast-enhanced diffuse optical tomography (DCE-DOT): experimental validation with a dynamic phantom

    NASA Astrophysics Data System (ADS)

    Burcin Unlu, Mehmet; Lin, Yuting; Gulsen, Gultekin

    2009-11-01

    Dynamic contrast-enhanced diffuse optical tomography (DCE-DOT) can provide spatially resolved enhancement kinetics of an optical contrast agent. We undertook a systematic phantom study to evaluate the effects of the geometrical parameters such as the depth and size of the inclusion as well as the optical parameters of the background on the recovered enhancement kinetics of the most commonly used optical contrast agent, indocyanine green (ICG). For this purpose a computer-controlled dynamic phantom was constructed. An ICG-intralipid-water mixture was circulated through the inclusions while the DCE-DOT measurements were acquired with a temporal resolution of 16 s. The same dynamic study was repeated using inclusions of different sizes located at different depths. In addition to this, the effect of non-scattering regions was investigated by placing a second inclusion filled with water in the background. The phantom studies confirmed that although the peak enhancement varied substantially for each case, the recovered injection and dilution rates obtained from the percentage enhancement maps agreed within 15% independent of not only the depth and the size of the inclusion but also the presence of a non-scattering region in the background. Although no internal structural information was used in these phantom studies, it may be necessary to use it for small objects buried deep in tissue. However, the different contrast mechanisms of optical and other imaging modalities as well as imperfect co-registration between both modalities may lead to potential errors in the structural a priori. Therefore, the effect of erroneous selection of structural priors was investigated as the final step. Again, the injection and dilution rates obtained from the percentage enhancement maps were also immune to the systematic errors introduced by erroneous selection of the structural priors, e.g. choosing the diameter of the inclusion 20% smaller increased the peak enhancement 60% but changed the injection and dilution rates only less than 10%.

  18. [Glaucoma and optic nerve drusen: Limitations of optic nerve head OCT].

    PubMed

    Poli, M; Colange, J; Goutagny, B; Sellem, E

    2017-09-01

    Optic nerve head drusen are congenital calcium deposits located in the prelaminar section of the optic nerve head. Their association with visual field defects has been classically described, but the diagnosis of glaucoma is not easy in these cases of altered optic nerve head anatomy. We describe the case of a 67-year-old man with optic nerve head drusen complicated by glaucoma, which was confirmed by visual field and OCT examination of the peripapillary retinal nerve fiber layer (RNFL), but the measurement of the minimum distance between the Bruch membrane opening and the internal limiting membrane (minimum rim width, BMO-MRW) by OCT was normal. OCT of the BMO-MRW is a new diagnostic tool for glaucoma. Superficial optic nerve head drusen, which are found between the internal limiting membrane and the Bruch's membrane opening, overestimate the value of this parameter. BMO-MRW measurement is not adapted to cases of optic nerve head drusen and can cause false-negative results for this parameter, and the diagnosis of glaucoma in this case should be based on other parameters such as the presence of a fascicular defect in the retinal nerve fibers, RNFL or macular ganglion cell complex thinning, as well as visual field data. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Fabrication of amplitude-phase type diffractive optical elements in aluminium films

    NASA Astrophysics Data System (ADS)

    Fomchenkov, S. A.; Butt, M. A.

    2017-11-01

    In the course of studies have been conducted a method of forming the phase diffractive optical elements (DOEs) by direct laser writing in thin films of aluminum. The quality of the aluminum films were investigated depending on the parameters of magnetron sputtering process. Moreover, the parameters of the laser writing process in thin films of aluminum were optimized. The structure of phase diffractive optical elements was obtained by the proposed method.

  20. Fast incorporation of optical flow into active polygons.

    PubMed

    Unal, Gozde; Krim, Hamid; Yezzi, Anthony

    2005-06-01

    In this paper, we first reconsider, in a different light, the addition of a prediction step to active contour-based visual tracking using an optical flow and clarify the local computation of the latter along the boundaries of continuous active contours with appropriate regularizers. We subsequently detail our contribution of computing an optical flow-based prediction step directly from the parameters of an active polygon, and of exploiting it in object tracking. This is in contrast to an explicitly separate computation of the optical flow and its ad hoc application. It also provides an inherent regularization effect resulting from integrating measurements along polygon edges. As a result, we completely avoid the need of adding ad hoc regularizing terms to the optical flow computations, and the inevitably arbitrary associated weighting parameters. This direct integration of optical flow into the active polygon framework distinguishes this technique from most previous contour-based approaches, where regularization terms are theoretically, as well as practically, essential. The greater robustness and speed due to a reduced number of parameters of this technique are additional and appealing features.

  1. The aging process of optical couplers by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Bednarek, Lukas; Marcinka, Ondrej; Perecar, Frantisek; Papes, Martin; Hajek, Lukas; Nedoma, Jan; Vasinek, Vladimir

    2015-08-01

    Scientists have recently discovered that the ageing process of optical elements is faster than it was originally anticipated. It is mostly due to the multiple increases of the optical power in optical components, the introduction of wavelength division multiplexers and, overall, the increased flow of traffic in optical communications. This article examines the ageing process of optical couplers and it focuses on their performance parameters. It describes the measurement procedure followed by the evaluation of the measurement results. To accelerate the ageing process, gamma irradiation from 60Co was used. The results of the measurements of the optical coupler with one input and eight outputs (1:8) were summarized. The results gained by measuring of the optical coupler with one input and four outputs (1:4) as well as of the optical couplers with one input and two outputs (1:2) with different split ratios were also processed. The optical powers were measured on the input and the outputs of each branch of each optical coupler at the wavelengths of 1310 nm and 1550 nm. The parameters of the optical couplers were subsequently calculated according to the appropriate formulas. These parameters were the insertion loss of the individual branches, split ratio, total losses, homogeneity of the losses and directionalities alias cross-talk between the individual output branches. The gathered data were summarized before and after the first irradiation when the configuration of the couplers was 1:8 and 1:4. The data were summarized after the third irradiation when the configuration of the couplers was 1:2.

