Sample records for optical pressure interlock

  1. Laser interlock system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, Steven D; Mcintyre, Dustin L

    2015-01-13

    A method and device for providing a laser interlock having a first optical source, a first beam splitter, a second optical source, a detector, an interlock control system, and a means for producing dangerous optical energy. The first beam splitter is optically connected to the first optical source, the first detector and the second optical source. The detector is connected to the interlock control system. The interlock control system is connected to the means for producing dangerous optical energy and configured to terminate its optical energy production upon the detection of optical energy at the detector from the second opticalmore » source below a predetermined detector threshold. The second optical source produces an optical energy in response to optical energy from the first optical source. The optical energy from the second optical source has a different wavelength, polarization, modulation or combination thereof from the optical energy of the first optical source.« less

  2. Quick-Change Optical-Filter Holder

    NASA Technical Reports Server (NTRS)

    Leone, Peter

    1988-01-01

    Dark slide and interlock protect against ambient light. Quick-change filter holder contains interlocking mechanism preventing simultaneous removal of both dark slide and filter drawer. Designed for use with Band pass optical filters in 10 channels leading to photomultiplier tubes in water-vapor lidar/ozone instrument, mechanism can be modified to operate in other optical systems requiring optical change in filters.

  3. High-power fiber optic cable with integrated active sensors for live process monitoring

    NASA Astrophysics Data System (ADS)

    Blomster, Ola; Blomqvist, Mats; Bergstrand, Hans; Pålsson, Magnus

    2012-03-01

    In industrial applications using high-brilliance lasers at power levels up to and exceeding 20 kW and similarly direct diode lasers of 10 kW, there is an increasing demand to continuously monitor component status even in passive components such as fiber-optic cables. With fiber-optic cables designed according to the European Automotive Industry fiber standard interface there is room for integrating active sensors inside the connectors. In this paper we present the integrated active sensors in the new Optoskand QD fiber-optic cable designed to handle extreme levels of power losses, and how these sensors can be employed in industrial manufacturing. The sensors include photo diodes for detection of scattered light inside the fiber connector, absolute temperature of the fiber connector, difference in temperature of incoming and outgoing cooling water, and humidity measurement inside the fiber connector. All these sensors are connected to the fiber interlock system, where interlock break enable functions can be activated when measured signals are higher than threshold levels. It is a very fast interlock break system as the control of the signals is integrated in the electronics inside the fiber connector. Also, since all signals can be logged it is possible to evaluate what happened inside the connector before the interlock break instance. The communication to the fiber-optic connectors is via a CAN interface. Thus it is straightforward to develop the existing laser host control to also control the CAN-messages from the QD sensors.

  4. Rotaxane and catenane host structures for sensing charged guest species.

    PubMed

    Langton, Matthew J; Beer, Paul D

    2014-07-15

    CONSPECTUS: The promise of mechanically interlocked architectures, such as rotaxanes and catenanes, as prototypical molecular switches and shuttles for nanotechnological applications, has stimulated an ever increasing interest in their synthesis and function. The elaborate host cavities of interlocked structures, however, can also offer a novel approach toward molecular recognition: this Account describes the use of rotaxane and catenane host systems for binding charged guest species, and for providing sensing capability through an integrated optical or electrochemical reporter group. Particular attention is drawn to the exploitation of the unusual dynamic properties of interlocked molecules, such as guest-induced shuttling or conformational switching, as a sophisticated means of achieving a selective and functional sensor response. We initially survey interlocked host systems capable of sensing cationic guests, before focusing on our accomplishments in synthesizing rotaxanes and catenanes designed for the more challenging task of selective anion sensing. In our group, we have developed the use of discrete anionic templation to prepare mechanically interlocked structures for anion recognition applications. Removal of the anion template reveals an interlocked host system, possessing a unique three-dimensional geometrically restrained binding cavity formed between the interlocked components, which exhibits impressive selectivity toward complementary anionic guest species. By incorporating reporter groups within such systems, we have developed both electrochemical and optical anion sensors which can achieve highly selective sensing of anionic guests. Transition metals, lanthanides, and organic fluorophores integrated within the mechanically bonded structural framework of the receptor are perturbed by the binding of the guest, with a concomitant change in the emission profile. We have also exploited the unique dynamics of interlocked hosts by demonstrating that an anion-induced conformational change can be used as a means of signal transduction. Electrochemical sensing has been realized by integration of the redox-active ferrocene functionality within a range of rotaxane and catenanes; binding of an anion perturbs the metallocene, leading to a cathodic shift in the ferrocene/ferrocenium redox couple. In order to obtain practical sensors for target charged guest species, confinement of receptors at a surface is necessary in order to develop robust, reuseable devices. Surface confinement also offers advantages over solution based receptors, including amplification of signal, enhanced guest binding thermodynamics and the negation of solubility problems. We have fabricated anion-templated rotaxanes and catenanes on gold electrode surfaces and demonstrated that the resulting mechanically bonded self-assembled monolayers are electrochemically responsive to the binding of anions, a crucial first step toward the advancement of sophisticated, highly selective, anion sensory devices. Rotaxane and catenane host molecules may be engineered to offer a superior level of molecular recognition, and the incorporation of optical or electrochemical reporter groups within these interlocked frameworks can allow for guest sensing. Advances in synthetic templation strategies has facilitated the synthesis of interlocked architectures and widened their interest as prototype molecular machines. However, their unique host-guest properties are only now beginning to be exploited as a sophisticated approach to chemical sensing. The development of functional host-guest sensory systems such as these is of great interest to the interdisciplinary field of supramolecular chemistry.

  5. Cradle and pressure grippers

    DOEpatents

    Muniak, John E.

    2001-01-01

    A gripper that is designed to incorporate the functions of gripping, supporting and pressure tongs into one device. The gripper has two opposing finger sections with interlocking fingers that incline and taper to form a wedge. The interlocking fingers are vertically off-set so that the opposing finger sections may close together allowing the inclined, tapered tips of the fingers to extend beyond the plane defined by the opposing finger section's engagement surface. The range of motion defined by the interlocking relationship of the finger sections allows the gripper to grab, lift and support objects of varying size and shape. The gripper has one stationary and one moveable finger section. Power is provided to the moveable finger section by an actuating device enabling the gripper to close around an object to be lifted. A lifting bail is attached to the gripper and is supported by a crane that provides vertical lift.

  6. RF generator interlock by plasma grid bias current - An alternate to Hα interlock

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, M.; Gahlaut, A.; Yadav, R. K.; Pandya, K.; Tyagi, H.; Vupugalla, M.; Bhuyan, M.; Bhagora, J.; Chakraborty, A.

    2017-08-01

    ROBIN is inductively coupled plasma (ICP) based negative hydrogen ion source, operated with a 100kW, 1MHz Tetrode based RF generator (RFG). Inductive plasma ignition by the RFG in ROBIN is associated with electron seeding by a hot filament and a gas puff. RFG is triggered by the control system to deliver power just at the peak pressure of the gas puff. Once plasma is ignited due to proper impedance matching, a bright light, dominated by Hα (˜656nm wavelength) radiation is available inside RF driver which is used as a feedback signal to the RFG to continue its operation. If impedance matching is not correct, plasma is not produced due to lack of power coupling and bright light is not available. During such condition, reflected RF power may damage the RFG. Therefore, to protect the RFG, it needs to be switched off automatically within 200ms by the control system in such cases. This plasma light based RFG interlock is adopted from BATMAN ion source. However, in case of vacuum immersed RF ion source in reactor grade NBI system, such plasma light based interlock may not be feasible due to lack of adequate optical fiber interfaces. In reactor grade NBI system, neutron and gamma radiations have impact on materials which may lead to frequent maintenance and machine down time. The present demonstration of RFG interlock by Bias Current (BC) in ROBIN testbed gives an alternate option in this regard. In ROBIN, a bias plate (BP) is placed in the plasma chamber near the plasma grid (PG). BP is electrically connected to the plasma chamber wall of the ion source and PG is isolated from the wall. A high current ˜85 A direct current (DC) power supply of voltage in the range of 0 - 33V is connected between the PG and the BP in such a way that PG can be biased positively with respect to the BP or plasma chamber. This arrangement is actually made to absorb electrons and correspondingly reduce co-extracted electron current during beam extraction. However, in case of normal plasma operation, BC rises due to the presence of plasma electrons, almost in the same timescale as plasma light detection system and so, BC signal can also be used as RFG interlock. The BC signal transmission is through optical isolation to reduce noise interference with the signal. The response of the current monitoring signal available from the PG power supply of ROBIN is quite slow (in the order of few tens of milliseconds). Therefore, a fast response current detection electronic circuit having the ability to generate a PG current detection pulse with adjustable threshold set point has been developed and integrated with ROBIN, and the above concept has been demonstrated in ROBIN recently. The present paper will discuss this experimental activity and its results.

  7. Coastal protection using topological interlocking blocks

    NASA Astrophysics Data System (ADS)

    Pasternak, Elena; Dyskin, Arcady; Pattiaratchi, Charitha; Pelinovsky, Efim

    2013-04-01

    The coastal protection systems mainly rely on the self-weight of armour blocks to ensure its stability. We propose a system of interlocking armour blocks, which form plate-shape assemblies. The shape and the position of the blocks are chosen in such a way as to impose kinematic constraints that prevent the blocks from being removed from the assembly. The topological interlocking shapes include simple convex blocks such as platonic solids, the most practical being tetrahedra, cubes and octahedra. Another class of topological interlocking blocks is so-called osteomorphic blocks, which form plate-like assemblies tolerant to random block removal (almost 25% of blocks need to be removed for the assembly to loose integrity). Both classes require peripheral constraint, which can be provided either by the weight of the blocks or post-tensioned internal cables. The interlocking assemblies provide increased stability because lifting one block involves lifting (and bending) the whole assembly. We model the effect of interlocking by introducing an equivalent additional self-weight of the armour blocks. This additional self-weight is proportional to the critical pressure needed to cause bending of the interlocking assembly when it loses stability. Using beam approximation we find an equivalent stability coefficient for interlocking. It is found to be greater than the stability coefficient of a structure with similar blocks without interlocking. In the case when the peripheral constraint is provided by the weight of the blocks and for the slope angle of 45o, the effective stability coefficient for a structure of 100 blocks is 33% higher than the one for a similar structure without interlocking. Further increase in the stability coefficient can be reached by a specially constructed peripheral constraint system, for instance by using post-tension cables.

  8. Notes about the Armenia earthquake, 7 December 1988

    USGS Publications Warehouse

    Kerr, R. A.

    1989-01-01

    Whenever the plates moving beneath Armenia interlock, pressure builds. The stress increases, the pressure continues to climb and finally there is a fracture-a sudden release of energy we know as an earthquake.  

  9. Nonspherical particles in a pseudo-2D fluidized bed: Experimental study.

    PubMed

    Mahajan, Vinay V; Padding, Johan T; Nijssen, Tim M J; Buist, Kay A; Kuipers, J A M

    2018-05-01

    Fluidization is widely used in industries and has been extensively studied, both experimentally and theoretically, in the past. However, most of these studies focus on spherical particles while in practice granules are rarely spherical. Particle shape can have a significant effect on fluidization characteristics. It is therefore important to study the effect of particle shape on fluidization behavior in detail. In this study, experiments in pseudo-2D fluidized beds are used to characterize the fluidization of spherocylindrical (rod-like) Geldart D particles of aspect ratio 4. Pressure drop and optical measurement methods (Digital Image Analysis, Particle Image Velocimetry, Particle Tracking Velocimetry) are employed to measure bed height, particle orientation, particle circulation, stacking, and coordination number. The commonly used correlations to determine the pressure drop across a bed of nonspherical particles are compared to experiments. Experimental observations and measurements have shown that rod-like particles are prone to interlocking and channeling behavior. Well above the minimum fluidization velocity, vigorous bubbling fluidization is observed, with groups of interlocked particles moving upwards, breaking up, being thrown high in the freeboard region and slowly raining down as dispersed phase. At high flowrates, a circulation pattern develops with particles moving up through the center and down at the walls. Particles tend to orient themselves along the flow direction. © 2018 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers , 64: 1573-1590, 2018.

  10. Nonspherical particles in a pseudo‐2D fluidized bed: Experimental study

    PubMed Central

    Mahajan, Vinay V.; Nijssen, Tim M. J.; Buist, Kay A.; Kuipers, J. A. M.

    2018-01-01

    Fluidization is widely used in industries and has been extensively studied, both experimentally and theoretically, in the past. However, most of these studies focus on spherical particles while in practice granules are rarely spherical. Particle shape can have a significant effect on fluidization characteristics. It is therefore important to study the effect of particle shape on fluidization behavior in detail. In this study, experiments in pseudo‐2D fluidized beds are used to characterize the fluidization of spherocylindrical (rod‐like) Geldart D particles of aspect ratio 4. Pressure drop and optical measurement methods (Digital Image Analysis, Particle Image Velocimetry, Particle Tracking Velocimetry) are employed to measure bed height, particle orientation, particle circulation, stacking, and coordination number. The commonly used correlations to determine the pressure drop across a bed of nonspherical particles are compared to experiments. Experimental observations and measurements have shown that rod‐like particles are prone to interlocking and channeling behavior. Well above the minimum fluidization velocity, vigorous bubbling fluidization is observed, with groups of interlocked particles moving upwards, breaking up, being thrown high in the freeboard region and slowly raining down as dispersed phase. At high flowrates, a circulation pattern develops with particles moving up through the center and down at the walls. Particles tend to orient themselves along the flow direction. © 2018 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 64: 1573–1590, 2018 PMID:29706659

  11. Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response over Exceptionally Broad Pressure Range.

    PubMed

    Lee, Youngoh; Park, Jonghwa; Cho, Soowon; Shin, Young-Eun; Lee, Hochan; Kim, Jinyoung; Myoung, Jinyoung; Cho, Seungse; Kang, Saewon; Baig, Chunggi; Ko, Hyunhyub

    2018-04-24

    Flexible pressure sensors with a high sensitivity over a broad linear range can simplify wearable sensing systems without additional signal processing for the linear output, enabling device miniaturization and low power consumption. Here, we demonstrate a flexible ferroelectric sensor with ultrahigh pressure sensitivity and linear response over an exceptionally broad pressure range based on the material and structural design of ferroelectric composites with a multilayer interlocked microdome geometry. Due to the stress concentration between interlocked microdome arrays and increased contact area in the multilayer design, the flexible ferroelectric sensors could perceive static/dynamic pressure with high sensitivity (47.7 kPa -1 , 1.3 Pa minimum detection). In addition, efficient stress distribution between stacked multilayers enables linear sensing over exceptionally broad pressure range (0.0013-353 kPa) with fast response time (20 ms) and high reliability over 5000 repetitive cycles even at an extremely high pressure of 272 kPa. Our sensor can be used to monitor diverse stimuli from a low to a high pressure range including weak gas flow, acoustic sound, wrist pulse pressure, respiration, and foot pressure with a single device.

  12. Interlocking Nailing Versus Interlocking Plating in Intra-articular Calcaneal Fractures: A Biomechanical Study.

    PubMed

    Reinhardt, Sophia; Martin, Heiner; Ulmar, Benjamin; Döbele, Stefan; Zwipp, Hans; Rammelt, Stefan; Richter, Martinus; Pompach, Martin; Mittlmeier, Thomas

    2016-08-01

    Open reduction and internal fixation with a plate is deemed to represent the gold standard of surgical treatment for displaced intra-articular calcaneal fractures. Standard plate fixation is usually placed through an extended lateral approach with high risk for wound complications. Minimally invasive techniques might avoid wound complications but provide limited construct stability. Therefore, 2 different types of locking nails were developed to allow for minimally invasive technique with sufficient stability. The aim of this study was to quantify primary stability of minimally invasive calcaneal interlocking nail systems in comparison to a variable-angle interlocking plate. After quantitative CT analysis, a standardized Sanders type IIB fracture model was created in 21 fresh-frozen cadavers. For osteosynthesis, 2 different interlocking nail systems (C-Nail; Medin, Nov. Město n. Moravě, Czech Republic; Calcanail; FH Orthopedics SAS; Heimsbrunn, France) as well as a polyaxial interlocking plate (Rimbus; Intercus GmbH; Rudolstadt, Germany) were used. Biomechanical testing consisted of a dynamic load sequence (preload 20 N, 1000 N up to 2500 N, stepwise increase of 100 N every 100 cycles, 0.5 mm/s) and a load to failure sequence (max. load 5000 N, 0.5 mm/s). Interfragmentary movement was detected via a 3-D optical measurement system. Boehler angle was measured after osteosynthesis and after failure occurred. No significant difference regarding load to failure, stiffness, Boehler angle, or interfragmentary motion was found between the different fixation systems. A significant difference was found with the dynamic failure testing sequence where 87.5% of the Calcanail implants failed in contrast to 14% of the C-Nail group (P < .01) and 66% of the Rimbus plate. The highest load to failure was observed for the C-Nail. Boehler angle showed physiologic range with all implants before and after the biomechanical tests. Both minimally invasive interlocking nail systems displayed a high primary stability that was not inferior to an interlocking plate. Based on our results, both interlocking nails appear to represent a viable option for treating displaced intra-articular calcaneal fractures. © The Author(s) 2016.

  13. On the modeling and characterization of an interlocked flexible electronic skin

    NASA Astrophysics Data System (ADS)

    Khalili, Nazanin; Shen, Xuechen; Naguib, Hani E.

    2017-04-01

    Development of an electronic skin with ultra-high pressure sensitivity is now of critical importance due its broad range of applications including prosthetic skins and biomimetic robotics. Microstructured conductive composite elastomers can acquire mechanical and electrical properties analogous to those of natural skin. One of the most prominent features of human skin is its tactile sensing property which can be mimicked in an electronic skin. Herein, an electrically conductive composite comprising polydimethylsiloxane and conductive fillers is used as a flexible and stretchable piezoresistive sensor. The electrical conductivity is induced within the elastomer matrix via carbon nanotubes whereas the piezoresistivity is obtained by means of microstructuring the surface of the substrate. An interlocked array of pyramids in micro-scale allows the change in the contact resistance between two thin layers of the composite upon application of an external load. Deformation of the interlocked arrays endows the sensor with an ultra-high sensitivity to the external pressures within the range of human skin perception. Moreover, using finite element analysis, the change in the contact are between the two layers was captured for different geometries. The structure of the sensor can be optimized through an optimization model in order to acquire maximum sensitivity.

  14. Safety Assessment of TACOM’s Crew Station/Turret Motion Base Simulator

    DTIC Science & Technology

    1992-04-01

    mode. The power ON switch is interlocked with the system hydraulic pressure switch so that the electronics can not be turned off while the system...analog) "o Oil Temperature Transducer (analog) "o Facility Pressure Switch o Pressure Critical Switch "o Six Supply Solenoid Valves "O Three Accumulator...Relief Solenoid Valves o Return Pressure Switch o Return Valve Switch o Six Filter Clogged Switches (one per filter) The Facility Pressure switch detects

  15. Universal test system for system embedded optical interconnect

    NASA Astrophysics Data System (ADS)

    Pitwon, R.; Wang, K.; Immonen, M.; Schröder, H.; Neitz, M.

    2018-02-01

    We introduce a universal test and measurement system allowing comparative characterisation of optical transceivers, board-to-board optical connectors and both embedded and passive optical circuit boards. The system comprises a test enclosure with interlocking and interchangeable test cards, allowing different technologies spanning different Technology Readiness Levels to be both characterised alone and in combination with other technologies. They form part of the open test design standards portfolio developed on the FP7 PhoxTroT and H2020 COSMICC projects and allow testing on a common test platform.

  16. Interlocking multi-material components made of structured steel sheets and high-pressure die cast aluminium

    NASA Astrophysics Data System (ADS)

    Senge, S.; Brachmann, J.; Hirt, G.; Bührig-Polaczek, A.

    2017-10-01

    Lightweight design is a major driving force of innovation, especially in the automotive industry. Using hybrid components made of two or more different materials is one approach to reduce the vehicles weight and decrease fuel consumption. As a possible way to increase the stiffness of multi-material components, this paper presents a process chain to produce such components made of steel sheets and high-pressure die cast aluminium. Prior to the casting sequence the steel sheets are structured in a modified rolling process which enables continuous interlocking with the aluminium. Two structures manufactured by this rolling process are tested. The first one is a channel like structure and the second one is a channel like structure with undercuts. These undercuts enable the formation of small anchors when the molten aluminium fills them. The correlation between thickness reduction during rolling and the shape of the resulting structure was evaluated for both structures. It can be stated that channels with a depth of up to 0.5 mm and a width of 1 mm could be created. Undercuts with different size depending on the thickness reduction could be realised. Subsequent aluminium high-pressure die casting experiments were performed to determine if the surface structure can be filled gap-free with molten aluminium during the casting sequence and if a gap-free connection can be achieved after contraction of the aluminium. The casting experiments showed that both structures could be filled during the high-pressure die casting. The channel like structure results in a gap between steel and aluminium after contraction of the cast metal whereas the structure with undercuts leads to a good interlocking resulting in a gap-free connection.

  17. Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors.

    PubMed

    Ha, Minjeong; Lim, Seongdong; Cho, Soowon; Lee, Youngoh; Na, Sangyun; Baig, Chunggi; Ko, Hyunhyub

    2018-04-24

    The gradient stiffness between stiff epidermis and soft dermis with interlocked microridge structures in human skin induces effective stress transmission to underlying mechanoreceptors for enhanced tactile sensing. Inspired by skin structure and function, we fabricate hierarchical nanoporous and interlocked microridge structured polymers with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors (TESs). The skin-inspired hierarchical polymers with gradient elastic modulus enhance the compressibility and contact areal differences due to effective transmission of the external stress from stiff to soft layers, resulting in highly sensitive TESs capable of detecting human vital signs and voice. In addition, the microridges in the interlocked polymers provide an effective variation of gap distance between interlocked layers without using the bulk spacer and thus facilitate the ultrathin and flexible design of TESs that could be worn on the body and detect a variety of pressing, bending, and twisting motions even in humid and underwater environments. Our TESs exhibit the highest power density (46.7 μW/cm 2 ), pressure (0.55 V/kPa), and bending (∼0.1 V/°) sensitivities ever reported on flexible TESs. The proposed design of hierarchical polymer architectures for the flexible and wearable TESs can find numerous applications in next-generation wearable electronics.

  18. Acid/Base and H2PO4(-) Controllable High-Contrast Optical Molecular Switches with a Novel BODIPY Functionalized [2]Rotaxane.

    PubMed

    Arumugaperumal, Reguram; Srinivasadesikan, Venkatesan; Ramakrishnam Raju, Mandapati V; Lin, Ming-Chang; Shukla, Tarun; Singh, Ravinder; Lin, Hong-Cheu

    2015-12-09

    A novel multifunctional mechanically interlocked switchable [2]rotaxane R4 containing two molecular stations and rotaxane arms terminated with boron-dipyrromethene (BODIPY) fluorophores and its derivatives were synthesized for the first time by CuAAC click reaction. The shuttling motion of macrocycle between the dibenzylammonium and triazolium recognition sites and the distance dependent photoinduced electron transfer process of R4 is demonstrated by utilizing external chemical stimuli (acid/base). Interestingly, the reversible self-assembly process of R4 was recognized by the acid-base molecular switch strategy. Notably, two symmetrical triazolium groups acted as molecular stations, H2PO4(-) receptors, and H-bonded donors. Both [2]rotaxane R4 and thread R2 demonstrated excellent optical responses and high selectivity toward H2PO4(-) ion. The specific motion and guest-host interactions of mechanically interlocked machines (MIMs) were also further explored by quantum mechanical calculations. The thread R2 also demonstrated to enable the detection of H2PO4(-) in RAW 264.7 cells successfully.

  19. Mid-infrared multiheterodyne spectroscopy with phase-locked quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Westberg, J.; Sterczewski, L. A.; Wysocki, G.

    2017-04-01

    Fabry-Pérot (FP) quantum cascade lasers (QCLs) provide purely electronically controlled monolithic sources for broadband mid-infrared (mid-IR) multiheterodyne spectroscopy (MHS), which benefits from the large gain bandwidth of the QCLs without sacrificing the narrowband properties commonly associated with the single mode distributed feedback variant. We demonstrate a FP-QCL based multiheterodyne spectrometer with a short-term noise-equivalent absorption of ˜3 × 10-4/ √{ H z } , a mid-IR spectral coverage of 25 cm-1, and very short acquisition time (10 μs) capability. The broadband potential is demonstrated by measuring the absorption spectra of ammonia and isobutane under atmospheric pressure conditions. The stability of the system is enhanced by a two-stage active frequency inter-locking procedure, where the two QCLs are pre-locked with a slow feedback loop based on an analog frequency discriminator, followed by a high bandwidth optical phase-locked loop. The locking system provides a relative frequency stability in the sub kHz range over seconds of integration time. The strength of the technique lies in the ability to acquire spectral information from all optical modes simultaneously and individually, which bodes for a versatile and cost effective spectrometer for mid-IR chemical gas sensing.

  20. 49 CFR 236.820 - Switch, interlocked.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Switch, interlocked. 236.820 Section 236.820 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Switch, interlocked. A switch within the interlocking limits the control of which is interlocked with...

  1. 49 CFR 236.820 - Switch, interlocked.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Switch, interlocked. 236.820 Section 236.820 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Switch, interlocked. A switch within the interlocking limits the control of which is interlocked with...

  2. 49 CFR 236.820 - Switch, interlocked.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Switch, interlocked. 236.820 Section 236.820 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Switch, interlocked. A switch within the interlocking limits the control of which is interlocked with...

  3. 49 CFR 236.820 - Switch, interlocked.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Switch, interlocked. 236.820 Section 236.820 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Switch, interlocked. A switch within the interlocking limits the control of which is interlocked with...

  4. 49 CFR 236.820 - Switch, interlocked.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Switch, interlocked. 236.820 Section 236.820 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Switch, interlocked. A switch within the interlocking limits the control of which is interlocked with...

  5. 2. ENVIRONMENT, FROM SOUTHEAST, SHOWING B&P INTERLOCKING TOWER, AUXILIARY INTERLOCKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ENVIRONMENT, FROM SOUTHEAST, SHOWING B&P INTERLOCKING TOWER, AUXILIARY INTERLOCKING BUILDING, AND POWER SUBSTATION - Baltimore & Potomac Interlocking Tower, Adjacent to AMTRAK railroad tracks in block bounded by Howard Street, Jones Falls Expressway, Maryland Avenue & Falls Road, Baltimore, Independent City, MD

  6. Evaluation of interlocking bond strength between structured 1.0338 steel sheets and high pressure die cast AlMg5Si2

    NASA Astrophysics Data System (ADS)

    Senge, S.; Brachmann, J.; Hirt, G.; Bührig-Polaczek, A.

    2018-05-01

    Multi-material components open up new possibilities for functional design. Such components combine beneficial physical properties of different materials in a single component as for instance chemical resistance, high strength or low density. The challenge is a reliable bond between both materials to enable a long term usage. This paper deals with a form closure connection to ensure a solid connection between steel strips and high pressure die cast aluminium. Two different sizes of channel structures with width ratios of 1.0 and 1.35 are produced on a steel sheet. An ensuing flat rolling pass is performed to create undercuts with a width of up to 50 µm, enabling an interlocking of the molten aluminium in the concluding casting process. For both rolling processes the resulting geometry is analysed depending on the thickness reduction. In a subsequent high pressure die casting process, aluminium is applied resulting in a complete form filling for the coarser structure. Comparing structures with and without undercuts, only structures suited with undercuts remain gap-free after solidification contraction. The finer structure could not be filled completely; nevertheless these structures result in shear strength of up to 45 MPa transversal to the channel-direction.

  7. Interlock system for machine protection of the KOMAC 100-MeV proton linac

    NASA Astrophysics Data System (ADS)

    Song, Young-Gi

    2015-02-01

    The 100-MeV proton linear accelerator of the Korea Multi-purpose Accelerator Complex (KOMAC) has been developed. The beam service started this year after performing the beam commissioning. If the very sensitive and essential equipment is to be protected during machine operation, a machine interlock system is required, and the interlock system has been implemented. The purpose of the interlock system is to shut off the beam when the radio-frequency (RF) and ion source are unstable or a beam loss occurs. The interlock signal of the KOMAC linac includes a variety of sources, such as the beam loss, RF and high-voltage converter modulator faults, and fast closing valves of the vacuum window at the beam lines and so on. This system consists of a hardware-based interlock system using analog circuits and a software-based interlock system using an industrial programmable logic controller (PLC). The hardware-based interlock system has been fabricated, and the requirement has been satisfied with the results being within 10 µs. The software logic interlock system using the PLC has been connected to the framework of with the experimental physics and industrial control system (EPICS) to integrate a variety of interlock signals and to control the machine components when an interlock occurs. This paper will describe the design and the construction of the machine interlock system for the KOMAC 100-MeV linac.

  8. Attitudes toward mandatory ignition interlocks for all offenders convicted of driving while intoxicated.

    PubMed

    Downs, Jonathan; Shults, Ruth; West, Bethany

    2017-12-01

    Ignition interlocks are effective in reducing alcohol-impaired driving recidivism for all offenders, including first-time offenders. Despite their effectiveness, interlock use among persons convicted of driving while intoxicated from alcohol (DWI) remains low. This cross-sectional survey of U.S. adults assessed public support for requiring ignition interlocks for all convicted DWI offenders including first-time offenders. The goal was to update results from a similar 2010 survey in light of new state requirements and increased interlock installations. Questions were included in the Porter Novelli FallStyles survey, which was fielded from September 28 to October 16, 2015. Participants were the 3,536 individuals who provided an opinion toward requiring ignition interlocks for all offenders. For analyses, opinion toward requiring interlocks for all offenders was dichotomized into 'agree' and 'neutral/disagree.' To handle missing data, 10 imputed datasets were created and pooled using fully conditional specification (FCS). Fifty-nine percent of adults supported requiring interlocks for all DWI offenders. Multivariate analysis revealed that persons who did not report alcohol-impaired driving (AID) were 60% more likely to support requiring interlocks than those who reported AID. Having heard of interlocks also increased support. Support was generally consistent across demographic subgroups. Interlocks for all offenders have majority support nationwide in the current survey, consistent with previous reports. Support is lowest among those who have reported alcohol-impaired driving in the past 30days. These results suggest that communities with higher levels of alcohol-impaired driving may be more resistant to requiring ignition interlocks for all convicted DWI offenders. Future studies should examine this association further. Practical applications: These results indicate that the majority of adults recognize DWI as a problem and support requiring interlocks for all offenders. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  9. Properties of pressure sensitive adhesives found in paper recycling operations

    Treesearch

    Ryan F. Verhulst; Steven J. Severtson; Jihui Guo; Carl J. Houtman

    2006-01-01

    Hot melt and water-based adhesives are very different materials with similar physical properties. Their ability to act as adhesives is due to physical bonds and mechanical interlocks which form as adhesive flows into topographical features on the substrate surface. Hot-melt adhesives are based on soft, rubbery polymers while water-based adhesives are usually acrylic...

  10. Removably attachable snubber assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Jr., Nicholas F.; Wiebe, David J.

    A removably attachable snubber assembly for turbine blades includes a turbine blade airfoil including a trailing edge and a leading edge joined by a pressure side and a suction side to provide an outer surface extending in a radial direction to a tip. At least one snubber attachment platform is integrally formed onto the outer surface of the turbine blade airfoil. The at least one snubber attachment platform includes an interlocking mechanism. A snubber is removably attachable to the at least one snubber attachment platform, the snubber including a first end, a second end, a trailing edge, a leading edge,more » a snubber length, and a snubber width. The snubber also includes a removable attachment mechanism on at least one of the first end and the second end that connects with the interlocking mechanism on the at least one snubber attachment platform.« less

  11. 49 CFR 236.807 - Signal, interlocking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Signal, interlocking. 236.807 Section 236.807..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.807 Signal, interlocking. A roadway signal which governs movements into or within interlocking limits. ...

  12. 49 CFR 236.807 - Signal, interlocking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Signal, interlocking. 236.807 Section 236.807..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.807 Signal, interlocking. A roadway signal which governs movements into or within interlocking limits. ...

  13. 49 CFR 236.807 - Signal, interlocking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Signal, interlocking. 236.807 Section 236.807..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.807 Signal, interlocking. A roadway signal which governs movements into or within interlocking limits. ...

  14. 49 CFR 236.807 - Signal, interlocking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Signal, interlocking. 236.807 Section 236.807..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.807 Signal, interlocking. A roadway signal which governs movements into or within interlocking limits. ...

  15. 49 CFR 236.807 - Signal, interlocking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Signal, interlocking. 236.807 Section 236.807..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.807 Signal, interlocking. A roadway signal which governs movements into or within interlocking limits. ...

  16. 21 CFR 876.4590 - Interlocking urethral sound.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Interlocking urethral sound. 876.4590 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4590 Interlocking urethral sound. (a) Identification. An interlocking urethral sound is a device that consists of two metal sounds...

  17. 21 CFR 876.4590 - Interlocking urethral sound.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Interlocking urethral sound. 876.4590 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4590 Interlocking urethral sound. (a) Identification. An interlocking urethral sound is a device that consists of two metal sounds...

  18. 21 CFR 876.4590 - Interlocking urethral sound.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Interlocking urethral sound. 876.4590 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4590 Interlocking urethral sound. (a) Identification. An interlocking urethral sound is a device that consists of two metal sounds...

  19. 21 CFR 876.4590 - Interlocking urethral sound.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Interlocking urethral sound. 876.4590 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4590 Interlocking urethral sound. (a) Identification. An interlocking urethral sound is a device that consists of two metal sounds...

  20. 21 CFR 876.4590 - Interlocking urethral sound.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Interlocking urethral sound. 876.4590 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4590 Interlocking urethral sound. (a) Identification. An interlocking urethral sound is a device that consists of two metal sounds...

  1. 49 CFR 236.312 - Movable bridge, interlocking of signal appliances with bridge devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Movable bridge, interlocking of signal appliances with bridge devices. 236.312 Section 236.312 Transportation Other Regulations Relating to... SYSTEMS, DEVICES, AND APPLIANCES Interlocking Standards § 236.312 Movable bridge, interlocking of signal...

  2. 49 CFR 236.312 - Movable bridge, interlocking of signal appliances with bridge devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movable bridge, interlocking of signal appliances with bridge devices. 236.312 Section 236.312 Transportation Other Regulations Relating to... SYSTEMS, DEVICES, AND APPLIANCES Interlocking Standards § 236.312 Movable bridge, interlocking of signal...

  3. 12 CFR 250.410 - Interlocking relationships between bank and its commingled investment account.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Interlocking relationships between bank and its... Section 32 of the Glass-Steagall Act § 250.410 Interlocking relationships between bank and its commingled... Banking Act of 1933 in view of the interlocking relationships that would exist between the bank and...

  4. 12 CFR 303.249 - Management official interlocks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... interlock pursuant to the Depository Institutions Management Interlocks Act (12 U.S.C. 3207), section 13 of the FDI Act (12 U.S.C. 1823(k)) and part 348 of this chapter (12 CFR part 348). (b) Where to file... 12 Banks and Banking 5 2012-01-01 2012-01-01 false Management official interlocks. 303.249 Section...

  5. 12 CFR 303.249 - Management official interlocks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... interlock pursuant to the Depository Institutions Management Interlocks Act (12 U.S.C. 3207), section 13 of the FDI Act (12 U.S.C. 1823(k)) and part 348 of this chapter (12 CFR part 348). (b) Where to file... 12 Banks and Banking 5 2013-01-01 2013-01-01 false Management official interlocks. 303.249 Section...

  6. 12 CFR 303.249 - Management official interlocks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... interlock pursuant to the Depository Institutions Management Interlocks Act (12 U.S.C. 3207), section 13 of the FDI Act (12 U.S.C. 1823(k)) and part 348 of this chapter (12 CFR part 348). (b) Where to file... 12 Banks and Banking 4 2011-01-01 2011-01-01 false Management official interlocks. 303.249 Section...

  7. 12 CFR 303.249 - Management official interlocks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... interlock pursuant to the Depository Institutions Management Interlocks Act (12 U.S.C. 3207), section 13 of the FDI Act (12 U.S.C. 1823(k)) and part 348 of this chapter (12 CFR part 348). (b) Where to file... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Management official interlocks. 303.249 Section...

  8. 12 CFR 303.249 - Management official interlocks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... interlock pursuant to the Depository Institutions Management Interlocks Act (12 U.S.C. 3207), section 13 of the FDI Act (12 U.S.C. 1823(k)) and part 348 of this chapter (12 CFR part 348). (b) Where to file... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Management official interlocks. 303.249 Section...

  9. 12 CFR 250.410 - Interlocking relationships between bank and its commingled investment account.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 4 2014-01-01 2014-01-01 false Interlocking relationships between bank and its... Interpretations of Section 32 of the Glass-Steagall Act § 250.410 Interlocking relationships between bank and its... section 32 of the Banking Act of 1933 in view of the interlocking relationships that would exist between...

  10. 12 CFR 250.410 - Interlocking relationships between bank and its commingled investment account.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 3 2011-01-01 2011-01-01 false Interlocking relationships between bank and its... Section 32 of the Glass-Steagall Act § 250.410 Interlocking relationships between bank and its commingled... Banking Act of 1933 in view of the interlocking relationships that would exist between the bank and...

  11. 12 CFR 250.410 - Interlocking relationships between bank and its commingled investment account.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 4 2012-01-01 2012-01-01 false Interlocking relationships between bank and its... Interpretations of Section 32 of the Glass-Steagall Act § 250.410 Interlocking relationships between bank and its... section 32 of the Banking Act of 1933 in view of the interlocking relationships that would exist between...

  12. 12 CFR 250.410 - Interlocking relationships between bank and its commingled investment account.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 4 2013-01-01 2013-01-01 false Interlocking relationships between bank and its... Interpretations of Section 32 of the Glass-Steagall Act § 250.410 Interlocking relationships between bank and its... section 32 of the Banking Act of 1933 in view of the interlocking relationships that would exist between...

  13. Solid Lubricants for Space Structures

    DTIC Science & Technology

    1993-04-17

    will utilize mechanically interlocked hardware (caged bearings or bearings for ultra precision gimbals pointing mechanisms) controlled through precision...structure unless the lubricant were of low vapor pressure and/or suitably sealed to I prevent molecular effusion . While temperatures within spacecraft or...incorporation in the continuous cast system. The die made of graphite, consists of a plurality of openings or holes located in the die and positioned (unlined

  14. Comparative Study on the Cost of Building Public House Construction Using Red Brick and Interlock Brick Building Material in the City of Banda Aceh

    NASA Astrophysics Data System (ADS)

    Malahayati, Nurul; Hayati, Yulia; Nursaniah, Cut; Firsa, T.; Fachrurrazi; Munandar, Aris

    2018-05-01

    Red brick and interlocking brick are the building materials that are often used for wall installation work on houses construction. In the development of building materials technology and cost savings, interlocking brick can be alternative to replace red bricks. In Aceh Province, the use of interlocking bricks is less popular compared to other big cities in Indonesia. Interlocking brick is made from a mixture of clay, concrete sand and compacted cement and one of the environmentally friendly materials because it does not burn the process like red brick material. It is named interlocking brick because the installation method is locked together and it serves as a structural and partition wall of residential buildings. The aims of this study are to compare the cost of building a house in Banda Aceh City using red brick and interlock brick building materials. The data were obtained from interviews and questionnaires distributed to respondents who had built houses in Banda Aceh City. The results concluded that the house construction cost using interlock brick offer lower construction cost at comparable quality rather than using red brick.

  15. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-02-08

    An advanced containment system for containing buried waste and associated leachate. The advanced containment system comprises a plurality of casing sections with each casing section interlocked to an adjacent casing section. Each casing section includes a complementary interlocking structure that interlocks with the complementary interlocking structure on an adjacent casing section. A barrier filler substantially fills the casing sections and may substantially fill the spaces of the complementary interlocking structure to form a substantially impermeable barrier. Some of the casing sections may include sensors so that the casing sections and the zone of interest may be remotely monitored after the casing sections are emplaced in the ground.

  16. Program design for incentivizing ignition interlock installation for alcohol-impaired drivers: The Ontario approach.

    PubMed

    Ma, Tracey; Byrne, Patrick A; Bhatti, Junaid A; Elzohairy, Yoassry

    2016-10-01

    Drinking and driving is a major risk factor for traffic injuries. Although ignition interlocks reduce drinking and driving while installed, several issues undermine their implementation including delayed eligibility for installation, low installation once eligible, and a return to previous risk levels after de-installation. The Canadian province of Ontario introduced a "Reduced Suspension with Ignition Interlock Conduct Review" Program, significantly changing pre-existing interlock policy. The Program incentivizes interlock installation and an "early" guilty plea. It also attempts to reduce long-term recidivism through behavioural feedback and compliance-based removal. This evaluation is the first in assessing Program impact. Ontario drivers with a first time alcohol-impaired driving conviction between July 1, 2005 and November 25, 2014 comprised the study cohort. Longitudinal analyses, using interrupted time series and Cox regression, were conducted in which exposure was the Program and the outcomes were ignition interlock installation (N=30,200), pre-trial elapsed time (N=30,200), and post-interlock recidivism (N=9326). After Program implementation, installation rates increased by 54% and pre-trial elapsed time decreased by 146 days. Results suggest no effect on post-interlock recidivism. Through an incentive-based design, this Program was effective at addressing two commonly cited barriers to interlock implementation- delayed eligibility for installation and low installation once eligible. Results reveal that installation rates are responsive not only to incentivization but also to other external factors, thus presenting an opportunity for policy makers to find unique ways to influence interlock uptake, and thereby, to extend their deterrent effects to a larger subset of the population. This study is one of the few that do not rely on proxy measures of installation rate. Copyright © 2016 Crown. Published by Elsevier Ltd.. All rights reserved.

  17. Administrative Reinstatement Interlock Programs: Florida, a 10-Year Study

    PubMed Central

    Voas, Robert B.; Tippetts, A. Scott; Grosz, Milton

    2013-01-01

    Background Interlocks reduce driving-under-the-influence (DUI) recidivism by 64%, but offenders resist installing them, preferring to risk driving while their driver’s licenses are revoked. One method of motivating offenders to install an interlock is require it for reinstatement of their driver’s license. This report updates an earlier evaluation of the administrative reinstatement interlock program (ARIP) procedure implemented in Florida in 2002. Method Driver records and interlock program records covering 120,000 DUI offenders were followed over 10 years. The flow through the sanction system—conviction, reinstatement, interlock program, and postinterlock period—is described. Logistical regression was used to identify the characteristics of offenders who installed interlocks, and survival analysis was used to evaluate the recidivism of offenders in the various stages in the ARIP. Results At any given time, approximately one third of the convicted offenders were serving their license-revocation periods. Half of the offenders who completed their revocation periods remain unqualified for reinstatement because they do not fulfill other requirements. ARIP offenders who do qualify for reinstatement and install interlocks have lower recidivism rates while the devices are on their vehicles. Conclusions After 10 years, Florida’s ARIP is a mature system that succeeds in forcing all offenders in the program who qualify for reinstatement to install an interlock for at least 6 months. However, half of all offenders who complete their mandatory revocation period are either unable to, or choose not to, qualify for reinstatement. PMID:23442206

  18. Low voltage picoliter droplet manipulation utilizing electrowetting-on-dielectric platforms.

    PubMed

    Lin, Yan-You; Welch, Erin R F; Fair, Richard B

    2012-10-01

    Picoliter droplets actuated on an electrowetting-on-dielectric (EWD) actuator are demonstrated. In this study, the physical scaling of electrodes for 33 μm and 21 μm EWD devices resulted in droplets of 12 pl and 5 pl being dispensed respectively in conjunction with 3 μm SU8 gaskets. The stacked multi-layer insulators in the actuators consisted of 200 nm tantalum pentoxide (Ta 2 O 5 ) and 200 nm parylene C films deposited and coated with 70 nm of CYTOP. The voltages for dispensing droplets on chips without any external pressure sources are 17.1 V rms and 22 V rms for these two sets of devices. A 12 pl droplet can be split into two 6 pl daughter droplets at 18.7 V rms with 33 μm electrode devices. Droplet manipulation is also demonstrated with paramagnetic beads and buffer solutions with proteins. In addition, electrodes with interlocking protrusions and special featured reservoir gasket are designed to facilitate droplet dispensing on these scaled EWD devices. In order to improve sealing of the two-piece sandwich EWD structure, a soft material, Norland Optical Adhesive (NOA), was coated on the top plate along with pressure on top. We demonstrate that based on fundamental theories and experiments, the dimensional scaling of EWD devices has not yet met a limitation as long as the EWD device can be sealed well.