  2. Celestial Object Imaging Model and Parameter Optimization for an Optical Navigation Sensor Based on the Well Capacity Adjusting Scheme.

    PubMed

    Wang, Hao; Jiang, Jie; Zhang, Guangjun

    2017-04-21

    The simultaneous extraction of optical navigation measurements from a target celestial body and star images is essential for autonomous optical navigation. Generally, a single optical navigation sensor cannot simultaneously image the target celestial body and stars well-exposed because their irradiance difference is generally large. Multi-sensor integration or complex image processing algorithms are commonly utilized to solve the said problem. This study analyzes and demonstrates the feasibility of simultaneously imaging the target celestial body and stars well-exposed within a single exposure through a single field of view (FOV) optical navigation sensor using the well capacity adjusting (WCA) scheme. First, the irradiance characteristics of the celestial body are analyzed. Then, the celestial body edge model and star spot imaging model are established when the WCA scheme is applied. Furthermore, the effect of exposure parameters on the accuracy of star centroiding and edge extraction is analyzed using the proposed model. Optimal exposure parameters are also derived by conducting Monte Carlo simulation to obtain the best performance of the navigation sensor. Finally, laboratorial and night sky experiments are performed to validate the correctness of the proposed model and optimal exposure parameters.

  3. Celestial Object Imaging Model and Parameter Optimization for an Optical Navigation Sensor Based on the Well Capacity Adjusting Scheme

    PubMed Central

    Wang, Hao; Jiang, Jie; Zhang, Guangjun

    2017-01-01

    The simultaneous extraction of optical navigation measurements from a target celestial body and star images is essential for autonomous optical navigation. Generally, a single optical navigation sensor cannot simultaneously image the target celestial body and stars well-exposed because their irradiance difference is generally large. Multi-sensor integration or complex image processing algorithms are commonly utilized to solve the said problem. This study analyzes and demonstrates the feasibility of simultaneously imaging the target celestial body and stars well-exposed within a single exposure through a single field of view (FOV) optical navigation sensor using the well capacity adjusting (WCA) scheme. First, the irradiance characteristics of the celestial body are analyzed. Then, the celestial body edge model and star spot imaging model are established when the WCA scheme is applied. Furthermore, the effect of exposure parameters on the accuracy of star centroiding and edge extraction is analyzed using the proposed model. Optimal exposure parameters are also derived by conducting Monte Carlo simulation to obtain the best performance of the navigation sensor. Finally, laboratorial and night sky experiments are performed to validate the correctness of the proposed model and optimal exposure parameters. PMID:28430132

  4. Pseudodynamic systems approach based on a quadratic approximation of update equations for diffuse optical tomography.

    PubMed

    Biswas, Samir Kumar; Kanhirodan, Rajan; Vasu, Ram Mohan; Roy, Debasish

    2011-08-01

    We explore a pseudodynamic form of the quadratic parameter update equation for diffuse optical tomographic reconstruction from noisy data. A few explicit and implicit strategies for obtaining the parameter updates via a semianalytical integration of the pseudodynamic equations are proposed. Despite the ill-posedness of the inverse problem associated with diffuse optical tomography, adoption of the quadratic update scheme combined with the pseudotime integration appears not only to yield higher convergence, but also a muted sensitivity to the regularization parameters, which include the pseudotime step size for integration. These observations are validated through reconstructions with both numerically generated and experimentally acquired data.

  5. Application of optical action potentials in human induced pluripotent stem cells-derived cardiomyocytes to predict drug-induced cardiac arrhythmias.

    PubMed

    Lu, H R; Hortigon-Vinagre, M P; Zamora, V; Kopljar, I; De Bondt, A; Gallacher, D J; Smith, G

    2017-09-01

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) are emerging as new and human-relevant source in vitro model for cardiac safety assessment that allow us to investigate a set of 20 reference drugs for predicting cardiac arrhythmogenic liability using optical action potential (oAP) assay. Here, we describe our examination of the oAP measurement using a voltage sensitive dye (Di-4-ANEPPS) to predict adverse compound effects using hiPS-CMs and 20 cardioactive reference compounds. Fluorescence signals were digitized at 10kHz and the records subsequently analyzed off-line. Cells were exposed to 30min incubation to vehicle or compound (n=5/dose, 4 doses/compound) that were blinded to the investigating laboratory. Action potential parameters were measured, including rise time (T rise ) of the optical action potential duration (oAPD). Significant effects on oAPD were sensitively detected with 11 QT-prolonging drugs, while oAPD shortening was observed with I Ca -antagonists, I Kr -activator or ATP-sensitive K + channel (K ATP )-opener. Additionally, the assay detected varied effects induced by 6 different sodium channel blockers. The detection threshold for these drug effects was at or below the published values of free effective therapeutic plasma levels or effective concentrations by other studies. The results of this blinded study indicate that OAP is a sensitive method to accurately detect drug-induced effects (i.e., duration/QT-prolongation, shortening, beat rate, and incidence of early after depolarizations) in hiPS-CMs; therefore, this technique will potentially be useful in predicting drug-induced arrhythmogenic liabilities in early de-risking within the drug discovery phase. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A preliminary design of the Ti:LiNbO3 optical channel waveguide

    NASA Astrophysics Data System (ADS)

    Choi, Yat

    1992-03-01

    One of the goals of technology-based activities within the Electronic Warfare Division is to facilitate the development within Australia, of facilities and a capability to manufacture sophisticated, highspeed electro-optic devices, in particular, the integrated optical amplitude modulator and integrated optical switch, for use in microwave and millimetre-wave systems for the Australian Defense Force (ADF). An initial step towards this goal would be to produce a low-loss and single-mode propagation optical channel waveguide using titanium-indiffused lithium niobate (Ti:LiNbO3). As no dimensions and fabrication parameters have yet been optimized, this technical report provides preliminary design data which optimizes these parameters.

  7. Comprehensive photonics-electronics convergent simulation and its application to high-speed electronic circuit integration on a Si/Ge photonic chip

    NASA Astrophysics Data System (ADS)

    Takeda, Kotaro; Honda, Kentaro; Takeya, Tsutomu; Okazaki, Kota; Hiraki, Tatsurou; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Fukuda, Hiroshi; Usui, Mitsuo; Nosaka, Hideyuki; Yamamoto, Tsuyoshi; Yamada, Koji

    2015-01-01

    We developed a design technique for a photonics-electronics convergence system by using an equivalent circuit of optical devices in an electrical circuit simulator. We used the transfer matrix method to calculate the response of an optical device. This method used physical parameters and dimensions of optical devices as calculation parameters to design a device in the electrical circuit simulator. It also used an intermediate frequency to express the wavelength dependence of optical devices. By using both techniques, we simulated bit error rates and eye diagrams of optical and electrical integrated circuits and calculated influences of device structure change and wavelength shift penalty.

  8. Extended Bose Hubbard model of interacting bosonic atoms in optical lattices: From superfluidity to density waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.

    2006-01-15

    For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zeromore » and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters.« less

  9. Comparing Laser Peripheral Iridotomy to Cataract Extraction in Narrow Angle Eyes Using Anterior Segment Optical Coherence Tomography

    PubMed Central

    Melese, Ephrem; Peterson, Jeffrey R.; Feldman, Robert M.; Baker, Laura A.; Bell, Nicholas P.; Chuang, Alice Z.

    2016-01-01

    Purpose To evaluate the changes in anterior chamber angle (ACA) parameters in primary angle closure (PAC) spectrum eyes before and after cataract extraction (CE) and compare to the changes after laser peripheral iridotomy (LPI) using anterior segment optical coherence tomography (ASOCT). Methods Twenty-eight PAC spectrum eyes of 18 participants who underwent CE and 34 PAC spectrum eyes of 21 participants who underwent LPI were included. ASOCT images with 3-dimensional mode angle analysis scans were taken with the CASIA SS-1000 (Tomey Corp., Nagoya, Japan) before and after CE or LPI. Mixed-effect model analysis was used to 1) compare best-corrected visual acuity, intraocular pressure, and ACA parameters before and after CE; 2) identify and estimate the effects of potential contributing factors affecting changes in ACA parameters; and 3) compare CE and LPI treatment groups. Results The increase in average angle parameters (TISA750 and TICV750) was significantly greater after CE than LPI. TICV750 increased by 102% (2.114 [±1.203] μL) after LPI and by 174% (4.546 [± 1.582] μL) after CE (P < 0.001). Change of TICV750 in the CE group was significantly affected by age (P = 0.002), race (P = 0.006), and intraocular lens power (P = 0.037). Conclusions CE results in greater anatomic changes in the ACA than LPI in PAC spectrum eyes. ASOCT may be used to follow anatomic changes in the angle after intervention. PMID:27606482

  10. Landsat Time-Series Analysis Opens New Approaches for Regional Glacier Mapping

    NASA Astrophysics Data System (ADS)

    Winsvold, S. H.; Kääb, A.; Nuth, C.; Altena, B.

    2016-12-01

    The archive of Landsat satellite scenes is important for mapping of glaciers, especially as it represents the longest running and continuous satellite record of sufficient resolution to track glacier changes over time. Contributing optical sensors newly launched (Landsat 8 and Sentinel-2A) or upcoming in the near future (Sentinel-2B), will promote very high temporal resolution of optical satellite images especially in high-latitude regions. Because of the potential that lies within such near-future dense time series, methods for mapping glaciers from space should be revisited. We present application scenarios that utilize and explore dense time series of optical data for automatic mapping of glacier outlines and glacier facies. Throughout the season, glaciers display a temporal sequence of properties in optical reflection as the seasonal snow melts away, and glacier ice appears in the ablation area and firn in the accumulation area. In one application scenario presented we simulated potential future seasonal resolution using several years of Landsat 5TM/7ETM+ data, and found a sinusoidal evolution of the spectral reflectance for on-glacier pixels throughout a year. We believe this is because of the short wave infrared band and its sensitivity to snow grain size. The parameters retrieved from the fitting sinus curve can be used for glacier mapping purposes, thus we also found similar results using e.g. the mean of summer band ratio images. In individual optical mapping scenes, conditions will vary (e.g., snow, ice, and clouds) and will not be equally optimal over the entire scene. Using robust statistics on stacked pixels reveals a potential for synthesizing optimal mapping scenes from a temporal stack, as we present in a further application scenario. The dense time series available from satellite imagery will also promote multi-temporal and multi-sensor based analyses. The seasonal pattern of snow and ice on a glacier seen in the optical time series can in the summer season also be observed using radar backscatter series. Optical sensors reveal the reflective properties at the surface, while radar sensors may penetrate the surface revealing properties from a certain volume.In an outlook to this contribution we have explored how we can combine information from SAR and optical sensor systems for different purposes.

  11. Impact of Various Parameters on the Performance of Inter-aircraft Optical Wireless Communication Link

    NASA Astrophysics Data System (ADS)

    Singh, Mehtab

    2017-12-01

    Optical wireless communication (OWC) systems also known as Free space optics (FSO) are capable of providing high channel bandwidth, high data transmission rates, low power consumption, and high security. OWC links are being considered in different applications such as inter-satellite links, terrestrial links, and inter-aircraft communication links. This paper investigates the impact of different system parameters such as transmission power level, operating wavelength, transmitter pointing error angle, bit transmission rate, atmospheric attenuation, antenna aperture diameter, geometric losses, the responsivity of the photodetector, and link range on the performance of inter-aircraft optical wireless communication link.