  19. Low voltage picoliter droplet manipulation utilizing electrowetting-on-dielectric platforms

    PubMed Central

    Lin, Yan-You; Welch, Erin R.F.; Fair, Richard B.

    2012-01-01

    Picoliter droplets actuated on an electrowetting-on-dielectric (EWD) actuator are demonstrated. In this study, the physical scaling of electrodes for 33 μm and 21 μm EWD devices resulted in droplets of 12 pl and 5 pl being dispensed respectively in conjunction with 3 μm SU8 gaskets. The stacked multi-layer insulators in the actuators consisted of 200 nm tantalum pentoxide (Ta2O5) and 200 nm parylene C films deposited and coated with 70 nm of CYTOP. The voltages for dispensing droplets on chips without any external pressure sources are 17.1 Vrms and 22 Vrms for these two sets of devices. A 12 pl droplet can be split into two 6 pl daughter droplets at 18.7 Vrms with 33 μm electrode devices. Droplet manipulation is also demonstrated with paramagnetic beads and buffer solutions with proteins. In addition, electrodes with interlocking protrusions and special featured reservoir gasket are designed to facilitate droplet dispensing on these scaled EWD devices. In order to improve sealing of the two-piece sandwich EWD structure, a soft material, Norland Optical Adhesive (NOA), was coated on the top plate along with pressure on top. We demonstrate that based on fundamental theories and experiments, the dimensional scaling of EWD devices has not yet met a limitation as long as the EWD device can be sealed well. PMID:23559693

  20. Pulverized granite at the brittle-ductile transition: An example from the Kellyland fault zone, eastern Maine, U.S.A.

    NASA Astrophysics Data System (ADS)

    Sullivan, Walter A.; Peterman, Emily M.

    2017-08-01

    Granite from a 50-200-m-wide damage zone adjacent to the brittle-ductile Kellyland Fault Zone contains healed fracture networks that exhibit almost all of the characteristics of dynamically pulverized rocks. Fracture networks exhibit only weak preferred orientations, are mutually cross-cutting, separate jigsaw-like interlocking fragments, and are associated with recrystallized areas likely derived from pervasively comminuted material. Fracture networks in samples with primary igneous grain shapes further indicate pulverization. Minimum fracture densities in microcline are ∼100 mm/mm2. Larger fractures in microcline and quartz are sometimes marked by neoblasts, but most fractures are optically continuous with host grains and only visible in cathodoluminescence images. Fractures in plagioclase are crystallographically controlled and typically biotite filled. Petrologic observations and cross-cutting relationships between brittle structures and mylonitic rocks show that fracturing occurred at temperatures of 400 °C or more and pressures of 200 MPa. These constraints extend the known range of pulverization to much higher temperature and pressure conditions than previously thought possible. The mutually cross-cutting healed fractures also provide the first record of repeated damage in pulverized rocks. Furthermore, pulverization must have had a significant but transient effect on wall-rock porosity, and biotite-filled fracture networks in plagioclase form weak zones that could accommodate future strain localization.

  1. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G. P.; Zhang, Y.; Xiao, J.

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat loadmore » from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.« less

  2. Solution-Phase Dynamic Assembly of Permanently Interlocked Aryleneethynylene Cages through Alkyne Metathesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qi; Yu, Chao; Long, Hai

    2015-05-08

    Highly stable permanently interlocked aryleneethynylene molecular cages were synthesized from simple triyne monomers using dynamic alkyne metathesis. The interlocked complexes are predominantly formed in the reaction solution in the absence of any recognition motif and were isolated in a pure form using column chromatography. This study is the first example of the thermodynamically controlled solution-phase synthesis of interlocked organic cages with high stability.

  3. Requiring suspended drunk drivers to install alcohol interlocks to reinstate their licenses: effective?

    PubMed Central

    Voas, Robert B.; Tippetts, S. Scott; Fisher, Deborah; Grosz, Milton

    2015-01-01

    Aims To evaluate a new method being used by some states for motivating interlock installation by requiring it as a prerequisite to reinstatement of the driver’s license. Design The driving records of Florida DWI offenders convicted between July 2002 and June 2008 were analyzed to determine the proportion of offenders subject to the interlock requirement who installed interlocks. Setting Most driving-while-impaired (DWI) offenders succeed in avoiding state laws requiring the installation of a vehicle alcohol interlock. Participants A total of 82 318 Florida DWI offenders. Findings Due to long periods of complete suspension when no driving was permitted and the failure to complete all the requirements imposed by the court, only 21 377 of the 82 318 offenders studied qualified for reinstatement, but 93% of those who qualified did install interlocks to be reinstated. Conclusions Because of the lengthy license suspensions and other barriers that the offenders face in qualifying for reinstatement, it is not clear that requiring a period on the interlock as a prerequisite to reinstating will greatly increase the current installment rate. PMID:20528811

  4. Kinematic Alignment and Bonding of Silicon Mirrors for High-Resolution Astronomical X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Mazzarella, James R.; Saha, Timo T.; Zhang, William W.; Mcclelland, Ryan S.; Biskack, Michael P.; Riveros, Raul E.; Allgood, Kim D.; Kearney, John D.; Sharpe, Marton V.; hide

    2017-01-01

    Optics for the next generation's high-resolution, high throughput x-ray telescope requires fabrication of well-formed lightweight mirror segments and their integration at arc-second precision. Recent advances in the fabrication of silicon mirrors developed at NASA/Goddard prompted us to develop a new method of mirror alignment and integration. In this method, stiff silicon mirrors are aligned quasi-kinematically and are bonded in an interlocking fashion to produce a "meta-shell" with large collective area. We address issues of aligning and bonding mirrors with this method and show a recent result of 4 seconds-of-arc for a single pair of mirrors tested at soft x-rays.

  5. Method of installing subsurface barrier

    DOEpatents

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2007-10-09

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  6. Subsurface materials management and containment system

    DOEpatents

    Nickelson, Reva A.; Richardson, John G.; Kosteinik, Kevin M.; Sloan, Paul A.

    2004-07-06

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  7. Subsurface materials management and containment system

    DOEpatents

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2006-10-17

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  8. Factors influencing interlocking screw failure in unreamed small diameter nails--a biomechanical study using a distal tibia fracture model.

    PubMed

    Weninger, Patrick; Schueller, Michael; Jamek, Michael; Stanzl-Tschegg, Stefanie; Redl, Heinz; Tschegg, Elmar K

    2009-05-01

    Unreamed tibia nails with small diameters are increasingly used for fracture fixation. However, little is known about the fatigue strength of proximal and distal interlocking screws in those nails. To date, no data are available reporting on mechanical differences of solid compared to cannulated tibial nails. The aim of this study was to assess the fatigue strength of proximal and distal interlocking screws of solid and cannulated small diameter tibia nails. We created a distal tibia fracture model (AO/OTA 43 A3) using 16 Sawbones. After fracture stabilization with one of four different nail types (Expert Tibial Nail, VersaNail, T2 Tibial Nailing System, Connex), mechanical testing was performed in three loading series (40,000 cycles each) with incremental loads. Timing and type of interlocking screw failure were assessed. Interlocking screw failure was observed significantly earlier (after a mean interval of 57,042 cycles) in cannulated tibial nails (VersaNail, T2) compared to solid nails (after a mean interval of 88,415 cycles; P < 0.001). Proximal interlocking screw failure was recorded if oblique screws were used proximally (VersaNail, T2, Connex). No distal interlocking screw failure was recorded in the Connex nail. Two- and three-part fractures of proximal or distal interlocking screws were observed in all specimen. Proximal and distal interlocking screw failure has to be considered in small diameter nails in case of delayed fracture healing. To support our results, further experimental studies and clinical series are necessary.

  9. Completion of the Design of the Top End Optical Assembly for ATST

    NASA Astrophysics Data System (ADS)

    Canzian, Blaise; Barentine, J.

    2013-01-01

    L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to make the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakala, Maui. ATST will perform to a very high optical performance level in a difficult operational environment. The TEOA (including a 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, Lyot stop, safety interlock and control system, and support frame) operates in the “hot spot” at the prime focus of the ATST, presenting unusual challenges. L-3 IOS has passed Critical Design Review of the TEOA. In this paper, we describe L-3 IOS success meeting technical challenges, including our solutions for optic fabrication, opto-mechanical positioning, rejected and stray light control, wavefront tip-tilt compensation, and thermal management and control.

  10. 8. VIEW, LOOKING NORTH, OF INTERLOCKING MACHINE WITH ORIGINAL MODEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW, LOOKING NORTH, OF INTERLOCKING MACHINE WITH ORIGINAL MODEL BOARD IN CENTER AND MODEL SEMAPHORE SIGNALS (AT TOP OF PHOTOGRAPH), THIRD FLOOR - South Station Tower No. 1 & Interlocking System, Dewey Square, Boston, Suffolk County, MA

  11. Method of sealing casings of subsurface materials management system

    DOEpatents

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2007-02-06

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  12. Analysis of interlocking performances on non-oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Liu, Li-Hsiang; Liu, Lee-Cheng

    2018-05-01

    In order to reduce energy loss in motor, applications of high-efficiency non-oriented electrical steel sheets and optimal laminating process are both important elements. The motor core loss deterioration is influenced by a number of factors, such as flux distribution, stress and strain, space harmonics, temperature, and short circuits between lamination. In conventional clamping method, steel sheets are laminated via interlocking or welding in general manner. The measured energy loss by welding was much larger than that by interlocking. Therefore, interlocking is well known and usually employed with benefit of easy conducting. The protuberance shapes affected the fastening strength. Generally, the intensity of rectangular type is stronger than the circular counterparts. However, the circular interlocking has better magnetic characteristics. To clarify the method effectiveness, interlocking performances regarding fastened strength and magnetic deterioration by lamination were investigated. The key parameters of protuberance shape and forming depth were designed. Precisely manufacturing operation was applied to avoid interlocking failure. Magnetic properties largely influenced by clamping method are crucial to minimizing the magnetic deterioration during laminating procedure. Several experiments for various processing conditions were undertaken, and the quantification results showed the rectangular interlocking had better fastened strength but worsened iron loss comparing with the circular arrangement. To acquire the comprehensive mechanical and electrical identities for electrical steel lamination, deliberate producing conditions regarding minimizing the magnetic deterioration should be adopted prudently.

  13. An evaluation of Nova Scotia's alcohol ignition interlock program.

    PubMed

    Vanlaar, Ward G M; Mainegra Hing, Marisela; Robertson, Robyn D

    2017-03-01

    Alcohol ignition interlock programs for offenders aim to reduce recidivism among convicted drink drivers. This study presents an evaluation of Nova Scotia's interlock program implemented in 2008 in order to assess its effectiveness to reduce impaired driving and to help identify areas for improvement. Data used include conviction and crash records of individual participants; provincial monthly counts of alcohol-related charges, convictions and fatal and serious crashes; and interlock logged events. Methods used include descriptive statistics, survival analysis, time series and logistic regression analysis. With respect to specific deterrence (i.e., preventing recidivism) there was a 90% reduction in recidivism among voluntary participants since participation in the interlock program and a 79% reduction after these participants exited from the program. With respect to general deterrence (i.e., referring to a preventative effect on the entire population of drivers in Nova Scotia) there were temporary decreases in the numbers of alcohol-related charges (13.32%) and convictions (9.93%) and a small significant decrease in the number of fatal and serious injury alcohol-related crashes, following the implementation of the program. The evidence suggests the interlock program was better at preventing harm due to alcohol-impaired driving than the alternative of not using the interlock program. Recommendations were formulated supporting the continuation of the interlock program in Nova Scotia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Cavity closure arrangement for high pressure vessels

    DOEpatents

    Amtmann, Hans H.

    1981-01-01

    A closure arrangement for a pressure vessel such as the pressure vessel of a high temperature gas-cooled reactor wherein a liner is disposed within a cavity penetration in the reactor vessel and defines an access opening therein. A closure is adapted for sealing relation with an annular mounting flange formed on the penetration liner and has a plurality of radially movable locking blocks thereon having outer serrations adapted for releasable interlocking engagement with serrations formed internally of the upper end of the penetration liner so as to effect high strength closure hold-down. In one embodiment, ramping surfaces are formed on the locking block serrations to bias the closure into sealed relation with the mounting flange when the locking blocks are actuated to locking positions.

  15. Evaluation of the New Mexico ignition interlock program.

    DOT National Transportation Integrated Search

    2010-11-01

    This Evaluation of the New Mexico Ignition Interlock Program begins by summarizing the development of : alcohol ignition interlock devices, laws, and programs during the past 22 years. It then reviews the laws that : were written in New Mexico from 1...

  16. 1. ENVIRONMENT, FROM NORTHWEST, SHOWING B&P INTERLOCKING TOWER AND POWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. ENVIRONMENT, FROM NORTHWEST, SHOWING B&P INTERLOCKING TOWER AND POWER SUBSTATIONS - Baltimore & Potomac Interlocking Tower, Adjacent to AMTRAK railroad tracks in block bounded by Howard Street, Jones Falls Expressway, Maryland Avenue & Falls Road, Baltimore, Independent City, MD

  17. 49 CFR 236.772 - Machine, interlocking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Machine, interlocking. 236.772 Section 236.772 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Machine, interlocking. An assemblage of manually operated levers or other devices for the control of...

  18. 49 CFR 236.772 - Machine, interlocking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Machine, interlocking. 236.772 Section 236.772 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Machine, interlocking. An assemblage of manually operated levers or other devices for the control of...

  19. Advanced Concepts for Avionics/Weapon System Design, Development and Integration: Conference Proceedings of the Avionics Panel Symposium (45th) Held at Ottawa, Canada on 18-22 April 1983.

    DTIC Science & Technology

    1983-10-01

    BIT A,, M 115V ACBB N 270V DC RETURN p 115V ACCA R IW DC POWER S INTERLOCK RETURN T STRUCTURE GROUND U FIBER OPTICS BUS V ADDRESS BIT A,, w...Ontario Kl A 0K2 Canada FGAN- FFM , D-5307 Wachtberg-Werthhoven Germany Concordia University, 7141 Sherbrooke St. W. Montreal, QueH4BlRG Canada

  20. Ceramic tile expansion engine housing

    DOEpatents

    Myers, Blake

    1995-01-01

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow therebetween. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow.

  1. Ceramic tile expansion engine housing

    DOEpatents

    Myers, B.

    1995-04-11

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow there between. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow. 8 figures.

  2. Safety and diagnostic systems on the Liquid Lithium Test Stand (LLTS)

    NASA Astrophysics Data System (ADS)

    Schwartz, J. A.; Jaworski, M. A.; Ellis, R.; Kaita, R.; Mozulay, R.

    2013-10-01

    The Liquid Lithium Test Stand (LLTS) is a test bed for development of flowing liquid lithium systems for plasma-facing components at PPPL. LLTS is designed to test operation of liquid lithium under vacuum, including flowing, solidifying (such as would be the case at the end of plasma operations), and re-melting. Constructed of stainless steel, LLTS is a closed loop of pipe with two reservoirs and a pump, as well as diagnostics for temperature, flow rate, and pressure. Since liquid lithium is a highly reactive material, special care must be taken when designing such a system. These include a permanent-magnet MHD pump and MHD flow meter that have no mechanical components in direct contact with the liquid lithium. The LLTS also includes an expandable 24-channel leak-detector interlock system which cuts power to heaters and the pump if any lithium leaks from a pipe joint. Design for the interlock systems and flow meter are presented. This work is supported by US DOE Contract DE-AC02-09CH11466.

  3. Impact of State Ignition Interlock Laws on Alcohol-Involved Crash Deaths in the United States.

    PubMed

    Kaufman, Elinore J; Wiebe, Douglas J

    2016-05-01

    To investigate the impact on alcohol-involved crash deaths of universal ignition interlock requirements, which aim to prevent people convicted of driving under the influence of alcohol from driving while intoxicated. We used data from the National Highway Traffic Safety Administration for 1999 to 2013. From 2004 to 2013, 18 states made interlocks mandatory for all drunk-driving convictions. We compared alcohol-involved crash deaths between 18 states with and 32 states without universal interlock requirements, accounting for state and year effects, and for clustering within states. Policy impact was apparent 3 years after implementation. The adjusted rate of alcohol-involved crash deaths was 4.7 (95% confidence interval [CI] = 4.0, 5.4) per 100,000 in states with the universal interlock requirement, compared with 5.5 (95% CI = 5.48, 5.53) in states without, an absolute reduction of 0.8 (95% CI = 0.1, 1.5) deaths per 100,000 per year. Requiring ignition interlocks for all drunk-driving convictions was associated with 15% fewer alcohol-involved crash deaths, compared with states with less-stringent requirements. Interlocks are a life-saving technology that merit wider use.

  4. 40 CFR Appendix E to Subpart B of... - The Standard for Automotive Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... liquid phase only. 4.2Seat Leakage Test 4.2.1 Valves, including electrically operated solenoid valves, that are used to isolate CFC-12 and HFC-134a refrigerant circuits, shall have a seat leakage rate not... Leakage Test shall be performed at 1.5 times this pressure at an ambient of 24 °C. 4.3Interlocks 4.3...

  5. 9. VIEW, LOOKING SOUTH, OF INTERLOCKING MACHINE, WITH ORIGINAL MODEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW, LOOKING SOUTH, OF INTERLOCKING MACHINE, WITH ORIGINAL MODEL BOARD IN CENTER, NEW MODEL BOARD AT LEFT AND MODEL SEMAPHORES AT TOP OF PHOTOGRAPH, THIRD FLOOR - South Station Tower No. 1 & Interlocking System, Dewey Square, Boston, Suffolk County, MA

  6. Ignition interlocks reduce re-arrest rates of alcohol offenders

    DOT National Transportation Integrated Search

    2000-01-15

    In a recent study of repeat offenders in Maryland, ignition interlocks reduced the risk of alcohol traffic violations by 64% during the first year they were required. In the second year, when interlocks could be removed, 3.5% of the remaining interlo...

  7. Subsurface materials management and containment system, components thereof and methods relating thereto

    DOEpatents

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2006-04-18

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  8. The effects of closer monitoring on driver compliance with interlock restrictions.

    PubMed

    Zador, Paul L; Ahlin, Eileen M; Rauch, William J; Howard, Jan M; Duncan, G Doug

    2011-11-01

    This randomized controlled trial of 2168 DWI multiple offenders assigned to a state-wide ignition interlock program in Maryland compared non-compliance with interlock requirements among drivers who were closely monitored (by Westat staff) and drivers who received standard monitoring (by the Motor Vehicle Administration). Compliance comparisons relied on datalogger data from MVA's interlock providers plus driver records that contained demographic information, prior alcohol-related traffic violations, their dispositions, and interlock duration. Measures for quantifying non-compliance included rates per 1000 engine starts for initial breath test failures at varying BAC levels and time periods, retest failures, retest refusals, interlock disconnects, startup violations, and summation measures. Regression analysis estimated the effects of closer monitoring on non-compliance, using linear mixed models that included random driver effects and fixed effects for study-group assignment, prior alcohol-related traffic violations, and months of continuous datalogger data with a quadratic function that assessed changes and rates of change in interlock non-compliance over time. All the separate non-compliance rates and summary measures derived from them were lower for closer monitored than control drivers for continuous data series of at least 6, 12, or 24 months. The differences for initial test failures and the two summary measures were statistically significant. Most measures of non-compliance decreased significantly as continuous time on the interlock increased. Parallel trends in each study group indicated that drivers learned to improve their compliance over time. Thus, this study convincingly demonstrates that closer monitoring substantially enhanced compliance with requirements of the ignition interlock and that regardless of group assignment, compliance increased over time. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Mechanically interlocked gold and silver nanoparticles using metallosupramolecular catenane chemistry.

    PubMed

    Otter, Carl A; Patty, Philipus J; Williams, Martin A K; Waterland, Mark R; Telfer, Shane G

    2011-03-01

    We have employed the toolbox of metallosupramolecular chemistry to mechanically interlock gold and silver nanoparticles. A specifically designed PEGthiol-functionalized bis(phenanthroline)copper(I) complex acts to 'catenate' the nanoparticles. The interlocked assemblies were characterised by three complementary techniques: DLS, SERS and TEM.

  10. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Electromechanical interlocking machine; locking between electrical and mechanical levers. 236.340 Section 236.340 Transportation Other Regulations... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical...

  11. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Electromechanical interlocking machine; locking between electrical and mechanical levers. 236.340 Section 236.340 Transportation Other Regulations... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical...

  12. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Electromechanical interlocking machine; locking between electrical and mechanical levers. 236.340 Section 236.340 Transportation Other Regulations... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical...

  13. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Electromechanical interlocking machine; locking between electrical and mechanical levers. 236.340 Section 236.340 Transportation Other Regulations... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical...

  14. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... between electrical and mechanical levers. 236.340 Section 236.340 Transportation Other Regulations... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that mechanical...

  15. Enhancing the Use of Vehicle Alcohol Interlocks With Emerging Technology.

    PubMed

    Voas, Robert B

    2014-01-01

    Among the earliest applications of health technologies to a safety program was the development of blood alcohol content (BAC) tests for use in impaired-driving enforcement. This led to the development of miniature, highly accurate devices that officers could carry in their pockets. A natural extension of this technology was the vehicle alcohol interlock, which is used to reduce recidivism among drivers convicted of driving under the influence (DUI) by requiring them to install the devices (which will not allow someone with a positive BAC to drive) on their vehicles. While on the vehicle, interlocks have been shown to reduce recidivism by two-thirds. Use of these devices has been growing at the rate of 10 to 15 percent a year, and there currently are more than 300,000 units in use. This expansion in the application of interlocks has benefited from the integration of other emerging technologies into interlock systems. Such technologies include data systems that record both driver actions and vehicle responses, miniature cameras and face recognition to identify the user, Wi-Fi systems to provide rapid reporting on offender performance and any attempt to circumvent the device, GPS tracking of the vehicle, and more rapid means for monitoring the integrity of the interlock system. This article describes how these health technologies are being applied in interlock programs and the outlook for new technologies and new court sanctioning programs that may influence the growth in the use of interlocks in the future.

  16. 30 CFR 18.41 - Plug and receptacle-type connectors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... electrically interlocked with an automatic circuit-interrupting device. (i) Mechanically interlocked connectors... shall be removed before the plug can be withdrawn and the electrical energy in the interlocking pilot.... (d) Molded-elastomer connectors will be acceptable provided: (1) Any free space within the plug or...

  17. 30 CFR 18.41 - Plug and receptacle-type connectors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electrically interlocked with an automatic circuit-interrupting device. (i) Mechanically interlocked connectors... shall be removed before the plug can be withdrawn and the electrical energy in the interlocking pilot.... (d) Molded-elastomer connectors will be acceptable provided: (1) Any free space within the plug or...

  18. 30 CFR 18.41 - Plug and receptacle-type connectors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... electrically interlocked with an automatic circuit-interrupting device. (i) Mechanically interlocked connectors... shall be removed before the plug can be withdrawn and the electrical energy in the interlocking pilot.... (d) Molded-elastomer connectors will be acceptable provided: (1) Any free space within the plug or...

  19. 30 CFR 18.41 - Plug and receptacle-type connectors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... electrically interlocked with an automatic circuit-interrupting device. (i) Mechanically interlocked connectors... shall be removed before the plug can be withdrawn and the electrical energy in the interlocking pilot.... (d) Molded-elastomer connectors will be acceptable provided: (1) Any free space within the plug or...

  20. 30 CFR 18.41 - Plug and receptacle-type connectors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... electrically interlocked with an automatic circuit-interrupting device. (i) Mechanically interlocked connectors... shall be removed before the plug can be withdrawn and the electrical energy in the interlocking pilot.... (d) Molded-elastomer connectors will be acceptable provided: (1) Any free space within the plug or...

  1. 78 FR 59975 - Agency Information Collection Activities: Submission to OMB for Reinstatement, With Change, of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... credit unions. The Interlocks Act generally prohibits financial institution management officials from... federally insured credit unions having a common management official with another type financial institution... comply with the Depository Institution Management Interlocks Act (Interlocks Act) and to determine...

  2. 46 CFR 111.91-1 - Power, control, and interlock circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 111.91-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME...

  3. 46 CFR 111.91-1 - Power, control, and interlock circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 111.91-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME...

  4. 46 CFR 111.91-1 - Power, control, and interlock circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 111.91-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME...

  5. 46 CFR 111.91-1 - Power, control, and interlock circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 111.91-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME...

  6. 46 CFR 111.91-1 - Power, control, and interlock circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 111.91-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME...

  7. 30 CFR 75.819 - Motor-starter enclosures; barriers and interlocks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Motor-starter enclosures; barriers and...-Voltage Distribution High-Voltage Longwalls § 75.819 Motor-starter enclosures; barriers and interlocks. Compartment separation and cover interlock switches for motor-starter enclosures must be maintained in...

  8. Evaluation of state ignition interlock programs : interlock use analyses from 28 states, 2006–2011.

    DOT National Transportation Integrated Search

    2015-05-01

    In 2010, the Centers for Disease Control and Prevention (CDC) and NHTSA began collaborating on a project to evaluate ignition interlock programs in selected States. The purpose of the evaluation was to provide information and best practices to States...

  9. 49 CFR 1242.58 - Operating signals and interlockers, operating drawbridges, highway crossing protection (accounts...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... drawbridges, highway crossing protection (accounts XX-51-59, XX-51-60 and XX-51-61). 1242.58 Section 1242.58... Operating signals and interlockers, operating drawbridges, highway crossing protection (accounts XX-51-59..., interlockers, drawbridges and highway crossings are located. ...

  10. 49 CFR 1242.58 - Operating signals and interlockers, operating drawbridges, highway crossing protection (accounts...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... drawbridges, highway crossing protection (accounts XX-51-59, XX-51-60 and XX-51-61). 1242.58 Section 1242.58... Operating signals and interlockers, operating drawbridges, highway crossing protection (accounts XX-51-59..., interlockers, drawbridges and highway crossings are located. ...

  11. 49 CFR 1242.58 - Operating signals and interlockers, operating drawbridges, highway crossing protection (accounts...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... drawbridges, highway crossing protection (accounts XX-51-59, XX-51-60 and XX-51-61). 1242.58 Section 1242.58... Operating signals and interlockers, operating drawbridges, highway crossing protection (accounts XX-51-59..., interlockers, drawbridges and highway crossings are located. ...

  12. 49 CFR 1242.58 - Operating signals and interlockers, operating drawbridges, highway crossing protection (accounts...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... drawbridges, highway crossing protection (accounts XX-51-59, XX-51-60 and XX-51-61). 1242.58 Section 1242.58... Operating signals and interlockers, operating drawbridges, highway crossing protection (accounts XX-51-59..., interlockers, drawbridges and highway crossings are located. ...

  13. Ethylglucuronide in hair is a top predictor of impaired driving recidivism, alcohol dependence, and a key marker of the highest BAC interlock tests.

    PubMed

    Marques, Paul R; Tippetts, A Scott; Yegles, Michel

    2014-01-01

    This study focuses on the predictive and comparative significance of ethyl glucuronide measured in head hair (hEtG) for estimating risks associated with alcohol-impaired driving offenders. Earlier work compared different alcohol biomarkers for estimating rates of failed blood alcohol concentration (BAC) tests logged during 8 months of interlock participation. These analyses evaluate the comparative performance of several alcohol markers including hEtG and other markers, past driver records, and psychometric assessment predictors for the detection of 4 criteria: new driving under the influence (DUI) recidivism, alcohol dependence, and interlock record variables including fail rates and maximal interlock BACs logged. Drivers charged with alcohol impairment (DUI) in Alberta, Canada (n = 534; 64% first offenders, 36% multiple offenders) installed ignition interlock devices and consented to participate in research to evaluate blood-, hair-, and urine-derived alcohol biomarkers; sit for interviews; take psychometric assessments; and permit analyses of driving records and interlock log files. Subject variables included demographics, alcohol dependence at program entry, preprogram prior DUI convictions, postenrollment new DUI convictions, self-reported drinking assessments, morning and overall rates of failed interlock BAC tests, and maximal interlock BAC readings. Recidivism, dependence, high BAC, and combined fail rates were set as criteria; other variables were set as predictors. Area under the receiver operating characteristics (ROC) curve (A') estimates of sensitivity and specificity were calculated. Additional analyses were conducted on baseline hEtG levels. Driver performance and drinking indicators were evaluated against the standard hEtG cutoff for excessive drinking at (30 pg/mg) and a higher criterion of 50 pg/mg. HEtG splits were evaluated with the Mann-Whitney rank statistic. HEtG emerged as a top overall predictor for discriminating new recidivism events that occur after interlock installation, for entry alcohol dependence, and for the highest interlock BACs recorded. Together, hEtG and phosphatidylethanol (PEth) were the top predictors of all criterion measures. By contrast, the hair-derived alcohol biomarkers hEtG and hFAEE (fatty acid ethyl esters) were poorer than other alcohol biomarkers as detectors of interlock BAC test fail rates. This study showed that hEtG, an objective alternative to often unreliable self-reported past representation of drinking levels, yields crucial insight into driver alcohol-related risks early in an interlock program and is a top predictor of new recidivist events. Together with PEth, these markers would be excellent anchors in a panel for detecting alcohol consumption.

  14. Biocalcification using Ureolytic Bacteria (UB) for strengthening Interlocking Compressed Earth Blocks (ICEB)

    NASA Astrophysics Data System (ADS)

    Zamer, M. M.; Irwan, J. M.; Othman, N.; Faisal, S. K.; Anneza, L. H.; Alshalif, A. F.; Teddy, T.

    2018-02-01

    Interlocking compressed earth blocks (ICEB) are soil based blocks that allows for mortarless construction. This characteristic resulted to faster the process of building walls and required less skilled labor as the blocks are laid dry and lock into place. Recently, implementation in using bacteria as construction material improvement is vigorously used in research in order pursuit the sustainable construction works. This paper provide the results of ureolytic bacteria (UB) throughout enrichment process in soil condition to acclimatize the ICEB environment, compressive strength of 1%, 3% and 5% UB and SEM analysis of ICEB. The bacteria were added as partial replacement of limestone water in ICEB. The results showed the optimal growth achieved based on the days and absorbance from optical density (OD) test which are in 12th days with absorbance of 0.55 whereas the results for strength shows the increment of 15.25% with 5% UB on 28th days of testing compared to control specimen. Therefore this study hopes that positive results from the UB as improving in strength of ICEB which will lead to improve others ICEB properties and others construction materials.

  15. 49 CFR 236.401 - Automatic block signal system and interlocking standards applicable to traffic control systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Automatic block signal system and interlocking standards applicable to traffic control systems. 236.401 Section 236.401 Transportation Other Regulations... block signal system and interlocking standards applicable to traffic control systems. The standards...

  16. Interlocking oil: big oil ties with other corporations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, A.; Fritsch, A.J.

    1974-01-01

    There are 460 interlocking directorates and advisory committee connections of eighteen large oil companies with well-known large corporations. There are 132 interlocks with banks; 31 with insurance; 12 with utility companies; 15 with transportation corporations; 46 affiliations with educational institutions; and 224 with manufacturing and distribution corporations. (MCW)

  17. 18 CFR 131.31 - FERC Form No. 561, Annual report of interlocking positions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY APPROVED FORMS, FEDERAL POWER ACT AND PUBLIC UTILITY REGULATORY POLICIES ACT OF 1978 FORMS § 131.31 FERC Form No. 561, Annual report of interlocking... the Federal Energy Regulatory Commission's staff for the review and oversight of interlocking...

  18. 18 CFR 131.31 - FERC Form No. 561, Annual report of interlocking positions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY APPROVED FORMS, FEDERAL POWER ACT AND PUBLIC UTILITY REGULATORY POLICIES ACT OF 1978 FORMS § 131.31 FERC Form No. 561, Annual report of interlocking... the Federal Energy Regulatory Commission's staff for the review and oversight of interlocking...

  19. 18 CFR 131.31 - FERC Form No. 561, Annual report of interlocking positions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY APPROVED FORMS, FEDERAL POWER ACT AND PUBLIC UTILITY REGULATORY POLICIES ACT OF 1978 FORMS § 131.31 FERC Form No. 561, Annual report of interlocking... the Federal Energy Regulatory Commission's staff for the review and oversight of interlocking...

  20. 18 CFR 131.31 - FERC Form No. 561, Annual report of interlocking positions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY APPROVED FORMS, FEDERAL POWER ACT AND PUBLIC UTILITY REGULATORY POLICIES ACT OF 1978 FORMS § 131.31 FERC Form No. 561, Annual report of interlocking... the Federal Energy Regulatory Commission's staff for the review and oversight of interlocking...

  1. Impact of State Ignition Interlock Laws on Alcohol-Involved Crash Deaths in the United States

    PubMed Central

    Wiebe, Douglas J.

    2016-01-01

    Objectives. To investigate the impact on alcohol-involved crash deaths of universal ignition interlock requirements, which aim to prevent people convicted of driving under the influence of alcohol from driving while intoxicated. Methods. We used data from the National Highway Traffic Safety Administration for 1999 to 2013. From 2004 to 2013, 18 states made interlocks mandatory for all drunk-driving convictions. We compared alcohol-involved crash deaths between 18 states with and 32 states without universal interlock requirements, accounting for state and year effects, and for clustering within states. Results. Policy impact was apparent 3 years after implementation. The adjusted rate of alcohol-involved crash deaths was 4.7 (95% confidence interval [CI] = 4.0, 5.4) per 100 000 in states with the universal interlock requirement, compared with 5.5 (95% CI = 5.48, 5.53) in states without, an absolute reduction of 0.8 (95% CI = 0.1, 1.5) deaths per 100 000 per year. Conclusions. Requiring ignition interlocks for all drunk-driving convictions was associated with 15% fewer alcohol-involved crash deaths, compared with states with less-stringent requirements. Interlocks are a life-saving technology that merit wider use. PMID:26985604

  2. A Note on the Effectiveness of the House-Arrest Alternative for Motivating DWI Offenders to Install Ignition Interlocks

    PubMed Central

    Roth, Richard; Marques, Paul R.; Voas, Robert B.

    2009-01-01

    Problem The effectiveness of ignition interlocks at reducing drunk driving has been limited by the ability of driving-while-intoxicated (DWI) offenders to avoid court orders to install the devices. Methods In a pilot program in New Mexico, four Santa Fe County judges imposed home confinement (via electronic monitoring bracelets) on offenders who claimed to have no car or no intention to drive. Interlock installation rates for Santa Fe County were compared with all other counties in New Mexico over a 2-year program and 2-year post-program period. Results During the two program years, 70% of the drivers convicted of DWI in Santa Fe County installed interlocks, compared to only 17% in the other counties, but when the program was terminated, the Santa Fe installation rate fell by 18.8 percentage points. Summary Mandating the alternative sanction of house arrest led to the highest reported interlock installation rate for DWI offenders. Impact on Industry Impaired driving is a substantial expense to employers, particularly when it bars driving that interferes with employment. Interlocks provide a method of protecting the public while permitting the offender to drive sober. This study was directed at increasing interlock use by DWI offenders. PMID:19945556

  3. Challenges and Approach for Making the Top End Optical Assembly for the 4-meter Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Canzian, Blaise; Barentine, J.; Hull, T.

    2012-01-01

    L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to make the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakala, Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot” at the prime focus of the ATST and so presents special challenges. In this paper, we will describe the L-3 IOS technical approach to meet these challenges, including subsystems for opto-mechanical positioning, rejected and stray light control, wavefront tip-tilt compensation, and thermal management. Key words: ATST, TEOA, L-3 IOS, thermal management, silicon carbide (SiC) mirrors, hexapods, solar astronomy

  4. 78 FR 52217 - Agency Information Collection Activities: Submission to OMB for Reinstatement, With Change, of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... credit unions. The Interlocks Act generally prohibits financial institution management officials from... comply with the Depository Institution Management Interlocks Act (Interlocks Act) and to determine... types of financial institutions, not between two or more credit unions. 12 U.S.C. 3204(3). NCUA last...

  5. 21. Historic view looking northeast from tracks of Shell Interlocking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Historic view looking northeast from tracks of Shell Interlocking Tower after construction, 1909. Photographic copy of photograph published in Railway Age Gazette, February 4, 1910. - New York, New Haven, & Hartford Railroad, Shell Interlocking Tower, New Haven Milepost 16, approximately 100 feel east of New Rochelle Junction, New Rochelle, Westchester County, NY

  6. Flexible hemispheric microarrays of highly pressure-sensitive sensors based on breath figure method.

    PubMed

    Wang, Zhihui; Zhang, Ling; Liu, Jin; Jiang, Hao; Li, Chunzhong

    2018-05-30

    Recently, flexible pressure sensors featuring high sensitivity, broad sensing range and real-time detection have aroused great attention owing to their crucial role in the development of artificial intelligent devices and healthcare systems. Herein, highly sensitive pressure sensors based on hemisphere-microarray flexible substrates are fabricated via inversely templating honeycomb structures deriving from a facile and static breath figure process. The interlocked and subtle microstructures greatly improve the sensing characteristics and compressibility of the as-prepared pressure sensor, endowing it a sensitivity as high as 196 kPa-1 and a wide pressure sensing range (0-100 kPa), as well as other superior performance, including a lower detection limit of 0.5 Pa, fast response time (<26 ms) and high reversibility (>10 000 cycles). Based on the outstanding sensing performance, the potential capability of our pressure sensor in capturing physiological information and recognizing speech signals has been demonstrated, indicating promising application in wearable and intelligent electronics.

  7. Defining the safe current limit for opening ID photon shutter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.

    The NSLS-II storage ring is protected from possible damage from insertion devices (IDs) synchrotron radiation by a dedicated active interlock system (AIS). It monitors electron beam position and angle and triggers beam drop if beam orbit exceeds the boundaries of pre-calculated active interlock envelope (AIE). The beamlines (BL) and beamline frontends (FE) are designed under assumption that the electron beam is interlocked within the AIE. For historic reasons the AIS engages the ID active interlock (AI-ID) at any non-zero beam current whenever the ID photon shutter (IDPS) is getting opened. Such arrangement creates major inconveniences for BLs commissioning. Apparently theremore » is some IDPS safe current limit (SCL) under which the IDPS can be opened without interlocking the e-beam. The goal of this paper is to find such limit.« less

  8. Communities detection as a tool to assess a reform of the Italian interlocking directorship network

    NASA Astrophysics Data System (ADS)

    Drago, Carlo; Ricciuti, Roberto

    2017-01-01

    Interlocking directorships are important communication channels among companies and may have anticompetitive effect. A corporate governance reform was introduced in 2011 to prevent interlocking directorships in the financial sector. We apply community detection techniques to the analysis of the networks in 2009 and 2012 to ascertain the effect of such reform on the Italian directorship network. We find that, although the number of interlocking directorships decreases in 2012, the reduction takes place mainly at the periphery of the network. The network core is stable, allowing the most connected companies to keep their strategic position.

  9. Washington State's alcohol ignition interlock law: effects on recidivism among first-time DUI offenders.

    PubMed

    McCartt, Anne T; Leaf, William A; Farmer, Charles M; Eichelberger, Angela H

    2013-01-01

    To examine the effects of changes to Washington State's ignition interlock laws: moving issuance of interlock orders from courts to the driver licensing department in July 2003 and extending the interlock order requirement to first-time offenders with blood alcohol concentrations (BACs) below 0.15 percent ("first simple driving under the influence [DUI]") in June 2004. Trends in conviction types, interlock installation rates, and 2-year cumulative recidivism rates were examined for first-time convictions (simple, high-BAC, test refusal DUI; deferred prosecution; alcohol-related negligent driving) stemming from DUI arrests between January 1999 and June 2006. Regression analyses examined recidivism effects of the law changes and interlock installation rates. To examine general deterrent effects, trends in single-vehicle late-night crashes in Washington were compared with trends in California and Oregon. After the 2004 law change, the proportion of simple DUIs declined somewhat, though the proportion of negligent driving convictions (no interlock order requirement) continued an upward trend. Interlock installation rates for first simple DUIs were 3 to 6 percent in the year before the law change and one third after. Recidivism declined by an estimated 12 percent (e.g., expected 10.6% without law change vs. 9.3% among offenders arrested between April and June 2006, the last study quarter) among first simple DUI offenders and an estimated 11 percent (expected 10.2% vs. 9.1%) among all first-time offenders. There was an estimated 0.06 percentage point decrease in the recidivism rate for each percentage point increase in the proportion of first simple DUI offenders with interlocks. If installation rates had been 100 vs. 34 percent for first simple DUI offenders arrested between April and June 2006, and if the linear relationship between rates of recidivism and installations continued, recidivism could have been reduced from 9.3 to 5.3 percent. With installation rates of 100 vs. 24 percent for all first offenders, their recidivism rate could have fallen from 9.1 to 3.2 percent. Although installation rates increased somewhat after the 2003 law change, recidivism rates were not significantly affected, perhaps due to the short follow-up period before the 2004 law change. The 2004 law change was associated with an 8.3 percent reduction in single-vehicle late-night crash risk. Mandating interlock orders for all first DUI convictions was associated with reductions in recidivism, even with low interlock use rates, and reductions in crashes. Additional gains are likely achievable with higher rates. Jurisdictions should seek to increase use rates and reconsider permitting reductions in DUI charges to other traffic offenses without interlock order requirements.

  10. Cyclic Behavior of Mortarless Brick Joints with Different Interlocking Shapes

    PubMed Central

    Liu, Hongjun; Liu, Peng; Lin, Kun; Zhao, Sai

    2016-01-01

    The framed structure infilled with a mortarless brick (MB) panel exhibits considerable in-plane energy dissipation because of the relative sliding between bricks and good out-of-plane stability resulting from the use of interlocking mechanisms. The cyclic behaviors of MB are investigated experimentally in this study. Two different types of bricks, namely non-interlocking mortarless brick (N-IMB) and interlocking mortarless brick (IMB), are examined experimentally. The cyclic behavior of all of the joints (N-IMB and IMB) are investigated in consideration of the effects of interlocking shapes, loading compression stress levels and loading cycles. The hysteretic loops of N-IMB and IMB joints are obtained, according to which a mechanical model is developed. The Mohr–Coulomb failure criterion is employed to describe the shear failure modes of all of the investigated joints. A typical frictional behavior is observed for the N-IMB joints, and a significant stiffening effect is observed for the IMB joints during their sliding stage. The friction coefficients of all of the researched joints increase with the augmentation of the compression stress level and improvement of the smoothness of the interlocking surfaces. An increase in the loading cycle results in a decrease in the friction coefficients of all of the joints. The degradation rate (DR) of the friction coefficients increases with the reduction in the smoothness of the interlocking surface. PMID:28773291

  11. Ignition Interlock Laws: Effects on Fatal Motor Vehicle Crashes, 1982-2013.

    PubMed

    McGinty, Emma E; Tung, Gregory; Shulman-Laniel, Juliana; Hardy, Rose; Rutkow, Lainie; Frattaroli, Shannon; Vernick, Jon S

    2017-04-01

    Alcohol-involved motor vehicle crashes are a major cause of preventable mortality in the U.S., leading to more than 10,000 fatalities in 2013. Ignition interlocks, or alcohol-sensing devices connected to a vehicle's ignition to prevent it from starting if a driver has a predetermined blood alcohol content (BAC) level, are a promising avenue for preventing alcohol-involved driving. This study sought to assess the effects of laws requiring ignition interlocks for some or all drunk driving offenders on alcohol-involved fatal crashes. A multilevel modeling approach assessed the effects of state interlock laws on alcohol-involved fatal crashes in the U.S. from 1982 to 2013. Monthly data on alcohol-involved crashes in each of the 50 states was collected in 2014 from the National Highway Traffic Safety Administration Fatality Analysis Reporting System. Random-intercept models accounted for between-state variation in alcohol-involved fatal crash rates and autocorrelation of within-state crash rates over time. Analysis was conducted in 2015. State laws requiring interlocks for all drunk driving offenders were associated with a 7% decrease in the rate of BAC >0.08 fatal crashes and an 8% decrease in the rate of BAC ≥0.15 fatal crashes, translating into an estimated 1,250 prevented BAC >0.08 fatal crashes. Laws requiring interlocks for segments of high-risk drunk driving offenders, such as repeat offenders, may reduce alcohol-involved fatal crashes after 2 years of implementation. Ignition interlock laws reduce alcohol-involved fatal crashes. Increasing the spread of interlock laws that are mandatory for all offenders would have significant public health benefit. Copyright © 2016 American Journal of Preventive Medicine. All rights reserved.

  12. 49 CFR 1242.17 - Signals and interlockers (accounts XX-17-19 and XX-18-19).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Signals and interlockers (accounts XX-17-19 and XX... RAILROADS 1 Operating Expenses-Way and Structures § 1242.17 Signals and interlockers (accounts XX-17-19 and XX-18-19). Separate common expenses on the basis of the total train-hours in running service, and/or...

  13. A Handbook for Automatic Data Processing Equipment Acquisition.

    DTIC Science & Technology

    1981-12-01

    Navy ADPE Procurement Policies (Automatic Data Processing Equipment (ADPE) procurement by federal agencies is governed by an interlocking network of...ADPE) procurement by federal agencies is governed by an interlocking network of policies and directives issued by federal agencies, the Department...SECNAVINST) and local procedures governing the acquisition of ADPE. Obtaining and understanding this interlocking network of policies is often difficult

  14. Interlocking wettable ceramic tiles

    DOEpatents

    Tabereaux, Jr., Alton T.; Fredrickson, Guy L.; Groat, Eric; Mroz, Thomas; Ulicny, Alan; Walker, Mark F.

    2005-03-08

    An electrolytic cell for the reduction of aluminum having a layer of interlocking cathode tiles positioned on a cathode block. Each tile includes a main body and a vertical restraining member to prevent movement of the tiles away from the cathode block during operation of the cell. The anode of the electrolytic cell may be positioned about 1 inch from the interlocking cathode tiles.

  15. The control system of a 2kW@20K helium refrigerator

    NASA Astrophysics Data System (ADS)

    Pan, W.; Wu, J. H.; Li, Qing; Liu, L. Q.; Li, Qiang

    2017-12-01

    The automatic control of a helium refrigerator includes three aspects, that is, one-button start and stop control, safety protection control, and cooling capacity control. The 2kW@20K helium refrigerator’s control system uses the SIEMENS PLC S7-300 and its related programming and configuration software Step7 and the industrial monitoring software WinCC, to realize the dynamic control of its process, the real-time monitoring of its data, the safety interlock control, and the optimal control of its cooling capacity. At first, this paper describes the control architecture of the whole system in detail, including communication configuration and equipment introduction; and then introduces the sequence control strategy of the dynamic processes, including the start and stop control mode of the machine and the safety interlock control strategy of the machine; finally tells the precise control strategy of the machine’s cooling capacity. Eventually, the whole system achieves the target of one-button starting and stopping, automatic fault protection and stable running to the target cooling capacity, and help finished the cold helium pressurization test of aerospace products.

  16. Ferrocene-containing non-interlocked molecular machines.

    PubMed

    Scottwell, Synøve Ø; Crowley, James D

    2016-02-11

    Ferrocene is the prototypical organometallic sandwich complex and despite over 60 years passing since the discovery and elucidation of ferrocene's structure, research into ferrocene-containing compounds continues to grow as potential new applications in catalysis, biology and the material sciences are found. Ferrocene is chemically robust and readily functionalized which enables its facile incorporation into more complex molecular systems. This coupled with ferrocene's reversible redox properties and ability function as a "molecular ball bearing" has led to the use of ferrocene as a component in wide range of interlocked and non-interlocked synthetic molecular machine systems. This review will focus on the exploitation of ferrocene (and related sandwich complexes) for the development of non-interlocked synthetic molecular machines.

  17. Bioinspired Superdurable Pestle‐Loop Mechanical Interlocker with Tunable Peeling Force, Strong Shear Adhesion, and Low Noise

    PubMed Central

    Jiao, Junrong; Zhang, Feilong; Jiao, Tian; Gu, Zhen

    2018-01-01

    Abstract Velcro, the most typical hook‐loop interlocker, often suffers from undesirable deformation, breaking, and noise because of the structure of the hook. Inspired by the arrester system of dragonfly, a new mechanical interlocker with a nylon pestle instead of the traditional hook is developed. The pestle‐loop mechanical interlocker shows a tunable peeling force from 0.4 ± 0.14 to 6.5 ± 0.72 N and the shear adhesion force of pestle‐loop mechanical interlocker is about twice as much as that of velcro. The pestle tape can be separated and fastened with the loop tape up to 30 000 cycles while keeping the original adhesive force and the pestle structure. In comparison, only after 4000 cycles most hooks of the commercial velcro are deformed and even broken, completely losing their adhesive function and their hook structure. These experimental results are further supported by finite element simulitions—the base of pestle mainly bears the separation‐caused strain while the middle of hook does. Notably, the sound volume during the separation of pestle‐loop mechanical interlocker is merely 49 ± 7.4 dB, much lower than 70 ± 3.5 dB produced by the velcro. PMID:29721425

  18. Outcome of intramedullary interlocking SIGN nail in tibial diaphyseal fracture.

    PubMed

    Khan, Irfanullah; Javed, Shahzad; Khan, Gauhar Nawaz; Aziz, Amer

    2013-03-01

    To determine the outcome of intramedullary interlocking surgical implant generation network (SIGN) nail in diaphyseal tibial fractures in terms of union and failure of implant (breakage of nail or interlocking screws). Case series. Orthopaedics and Spinal Surgery, Ghurki Trust Teaching Hospital, Lahore Medical and Dental College, Lahore, from September 2008 to August 2009. Fifty patients aged 14 - 60 years, of either gender were included, who had closed and Gustilo type I and II open fractures reported in 2 weeks, whose closed reduction was not possible or was unsatisfactory and fracture was located 7 cm below knee joint to 7 cm above ankle joint. Fractures previously treated with external fixator, infected fractures and unfit patients were excluded. All fractures were fixed with intramedullary interlocking SIGN nail and were followed clinically and radiographically for union and for any implant failure. Forty one (88%) patients had united fracture within 6 months, 5 (10%) patients had delayed union while 4 (8%) patients had non-union. Mean duration for achieving union was 163 + 30.6 days. Interlocking screws were broken in 2 patients while no nail was broken in any patient. Intramedullary interlocking nailing is an effective measure in treating closed and grade I and II open tibial fractures. It provides a high rate of union less complications and early return to function.

  19. Topological dynamics of optical singularities in speckle-fields induced by photorefractive scattering in a LiNbO{sub 3} : Fe crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasil'ev, Vasilii I; Soskin, M S

    2013-02-28

    A natural singular dynamics of elliptically polarised speckle-fields induced by the 'optical damage' effect in a photorefractive crystal of lithium niobate by a passing beam of a helium - neon laser is studied by the developed methods of singular optics. For the polarisation singularities (C points), a new class of chain reactions, namely, singular chain reactions are discovered and studied. It is shown that they obey the topological charge and sum Poincare index conservation laws. In addition, they exist for all the time of crystal irradiation. They consist of a series of interlocking chains, where singularity pairs arising in amore » chain annihilate with singularities from neighbouring independently created chains. Less often singular 'loop' reactions are observed where arising pairs of singularities annihilate after reversible transformations in within the boundaries of a single speckle. The type of a singular reaction is determined by a topology and dynamics of the speckles, in which the reactions are developing. (laser optics 2012)« less

  20. Gadolinium nanoparticle based switchable mirrors: quenching of hydrogenation-dehydrogenation hysteresis.

    PubMed

    Aruna, I; Mehta, B R; Malhotra, L K

    2007-06-01

    A continuous and reversible 'structural, optical, and electronic' transition between the reflecting metallic dihydride and transparent semiconducting trihydride states observed in rare earth metals on hydrogenation make these materials and their hydrides suitable for switchable mirror, sensing, and other technological applications. Recently Pd capped Gd nanoparticle based 'new generation' switchable mirrors have been fabricated with extended color neutrality, better optical contrast, and faster kinetics in comparison to the polycrystalline, epitaxial, alloy, and multilayer films. The present report aims at investigating the effect of nanoparticle nature on the hydrogenation-dehydrogenation hysteresis in switchable mirrors by carrying out in situ measurement of optical transmittance and electrode potentials during electrochemical hydrogen loading-deloading of Gd nanoparticle samples. Interestingly, Gd nanoparticle samples were observed to exhibit quenched hysteresis. The quenching of hysteresis in hydrogen-induced properties has been attributed to the absence of structural transition upon hydrogenation, reduction in topographical interlocking of the grains and elimination of lateral clamping of the slack nanoparticle layer to the substrate.

  1. Acceptance test report for portable exhauster POR-007/Skid E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriskovich, J.R.

    1998-07-24

    This document describes Acceptance Testing performed on Portable Exhauster POR-007/Skid E. It includes measurements of bearing vibration levels, pressure decay testing, programmable logic controller interlocks, high vacuum, flow and pressure control functional testing. The purpose of Acceptance testing documented by this report was to demonstrate compliance of the exhausters with the performance criteria established within HNF-0490, Rev. 1 following a repair and upgrade effort at Hanford. In addition, data obtained during this testing is required for the resolution of outstanding Non-conformance Reports (NCR), and finally, to demonstrate the functionality of the associated software for the pressure control and high vacuummore » exhauster operating modes provided for by W-320. Additional testing not required by the ATP was also performed to assist in the disposition and close out of receiving inspection report and for application design information (system curve). Results of this testing are also captured within this document.« less

  2. Peri-Implant Distribution of Polyethylene Debris in Postmortem-Retrieved Knee Arthroplasties: Can Polyethylene Debris Explain Loss of Cement-Bone Interlock in Successful Total Knee Arthroplasties?

    PubMed

    Cyndari, Karen I; Goodheart, Jacklyn R; Miller, Mark A; Oest, Megan E; Damron, Timothy A; Mann, Kenneth A

    2017-07-01

    Loss of mechanical interlock between cement and bone with in vivo service has been recently quantified for functioning, nonrevised, cemented total knee arthroplasties (TKAs). The cause of interlocking trabecular resorption is not known. The goal of this study is to quantify the distribution of PE debris at the cement-bone interface and determine if polyethylene (PE) debris is locally associated with loss of interlock. Fresh, nonrevised, postmortem-retrieved TKAs (n = 8) were obtained en bloc. Laboratory-prepared constructs (n = 2) served as negative controls. The intact cement-bone interface of each proximal tibia was embedded in Spurr's resin, sectioned, and imaged under polarized light to identify birefringent PE particles. PE wear particle number density was quantified at the cement-bone interface and distal to the interface, and then compared with local loss of cement-bone interlock. The average PE particle number density for postmortem-retrieved TKAs ranged from 8.6 (1.3) to 24.9 (3.1) particles/mm 2 (standard error) but was weakly correlated with years in service. The average particle number density was twice as high as distal (>5mm) to the interface compared to at the interface. The local loss of interlock at the interface was not related to the presence, absence, or particle density of PE. PE debris can migrate extensively along the cement-bone interface of well-fixed tibial components. However, the amount of local bone loss at the cement-bone interface was not correlated with the amount of PE debris at the interface, suggesting that the observed loss of trabecular interlock in these well-fixed TKAs may be due to alternative factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Interlocking egg-crate type grid assembly

    DOEpatents

    Kast, Steven J.

    1987-01-01

    Disclosed is an interlocking egg-crate hexagonal grid for supporting a nuclear fuel pin in a hexagonal array. The grid is formed from strips bent at an angle of about 120.degree. at each vertex. Over some faces of each hexagonal cell the strips are coplanar but are arranged, by stacking and interlocking, to avoid any double thickness of metal in that plane. Springs and dimples are formed in the faces of each cell to hold the fuel pin substantially centered.

  4. Interlocking egg-crate type grid assembly

    DOEpatents

    Kast, S.J.

    1985-03-15

    Disclosed is an interlocking egg-crate hexagonal grid for supporting a nuclear fuel pin in a hexagonal array. The grid is formed from strips bent at an angle of about 120/sup 0/ at each vertex. Over some faces of each hexagonal cell the strips are coplanar but are arranged, by stacking interlocking, to avoid any double thickness of metal in that plane. Springs and dimples are formed in the faces of each cell to hold the fuel pin substantially centered.

  5. Gas Control System for HEAO-B

    NASA Technical Reports Server (NTRS)

    Taylor, B.; Brissette, R.; Humphrey, A.; Morris, J.; Luger, J.; Swift, W.

    1978-01-01

    The HEAO-B Gas Control System consists of a high pressure gas storage supply together with distribution and regulation assemblies and their associated electronics for management of gas required for HEAO-B X-ray counter experiments. The Gas Control System replenishes a gas mixture (82 percent argon, 12.3 percent carbon dioxide, 5.7 percent xenon) in the counter volumes which is lost by: diffusion through controlled leakage plugs, diffusion through counter windows, and consumption resulting from periodic purges. The gas density in each counter volume is maintained constant to within 0.25 percent by comparison with a sealed reference volume. The system is fully redundant, capable of operating at atmospheric pressure as well as in a vacuum, contains interlocks which shut down gas flow in the event of either leakage or excessive pressure, and is able to shut down counter high voltage if counter pressure is abnormally low. The system is electronically controlled by ground command and self-sustaining in orbit for a period of at least one year.

  6. Binding of anions in triply interlocked coordination catenanes and dynamic allostery for dehalogenation reactions.

    PubMed

    Yang, Linlin; Jing, Xu; An, Bowen; He, Cheng; Yang, Yang; Duan, Chunying

    2018-01-28

    By synergistic combination of multicomponent self-assembly and template-directed approaches, triply interlocked metal organic catenanes that consist of two isolated chirally identical tetrahedrons were constructed and stabilized as thermodynamic minima. In the presence of suitable template anions, the structural conversion from the isolated tetrahedral conformers into locked catenanes occurred via the cleavage of an intrinsically reversible coordination bond in each of the tetrahedrons, followed by the reengineering and interlocking of two fragments with the regeneration of the broken coordination bonds. The presence of several kinds of individual pocket that were attributed to the triply interlocked patterns enabled the possibility of encapsulating different anions, allowing the dynamic allostery between the unlocked/locked conformers to promote the dehalogenation reaction of 3-bromo-cyclohexene efficiently, as with the use of dehalogenase enzymes. The interlocked structures could be unlocked into two individual tetrahedrons through removal of the well-matched anion templates. The stability and reversibility of the locked/unlocked structures were further confirmed by the catching/releasing process that accompanied emission switching, providing opportunities for the system to be a dynamic molecular logic system.

  7. Experimental Investigation About Stamping Behaviour of 3D Warp Interlock Composite Preforms

    NASA Astrophysics Data System (ADS)

    Dufour, Clément; Wang, Peng; Boussu, François; Soulat, Damien

    2014-10-01

    Forming of continuous fibre reinforcements and thermoplastic resin commingled prepregs can be performed at room temperature due to its similar textile structure. The "cool" forming stage is better controlled and more economical. The increase of temperature and the resin consolidation phases after the forming can be carried out under the isothermal condition thanks to a closed system. It can avoid the manufacturing defects easily experienced in the non-isothermal thermoforming, in particular the wrinkling [1]. Glass/Polypropylene commingled yarns have been woven inside different three-dimensional (3D) warp interlock fabrics and then formed using a double-curved shape stamping tool. The present study investigates the in-plane and through-thickness behaviour of the 3D warp interlock fibrous reinforcements during forming with a hemispherical punch. Experimental data allow analysing the forming behaviour in the warp and weft directions and on the influence of warp interlock architectures. The results point out that the layer to layer warp interlock preform has a better stamping behaviour, in particular no forming defects and good homogeneity in thickness.

  8. Development of Interlocking Masonry Bricks and its’ Structural Behaviour: A Review Paper

    NASA Astrophysics Data System (ADS)

    Al-Fakih, Amin; Mohammed, Bashar S.; Nuruddin, Fadhil; Nikbakht, Ehsan

    2018-04-01

    Conventional bricks are the most elementary building materials for houses construction. However, the rapid growth in today’s construction industry has obliged the civil engineers in searching for a new building technique that may result in even greater economy, more efficient and durable as an alternative for the conventional brick. Moreover, the high demands for having a speedy and less labour and cost building systems is one of the factor that cause the changes of the masonry conventional systems. These changes have led to improved constructability, performance, and cost as well. Several interlocking bricks has been developed and implemented in building constructions and a number of researches had studied the manufacturing of interlocking brick and its structural behaviour as load bearing and non-load bearing element. This technical paper aims to review the development of interlocking brick and its structural behaviour. In conclusion, the concept of interlocking system has been widely used as a replacement of the conventional system where it has been utilized either as load bearing or non-load bearing masonry system.

  9. Cloning Nacre's 3D Interlocking Skeleton in Engineering Composites to Achieve Exceptional Mechanical Properties.

    PubMed

    Zhao, Hewei; Yue, Yonghai; Guo, Lin; Wu, Juntao; Zhang, Youwei; Li, Xiaodong; Mao, Shengcheng; Han, Xiaodong

    2016-07-01

    Ceramic/polymer composite equipped with 3D interlocking skeleton (3D IL) is developed through a simple freeze-casting method, exhibiting exceptionally light weight, high strength, toughness, and shock resistance. Long-range crack energy dissipation enabled by 3D interlocking structure is considered as the primary reinforcing mechanism for such superior properties. The smart composite design strategy should hold a place in developing future structural engineering materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The effect of a gearshift interlock on seat belt use by drivers who do not always use a belt and its acceptance among those who do.

    PubMed

    Kidd, David G; Singer, Jeremiah; Huey, Richard; Kerfoot, Laura

    2018-06-01

    Seat belts reduce the risk of fatal injury in a crash, yet in 2015, nearly 10,000 people killed in passenger vehicles were unrestrained. Enhanced seat belt reminders increase belt use, but a gearshift interlock that prevents the vehicle from being placed into gear unless the seat belt is used may prove more effective. Thirty-two people with a recent seat belt citation and who admitted to not always using a seat belt as a driver were recruited as part-time belt users and asked to evaluate two new vehicles. Sixteen drove two vehicles with an enhanced reminder for one week each, and 16 drove a vehicle with an enhanced reminder for one week and a vehicle with a gearshift interlock the following week. Sixteen full-time belt users who reported always using a seat belt drove a vehicle with a gearshift interlock for one week to evaluate acceptance. Relative to the enhanced reminder, the gearshift interlock significantly increased the likelihood that a part-time belt user used a belt during travel time in a trip by 21%, and increased the rate of belt use by 16%; this effect approached significance. Although every full-time belt user experienced the gearshift interlock, their acceptance of the technology reported in a post-study survey was fairly positive and not significantly different from part-time belt users. Six part-time belt users circumvented the gearshift interlock by sitting on a seat belt, waiting for the system to deactivate, or unbuckling during travel. The gearshift interlock increased the likelihood that part-time belt users buckled up and the rate of belt use during travel relative to the enhanced reminder but could be more effective if it prevented circumvention. An estimated 718-942 lives could be saved annually if the belt use of unbuckled drivers and front passengers increased 16-21%. Copyright © 2018 National Safety Council and Elsevier Ltd. All rights reserved.

  11. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability

    NASA Astrophysics Data System (ADS)

    Zhong, Weibin; Liu, Qiongzhen; Wu, Yongzhi; Wang, Yuedan; Qing, Xing; Li, Mufang; Liu, Ke; Wang, Wenwen; Wang, Dong

    2016-06-01

    Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa-1) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin.Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa-1) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02678h

  12. Poly[n]catenanes: Synthesis of molecular interlocked chains

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Rauscher, Phillip M.; Lang, Xiaolong; Wojtecki, Rudy J.; de Pablo, Juan J.; Hore, Michael J. A.; Rowan, Stuart J.

    2017-12-01

    As the macromolecular version of mechanically interlocked molecules, mechanically interlocked polymers are promising candidates for the creation of sophisticated molecular machines and smart soft materials. Poly[n]catenanes, where the molecular chains consist solely of interlocked macrocycles, contain one of the highest concentrations of topological bonds. We report, herein, a synthetic approach toward this distinctive polymer architecture in high yield (~75%) via efficient ring closing of rationally designed metallosupramolecular polymers. Light-scattering, mass spectrometric, and nuclear magnetic resonance characterization of fractionated samples support assignment of the high-molar mass product (number-average molar mass ~21.4 kilograms per mole) to a mixture of linear poly[7-26]catenanes, branched poly[13-130]catenanes, and cyclic poly[4-7]catenanes. Increased hydrodynamic radius (in solution) and glass transition temperature (in bulk materials) were observed upon metallation with Zn2+.

  13. Fire resistant PV shingle assembly

    DOEpatents

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  14. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2004-10-12

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  15. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-05-24

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  16. Enhanced Mechanical Performance of Bio-Inspired Hybrid Structures Utilising Topological Interlocking Geometry.

    PubMed

    Djumas, Lee; Molotnikov, Andrey; Simon, George P; Estrin, Yuri

    2016-05-24

    Structural composites inspired by nacre have emerged as prime exemplars for guiding materials design of fracture-resistant, rigid hybrid materials. The intricate microstructure of nacre, which combines a hard majority phase with a small fraction of a soft phase, achieves superior mechanical properties compared to its constituents and has generated much interest. However, replicating the hierarchical microstructure of nacre is very challenging, not to mention improving it. In this article, we propose to alter the geometry of the hard building blocks by introducing the concept of topological interlocking. This design principle has previously been shown to provide an inherently brittle material with a remarkable flexural compliance. We now demonstrate that by combining the basic architecture of nacre with topological interlocking of discrete hard building blocks, hybrid materials of a new type can be produced. By adding a soft phase at the interfaces between topologically interlocked blocks in a single-build additive manufacturing process, further improvement of mechanical properties is achieved. The design of these fabricated hybrid structures has been guided by computational work elucidating the effect of various geometries. To our knowledge, this is the first reported study that combines the advantages of nacre-inspired structures with the benefits of topological interlocking.

  17. Laboratory testing of alcohol safety interlock systems employing divided attention tests

    DOT National Transportation Integrated Search

    1975-12-01

    Author's abstract: Prototype Alcohol Safety Interlock Systems employing measurements of tracking ability, reaction time, and response accuracy to discern alcohol impairment were submitted to laboratory testing. These systems were modified versions of...

  18. Alcohol ignition interlock service support

    DOT National Transportation Integrated Search

    1992-12-01

    Author's abstract: This Technical Report was produced under Contract No. DTNH22-89-C-07009 for the National Highway Traffic Safety Administration. Under that same contract, a draft set of model specifications for Breath Alcohol Ignition Interlock Dev...

  19. Temporary bridge deck panels.

    DOT National Transportation Integrated Search

    2009-03-01

    The research described here has resulted in the development of a simplistic and innovative interlocking : glulam bridge deck panel for use in temporary bridge deck applications. The key feature of this panel : system is the interlocking tongue and gr...

  20. Interlock Data Utilization

    DOT National Transportation Integrated Search

    2017-08-01

    The objectives of this exploratory study were to determine (a) how ignition interlock data is used for DWI offender monitoring and offender-related programs, such as screening, assessments, and treatment for alcohol abuse problems; and (b) if the int...

  1. Experimental evaluation of second-generation alcohol safety-interlock systems

    DOT National Transportation Integrated Search

    1978-01-01

    Author's absract: This report documents the results of laboratory testing of four "second-generation" alcohol safety-interlock systems. As a group, these systems were found to produce appreciable discrimination between sober and intoxicated subjects.

  2. Jumbo Cutter for Removal of A Bent Femoral Interlocking Nail: A Cost Effective Method

    PubMed Central

    Dhanda, Manjeet Singh; Sharma, Sansar C; Ali, Nadeem; Bhat, Abedullah

    2015-01-01

    Closed diaphyseal femoral shaft fractures can be treated with multiple surgical options. It is more challenging to remove a bent nail than a broken one because it is difficult to retrieve the bent nail through the intramedullary canal. Various authors have published their techniques for removal of bent femoral interlocking nail. This article describes a simple technique using Jumbo cutter for sectioning and removal of bent interlocking nail. This technique will help orthopaedic surgeons to remove bent nail without using any specialised metal cutting instruments. PMID:26266173

  3. 23. Looking N up corridor from Chick Interlocking Tower. Boston, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Looking N up corridor from Chick Interlocking Tower. Boston, Suffolk Co., MA. Sec. 4116, MP 227.09. - Northeast Railroad Corridor, Amtrak Route between RI/MA State Line & South Station, Boston, Suffolk County, MA

  4. Interlock Data Utilization : Traffic Tech

    DOT National Transportation Integrated Search

    2017-06-01

    Driving-while-impaired (DWI) offenders present a high risk to traffic safety. Alcohol ignition interlocks are now widely used for DWI offenders and can significantly reduce DWI recidivism while on the offenders vehicle. In a typical year an interl...

  5. Refining the maintenance techniques for Interlocking Concrete Paver GIs

    EPA Science Inventory

    Surface clogging adversely affects the performance of Interlocking Concrete Pavements (ICP) by reducing their ability to infiltrate stormwater runoff. The clogging rate is a function of pavement type, traffic loading, surrounding physical environment and maintenance treatments. ...

  6. Laboratory evaluation of alcohol safety interlock systems. Volume 1 : summary report

    DOT National Transportation Integrated Search

    1974-01-01

    The report contains the results of an experimental and analytical evaluation of instruments and techniques designed to prevent an intoxicated driver from operating his automobile. The prototype 'Alcohol Safety Interlock Systems' tested were developed...

  7. The Layer of Kevlar Angle-interlock Woven Fabric Effect on the Tensile Properties of Composite Materials

    NASA Astrophysics Data System (ADS)

    Xie, Wan-Chen; Guo, Xu-Yi; Yan, Tao; Zhang, Shang-Yong

    2017-09-01

    This article is based on the structure of three-dimensional angle-interlock longitudinal.The 3-layer, 5-layer, 7-layer and 9-layer of angle-interlock 3D fabrics are woven on sample weaving machine respectively with the 1500D Kevlar fiber twist filament produced by United States DuPont. At the same time, Kevlar plain weave fabric is woven, and three, five, seven and nine layers’ fabric are to be compared. In the process of VARTM composite technology, epoxy resin is matrix material, acetone is diluent, triethylene tetramine is curing agent and the five different fabrics are the reinforced materials respectively. Finally, eight different three-dimensional woven fabric composites were prepared. In this paper, the tensile properties of eight kinds of three-dimensional woven fabric composites were tested respectively.Finally, it is concluded that the five-layer angle-interlock woven fabric prepared by Kevlar fiber shows the best tensile property.

  8. Mechanical interlocking of cotton fibers on slightly textured surfaces of metallic cylinders

    PubMed Central

    Zhang, Youqiang; Tian, Yu; Meng, Yonggang

    2016-01-01

    Mechanical interlocking is widely applied in industry and general lives of human beings. In this work, we realized the control of locking or sliding states of cotton fibers on the metal surfaces with slightly different textures through traditional machining. Three types of sliding states, i.e., locking, one-way sliding, and two-way sliding have been achieved. It is found that the locking or sliding of the cotton fibers on the metallic cylinder depends on the friction coefficient and the ratio of cotton fiber diameter, 2r, to the height of the rough peaks, h, of metal surfaces. When the critical ratio h/r exceeds 1, the cotton fibers could tightly attach to the metallic surface through mechanical interlocking. This work provided a convenient and universal method for the control of interlocking or sliding of fiber-based materials on textured surfaces. PMID:27156720

  9. Attitudes towards requiring ignition interlocks for all driving while intoxicated offenders: findings from the 2010 HealthStyles Survey

    PubMed Central

    Shults, Ruth A; Bergen, Gwen

    2017-01-01

    Ignition interlocks are effective in reducing recidivism among driving while intoxicated (DWI) offenders while installed on their vehicles. However, the devices are not widely used in the USA. This survey gauged public support for requiring ignition interlocks for all convicted DWI offenders including first-time offenders. 69% of respondents supported such a policy. Support was lowest (38%) among persons who reported drinking and driving in the past 30 days. Multivariate regression analysis indicated that support varied little by region, community size or most measured individual characteristics. Persons who did not drink and drive were 80% more likely to support the requirement than those who drink and drive. These findings suggest that laws requiring ignition interlocks for all convicted DWI offenders may face the most opposition in communities with high levels of drinking and driving. PMID:22773020

  10. Electromagnetic propulsion test facility

    NASA Technical Reports Server (NTRS)

    Gooder, S. T.

    1984-01-01

    A test facility for the exploration of electromagnetic propulsion concept is described. The facility is designed to accommodate electromagnetic rail accelerators of various lengths (1 to 10 meters) and to provide accelerating energies of up to 240 kiloJoules. This accelerating energy is supplied as a current pulse of hundreds of kiloAmps lasting as long as 1 millisecond. The design, installation, and operating characteristics of the pulsed energy system are discussed. The test chamber and its operation at pressures down to 1300 Pascals (10 mm of mercury) are described. Some aspects of safety (interlocking, personnel protection, and operating procedures) are included.

  11. Progress making the top end optical assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Canzian, Blaise; Barentine, J.; Arendt, J.; Bader, S.; Danyo, G.; Heller, C.

    2012-09-01

    L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to design and produce the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakal', Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot" at the prime focus of the ATST and so presents special challenges. In this paper, we describe progress in the L-3 technical approach to meeting these challenges, including silicon carbide off-axis mirror design, fabrication, and high accuracy figuring and polishing all within L-3; mirror support design; the design for stray light control; subsystems for opto-mechanical positioning and high accuracy absolute mirror orientation sensing; Lyot stop design; and thermal management of all design elements to remain close to ambient temperature despite the imposed solar irradiance load.

  12. Summary and evaluation of responses received on the alcohol safety interlock system

    DOT National Transportation Integrated Search

    1971-05-01

    This report summarizes and evaluates devices and suggestions provided by respondents to the DOT Prospectus entitled "Some Considerations Related to the Development of an Alcohol Safety Interlock System (ASIS)". The responses are categorized into: (1)...

  13. Laboratory evaluation of alcohol safety interlock systems. Volume 2 : instrument screening experiments

    DOT National Transportation Integrated Search

    1974-01-01

    The report contains the results of an experimental and analytical evaluation of instruments and techniques designed to prevent an intoxicated driver from operating his automobile. The prototype 'Alcohol Safety Interlock Systems' tested were developed...

  14. Refining the maintenance techniques for Interlocking Concrete Paver GIs - abstract

    EPA Science Inventory

    Surface clogging adversely affects the performance of Interlocking Concrete Pavements (ICP) by reducing their ability to infiltrate stormwater runoff. Determining the correct methods for remedial maintenances is crucial to recovering and maintaining efficient ICP performance. T...

  15. Ignition interlock : an investigation into rural Arizona judges’ perceptions.

    DOT National Transportation Integrated Search

    2014-05-01

    This study sought to answer several questions regarding 2007 Arizona legislation requiring ignition interlock for all offenders convicted of Driving-Under-the-Influence (DUI), including first time DUI offenders. At the time the law was passed, Arizon...

  16. Interlocked molecules: Moving into another dimension

    NASA Astrophysics Data System (ADS)

    Fournel-Marotte, Karine; Coutrot, Frédéric

    2017-02-01

    Molecular daisy-chain structures are typically made up of two interlocked components and can exhibit muscle-like contraction and extension in one dimension. Zinc-based multicomponent systems that can operate in two and three dimensions have now been designed and synthesized.

  17. Ignition interlock: an investigation into rural Arizona judges' perceptions : traffic tech.

    DOT National Transportation Integrated Search

    2014-05-01

    This study sought to answer several questions regarding 2007 : Arizona legislation requiring ignition interlock for all offenders : convicted of driving under the influence (DUI), including : first-time DUI offenders. At the time the law was passed, ...

  18. Examining the feasibility of alcohol ignition interlocks for motorcycles : traffic tech.

    DOT National Transportation Integrated Search

    2017-05-01

    Impaired driving is a major factor in vehicle crashes and traffic : fatalities. The use of alcohol ignition interlocks is growing as a : countermeasure to combat the high rate of offender recidivism : for Driving While Intoxicated (DWI); however, whi...

  19. 49 CFR 236.751 - Interlocking, manual.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Interlocking, manual. 236.751 Section 236.751 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... so interconnected by means of mechanical and/or electric locking that their movements must succeed...

  20. 49 CFR 236.750 - Interlocking, automatic.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Interlocking, automatic. 236.750 Section 236.750 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... manually, and which are so interconnected by means of electric circuits that their movements must succeed...

  1. Laboratory evaluation of alcohol safety interlock systems. Volume 3 : instrument performance at high BAL

    DOT National Transportation Integrated Search

    1974-01-01

    This report contains the results of an experimental and analytical evaluation of instruments and techniques designed to prevent an intoxicated driver from operating his automobile. The prototype 'Alcohol Safety Interlock Systems' tested were develope...

  2. Evaluation of the New Mexico ignition interlock program : traffic tech.

    DOT National Transportation Integrated Search

    2010-11-01

    Impaired driving is a major factor in vehicle crashes and traffic : fatalities. The use of ignition interlocks is growing as a : countermeasure to combat the high rate of offender recidivism : for driving while intoxicated (DWI). New Mexico currently...

  3. Innovative monitoring of 3D warp interlock fabric during forming process

    NASA Astrophysics Data System (ADS)

    Dufour, C.; Jerkovic, I.; Wang, P.; Boussu, F.; Koncar, V.; Soulat, D.; Grancaric, A. M.; Pineau, P.

    2017-10-01

    The final geometry of 3D warp interlock fabric needs to be check during the 3D forming step to ensure the right locations of warp and weft yarns inside the final structure. Thus, a new monitoring approach has been proposed based on sensor yarns located in the fabric thickness. To ensure the accuracy of measurements, the observation of the surface deformation of the 3D warp interlock fabric has been joined to the sensor yarns measurements. At the end, it has been revealed a good correlation between strain measurement done globally by camera and locally performed by sensor yarns.

  4. Enhanced Mechanical Performance of Bio-Inspired Hybrid Structures Utilising Topological Interlocking Geometry

    PubMed Central

    Djumas, Lee; Molotnikov, Andrey; Simon, George P.; Estrin, Yuri

    2016-01-01

    Structural composites inspired by nacre have emerged as prime exemplars for guiding materials design of fracture-resistant, rigid hybrid materials. The intricate microstructure of nacre, which combines a hard majority phase with a small fraction of a soft phase, achieves superior mechanical properties compared to its constituents and has generated much interest. However, replicating the hierarchical microstructure of nacre is very challenging, not to mention improving it. In this article, we propose to alter the geometry of the hard building blocks by introducing the concept of topological interlocking. This design principle has previously been shown to provide an inherently brittle material with a remarkable flexural compliance. We now demonstrate that by combining the basic architecture of nacre with topological interlocking of discrete hard building blocks, hybrid materials of a new type can be produced. By adding a soft phase at the interfaces between topologically interlocked blocks in a single-build additive manufacturing process, further improvement of mechanical properties is achieved. The design of these fabricated hybrid structures has been guided by computational work elucidating the effect of various geometries. To our knowledge, this is the first reported study that combines the advantages of nacre-inspired structures with the benefits of topological interlocking. PMID:27216277

  5. On Critical States, Rupture States and Interlocking Strength of Granular Materials.

    PubMed

    Szalwinski, Chris M

    2017-07-27

    The Mohr-Coulomb theory of strength identifies cohesion and internal friction as the two principal contributions to the shear strength of a granular material. The contribution of cohesion in over-compacted granular materials has been challenged and replacing cohesion with interlocking has been proposed. A theory of rupture strength that includes interlocking is derived herein. The physics-chemistry concept of critical state is elaborated to accommodate granular materials, based on empirical definitions established in the fields of soil mechanics and bulk solids' flow. A surface in state space, called the critical compaction surface, separates over-compacted states from lightly compacted states. The intersection of this surface with the Mohr-Coulomb envelope forms the critical state surface for a granular material. The rupture strength of an over-compacted granular material is expressed as the sum of cohesion, internal friction and interlocking strength. Interlocking strength is the shear strength contribution due to over-compaction and vanishes at critical state. The theory allows migrations from one critical state to another. Changes in specific volume during such migrations are related to changes in mean-normal effective stress and uncoupled from changes in shearing strain. The theory is reviewed with respect to two established research programs and underlying assumptions are identified.

  6. The Utilisation of Shredded PET as Aggregate Replacement for Interlocking Concrete Block

    NASA Astrophysics Data System (ADS)

    Mokhtar, M.; Kaamin, M.; Sahat, S.; Hamid, N. B.

    2018-03-01

    The consumption of plastic has grown substantially all over the world in recent years and this has created huge quantities of plastic-based waste. Plastic waste is now a serious environmental threat to the modern way of living, although steps were taken to reduce its consumption. This creates substantial garbage every day, which is much unhealthy. Plastic bottles such as Polyethylene terephthalate (PET) was use as the partially component in this making of interlocking blocks concrete. This project investigates the strength and workability of the interlocking block concrete by replacing course aggregate with % PET. The suitability of recycled plastics (PET) as course aggregate in interlocking block concrete and its advantages are discussed here. Moreover, there were more benefits when using interlocking block than using conventional block such as it easy for construction because they are aligning, easy to place, high speed stacking and they offer more resistance to shear and buildings would be even stronger. Based on the test perform, the failure parameter were discussed .From the compressive strength test result, it shows that the strength of concrete block decreased with increased of PET used. From the results, it shows that higher compressive strength was found with 5% natural course aggregate replaced with PET compared to other percentages.

  7. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphousmore » boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here.« less

  8. Investigation of fretting behaviour in pressure armour layers of flexible pipes

    NASA Astrophysics Data System (ADS)

    Don Rasika Perera, Solangarachchige

    The incidence of fretting damage in the pressure armour wires of flexible pipes used in offshore oil explorations has been investigated. A novel experimental facility which is capable of simulating nub and valley contact conditions of interlocking wire winding with dynamic slip, representative of actual pipe loading, has been developed. The test set-up is equipped with a state of the art data acquisition system and a controller with transducers to measure and control the normal load, slip amplitude and friction force at the contact, in addition to the hoop stress in the wire. Tests were performed with selected loading and the fretted regions were examined using optical microscopy techniques. Results show that the magnitude of contact loading and the slip amplitude have a distinct influence on surface damage. Surface cracks originated from a fretting scar were observed at high contact loads in mixed slip sliding while surface damage predominantly due to wear was observed under gross slip. The position of surface cracks and the wear profile have been related to the contact pressure distribution. The evolution of friction force and surface damage under different slip and normal pressure conditions has been analysed. A fracture mechanics based numerical procedure has been developed to analyse the fretting damage behaviour. A severity parameter is proposed in order to ascertain whether the crack growth is in mode I or mode II cracking. The analysis show the influence of mode II cracking in the early stages of crack growth following which the crack deviates in the mode I direction making mode I the dominant crack propagation mechanism. The crack path determined by the numerical procedure correlates well with the experimental results. A numerical analysis was carried out for the fretting fatigue condition where a cyclic bulk stress superimposes with the friction force. The analysis correlates well with short crack growth behaviour. The analysis confirms that fretting is a significant factor that should be taken into account in design and operation of the pressure armour wires of flexible pipes at high contact pressure if the bulk cyclic load superimposes with the friction force. As predicted by the numerical procedure and further by experimental investigations, the surface cracks initiating on the wire in this condition are self arresting after propagating into a certain depth.

  9. Accelerator Vacuum Protection System

    NASA Astrophysics Data System (ADS)

    Barua, Pradip; Kothari, Ashok; Archunan, M.; Joshi, Rajan

    2012-11-01

    A new and elaborate automatic vacuum protection system using fast acting valve has been installed to avoid accidental venting of accelerator from experimental chamber side. To cover all the beam lines and to reduce the system cost, it has been installed at a common point from where all the seven beam lines originate. The signals are obtained by placing fast response pressure sensing gauges (HV SENSOR) near all the experimental stations. The closing time of the fast valve is 10 milli-second. The fast closing system protects only one vacuum line at a time. At IUAC, we have seven beam lines so one sensor was placed in each of the beam lines near experimental chamber and a multiplexer was incorporated into the fast closing system. At the time of experiment, the sensor of the active beam line is selected through the multiplexer and the Fast closing valve is interlocked with the selected sensor. As soon as the pressure sensor senses the pressure rise beyond a selected pressure, the signal is transferred and the fast valve closes within 10 to 12 millisecond.

  10. Examination of the feasibility of alcohol interlocks for motorcycles.

    DOT National Transportation Integrated Search

    2017-06-01

    In 2011 some 30 percent of the 4,612 motorcycle operators involved in fatal crashes had blood alcohol concentrations : (BACs) of .08 g/dL or higher. Although alcohol ignition interlocks are a common sanction to deter impaired driving, : they are not ...

  11. Aquaporin-0 Targets Interlocking Domains to Control the Integrity and Transparency of the Eye Lens

    PubMed Central

    Lo, Woo-Kuen; Biswas, Sondip K.; Brako, Lawrence; Shiels, Alan; Gu, Sumin; Jiang, Jean X.

    2014-01-01

    Purpose. Lens fiber cell membranes contain aquaporin-0 (AQP0), which constitutes approximately 50% of the total fiber cell membrane proteins and has a dual function as a water channel protein and an adhesion molecule. Fiber cell membranes also develop an elaborate interlocking system that is required for maintaining structural order, stability, and lens transparency. Herein, we used an AQP0-deficient mouse model to investigate an unconventional adhesion role of AQP0 in maintaining a normal structure of lens interlocking protrusions. Methods. The loss of AQP0 in AQP0−/− lens fibers was verified by Western blot and immunofluorescence analyses. Changes in membrane surface structures of wild-type and AQP0−/− lenses at age 3 to 12 weeks were examined with scanning electron microscopy. Preferential distribution of AQP0 in wild-type fiber cell membranes was analyzed with immunofluorescence and immunogold labeling using freeze-fracturing transmission electron microscopy. Results. Interlocking protrusions in young differentiating fiber cells developed normally but showed minor abnormalities at approximately 50 μm deep in the absence of AQP0 in all ages studied. Strikingly, protrusions in maturing fiber cells specifically underwent uncontrolled elongation, deformation, and fragmentation, while cells still retained their overall shape. Later in the process, these changes eventually resulted in fiber cell separation, breakdown, and cataract formation in the lens core. Immunolabeling at the light microscopy and transmission electron microscopy levels demonstrated that AQP0 was particularly enriched in interlocking protrusions in wild-type lenses. Conclusions. This study suggests that AQP0 exerts its primary adhesion or suppression role specifically to maintain the normal structure of interlocking protrusions that is critical to the integrity and transparency of the lens. PMID:24458158

  12. Numerical and experimental analyses of out-of-plane deformation of triaxial woven fabric

    NASA Astrophysics Data System (ADS)

    Zhou, Hongtao; Xiao, Xueliang; Qian, Kun; Zhang, Kun; Zhang, Diantang

    2018-05-01

    With three sets of yarns interwoven in plane for angle-interlock structure, triaxial woven fabric (TWF) is a unique and perfect construction material for products subjected to multi-directional loads, as compared to classic fabrics of orthogonal structure. Finite-element analysis (FEA) and experimental methods are applied to study the out-of-plane deformation (OPD) behaviors of TWF and plain woven fabric (PWF). Among this, the yarn cross section, path and woven structure are obtained using optical microscopy, the related parameters are input to finite element model (FEM) for simulating the OPD behavior. This paper presents a detailed analysis on out-of-plane deformation behavior of TWF and PWF by the finite element method and experiment. In consideration of the comparability, TWF and PWF are designed and prepared with the same yarns and areal density (g/m2). The deformation profile, maximum stress and maximum deflection of TWF and PWF are obtained by FEA and experiment. It has been found that the maximum deflection and maximum stress of TWF is smaller than that of PWF under the same uniform negative pressure, both FEA and experiment. Furthermore, the stress distribution of TWF is more evenly than that of PWF, indicating that TWF exhibited superior isotropy in comparison with PWF for one more directional set of yarns in undertaking the OPD.

  13. 12 CFR 238.91 - Authority, purpose, and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SYSTEM (CONTINUED) SAVINGS AND LOAN HOLDING COMPANIES (REGULATION LL) Management Official Interlocks... situations where the management interlock likely would have an anticompetitive effect. (c) Scope. This... 12 Banks and Banking 4 2013-01-01 2013-01-01 false Authority, purpose, and scope. 238.91 Section...