  12. Study of variations in structural, optical parameters and bulk etch rate of CR-39 polymer due to electron irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, G. S.; Joshi, D. S.; Tripathy, S. P., E-mail: sam.tripathy@gmail.com, E-mail: tripathy@barc.gov.in

    2016-07-14

    In this work, electron induced modifications on the bulk etch rate, structural and optical parameters of CR-39 polymer were studied using gravimetric, FTIR (Fourier Transform Infrared) and UV–vis (Ultraviolet–Visible) techniques, respectively. CR-39 samples were irradiated with 10 MeV electron beam for different durations to have the absorbed doses of 1, 10, 550, 5500, 16 500, and 55 000 kGy. From the FTIR analysis, the peak intensities at different bands were found to be changing with electron dose. A few peaks were observed to shift at high electron doses. From the UV-vis analysis, the optical band gaps for both direct and indirect transitions weremore » found to be decreasing with the increase in electron dose whereas the opacity, number of carbon atoms in conjugation length, and the number of carbon atoms per cluster were found to be increasing. The bulk etch rate was observed to be increasing with the electron dose. The primary objective of this investigation was to study the response of CR-39 to high electron doses and to determine a suitable pre-irradiation condition. The results indicated that, the CR-39 pre-irradiated with electrons can have better sensitivity and thus can be potentially applied for neutron dosimetry.« less

  13. SDSS J013127.34–032100.1: A NEWLY DISCOVERED RADIO-LOUD QUASAR AT z = 5.18 WITH EXTREMELY HIGH LUMINOSITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Wei-Min; Bai, Jin-Ming; Zhang, Ju-jia

    2014-11-10

    Very few of the z > 5 quasars discovered to date have been radio-loud, with radio-to-optical flux ratios (radio-loudness parameters) higher than 10. Here we report the discovery of an optically luminous radio-loud quasar, SDSS J013127.34–032100.1 (J0131–0321 in short), at z = 5.18 ± 0.01 using the Lijiang 2.4 m and Magellan telescopes. J0131–0321 has a spectral energy distribution consistent with that of radio-loud quasars. With an i-band magnitude of 18.47 and a radio flux density of 33 mJy, its radio-loudness parameter is ∼100. The optical and near-infrared spectra taken by Magellan enable us to estimate its bolometric luminosity to be Lmore » {sub bol} ∼ 1.1 × 10{sup 48} erg s{sup –1}, approximately 4.5 times greater than that of the most distant quasar known to date. The black hole mass of J0131–0321 is estimated to be 2.7 × 10{sup 9} M {sub ☉}, with an uncertainty up to 0.4 dex. Detailed physical properties of this high-redshift, radio-loud, potentially super-Eddington quasar can be probed in the future with more dedicated and intensive follow-up observations using multi-wavelength facilities.« less

  14. (Almost) Dark Galaxies in the ALFALFA Survey: Isolated H i-bearing Ultra-diffuse Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leisman, Lukas; Haynes, Martha P.; Giovanelli, Riccardo

    2017-06-20

    We present a sample of 115 very low optical surface brightness, highly extended, H i-rich galaxies carefully selected from the ALFALFA survey that have similar optical absolute magnitudes, surface brightnesses, and radii to recently discovered “ultra-diffuse” galaxies (UDGs). However, these systems are bluer and have more irregular morphologies than other UDGs, are isolated, and contain significant reservoirs of H i. We find that while these sources have normal star formation rates for H i-selected galaxies of similar stellar mass, they have very low star formation efficiencies. We further present deep optical and H i-synthesis follow-up imaging of three of thesemore » H i-bearing ultra-diffuse sources. We measure H i diameters extending to ∼40 kpc, but note that while all three sources have large H i diameters for their stellar mass, they are consistent with the H i mass–H i radius relation. We further analyze the H i velocity widths and rotation velocities for the unresolved and resolved sources, respectively, and find that the sources appear to inhabit halos of dwarf galaxies. We estimate spin parameters, and suggest that these sources may exist in high spin parameter halos, and as such may be potential H i-rich progenitors to the ultra-diffuse galaxies observed in cluster environments.« less

  15. Characterization of pi-Conjugated Polymers for Transistor and Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Paulsen, Bryan D.

    pi-Conjugated polymers represent a unique class of optoelectronic materials. Being polymers, they are solution processable and inherently "soft" materials. This makes them attractive candidates for the production of roll-to-roll printed electronic devices on flexible substrates. The optical and electronic properties of pi-conjugated polymers are synthetically tunable allowing material sets to be tailored to specific applications. Two of the most heavily researched applications are the thin film transistor, the building block of electronic circuits, and the bulk heterojunction solar cell, which holds great potential as a renewable energy source. Key to developing commercially feasible pi-conjugated polymer devices is a thorough understanding of the electronic structure and charge transport behavior of these materials in relationship with polymer structure. Here this structure property relationship has been investigated through electrical and electrochemical means in concert with a variety of other characterization techniques and device test beds. The tunability of polymer optical band gap and frontier molecular orbital energy level was investigated in systems of vinyl incorporating statistical copolymers. Energy levels and band gaps are crucial parameters in developing efficient photovoltaic devices, with control of these parameters being highly desirable. Additionally, charge transport and density of electronic states were investigated in pi-conjugated polymers at extremely high electrochemically induced charge density. Finally, the effects of molecular weight on pi-conjugated polymer optical properties, energy levels, charge transport, morphology, and photovoltaic device performance was examined.

  16. Process influences and correction possibilities for high precision injection molded freeform optics

    NASA Astrophysics Data System (ADS)

    Dick, Lars; Risse, Stefan; Tünnermann, Andreas

    2016-08-01

    Modern injection molding processes offer a cost-efficient method for manufacturing high precision plastic optics for high volume applications. Besides form deviation of molded freeform optics, internal material stress is a relevant influencing factor for the functionality of a freeform optics in an optical system. This paper illustrates dominant influence parameters of an injection molding process relating to form deviation and internal material stress based on a freeform demonstrator geometry. Furthermore, a deterministic and efficient way for 3D mold correcting of systematic, asymmetrical shrinkage errors is shown to reach micrometer range shape accuracy at diameters up to 40 mm. In a second case, a stress-optimized parameter combination using unusual molding conditions was 3D corrected to reach high precision and low stress freeform polymer optics.