  14. A Modular Approach for Interlocking Enzymes in Whatman Paper.

    PubMed

    Riccardi, Caterina; Kumar, Challa; Kasi, Rajeswari; McCormick, Shelby

    2018-06-13

    We report a potentially universal approach for enzyme attachment to cellulose that significantly enhances enzyme stability while retaining high activity, and involves no chemical functionalization of cellulose. In our design, bovine serum albumin (BSA) was interlocked in cellulose to form a protein-friendly surface (named BSA-Paper), while also providing COOH and NH2 groups for subsequent attachment of enzymes. The desired enzyme is then mixed with additional BSA and interlocked on BSA-Paper. The 2nd layer dilutes and crosslinks the enzyme for improved stability. Laccase was tested as a model enzyme for interlocking on BSA-Paper, and was found to retain over 100% activity and was 240 times more stable at 25 °C (half life = 180 d) than laccase. This new approach was also tested with a few other enzymes with encouraging results, thus providing a potentially universal method for stabilization of enzymes on cellulose with retention of high activities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Evaluation and application of a fast module in a PLC based interlock and control system

    NASA Astrophysics Data System (ADS)

    Zaera-Sanz, M.

    2009-08-01

    The LHC Beam Interlock system requires a controller performing a simple matrix function to collect the different beam dump requests. To satisfy the expected safety level of the Interlock, the system should be robust and reliable. The PLC is a promising candidate to fulfil both aspects but too slow to meet the expected response time which is of the order of μseconds. Siemens has introduced a ``so called'' fast module (FM352-5 Boolean Processor). It provides independent and extremely fast control of a process within a larger control system using an onboard processor, a Field Programmable Gate Array (FPGA), to execute code in parallel which results in extremely fast scan times. It is interesting to investigate its features and to evaluate it as a possible candidate for the beam interlock system. This paper publishes the results of this study. As well, this paper could be useful for other applications requiring fast processing using a PLC.

  16. Variable stiffness sandwich panels using electrostatic interlocking core

    NASA Astrophysics Data System (ADS)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2016-04-01

    Structural topology has a large impact on the flexural stiffness of a beam structure. Reversible attachment between discrete substructures allows for control of shear stress transfer between structural elements, thus stiffness modulation. Electrostatic adhesion has shown promise for providing a reversible latching mechanism for controllable internal connectivity. Building on previous research, a thin film copper polyimide laminate has been used to incorporate high voltage electrodes to Fibre Reinforced Polymer (FRP) sandwich structures. The level of electrostatic holding force across the electrode interface is key to the achievable level of stiffness modulation. The use of non-flat interlocking core structures can allow for a significant increase in electrode contact area for a given core geometry, thus a greater electrostatic holding force. Interlocking core geometries based on cosine waves can be Computer Numerical Control (CNC) machined from Rohacell IGF 110 Foam core. These Interlocking Core structures could allow for enhanced variable stiffness functionality compared to basic planar electrodes. This novel concept could open up potential new applications for electrostatically induced variable stiffness structures.

  17. Early Conversion of External Fixation to Interlocked Nailing in Open Fractures of Both Bone Leg Assisted with Vacuum Closure (VAC) - Final Outcome

    PubMed Central

    Raj, Manish; Kumar, Sunil; Singh, Pulkesh; Kumar, Dinesh; Singh, Jasveer; Deep, Akash

    2016-01-01

    Introduction Management of compound grade III fractures of both bone leg includes external stabilization for long period, followed by various soft tissue coverage procedures. Primary interlocking of tibia had been also done with variable results. External fixation for long time without any bone loss often leads to infected nonunion, loss of reduction, pin tract infection and failure of fixation, primary interlocking in compound grade III fractures had shown high medullary infection rate. We managed all cases of compound grade III A/B fractures with primary external fixation, simultaneous wound management using vacuum assisted closure (VAC) followed by early conversion to interlocking within 2 weeks of fixator application. Aim To determine the effectiveness of vacuum assisted closure (VAC) for the early conversion of external fixator to definitive interlocking in open fractures of the both bone leg. Materials and Methods In current study we selected 84 cases of compound grade IIIA/B diaphyseal fractures of both bone leg during period of May 2010 to September 2013. We managed these cases by immediate debridement and application of external fixation followed by repeated debridement, application of vacuum assisted closure (VAC) and conversion to interlocking within two weeks. Results Out of 84 cases union was achieved in 80(95%) of cases with definitive tibial interlocking. Excellent to good result were obtained in 77(91.8%) of cases and fair to poor result seen in rest of 7(8.2%) of cases according to modified Ketenjian’s criteria. 5 out of these 7 poor result group cases were from Compound Grade III B group to start with. Deep infection rate in our series were 7% i.e. total 6 cases and 4 out of these were from compound Grade III B group to start with. Conclusion Vacuum assisted closure (VAC) give a good help for rapid closure of the wound and help in early conversion to definitive intramedullary nailing. Reamed nail could well be used in compound grade IIIA/B fractures without increasing the risk of infection. It gives better stability to fracture site and lessen the risk of implant failure. PMID:27042541

  18. 30 CFR 75.819 - Motor-starter enclosures; barriers and interlocks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Motor-starter enclosures; barriers and interlocks. 75.819 Section 75.819 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High...

  19. Motor vehicle ignition interlocks : in-vehicle devices that monitor alcohol levels of motor vehicle operators.

    DOT National Transportation Integrated Search

    1990-01-01

    This project was initiated at the request of the Department of Motor Vehicles as a response to House Joint Resolution 378 (1989). The resolution requested an evaluation of research studies on ignition interlocks and a determination of possible benefi...

  20. 12 CFR 711.5 - Small market share exemption.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Small market share exemption. 711.5 Section 711.5 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS MANAGEMENT OFFICIAL INTERLOCKS § 711.5 Small market share exemption. (a) Exemption. A management interlock...

  1. Binding of anions in triply interlocked coordination catenanes and dynamic allostery for dehalogenation reactions† †Electronic supplementary information (ESI) available: Characterization data and additional tables and figures. CCDC 1515722 and 1515723. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04070a

    PubMed Central

    Yang, Linlin; Jing, Xu; An, Bowen; Yang, Yang

    2017-01-01

    By synergistic combination of multicomponent self-assembly and template-directed approaches, triply interlocked metal organic catenanes that consist of two isolated chirally identical tetrahedrons were constructed and stabilized as thermodynamic minima. In the presence of suitable template anions, the structural conversion from the isolated tetrahedral conformers into locked catenanes occurred via the cleavage of an intrinsically reversible coordination bond in each of the tetrahedrons, followed by the reengineering and interlocking of two fragments with the regeneration of the broken coordination bonds. The presence of several kinds of individual pocket that were attributed to the triply interlocked patterns enabled the possibility of encapsulating different anions, allowing the dynamic allostery between the unlocked/locked conformers to promote the dehalogenation reaction of 3-bromo-cyclohexene efficiently, as with the use of dehalogenase enzymes. The interlocked structures could be unlocked into two individual tetrahedrons through removal of the well-matched anion templates. The stability and reversibility of the locked/unlocked structures were further confirmed by the catching/releasing process that accompanied emission switching, providing opportunities for the system to be a dynamic molecular logic system. PMID:29675152

  2. High pressure fiber optic sensor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guida, Renato; Xia, Hua; Lee, Boon K

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  3. 46 CFR 111.70-7 - Remote control, interlock, and indicator circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... difference in potential between the external conductors, overcurrent protection need only be at the supply of... to start. (c) Source of potential. The potential for a control, interlock, or indicator circuit must... disconnected from all sources of potential by a disconnect device independent of the motor and controller...

  4. 46 CFR 111.70-7 - Remote control, interlock, and indicator circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... difference in potential between the external conductors, overcurrent protection need only be at the supply of... to start. (c) Source of potential. The potential for a control, interlock, or indicator circuit must... disconnected from all sources of potential by a disconnect device independent of the motor and controller...

  5. 46 CFR 111.70-7 - Remote control, interlock, and indicator circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... difference in potential between the external conductors, overcurrent protection need only be at the supply of... to start. (c) Source of potential. The potential for a control, interlock, or indicator circuit must... disconnected from all sources of potential by a disconnect device independent of the motor and controller...

  6. 46 CFR 111.70-7 - Remote control, interlock, and indicator circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... difference in potential between the external conductors, overcurrent protection need only be at the supply of... to start. (c) Source of potential. The potential for a control, interlock, or indicator circuit must... disconnected from all sources of potential by a disconnect device independent of the motor and controller...

  7. 46 CFR 111.70-7 - Remote control, interlock, and indicator circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... difference in potential between the external conductors, overcurrent protection need only be at the supply of... to start. (c) Source of potential. The potential for a control, interlock, or indicator circuit must... disconnected from all sources of potential by a disconnect device independent of the motor and controller...

  8. Final report on a cold climate permeable interlocking concrete pavement test facility at the University of New Hampshire Stormwater Center.

    DOT National Transportation Integrated Search

    2013-05-01

    University of New Hampshire Stormwater Center (UNHSC) completed a two year field verification study of a permeable interlocking concrete pavement (PICP) stormwater management system. The purpose of this study was to evaluate the cold climate function...

  9. 12 CFR 563f.9 - Interlocking relationships permitted pursuant to Federal Deposit Insurance Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Federal Deposit Insurance Corporation pursuant to section 13(k)(1)(A)(v) of the Federal Deposit Insurance Act, as amended (12 U.S.C. 1823(k)(1)(A)(v)). ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Interlocking relationships permitted pursuant...

  10. 12 CFR 563f.9 - Interlocking relationships permitted pursuant to Federal Deposit Insurance Act.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Federal Deposit Insurance Corporation pursuant to section 13(k)(1)(A)(v) of the Federal Deposit Insurance Act, as amended (12 U.S.C. 1823(k)(1)(A)(v)). ... 12 Banks and Banking 5 2011-01-01 2011-01-01 false Interlocking relationships permitted pursuant...

  11. 12 CFR 212.5 - Small market share exemption.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Small market share exemption. 212.5 Section 212.5 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM MANAGEMENT OFFICIAL INTERLOCKS § 212.5 Small market share exemption. (a) Exemption. A management interlock...

  12. Compartment syndrome of the thigh complicating surgical treatment of ipsilateral femur and ankle fractures

    NASA Technical Reports Server (NTRS)

    Moore, M. R.; Garfin, S. R.; Hargens, A. R.

    1987-01-01

    A 26-year-old man presented with ipsilateral femur and ankle fractures. The patient was treated with interlocking nail of his femur fracture, followed by open reduction and internal fixation of his ankle fracture under tourniquet control. Postoperatively, the patient developed compartment syndrome of his thigh with elevated pressures, requiring decompressive fasciotomies. This case illustrates the possible complication of treating a femur fracture with intramedullary nailing and then immediately applying a tourniquet to treat an ipsilateral extremity fracture. Because of the complication with this patient, we feel the procedure should be staged, or a tourniquet should be avoided if possible.

  13. Teaching Physics with Music

    NASA Astrophysics Data System (ADS)

    Ramsey, Gordon P.

    2015-10-01

    The uniting of two seemingly disparate subjects in the classroom provides an interesting motivation for learning. Students are interested in how these subjects can possibly be integrated into related ideas. Such is the mixture of physics and music. Both are based upon mathematics, which becomes the interlocking theme. The connecting physical properties of sound and music are waves and harmonics. The introduction of instruments, including the voice, to the musical discussion allows the introduction of more advanced physical concepts such as energy, force, pressure, fluid dynamics, and properties of materials. Suggestions on how to teach physics concepts in the context of music at many levels are presented in this paper.

  14. Microorganism Removal in Permeable Pavement Parking Lots ...

    EPA Pesticide Factsheets

    Three types of permeable pavements (pervious concrete, permeable interlocking concrete pavers, and porous asphalt) were monitored at the Edison Environmental Center in Edison, New Jersey for indicator organisms such as fecal coliform, enterococci, and E. coli. Results showed that porous asphalt had much lower concentration in monitored infiltrate compared to pervious concrete and permeable interlocking concrete pavers. Concentrations of monitored organisms in infiltrate from porous asphalt were consistently below the bathing water quality standard. Fecal coliform and enterococci exceeded bathing water quality standards more than 72% and 34% of the time for permeable interlocking concrete pavers and pervious concrete, respectively. Purpose is to evaluate the performance of permeable pavement in removing indicator organisms from infiltrating stormwater runoff.

  15. Interlocking intramedullary nailing in distal tibial fractures.

    PubMed

    Tyllianakis, M; Megas, P; Giannikas, D; Lambiris, E

    2000-08-01

    This retrospective study examined the results of non-pilon fractures of the distal part of the tibia treated with interlocking intramedullary nailing. Seventy-three patients with equal numbers of fractures treated surgically between 1990 and 1998 were reviewed. Mean patient age was 39.8 years, and follow-up averaged 34.2 months. The AO fracture classification system was used. Concomitant fractures of the lateral malleolus were fixed. All but three fractures achieved union within 4.2 months on average. Satisfactory or excellent results were obtained in 86.3% of patients. These results indicate interlocking intramedullary nailing is a reliable method of treatment for these fractures and is characterized by high rates of union and a low incidence of complications.

  16. Novel Repair Concept for Composite Materials by Repetitive Geometrical Interlock Elements

    PubMed Central

    Hufenbach, Werner; Adam, Frank; Heber, Thomas; Weckend, Nico; Bach, Friedrich-Wilhelm; Hassel, Thomas; Zaremba, David

    2011-01-01

    Material adapted repair technologies for fiber-reinforced polymers with thermosetting matrix systems are currently characterized by requiring major efforts for repair preparation and accomplishment in all industrial areas of application. In order to allow for a uniform distribution of material and geometrical parameters over the repair zone, a novel composite interlock repair concept is introduced, which is based on a repair zone with undercuts prepared by water-jet technology. The presented numerical and experimental sensitivity analyses make a contribution to the systematic development of the interlock repair technology with respect to material and geometrical factors of influence. The results show the ability of the novel concept for a reproducible and automatable composite repair. PMID:28824134

  17. Manifold seal structure for fuel cell stack

    DOEpatents

    Collins, William P.

    1988-01-01

    The seal between the sides of a fuel cell stack and the gas manifolds is improved by adding a mechanical interlock between the adhesive sealing strip and the abutting surface of the manifolds. The adhesive is a material which can flow to some extent when under compression, and the mechanical interlock is formed providing small openings in the portion of the manifold which abuts the adhesive strip. When the manifolds are pressed against the adhesive strips, the latter will flow into and through the manifold openings to form buttons or ribs which mechanically interlock with the manifolds. These buttons or ribs increase the bond between the manifolds and adhesive, which previously relied solely on the adhesive nature of the adhesive.

  18. Breath Alcohol Ignition Interlock Devices : Policy and Implementing Implications [Mobile .MP4 (480x320/29.97fps/13.9MB)

    DOT National Transportation Integrated Search

    2011-01-01

    The goal of this project is to perform a systematic review of breath alcohol ignition interlock devices (BAIID or IID) to understand how other states have integrated such systems into administrative and judicial practice and to make recommendations f...

  19. 49 CFR 236.401 - Automatic block signal system and interlocking standards applicable to traffic control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.401 Automatic... 49 Transportation 4 2011-10-01 2011-10-01 false Automatic block signal system and interlocking standards applicable to traffic control systems. 236.401 Section 236.401 Transportation Other Regulations...

  20. Patterns In Contingencies: The Interlocking of Formal and Informal Political Institutions in Contemporary Argentina

    ERIC Educational Resources Information Center

    Llamazares, Ivan

    2005-01-01

    This article explores how the interlocking of formal and informal political institutions has affected the dynamics and performance of the Argentine democracy. Key institutional features of the Argentine political system have been a competitive form of federalism, loosely structured and political parties that are not ideologically unified,…

  1. 49 CFR 236.326 - Mechanical locking removed or disarranged; requirement for permitting train movements through...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Mechanical locking removed or disarranged... § 236.326 Mechanical locking removed or disarranged; requirement for permitting train movements through interlocking. When mechanical locking of interlocking machine is being changed or is removed from the machine...

  2. Breath Alcohol Ignition Interlock Devices : Policy and Implementing Implications [SD .MP4 (640x424/29.97fps/22.6MB)

    DOT National Transportation Integrated Search

    2011-01-01

    The goal of this project is to perform a systematic review of breath alcohol ignition interlock devices (BAIID or IID) to understand how other states have integrated such systems into administrative and judicial practice and to make recommendations f...

  3. 49 CFR 236.311 - Signal control circuits, selection through track relays or devices functioning as track relays...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... automatic interlocking. (a) The control circuits for aspects with indications more favorable than “proceed... 49 Transportation 4 2010-10-01 2010-10-01 false Signal control circuits, selection through track... automatic interlocking. 236.311 Section 236.311 Transportation Other Regulations Relating to Transportation...

  4. 12 CFR 26.5 - Small market share exemption.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Small market share exemption. 26.5 Section 26.5 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY MANAGEMENT OFFICIAL INTERLOCKS § 26.5 Small market share exemption. (a) Exemption. A management interlock that is prohibited by § 26.3...

  5. 12 CFR 563f.5 - Small market share exemption.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Small market share exemption. 563f.5 Section 563f.5 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY MANAGEMENT OFFICIAL INTERLOCKS § 563f.5 Small market share exemption. (a) Exemption. A management interlock that is prohibited by...

  6. Reviewed approach to defining the Active Interlock Envelope for Front End ray tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.; Shaftan, T.

    To protect the NSLS-II Storage Ring (SR) components from damage from synchrotron radiation produced by insertion devices (IDs) the Active Interlock (AI) keeps electron beam within some safe envelope (a.k.a Active Interlock Envelope or AIE) in the transverse phase space. The beamline Front Ends (FEs) are designed under assumption that above certain beam current (typically 2 mA) the ID synchrotron radiation (IDSR) fan is produced by the interlocked e-beam. These assumptions also define how the ray tracing for FE is done. To simplify the FE ray tracing for typical uncanted ID it was decided to provide the Mechanical Engineering groupmore » with a single set of numbers (x,x’,y,y’) for the AIE at the center of the long (or short) ID straight section. Such unified approach to the design of the beamline Front Ends will accelerate the design process and save valuable human resources. In this paper we describe our new approach to defining the AI envelope and provide the resulting numbers required for design of the typical Front End.« less

  7. Service-oriented architecture for the ARGOS instrument control software

    NASA Astrophysics Data System (ADS)

    Borelli, J.; Barl, L.; Gässler, W.; Kulas, M.; Rabien, Sebastian

    2012-09-01

    The Advanced Rayleigh Guided ground layer Adaptive optic System, ARGOS, equips the Large Binocular Telescope (LBT) with a constellation of six rayleigh laser guide stars. By correcting atmospheric turbulence near the ground, the system is designed to increase the image quality of the multi-object spectrograph LUCIFER approximately by a factor of 3 over a field of 4 arc minute diameter. The control software has the critical task of orchestrating several devices, instruments, and high level services, including the already existing adaptive optic system and the telescope control software. All these components are widely distributed over the telescope, adding more complexity to the system design. The approach used by the ARGOS engineers is to write loosely coupled and distributed services under the control of different ownership systems, providing a uniform mechanism to offer, discover, interact and use these distributed capabilities. The control system counts with several finite state machines, vibration and flexure compensation loops, and safety mechanism, such as interlocks, aircraft, and satellite avoidance systems.

  8. Nanoarmoring of Enzymes by Interlocking in Cellulose Fibers With Poly(Acrylic Acid).

    PubMed

    Riccardi, Caterina M; Kasi, Rajeswari M; Kumar, Challa V

    2017-01-01

    A simple method for interlocking glucose oxidase (GOx) and horseradish peroxidase (HRP) in cellulose fibers using poly(acrylic acid) (PAA) as an armor around the enzyme, without any need for activation of the cellulose support, is reported here. The resulting enzyme paper is an inexpensive, stable, simple, wearable, and washable biosensor. PAA functions as a multifunctional tether to interlock the enzyme molecules around the paper fibers so that the enzymes are protected against thermal/chemical denaturation and not released from the paper when washed with a detergent. The decreased conformational entropy of the interlocked enzyme protected by the nanoarmor is likely responsible for increased enzyme stability to heat and chemical denaturants (retained ≥70 percent enzyme activity after washing with urea or SDS for 30min), and the polymer protects the enzyme against inactivation by proteases, bacteria, inhibitors, etc. The kinetics of the interlocked enzyme were similar to that of the enzyme in solution. The V max was 6(±0.5)mM per minute before washing, then increased slightly to 9(±1.4)mM per minute after washing with water. The K m was 22(±6.4mM), which was slightly higher compared to GOx in solution (25-27mM). Because the surface area of the paper does not limit the enzyme loading, about 20% of enzyme was successfully loaded onto the paper (0.2g enzyme per gram of paper), and ≥95% of the enzyme was retained after washing. Interlocking works with other enzymes such as laccase, where ≥60% of the enzyme activity is retained. This novel methodology provides a low cost, simple, modular approach of achieving high enzyme loadings in ordinary filter paper, not limited by cellulose surface area, and there has been no need for complex methods of enzyme engineering or toxic methods of activation of the solid support to prepare highly active biocatalysts. © 2017 Elsevier Inc. All rights reserved.

  9. Air actuated clutch for four wheel drive vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clohessy, K.E.

    1986-12-09

    A control system is described for selectively engaging and disengaging a vehicle wheel and a vehicle drive mechanism comprising; a spindle having inside and outside rotative support surfaces, the spindle adapted to be mounted to a vehicle frame, an axle portion rotatably supported on the inside support surface, and drive means for selectively and rotatively driving the axle portion relative to the spindle; a wheel hub assembly adapted to carry a vehicle wheel, the hub assembly rotatively supported on the outside support surface of the spindle; a sealed expansion chamber defined in part by the spindle, the axle portion, themore » hub assembly and a movable wall carried by the hub assembly, venting means venting the outer side of the movable wall to atmospheric pressure, the clutch ring engaged by the movable wall for movement of the clutch ring with movement of the movable wall as induced by a pressure difference generated within the chamber, and pressurizing means for selectively pressurizing and depressurizing the expansion chamber to thereby selectively shift the clutch ring between the positions of interlocking the axle portion and hub assembly and unlocking the axle portion and hub assembly.« less

  10. Interlocking Toy Building Blocks as Hands-On Learning Modules for Blind and Visually Impaired Chemistry Students

    ERIC Educational Resources Information Center

    Melaku, Samuel; Schreck, James O.; Griffin, Kameron; Dabke, Rajeev B.

    2016-01-01

    Interlocking toy building blocks (e.g., Lego) as chemistry learning modules for blind and visually impaired (BVI) students in high school and undergraduate introductory or general chemistry courses are presented. Building blocks were assembled on a baseplate to depict the relative changes in the periodic properties of elements. Modules depicting…

  11. 49 CFR 1242.58 - Operating signals and interlockers, operating drawbridges, highway crossing protection (accounts...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... drawbridges, highway crossing protection (accounts XX-51-59, XX-51-60 and XX-51-61). 1242.58 Section 1242.58... Operating signals and interlockers, operating drawbridges, highway crossing protection (accounts XX-51-59, XX-51-60 and XX-51-61). Separate common expenses on the basis of total train hours (including train...

  12. Using Interlocking Toy Building Blocks to Assess Conceptual Understanding in Chemistry

    ERIC Educational Resources Information Center

    Geyer, Michael J.

    2017-01-01

    A current emphasis on teaching conceptual chemistry via the particulate nature of matter has led to the need for new, effective ways to assess students' conceptual understanding of this view of chemistry. This article provides a simple, inexpensive way to use interlocking toy building blocks (e.g., LEGOs) in both formative and summative…

  13. 12 CFR 348.4 - Interlocking relationships permitted by statute.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... authorized on an emergency basis in accordance with section 13(k) of the Federal Deposit Insurance Act (12 U... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Interlocking relationships permitted by statute... function; (b) A corporation operating under section 25 or section 25A of the Federal Reserve Act (12 U.S.C...

  14. 12 CFR 348.4 - Interlocking relationships permitted by statute.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... authorized on an emergency basis in accordance with section 13(k) of the Federal Deposit Insurance Act (12 U... 12 Banks and Banking 5 2013-01-01 2013-01-01 false Interlocking relationships permitted by statute... function; (b) A corporation operating under section 25 or section 25A of the Federal Reserve Act (12 U.S.C...

  15. 12 CFR 348.4 - Interlocking relationships permitted by statute.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... authorized on an emergency basis in accordance with section 13(k) of the Federal Deposit Insurance Act (12 U... 12 Banks and Banking 5 2012-01-01 2012-01-01 false Interlocking relationships permitted by statute... function; (b) A corporation operating under section 25 or section 25A of the Federal Reserve Act (12 U.S.C...

  16. 12 CFR 348.4 - Interlocking relationships permitted by statute.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... authorized on an emergency basis in accordance with section 13(k) of the Federal Deposit Insurance Act (12 U... 12 Banks and Banking 4 2011-01-01 2011-01-01 false Interlocking relationships permitted by statute... function; (b) A corporation operating under section 25 or section 25A of the Federal Reserve Act (12 U.S.C...

  17. 10. General view of site showing south side of Shell ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. General view of site showing south side of Shell Interlocking Tower and slope of railroad bed. View to north from unpaved service road extending from Bartels Place. - New York, New Haven, & Hartford Railroad, Shell Interlocking Tower, New Haven Milepost 16, approximately 100 feel east of New Rochelle Junction, New Rochelle, Westchester County, NY

  18. 27 CFR 70.416 - Application for approval of interlocking directors and officers under section 8 of the Federal...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the appropriate TTB officer. Applications for such permission to take office must be prepared and... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Application for approval... Beer § 70.416 Application for approval of interlocking directors and officers under section 8 of the...

  19. Molecular switches and motors on surfaces.

    PubMed

    Pathem, Bala Krishna; Claridge, Shelley A; Zheng, Yue Bing; Weiss, Paul S

    2013-01-01

    Molecular switches and motors respond structurally, electronically, optically, and/or mechanically to external stimuli, testing and potentially enabling extreme miniaturization of optoelectronic devices, nanoelectromechanical systems, and medical devices. The assembly of motors and switches on surfaces makes it possible both to measure the properties of individual molecules as they relate to their environment and to couple function between assembled molecules. In this review, we discuss recent progress in assembling molecular switches and motors on surfaces, measuring static and dynamic structures, understanding switching mechanisms, and constructing functional molecular materials and devices. As demonstrative examples, we choose a representative molecule from three commonly studied classes including molecular switches, photochromic molecules, and mechanically interlocked molecules. We conclude by offering perspectives on the future of molecular switches and motors on surfaces.

  20. Vacuum System Upgrade for Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) at SNS

    DOE PAGES

    Stone, Christopher M.; Williams, Derrick C.; Price, Jeremy P.

    2016-09-23

    The Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) instrument at the Spallation Neutron Source (SNS), Oak Ridge, Tennessee, incorporates a 69m3 detector vessel with a vacuum system which required an upgrade with respect to performance, ease of operation, and maintenance. The upgrade focused on improving pumping performance as well as optimizing system design to minimize opportunity for operational error. This upgrade provided the following practical contributions: Reduced time required to evacuate from atmospheric pressure to 2mTorr from 500-1,000 minutes to 60-70 minutes Provided turn-key automated control with a multi-faceted interlock for personnel and machine safety.

  1. Vacuum System Upgrade for Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) at SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Christopher M.; Williams, Derrick C.; Price, Jeremy P.

    The Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) instrument at the Spallation Neutron Source (SNS), Oak Ridge, Tennessee, incorporates a 69m3 detector vessel with a vacuum system which required an upgrade with respect to performance, ease of operation, and maintenance. The upgrade focused on improving pumping performance as well as optimizing system design to minimize opportunity for operational error. This upgrade provided the following practical contributions: Reduced time required to evacuate from atmospheric pressure to 2mTorr from 500-1,000 minutes to 60-70 minutes Provided turn-key automated control with a multi-faceted interlock for personnel and machine safety.

  2. Alternative carbohydrate reserves used in the daily cycle of crassulacean acid metabolism

    Treesearch

    C.C. Black; J.-Q. Chen; R.L. Doong; M.N. Angelov; Shi-Jean S. Sung

    1996-01-01

    Each day a massive interlocked biochemical cycle occurs in the green tissues of crassulacean acid metabolism plants.The function of this interlocked cycle, in its simplest context, is to furnish most of the CO2 for CAM plant photosynthesis.In this unified presentation our aims are (1) to divide CAM plants into two metabolic groups, (2) to...

  3. Modelling the evolution of a bi-partite network Peer referral in interlocking directorates*

    PubMed Central

    Edling, Christofer

    2010-01-01

    A central part of relational ties between social actors are constituted by shared affiliations and events. The action of joint participation reinforces personal ties between social actors as well as mutually shared values and norms that in turn perpetuate the patterns of social action that define groups. Therefore the study of bipartite networks is central to social science. Furthermore, the dynamics of these processes suggests that bipartite networks should not be considered static structures but rather be studied over time. In order to model the evolution of bipartite networks empirically we introduce a class of models and a Bayesian inference scheme that extends previous stochastic actor-oriented models for unimodal graphs. Contemporary research on interlocking directorates provides an area of research in which it seems reasonable to apply the model. Specifically, we address the question of how tie formation, i.e. director recruitment, contributes to the structural properties of the interlocking directorate network. For boards of directors on the Stockholm stock exchange we propose that a prolific mechanism in tie formation is that of peer referral. The results indicate that such a mechanism is present, generating multiple interlocks between boards. PMID:24944435

  4. Enhanced tamper indicator

    DOEpatents

    Garcia, Anthony R.; Johnston, Roger G.

    2003-07-08

    The present invention provides an apparatus and method whereby the reliability and tamper-resistance of tamper indicators can be improved. A flexible connector may be routed through a latch for an enclosure such as a door or container, and the free ends of the flexible connector may be passed through a first locking member and firmly attached to an insert through the use of one or more attachment members such as set screws. A second locking member may then be assembled in interlocking relation with the first locking member to form an interlocked assembly around the insert. The insert may have one or more sharp projections extending toward the first or second locking member so that any compressive force applied in an attempt to disassemble the interlocked assembly results in permanent, visible damage to the first or second locking member.

  5. Thermal static bending of deployable interlocked booms

    NASA Technical Reports Server (NTRS)

    Staugaitis, C. L.; Predmore, R. E.

    1973-01-01

    Metal ribbons processed with a heat-forming treatment are enabled to form tubelike structures when deployed from a roll. Deployable booms of this have been utilized for gravity-gradient stabilization on the RAE, ATS, and Nimbus D satellites. An experimental thermal-mechanics test apparatus was developed to measure the thermal static bending and twist of booms up to 3 meters long. The apparatus was calibrated by using the correlation between calculated and observed thermal bending of a seamless tube. Thermal static bending values of 16 interlocked deployable booms were observed to be within a factor of 2.5 of the values calculated from seamless-tube theory. Out-of-Sun-plane thermal bending was caused by complex heat transfer across the interlocked seam. Significant thermal static twisting was not observed.

  6. Institutional Conflict of Interest: The Role of Interlocking Directorates in the Scientific Relationships between Universities and the Corporate Sector

    ERIC Educational Resources Information Center

    Slaughter, Sheila; Thomas, Scott L.; Johnson, David R.; Barringer, Sondra N.

    2014-01-01

    We examined the potential for institutional conflict of interest between the 26 private universities belonging to the Association of American Universities and the corporations to which they are tied through their boards of trustees. We were interested in the degree to which interlocks may have tightened over three points across an 11-year period…

  7. Pressure-sensitive optrode

    DOEpatents

    Hirschfeld, T.B.

    1985-04-09

    An apparatus and method are disclosed for sensing changes in pressure and for generating optical signals related to changes in pressure. Light from a fiber optic is directed to a movable surface which is coated with a light-responsive material, and which moves relative to the end of the fiber optic in response to changes in pressure. The same fiber optic collects a portion of the reflected or emitted light from the movable surface. Changes in pressure are determined by measuring changes in the amount of light collected. 5 figs.

  8. Optics clustered to output unique solutions: A multi-laser facility for combined single molecule and ensemble microscopy

    NASA Astrophysics Data System (ADS)

    Clarke, David T.; Botchway, Stanley W.; Coles, Benjamin C.; Needham, Sarah R.; Roberts, Selene K.; Rolfe, Daniel J.; Tynan, Christopher J.; Ward, Andrew D.; Webb, Stephen E. D.; Yadav, Rahul; Zanetti-Domingues, Laura; Martin-Fernandez, Marisa L.

    2011-09-01

    Optics clustered to output unique solutions (OCTOPUS) is a microscopy platform that combines single molecule and ensemble imaging methodologies. A novel aspect of OCTOPUS is its laser excitation system, which consists of a central core of interlocked continuous wave and pulsed laser sources, launched into optical fibres and linked via laser combiners. Fibres are plugged into wall-mounted patch panels that reach microscopy end-stations in adjacent rooms. This allows multiple tailor-made combinations of laser colours and time characteristics to be shared by different end-stations minimising the need for laser duplications. This setup brings significant benefits in terms of cost effectiveness, ease of operation, and user safety. The modular nature of OCTOPUS also facilitates the addition of new techniques as required, allowing the use of existing lasers in new microscopes while retaining the ability to run the established parts of the facility. To date, techniques interlinked are multi-photon/multicolour confocal fluorescence lifetime imaging for several modalities of fluorescence resonance energy transfer (FRET) and time-resolved anisotropy, total internal reflection fluorescence, single molecule imaging of single pair FRET, single molecule fluorescence polarisation, particle tracking, and optical tweezers. Here, we use a well-studied system, the epidermal growth factor receptor network, to illustrate how OCTOPUS can aid in the investigation of complex biological phenomena.

  9. Experimental and numerical analysis of interlocking rib formation at sheet metal blanking

    NASA Astrophysics Data System (ADS)

    Bolka, Špela; Bratuš, Vitoslav; Starman, Bojan; Mole, Nikolaj

    2018-05-01

    Cores for electrical motors are typically produced by blanking of laminations and then stacking them together, with, for instance, interlocking ribs or welding. Strict geometrical tolerances, both on the lamination and on the stack, combined with complex part geometry and harder steel strip material, call for use of predictive methods to optimize the process before actual blanking to reduce the costs and speed up the process. One of the major influences on the final stack geometry is the quality of the interlocking ribs. A rib is formed in one step and joined with the rib of the preceding lamination in the next. The quality of the joint determines the firmness of the stack and also influences its. The geometrical and positional accuracy is thus crucial in rib formation process. In this study, a complex experimental and numerical analysis of interlocking rib formation has been performed. The aim of the analysis is to numerically predict the shape of the rib in order to perform a numerical simulation of the stack formation in the next step of the process. A detailed experimental research has been performed in order to characterize influential parameters on the rib formation and the geometry of the ribs itself, using classical and 3D laser microscopy. The formation of the interlocking rib is then simulated using Abaqus Explicit. The Hilll 48 constitutive material model is based on extensive and novel material characterization process, combining data from in-plane and out-of-plane material tests to perform a 3D analysis of both, rib formation and rib joining. The study shows good correlation between the experimental and numerical results.

  10. Optical detection system for MEMS-type pressure sensor

    NASA Astrophysics Data System (ADS)

    Sareło, K.; Górecka-Drzazga, A.; Dziuban, J. A.

    2015-07-01

    In this paper a special optical detection system designed for a MEMS-type (micro-electro-mechanical system) silicon pressure sensor is presented. The main part of the optical system—a detection unit with a perforated membrane—is bonded to the silicon sensor, and placed in a measuring system. An external light source illuminates the membrane of the pressure sensor. Owing to the light reflected from the deflected membrane sensor, the optical pattern consisting of light points is visible, and pressure can be estimated. The optical detection unit (20   ×   20   ×   20.4 mm3) is fabricated using microengineering techniques. Its dimensions are adjusted to the dimensions of the pressure sensor (5   ×   5 mm2 silicon membrane). Preliminary tests of the optical detection unit integrated with the silicon pressure sensor are carried out. For the membrane sensor from 15 to 60 µm thick, a repeatable detection of the differential pressure in the range of 0 to 280 kPa is achieved. The presented optical microsystem is especially suitable for the pressure measurements in a high radiation environment.

  11. The use of interlocking prostheses for both temporary and definitive management of infected periprosthetic femoral fractures.

    PubMed

    Konan, Sujith; Rayan, Faizal; Manketelow, Andrew R J; Haddad, Fares S

    2011-12-01

    Infected periprosthetic fractures around total hip arthroplasties are an extremely challenging problem. We describe our experience of managing infected periprosthetic femoral fractures using interlocking long-stem femoral prostheses either as temporary functional spacers or as definitive implants. The Cannulock (Orthodesign, Christchurch, United Kingdom) uncoated stem was used in 12 cases, and the Kent hip prosthesis (Biomet Merck, Bridgend, United Kingdom), in 5 cases. Satisfactory outcome was noted in all cases, and in 11 cases, revision to a definitive stem has been undertaken after successful control of infection and fracture union. The use of interlocking stems offers a relatively appealing solution for a complex problem and avoids the complications that would be associated with resection of the entire femur or the use of large quantities of bone cement. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Turbine component casting core with high resolution region

    DOEpatents

    Kamel, Ahmed; Merrill, Gary B.

    2014-08-26

    A hollow turbine engine component with complex internal features can include a first region and a second, high resolution region. The first region can be defined by a first ceramic core piece formed by any conventional process, such as by injection molding or transfer molding. The second region can be defined by a second ceramic core piece formed separately by a method effective to produce high resolution features, such as tomo lithographic molding. The first core piece and the second core piece can be joined by interlocking engagement that once subjected to an intermediate thermal heat treatment process thermally deform to form a three dimensional interlocking joint between the first and second core pieces by allowing thermal creep to irreversibly interlock the first and second core pieces together such that the joint becomes physically locked together providing joint stability through thermal processing.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qiong; Rauscher, Phillip M.; Lang, Xiaolong

    As the macromolecular version of mechanically interlocked molecules, mechanically interlocked polymers are promising candidates for the creation of sophisticated molecular machines and smart soft materials. Poly[n]catenanes, where the molecular chains consist solely of interlocked macrocycles, contain one of the highest concentrations of topological bonds. We report, herein, a synthetic approach toward this distinctive polymer architecture in high yield (similar to 75%) via efficient ring closing of rationally designed metallosupramolecular polymers. Light-scattering, mass spectrometric, and nuclear magnetic resonance characterization of fractionated samples support assignment of the high-molar mass product (number-average molar mass similar to 21.4 kilograms per mole) to a mixturemore » of linear poly[7-26]catenanes, branched poly[13-130]catenanes, and cyclic poly[4-7]catenanes. Increased hydrodynamic radius (in solution) and glass transition temperature (in bulk materials) were observed upon metallation with Zn2+.« less

  14. Graphene based resonance structure to enhance the optical pressure between two planar surfaces.

    PubMed

    Hassanzadeh, Abdollah; Azami, Darya

    2015-12-28

    To enhance the optical pressure on a thin dielectric sample, a resonance structure using graphene layers coated over a metal film on a high index prism sputtered with MgF2 was theoretically analyzed. The number of graphene layers and the thicknesses of metal and MgF2 films were optimized to achieve the highest optical pressure on the sample. Effects of three different types of metals on the optical pressure were investigated numerically. In addition, simulations were carried out for samples with various thicknesses. Our numerical results show that the optical pressure increased by more than five orders of magnitude compared to the conventional metal-film-base resonance structure. The highest optical pressure was obtained for 10 layers of graphene deposited on 29-nm thick Au film and 650 nm thickness of MgF2 at 633nm wavelength, The proposed graphene based resonance structure can open new possibilities for optical tweezers, nanomechnical devices and surface plasmon based sensing and imaging techniques.

  15. Fingerprint-Inspired Flexible Tactile Sensor for Accurately Discerning Surface Texture.

    PubMed

    Cao, Yudong; Li, Tie; Gu, Yang; Luo, Hui; Wang, Shuqi; Zhang, Ting

    2018-04-01

    Inspired by the epidermal-dermal and outer microstructures of the human fingerprint, a novel flexible sensor device is designed to improve haptic perception and surface texture recognition, which is consisted of single-walled carbon nanotubes, polyethylene, and polydimethylsiloxane with interlocked and outer micropyramid arrays. The sensor shows high pressure sensitivity (-3.26 kPa -1 in the pressure range of 0-300 Pa), and it can detect the shear force changes induced by the dynamic interaction between the outer micropyramid structure on the sensor and the tested material surface, and the minimum dimension of the microstripe that can be discerned is as low as 15 µm × 15 µm (interval × width). To demonstrate the texture discrimination capability, the sensors are tested for accurately discerning various surface textures, such as the textures of different fabrics, Braille characters, the inverted pyramid patterns, which will have great potential in robot skins and haptic perception, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Composites reinforced via mechanical interlocking of surface-roughened microplatelets within ductile and brittle matrices.

    PubMed

    Libanori, R; Carnelli, D; Rothfuchs, N; Binelli, M R; Zanini, M; Nicoleau, L; Feichtenschlager, B; Albrecht, G; Studart, A R

    2016-04-12

    Load-bearing reinforcing elements in a continuous matrix allow for improved mechanical properties and can reduce the weight of structural composites. As the mechanical performance of composite systems are heavily affected by the interfacial properties, tailoring the interactions between matrices and reinforcing elements is a crucial problem. Recently, several studies using bio-inspired model systems suggested that interfacial mechanical interlocking is an efficient mechanism for energy dissipation in platelet-reinforced composites. While cheap and effective solutions are available at the macroscale, the modification of surface topography in micron-sized reinforcing elements still represents a challenging task. Here, we report a simple method to create nanoasperities with tailored sizes and densities on the surface of alumina platelets and investigate their micromechanical effect on the energy dissipation mechanisms of nacre-like materials. Composites reinforced with roughened platelets exhibit improved mechanical properties for both organic ductile epoxy and inorganic brittle cement matrices. Mechanical interlocking increases the modulus of toughness (area under the stress-strain curve) by 110% and 56% in epoxy and cement matrices, respectively, as compared to those reinforced with flat platelets. This interlocking mechanism can potentially lead to a significant reduction in the weight of mechanical components while retaining the structural performance required in the application field.

  17. Noninvasive blood pressure measurement scheme based on optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan

    2016-10-01

    Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.

  18. Design of microcontroller based system for automation of streak camera.

    PubMed

    Joshi, M J; Upadhyay, J; Deshpande, P P; Sharma, M L; Navathe, C P

    2010-08-01

    A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor. A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.

  19. Design of microcontroller based system for automation of streak camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, M. J.; Upadhyay, J.; Deshpande, P. P.

    2010-08-15

    A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor.more » A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.« less

  20. Convenient optical pressure gauge for multimegabar pressures calibrated to 300 GPa

    NASA Astrophysics Data System (ADS)

    Sun, Liling; Ruoff, Arthur L.; Stupian, Gary

    2005-01-01

    The accurate measurement of pressure by a straightforward and inexpensive optical procedure has been needed in the multimegabar region since static pressures over 216GPa, 361GPa, 420GPa and 560GPa were obtained in the diamond anvil cell. Here, a simple optical pressure gauge based on the Raman shift of the diamond at the center of a diamond tip at the diamond-sample interface is calibrated against a primary gauge (Pt isotherm at 300K from shock data) to 300GPa, thus enabling researchers who do not have a synchrotron to conveniently measure pressure with an optical scale from 50to300GPa.

  1. An FBG Optical Approach to Thermal Expansion Measurements under Hydrostatic Pressure.

    PubMed

    Rosa, Priscila F S; Thomas, Sean M; Balakirev, Fedor F; Betts, Jon; Seo, Soonbeom; Bauer, Eric D; Thompson, Joe D; Jaime, Marcelo

    2017-11-04

    We report on an optical technique for measuring thermal expansion and magnetostriction at cryogenic temperatures and under applied hydrostatic pressures of 2.0 GPa. Optical fiber Bragg gratings inside a clamp-type pressure chamber are used to measure the strain in a millimeter-sized sample of CeRhIn₅. We describe the simultaneous measurement of two Bragg gratings in a single optical fiber using an optical sensing instrument capable of resolving changes in length [dL/L = (L- L₀)/L₀] on the order of 10 -7 . Our results demonstrate the possibility of performing high-resolution thermal expansion measurements under hydrostatic pressure, a capability previously hindered by the small working volumes typical of pressure cells.