  17. Optic disc size and other parameters from optical coherence tomography in Vietnamese-Americans.

    PubMed

    Peng, Pai-Huei; Fu, Sheena; Nguyen, Ngoc; Porco, Travis; Lin, Shan C

    2011-08-01

    To investigate the optic disc parameters by optical coherence tomography (OCT) in Vietnamese with various types of glaucoma. Medical charts of Vietnamese and White patients within a single practice were reviewed. Disc and rim areas by OCT were compared among nonglaucoma controls, different types of glaucoma, and glaucoma suspect. The association of these parameters with demographic and ocular features was evaluated. Data from 1416 Vietnamese and 57 White patients were included. A larger mean disc area was observed in eyes with primary angle-closure glaucoma than in eyes with primary angle-closure and primary angle-closure suspect (both P<0.001). There was no association between disc size with central corneal thickness (P=0.051) and sex (P=0.155). Vietnamese patients with glaucoma and glaucoma suspicion had larger discs than diagnosis-matched Whites (P=0.043 and 0.021, respectively). Vietnamese patients with glaucoma seem to have larger optic discs than White patients. Central corneal thickness had no association with disc area in this study population.

  18. Optical phonon modes and polaron related parameters in GaxIn1-xP

    NASA Astrophysics Data System (ADS)

    Bouarissa, N.; Algarni, H.; Al-Hagan, O. A.; Khan, M. A.; Alhuwaymel, T. F.

    2018-02-01

    Based on a pseudopotential approach under the virtual crystal approximation that includes the effect of compositional disorder, the optical lattice vibration frequencies and polaron related parameters in zinc-blende GaxIn1-xP have been studied. Our findings showed generally reasonably good accord with data in the literature. Other case, our results are predictions. The composition dependence of longitudinal optical (LO) and transverse optical (TO) phonon modes, LO-TO splittings, Frӧhlich coupling parameter, Debye temperature of LO phonon frequency, and polaron effective mass has been analyzed and discussed. While a non-monotonic behavior has been noticed for the LO and TO phonon frequencies versus Ga concentration x, a monotonic behavior has been observed for the rest of the features of interest. The information derived from this investigation may be useful for optoelectronic technological applications.

  19. Elastic, optical and structural features of wide range of CdO- Na2B4O7 glasses

    NASA Astrophysics Data System (ADS)

    Saddeek, Y. B.; Aly, K. A.; Shaaban, Kh S.; Mossad Ali, Atif; Sayed, M. A.

    2018-06-01

    Wide range of CdO—Na2B4O7 glasses have been prepared and characterized via XRD, FTIR and UV spectroscopies along with DTA and ultrasonic techniques. The compositional dependence of the physical parameters such as the density, the molar volume, the optical transmittance, the optical band gap, the ultrasonic velocities and the elastic moduli on CdO content were determined. The profiles of XRD assured the amorphous nature of the explored glasses. The clarification of the borate and cadmium functional groups besides their linkages was extracted from the deconvoluted FTIR spectra. Such a clarification was used in the analysis of the relation of the mechanical, T g and optical parameters versus CdO content. These physical parameters revealed the glass modifier role of CdO.

  20. A LSQR-type method provides a computationally efficient automated optimal choice of regularization parameter in diffuse optical tomography.

    PubMed

    Prakash, Jaya; Yalavarthy, Phaneendra K

    2013-03-01

    Developing a computationally efficient automated method for the optimal choice of regularization parameter in diffuse optical tomography. The least-squares QR (LSQR)-type method that uses Lanczos bidiagonalization is known to be computationally efficient in performing the reconstruction procedure in diffuse optical tomography. The same is effectively deployed via an optimization procedure that uses the simplex method to find the optimal regularization parameter. The proposed LSQR-type method is compared with the traditional methods such as L-curve, generalized cross-validation (GCV), and recently proposed minimal residual method (MRM)-based choice of regularization parameter using numerical and experimental phantom data. The results indicate that the proposed LSQR-type and MRM-based methods performance in terms of reconstructed image quality is similar and superior compared to L-curve and GCV-based methods. The proposed method computational complexity is at least five times lower compared to MRM-based method, making it an optimal technique. The LSQR-type method was able to overcome the inherent limitation of computationally expensive nature of MRM-based automated way finding the optimal regularization parameter in diffuse optical tomographic imaging, making this method more suitable to be deployed in real-time.

  1. Crop Identification Using Time Series of Landsat-8 and Radarsat-2 Images: Application in a Groundwater Irrigated Region, South India

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Hubert-Moy, L.; Betbederet, J.; Ruiz, L.; Sekhar, M.; Corgne, S.

    2016-08-01

    Monitoring land use and land cover and more particularly irrigated cropland dynamics is of great importance for water resources management and land use planning. The objective of this study was to evaluate the combined use of multi-temporal optical and radar data with a high spatial resolution in order to improve the precision of irrigated crop identification by taking into account information on crop phenological stages. SAR and optical parameters were derived from time- series of seven quad-pol RADARSAT-2 and four Landsat-8 images which were acquired on the Berambadi catchment, South India, during the monsoon crop season at the growth stages of turmeric crop. To select the best parameter to discriminate turmeric crops, an analysis of covariance (ANCOVA) was applied on all the time-series parameters and the most discriminant ones were classified using the Support Vector Machine (SVM) technique. Results show that in absence of optical images, polarimetric parameters derived from SAR time-series can be used for the turmeric area estimates and that the combined use of SAR and optical parameters can improve the classification accuracy to identify turmeric.

  2. Effect of P T symmetry on nonlinear waves for three-wave interaction models in the quadratic nonlinear media

    NASA Astrophysics Data System (ADS)

    Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao

    2018-04-01

    We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.