  2. Colonic transit time and pressure based on Bernoulli's principle.

    PubMed

    Uno, Yoshiharu

    2018-01-01

    Variations in the caliber of human large intestinal tract causes changes in pressure and the velocity of its contents, depending on flow volume, gravity, and density, which are all variables of Bernoulli's principle. Therefore, it was hypothesized that constipation and diarrhea can occur due to changes in the colonic transit time (CTT), according to Bernoulli's principle. In addition, it was hypothesized that high amplitude peristaltic contractions (HAPC), which are considered to be involved in defecation in healthy subjects, occur because of cecum pressure based on Bernoulli's principle. A virtual healthy model (VHM), a virtual constipation model and a virtual diarrhea model were set up. For each model, the CTT was decided according to the length of each part of the colon, and then calculating the velocity due to the cecum inflow volume. In the VHM, the pressure change was calculated, then its consistency with HAPC was verified. The CTT changed according to the difference between the cecum inflow volume and the caliber of the intestinal tract, and was inversely proportional to the cecum inflow volume. Compared with VHM, the CTT was prolonged in the virtual constipation model, and shortened in the virtual diarrhea model. The calculated pressure of the VHM and the gradient of the interlocked graph were similar to that of HAPC. The CTT and HAPC can be explained by Bernoulli's principle, and constipation and diarrhea may be fundamentally influenced by flow dynamics.

  3. Size effect of optical silica microsphere pressure sensors

    NASA Astrophysics Data System (ADS)

    Jiao, Xinbing; Hao, Ruirui; Pan, Qian; Zhao, Xinwei; Bai, Xue

    2018-07-01

    Two types of optical pressure sensors with silica microspheres are proposed. The size effect of optical silica microsphere pressure sensors is studied by using a single-wavelength laser beam and polarimeters. The silica microspheres with diameters of 1.0 μm, 1.5 μm and 2.0 μm are prepared on garnet substrates by a self-assembly method. The pressure and the optical properties of the silica microspheres are measured by a resistance strain sensor and Thorlabs Stokes polarimeters as a function of the external direct current (DC) voltage. The optical silica microsphere sensor in transmission mode is suitable for pressure measuring. The results show that the pressure increases, while the diameter of the silica microspheres decreases. The maximum internal pressure can reach up to 7.3 × 107 Pa when the diameter of the silica microspheres is 1.0 μm.

  4. Segmented instrumentation tube including a locking sleeve for interlocking the segments of the instrumentation tube

    DOEpatents

    Obermeyer, F.D.

    1993-11-16

    Segmented instrumentation tube including a locking sleeve for interlocking the segments of the instrumentation tube, so that the threaded ends of the instrumentation tube do not unthread when subjected to vibration, such an instrumentation tube being suitable for use in a nuclear reactor pressure vessel. The instrumentation tube has a first member having a threaded end portion that has a plurality of first holes circumferentially around the outside surface thereof. The instrumentation tube also has a second member having a threaded end portion that has a plurality of second holes circumferentially around the outside surface thereof. The threads of the second member are caused to threadably engage the threads of the first member for defining a threaded joint there between. A sleeve having an inside surface surrounds the end portion of the first member and the end portion of the second member and thus surrounds the threaded joint. The sleeve includes a plurality of first projections and second projections that outwardly extend from the inside surface to engage the first holes and the second holes, respectively. The outside surface of the sleeve is crimped or swaged at the locations of the first projections and second projections such that the first projections and the second projections engage their respective holes. In this manner, independent rotation of the first member with respect to the second member is prevented, so that the instrumentation tube will not unthread at its threaded joint. 10 figures.

  5. Segmented instrumentation tube including a locking sleeve for interlocking the segments of the instrumentation tube

    DOEpatents

    Obermeyer, Franklin D.

    1993-01-01

    Segmented instrumentation tube including a locking sleeve for interlocking the segments of the instrumentation tube, so that the threaded ends of the instrumentation tube do not unthread when subjected to vibration, such an instrumentation tube being suitable for use in a nuclear reactor pressure vessel. The instrumentation tube has a first member having a threaded end portion that has a plurality of first holes circumferentially around the outside surface thereof. The instrumentation tube also has a second member having a threaded end portion that has a plurality of second holes circumferentially around the outside surface thereof. The threads of the second member are caused to threadably engage the threads of the first member for defining a threaded joint therebetween. A sleeve having an inside surface surrounds the end portion of the first member and the end portion of the second member and thus surrounds the threaded joint. The sleeve includes a plurality of first projections and second projections that outwardly extend from the inside surface to engage the first holes and the second holes, respectively. The outside surface of the sleeve is crimped or swaged at the locations of the first projections and second projections such that the first projections and the second projections engage their respective holes. In this manner, independent rotation of the first member with respect to the second member is prevented, so that the instrumentation tube will not unthread at its threaded joint.

  6. Experimental investigation of the ECRH stray radiation during the start-up phase in Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, Dmitry; Laqua, Heinrich; Marsen, Stefan; Stange, Torsten; Braune, Harald; Erckmann, Volker; Gellert, Florian; Oosterbeek, Johann Wilhelm; Wenzel, Uwe

    2017-07-01

    Electron cyclotron resonance heating (ECRH) is the main heating mechanism in the Wendelstein 7-X stellarator (W7-X). W7-X is equipped with five absolutely calibrated sniffer probes that are installed in each of the five modules of the device. The sniffer probes monitor energy flux of unabsorbed ECRH radiation in the device and interlocks are fed with the sniffer probe signals. The stray radiation level in the device changes significantly during the start-up phase: plasma is a strong microwave absorber and during its formation the stray radiation level in sniffer probes reduces by more than 95%. In this paper, we discuss the influence of neutral gas pressure and gyrotron power on plasma breakdown processes.

  7. FRICTION STIR LAP WELDING OF ALUMINUM - POLYMER USING SCRIBE TECHNOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Hovanski, Yuri; Fifield, Leonard S.

    2015-02-16

    Friction Stir Scribe (FSS) technology is a relatively new variant of Friction Stir Welding (FSW) which enables lap joining of dissimilar material with very different melting points and different high temperature flow behaviors. The cutter scribe attached at the tip of FSW tool pin effectively cuts the high melting point material such that a mechanically interlocking feature is created between the dissimilar materials. The geometric shape of this interlocking feature determines the shear strength attained by the lap joint. This work presents first use of scribe technology in joining polymers to aluminum alloy. Details of the several runs of scribemore » welding performed in lap joining of ~3.175mm thick polymers including HDPE, filled and unfilled Nylon 66 to 2mm thick AA5182 are presented. The effect of scribe geometry and length on weld interlocking features is presented along with lap shear strength evaluations.« less

  8. Interlocking directorates in Irish companies using a latent space model for bipartite networks

    PubMed Central

    Friel, Nial; Rastelli, Riccardo; Wyse, Jason; Raftery, Adrian E.

    2016-01-01

    We analyze the temporal bipartite network of the leading Irish companies and their directors from 2003 to 2013, encompassing the end of the Celtic Tiger boom and the ensuing financial crisis in 2008. We focus on the evolution of company interlocks, whereby a company director simultaneously sits on two or more boards. We develop a statistical model for this dataset by embedding the positions of companies and directors in a latent space. The temporal evolution of the network is modeled through three levels of Markovian dependence: one on the model parameters, one on the companies’ latent positions, and one on the edges themselves. The model is estimated using Bayesian inference. Our analysis reveals that the level of interlocking, as measured by a contraction of the latent space, increased before and during the crisis, reaching a peak in 2009, and has generally stabilized since then. PMID:27247395

  9. Finite Element Analysis of Absorbable Sheath to Prevent Stress Shielding of Tibial Interlocking Intramedullary Nail

    NASA Astrophysics Data System (ADS)

    Dong, Yansheng; Wang, Yongqing; Dong, Limin; Jia, Peng; Lu, Fengcheng

    2017-07-01

    The nail with absorbable sheath (AS nail) is designed to reduce the stress shielding effect of internal fixation with interlocking intramedullary nail. In order to verify its feasibility, two types of the finite element models of internal fixation of tibia with the AS nail and the common metal nail (CM nail) are established using the Softwares of Mimics, Geomagic, SolidWorks and ANSYS according to the CT scanning data of tibia. The result of the finite element analysis shows that the AS nail has great advantages compared with the CM nail in reducing the stress shielding effect in different periods of fracture healing. The conclusion is that the AS nail can realize the static fixation to the dynamic fixation from the early to the later automatically to shorten the time of fracture healing, which also provides a new technique to the interlocking intramedullary nail.

  10. The application of CuAAC 'click' chemistry to catenane and rotaxane synthesis.

    PubMed

    Hänni, Kevin D; Leigh, David A

    2010-04-01

    The copper(I)-catalysed azide-alkyne cycloaddition (the CuAAC 'click' reaction) is proving to be a powerful new tool for the construction of mechanically interlocked molecular-level architectures. The reaction is highly selective for the functional groups involved (terminal alkynes and azides) and the experimental conditions are mild and compatible with the weak and reversible intermolecular interactions generally used to template the assembly of interlocked structures. Since the CuAAC reaction was introduced as a means of making rotaxanes by an 'active template' mechanism in 2006, it has proven effective for the synthesis of numerous different types of rotaxanes, catenanes and molecular shuttles by passive as well as active template strategies. Mechanistic insights into the CuAAC reaction itself have been provided by unexpected results encountered during the preparation of rotaxanes. In this tutorial review we highlight the rapidly increasing utility and future potential of the CuAAC reaction in mechanically interlocked molecule synthesis.

  11. Design of responsive materials using topologically interlocked elements

    NASA Astrophysics Data System (ADS)

    Molotnikov, A.; Gerbrand, R.; Qi, Y.; Simon, G. P.; Estrin, Y.

    2015-02-01

    In this work we present a novel approach to designing responsive structures by segmentation of monolithic plates into an assembly of topologically interlocked building blocks. The particular example considered is an assembly of interlocking osteomorphic blocks. The results of this study demonstrate that the constraining force, which is required to hold the blocks together, can be viewed as a design parameter that governs the bending stiffness and the load bearing capacity of the segmented structure. In the case where the constraining forces are provided laterally using an external frame, the maximum load the assembly can sustain and its stiffness increase linearly with the magnitude of the lateral load applied. Furthermore, we show that the segmented plate with integrated shape memory wires employed as tensioning cables can act as a smart structure that changes its flexural stiffness and load bearing capacity in response to external stimuli, such as heat generated by the switching on and off an electric current.

  12. Metal-organic frameworks with dynamic interlocked components

    NASA Astrophysics Data System (ADS)

    Vukotic, V. Nicholas; Harris, Kristopher J.; Zhu, Kelong; Schurko, Robert W.; Loeb, Stephen J.

    2012-06-01

    The dynamics of mechanically interlocked molecules such as rotaxanes and catenanes have been studied in solution as examples of rudimentary molecular switches and machines, but in this medium, the molecules are randomly dispersed and their motion incoherent. As a strategy for achieving a higher level of molecular organization, we have constructed a metal-organic framework material using a [2]rotaxane as the organic linker and binuclear Cu(II) units as the nodes. Activation of the as-synthesized material creates a void space inside the rigid framework that allows the soft macrocyclic ring of the [2]rotaxane to rotate rapidly, unimpeded by neighbouring molecular components. Variable-temperature 13C and 2H solid-state NMR experiments are used to characterize the nature and rate of the dynamic processes occurring inside this unique material. These results provide a blueprint for the future creation of solid-state molecular switches and molecular machines based on mechanically interlocked molecules.

  13. FERMILAB CRYOMODULE TEST STAND RF INTERLOCK SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, Troy; Diamond, J. S.; McDowell, D.

    2016-10-12

    An interlock system has been designed for the Fermilab Cryo-module Test Stand (CMTS), a test bed for the cryo- modules to be used in the upcoming Linac Coherent Light Source 2 (LCLS-II) project at SLAC. The interlock system features 8 independent subsystems, one per superconducting RF cavity and solid state amplifier (SSA) pair. Each system monitors several devices to detect fault conditions such as arcing in the waveguides or quenching of the SRF system. Additionally each system can detect fault conditions by monitoring the RF power seen at the cavity coupler through a directional coupler. In the event of amore » fault condition, each system is capable of removing RF signal to the amplifier (via a fast RF switch) as well as turning off the SSA. Additionally, each input signal is available for re- mote viewing and recording via a Fermilab designed digitizer board and MVME 5500 processor.« less

  14. Interlocking directorates in Irish companies using a latent space model for bipartite networks.

    PubMed

    Friel, Nial; Rastelli, Riccardo; Wyse, Jason; Raftery, Adrian E

    2016-06-14

    We analyze the temporal bipartite network of the leading Irish companies and their directors from 2003 to 2013, encompassing the end of the Celtic Tiger boom and the ensuing financial crisis in 2008. We focus on the evolution of company interlocks, whereby a company director simultaneously sits on two or more boards. We develop a statistical model for this dataset by embedding the positions of companies and directors in a latent space. The temporal evolution of the network is modeled through three levels of Markovian dependence: one on the model parameters, one on the companies' latent positions, and one on the edges themselves. The model is estimated using Bayesian inference. Our analysis reveals that the level of interlocking, as measured by a contraction of the latent space, increased before and during the crisis, reaching a peak in 2009, and has generally stabilized since then.

  15. Direct observation of interlocked domain walls and topological four-state vortex-like domain patterns in multiferroic YMnO{sub 3} single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Lei; School of Materials Science and Engineering, Dalian Jiaotong University, Dalian, Liaoning 116028; Wang, Yumei, E-mail: wangym@iphy.ac.cn

    2015-03-16

    Using the advanced spherical aberration-corrected high angle annular dark field scanning transmission electron microscope imaging techniques, we investigated atomic-scale structural features of domain walls and domain patterns in YMnO{sub 3} single crystal. Three different types of interlocked ferroelectric-antiphase domain walls and two abnormal topological four-state vortex-like domain patterns are identified. Each ferroelectric domain wall is accompanied by a translation vector, i.e., 1/6[210] or −1/6[210], demonstrating its interlocked nature. Different from the four-state vortex domain patterns caused by a partial edge dislocation, two four-state vortex-like domain configurations have been obtained at atomic level. These observed phenomena can further extend our understandingmore » of the fascinating vortex domain patterns in multiferroic hexagonal rare-earth manganites.« less

  16. High temperature fiber optic microphone having a pressure-sensing reflective membrane under tensile stress

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Cuomo, Frank W. (Inventor); Robbins, William E. (Inventor); Hopson, Purnell, Jr. (Inventor)

    1992-01-01

    A fiber optic microphone is provided for measuring fluctuating pressures. An optical fiber probe having at least one transmitting fiber for transmitting light to a pressure-sensing membrane and at least one receiving fiber for receiving light reflected from a stretched membrane is provided. The pressure-sensing membrane may be stretched for high frequency response. Further, a reflecting surface of the pressure-sensing membrane may have dimensions which substantially correspond to dimensions of a cross section of the optical fiber probe. Further, the fiber optic microphone can be made of materials for use in high temperature environments, for example greater than 1000 F. A fiber optic probe is also provided with a backplate for damping membrane motion. The backplate further provides a means for on-line calibration of the microphone.

  17. Fiber optic microphone having a pressure sensing reflective membrane and a voltage source for calibration purpose

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Cuomo, Frank W. (Inventor); Robbins, William E. (Inventor)

    1993-01-01

    A fiber optic microphone is provided for measuring fluctuating pressures. An optical fiber probe having at least one transmitting fiber for transmitting light to a pressure-sensing membrane and at least one receiving fiber for receiving light reflected from a stretched membrane is provided. The pressure-sensing membrane may be stretched for high frequency response. Further, a reflecting surface of the pressure-sensing membrane may have dimensions which substantially correspond to dimensions of a cross section of the optical fiber probe. Further, the fiber optic microphone can be made of materials for use in high temperature environments, for example greater than 1000 F. A fiber optic probe is also provided with a back plate for damping membrane motion. The back plate further provides a means for on-line calibration of the microphone.

  18. An FBG Optical Approach to Thermal Expansion Measurements under Hydrostatic Pressure

    DOE PAGES

    Rosa, Priscila Ferrari Silveira; Thomas, Sean Michael; Balakirev, Fedor Fedorovich; ...

    2017-11-04

    We report on an optical technique for measuring thermal expansion and magnetostriction at cryogenic temperatures and under applied hydrostatic pressures of 2.0 GPa. Optical fiber Bragg gratings inside a clamp-type pressure chamber are used to measure the strain in a millimeter-sized sample of CeRhIn 5. We describe the simultaneous measurement of two Bragg gratings in a single optical fiber using an optical sensing instrument capable of resolving changes in length [dL/L = (L- L 0)/L 0] on the order of 10 -7. Our results demonstrate the possibility of performing high-resolution thermal expansion measurements under hydrostatic pressure, a capability previously hinderedmore » by the small working volumes typical of pressure cells.« less

  19. An FBG Optical Approach to Thermal Expansion Measurements under Hydrostatic Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosa, Priscila Ferrari Silveira; Thomas, Sean Michael; Balakirev, Fedor Fedorovich

    We report on an optical technique for measuring thermal expansion and magnetostriction at cryogenic temperatures and under applied hydrostatic pressures of 2.0 GPa. Optical fiber Bragg gratings inside a clamp-type pressure chamber are used to measure the strain in a millimeter-sized sample of CeRhIn 5. We describe the simultaneous measurement of two Bragg gratings in a single optical fiber using an optical sensing instrument capable of resolving changes in length [dL/L = (L- L 0)/L 0] on the order of 10 -7. Our results demonstrate the possibility of performing high-resolution thermal expansion measurements under hydrostatic pressure, a capability previously hinderedmore » by the small working volumes typical of pressure cells.« less

  20. Bedside Optic Nerve Sheath Diameter Assessment in the Identification of Increased Intracranial Pressure in Suspected Idiopathic Intracranial Hypertension.

    PubMed

    Irazuzta, Jose E; Brown, Martha E; Akhtar, Javed

    2016-01-01

    We determined whether the bedside assessment of the optic nerve sheath diameter could identify elevated intracranial pressure in individuals with suspected idiopathic intracranial hypertension. This was a single-center, prospective, rater-blinded study performed in a freestanding pediatric teaching hospital. Patients aged 12 to 18 years scheduled for an elective lumbar puncture with the suspicion of idiopathic intracranial hypertension were eligible to participate. Optic nerve sheath diameter was measured via ultrasonography before performing a sedated lumbar puncture for measuring cerebrospinal fluid opening pressure. Abnormal measurements were predefined as optic nerve sheath diameter ≥4.5 mm and a cerebrospinal fluid opening pressure greater than 20 cmH2O. Thirteen patients participated in the study, 10 of whom had elevated intracranial pressure. Optic nerve sheath diameter was able to predict or rule out elevated intracranial pressure in all patients. Noninvasive assessment of the optic nerve sheath diameter could help to identify patients with elevated intracranial pressure when idiopathic intracranial hypertension is suspected. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity.

    PubMed

    Nishyama, Michiko; Miyamoto, Mitsuo; Watanabe, Kazuhiro

    2011-01-01

    We describe respiration monitoring in sleep using hetero-core fiber optic pressure sensors. The proposed hetero-core fiber optic sensor is highly sensitive to macrobending as a result of the core diameter difference due to stable single-mode transmission. Pressure sensors based on hetero-core fiber optics were fabricated to have a high sensitivity to small pressure changes resulting from minute body motions, such as respiration, during sleep and large pressure changes, such as those caused by a rollover. The sensors are installed in a conventional bed. The pressure characteristic performance of all the fabricated hetero-core fiber optic pressure sensors is found to show a monotonic response with weight changes. A respiration monitoring test in seven subjects efficiently demonstrates the effective use of eight hetero-core pressure sensors installed in a bed. Additionally, even in the case of different body postures, such as lying on one's side, a slight body movement due to respiration is detected by the hetero-core pressure sensors.

  2. Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity

    NASA Astrophysics Data System (ADS)

    Nishyama, Michiko; Miyamoto, Mitsuo; Watanabe, Kazuhiro

    2011-01-01

    We describe respiration monitoring in sleep using hetero-core fiber optic pressure sensors. The proposed hetero-core fiber optic sensor is highly sensitive to macrobending as a result of the core diameter difference due to stable single-mode transmission. Pressure sensors based on hetero-core fiber optics were fabricated to have a high sensitivity to small pressure changes resulting from minute body motions, such as respiration, during sleep and large pressure changes, such as those caused by a rollover. The sensors are installed in a conventional bed. The pressure characteristic performance of all the fabricated hetero-core fiber optic pressure sensors is found to show a monotonic response with weight changes. A respiration monitoring test in seven subjects efficiently demonstrates the effective use of eight hetero-core pressure sensors installed in a bed. Additionally, even in the case of different body postures, such as lying on one's side, a slight body movement due to respiration is detected by the hetero-core pressure sensors.

  3. The effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity

    NASA Astrophysics Data System (ADS)

    Owji, Erfan; Keshavarz, Alireza; Mokhtari, Hosein

    2016-10-01

    In this paper, the effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity are investigated. For this purpose, the effects of temperature, pressure and quantum dot size on the band gap energy, effective mass, and dielectric constant are studied. The eigenenergies and eigenstates for valence and conduction band are calculated by using Runge-Kutta numerical method. Results show that changes in the temperature, pressure and size lead to the alteration of the band gap energy and effective mass. Also, increasing the temperature redshifts the optical gain peak and at special temperature ranges lead to increasing or decreasing of it. Further, by reducing the size, temperature-dependent of optical gain is decreased. Additionally, enhancing of the hydrostatic pressure blueshifts the peak of optical gain, and its behavior as a function of pressure which depends on the size. Finally, increasing the radius rises the redshifts of the peak of optical gain.

  4. Fiber optic and laser sensors IX; Proceedings of the Meeting, Boston, MA, Sept. 3-5, 1991

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P. (Editor); Udd, Eric (Editor)

    1991-01-01

    The present volume on fiber-optic and laser sensors discusses industrial applications of fiber-optic sensors, fiber-optic temperature sensors, fiber-optic current sensors, fiber-optic pressure/displacement/vibration sensors, and generic fiber-optic systems. Attention is given to a fiber-sensor design for turbine engines, fiber-optic remote Fourier transform IR spectroscopy, near-IR fiber-optic temperature sensors, and an intensity-type fiber-optic electric current sensor. Topics addressed include fiber-optic magnetic field sensors based on the Faraday effect in new materials, diaphragm size and sensitivity for fiber-optic pressure sensors, a microbend pressure sensor for high-temperature environments, and linear position sensing by light exchange between two lossy waveguides. Also discussed are two-mode elliptical-core fiber sensors for measurement of strain and temperature, a fiber-optic interferometric X-ray dosimeter, fiber-optic interferometric sensors using multimode fibers, and optical fiber sensing of corona discharges.

  5. Influence of the vacuum resin process, on the ballistic behaviour of lightweight armouring solutions

    NASA Astrophysics Data System (ADS)

    Lefebvre, M.; Boussu, F.; Coutellier, D.; Vallee, D.

    2012-08-01

    The armour of vehicles against conventional threats is mainly composed with steel or aluminium panels. Efficient heavy solutions exist, but the involved industries require new lightweight structures. Moreover, unconventional threats as IEDs (Improvised Explosive Devices) may cause severe damages on these structural and protective panel solutions. Thus, combination of aluminium or steel plates with textile composite structures used as a backing, leads to the mass reduction and better performance under delamination behaviour against these new threats. This paper is a part of a study dealing with the impact behaviour of three warp interlocks weaving structures under Fragment Simulating Projectile (FSP) impact. During this research, several parameters has being studied as the influence of the yarns insertions [1-4], the degradation of the yarns during the weaving process [5-7], and the influence of the resin rate on the ballistic behaviour. The resin rate inside composite materials is dependant on the final application. In ballistic protection, we need to control the resin rate in order to have a deformable structure in order to absorb the maximum of energy. However, with the warp interlocks weaving structure, the yarns insertions induce empty spaces between the yarns where the resin takes place without being evacuated. The resin rate inside the warp interlocks structures is in the most of cases less than 50%, which lead to have brittle and hard material during the impact. Contrary to interlocks structures, the existing protection based on prepreg structure have a high fibres ratio around 88% of weight. That leads to have the best ballistic properties during the impact and good deformability of the structure. The aim of this paper is to evaluate the influence of the resin rate on the ballistic results of the composites materials. For that, we have chosen two kinds of warp interlocks fabrics which were infused with epoxy resin following two processes. The first is a classical vacuum resin infusion; the second used a press in order to reach a resin ratio near to the existing protection. The existing protection is a prepreg structure with a fibre content of 88%. It has been revealed that a resin rate less than 35% inside the warp interlocks composite material leads to have equivalent ballistics performances than existing protection.

  6. Reinforcing the role of the conventional C-arm--a novel method for simplified distal interlocking.

    PubMed

    Windolf, Markus; Schroeder, Josh; Fliri, Ladina; Dicht, Benno; Liebergall, Meir; Richards, R Geoff

    2012-01-25

    The common practice for insertion of distal locking screws of intramedullary nails is a freehand technique under fluoroscopic control. The process is technically demanding, time-consuming and afflicted to considerable radiation exposure of the patient and the surgical personnel. A new concept is introduced utilizing information from within conventional radiographic images to help accurately guide the surgeon to place the interlocking bolt into the interlocking hole. The newly developed technique was compared to conventional freehand in an operating room (OR) like setting on human cadaveric lower legs in terms of operating time and radiation exposure. The proposed concept (guided freehand), generally based on the freehand gold standard, additionally guides the surgeon by means of visible landmarks projected into the C-arm image. A computer program plans the correct drilling trajectory by processing the lens-shaped hole projections of the interlocking holes from a single image. Holes can be drilled by visually aligning the drill to the planned trajectory. Besides a conventional C-arm, no additional tracking or navigation equipment is required.Ten fresh frozen human below-knee specimens were instrumented with an Expert Tibial Nail (Synthes GmbH, Switzerland). The implants were distally locked by performing the newly proposed technique as well as the conventional freehand technique on each specimen. An orthopedic resident surgeon inserted four distal screws per procedure. Operating time, number of images and radiation time were recorded and statistically compared between interlocking techniques using non-parametric tests. A 58% reduction in number of taken images per screw was found for the guided freehand technique (7.4 ± 3.4) (mean ± SD) compared to the freehand technique (17.6 ± 10.3) (p < 0.001). Total radiation time (all 4 screws) was 55% lower for the guided freehand technique compared to conventional freehand (p = 0.001). Operating time per screw (from first shot to screw tightened) was on average 22% reduced by guided freehand (p = 0.018). In an experimental setting, the newly developed guided freehand technique for distal interlocking has proven to markedly reduce radiation exposure when compared to the conventional freehand technique. The method utilizes established clinical workflows and does not require cost intensive add-on devices or extensive training. The underlying principle carries potential to assist implant positioning in numerous other applications within orthopedics and trauma from screw insertions to placement of plates, nails or prostheses.

  7. Optic nerve head blood flow response to reduced ocular perfusion pressure by alteration of either the blood pressure or intraocular pressure.

    PubMed

    Wang, Lin; Cull, Grant A; Fortune, Brad

    2015-04-01

    To test the hypothesis that blood flow autoregulation in the optic nerve head has less reserve to maintain normal blood flow in the face of blood pressure-induced ocular perfusion pressure decrease than a similar magnitude intraocular pressure-induced ocular perfusion pressure decrease. Twelve normal non-human primates were anesthetized by continuous intravenous infusion of pentobarbital. Optic nerve blood flow was monitored by laser speckle flowgraphy. In the first group of animals (n = 6), the experimental eye intraocular pressure was maintained at 10 mmHg using a saline reservoir connected to the anterior chamber. The blood pressure was gradually reduced by a slow injection of pentobarbital. In the second group (n = 6), the intraocular pressure was slowly increased from 10 mmHg to 50 mmHg by raising the reservoir. In both experimental groups, optic nerve head blood flow was measured continuously. The blood pressure and intraocular pressure were simultaneously recorded in all experiments. The optic nerve head blood flow showed significant difference between the two groups (p = 0.021, repeat measures analysis of variance). It declined significantly more in the blood pressure group compared to the intraocular pressure group when the ocular perfusion pressure was reduced to 35 mmHg (p < 0.045) and below. There was also a significant interaction between blood flow changes and the ocular perfusion pressure treatment (p = 0.004, adjusted Greenhouse & Geisser univariate test), indicating the gradually enlarged blood flow difference between the two groups was due to the ocular perfusion pressure decrease. The results show that optic nerve head blood flow is more susceptible to an ocular perfusion pressure decrease induced by lowering the blood pressure compared with that induced by increasing the intraocular pressure. This blood flow autoregulation capacity vulnerability to low blood pressure may provide experimental evidence related to the hemodynamic pathophysiology in glaucoma.

  8. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    NASA Astrophysics Data System (ADS)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-07-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers.

  9. D0 Central Tracking Solenoid Energization, Controls, Interlocks and Quench Protection Operating Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hance, R.; /Fermilab

    1998-08-26

    This procedure is used when it is necessary to operate the solenoid energization, controls, interlocks and quench detection system. Note that a separate procedure exists for operating the solenoid 'cryogenic' systems. Only D0 Control Room Operators or the Project Electrical Engineer are qualified to execute these procedures or operate the solenoid system. This procedure assumes that the operator is familiar with using the Distributed Manufacturing Automation and Control Software (DMACS).

  10. [Clinical application of blocking screws and rooting technique in the treatment of distal tibial fracture with interlocking intramedullary nail].

    PubMed

    Zhu, Hai-Bing; Wu, Li-Guo; Fang, Zhi-Song; Luo, Cong-Feng; Wang, Qing-Feng; Ma, Yi-Ping; Gao, Hong; Fu, Guo-Hai; Hu, Cheng-Ting

    2012-07-01

    To introduce the clinical method of blocking screws and rooting technique in the treatment of distal tibial fracture with interlocking intramedullary nails. From June 2006 to March 2011, 26 patients with distal tibial fracture were treated with interlocking intramedullary nails using blocking screws and rooting technique, included 18 males and 8 females with an average age of 46.2 years old ranging from 24 to 64 years. According to AO classification: 10 cases of type A1, 4 cases of type A2, 8 cases of type B1, 4 cases of type B2. The average distance of the fractures end to the ankle joint was 85 mm ranging from 55 to 125 mm, the mean time between injured and operation was 4.5 days. The patients were evaluated with pain, range of motion, walking. All cases were followed-up for 6 to 22 months (averaged 15 months). According to Iowa ankle joint grading system,the score was improved from preoperative (66.8 +/- 8.2) to postoperative (94.6 +/- 4.8). All fractures had united, and got satisfactory reduction and stable fixation with no complications had happen such as breakage of screw. Fixation with interlocking intramedullary nail using blocking screws and rooting technique in treating distal tibial fracture, is a safe and effective technique for the improvement of stability.

  11. Effects of Interlocking and Supporting Conditions on Concrete Block Pavements

    NASA Astrophysics Data System (ADS)

    Mahapatra, Geetimukta; Kalita, Kuldeep

    2018-02-01

    Concrete Block Paving (CBP) is widely used as wearing course in flexible pavements, preferably under light and medium vehicular loadings. Construction of CBP at site is quick and easy in quality control. Usually, flexible pavement design philosophy is followed in CBP construction, though it is structurally different in terms of small block elements with high strength concrete and their interlocking aspects, frequent joints and discontinuity, restrained edge etc. Analytical solution for such group action of concrete blocks under loading in a three dimensional multilayer structure is complex and thus, the need of conducting experimental studies is necessitated for extensive understanding of the load—deformation characteristics and behavior of concrete blocks in pavement. The present paper focuses on the experimental studies for load transfer characteristics of CBP under different interlocking and supporting conditions. It is observed that both interlocking and supporting conditions affect significantly on the load transfer behavior in CBP structures. Coro-lock block exhibits better performance in terms of load carrying capacity and distortion behavior under static loads. Plate load tests are performed over subgrade, granular sub-base (GSB), CBP with and without GSB using different block shapes. For an example case, the comparison of CBP with conventional flexible pavement section is also presented and it is found that CBP provides considerable benefit in terms of construction cost of the road structure.

  12. Modeling the injury prevention impact of mandatory alcohol ignition interlock installation in all new US vehicles.

    PubMed

    Carter, Patrick M; Flannagan, Carol A C; Bingham, C Raymond; Cunningham, Rebecca M; Rupp, Jonathan D

    2015-05-01

    We estimated the injury prevention impact and cost savings associated with alcohol interlock installation in all new US vehicles. We identified fatal and nonfatal injuries associated with drinking driver vehicle crashes from the Fatality Analysis Reporting System and National Automotive Sampling System's General Estimates System data sets (2006-2010). We derived the estimated impact of universal interlock installation using an estimate of the proportion of alcohol-related crashes that were preventable in vehicles < 1 year-old. We repeated this analysis for each subsequent year, assuming a 15-year implementation. We applied existing crash-induced injury cost metrics to approximate economic savings, and we used a sensitivity analysis to examine results with varying device effectiveness. Over 15 years, 85% of crash fatalities (> 59 000) and 84% to 88% of nonfatal injuries (> 1.25 million) attributed to drinking drivers would be prevented, saving an estimated $342 billion in injury-related costs, with the greatest injury and cost benefit realized among recently legal drinking drivers. Cost savings outweighed installation costs after 3 years, with the policy remaining cost effective provided device effectiveness remained above approximately 25%. Alcohol interlock installation in all new vehicles is likely a cost-effective primary prevention policy that will substantially reduce alcohol-involved crash fatalities and injuries, especially among young vulnerable drivers.

  13. Modeling the Injury Prevention Impact of Mandatory Alcohol Ignition Interlock Installation in All New US Vehicles

    PubMed Central

    Flannagan, Carol A. C.; Bingham, C. Raymond; Cunningham, Rebecca M.; Rupp, Jonathan D.

    2015-01-01

    Objectives. We estimated the injury prevention impact and cost savings associated with alcohol interlock installation in all new US vehicles. Methods. We identified fatal and nonfatal injuries associated with drinking driver vehicle crashes from the Fatality Analysis Reporting System and National Automotive Sampling System’s General Estimates System data sets (2006–2010). We derived the estimated impact of universal interlock installation using an estimate of the proportion of alcohol-related crashes that were preventable in vehicles < 1 year-old. We repeated this analysis for each subsequent year, assuming a 15-year implementation. We applied existing crash-induced injury cost metrics to approximate economic savings, and we used a sensitivity analysis to examine results with varying device effectiveness. Results. Over 15 years, 85% of crash fatalities (> 59 000) and 84% to 88% of nonfatal injuries (> 1.25 million) attributed to drinking drivers would be prevented, saving an estimated $342 billion in injury-related costs, with the greatest injury and cost benefit realized among recently legal drinking drivers. Cost savings outweighed installation costs after 3 years, with the policy remaining cost effective provided device effectiveness remained above approximately 25%. Conclusions. Alcohol interlock installation in all new vehicles is likely a cost-effective primary prevention policy that will substantially reduce alcohol-involved crash fatalities and injuries, especially among young vulnerable drivers. PMID:25790385

  14. Achieving interlocking nails without using an image intensifier

    PubMed Central

    Ogunlusi, Johnson D.; Ine, Henry R.

    2006-01-01

    Interlocking nails are commonly performed using an image intensifier. These are expensive and are not readily available in most resource-poor countries of the world. The aim of this study was to achieve interlocking nailing without the use of an image intensifier. This is a prospective descriptive analysis of 40 consecutive cases seen with shaft fractures of the humerus, femur, and tibia. Fracture fixation was done using Surgical Implant Generation Network (SIGN) nails. Forty limbs in 34 patients were studied. There were 12 females and 22 males, giving a ratio of 1:2. The mean age (years) was 35.75±13.16 and the range was 17–70 years. The studied bones were: humerus 10%, femur 65%, and tibia 25%. The fracture lines were: transverse 40%, oblique 15%, and communited 45%. Fracture grades were: closed 90%, grade I, 5%, grade II, 2.5%, and grade IIIA, 2.5%. Surgical approaches were: antegrade 62.5% and retrograde 37.5%. Indications for fixation were: recent fracture 92.5%, non-union 5%, and malunion 3%. Methods of reductions were: open 85% and closed 15%. The mean follow-up period (years) was 1.50±0.78. The union time averaged 3 months. Complication was mainly screw loosening due to severe osteoporoses in one case. It is, therefore, concluded that, with the aid of external jigs and slot finders, interlocking can be achieved without an image intensifier. PMID:17039384

  15. High-temperature fiber optic pressure sensor

    NASA Technical Reports Server (NTRS)

    Berthold, J. W.

    1984-01-01

    Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.

  16. MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing.

    PubMed

    Pang, Cheng; Bae, Hyungdae; Gupta, Ashwani; Bryden, Kenneth; Yu, Miao

    2013-09-23

    We present a micro-electro-mechanical systems (MEMS) based Fabry-Perot (FP) sensor along with an optical system-on-a-chip (SOC) interrogator for simultaneous pressure and temperature sensing. The sensor employs a simple structure with an air-backed silicon membrane cross-axially bonded to a 45° polished optical fiber. This structure renders two cascaded FP cavities, enabling simultaneous pressure and temperature sensing in close proximity along the optical axis. The optical SOC consists of a broadband source, a MEMS FP tunable filter, a photodetector, and the supporting circuitry, serving as a miniature spectrometer for retrieving the two FP cavity lengths. Within the measured pressure and temperature ranges, experimental results demonstrate that the sensor exhibits a good linear response to external pressure and temperature changes.

  17. Self-Assembled Molecular Gear: A 4:1 Complex of Rh(III)Cl Tetraarylporphyrin and Tetra(p-pyridyl)cavitand.

    PubMed

    Nakamura, Munechika; Kishimoto, Kazuki; Kobori, Yasuhiro; Abe, Tomoka; Yoza, Kenji; Kobayashi, Kenji

    2016-09-28

    The components of a 4:1 mixture of Rh(III)Cl tetrakis(4-methylphenyl)porphyrin 1 and a bowl-shaped tetra(4-pyridyl)cavitand 4 self-assemble into a 4:1 complex 14•4 via Rh-pyridyl axial coordination bonds. The single-crystal X-ray diffraction analysis and variable-temperature (VT) (1)H NMR study of 14•4 indicated that 14•4 behaves as a quadruple interlocking gear with an inner space, wherein (i) four subunits-1 are gear wheels and four p-pyridyl groups in subunit-4 are axes of gear wheels, (ii) one subunit-1 and two adjacent subunits-1 interlock with one another cooperatively, and (iii) four subunits-1 in 14•4 rotate quickly at 298 K on the NMR time scale. Together, the extremely strong porphyrin-Rh-pyridyl axial coordination bond, the rigidity of the methylene-bridge cavitand as a scaffold of the pyridyl axes, and the cruciform arrangement of the interdigitating p-tolyl groups as the teeth moiety of the gear wheels in the assembling 14-unit make 14•4 function as a quadruple interlocking gear in solution. The gear function of 14•4 was also supported by the rotation behaviors of other 4:1 complexes: 24•4 and 34•4 obtained from Rh(III)Cl tetrakis[4-(4-methylphenyl)phenyl]porphyrin 2 or Rh(III)Cl tetrakis(3,5-dialkoxyphenyl)porphyrin 3 and 4 also served as quadruple interlocking gears, whereas 14•5 obtained from 1 and tetrakis[4-(4-pyridyl)phenyl]cavitand 5 did not behave as a gear. The results of activation parameters (ΔH(⧧), ΔS(⧧), and ΔG(⧧)) obtained from Eyring plots based on line-shape analysis of the VT (1)H NMR spectra of 14•4, 24•4, and 34•4 also support the interlocking rotation (geared coupled rotation) mechanism.

  18. An acousto-optic sensor based on resonance grating waveguide structure

    PubMed Central

    Xie, Antonio Jou; Song, Fuchuan; Seo, Sang-Woo

    2014-01-01

    This paper presents an acousto-optic (AO) sensor based on resonance grating waveguide structure. The sensor is fabricated using elastic polymer materials to achieve a good sensitivity to ultrasound pressure waves. Ultrasound pressure waves modify the structural parameters of the sensor and result in the optical resonance shift of the sensor. This converts into a light intensity modulation. A commercial ultrasound transducer at 20 MHz is used to characterize a fabricated sensor and detection sensitivity at different optical source wavelength within a resonance spectrum is investigated. Practical use of the sensor at a fixed optical source wavelength is presented. Ultimately, the geometry of the planar sensor structure is suitable for two-dimensional, optical pressure imaging applications such as pressure wave detection and mapping, and ultrasound imaging. PMID:25045203

  19. Optical Fibre Pressure Sensors in Medical Applications.

    PubMed

    Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed

    2015-07-15

    This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas.

  20. Optical Fibre Pressure Sensors in Medical Applications

    PubMed Central

    Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed

    2015-01-01

    This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas. PMID:26184228

  1. A Nonfullerene Small Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar Cells.

    PubMed

    Lee, Jaewon; Singh, Ranbir; Sin, Dong Hun; Kim, Heung Gyu; Song, Kyu Chan; Cho, Kilwon

    2016-01-06

    A new 3D nonfullerene small-molecule acceptor is reported. The 3D interlocking geometry of the small-molecule acceptor enables uniform molecular conformation and strong intermolecular connectivity, facilitating favorable nanoscale phase separation and electron charge transfer. By employing both a novel polymer donor and a nonfullerene small-molecule acceptor in the solution-processed organic solar cells, a high-power conversion efficiency of close to 6% is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Friction stir welding tool and process for welding dissimilar materials

    DOEpatents

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  3. Coalescence of 3-phenyl-propynenitrile on Cu(111) into interlocking pinwheel chains

    NASA Astrophysics Data System (ADS)

    Luo, Miaomiao; Lu, Wenhao; Kim, Daeho; Chu, Eric; Wyrick, Jon; Holzke, Connor; Salib, Daniel; Cohen, Kamelia D.; Cheng, Zhihai; Sun, Dezheng; Zhu, Yeming; Einstein, T. L.; Bartels, Ludwig

    2011-10-01

    3-phenyl-propynenitrile (PPN) adsorbs on Cu(111) in a hexagonal network of molecular trimers formed through intermolecular interaction of the cyano group of one molecule with the aromatic ring of its neighbor. Heptamers of trimers coalesce into interlocking pinwheel-shaped structures that, by percolating across islands of the original trimer coverage, create the appearance of gear chains. Density functional theory aids in identifying substrate stress associated with the chemisorption of PPN's acetylene group as the cause of this transition.

  4. Joining the un-joinable: adhesion between low surface energy polymers using tetrapodal ZnO linkers.

    PubMed

    Jin, Xin; Strueben, Jan; Heepe, Lars; Kovalev, Alexander; Mishra, Yogendra K; Adelung, Rainer; Gorb, Stanislav N; Staubitz, Anne

    2012-11-08

    Tetrapodal ZnO crystals are used for mechanical interlocking of PTFE and cross-linked PDMS, classically non-adhesive polymers. This novel approach is straightforward and easily applicable and leads to a peel strength that is higher than 200 N m(-1) without chemical modification of the surfaces. The shape of these fillers emerged as a crucial aspect of the interlocking mechanism. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Performance of an untethered micro-optical pressure sensor

    NASA Astrophysics Data System (ADS)

    Ioppolo, Tindaro; Manzo, Maurizio; Krueger, Paul

    2012-11-01

    We present analytical and computational studies of the performance of a novel untethered micro-optical pressure sensor for fluid dynamics measurements. In particular, resolution and dynamic range will be presented. The sensor concept is based on the whispering galley mode (WGM) shifts that are observed in micro-scale dielectric optical cavities. A micro-spherical optical cavity (liquid or solid) is embedded in a thin polymeric sheet. The applied external pressure perturbs the morphology of the optical cavity leading to a shift in its optical resonances. The optical sensors are interrogated remotely, by embedding quantum dots or fluorescent dye in the micro-optical cavity. This allows a free space coupling of excitation and monitoring of the optical modes without the need of optical fibers or other cabling. With appropriate excitation and monitoring equipment, the micro-scale sensors can be distributed over a surface (e.g., including flexible biological surfaces) to monitor the local pressure field. We acknowledge the financial support from the National Science Foundation through grant CBET-1133876 with Dr. Horst Henning Winter as the program director.

  6. Toward power scaling in an acetylene mid-infrared hollow-core optical fiber gas laser: effects of pressure, fiber length, and pump power

    NASA Astrophysics Data System (ADS)

    Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.

    2018-02-01

    The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.

  7. Design of a Pressure Sensor Based on Optical Fiber Bragg Grating Lateral Deformation

    PubMed Central

    Urban, Frantisek; Kadlec, Jaroslav; Vlach, Radek; Kuchta, Radek

    2010-01-01

    This paper describes steps involved in the design and realization of a new type of pressure sensor based on the optical fiber Bragg grating. A traditional pressure sensor has very limited usage in heavy industrial environments, particularly in explosive or electromagnetically noisy environments. Utilization of optics in these environments eliminates all surrounding influences. An initial motivation for our development was the research, experimental validation, and realization of a complex smart pressure sensor based on the optical principle. The main benefit of this solution consists of increasing sensitivity, resistance to electromagnetic interference, dimensions, and potential increased accuracy. PMID:22163521

  8. Experimental apparatus with full optical access for combustion experiments with laminar flames from a single circular nozzle at elevated pressures.

    PubMed

    Joo, Peter H; Gao, Jinlong; Li, Zhongshan; Aldén, Marcus

    2015-03-01

    The design and features of a high pressure chamber and burner that is suitable for combustion experiments at elevated pressures are presented. The high pressure combustion apparatus utilizes a high pressure burner that is comprised of a chamber burner module and an easily accessible interchangeable burner module to add to its flexibility. The burner is well suited to study both premixed and non-premixed flames. The optical access to the chamber is provided through four viewports for direct visual observations and optical-based diagnostic techniques. Auxiliary features include numerous access ports and electrical connections and as a result, the combustion apparatus is also suitable to work with plasmas and liquid fuels. Images of methane flames at elevated pressures up to 25 atm and preliminary results of optical-based measurements demonstrate the suitability of the high pressure experimental apparatus for combustion experiments.

  9. Hierarchical Porous Interlocked Polymeric Microcapsules: Sulfonic Acid Functionalization as Acid Catalysts

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomei; Gu, Jinyan; Tian, Lei; Zhang, Xu

    2017-03-01

    Owing to their unique structural and surface properties, mesoporous microspheres are widely applied in the catalytic field. Generally, increasing the surface area of the specific active phase of the catalyst is a good method, which can achieve a higher catalytic activity through the fabrication of the corresponding catalytic microspheres with the smaller size and hollow structure. However, one of the major challenges in the use of hollow microspheres (microcapsules) as catalysts is their chemical and structural stability. Herein, the grape-like hypercrosslinked polystyrene hierarchical porous interlocked microcapsule (HPIM-HCL-PS) is fabricated by SiO2 colloidal crystals templates, whose structure is the combination of open mouthed structure, mesoporous nanostructure and interlocked architecture. Numerous microcapsules assembling together and forming the roughly grape-like microcapsule aggregates can enhance the structural stability and recyclability of these microcapsules. After undergoing the sulfonation, the sulfonated HPIM-HCL-PS is served as recyclable acid catalyst for condensation reaction between benzaldehyde and ethylene glycol (TOF = 793 h-1), moreover, exhibits superior activity, selectivity and recyclability.

  10. The mechanical bond: a work of art.

    PubMed

    Bruns, Carson J; Stoddart, J Fraser

    2012-01-01

    Mechanically interlocked objects are ubiquitous in our world. They can be spotted on almost every scale of matter and in virtually every sector of society, spanning cultural, temporal, and physical boundaries the world over. From art to machinery, to biological entities and chemical compounds, mechanical interlocking is being used and admired every day, inspiring creativity and ingenuity in art and technology alike. The tiny world of mechanically interlocked molecules (MIMs), which has been established and cultivated over the past few decades, has connected the ordinary and molecular worlds symbolically with creative research and artwork that subsumes the molecular world as a miniaturization of the ordinary one. In this review, we highlight how graphical representations of MIMs have evolved to this end, and discuss various other aspects of their beauty as chemists see them today. We argue that the many aspects of beauty in MIMs are relevant, not only to the pleasure chemists derive from their research, but also to the progress of the research itself.

  11. Ring-through-ring molecular shuttling in a saturated [3]rotaxane

    NASA Astrophysics Data System (ADS)

    Zhu, Kelong; Baggi, Giorgio; Loeb, Stephen J.

    2018-06-01

    Mechanically interlocked molecules such as rotaxanes and catenanes comprise two or more components whose motion relative to each other can be controlled. A [2]rotaxane molecular shuttle, for example, consists of an axle bearing two recognition sites and a single macrocyclic wheel that can undergo a to-and-fro motion along the axle—shuttling between the recognition sites. The ability of mechanically interlocked molecules to undergo this type of large-amplitude change is the core mechanism behind almost every interlocked molecular switch or machine, including sophisticated mechanical systems such as a molecular elevator and a peptide synthesizer. Here, as a way to expand the scope of dynamics possible at the molecular level, we have developed a molecular shuttling mechanism involving the exchange of rings between two recognition sites in a saturated [3]rotaxane (one with no empty recognition sites). This was accomplished by passing a smaller ring through a larger one, thus achieving ring-through-ring molecular shuttling.

  12. "Fabrication of arbitrarily shaped carbonate apatite foam based on the interlocking process of dicalcium hydrogen phosphate dihydrate".

    PubMed

    Sugiura, Yuki; Tsuru, Kanji; Ishikawa, Kunio

    2017-08-01

    Carbonate apatite (CO 3 Ap) foam with an interconnected porous structure is highly attractive as a scaffold for bone replacement. In this study, arbitrarily shaped CO 3 Ap foam was formed from α-tricalcium phosphate (α-TCP) foam granules via a two-step process involving treatment with acidic calcium phosphate solution followed by hydrothermal treatment with NaHCO 3 . The treatment with acidic calcium phosphate solution, which is key to fabricating arbitrarily shaped CO 3 Ap foam, enables dicalcium hydrogen phosphate dihydrate (DCPD) crystals to form on the α-TCP foam granules. The generated DCPD crystals cause the α-TCP granules to interlock with each other, inducing an α-TCP/DCPD foam. The interlocking structure containing DCPD crystals can survive hydrothermal treatment with NaHCO 3 . The arbitrarily shaped CO 3 Ap foam was fabricated from the α-TCP/DCPD foam via hydrothermal treatment at 200 °C for 24 h in the presence of a large amount of NaHCO 3 .

  13. Interlocked feedforward loops control cell-type-specific Rhodopsin expression in the Drosophila eye.

    PubMed

    Johnston, Robert J; Otake, Yoshiaki; Sood, Pranidhi; Vogt, Nina; Behnia, Rudy; Vasiliauskas, Daniel; McDonald, Elizabeth; Xie, Baotong; Koenig, Sebastian; Wolf, Reinhard; Cook, Tiffany; Gebelein, Brian; Kussell, Edo; Nakagoshi, Hideki; Desplan, Claude

    2011-06-10

    How complex networks of activators and repressors lead to exquisitely specific cell-type determination during development is poorly understood. In the Drosophila eye, expression patterns of Rhodopsins define at least eight functionally distinct though related subtypes of photoreceptors. Here, we describe a role for the transcription factor gene defective proventriculus (dve) as a critical node in the network regulating Rhodopsin expression. dve is a shared component of two opposing, interlocked feedforward loops (FFLs). Orthodenticle and Dve interact in an incoherent FFL to repress Rhodopsin expression throughout the eye. In R7 and R8 photoreceptors, a coherent FFL relieves repression by Dve while activating Rhodopsin expression. Therefore, this network uses repression to restrict and combinatorial activation to induce cell-type-specific expression. Furthermore, Dve levels are finely tuned to yield cell-type- and region-specific repression or activation outcomes. This interlocked FFL motif may be a general mechanism to control terminal cell-fate specification. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. A review on past and present development on the interlocking loadbearing hollow block (ILHB) system

    NASA Astrophysics Data System (ADS)

    Bosro, M. Z. M.; Samad, A. A. A.; Mohamad, N.; Goh, W. I.; Tambichik, M. A.; Iman, M. A.

    2018-04-01

    Massive migration and increasing population in Malaysia has contributed to the increasing demand of quality and affordable housing. Over the past 50 years, the Malaysian housing industry has seen the growth of using conventional construction system such as reinforced concrete frame structures and bricks. The conventional system, as agreed by many researchers, causes delays and other disadvantages in some of the construction projects. Thus, the utilization of interlocking loadbearing hollow block (ILHB) system is needed to address these issues. This system has been identified as an alternative and sustainable building system for the construction industry in Malaysia which the PUTRA block system is the latest example of the ILHB developed. The system offers various advantages in terms of speed and cost in construction, strength, environmentally friendly and aesthetic qualities. Despite these advantages, this system has not been practically applied and develop in Malaysia. Therefore, this paper aims to review the past and present development of the interlocking loadbearing hollow block (ILHB) system that available locally and globally.

  15. Colonic transit time and pressure based on Bernoulli’s principle

    PubMed Central

    Uno, Yoshiharu

    2018-01-01

    Purpose Variations in the caliber of human large intestinal tract causes changes in pressure and the velocity of its contents, depending on flow volume, gravity, and density, which are all variables of Bernoulli’s principle. Therefore, it was hypothesized that constipation and diarrhea can occur due to changes in the colonic transit time (CTT), according to Bernoulli’s principle. In addition, it was hypothesized that high amplitude peristaltic contractions (HAPC), which are considered to be involved in defecation in healthy subjects, occur because of cecum pressure based on Bernoulli’s principle. Methods A virtual healthy model (VHM), a virtual constipation model and a virtual diarrhea model were set up. For each model, the CTT was decided according to the length of each part of the colon, and then calculating the velocity due to the cecum inflow volume. In the VHM, the pressure change was calculated, then its consistency with HAPC was verified. Results The CTT changed according to the difference between the cecum inflow volume and the caliber of the intestinal tract, and was inversely proportional to the cecum inflow volume. Compared with VHM, the CTT was prolonged in the virtual constipation model, and shortened in the virtual diarrhea model. The calculated pressure of the VHM and the gradient of the interlocked graph were similar to that of HAPC. Conclusion The CTT and HAPC can be explained by Bernoulli’s principle, and constipation and diarrhea may be fundamentally influenced by flow dynamics. PMID:29670388

  16. Pressure sensitive microparticle adhesion through biomimicry of the pollen-stigma interaction.

    PubMed

    Lin, Haisheng; Qu, Zihao; Meredith, J Carson

    2016-03-21

    Many soft biomimetic synthetic adhesives, optimized to support macroscopic masses (∼kg), have been inspired by geckos, insects and other animals. Far less work has investigated bioinspired adhesion that is tuned to micro- and nano-scale sizes and forces. However, such adhesive forces are extremely important in the adhesion of micro- and nanoparticles to surfaces, relevant to a wide range of industrial and biological systems. Pollens, whose adhesion is critical to plant reproduction, are an evolutionary-optimized system for biomimicry to engineer tunable adhesion between particles and micro-patterned soft matter surfaces. In addition, the adhesion of pollen particles is relevant to topics as varied as pollinator ecology, transport of allergens, and atmospheric phenomena. We report the first observation of structurally-derived pressure-sensitive adhesion of a microparticle by using the sunflower pollen and stigma surfaces as a model. This strong, pressure-sensitive adhesion results from interlocking between the pollen's conical spines and the stigma's receptive papillae. Inspired by this behavior, we fabricated synthetic polymeric patterned surfaces that mimic the stigma surface's receptivity to pollen. These soft mimics allow the magnitude of the pressure-sensitive response to be tuned by adjusting the size and spacing of surface features. These results provide an important new insight for soft material adhesion based on bio-inspired principles, namely that ornamented microparticles and micro-patterned surfaces can be designed with complementarity that enable a tunable, pressure-sensitive adhesion on the microparticle size and length scale.

  17. Do biodegradable magnesium alloy intramedullary interlocking nails prematurely lose fixation stability in the treatment of tibial fracture? A numerical simulation.

    PubMed

    Wang, Haosen; Hao, Zhixiu; Wen, Shizhu

    2017-01-01

    Intramedullary interlocking nailing is an effective technique used to treat long bone fractures. Recently, biodegradable metals have drawn increased attention as an intramedullary interlocking nailing material. In this study, numerical simulations were implemented to determine whether the degradation rate of magnesium alloy makes it a suitable material for manufacturing biodegradable intramedullary interlocking nails. Mechano-regulatory and bone-remodeling models were used to simulate the fracture healing process, and a surface corrosion model was used to simulate intramedullary rod degradation. The results showed that magnesium alloy intramedullary rods exhibited a satisfactory degradation rate; the fracture healed and callus enhancement was observed before complete dissolution of the intramedullary rod. Delayed magnesium degradation (using surface coating techniques) did not confer a significant advantage over the non-delayed degradation process; immediate degradation also achieved satisfactory healing outcomes. However, delayed degradation had no negative effect on callus enhancement, as it did not cause signs of stress shielding. To avoid risks of individual differences such as delayed union, delayed degradation is recommended. Although the magnesium intramedullary rod did not demonstrate rapid degradation, its ability to provide high fixation stiffness to achieve earlier load bearing was inferior to that of the conventional titanium alloy and stainless steel rods. Therefore, light physiological loads should be ensured during the early stages of healing to achieve bony healing; otherwise, with increased loading and degraded intramedullary rods, the fracture may ultimately fail to heal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Economic aspects of interlocking hollow brick system designed for industrialized building system

    NASA Astrophysics Data System (ADS)

    Tahir, Mahmood Md.; Saggaff, Anis; Ngian, Shek Poi; Sulaiman, Arizu

    2017-11-01

    Construction industry has moved forward into a technology driven where a transition is in progress from conventional method to a more advanced and mechanised system known as the Industrialised Building System (IBS). However, the need to implement the IBS should be well understood by all construction players such as designer, architect, contraction, erectors and construction workers. Therefore, there is a need to educate all these construction players which should be spearheaded by authorities such as Construction Industrial Development Board where enforcement trough building by laws as well as initiative to those that adopt the IBS in their construction. This paper reports on economic aspects of using interlocking hollow brick system in construction as an alternative method offered for Industrialized Building System. The main objective is to address the economic aspects of using interlocking block system in terms of time, costs, and utilization of manpower and to present some of the experimental tests results related to Interlocking Hollow Brick System (IHBS). Example of savings from the use of IHBS is presented in this paper by comparing the construction of two storey terrace house with build-up area of about 200 square meter with conventional construction method of typical reinforced concrete construction (RCC) compared to IHBS. The comparison shows that the implementation of IHBS can reduce construction time, cost, and utilization of man power up to 26.6% compared to the conventional method. Moreover, the construction time using IHBS can also be reduced by up to 50% as compared to the conventional construction.

  19. Unilateral Loss of Spontaneous Venous Pulsations in an Astronaut

    NASA Technical Reports Server (NTRS)

    Mader, Thomas H.; Gibson, C. Robert; Lee, Andrew G.; Patel, Nimesh; Hart, Steven; Pettit, Donald R.

    2014-01-01

    Spontaneous venous pulsations seen on the optic nerve head (optic disc) are presumed to be caused by fluctuations in the pressure gradient between the intraocular and retrolaminar venous systems. The disappearance of previously documented spontaneous venous pulsations is a well-recognized clinical sign usually associated with a rise in intracranial pressure and a concomitant bilateral elevation of pressure in the subarachnoid space surrounding the optic nerves. In this correspondence we report the unilateral loss of spontaneous venous pulsations in an astronaut 5 months into a long duration space flight. We documented a normal lumbar puncture opening pressure 8 days post mission. The spontaneous venous pulsations were also documented to be absent 21 months following return to Earth.. We hypothesize that these changes may have resulted from a chronic unilateral rise in optic nerve sheath pressure caused by a microgravity-induced optic nerve sheath compartment syndrome.

  20. Macro-channel cooled high power fiber coupled diode lasers exceeding 1.2kW of output power

    NASA Astrophysics Data System (ADS)

    Koenning, Tobias; Alegria, Kim; Wang, Zuolan; Segref, Armin; Stapleton, Dean; Faßbender, Wilhelm; Flament, Marco; Rotter, Karsten; Noeske, Axel; Biesenbach, Jens

    2011-03-01

    We report on a new series of fiber coupled diode laser modules exceeding 1.2kW of single wavelength optical power from a 400um / 0.2NA fiber. The units are constructed from passively cooled laser bars as opposed to other comparably powered, commercially available modules that use micro-channel heat-sinks. Micro-channel heat sinks require cooling water to meet demanding specifications and are therefore prone to failures due to contamination and increase the overall cost to operate and maintain the laser. Dilas' new series of high power fiber coupled diode lasers are designed to eliminate micro channel coolers and their associated failure mechanisms. Low-smile soldering processes were developed to maximize the brightness available from each diode laser bar. The diode laser brightness is optimally conserved using Dilas' recently developed propriety laser bar stacking geometry and optics. A total of 24 bars are coupled into a single fiber core using a polarization multiplexing scheme. The modular design permits further power scaling through wavelength multiplexing. Other customer critical features such as industrial grade fibers, pilot beams, fiber interlocks and power monitoring are standard features on these modules. The optical design and the beam parameter calculations will be presented to explain the inherit design trade offs. Results for single and dual wavelengths modules will be presented.

  1. Reinforcing the role of the conventional C-arm - a novel method for simplified distal interlocking

    PubMed Central

    2012-01-01

    Background The common practice for insertion of distal locking screws of intramedullary nails is a freehand technique under fluoroscopic control. The process is technically demanding, time-consuming and afflicted to considerable radiation exposure of the patient and the surgical personnel. A new concept is introduced utilizing information from within conventional radiographic images to help accurately guide the surgeon to place the interlocking bolt into the interlocking hole. The newly developed technique was compared to conventional freehand in an operating room (OR) like setting on human cadaveric lower legs in terms of operating time and radiation exposure. Methods The proposed concept (guided freehand), generally based on the freehand gold standard, additionally guides the surgeon by means of visible landmarks projected into the C-arm image. A computer program plans the correct drilling trajectory by processing the lens-shaped hole projections of the interlocking holes from a single image. Holes can be drilled by visually aligning the drill to the planned trajectory. Besides a conventional C-arm, no additional tracking or navigation equipment is required. Ten fresh frozen human below-knee specimens were instrumented with an Expert Tibial Nail (Synthes GmbH, Switzerland). The implants were distally locked by performing the newly proposed technique as well as the conventional freehand technique on each specimen. An orthopedic resident surgeon inserted four distal screws per procedure. Operating time, number of images and radiation time were recorded and statistically compared between interlocking techniques using non-parametric tests. Results A 58% reduction in number of taken images per screw was found for the guided freehand technique (7.4 ± 3.4) (mean ± SD) compared to the freehand technique (17.6 ± 10.3) (p < 0.001). Total radiation time (all 4 screws) was 55% lower for the guided freehand technique compared to conventional freehand (p = 0.001). Operating time per screw (from first shot to screw tightened) was on average 22% reduced by guided freehand (p = 0.018). Conclusions In an experimental setting, the newly developed guided freehand technique for distal interlocking has proven to markedly reduce radiation exposure when compared to the conventional freehand technique. The method utilizes established clinical workflows and does not require cost intensive add-on devices or extensive training. The underlying principle carries potential to assist implant positioning in numerous other applications within orthopedics and trauma from screw insertions to placement of plates, nails or prostheses. PMID:22276698

  2. A comparative study of MOEM pressure sensors using MZI, DC, and racetrack resonator IO structures

    NASA Astrophysics Data System (ADS)

    Selvarajan, A.; Pattnaik, Prasant Kumar; Badrinarayana, T.; Srinivas, T.

    2006-03-01

    In recent years micro-electro-mechanical system (MEMS) sensors have drawn considerable attention due to their attraction in terms of miniaturization, batch fabrication and ease of integration with the required electronics circuitry. Micro-opto-electro-mechanical (MOEM) devices and systems, based on the principles of integrated optics and micromachining technology on silicon have immense potential for sensor applications. Employing optical techniques have important advantages such as functionality, large bandwidth and higher sensitivity. Pressure sensing is currently the most lucrative market for solid-state micro sensors. Pressure sensing using micromachined structures utilize the changes induced in either the resistive or capacitive properties of the electro-mechanical structure by the impressed pressure. Integrated optical pressure sensors can utilize the changes to the amplitude, phase, refractive index profile, optical path length, or polarization of the lightwave by the external pressure. In this paper we compare the performance characteristics of three types of MOEM pressure sensors based on Mach-Zehnder Interferometer (MZI), Directional Coupler (DC) and racetrack resonator (RR) integrated optical geometries. The first two configurations measure the pressure changes through a change in optical intensity while the third one measures the same in terms of frequency or wavelength change. The analysis of each sensors has been carried out in terms of mechanical and optical models and their interrelationship through optomechanical coupling. For a typical diaphragm of size 2mm × 1mm × 20 μm, normalized pressure sensitivity of 18.35 μW/mW/kPa, 29.37 μW/mW/kPa and 2.26 pm/kPa in case of MZI, DC and RR devices have been obtained respectively. The noise performance of these devices are also presented.

  3. Investigation of porous asphalt microstructure using optical and electron microscopy.

    PubMed

    Poulikakos, L D; Partl, M N

    2010-11-01

    Direct observations of porous asphalt concrete samples in their natural state using optical and electron microscopy techniques led to useful information regarding the microstructure of two mixes and indicated a relationship between microstructure and in situ performance. This paper presents evidence that suboptimal microstructure can lead to premature failure thus making a first step in defining well or suboptimal performing pavements with a bottom-up approach (microstructure). Laboratory and field compaction produce different samples in terms of the microstructure. Laboratory compaction using the gyratory method has produced more microcracks in mineral aggregates after the binder had cooled. Well-performing mixes used polymer-modified binders, had a more homogeneous void structure with fewer elongated voids and better interlocking of the aggregates. Furthermore, well-performing mixes showed better distribution of the mastic and better coverage of the aggregates with bitumen. Low vacuum scanning electron microscopy showed that styrene butadiene styrene polymer modification in binder exists in the form of discontinuous globules and not continuous networks. A reduction in the polymer phase was observed as a result of aging and in-service use. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  4. Fiber-optic interferometric sensors for measurements of pressure fluctuations: Experimental evaluation

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.; Soderman, P. T.

    1993-01-01

    This paper addresses an anechoic chamber evaluation of a fiber-optic interferometric sensor (fiber-optic microphone), which is being developed at NASA Ames Research Center for measurements of pressure fluctuations in wind tunnels.

  5. Optical-Fiber Leak Detector

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kosten, Susan E.

    1994-01-01

    Proposed optical-fiber sensor detects small changes in pressure in elastomeric O-ring or similar pressure seal, which may indicate deterioration of seal and interpreted as indications of incipient failure. According to concept, length of optical fiber embedded in seal. Light-emitting diode illuminates one end of fiber; photodetector measures intensity of light emerging from other end. Pressure-induced changes in seal bend fiber slightly, altering microbending-induced loss of light from fiber and alter intensity of light at photodetector. Change in intensity approximately proportional to change in pressure.

  6. Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses.

    PubMed

    Choi, Seung Tae; Son, Byeong Soo; Seo, Gye Won; Park, Si-Young; Lee, Kyung-Sick

    2014-03-10

    Nonlinear large deformation of a transparent elastomer membrane under hydraulic pressure was analyzed to investigate its optical performance for a variable-focus liquid-filled membrane microlens. In most membrane microlenses, actuators control the hydraulic pressure of optical fluid so that the elastomer membrane together with the internal optical fluid changes its shape, which alters the light path of the microlens to adapt its optical power. A fluid-structure interaction simulation was performed to estimate the transient behavior of the microlens under the operation of electroactive polymer actuators, demonstrating that the viscosity of the optical fluid successfully stabilizes the fluctuations within a fairly short period of time during dynamic operations. Axisymmetric nonlinear plate theory was used to calculate the deformation profile of the membrane under hydrostatic pressure, with which optical characteristics of the membrane microlens were estimated. The effects of gravitation and viscoelastic behavior of the elastomer membrane on the optical performance of the membrane microlens were also evaluated with finite element analysis.

  7. Intracanalicular Optic Nerve Swelling and Signal Change in Fulminant Untreated Idiopathic Intracranial Hypertension.

    PubMed

    Moodley, Anand A; Dlwati, Mahlubonke S; Durand, Miranda

    2017-04-01

    The role of the optic canal in the pathogenesis of papilloedema has been under scrutiny recently. Whether a larger canal precedes more severe papilloedema or is the result of bone remodelling from chronically raised pressure across a pressure gradient is not clear. The authors present the magnetic resonance imaging findings of a 29-year-old female with fulminant and untreated idiopathic intracranial hypertension. Imaging showed focal expansion and intrinsic signal changes of the intracanalicular optic nerve. The authors discuss the possibility of either fluid accumulation within the optic nerves from a water hammer effect across blocked optic canals resulting from the steep pressure gradient or opticomalacia (optic nerve softening) from chronic ischaemia.

  8. Device for timing and power level setting for microwave applications

    NASA Astrophysics Data System (ADS)

    Ursu, M.-P.; Buidoş, T.

    2016-08-01

    Nowadays, the microwaves are widely used for various technological processes. The microwaves are emitted by magnetrons, which have strict requirements concerning power supplies for anode and filament cathodes, intensity of magnetic field, cooling and electromagnetic shielding. The magnetrons do not tolerate any alteration of their required voltages, currents and magnetic fields, which means that their output microwave power is fixed, so the only way to alter the power level is to use time-division, by turning the magnetron on and off by repetitive time patterns. In order to attain accurate and reproducible results, as well as correct and safe operation of the microwave device, all these requirements must be fulfilled. Safe, correct and reproducible operation of the microwave appliance can be achieved by means of a specially built electronic device, which ensures accurate and reproducible exposure times, interlocking of the commands and automatic switch off when abnormal operating conditions occur. This driving device, designed and realized during the completion of Mr.Ursu's doctoral thesis, consists of a quartz time-base, several programmable frequency and duration dividers, LED displays, sensors and interlocking gates. The active and passive electronic components are placed on custom-made PCB's, designed and made by means of computer-aided applications and machines. The driving commands of the electronic device are delivered to the magnetron power supplies by means of optic zero-passing relays. The inputs of the electronic driving device can sense the status of the microwave appliance. The user is able to enter the total exposure time, the division factor that sets the output power level and, as a novelty, the clock frequency of the time divider.

  9. Development of a safe ground to space laser propagation system for the optical communications telescope laboratory

    NASA Technical Reports Server (NTRS)

    Wu, Janet P.

    2003-01-01

    Furthering pursuits in high bandwidth communications to future NASA deep space and neat-Earth probes, the Jet Propulsion Laboratory (JPL) is building the Optical communications Telescope Laboratory (OCTL) atop Table Mountain in Southern California. This R&D optical antenna will be used to develop optical communication strategies for future optical ground stations. Initial experiments to be conducted include propagating high-powered, Q-switched laser beams to retro-reflecting satellites. Yet laser beam propagation from the ground to space is under the cognizance of various government agencies, namely: the Occupational Safety and Health Administration (ISHA) that is responsible for protecting workforce personnel; the Federal Aviation Administration (FAA) responsible for protecting pilots and aircraft; and the Laser Clearinghouse of Space Command responsible for protecting space assets. To ensure that laser beam propagation from the OCTL and future autonomously operated ground stations comply with the guidelines of these organizations, JPL is developing a multi-tiered safety system that will meet the coordination, monitoring, and reporting functions required by the agencies. At Tier 0, laser operators will meet OSHA safety standards for protection and access to the high power lasers area will be restricted and interlocked. Tier 1, the area defined from the telescope dome out to a range of 3.4-km, will utilize long wave infrared camera sensors to alert operators of at risk aircraft in the FAA controlled airspace. Tier 2, defined to extend from 3.4-km out to the aircraft service ceiling in FAA airspace, will detect at risk aircraft by radar. Lastly, beam propagation into space, defined as Tier 3, will require coordination with the Laser Clearinghouse. A detailed description of the four tiers is presented along with the design of the integrated monitoring and beam transmission control system.

  10. The shift of optical band gap in W-doped ZnO with oxygen pressure and doping level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, J.; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714; Peng, X.Y.

    2014-06-01

    Highlights: • CVD–PLD co-deposition technique was used. • Better crystalline of the ZnO samples causes the redshift of the optical band gap. • Higher W concentration induces blueshift of the optical band gap. - Abstract: Tungsten-doped (W-doped) zinc oxide (ZnO) nanostructures were synthesized on quartz substrates by pulsed laser and hot filament chemical vapor co-deposition technique under different oxygen pressures and doping levels. We studied in detail the morphological, structural and optical properties of W-doped ZnO by SEM, XPS, Raman scattering, and optical transmission spectra. A close correlation among the oxygen pressure, morphology, W concentrations and the variation of bandmore » gaps were investigated. XPS and Raman measurements show that the sample grown under the oxygen pressure of 2.7 Pa has the maximum tungsten concentration and best crystalline structure, which induces the redshift of the optical band gap. The effect of W concentration on the change of morphology and shift of optical band gap was also studied for the samples grown under the fixed oxygen pressure of 2.7 Pa.« less

  11. CALUTRON CONTROL DEVICE

    DOEpatents

    Baldwin, L.W.

    1959-08-25

    Several interlock and control circuits for a calutron are described. In one of the arrangements, the ton source cooling water flow is interlocked with the current supply to the heaters assoctated with the charge chamber, arc chamber, and electrode structure. When the ion source coolant flow rate exceeds a predetermined level, the heater associated with the charge chamber is energized. After the charge chamber has reached a predetermined temperature, the arc chamber heater is energized. Thereafter, the electrode structure heater is energized and the ion source is ready to have the operating voltages applied.

  12. Photovoltaic module and interlocked stack of photovoltaic modules

    DOEpatents

    Wares, Brian S.

    2014-09-02

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  13. PATHOGENESIS OF OPTIC DISC EDEMA IN RAISED INTRACRANIAL PRESSURE

    PubMed Central

    Hayreh, Sohan Singh

    2015-01-01

    Optic disc edema in raised intracranial pressure was first described in 1853. Ever since, there has been a plethora of controversial hypotheses to explain its pathogenesis. I have explored the subject comprehensively by doing basic, experimental and clinical studies. My objective was to investigate the fundamentals of the subject, to test the validity of the previous theories, and finally, based on all these studies, to find a logical explanation for the pathogenesis. My studies included the following issues pertinent to the pathogenesis of optic disc edema in raised intracranial pressure: the anatomy and blood supply of the optic nerve, the roles of the sheath of the optic nerve, of the centripetal flow of fluids along the optic nerve, of compression of the central retinal vein, and of acute intracranial hypertension and its associated effects. I found that, contrary to some previous claims, an acute rise of intracranial pressure was not quickly followed by production of optic disc edema. Then, in rhesus monkeys, I produced experimentally chronic intracranial hypertension by slowly increasing in size space-occupying lesions, in different parts of the brain. Those produced raised cerebrospinal fluid pressure (CSFP) and optic disc edema, identical to those seen in patients with elevated CSFP. Having achieved that, I investigated various aspects of optic disc edema by ophthalmoscopy, stereoscopic color fundus photography and fluorescein fundus angiography, and light microscopic, electron microscopic, horseradish peroxidase and axoplasmic transport studies, and evaluated the effect of opening the sheath of the optic nerve on the optic disc edema. This latter study showed that opening the sheath resulted in resolution of optic disc edema on the side of the sheath fenestration, in spite of high intracranial CSFP, proving that a rise of CSFP in the sheath was the essential pre-requisite for the development of optic disc edema. I also investigated optic disc edema with raised CSFP in patients, by evaluating optic disc and fundus changes by stereoscopic fundus photography and fluorescein fundus angiography. Based on the combined information from all the studies discussed above, it is clear that the pathogenesis of optic disc edema in raised intracranial pressure is a mechanical phenomenon. It is primarily due to a rise of CSFP in the optic nerve sheath, which produces axoplasmic flow stasis in the optic nerve fibers in the surface nerve fiber layer and prelaminar region of the optic nerve head. Axoplasmic flow stasis then results in swelling of the nerve fibers, and consequently of the optic disc. Swelling of the nerve fibers and of the optic disc secondarily compresses the fine, low-pressure venules in that region, resulting in venous stasis and fluid leakage; that leads to the accumulation of extracellular fluid. Contrary to the previous theories, the various vascular changes seen in optic disc edema are secondary and not primary. Thus, optic disc edema in raised CSFP is due to a combination of swollen nerve fibers and the accumulation of extracellular fluid. My studies also provided information about the pathogeneses of visual disturbances in raised intracranial pressure. PMID:26453995

  14. Pathogenesis of optic disc edema in raised intracranial pressure.

    PubMed

    Hayreh, Sohan Singh

    2016-01-01

    Optic disc edema in raised intracranial pressure was first described in 1853. Ever since, there has been a plethora of controversial hypotheses to explain its pathogenesis. I have explored the subject comprehensively by doing basic, experimental and clinical studies. My objective was to investigate the fundamentals of the subject, to test the validity of the previous theories, and finally, based on all these studies, to find a logical explanation for the pathogenesis. My studies included the following issues pertinent to the pathogenesis of optic disc edema in raised intracranial pressure: the anatomy and blood supply of the optic nerve, the roles of the sheath of the optic nerve, of the centripetal flow of fluids along the optic nerve, of compression of the central retinal vein, and of acute intracranial hypertension and its associated effects. I found that, contrary to some previous claims, an acute rise of intracranial pressure was not quickly followed by production of optic disc edema. Then, in rhesus monkeys, I produced experimentally chronic intracranial hypertension by slowly increasing in size space-occupying lesions, in different parts of the brain. Those produced raised cerebrospinal fluid pressure (CSFP) and optic disc edema, identical to those seen in patients with elevated CSFP. Having achieved that, I investigated various aspects of optic disc edema by ophthalmoscopy, stereoscopic color fundus photography and fluorescein fundus angiography, and light microscopic, electron microscopic, horseradish peroxidase and axoplasmic transport studies, and evaluated the effect of opening the sheath of the optic nerve on the optic disc edema. This latter study showed that opening the sheath resulted in resolution of optic disc edema on the side of the sheath fenestration, in spite of high intracranial CSFP, proving that a rise of CSFP in the sheath was the essential pre-requisite for the development of optic disc edema. I also investigated optic disc edema with raised CSFP in patients, by evaluating optic disc and fundus changes by stereoscopic fundus photography and fluorescein fundus angiography. Based on the combined information from all the studies discussed above, it is clear that the pathogenesis of optic disc edema in raised intracranial pressure is a mechanical phenomenon. It is primarily due to a rise of CSFP in the optic nerve sheath, which produces axoplasmic flow stasis in the optic nerve fibers in the surface nerve fiber layer and prelaminar region of the optic nerve head. Axoplasmic flow stasis then results in swelling of the nerve fibers, and consequently of the optic disc. Swelling of the nerve fibers and of the optic disc secondarily compresses the fine, low-pressure venules in that region, resulting in venous stasis and fluid leakage; that leads to the accumulation of extracellular fluid. Contrary to the previous theories, the various vascular changes seen in optic disc edema are secondary and not primary. Thus, optic disc edema in raised CSFP is due to a combination of swollen nerve fibers and the accumulation of extracellular fluid. My studies also provided information about the pathogeneses of visual disturbances in raised intracranial pressure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter.

    PubMed

    Wang, Yiping; Ni, Xiaoqi; Wang, Ming; Cui, Yifeng; Shi, Qingyun

    2017-01-23

    In this paper, a demodulation method for optic fiber micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filter technique is firstly proposed and experimentally demonstrated. A single bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized optical fiber MEMS EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure demodulation method has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4Mpa. Moreover, the sensitivity can be easily adjusted.

  16. Research on optical reflectance and infrared emissivity of TiNx films depending on sputtering pressure

    NASA Astrophysics Data System (ADS)

    Lu, Linlin; Luo, Fa; Huang, Zhibin; Zhou, Wancheng; Zhu, Dongmei

    2018-06-01

    TiNx thin films were deposited on glass substrates using direct current reactive magnetron sputtering, and effects of sputtering pressure on optical reflectance and infrared emissivity of TiNx films were studied. The results indicated that sputtering pressure was a key factor to affect the optical reflectance and infrared emissivity of TiNx films in this study. When sputtering pressure varied from 0.3 Pa to 1.2 Pa, an average reflectance of less than 25% in the visible range was obtained for the prepared films. With the working pressure rise, the resistivity of TiNx films went up. Meanwhile, the infrared emissivity of the films increased. As sputtering pressure was 0.3 Pa, the infrared emissivity in the wavelength of 3-5 and 8-14 μm of TiNx film with dark color and low optical reflectance was less than 0.2.

  17. Fiber-optic liquid level sensor

    DOEpatents

    Weiss, Jonathan D.

    1991-01-01

    A fiber-optic liquid level sensor measures the height of a column of liquid through the hydrostatic pressure it produces. The sensor employs a fiber-optic displacement sensor to detect the pressure-induced displacement of the center of a corrugated diaphragm.

  18. Microelectromechanical system pressure sensor integrated onto optical fiber by anodic bonding.

    PubMed

    Saran, Anish; Abeysinghe, Don C; Boyd, Joseph T

    2006-03-10

    Optical microelectromechanical system pressure sensors based on the principle of Fabry-Perot interferometry have been developed and fabricated using the technique of silicon-to-silicon anodic bonding. The pressure sensor is then integrated onto an optical fiber by a novel technique of anodic bonding without use of any adhesives. In this anodic bonding technique we use ultrathin silicon of thickness 10 microm to bond the optical fiber to the sensor head. The ultrathin silicon plays the role of a stress-reducing layer, which helps the bonding of an optical fiber to silicon having conventional wafer thickness. The pressure-sensing membrane is formed by 8 microm thick ultrathin silicon acting as a membrane, thus eliminating the need for bulk silicon etching. The pressure sensor integrated onto an optical fiber is tested for static response, and experimental results indicate degradation in the fringe visibility of the Fabry-Perot interferometer. This effect was mainly due to divergent light rays from the fiber degrading the fringe visibility. This effect is demonstrated in brief by an analytical model.

  19. All-optical technique for measuring thermal properties of materials at static high pressure

    NASA Astrophysics Data System (ADS)

    Pangilinan, G. I.; Ladouceur, H. D.; Russell, T. P.

    2000-10-01

    The development and implementation of an all-optical technique for measuring thermal transport properties of materials at high pressure in a gem anvil cell are reported. Thermal transport properties are determined by propagating a thermal wave in a material subjected to high pressures, and measuring the temperature as a function of time using an optical sensor embedded downstream in the material. Optical beams are used to deposit energy and to measure the sensor temperature and replace the resistive heat source and the thermocouples of previous methods. This overcomes the problems introduced with pressure-induced resistance changes and the spatial limitations inherent in previous high-pressure experimentation. Consistent with the heat conduction equation, the material's specific heat, thermal conductivity, and thermal diffusivity (κ) determine the sensor's temperature rise and its temporal profile. The all-optical technique described focuses on room-temperature thermal properties but can easily be applied to a wide temperature range (77-600 K). Measurements of thermal transport properties at pressure up to 2.0 GPa are reported, although extension to much higher pressures are feasible. The thermal properties of NaCl, a commonly used material for high-pressure experiments are measured and shown to be consistent with those obtained using the traditional methods.

  20. Integrated Optical Interferometers with Micromachined Diaphragms for Pressure Sensing

    NASA Technical Reports Server (NTRS)

    DeBrabander, Gregory N.; Boyd, Joseph T.

    1996-01-01

    Optical pressure sensors have been fabricated which use an integrated optical channel waveguide that is part of an interferometer to measure the pressure-induced strain in a micromachined silicon diaphragm. A silicon substrate is etched from the back of the wafer leaving a rectangular diaphragm. On the opposite side of the wafer, ring resonator and Mach-Zehnder interferometers are formed with optical channel waveguides made from a low pressure chemical vapor deposited film of silicon oxynitride. The interferometer's phase is altered by pressure-induced stress in a channel segment positioned over the long edge of the diaphragm. The phase change in the ring resonator is monitored using a link-insensitive swept frequency laser diode, while in the Mach-Zehnder it is determined using a broad band super luminescent diode with subsequent wavelength separation. The ring resonator was found to be highly temperature sensitive, while the Mach-Zehnder, which had a smaller optical path length difference, was proportionally less so. The quasi-TM mode was more sensitive to pressure, in accord with calculations. Waveguide and sensor theory, sensitivity calculations, a fabrication sequence, and experimental results are presented.

  1. Fiber-Optic Pressure Sensor With Dynamic Demodulation Developed

    NASA Technical Reports Server (NTRS)

    Lekki, John D.

    2002-01-01

    Researchers at the NASA Glenn Research Center developed in-house a method to detect pressure fluctuations using a fiber-optic sensor and dynamic signal processing. This work was in support of the Intelligent Systems Controls and Operations project under NASA's Information Technology Base Research Program. We constructed an optical pressure sensor by attaching a fiber-optic Bragg grating to a flexible membrane and then adhering the membrane to one end of a small cylinder. The other end of the cylinder was left open and exposed to pressure variations from a pulsed air jet. These pressure variations flexed the membrane, inducing a strain in the fiber-optic grating. This strain was read out optically with a dynamic spectrometer to record changes in the wavelength of light reflected from the grating. The dynamic spectrometer was built in-house to detect very small wavelength shifts induced by the pressure fluctuations. The spectrometer is an unbalanced interferometer specifically designed for maximum sensitivity to wavelength shifts. An optimum pathlength difference, which was determined empirically, resulted in a 14-percent sensitivity improvement over theoretically predicted path-length differences. This difference is suspected to be from uncertainty about the spectral power difference of the signal reflected from the Bragg grating. The figure shows the output of the dynamic spectrometer as the sensor was exposed to a nominally 2-kPa peak-to-peak square-wave pressure fluctuation. Good tracking, sensitivity, and signal-to-noise ratios are evident even though the sensor was constructed as a proof-of-concept and was not optimized in any way. Therefore the fiber-optic Bragg grating, which is normally considered a good candidate as a strain or temperature sensor, also has been shown to be a good candidate for a dynamic pressure sensor.

  2. Enhancement of the Laser Transmission Weldability between Polyethylene and Polyoxymethylene by Plasma Surface Treatment

    PubMed Central

    Tan, Wensheng; Wang, Xiao

    2017-01-01

    Due to their large compatibility difference, polyethylene (PE) and polyoxymethylene (POM) cannot be welded together by laser transmission welding. In this study, PE and POM are pretreated using plasma that significantly enhances their laser transmission welding strength. To understand the mechanism underlying the laser welding strength enhancement, surface modification is analyzed using contact angle measurements, atomic force microscopy (AFM), optical microscopy, and X-ray photoelectron spectroscopy (XPS). Characterization results show that the plasma surface treatment improves the surface free energy, significantly enhancing the wettability of the materials. The increase in surface roughness and the generation of homogeneous bubbles contribute to the formation of mechanical micro-interlocking. The oxygen-containing groups introduced by the oxygen plasma treatment improve the compatibility of PE and POM, and facilitate the diffusion and entanglement of molecular chains and the formation of van der Waals force. PMID:29278367

  3. A decade of cost-reduction in very large telescopes - The SST as prototype of special-purpose telescopes

    NASA Astrophysics Data System (ADS)

    Smith, Harlan J.

    1989-10-01

    Many design and technical innovations over the past ten or fifteen years have reduced the costs of very large telescopes by nearly an order of magnitude over those of classical designs. Still a further order of magnitude reduction is possible if the telescope is specialized for on-axis spectroscopy, giving up especially the luxuries of wide field, multiple focal positions, and access to all the sky at will. The SST (Spectroscopic Survey Telescope) will use eighty-five 1-m circular mirrors mounted in a steel frame composed of hundreds of interlocking tetrahedrons, keeping a fixed elevation angle of 60 deg with rotation only in azimuth. Using an optical fiber it will feed as much light to spectrographs as can be done by a conventional 8-m telescope, yet has a target basic completion cost of only $6 million.

  4. Enhancement of the Laser Transmission Weldability between Polyethylene and Polyoxymethylene by Plasma Surface Treatment.