  3. Potential of Sentinel-1 Radar Data for the Assessment of Soil and Cereal Cover Parameters.

    PubMed

    Bousbih, Safa; Zribi, Mehrez; Lili-Chabaane, Zohra; Baghdadi, Nicolas; El Hajj, Mohammad; Gao, Qi; Mougenot, Bernard

    2017-11-14

    The main objective of this study is to analyze the potential use of Sentinel-1 (S1) radar data for the estimation of soil characteristics (roughness and water content) and cereal vegetation parameters (leaf area index (LAI), and vegetation height (H)) in agricultural areas. Simultaneously to several radar acquisitions made between 2015 and 2017, using S1 sensors over the Kairouan Plain (Tunisia, North Africa), ground measurements of soil roughness, soil water content, LAI and H were recorded. The NDVI (normalized difference vegetation index) index computed from Landsat optical images revealed a strong correlation with in situ measurements of LAI. The sensitivity of the S1 measurements to variations in soil moisture, which has been reported in several scientific publications, is confirmed in this study. This sensitivity decreases with increasing vegetation cover growth (NDVI), and is stronger in the VV (vertical) polarization than in the VH cross-polarization. The results also reveal a similar increase in the dynamic range of radar signals observed in the VV and VH polarizations as a function of soil roughness. The sensitivity of S1 measurements to vegetation parameters (LAI and H) in the VV polarization is also determined, showing that the radar signal strength decreases when the vegetation parameters increase. No vegetation parameter sensitivity is observed in the VH polarization, probably as a consequence of volume scattering effects.

  4. Potential of Sentinel-1 Radar Data for the Assessment of Soil and Cereal Cover Parameters

    PubMed Central

    Bousbih, Safa; Lili-Chabaane, Zohra; El Hajj, Mohammad; Gao, Qi

    2017-01-01

    The main objective of this study is to analyze the potential use of Sentinel-1 (S1) radar data for the estimation of soil characteristics (roughness and water content) and cereal vegetation parameters (leaf area index (LAI), and vegetation height (H)) in agricultural areas. Simultaneously to several radar acquisitions made between 2015 and 2017, using S1 sensors over the Kairouan Plain (Tunisia, North Africa), ground measurements of soil roughness, soil water content, LAI and H were recorded. The NDVI (normalized difference vegetation index) index computed from Landsat optical images revealed a strong correlation with in situ measurements of LAI. The sensitivity of the S1 measurements to variations in soil moisture, which has been reported in several scientific publications, is confirmed in this study. This sensitivity decreases with increasing vegetation cover growth (NDVI), and is stronger in the VV (vertical) polarization than in the VH cross-polarization. The results also reveal a similar increase in the dynamic range of radar signals observed in the VV and VH polarizations as a function of soil roughness. The sensitivity of S1 measurements to vegetation parameters (LAI and H) in the VV polarization is also determined, showing that the radar signal strength decreases when the vegetation parameters increase. No vegetation parameter sensitivity is observed in the VH polarization, probably as a consequence of volume scattering effects. PMID:29135929

  5. Statistical classifiers on multifractal parameters for optical diagnosis of cervical cancer

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sabyasachi; Pratiher, Sawon; Kumar, Rajeev; Krishnamoorthy, Vigneshram; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.

    2017-06-01

    An augmented set of multifractal parameters with physical interpretations have been proposed to quantify the varying distribution and shape of the multifractal spectrum. The statistical classifier with accuracy of 84.17% validates the adequacy of multi-feature MFDFA characterization of elastic scattering spectroscopy for optical diagnosis of cancer.

  6. Performance Evaluation of Titanium Ion Optics for the NASA 30 cm Ion Thruster

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    The results of performance tests with titanium ion optics were presented and compared to those of molybdenum ion optics. Both titanium and molybdenum ion optics were initially operated until ion optics performance parameters achieved steady state values. Afterwards, performance characterizations were conducted. This permitted proper performance comparisons of titanium and molybdenum ion optics. Ion optics' performance A,as characterized over a broad thruster input power range of 0.5 to 3.0 kW. All performance parameters for titanium ion optics of achieved steady state values after processing 1200 gm of propellant. Molybdenum ion optics exhibited no burn-in. Impingement-limited total voltages for titanium ion optics where up to 55 V greater than those for molybdenum ion optics. Comparisons of electron backstreaming limits as a function of peak beam current density for molybdenum and titanium ion optics demonstrated that titanium ion optics operated with a higher electron backstreaming limit than molybdenum ion optics for a given peak beam current density. Screen grid ion transparencies for titanium ion optics were as much as 3.8 percent lower than those for molybdenum ion optics. Beam divergence half-angles that enclosed 95 percent of the total beam current for titanium ion optics were within 1 to 3 deg. of those for molybdenum ion optics. All beam divergence thrust correction factors for titanium ion optics were within 1 percent of those with molybdenum ion optics.

  7. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Buck, Warren W.; Maung, Khin M.

    1989-01-01

    Two kinds of number density distributions of the nucleus, harmonic well and Woods-Saxon models, are used with the t-matrix that is taken from the scattering experiments to find a simple optical potential. The parameterized two body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to imaginary part of the forward elastic scattering amplitude, are shown. The eikonal approximation was chosen as the solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  8. Nonlinear tunneling of bright and dark rogue waves in combined nonlinear Schrödinger and Maxwell-Bloch systems

    NASA Astrophysics Data System (ADS)

    Raju, Thokala Soloman; Pal, Ritu

    2018-05-01

    We derive the analytical rogue wave solutions for the generalized inhomogeneous nonlinear Schrödinger-Maxwell-Bloch (GINLS-MB) equation describing the pulse propagation in erbium-doped fibre system. Then by suitably choosing the inhomogeneous parameters, we delineate the tunneling properties of rogue waves through dispersion and nonlinearity barriers or wells. Finally, we demonstrate the propagating characteristics of optical solitons by considering their tunneling through periodic barriers by the proper choice of external potential.