    PubMed

    Liu, Huixia; Jiang, Yingjie; Tan, Wensheng; Wang, Xiao

    2017-12-26

    Due to their large compatibility difference, polyethylene (PE) and polyoxymethylene (POM) cannot be welded together by laser transmission welding. In this study, PE and POM are pretreated using plasma that significantly enhances their laser transmission welding strength. To understand the mechanism underlying the laser welding strength enhancement, surface modification is analyzed using contact angle measurements, atomic force microscopy (AFM), optical microscopy, and X-ray photoelectron spectroscopy (XPS). Characterization results show that the plasma surface treatment improves the surface free energy, significantly enhancing the wettability of the materials. The increase in surface roughness and the generation of homogeneous bubbles contribute to the formation of mechanical micro-interlocking. The oxygen-containing groups introduced by the oxygen plasma treatment improve the compatibility of PE and POM, and facilitate the diffusion and entanglement of molecular chains and the formation of van der Waals force.

  5. The API 120: A portable neutron generator for the associated particle technique

    NASA Astrophysics Data System (ADS)

    Chichester, D. L.; Lemchak, M.; Simpson, J. D.

    2005-12-01

    The API 120 is a lightweight, portable neutron generator for active neutron interrogation (ANI) field work exploiting the associated particle technique. It incorporates a small sealed-tube accelerator, an all digital control system with smart on-board diagnostics, a simple platform-independent control interface and a comprehensive safety interlock philosophy with provisions for wireless control. The generator operates in a continuous output mode using either the D-D or D-T fusion reactions. To register the helium ion associated with fusion, the system incorporates a high resolution fiber optic imaging plate that may be coated with one of several different phosphors. The ion beam on the target measures less than 2 mm in diameter, thus making the system suitable for multi-dimensional imaging. The system is rated at 1E7 n/s for over 1000 h although higher yields are possible. The overall weight is 12 kg; power consumption is less than 50 W.

  6. Intracanalicular Optic Nerve Swelling and Signal Change in Fulminant Untreated Idiopathic Intracranial Hypertension

    PubMed Central

    Moodley, Anand A.; Dlwati, Mahlubonke S.; Durand, Miranda

    2017-01-01

    ABSTRACT The role of the optic canal in the pathogenesis of papilloedema has been under scrutiny recently. Whether a larger canal precedes more severe papilloedema or is the result of bone remodelling from chronically raised pressure across a pressure gradient is not clear. The authors present the magnetic resonance imaging findings of a 29-year-old female with fulminant and untreated idiopathic intracranial hypertension. Imaging showed focal expansion and intrinsic signal changes of the intracanalicular optic nerve. The authors discuss the possibility of either fluid accumulation within the optic nerves from a water hammer effect across blocked optic canals resulting from the steep pressure gradient or opticomalacia (optic nerve softening) from chronic ischaemia. PMID:28348630

  7. Research on Acoustical Scattering, Diffraction Catastrophes, Optics of Bubbles, Photoacoustics, and Acoustical Phase Conjugation.

    DTIC Science & Technology

    1987-09-15

    optical levitation of bubbles; D. Acoustical and optical diffraction catastrophes (theory and optical simulation of transverse cusps, experiments with...35 C. Optical Levitation of Bubbles in Water by the Radiation Pressure of a Laser Beam: An Acoustically Quiet Levitator ...radiation pressure of a laser beam: an acoustically quiet levitator ," J. Acoust . Soc. Am. (submitted July 1987). C. Books (and sections thereof) Published

  8. Optical Pressure-Temperature Sensor for a Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Wiley, John; Korman, Valentin; Gregory, Don

    2008-01-01

    A compact sensor for measuring temperature and pressure in a combusti on chamber has been proposed. The proposed sensor would include two optically birefringent, transmissive crystalline wedges: one of sapph ire (Al2O3) and one of magnesium oxide (MgO), the optical properties of both of which vary with temperature and pressure. The wedges wou ld be separated by a vapor-deposited thin-film transducer, which wou ld be primarily temperaturesensitive (in contradistinction to pressur e- sensitive) when attached to a crystalline substrate. The sensor w ould be housed in a rugged probe to survive the extreme temperatures and pressures in a combustion chamber.

  9. Electromagnetic navigation reduces surgical time and radiation exposure for proximal interlocking in retrograde femoral nailing.

    PubMed

    Somerson, Jeremy S; Rowley, David; Kennedy, Chad; Buttacavoli, Frank; Agarwal, Animesh

    2014-07-01

    To compare the time required for proximal locking screw placement between a standard freehand technique and the navigated technique, and to quantify the reduction in ionizing radiation exposure. A fresh frozen cadaver model was used for 48 proximal interlocking screw procedures. Each procedure consisted of insertion of 2 anteroposterior locking screws. Standard fluoroscopic technique was used for 24 procedures, and an electromagnetic navigation system was used for the remaining 24 procedures. Procedure duration was recorded using an electronic timer and radiation doses were documented. Mean total insertion time for both proximal interlocking screws was 405 ± 165.7 seconds with the freehand technique and 311 ± 78.3 seconds in the navigation group (P = 0.002). All procedures resulted in successful locking screw placement. Mean ionizing radiation exposure time for proximal locking was 29.5 ± 12.8 seconds. Proximal locking screw insertion using the navigation technique evaluated in this work was significantly faster than the standard fluoroscopic method. The navigated technique is effective and has the potential to prevent ionizing radiation exposure.

  10. Analysis of the morphology, stability, and folding pathways of ring polymers with supramolecular topological constraints using molecular simulation and nonlinear manifold learning

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Ferguson, Andrew

    Ring polymers offer a wide range of natural and engineered functions and applications, including as circular bacterial DNA, crown ethers for cation chelation, and ``molecular machines'' such as mechanical nanoswitches. The morphology and dynamics of ring polymers are governed by the chemistry and degree of polymerization of the ring, and intramolecular and supramolecular topological constraints such as knots or mechanically-interlocked rings. We perform molecular dynamics simulations of polyethylene ring polymers as a function of degree of polymerization and in different topological states, including a knotted state, catenane state (two interlocked rings), and borromean state (three interlocked rings). Applying nonlinear manifold learning to our all-atom simulation trajectories, we extract low-dimensional free energy surfaces governing the accessible conformational states and their relative thermodynamic stability. The free energy surfaces reveal how degree of polymerization and topological constraints affect the thermally accessible conformations, chiral symmetry breaking, and folding and collapse pathways of the rings, and present a means to rationally engineer ring size and topology to preferentially stabilize particular conformational states.

  11. Fabricating interlocking support walls, with an adjustable backshort, in a TES bolometer array for far-infrared astronomy

    NASA Astrophysics Data System (ADS)

    Miller, Timothy M.; Abrahams, John H.; Allen, Christine A.

    2006-04-01

    We report a fabrication process for deep etching silicon to different depths with a single masking layer, using standard masking and exposure techniques. Using this technique, we have incorporated a deep notch in the support walls of a transition-edge-sensor (TES) bolometer array during the detector back-etch, while simultaneously creating a cavity behind the detector. The notches serve to receive the support beams of a separate component, the Backshort-Under-Grid (BUG), an array of adjustable height quarter-wave backshorts that fill the cavities behind each pixel in the detector array. The backshort spacing, set prior to securing to the detector array, can be controlled from 25 to 300 μm by adjusting only a few process steps. In addition to backshort spacing, the interlocking beams and notches provide positioning and structural support for the ˜1 mm pitch, 8×8 array. This process is being incorporated into developing a TES bolometer array with an adjustable backshort for use in far-infrared astronomy. The masking technique and machining process used to fabricate the interlocking walls will be discussed.

  12. Quick torque coupling

    DOEpatents

    Luft, Peter A [El Cerrito, CA

    2009-05-12

    A coupling for mechanically connecting modular tubular struts of a positioning apparatus or space frame, comprising a pair of toothed rings (10, 12) attached to separate strut members (16), the teeth (18, 20) of the primary rings (10, 12) mechanically interlocking in both an axial and circumferential manner, and a third part comprising a sliding, toothed collar (14) the teeth (22) of which interlock the teeth (18, 20) of the primary rings (10, 12), preventing them from disengaging, and completely locking the assembly together. A secondary mechanism provides a nesting force for the collar, and/or retains it. The coupling is self-contained and requires no external tools for installation, and can be assembled with gloved hands in demanding environments. No gauging or measured torque is required for assembly. The assembly can easily be visually inspected to determine a "go" or "no-go" status. The coupling is compact and relatively light-weight. Because of it's triply interlocking teeth, the connection is rigid. The connection does not primarily rely on clamps, springs or friction based fasteners, and is therefore reliable in fail-safe applications.

  13. Flight representative positive isolation disconnect

    NASA Technical Reports Server (NTRS)

    Rosener, A. A.; Jonkoniec, T. G.

    1977-01-01

    Resolutions were developed for each problem encountered and a tradeoff analysis was performed to select a final configuration for a flight representative PID (Positive Isolation Disconnect) that is reduced in size and comparable in weight and pressure drop to the developmental PID. A 6.35 mm (1/4-inch) line size PID was fabricated and tested. The flight representative PID consists of two coupled disconnect halves, each capable of fluid isolation with essentially zero clearance between them for zero leakage upon disconnect half disengagement. An interlocking foolproofing technique prevents uncoupling of disconnect halves prior to fluid isolation. Future development efforts for the Space Shuttle subsystems that would benefit from the use of the positive isolation disconnect are also recommended. Customary units were utilized for principal measurements and calculations with conversion factors being inserted in equations to convert the results to the international system of units.

  14. [Intracranial pressure monitoring apparatus for clinical use balanced pressure sensors].

    PubMed

    Numoto, M

    1976-04-01

    Three types of pressure sensors, (1) electric pressure switch, (2) fiber optic pressure switch and (3) pressure indicating bag for intracranial pressure monitoring which were developed by the author are described. Advantages and disadvantages between them are also discussed. The electric pressure switch is relatively simple in construction but has a possibility of producing micro-shock hazard in case of accidental electric leakage. The fiber optic pressure switch is the safest for the micro shock but its structure is rather complicated and fragile. The pressure indicating bag is simple to make and durable to use. However, it has a hydrostatic effect.

  15. Orbital cerebrospinal fluid space in glaucoma: the Beijing intracranial and intraocular pressure (iCOP) study.

    PubMed

    Wang, Ningli; Xie, Xiaobin; Yang, Diya; Xian, Junfang; Li, Yong; Ren, Ruojin; Peng, Xiaoxia; Jonas, Jost B; Weinreb, Robert N

    2012-10-01

    Low cerebrospinal fluid pressure (CSF-P) may be involved in the pathogenesis of glaucoma. We measured the optic nerve subarachnoid space width (ONSASW) as a surrogate for orbital CSF-P in patients with primary open-angle glaucoma (POAG) with normal and high pressure and a control group. Prospective observational study. The study included 39 patients with POAG; 21 patients had normal pressure (intraocular pressure [IOP] 21 mmHg), and 18 patients had high pressure (IOP >21 mmHg); 21 subjects formed the control group. By using magnetic resonance imaging (MRI) with fat-suppressed fast recovery fast spin echo (FRFSE) T2-weighted sequence, we determined the ONSASW at 3, 9, and 15 mm posterior to the globe. The ONSASW and optic nerve diameter. At all 3 measurement locations of 3, 9, and 15 mm, the ONSASW was significantly (P<0.001, P<0.001, and P = 0.003, respectively) narrower in the normal-pressure group (0.67±0.16, 0.55±0.09, and 0.51±0.12 mm, respectively) than in the high-pressure group (0.93±0.21, 0.70±0.12, and 0.62±0.11 mm, respectively) or the control group (0.87±0.15, 0.67±0.07, and 0.61±0.07 mm, respectively). The high-pressure and control groups did not vary significantly at 3, 9, and 15 mm (P = 0.31, P = 0.39, and P = 0.44, respectively). At all 3 measurement locations, ONSASW was narrower in the normal-pressure group compared with the high-pressure and control groups after adjustment for optic nerve diameter (P<0.01). Correspondingly, the width of the optic nerve subarachnoid space measured at 3, 9, and 15 mm behind the globe, respectively, was significantly (all P<0.05) associated with IOP after adjustment for optic nerve diameter and visual field defect. The narrower orbital optic nerve subarachnoid space in patients with POAG with normal pressure compared with high pressure suggests a lower orbital CSF-P in patients with POAG with normal pressure. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  16. Low pressure microenvironments: Methane production at 50 mbar and 100 mbar by methanogens

    NASA Astrophysics Data System (ADS)

    Mickol, Rebecca L.; Kral, Timothy A.

    2018-04-01

    Low pressure is often overlooked in terms of possible biocidal effects when considering a habitable environment on Mars. Few experiments have investigated the ability for microorganisms to actively grow under low pressure conditions, despite the atmosphere being a location on Earth where organisms could be exposed to these pressures. Three species of methanogens (Methanobacterium formicicum, Methanosarcina barkeri, Methanococcus maripaludis) were tested for their ability to actively grow (demonstrate an increase in methane production and optical density) within low-pressure microenvironments at 50 mbar or 100 mbar. M. formicicum was the only species to demonstrate both an increase in methane and an increase in optical density during the low-pressure exposure period for experiments conducted at 50 mbar and 100 mbar. In certain experiments, M. barkeri showed an increase in optical density during the low-pressure exposure period, likely due to the formation of multicellular aggregates, but minimal methane production (<1%). During incubation following exposure to low pressure, cultures of all species resumed methane production and increased in optical density. Thus, low pressure may not be a biocidal factor for certain methanogen species, with growth possible under low-pressure conditions. Results indicate that low pressure exposure may just be inhibitory during the exposure itself, and metabolism may resume following incubation under more ideal conditions. Further work is needed to address growth/survival under Mars surface pressures.

  17. An Optical Fibre Depth (Pressure) Sensor for Remote Operated Vehicles in Underwater Applications

    PubMed Central

    Duraibabu, Dinesh Babu; Poeggel, Sven; Omerdic, Edin; Capocci, Romano; Lewis, Elfed; Newe, Thomas; Leen, Gabriel; Toal, Daniel; Dooly, Gerard

    2017-01-01

    A miniature sensor for accurate measurement of pressure (depth) with temperature compensation in the ocean environment is described. The sensor is based on an optical fibre Extrinsic Fabry-Perot interferometer (EFPI) combined with a Fibre Bragg Grating (FBG). The EFPI provides pressure measurements while the Fibre Bragg Grating (FBG) provides temperature measurements. The sensor is mechanically robust, corrosion-resistant and suitable for use in underwater applications. The combined pressure and temperature sensor system was mounted on-board a mini remotely operated underwater vehicle (ROV) in order to monitor the pressure changes at various depths. The reflected optical spectrum from the sensor was monitored online and a pressure or temperature change caused a corresponding observable shift in the received optical spectrum. The sensor exhibited excellent stability when measured over a 2 h period underwater and its performance is compared with a commercially available reference sensor also mounted on the ROV. The measurements illustrates that the EFPI/FBG sensor is more accurate for depth measurements (depth of ~0.020 m). PMID:28218727

  18. High pressure and temperature optical flow cell for near-infra-red spectroscopic analysis of gas mixtures.

    PubMed

    Norton, C G; Suedmeyer, J; Oderkerk, B; Fieback, T M

    2014-05-01

    A new optical flow cell with a new optical arrangement adapted for high pressures and temperatures using glass fibres to connect light source, cell, and spectrometer has been developed, as part of a larger project comprising new methods for in situ analysis of bio and hydrogen gas mixtures in high pressure and temperature applications. The analysis is based on measurements of optical, thermo-physical, and electromagnetic properties in gas mixtures with newly developed high pressure property sensors, which are mounted in a new apparatus which can generate gas mixtures with up to six components with an uncertainty of composition of as little as 0.1 mol. %. Measurements of several pure components of natural gases and biogases to a pressure of 20 MPa were performed on two isotherms, and with binary mixtures of the same pure gases at pressures to 17.5 MPa. Thereby a new method of analyzing the obtained spectra based on the partial density of methane was investigated.

  19. Geniculate arterial pseudoaneurysm formation following trauma and elective orthopaedic surgery to the knee: 2 case reports and a review of the literature

    PubMed Central

    Shaw, A; Stephen, AB; Lund, JN; Bungay, P; DeNunzio, M

    2009-01-01

    Arterial pseudoaneurysm formation of the genicular vessels following orthopaedic surgery to the knee is an extremely rare occurrence. Here we report the successful management of two cases as a complication of total knee arthroplasty and a tibial interlocking nail, utilising coil embolisation by interventional radiological techniques and negating the need for further surgery. To our knowledge this is one of the few reported cases of pseudoaneurysms of the descending genicular artery secondary to drain placement and only the second following tibial interlocking nail placement. PMID:22470647

  20. Safe operating conditions for NSLS-II Storage Ring Frontends commissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.; Amundsen, C.; Ha, K.

    2015-04-02

    The NSLS-II Storage Ring Frontends are designed to safely accept the synchrotron radiation fan produced by respective insertion device when the electron beam orbit through the ID is locked inside the predefined Active Interlock Envelope. The Active Interlock is getting enabled at a particular beam current known as AI safe current limit. Below such current the beam orbit can be anywhere within the limits of the SR beam acceptance. During the FE commissioning the beam orbit is getting intentionally disturbed in the particular ID. In this paper we explore safe operating conditions for the Frontends commissioning.

  1. FUEL ELEMENT INTERLOCKING ARRANGEMENT

    DOEpatents

    Fortescue, P.; Nicoll, D.

    1963-01-01

    This patent relates to a system for mutually interlocking a multiplicity of elongated, parallel, coextensive, upright reactor fuel elements so as to render a laterally selfsupporting bundle, while admitting of concurrent, selective, vertical withdrawal of a sizeable number of elements without any of the remaining elements toppling, Each element is provided with a generally rectangular end cap. When a rank of caps is aligned in square contact, each free edge centrally defines an outwardly profecting dovetail, and extremitally cooperates with its adjacent cap by defining a juxtaposed half of a dovetail- receptive mortise. Successive ranks are staggered to afford mating of their dovetails and mortises. (AEC)

  2. Research of pressure sensor based on the fiber Bragg grating for permanent downwell monitoring application

    NASA Astrophysics Data System (ADS)

    Liu, Lina; Long, Pin; Liu, Tiegen

    2004-11-01

    Timely, accurate and reliable pressure information about how the reservoir is performing is an important component to optimizing oil yield and production rates. This paper reviews the use of fiber optical pressure sensor for downhole monitoring in the oil industry. Several types of pressure transducer with different characteristics have been introduced. Due to their multiplexing capabilities and versatility ,the use of Bragg grating sensors appears to be particularly suited for this application. A sensor for accurate and long term fluid pressure monitoring based on optical fiber Bragg gratings(FBGs) is developed. The sensor converts fluid pressure into optical fiber strain by means of a mechanical transducer to enhance its sensitivity to pressure. It can also implement distributed or multiplexed sensing. The sensor operation is studied at pressure up to 100 Mpa(1000bar) and the tested temperature to ~175°. It is possible to be used in the well.

  3. Theoretical studies of optical gain tuning by hydrostatic pressure in GaInNAs/GaAs quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladysiewicz, M.; Wartak, M. S.; Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5

    In order to describe theoretically the tuning of the optical gain by hydrostatic pressure in GaInNAs/GaAs quantum wells (QWs), the optical gain calculations within kp approach were developed and applied for N-containing and N-free QWs. The electronic band structure and the optical gain for GaInNAs/GaAs QW were calculated within the 10-band kp model which takes into account the interaction of electron levels in the QW with the nitrogen resonant level in GaInNAs. It has been shown that this interaction increases with the hydrostatic pressure and as a result the optical gain for GaInNAs/GaAs QW decreases by about 40% and 80%more » for transverse electric and transverse magnetic modes, respectively, for the hydrostatic pressure change from 0 to 40 kilobars. Such an effect is not observed for N-free QWs where the dispersion of electron and hole energies remains unchanged with the hydrostatic pressure. This is due to the fact that the conduction and valence band potentials in GaInAs/GaAs QW scale linearly with the hydrostatic pressure.« less

  4. Structural stability, electronic, magnetic and optical properties of zincblende Zn0.5V0.5Te under pressure

    NASA Astrophysics Data System (ADS)

    Yin, Zhu-Hua; Zhang, Jian-Min

    2016-10-01

    The structural stability, electronic, magnetic and optical properties of zincblende Zn0.5V0.5Te under pressures 0-5 GPa are investigated by the spin-polarized first-principles calculation. Under pressure, the Zn0.5V0.5Te is always half-metal with the total magnetic moment μtot of 3μB / cell mainly contributed by V2+ ion, but the spin-down channel opens a band gap. The Zn0.5V0.5Te also behaves in a ductile manner and is mechanical stable until 3.78 GPa pressure. The static dielectric function ε1 (0) and refractive index n (0) increase with pressure. The two absorption peaks located in energy regions 0-20 eV and 35-50 eV not only increase but also shift to the higher energy region (blue shift) with pressure. So the electronic and optical properties of Zn0.5V0.5Te could be tuned through external pressure, which is beneficial to the electronic and optical applications.

  5. A small-volume PVTX system for broadband spectroscopic calibration of downhole optical sensors

    NASA Astrophysics Data System (ADS)

    Jones, Christopher Michael; Pelletier, Michael T.; Atkinson, Robert; Shen, Jing; Moore, Jeff; Anders, Jimmy; Perkins, David L.; Myrick, Michael L.

    2017-07-01

    An instrument is presented that is capable of measuring the optical spectrum (long-wave ultraviolet through short-wave mid-infrared) of fluids under a range of temperature and pressure conditions from ambient pressure up to 138 MPa (20 000 psi) and 422 K (300 °F) using ˜5 ml of fluid. Temperature, pressure, and density are measured in situ in real-time, and composition is varied by adding volatile and nonvolatile components. The stability and accuracy of the conditions are reported for pure ethane, and the effects of temperature and pressure on characteristic regions of the optical spectrum of ethane are illustrated after correction for temperature and pressure effects on the optical cell path length, as well as normalization to the measured density. Molar absorption coefficients and integrated molar absorption coefficients for several vibrational combination bands are presented.

  6. Optical free piston cell with constant diameter for use under high pressure

    NASA Astrophysics Data System (ADS)

    Ishihara, Koji; Takagi, Masahiro

    1994-02-01

    An optical free piston cell (a modified le Noble and Schlott type optical cell) is described for use in spectrophotometric study under high pressure. The cell consists of a disk, a cylinder, and a free piston, which are made of quartz and are mounted within a stainless-steel holder. A small amount of sample solution (˜0.6 cm3), which only contacts with quartz, is required for measurements. The path length is fixed (1.2 cm) at ambient pressure, but is self-adjusting at elevated pressure so that no compressibility corrections are necessary.

  7. Sealed fiber-optic bundle feedthrough

    DOEpatents

    Tanner, Carol E.

    2002-01-01

    A sealed fiber-optic bundle feedthrough by which a multitude of fiber-optic elements may be passed through an opening or port in a wall or structure separating two environments at different pressures or temperatures while maintaining the desired pressure or temperature in each environment. The feedthrough comprises a rigid sleeve of suitable material, a bundle of individual optical fibers, and a resin-based sealing material that bonds the individual optical fibers to each other and to the rigid sleeve.

  8. High resolution transbulbar sonography in children with suspicion of increased intracranial pressure.

    PubMed

    Steinborn, Marc; Friedmann, Melanie; Makowski, Christine; Hahn, Helmut; Hapfelmeier, Alexander; Juenger, Hendrik

    2016-04-01

    To evaluate the accuracy of high resolution transbulbar sonography for the estimation of intracranial pressure (ICP) in children. In children and adolescents with acute neurologic symptoms of various origin, transbulbar sonography was performed. Besides measurement of the optic nerve sheath diameter (ONSD), the ultrastructure of the subarachnoid space of the optic nerve sheath was evaluated. The results of transbulbar sonography were correlated with clinical data based on cross-sectional imaging, ICP measurement, and ophthalmologic examination. Eighty-one patients (age 3-17.8 years, mean 11.7 years) were included. In 25 children, cross-sectional imaging and ICP measurement revealed increased intracranial pressure. The mean ONSD was 6.85 ± 0.81 mm. Twenty patients (20/25, 80 %) had a microcystic appearance of the subarachnoid space of the optic nerve. In 56 children without evidence of increased intracranial pressure, the mean ONSD was 5.77 ± 0.48 mm. Forty-nine patients (49/56, 87.5 %) had a normal homogenous appearance of the subarachnoid space. The ONSD in children with increased intracranial pressure was significantly higher than in patients without (p < 0.001). High resolution transbulbar sonography of the optic nerve is a useful technique for the rapid and non-invasive estimation of intracranial pressure in children. Besides measurement of the optic nerve sheath diameter, evaluation of the ultrastructure of the subarachnoid space of the optic nerve is a helpful parameter.

  9. Optically driven self-oscillations of a silica nanospike at low gas pressures

    NASA Astrophysics Data System (ADS)

    Xie, Shangran; Pennetta, Riccardo; Noskov, Roman E.; Russell, Philip St. J.

    2016-09-01

    We report light-driven instability and optomechanical self-oscillation of a fused silica "nanospike" at low gas pressures. The nanospike (tip diameter 400 nm), fabricated by thermally tapering and HF-etching a single mode fiber (SMF), was set pointing at the endface of a hollow-core photonic crystal fiber (HC-PCF) into the field created by the fundamental optical mode emerging from the HC-PCF. At low pressures, the nanospike became unstable and began to self-oscillate for optical powers above a certain threshold, acting like a phonon laser or "phaser". Because the nanospike is robustly connected to the base, direct measurement of the temporal dynamics of the instability is possible. The experiment sheds light on why particles escape from optical traps at low pressures.

  10. Customized overhead cranes for installation of India's largest 3.6m optical telescope at Devasthal, Nainital, India

    NASA Astrophysics Data System (ADS)

    Bangia, Tarun; Yadava, Shobhit; Kumar, Brijesh; Ghanti, A. S.; Hardikar, P. M.

    2016-07-01

    India's largest 3.6 m aperture optical telescope facility has been recently established at Devasthal site by Aryabhatta Research Institute of Observation Sciences (ARIES), an autonomous Institute under Department of Science and Technology, Government of India. The telescope is equipped with active optics and it is designed to be used for seeinglimited observations at visible and near-infrared wavelengths. A steel building with rotating cylindrical steel Dome was erected to house 3.6m telescope and its accessories at hilltop of Devasthal site. Customized cranes were essentially required inside the building as there were space constraints around the telescope building for operating big external heavy duty cranes from outside, transportation constraints in route for bringing heavy weight cranes, altitude of observatory, and sharp bends etc. to site. To meet the challenge of telescope installation from inside the telescope building by lifting components through its hatch, two Single Girder cranes and two Under Slung cranes of 10 MT capacity each were specifically designed and developed. All the four overhead cranes were custom built to achieve the goal of handling telescope mirror and its various components during installation and assembly. Overhead cranes were installed in limited available space inside the building and tested as per IS 3177. Cranes were equipped with many features like VVVFD compatibility, provision for tandem operation, digital load display, anti-collision mechanism, electrical interlocks, radio remote, low hook height and compact carriage etc. for telescope integration at site.

  11. An evaluation of the Swedish ignition interlock program.

    PubMed

    Bjerre, Bo

    2003-01-01

    The Swedish alcohol ignition interlock program for driving while intoxicated (DWI) offenders, both first-time as well as multiple offenders, was launched as a pilot project in 1999. It is a volunteer program and differs in some respects from other programs: It covers a period of 2 years, it includes very strict medical regulations entailing regular checkups by a physician, it does not require a prior period of hard suspension, and it focuses strongly on changes in alcohol habits. Records from the 5 years prior to the offence showed that DWI offenders are generally in a high-risk category long before their offense, with a four to five times higher accident rate (road accidents reported by the police) and a three to four times higher rate of hospitalization due to a road accident. Only 12% of the eligible DWI offenders took part in the program and, of these, 60% could be diagnosed as alcohol dependent or alcohol abusers. During the program, alcohol consumption is monitored through self-esteem questionnaires (AUDIT) and five different biological markers. Our data show a noticeable reduction in alcohol consumption among the interlock users. This, combined with the high rate of compliance with the regulations, probably accounts for the fact that there was no case of recidivism during the program. Preliminary findings also suggest a reduction in the annual accident rate for interlock users while in the program. It still is too early to draw any conclusions concerning the rate of recidivism after completion of the program due to an insufficient amount of data for analysis. Nevertheless, the preliminary results are so promising that the program will now be expanded to cover all of Sweden as well as to include all driver's license categories.

  12. Supramolecular structure of the casein micelle.

    PubMed

    McMahon, D J; Oommen, B S

    2008-05-01

    The supramolecular structure of colloidal casein micelles in milk was investigated by using a sample preparation protocol based on adsorption of proteins onto a poly-l-lysine and parlodion-coated copper grid, staining of proteins and calcium phosphate by uranyl oxalate, instantaneous freezing, and drying under a high vacuum. High-resolution transmission electron microscopy stereo-images were obtained showing the interior structure of casein micelles. On the basis of our interpretation of these images, an interlocked lattice model was developed in which both casein-calcium phosphate aggregates and casein polymer chains act together to maintain casein micelle integrity. The caseins form linear and branched chains (2 to 5 proteins long) interlocked by the casein-stabilized calcium phosphate nanoclusters. This model suggests that stabilization of calcium phosphate nanoclusters by phosphoserine domains of alpha(s1)-, alpha(s2)-, or beta-casein, or their combination, would orient their hydrophobic domains outward, allowing interaction and binding to other casein molecules. Other interactions between the caseins, such as calcium bridging, could also occur and further stabilize the supramolecule. The combination of having an interlocked lattice structure and multiple interactions results in an open, sponge-like colloidal supramolecule that is resistant to spatial changes and disintegration. Hydrophobic interactions between caseins surrounding a calcium phosphate nanocluster would prevent complete dissociation of casein micelles when the calcium phosphate nanoclusters are solubilized. Likewise, calcium bridging and other electrostatic interactions between caseins would prevent dissociation of the casein micelles into casein-calcium phosphate nanocluster aggregates when milk is cooled or urea is added to milk, and hydrophobic interactions are reduced. The appearance of both polymer chains and small aggregate particles during milk synthesis would also be expected based on this interlocked lattice model of casein micelles, and its supramolecule structure thus exhibits the principles of self-aggregation, interdependence, and diversity observed in nature.

  13. A comparative study of intramedullary interlocking nailing and minimally invasive plate osteosynthesis in extra articular distal tibial fractures.

    PubMed

    Daolagupu, Arup K; Mudgal, Ashwani; Agarwala, Vikash; Dutta, Kaushik K

    2017-01-01

    Extraarticular distal tibial fractures are among the most challenging fractures encountered by an orthopedician for treatment because of its subcutaneous location, poor blood supply and decreased muscular cover anteriorly, complications such as delayed union, nonunion, wound infection, and wound dehiscence are often seen as a great challenge to the surgeon. Minimally invasive plate osteosynthesis (MIPO) and intramedullary interlocking nail (IMLN) are two well-accepted and effective methods, but each has been historically related to complications. This study compares clinical and radiological outcome in extraarticular distal tibia fractures treated by intramedullary interlocking nail (IMLN) and minimally invasive plate osteosynthesis (MIPO). 42 patients included in this study, 21 underwent IMLN and 21 were treated with MIPO who met the inclusion criteria and operated between June 2014 and May 2015. Patients were followed up for clinical and radiological evaluation. In IMLN group, average union time was 18.26 weeks compared to 21.70 weeks in plating group which was significant ( P < 0.0001). Average time required for partial and full weight bearing in the nailing group was 4.95 weeks and 10.09 weeks respectively which was significantly less ( P < 0.0001) as compared to 6.90 weeks and 13.38 weeks in the plating group. Lesser complications in terms of implant irritation, ankle stiffness, and infection, were seen in interlocking group as compared to plating group. Average functional outcome according to American Orthopedic Foot and Ankle Society score was measured which came out to be 96.67. IMLN group was associated with lesser duration of surgery, earlier weight bearing and union rate, lesser incidence of infection and implant irritation which makes it a preferable choice for fixation of extra-articular distal tibial fractures. However, larger randomized controlled trials are required for confirming the results.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamboa, E. J.; Fletcher, L. B.; Lee, H. J.

    The extraordinary mechanical and optical properties of diamond are the basis of numerous technical applications and make diamond anvil cells a premier device to explore the high-pressure behavior of materials. However, at applied pressures above a few hundred GPa, optical probing through the anvils becomes difficult because of the pressure-induced changes of the transmission and the excitation of a strong optical emission. Such features have been interpreted as the onset of a closure of the optical gap in diamond, and can significantly impair spectroscopy of the material inside the cell. In contrast, a comparable widening has been predicted for purelymore » hydrostatic compressions, forming a basis for the presumed pressure stiffening of diamond and resilience to the eventual phase change to BC8. We here present the first experimental evidence of this effect at geo-planetary pressures, exceeding the highest ever reported hydrostatic compression of diamond by more than 200 GPa and any other measurement of the band gap by more than 350 GPa. We here apply laser driven-ablation to create a dynamic, high pressure state in a thin, synthetic diamond foil together with frequency-resolved x-ray scattering as a probe. The frequency shift of the inelastically scattered x-rays encodes the optical properties and, thus, the behavior of the band gap in the sample. Using the ultra-bright x-ray beam from the Linac Coherent Light Source (LCLS), we observe an increasing direct band gap in diamond up to a pressure of 370 GPa. This finding points to the enormous strains in the anvils and the impurities in natural Type Ia diamonds as the source of the observed closure of the optical window. Our results demonstrate that diamond remains an insulating solid to pressures approaching its limit strength.« less

  15. Optic Nerve Sheath Mechanics in VIIP Syndrome

    NASA Technical Reports Server (NTRS)

    Raykin, Julia; Forte, Taylor E.; Wang, Roy; Feola, Andrew; Samuels, Brian; Myers, Jerry; Nelson, Emily; Gleason, Rudy; Ethier, C. Ross

    2016-01-01

    Visual Impairment Intracranial Pressure (VIIP) syndrome is a major concern in current space medicine research. While the exact pathology of VIIP is not yet known, it is hypothesized that the microgravity-induced cephalad fluid shift increases intracranial pressure (ICP) and drives remodeling of the optic nerve sheath. To investigate this possibility, we are culturing optic nerve sheath dura mater samples under different pressures and investigating changes in tissue composition. To interpret results from this work, it is essential to first understand the biomechanical response of the optic nerve sheath dura mater to loading. Here, we investigated the effects of mechanical loading on the porcine optic nerve sheath.Porcine optic nerves (number: 6) were obtained immediately after death from a local abattoir. The optic nerve sheath (dura mater) was isolated from the optic nerve proper, leaving a hollow cylinder of connective tissue that was used for biomechanical characterization. We developed a custom mechanical testing system that allowed for unconfined lengthening, twisting, and circumferential distension of the dura mater during inflation and under fixed axial loading. To determine the effects of variations in ICP, the sample was inflated (0-60 millimeters Hg) and circumferential distension was simultaneously recorded. These tests were performed under variable axial loads (0.6 grams - 5.6 grams at increments of 1 gram) by attaching different weights to one end of the dura mater. Results and Conclusions: The samples demonstrated nonlinear behavior, similar to other soft connective tissue (Figure 1). Large increases in diameter were observed at lower transmural pressures (approximately 0 to 5 millimeters Hg), whereas only small diameter changes were observed at higher pressures. Particularly interesting was the existence of a cross-over point at a pressure of approximately 11 millimeters Hg. At this pressure, the same diameter is obtained for all axial loads applied to the tissue; i.e., as the axial load is varied, the diameter of the dura mater remains constant. This cross-over in the pressure-diameter curves occurred in all optic nerve sheaths that were tested, and may correspond with in vivo ICP levels for pigs. These data suggest that diameter of the dura mater of the optic nerve remains nearly constant in vivo despite being stretched axially. This may be a homeostatic mechanism aimed at maintaining target stresses/strains on the cells in the dura mater, and deviations from these stresses may play an important role in optic nerve sheath remodeling. Future studies will involve subjecting the dura mater to varying pressures and axial tensions for extended periods of time, while monitoring changes in the biomechanical properties. The data can then be used to study the effects of changes in ICP on the remodeling of the dura mater.

  16. Translamina Cribrosa Pressure Difference as Potential Element in the Pathogenesis of Glaucomatous Optic Neuropathy.

    PubMed

    Jonas, Jost B; Wang, Ningli; Yang, Diya

    2016-01-01

    The main proven risk factor for glaucomatous optic neuropathy (GON) is an intraocular pressure (IOP) higher than the pressure sensibility of the optic nerve head allows. Fulfilling Koch postulates, numerous studies have shown that the presence of high IOP leads to GON, that lowering IOP stops the progression of GON, and that a re-increase in IOP again causes the progression of GON. There are, however, many patients with glaucoma who have statistically normal or low IOP, and despite low IOP values, they develop progressing GON. These observations led to findings that IOP is only 1 of 2 determinants of the translamina cribrosa pressure difference (TLCPD), which is the main pressure-related parameter for the physiology and pathophysiology of the optic nerve head. The second parameter influencing TLCPD is orbital cerebrospinal fluid pressure (CSFP) as the counter pressure against IOP across the lamina cribrosa. Recent experimental and clinical studies have suggested that a low CSFP could be associated with GON in normal-pressure glaucoma. These investigations included studies with an experimental long-term reduction in CSFP in monkeys, population-based studies, and clinical retrospective and prospective investigations on patients with normal-pressure glaucoma. Besides TLCPD, other ocular parameters influenced by CSFP may be choroidal thickness, retinal vein pressure and diameter, occurrence of retinal vein occlusions, and occurrence and severity of diabetic retinopathy.

  17. Research of distributed-fiber-optic pressure sensor

    NASA Astrophysics Data System (ADS)

    Lu, Xiao Ming; Ren, Xin; Chen, Yu-bao; Che, Rensheng

    1991-08-01

    The paper discribed the principle and method of distributed fiber optic pressure sensor utilizing OTDR technique. The relativity of the microbend loss and bend radius of the multimode optical fiber is discussed ,and its experimental curve is given. In this paper ,a new type of OTDR measuring system using single-chip microcomputer is introduced as well

  18. A modular optical sensor

    NASA Astrophysics Data System (ADS)

    Conklin, John Albert

    This dissertation presents the design of a modular, fiber-optic sensor and the results obtained from testing the modular sensor. The modular fiber-optic sensor is constructed in such manner that the sensor diaphragm can be replaced with different configurations to detect numerous physical phenomena. Additionally, different fiber-optic detection systems can be attached to the sensor. Initially, the modular sensor was developed to be used by university of students to investigate realistic optical sensors and detection systems to prepare for advance studies of micro-optical mechanical systems (MOMS). The design accomplishes this by doing two things. First, the design significantly lowers the costs associated with studying optical sensors by modularizing the sensor design. Second, the sensor broadens the number of physical phenomena that students can apply optical sensing techniques to in a fiber optics sensor course. The dissertation is divided into seven chapters covering the historical development of fiber-optic sensors, a theoretical overview of fiber-optic sensors, the design, fabrication, and the testing of the modular sensor developed in the course of this work. Chapter 1 discusses, in detail, how this dissertation is organized and states the purpose of the dissertation. Chapter 2 presents an historical overview of the development of optical fibers, optical pressure sensors, and fibers, optical pressure sensors, and optical microphones. Chapter 3 reviews the theory of multi-fiber optic detection systems, optical microphones, and pressure sensors. Chapter 4 presents the design details of the modular, optical sensor. Chapter 5 delves into how the modular sensor is fabricated and how the detection systems are constructed. Chapter 6 presents the data collected from the microphone and pressure sensor configurations of the modular sensor. Finally, Chapter 7 discusses the data collected and draws conclusions about the design based on the data collected. Chapter 7 also presents future work needed to expand the functionality and utility of the modular sensor.

  19. Demodulation System for Fiber Optic Bragg Grating Dynamic Pressure Sensing

    NASA Technical Reports Server (NTRS)

    Lekki, John D.; Adamovsky, Grigory; Floyd, Bertram

    2001-01-01

    Fiber optic Bragg gratings have been used for years to measure quasi-static phenomena. In aircraft engine applications there is a need to measure dynamic signals such as variable pressures. In order to monitor these pressures a detection system with broad dynamic range is needed. This paper describes an interferometric demodulator that was developed and optimized for this particular application. The signal to noise ratio was maximized through temporal coherence analysis. The demodulator was incorporated in a laboratory system that simulates conditions to be measured. Several pressure sensor configurations incorporating a fiber optic Bragg grating were also explored. The results of the experiments are reported in this paper.

  20. Temperature and pressure fiber-optic sensors applied to minimally invasive diagnostics and therapies

    NASA Astrophysics Data System (ADS)

    Hamel, Caroline; Pinet, Éric

    2006-02-01

    We present how fiber-optic temperature or pressure sensors could be applied to minimally invasive diagnostics and therapies. For instance a miniature pressure sensor based on micro-optical mechanical systems (MOMS) could solve most of the problems associated with fluidic pressure transduction presently used for triggering purposes. These include intra-aortic balloon pumping (IABP) therapy and other applications requiring detection of fast and/or subtle fluid pressure variations such as for intracranial pressure monitoring or for urology diagnostics. As well, miniature temperature sensors permit minimally invasive direct temperature measurement in diagnostics or therapies requiring energy transfer to living tissues. The extremely small size of fiber-optic sensors that we have developed allows quick and precise in situ measurements exactly where the physical parameters need to be known. Furthermore, their intrinsic immunity to electromagnetic interference (EMI) allows for the safe use of EMI-generating therapeutic or diagnostic equipments without compromising the signal quality. With the trend of ambulatory health care and the increasing EMI noise found in modern hospitals, the use of multi-parameter fiber-optic sensors will improve constant patient monitoring without any concern about the effects of EMI disturbances. The advantages of miniature fiberoptic sensors will offer clinicians new monitoring tools that open the way for improved diagnostic accuracy and new therapeutic technologies.

  1. The under-pressure behaviour of mechanical, electronic and optical properties of calcium titanate and its ground state thermoelectric response

    NASA Astrophysics Data System (ADS)

    Noor, N. A.; Alay-e-Abbas, S. M.; Hassan, M.; Mahmood, I.; Alahmed, Z. A.; Reshak, A. H.

    2017-08-01

    In this study, the elastic, electronic, optical and thermoelectric properties of CaTiO3 perovskite oxide have been investigated using first-principles calculations. The generalised gradient approximation (GGA) has been employed for evaluating structural and elastic properties, while the modified Becke Johnson functional is used for studying the optical response of this compound. In addition to ground state physical properties, we also investigate the effects of pressure (0, 30, 60, 90 and 120 GPa) on the electronic structure of CaTiO3. The application of pressure from 0 to 90 GPa shows that the indirect band gap (Γ-M) of CaTiO3 increases with increasing pressure and at 120 GPa it spontaneously decreases transforming cubic CaTiO3 to a direct (Γ-Γ) band gap material. The complex dielectric function and some optical parameters are also investigated under the application of pressures. All the calculated optical properties have been found to exhibit a shift to the higher energies with the increase of applied pressure suggesting potential optoelectronic device applications of CaTiO3. The thermoelectric properties of CaTiO3 have been computed at 0 GPa in terms of electrical conductivity, thermal conductivity and Seebeck coefficient.

  2. Optical zero-differential pressure switch and its evaluation in a multiple pressure measuring system

    NASA Technical Reports Server (NTRS)

    Powell, J. A.

    1977-01-01

    The design of a clamped-diaphragm pressure switch is described in which diaphragm motion is detected by a simple fiber-optic displacement sensor. The switch was evaluated in a pressure measurement system where it detected the zero crossing of the differential pressure between a static test pressure and a tank pressure that was periodically ramped from near zero to fullscale gage pressure. With a ramping frequency of 1 hertz and a full-scale tank pressure of 69 N/sq cm gage (100 psig), the switch delay was as long as 2 milliseconds. Pressure measurement accuracies were 0.25 to 0.75 percent of full scale. Factors affecting switch performance are also discussed.