  9. Extraction of CT dose information from DICOM metadata: automated Matlab-based approach.

    PubMed

    Dave, Jaydev K; Gingold, Eric L

    2013-01-01

    The purpose of this study was to extract exposure parameters and dose-relevant indexes of CT examinations from information embedded in DICOM metadata. DICOM dose report files were identified and retrieved from a PACS. An automated software program was used to extract from these files information from the structured elements in the DICOM metadata relevant to exposure. Extracting information from DICOM metadata eliminated potential errors inherent in techniques based on optical character recognition, yielding 100% accuracy.

  10. Chronoamperometric study of mild steel pitting in sodium sulfide aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otero, T.F.; Achucarro, C.

    1994-08-01

    Mild steel samples were studied by chronoamperometry in sodium sulfide (Na[sub 2]S) aqueous solution. Pit nucleation and growth also were monitored by optical microscopy. The influence of variables such as temperature, polarization potential, surface roughness, the presence of electrochemically generated oxide layers, and the simultaneous presence of potassium hydroxide (KOH) was studied. The influence of each parameter on pit shape and growth was reviewed. Different reactions and competitive processes were proposed based on the experimental results.

  11. Ultrafast optomechanical pulse picking

    NASA Astrophysics Data System (ADS)

    Lilienfein, Nikolai; Holzberger, Simon; Pupeza, Ioachim

    2017-01-01

    State-of-the-art optical switches for coupling pulses into and/or out of resonators are based on either the electro-optic or the acousto-optic effect in transmissive elements. In high-power applications, the damage threshold and other nonlinear and thermal effects in these elements impede further improvements in pulse energy, duration, and average power. We propose a new optomechanical switching concept which is based solely on reflective elements and is suitable for switching times down to the ten-nanosecond range. To this end, an isolated section of a beam path is moved in a system comprising mirrors rotating at a high angular velocity and stationary imaging mirrors, without affecting the propagation of the beam thereafter. We discuss three variants of the concept and exemplify practical parameters for its application in regenerative amplifiers and stack-and-dump enhancement cavities. We find that optomechanical pulse picking has the potential to achieve switching rates of up to a few tens of kilohertz while supporting pulse energies of up to several joules.

  12. First-principles study of structural, electronic, linear and nonlinear optical properties of Ga{2}PSb ternary chalcopyrite

    NASA Astrophysics Data System (ADS)

    Ouahrani, T.; Reshak, A. H.; de La Roza, A. Otero; Mebrouki, M.; Luaña, V.; Khenata, R.; Amrani, B.

    2009-12-01

    We report results from first-principles density functional calculations using the full-potential linear augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) and the Engel-Vosko-generalized gradient approximation (EV-GGA) were used for the exchange-correlation energy of the structural, electronic, linear and nonlinear optical properties of the chalcopyrite Ga2PSb compound. The valence band maximum (VBM) is located at the Γv point, and the conduction band minimum (CBM) is located at the Γc point, resulting in a direct band gap of about 0.365 eV for GGA and 0.83 eV for EV-GGA. In comparison with the experimental one (1.2 eV) we found that EV-GGA calculation gives energy gap in reasonable agreement with the experiment. The spin orbit coupling has marginal influence on the optical properties. The ground state quantities such as lattice parameters (a, c and u), bulk modules B and its pressure derivative B^primeare evaluated.

  13. Photoacoustic characterization of human ovarian tissue

    NASA Astrophysics Data System (ADS)

    Aguirre, Andres; Ardeshirpour, Yasaman; Sanders, Mary M.; Brewer, Molly; Zhu, Quing

    2010-02-01

    Ovarian cancer has a five-year survival rate of only 30%, which represents the highest mortality of all gynecologic cancers. The reason for that is that the current imaging techniques are not capable of detecting ovarian cancer early. Therefore, new imaging techniques, like photoacoustic imaging, that can provide functional and molecular contrasts are needed for improving the specificity of ovarian cancer detection and characterization. Using a coregistered photoacoustic and ultrasound imaging system we have studied thirty-one human ovaries ex vivo, including normal and diseased. In order to compare the photoacoustic imaging results from all the ovaries, a new parameter using the RF data has been derived. The preliminary results show higher optical absorption for abnormal and malignant ovaries than for normal postmenopausal ones. To estimate the quantitative optical absorption properties of the ovaries, additional ultrasound-guided diffuse optical tomography images have been acquired. Good agreement between the two techniques has been observed. These results demonstrate the potential of a co-registered photoacoustic and ultrasound imaging system for the diagnosis of ovarian cancer.

  14. In Situ Optical Mapping of Voltage and Calcium in the Heart

    PubMed Central

    Ewart, Paul; Ashley, Euan A.; Loew, Leslie M.; Kohl, Peter; Bollensdorff, Christian; Woods, Christopher E.

    2012-01-01

    Electroanatomic mapping the interrelation of intracardiac electrical activation with anatomic locations has become an important tool for clinical assessment of complex arrhythmias. Optical mapping of cardiac electrophysiology combines high spatiotemporal resolution of anatomy and physiological function with fast and simultaneous data acquisition. If applied to the clinical setting, this could improve both diagnostic potential and therapeutic efficacy of clinical arrhythmia interventions. The aim of this study was to explore this utility in vivo using a rat model. To this aim, we present a single-camera imaging and multiple light-emitting-diode illumination system that reduces economic and technical implementation hurdles to cardiac optical mapping. Combined with a red-shifted calcium dye and a new near-infrared voltage-sensitive dye, both suitable for use in blood-perfused tissue, we demonstrate the feasibility of in vivo multi-parametric imaging of the mammalian heart. Our approach combines recording of electrophysiologically-relevant parameters with observation of structural substrates and is adaptable, in principle, to trans-catheter percutaneous approaches. PMID:22876327

  15. Optical sensor for remote estimation of alcohol concentration in blood stream

    NASA Astrophysics Data System (ADS)

    Shenhav, Asaf; Brodie, Ziv; Beiderman, Yevgeny; Garcia, Javier; Mico, Vicente; Zalevsky, Zeev

    2013-02-01

    The purpose of this manuscript is to validate our recently developed novel optical approach for extraction of remote vibration sources as a successful technique to estimate the alcohol concentration in blood stream. This technique is based on the tracking of temporal changes of reflected secondary speckle patterns produced in human skin when being illuminated by a laser beam. Since the skin's vibrations profile is changed due to the alcohol in the blood stream, the extraction of the vibration profile can be translated into the corresponding alcohol concentration values by means of defining several parameters acting as indicators for the presence of alcohol in the blood stream. We have conducted several experimental tests showing a good correlation with conventional breath alcohol concentration measurement device when determining alcohol concentration in blood. The presented preliminary results validate the proposed optical sensor as a potentially useful device for measuring alcohol in blood stream with subjects that can be car drivers inspected by police authorities or medically monitored patients.

  16. Simulation and performance evaluation of fiber optic sensor for detection of hepatic malignancies in human liver tissues

    NASA Astrophysics Data System (ADS)

    Sharma, Anuj K.; Gupta, Jyoti; Basu, Rikmantra

    2018-01-01

    A fiber optic sensor is proposed for the identification of healthy and cancerous liver tissues through determination of their corresponding refractive index values. Existing experimental results describing variation of complex refractive index of liver tissues in near infrared (NIR) spectral region are considered for theoretical calculations. The intensity interrogation method with chalcogenide fiber is considered. The sensor's performance is closely analyzed in terms of its sensitivity at multiple operating wavelengths falling in NIR region. Operating at shorter NIR wavelengths leads to greater sensitivity. The effect of design parameters (sensing region length and fiber core diameter), different launching conditions, and fiber glass materials on sensor's performance is examined. The proposed sensor has the potential to provide high sensitivity of liver tissue detection.

  17. Contact and contactless diffuse reflectance spectroscopy: potential for recovery monitoring of vascular lesions after intense pulsed light treatment.

    PubMed

    Kuzmina, Ilona; Diebele, Ilze; Spigulis, Janis; Valeine, Lauma; Berzina, Anna; Abelite, Anita

    2011-04-01

    Optical fiber contact probe diffuse reflectance spectroscopy and remote multispectral imaging methods in the spectral range of 400 to 1100 nm were used for skin vascular malformation assessment and recovery tracing after treatment by intense pulsed light. The results confirmed that oxy-hemoglobin relative changes and the optical density difference between lesion and healthy skin in the spectral region 500 to 600 nm may be successfully used for objective appraisal of the therapy effect. Color redness parameter a* = 2 is suggested as a diagnostic border to distinguish healthy skin and vascular lesions, and as the indicator of phototreatment efficiency. Valuable diagnostic information on large area (>5 mm) lesions and lesions with uncertain borders can be proved by the multispectral imaging method.

  18. Contact and contactless diffuse reflectance spectroscopy: potential for recovery monitoring of vascular lesions after intense pulsed light treatment

    NASA Astrophysics Data System (ADS)

    Kuzmina, Ilona; Diebele, Ilze; Spigulis, Janis; Valeine, Lauma; Berzina, Anna; Abelite, Anita

    2011-04-01

    Optical fiber contact probe diffuse reflectance spectroscopy and remote multispectral imaging methods in the spectral range of 400 to 1100 nm were used for skin vascular malformation assessment and recovery tracing after treatment by intense pulsed light. The results confirmed that oxy-hemoglobin relative changes and the optical density difference between lesion and healthy skin in the spectral region 500 to 600 nm may be successfully used for objective appraisal of the therapy effect. Color redness parameter a* = 2 is suggested as a diagnostic border to distinguish healthy skin and vascular lesions, and as the indicator of phototreatment efficiency. Valuable diagnostic information on large area (>5 mm) lesions and lesions with uncertain borders can be proved by the multispectral imaging method.

  19. Absolute measurement of subnanometer scale vibration of cochlear partition of an excised guinea pig cochlea using spectral-domain phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; Choudhury, Niloy; Jacques, Steven L.; Wang, Ruikang K.; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.

    2012-01-01

    Direct measurement of absolute vibration parameters from different locations within the mammalian organ of Corti is crucial for understanding the hearing mechanics such as how sound propagates through the cochlea and how sound stimulates the vibration of various structures of the cochlea, namely, basilar membrane (BM), recticular lamina, outer hair cells and tectorial membrane (TM). In this study we demonstrate the feasibility a modified phase-sensitive spectral domain optical coherence tomography system to provide subnanometer scale vibration information from multiple angles within the imaging beam. The system has the potential to provide depth resolved absolute vibration measurement of tissue microstructures from each of the delay-encoded vibration images with a noise floor of ~0.3nm at 200Hz.

  20. A comparison study of Co and Cu doped MgO diluted magnetic thin films

    NASA Astrophysics Data System (ADS)

    Sarıtaş, S.; ćakıcı, T.; Muǧlu, G. Merhan; Kundakcı, M.; Yıldırım, M.

    2017-02-01

    Transition metal-doped MgO diluted magnetic thin films are appropriate candidates for spintronic applications and designing magnetic devices and sensors. Therefore, MgO:Co and MgO:Cu films were deposited on glass substrates by Chemical Spray Pyrolysis (CSP) method different thin film deposition parameters. Deposited different transition metal doped MgO thin films were compared in terms of optic and structural properties. Comparison optic analysis of the films was investigated spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. Comparison structural analysis of the thin films was examined by using XRD, Raman Analysis, SEM, EDX and AFM techniques. The transition metal-doped; MgO:Co and MgO:Cu thin films maybe have potential applications in spintronics and magnetic data storage.

Top