  3. Eraser-based eco-friendly fabrication of a skin-like large-area matrix of flexible carbon nanotube strain and pressure sensors

    NASA Astrophysics Data System (ADS)

    Sahatiya, Parikshit; Badhulika, Sushmee

    2017-03-01

    This paper reports a new type of electronic, recoverable skin-like pressure and strain sensor, produced on a flexible, biodegradable pencil-eraser substrate and fabricated using a solvent-free, low-cost and energy efficient process. Multi-walled carbon nanotube (MWCNT) film, the strain sensing element, was patterned on pencil eraser with a rolling pin and a pre-compaction mechanical press. This induces high interfacial bonding between the MWCNTs and the eraser substrate, which enables the sensor to achieve recoverability under ambient conditions. The eraser serves as a substrate for strain sensing, as well as acting as a dielectric for capacitive pressure sensing, thereby eliminating the dielectric deposition step, which is crucial in capacitive-based pressure sensors. The strain sensing transduction mechanism is attributed to the tunneling effect, caused by the elastic behavior of the MWCNTs and the strong mechanical interlock between MWCNTs and the eraser substrate, which restricts slippage of MWCNTs on the eraser thereby minimizing hysteresis. The gauge factor of the strain sensor was calculated to be 2.4, which is comparable to and even better than most of the strain and pressure sensors fabricated with more complex designs and architectures. The sensitivity of the capacitive pressure sensor was found to be 0.135 MPa-1.To demonstrate the applicability of the sensor as artificial electronic skin, the sensor was assembled on various parts of the human body and corresponding movements and touch sensation were monitored. The entire fabrication process is scalable and can be integrated into large areas to map spatial pressure distributions. This low-cost, easily scalable MWCNT pin-rolled eraser-based pressure and strain sensor has huge potential in applications such as artificial e-skin in flexible electronics and medical diagnostics, in particular in surgery as it provides high spatial resolution without a complex nanostructure architecture.

  4. Eraser-based eco-friendly fabrication of a skin-like large-area matrix of flexible carbon nanotube strain and pressure sensors.

    PubMed

    Sahatiya, Parikshit; Badhulika, Sushmee

    2017-03-03

    This paper reports a new type of electronic, recoverable skin-like pressure and strain sensor, produced on a flexible, biodegradable pencil-eraser substrate and fabricated using a solvent-free, low-cost and energy efficient process. Multi-walled carbon nanotube (MWCNT) film, the strain sensing element, was patterned on pencil eraser with a rolling pin and a pre-compaction mechanical press. This induces high interfacial bonding between the MWCNTs and the eraser substrate, which enables the sensor to achieve recoverability under ambient conditions. The eraser serves as a substrate for strain sensing, as well as acting as a dielectric for capacitive pressure sensing, thereby eliminating the dielectric deposition step, which is crucial in capacitive-based pressure sensors. The strain sensing transduction mechanism is attributed to the tunneling effect, caused by the elastic behavior of the MWCNTs and the strong mechanical interlock between MWCNTs and the eraser substrate, which restricts slippage of MWCNTs on the eraser thereby minimizing hysteresis. The gauge factor of the strain sensor was calculated to be 2.4, which is comparable to and even better than most of the strain and pressure sensors fabricated with more complex designs and architectures. The sensitivity of the capacitive pressure sensor was found to be 0.135 MPa -1 .To demonstrate the applicability of the sensor as artificial electronic skin, the sensor was assembled on various parts of the human body and corresponding movements and touch sensation were monitored. The entire fabrication process is scalable and can be integrated into large areas to map spatial pressure distributions. This low-cost, easily scalable MWCNT pin-rolled eraser-based pressure and strain sensor has huge potential in applications such as artificial e-skin in flexible electronics and medical diagnostics, in particular in surgery as it provides high spatial resolution without a complex nanostructure architecture.

  5. An Inexpensive High Pressure Optical Absorption Cell for IR-VIS-UV Studies.

    ERIC Educational Resources Information Center

    Rodgers, V. E.; Angell, C. A.

    1983-01-01

    Describes an optical cell, suitable for high-pressure studies between at least -130 and +150 degrees Celsius, which may be assembled for about $50. Discusses experimental demonstration of principles involved when using the apparatus, including effects of pressure on coordination of ions in solution and on reaction rates in solution. (JN)

  6. Noninvasive monitoring of blood pressure using optical Ballistocardiography and Photoplethysmograph approaches.

    PubMed

    Chen, Zhihao; Yang, Xiufeng; Teo, Ju Teng; Ng, Soon Huat

    2013-01-01

    A new all optical method for long term and continuous blood pressure measurement and monitoring without using cuffs is proposed by using Ballistocardiography (BCG) and Photoplethysmograph (PPG). Based on BCG signal and PPG signal, a time delay between these two signals is obtained to calculate both systolic blood pressure and diastolic blood pressure via linear regression analysis. The fabricated noninvasive blood pressure monitoring device consists of a fiber sensor mat to measure BCG signal and a SpO2 sensor to measure PPG signal. A commercial digital oscillometric blood pressure meter is used to obtain reference values and for calibration. It has been found that by comparing with the reference device, our prototype has typical means and standard deviations of 9+/-5.6 mmHg for systolic blood pressure, 1.8+/-1.3 mmHg for diastolic blood pressure and 0.6+/-0.9 bpm for pulse rate, respectively. If the fiber optic SpO2 probe is used, this new all fiber cuffless noninvasive blood pressure monitoring device will truly be a MRI safe blood pressure measurement and monitoring device.

  7. Detection of trace cobalt ions in in vivo plant cells using a voltammetric interlocking system.

    PubMed

    Ly, Suw Young; Shin, Myoung Ho; Lee, Chang Hyun; Lee, Jin Hui; Kim, Mi Sook; Ji, Sang Woo; Park, Dong Won

    2013-01-01

    This experiment was conducted to establish a system for detecting trace cobalt ions in water and plant tissues using a voltammetric in vivo sensor. Cyclic and stripping voltammetry was devised from hand-made, macro-type implantable three-electrode systems. The results reached micro and nano working ranges at 100 sec accumulation time. The statistical detection limit (S/N) was attained at 6.0 ng L(-1). For the in vivo application, direct assay of cobalt ions was carried out in Eichhornia crassipes (EC) deep tissue in real time with a preconcentration time of 100 s. Interfaced techniques can be interlocked with other control systems.

  8. Interlocking-induced stiffness in stochastically microcracked materials beyond the transport percolation threshold

    NASA Astrophysics Data System (ADS)

    Picu, R. C.; Pal, A.; Lupulescu, M. V.

    2016-04-01

    We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above, the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold due to topological interlocking of sample subdomains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes nonlinear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks.

  9. Successful embolization using interlocking detachable coils for a congenital extrahepatic portosystemic venous shunt in a child.

    PubMed

    Yamagami, Takuji; Yoshimatsu, Rika; Matsumoto, Tomohiro; Terayama, Koshi; Nishiumra, Akira; Maeda, Yousuke; Nishimura, Tsunehiko

    2007-11-01

    The authors report the case of a 6-year-old boy with a congenital extrahepatic portosystemic venous shunt. He had hyperammonemia. The shunt was 18 mm in diameter and located between the inferior mesenteric vein and the left internal iliac vein. The flow in the shunt was very rapid. After decreasing blood flow by inflating a balloon catheter inserted into the left internal iliac vein from the femoral vein, a microcatheter was coaxially advanced to the shunt to embolize the shunt. Embolization was successfully performed with interlocking detachable coils and microcoils without any complication. This patient's hyperammonemia resolved soon after the procedure.

  10. Photovoltaic module and interlocked stack of photovoltaic modules

    DOEpatents

    Wares, Brian S.

    2012-09-04

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

  11. Micromechanics of fatigue in woven and stitched composites

    NASA Technical Reports Server (NTRS)

    Cox, B. N.; Dadkhah, M. S.; Inman, R. V.; Mitchell, M. R.; Morris, W. L.; Schroeder, S.

    1991-01-01

    The goal is to determine how microstructural factors, especially the architecture of microstructural factors, control fatigue damage in 3D reinforced polymer composites. Test materials were fabricated from various preforms, including stitched quasi-isotropic laminates, and through-the-thickness angle interlock, layer-to-layer angle interlock, and through-the-thickness stitching effect weaves. Preforms were impregnated with a tough resin by a special vacuum infiltration method. Most tests are being performed in uniaxial compression/compression loading. In all cases to date, failure has occurred not by delamination, but by shear failure, which occurs suddenly rather than by gradual macroscopic crack growth. Some theoretical aspects of bridging are also examined.

  12. Liquid crystalline fiber optic colorimeter for hydrostatic pressure measurement

    NASA Astrophysics Data System (ADS)

    Wolinski, Tomasz R.; Bajdecki, Waldemar K.; Domanski, Andrzej W.; Karpierz, Miroslaw A.; Konopka, Witold; Nasilowski, T.; Sierakowski, Marek W.; Swillo, Marcin; Dabrowski, Roman S.; Nowinowski-Kruszelnicki, Edward; Wasowski, Janusz

    2001-08-01

    This paper presents results of tests performed on a fiber optic system of liquid crystalline transducer for hydrostatic pressure monitoring based on properties of colorimetry. The system employs pressure-induced deformations occurring in liquid crystalline (LC) cells configured in a homogeneous Frederiks geometry. The sensor is compared of a round LC cell placed inside a specially designed pressure chamber. As a light source we used a typical diode operating at red wavelength and modulated using standard techniques. The pressure transducer was connected to a computer with a specially designed interface built on the bas of advanced ADAM modules. Results indicate that the system offers high response to pressure with reduced temperature sensitivity and, depending on the LC cell used, can be adjusted for monitoring of low hydrostatic pressures up to 6 MPa. These studies have demonstrated the feasibility of fiber optic liquid crystal colorimeter for hydrostatic pressure sensing specially dedicated to pipe- lines, mining instrumentation, and process-control technologies.

  13. Reversible photocapture of a [2]rotaxane harnessing a barbiturate template.

    PubMed

    Tron, Arnaud; Thornton, Peter J; Lincheneau, Christophe; Desvergne, Jean-Pierre; Spencer, Neil; Tucker, James H R; McClenaghan, Nathan D

    2015-01-16

    Photoirradiation of a hydrogen-bonded molecular complex comprising acyclic components, namely, a stoppered thread (1) with a central barbiturate motif and an optimized doubly anthracene-terminated acyclic Hamilton-like receptor (2b), leads to an interlocked architecture, which was isolated and fully characterized. The sole isolated interlocked photoproduct (Φ = 0.06) is a [2]rotaxane, with the dimerized anthracenes assuming a head-to-tail geometry, as evidenced by NMR spectroscopy and consistent with molecular modeling (PM6). A different behavior was observed on irradiating homologous molecular complexes 1⊂2a, 1⊂2b, and 1⊂2c, where the spacers of 2a, 2b, and 2c incorporated 3, 6, and 9 methylene units, respectively. While no evidence of interlocked structure formation was observed following irradiation of 1⊂2a, a kinetically labile rotaxane was obtained on irradiating the complex 1⊂2c, and ring slippage was revealed. A more stable [2]rotaxane was formed on irradiating 1⊂2b, whose capture is found to be fully reversible upon heating, thereby resetting the system, with some fatigue (38%) after four irradiation–thermal reversion cycles.

  14. Hydrothermally grown α-MnO2 interlocked mesoporous micro-cubes of several nanocrystals as selective and sensitive nitrogen dioxide chemoresistive gas sensors

    NASA Astrophysics Data System (ADS)

    Shinde, Pritamkumar V.; Xia, Qi Xun; Ghule, Balaji G.; Shinde, Nanasaheb M.; Seonghee, Jeong; Kim, Kwang Ho; Mane, Rajaram S.

    2018-06-01

    The interesting and multifunctional properties of alpha-manganese dioxide (α-MnO2) are considered to be highly sensitive and selective to nitrogen dioxide (NO2) chemresistive gas sensors. The α-MnO2 mesoporous interlocked micro-cubes composed of several interconnected nanocrystals synthesized by a facile and low-cost hydrothermal method on soda-lime glass substrate are envisaged as selective and sensitive NO2 gas sensors. Phase-purity and surface area with pore-size distribution are initially screened. The three-dimensional α-MnO2 mesoporous-cube-based gas sensors tested for NO2 gas from room-temperature (27 °C) to 250 °C have demonstrated 33% response for 100 ppm NO2 levels at 150 °C. The response and recovery time values of the α-MnO2 sensor are found to be 26 s and recovery 91 s, respectively, with high selectivity, good sensitivity, and considerable chemical and environmental stabilities, confirming the gas sensor applications potentiality of α-MnO2 morphology which is a combination of interlocked mesoporous micro-cubes and well-connected nanocrystals.

  15. Instrumentation and control system architecture of ECRH SST1

    NASA Astrophysics Data System (ADS)

    Patel, Harshida; Patel, Jatin; purohit, Dharmesh; Shukla, B. K.; Babu, Rajan; Mistry, Hardik

    2017-07-01

    The Electron Cyclotron Resonance Heating (ECRH) system is an important heating system for the reliable start-up of tokamak. The 42GHz and 82.6GHz Gyrotron based ECRH systems are used in tokomaks SST-1 and Aditya to carry out ECRH related experiments. The Gyrotrons are high power microwave tubes used as a source for ECRH systems. The Gyrotrons need to be handled with optimum care right from the installation to its Full parameter control operation. The Gyrotrons are associated with the subsystems like: High voltage power supplies (Beam voltage and anode voltage), dedicated crowbar system, magnet, filament and ion pump power supplies and cooling system. The other subsystems are transmission line, launcher and dummy load. A dedicated VME based data acquisition & control (DAC) system is developed to operate and control the Gyrotron and its associated sub system. For the safe operation of Gyrotron, two level interlocks with fail-safe logic are developed. Slow signals that are operated in scale of millisecond range are programmed through software and hardware interlock in scale of microsecond range are designed and developed indigenously. Water-cooling and the associated interlock are monitored and control by data logger with independent human machine interface.

  16. SU-E-T-243: Design of a Novel Testing Port for Radiation Protection and Shielding Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanny, S; Parsai, E; Harrell, D

    2015-06-15

    Purpose: The majority of radiation shielding research utilizes Monte Carlo simulation because of the difficulty in eliminating secondary radiations from measurements. We have designed a test port into a primary barrier of our newest vault to allow for shielding measurements while ensuring adequate protection to the public and staff during normal machine operation. This port allows for measurement of attenuation values of shielding materials, differential dose albedos, and radiation scatter fractions. Methods: The vault design utilized the maze as part of a compound primary barrier. The test port is contained within the maze and is centered along isocenter. The innermore » 30 cm has a 20×20 cm{sup 2} opening, while the remaining length has a 30×30 cm{sup 2} opening. The block that contains the port has a density of 200 pcf to minimize internal scatter. The 30×30 cm{sup 2} opening is occupied by removable 215 pcf concrete blocks. The innermost and outermost blocks activate an interlock wired into the beam-enable loop. This disallows beam-on in treatment mode if the interlock isn’t closed. The interlock can be overridden in service mode, or by-passed via an override switch in case of circuit failure. Results: The test port was installed in August. The beam is disabled when the interlock is tripped. Measurements taken when the primary beam is not incident on the port are indistinguishable from background. Ambient dose levels surrounding the vault with the designed shielding blocks in place are all within allowable limits for occupational workers. Conclusions: We have designed and installed a unique testing port for radiation protection and shielding measurements. This port is appropriately interlocked and designed to mitigate any risks of incidental exposure to staff or members of the public. The test port design allows measurements with “good geometry” and efficient removal of contaminating sources of radiation present in many shielding measurements. Daniel Harrell and Jim Noller are employees of Shielding Construction Solutions, Inc, the shielding construction company that built the vault discussed in this abstract. Manjit Chopra is an employee of Universal Minerals International, Inc, the company that provided the aggregates for the high density concretes used in the vault construction.« less

  17. Fiber optic plantar pressure/shear sensor

    NASA Astrophysics Data System (ADS)

    Soetanto, William; Nguyen, Ngoc T.; Wang, Wei-Chih

    2011-04-01

    A full-scale foot pressure/shear sensor that has been developed to help diagnose the cause of ulcer formation in diabetic patients is presented. The design involves a tactile sensor array using intersecting optical fibers embedded in soft elastomer. The basic configuration incorporates a mesh that is comprised of two sets of parallel optical fiber plane; the planes are configured so the parallel rows of fiber of the top and bottom planes are perpendicular to each other. Threedimensional information is determined by measuring the loss of light from each of the waveguide to map the overall pressure distribution and the shifting of the layers relative to each other. In this paper we will present the latest development on the fiber optic plantar pressure/shear sensor which can measure normal force up from 19.09 kPa to 1000 kPa.

  18. Cost-effective optical fiber pressure sensor based on intrinsic Fabry-Perot interferometric micro-cavities

    NASA Astrophysics Data System (ADS)

    Domingues, M. Fátima; Rodriguez, Camilo A.; Martins, Joana; Tavares, Cátia; Marques, Carlos; Alberto, Nélia; André, Paulo; Antunes, Paulo

    2018-05-01

    In this work, a cost-effective procedure to manufacture optical fiber pressure sensors is presented. This has a high relevance for integration in robotic exoskeletons or for gait plantar pressure monitoring within the physical rehabilitation scenarios, among other applications. The sensing elements are based on Fabry-Perot interferometric (FPI) micro-cavities, created from the recycling of optical fibers previously destroyed by the catastrophic fuse effect. To produce the pressure sensors, the fiber containing the FPI micro-cavities was embedded in an epoxy resin cylinder used as pressure transducer and responsible to transfer the pressure applied on its surface to the optical fiber containing the FPI micro-cavity. Before the embedding process, some FPI sensors were also characterized to strain variations. After that, the effect of the encapsulation of the FPI structure into the resin was assessed, from which a slight decrease on the FPI interferogram fringes visibility was verified, indicating a small increase in the micro-cavity length. Up on the sensors characterization, a linear dependence of the wavelength shift with the induced pressure was obtained, which leads to a maximum sensitivity of 59.39 ± 1.7 pm/kPa. Moreover, direct dependence of the pressure sensitivity with the micro-cavity volume and length was found.

  19. Hermetic Glass-To-Metal Seal For Instrumentation Window

    NASA Technical Reports Server (NTRS)

    Hill, Arthur J.

    1992-01-01

    Proposed mounting scheme for optical element of instrumentation window in pressure vessel ensures truly hermetic seal while minimizing transmission of stress to optical element. Brazed metal seal superior to conventional gaskets of elastomer, carbon, asbestos, or other material compressed between optical element and wall of vessel. Concentric brazed joints in proposed seal bond metal ring to wall of vessel and to optical element. U-shaped cross section allows ring to flex under pressure.

  20. Simultaneous pressure-volume measurements using optical sensors and MRI for left ventricle function assessment during animal experiment.

    PubMed

    Abi-Abdallah Rodriguez, Dima; Durand, Emmanuel; de Rochefort, Ludovic; Boudjemline, Younes; Mousseaux, Elie

    2015-01-01

    Simultaneous pressure and volume measurements enable the extraction of valuable parameters for left ventricle function assessment. Cardiac MR has proven to be the most accurate method for volume estimation. Nonetheless, measuring pressure simultaneously during MRI acquisitions remains a challenge given the magnetic nature of the widely used pressure transducers. In this study we show the feasibility of simultaneous in vivo pressure-volume acquisitions with MRI using optical pressure sensors. Pressure-volume loops were calculated while inducing three inotropic states in a sheep and functional indices were extracted, using single beat loops, to characterize systolic and diastolic performance. Functional indices evolved as expected in response to positive inotropic stimuli. The end-systolic elastance, representing the contractility index, the diastolic myocardium compliance, and the cardiac work efficiency all increased when inducing inotropic state enhancement. The association of MRI and optical pressure sensors within the left ventricle successfully enabled pressure-volume loop analysis after having respective data simultaneously recorded during the experimentation without the need to move the animal between each inotropic state. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Probabilistic Modeling of Intracranial Pressure Effects on Optic Nerve Biomechanics

    NASA Technical Reports Server (NTRS)

    Ethier, C. R.; Feola, Andrew J.; Raykin, Julia; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian C.

    2016-01-01

    Altered intracranial pressure (ICP) is involved/implicated in several ocular conditions: papilledema, glaucoma and Visual Impairment and Intracranial Pressure (VIIP) syndrome. The biomechanical effects of altered ICP on optic nerve head (ONH) tissues in these conditions are uncertain but likely important. We have quantified ICP-induced deformations of ONH tissues, using finite element (FE) and probabilistic modeling (Latin Hypercube Simulations (LHS)) to consider a range of tissue properties and relevant pressures.

  2. Measuring refractive index and volume of liquid under high pressure with optical coherence tomography and light microscopy.

    PubMed

    Wang, Donglin; Yang, Kun; Zhou, Yin

    2016-03-20

    Measuring the refractive index and volume of liquid under high pressure simultaneously is a big challenge. This paper proposed an alternative solution by combing optical coherence tomography with microscopy. An experiment for a feasibility study was carried out on polydimethylsiloxane liquid in a diamond anvil cell. The refractive index of the sample increased dramatically with pressure loaded, and the curve of pressure volume was also obtained.

  3. Optical fiber pressure and acceleration sensor fabricated on a fiber endface

    DOEpatents

    Zhu, Yizheng; Wang, Xingwei; Xu, Juncheng; Wang, Anbo

    2006-05-30

    A fiber optic sensor has a hollow tube bonded to the endface of an optical fiber, and a diaphragm bonded to the hollow tube. The fiber endface and diaphragm comprise an etalon cavity. The length of the etalon cavity changes when applied pressure or acceleration flexes the diaphragm. The entire structure can be made of fused silica. The fiber, tube, and diaphragm can be bonded with a fusion splice. The present sensor is particularly well suited for measuring pressure or acceleration in high temperature, high pressure and corrosive environments (e.g., oil well downholes and jet engines). The present sensors are also suitable for use in biological and medical applications.

  4. An arc tangent function demodulation method of fiber-optic Fabry-Perot high-temperature pressure sensor

    NASA Astrophysics Data System (ADS)

    Ren, Qianyu; Li, Junhong; Hong, Yingping; Jia, Pinggang; Xiong, Jijun

    2017-09-01

    A new demodulation algorithm of the fiber-optic Fabry-Perot cavity length based on the phase generated carrier (PGC) is proposed in this paper, which can be applied in the high-temperature pressure sensor. This new algorithm based on arc tangent function outputs two orthogonal signals by utilizing an optical system, which is designed based on the field-programmable gate array (FPGA) to overcome the range limit of the original PGC arc tangent function demodulation algorithm. The simulation and analysis are also carried on. According to the analysis of demodulation speed and precision, the simulation of different numbers of sampling points, and measurement results of the pressure sensor, the arc tangent function demodulation method has good demodulation results: 1 MHz processing speed of single data and less than 1% error showing practical feasibility in the fiber-optic Fabry-Perot cavity length demodulation of the Fabry-Perot high-temperature pressure sensor.

  5. An optical fiber infrasound sensor: a new lower limit on atmospheric pressure noise between 1 and 10 Hz.

    PubMed

    Zumberge, Mark A; Berger, Jonathan; Hedlin, Michael A H; Husmann, Eric; Nooner, Scott; Hilt, Richard; Widmer-Schnidrig, Rudolf

    2003-05-01

    A new distributed sensor for detecting pressure variations caused by distant sources has been developed. The instrument reduces noise due to air turbulence in the infrasound band by averaging pressure along a line by means of monitoring strain in a long tubular diaphragm with an optical fiber interferometer. Above 1 Hz, the optical fiber infrasound sensor (OFIS) is less noisy than sensors relying on mechanical filters. Records collected from an 89-m-long OFS indicate a new low noise limit in the band from 1 to 10 Hz. Because the OFIS integrates pressure variations at light-speed rather than the speed of sound, phase delays of the acoustical signals caused by the sensor are negligible. Very long fiber-optic sensors are feasible and hold the promise of better wind-noise reduction than can be achieved with acoustical-mechanical systems.

  6. Fiber-optic interferometric sensors for measurements of pressure fluctuations - Experimental evaluation

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.; Soderman, P. T.

    1993-01-01

    A fiber optic interferometric sensor that is being developed at NASA Ames Research Center for pressure fluctuation measurements in wind tunnels is considered. Preliminary evaluation indicates that the fiber optic interferometric sensor can be successfully used as an aeroacoustic sensor and is capable of providing a powerful instrument to solve complex acoustic measurement problems in wind tunnels.

  7. All-optical non-mechanical fiber-coupled sensor for liquid- and airborne sound detection.

    NASA Astrophysics Data System (ADS)

    Rohringer, Wolfgang; Preißer, Stefan; Fischer, Balthasar

    2017-04-01

    Most fiber-optic devices for pressure, strain or temperature measurements are based on measuring the mechanical deformation of the optical fiber by various techniques. While excellently suited for detecting strain, pressure or structure-borne sound, their sensitivity to liquid- and airborne sound is so far not comparable with conventional capacitive microphones or piezoelectric hydrophones. Here, we present an all-optical acoustic sensor which relies on the detection of pressure-induced changes of the optical refractive index inside a rigid, millimeter-sized, fiber-coupled Fabry-Pérot interferometer (FPI). No mechanically movable or deformable parts take part in the signal transduction chain. Therefore, due to the absence of mechanical resonances, this sensing principle allows for high sensitivity as well as a flat frequency response over an extraordinary measurement bandwidth. As a fiber-coupled device, it can be integrated easily into already available distributed fiber-optic networks for geophysical sensing. We present characterization measurements demonstrating the sensitivity, frequency response and directivity of the device for sound and ultrasound detection in air and water. We show that low-frequency temperature and pressure drifts can be recorded in addition to acoustic sensing. Finally, selected application tests of the laser-based hydrophone and microphone implementation are presented.

  8. Intracranial pressure-induced optic nerve sheath response as a predictive biomarker for optic disc edema in astronauts.

    PubMed

    Wostyn, Peter; De Deyn, Peter Paul

    2017-11-01

    A significant proportion of the astronauts who spend extended periods in microgravity develop ophthalmic abnormalities. Understanding this syndrome, called visual impairment and intracranial pressure (VIIP), has become a high priority for National Aeronautics and Space Administration, especially in view of future long-duration missions (e.g., Mars missions). Moreover, to ensure selection of astronaut candidates who will be able to complete long-duration missions with low risk of the VIIP syndrome, it is imperative to identify biomarkers for VIIP risk prediction. Here, we hypothesize that the optic nerve sheath response to alterations in intracranial pressure may be a potential predictive biomarker for optic disc edema in astronauts. If confirmed, this biomarker could be used for preflight identification of astronauts at risk for developing VIIP-associated optic disc edema.

  9. Pressure-induced elastic, electronic and optical properties of Ba(Mg1/3Nb2/3)O3 using first principles calculations

    NASA Astrophysics Data System (ADS)

    Islam, A. K. M. Farid Ul; Liton, M. N. H.; Anowar, M. G. M.

    2018-06-01

    The pressure dependent mechanical stability, electronic structure and optical properties of Ba(Mg1/3Nb2/3)O3 (BMN) perovskite have been investigated in the framework of the density functional theory. Geometry optimization shows that the BMN possesses more compressibility along c-axis. The dependency of the elastic constants, the aggregated elastic moduli (B, G) and the elastic anisotropy on pressure has also been studied. BMN shows brittle character at ambient pressure but it becomes ductile, and also stiffer and anisotropic nature due to external pressure. Electronic structure indicates the conversion of indirect to direct band gap with increasing pressure. Dominated ionic character of BMN is confirmed from the bond population analysis. By analyzing the optical spectra, a red shift at the band edge is observed in the visible range indicating the band gap tuning. It is seen that the static dielectric constant increases with pressure.

  10. Piezoelectroluminescent Optical Fiber Sensor for Diagnostics of the Stress State and Defectoscopy of Composites

    NASA Astrophysics Data System (ADS)

    Pan'kov, A. A.

    2017-05-01

    A mathematical model is developed for a piezoelectroluminescent optical fiber pressure sensor is developed in which the mechanoluminescence effect results from the interaction of electroluminescent and piezoelectric coverings put on an optical fiber. The additional control electrodes expand the possibilities of analyzing the distribution of pressure along the fiber. The probability density function of pressure distribution along the sensor is found from results of the measured intensity of light coming from the optical fiber. The problem is reduced to the solution of the Fredholm integral equation of the first kind with a difference kernel depending on the effective parameters of the sensor and properties of an electroluminophor. An algorithm of step-by-step scanning of the nonuniform pressure along the sensor by using the running wave of control voltage is developed. On each step, the amplitude of the wave is increased by a small value, which leads to the appearance of additional luminescence sections of the electroluminophor and the corresponding "glow pulses" at the output of the optical fiber sensor. The sought-for nodal values of pressure and their locations are calculated according to the form of the glow pulses with account of amplitude of the wave at each scanning step. Results of numerical modeling of the process of location of pressure nonuniformities along the sensor by the running wave are found for different scanning steps.

  11. Active Temperature Compensation Using a High-Temperature, Fiber Optic, Hybrid Pressure and Temperature Sensor

    NASA Astrophysics Data System (ADS)

    Fielder, Robert S.; Palmer, Matthew E.; Davis, Matthew A.; Engelbrecht, Gordon P.

    2006-01-01

    Luna Innovations has developed a novel, fiber optic, hybrid pressure-temperature sensor system for extremely high-temperature environments that is capable of reliable operation up to 1050 °C. This system is based on the extremely high-temperature fiber optic sensors already demonstrated during previous work. The novelty of the sensors presented here lies in the fact that pressure and temperature are measured simultaneously with a single fiber and a single transducer. This hybrid approach will enable highly accurate active temperature compensation and sensor self-diagnostics not possible with other platforms. Hybrid pressure and temperature sensors were calibrated by varying both pressure and temperature. Implementing active temperature compensation resulted in a ten-fold reduction in the temperature-dependence of the pressure measurement. Sensors were tested for operability in a relatively high neutron dose environment up to 6.9×1017 n/cm2. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for space nuclear power applications including extremely low mass, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future space exploration missions would provide a substantial improvement in spacecraft instrumentation. Additional development is needed, however, before these advantages can be realized. This paper will highlight recent demonstrations of fiber optic sensors in environments relevant to space nuclear applications. Successes and lessons learned will be highlighted. Additionally, development needs will be covered which will suggest a framework for a coherent plan to continue work in this area.

  12. First principles and Debye model study of the thermodynamic, electronic and optical properties of MgO under high-temperature and pressure

    NASA Astrophysics Data System (ADS)

    Miao, Yurun; Li, Huayang; Wang, Hongjuan; He, Kaihua; Wang, Qingbo

    2018-02-01

    First principles and quasi-harmonic Debye model have been used to study the thermodynamic properties, enthalpies, electronic and optical properties of MgO up to the core-mantle boundary (CMB) condition (137 GPa and 3700 K). Thermodynamic properties calculation includes thermal expansion coefficient and capacity, which have been studied up to the CMB pressure (137 GPa) and temperature (3700 K) by the Debye model with generalized gradient approximation (GGA) and local-density approximation (LDA). First principles with hybrid functional method (PBE0) has been used to calculate the electronic and optical properties under pressure up to 137 GPa and 0 K. Our results show the Debye model with LDA and first principles with PBE0 can provide accurate thermodynamic properties, enthalpies, electronic and optical properties. Calculated enthalpies show that MgO keep NaCl (B1) structure up to 137 GPa. And MgO is a direct bandgap insulator with a 7.23 eV calculated bandgap. The bandgap increased with increasing pressure, which will induce a blue shift of optical properties. We also calculated the density of states (DOS) and discussed the relation between DOS and band, optical properties. Equations were used to fit the relations between pressure and bandgaps, absorption coefficient (α(ω)) of MgO. The equations can be used to evaluate pressure after careful calibration. Our calculations can not only be used to identify some geological processes, but also offer a reference to the applications of MgO in the future.

  13. Polarization-dependent infrared reflectivity study of Sr 2.5 Ca 11.5 Cu 24 O 41 under pressure: Charge dynamics, charge distribution, and anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, S.; Huber, A.; Ammerahl, U.

    2014-12-18

    We present a polarization-dependent infrared reflectivity study of the spin-ladder compound Sr₂̣₅Ca₁₁̣₅Cu₂₄O₄₁ under pressure. The optical response is strongly anisotropic, with the highest reflectivity along the ladders/chains ( E∥c) revealing a metallic character. For the polarization direction perpendicular to the ladder plane, an insulating behavior is observed. With increasing pressure the optical conductivity for E∥c shows a strong increase, which is most pronounced below 2000cm⁻¹. According to the spectral weight analysis of the E∥c optical conductivity the hole concentration in the ladders increases with increasing pressure and tends to saturate at high pressure. At ~7.5 GPa the number of holesmore » per Cu atom in the ladders has increased by Δδ=0.09(±0.01), and the Cu valence in the ladders has reached the value +2.33. Thus, the optical data suggest that Sr₂̣₅Ca₁₁̣₅Cu₂₄O₄₁ remains electronically highly anisotropic up to high pressure, also at low temperatures.« less

  14. MEMS fiber-optic Fabry-Perot pressure sensor for high temperature application

    NASA Astrophysics Data System (ADS)

    Fang, G. C.; Jia, P. G.; Cao, Q.; Xiong, J. J.

    2016-10-01

    We design and demonstrate a fiber-optic Fabry-Perot pressure sensor (FOFPPS) for high-temperature sensing by employing micro-electro-mechanical system (MEMS) technology. The FOFPPS is fabricated by anodically bonding the silicon wafer and the Pyrex glass together and fixing the facet of the optical fiber in parallel with the silicon surface by glass frit and organic adhesive. The silicon wafer can be reduced through dry etching technology to construct the sensitive diaphragm. The length of the cavity changes with the deformation of the diaphragm due to the loaded pressure, which leads to a wavelength shift of the interference spectrum. The pressure can be gauged by measuring the wavelength shift. The pressure experimental results show that the sensor has linear pressure sensitivities ranging from 0 kPa to 600 kPa at temperature range between 20°C to 300°C. The pressure sensitivity at 300°C is approximately 27.63 pm/kPa. The pressure sensitivities gradually decrease with increasing the temperature. The sensor also has a linear thermal drift when temperature changes from 20°C - 300°C.

  15. One-stage free-vortex aerodynamic window with pressure ratio 100 and atmospheric exhaust

    NASA Astrophysics Data System (ADS)

    Malkov, Victor M.; Trilis, A. V.; Savin, Andrew V.; Druzhinin, S. L.

    2005-03-01

    The aerodynamic windows (AW) are intended for a high power extraction from the gas laser optical cavity, where the pressure is much lower than environment pressure. The main requirements for the aerodynamic windows are to satisfy a low level of optical disturbances in a laser beam extraction channel and an air leakage absence into the optical cavity. Free vortex AW are most economic from a point of working gas consumption and the greatest pressure differential is realized on them at an exhaust to atmosphere. For ideal gas it is possible to receive as much as large pressure differential, however for real gas a pressure differential more than P>=50 is difficult to achieve. To achieve the pressure ratio 100 in free vortex single-stage AW the method of stabilizing of boundary layer was used. The gas of curtain was decelerated in the diffuser and was exhausted into the atmosphere straightly. The pressure recovery improvement was achieved by using the boundary layer blowing inside the diffuser. Only 10% of total mass flow was used for boundary layer blowing.

  16. Status of the Superconducting Insertion Device Control at TLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, K. H.; Wang, C. J.; Lee, Demi

    2007-01-19

    Superconducting insertion devices are installed at Taiwan Light Source to meet the rapidly growing demand of X-ray users. A control system supports the operation of all these superconducting insertion devices. Control system coordinates the operation of the main power supply and the trimming power supply to charge/discharge the magnet and provide essential interlock protection for the coils and vacuum ducts. Quench protection and various cryogenic interlocks are designed to prevent damage to the magnet. A friendly user interface supports routine operation. Various applications are also developed to aid the operation of these insertion devices. Design consideration and details of themore » implementation will be summarized in this report.« less

  17. Catenanes: Fifty Years of Molecular Links

    PubMed Central

    Gil-Ramírez, Guzmán; Leigh, David A; Stephens, Alexander J

    2015-01-01

    Half a century after Schill and Lüttringhaus carried out the first directed synthesis of a [2]catenane, a plethora of strategies now exist for the construction of molecular Hopf links (singly interlocked rings), the simplest type of catenane. The precision and effectiveness with which suitable templates and/or noncovalent interactions can arrange building blocks has also enabled the synthesis of intricate and often beautiful higher order interlocked systems, including Solomon links, Borromean rings, and a Star of David catenane. This Review outlines the diverse strategies that exist for synthesizing catenanes in the 21st century and examines their emerging applications and the challenges that still exist for the synthesis of more complex topologies. PMID:25951013

  18. Power connect safety and connection interlock

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E. (Inventor)

    1992-01-01

    A power connect safety and connection interlock system is shown for use with inverters and other DC loads (16) which include capacitor filter banks (14) at their DC inputs. A safety circuit (20) operates a spring (26) biased, solenoid (22) driven mechanical connection interference (24) which prevents mating and therefore electrical connection between the power contactor halves (11, 13) of the main power contacts (12) until the capacitor bank is safely precharged through auxiliary contacts (18). When the DC load (16) is shut down, the capacitor bank (14) is automatically discharged through a discharging power resistor (66) by a MOSFET transistor (60) through a discharging power resistor (66) only when both the main power contacts and auxiliary contacts are disconnected.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabeel A. Riza

    The goals of the first six months of this project were to begin laying the foundations for both the SiC front-end optical chip fabrication techniques for high pressure gas species sensing as well as the design, assembly, and test of a portable high pressure high temperature calibration test cell chamber for introducing gas species. This calibration cell will be used in the remaining months for proposed first stage high pressure high temperature gas species sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for themore » mechanical elements as well as the optical systems are provided. Photographs of the fabricated calibration test chamber cell, the optical sensor setup with the calibration cell, the SiC sample chip holder, and relevant signal processing mathematics are provided. Initial experimental data from both the optical sensor and fabricated test gas species SiC chips is provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature high pressure gas species detection optical sensor technology.« less

  20. Study on the deformations of the lamina cribrosa during glaucoma.

    PubMed

    Tian, Hanjing; Li, Long; Song, Fan

    2017-06-01

    The lamina cribrosa is the primary site of optic nerve injury during glaucoma, and its deformations induced by elevated intraocular pressure are associated directly with the optic nerve injury and visual field defect. However, the deformations in a living body have been poorly understood yet so far. It is because that integral observation and precise measurement of the deformations in vivo are now almost impossible in the clinical diagnosis and treatment of glaucoma. In the present study, a new mechanical model of the lamina cribrosa is presented by using Reissner's thin plate theory. This model accurately displays the stress and deformation states in the lamina cribrosa under elevated intraocular pressure, in which the shear deformation is not presented by the previous models, however, is demonstrated to play a key role in the optic nerve injury. Further, the deformations of the structures, involving the optic nerve channels and the laminar sheets in the lamina cribrosa, are first investigated in detail. For example, the dislocation of the laminar sheets reaches 18.6μm under the intraocular pressure of 40mmHg, which is large enough to damage the optic nerve axons. The results here confirm some previously proposed clinical speculations on the deformations of the pore shape in the lamina cribrosa under elevated intraocular pressure during glaucoma. Finally, some essentially clinical questions existed during glaucoma, such as the pathological mechanism of the open-angle glaucoma with normal intraocular pressure, are discussed. The present study is beneficial to deeply understanding the optic nerve injury during glaucoma. The lamina cribrosa is the primary site of the optic nerve injury induced by elevated intraocular pressure during glaucoma. Under high intraocular pressure, the optic nerve channel near to the periphery of the lamina cribrosa (Channel A) is deformed to become into a tortuous elliptical horn from a straight cylinder, while the optic nerve channel near to the center of the lamina cribrosa (Channel B) is deformed to become into a straight horn from a straight cylinder. These deformations cause both the axoplasm flow obstacle in the axon fibers and the blocked blood flow in the capillaries which pass through the channels, and trigger the visual field defect during glaucoma. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Pulsed Submillimeter Laser Program.

    DTIC Science & Technology

    1979-05-15

    number of interrelated subsystems required for a heterodyning FIR radar were investigated. The work focused on optically pumped FIR lasers which... laser pressure. Figure 9 illustrates the effect on optical shape of raising laser pressure. It can be seen that considerable pulse shortening occurs as...range in which single transverse mode operation of a TE CO2 laser has been achieved. For the purposes of this program the optical cavity was

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabeel A. Riza

    The goals of the second six months of the Phase 2 of this project were to conduct first time experimental studies using optical designs and some initial hardware developed in the first 6 months of Phase 2. One focus is to modify the SiC chip optical properties to enable gas species sensing with a specific gas species under high temperature and pressure. The goal was to acquire sensing test data using two example inert and safe gases and show gas discrimination abilities. A high pressure gas mixing chamber was to be designed and assembled to achieve the mentioned gas sensingmore » needs. Another goal was to initiate high temperature probe design by developing and testing a probe design that leads to accurately measuring the thickness of the deployed SiC sensor chip to enable accurate overall sensor system design. The third goal of this phase of the project was to test the SiC chip under high pressure conditions using the earlier designed calibration cell to enable it to act as a pressure sensor when doing gas detection. In this case, experiments using a controlled pressure system were to deliver repeatable pressure measurement data. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the optical systems are provided. Photographs or schematics of the fabricated hardware are provided. Experimental data from the three optical sensor systems (i.e., Thickness, pressure, and gas species) is provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature high pressure gas species detection optical sensor technology.« less

  3. Laser bandwidth interlock capable of single pulse detection and rejection

    DOEpatents

    Armstrong, James P; Telford, Steven James; Lanning, Rodney Kay; Bayramian, Andrew James

    2012-10-09

    A pulse of laser light is switched out of a pulse train and spatially dispersed into its constituent wavelengths. The pulse is collimated to a suitable size and then diffracted by high groove density multilayer dielectric gratings. This imparts a different angle to each individual wavelength so that, when brought to the far field with a lens, the colors have spread out in a linear arrangement. The distance between wavelengths (resolution) can be tailored for the specific laser and application by altering the number of times the beam strikes the diffraction gratings, the groove density of the gratings and the focal length of the lens. End portions of the linear arrangement are each directed to a respective detector, which converts the signal to a 1 if the level meets a set-point, and a 0 if the level does not. If both detectors produces a 1, then the pulse train is allowed to propagate into an optical system.

  4. Pressure tuning the lattice and optical response of silver sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhao, E-mail: zhaozhao@stanford.edu; Wei, Hua; Mao, Wendy L.

    2016-06-27

    Binary transition metal chalcogenides have attracted increasing attention for their unique structural and electronic properties. High pressure is a powerful tool for tuning the lattice and electronic structure of transition metal chalcogenides away from their pristine states. In this work, we systematically studied the in situ structural and optical behavior of silver sulfide (Ag{sub 2}S) under pressure by synchrotron X-ray diffraction and infrared spectroscopy measurements in a diamond anvil cell. Upon compression, Ag{sub 2}S undergoes structural symmetrization accompanied by a series of structural transitions while the crystallographic inequivalence of the two Ag sites is maintained. Electronically, pressure effectively tunes themore » ambient semiconducting Ag{sub 2}S into a metal at ∼22 GPa. Drude model analysis shows that the optical conductivity evolves significantly, reaching the highest value of 100 Ω{sup −1} cm{sup −1} at ∼40 GPa. Our results highlight the structural and electronic tunability of silver chalcogenides as a function of pressure and suggest the potential of Ag{sub 2}S as a platform for developing optical and opto-electronic applications.« less

  5. Elasto-optics in double-coated optical fibers induced by axial strain and hydrostatic pressure.

    PubMed

    Yang, Yu-Ching; Lee, Haw-Long; Chou, Huann-Ming

    2002-04-01

    Stresses, microbending loss, and refractive-index changes induced simultaneously by axial strain and hydrostatic pressure in double-coated optical fibers are analyzed. The lateral pressure and normal stresses in the optical fiber, primary coating, and secondary coating are derived. Also presented are the microbending loss and refractive-index changes in the glass fiber. The normal stresses are affected by axial strain, hydrostatic pressure, material properties, and thickness of the primary and secondary coatings. It is found that microbending loss decreases with increasing thickness, the Young's modulus, and the Poisson's ratio of the secondary coating but increases with the increasing Young's modulus and Poisson's ratio of the primary coating. Similarly, changes in refractive index in the glass fiber decrease with the increasing Young's modulus and Poisson's ratio of the secondary coating but increase with the increasing Young's modulus and Poisson's ratio of the primary coating. Therefore, to minimize microbending loss induced simultaneously by axial strain and hydrostatic pressure in the glass fiber, the polymeric coatings should be suitably selected. An optimal design procedure is also indicated.

  6. High pressure effect on optical gain in type-II InGaAs/GaAsSb nano-heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Nisha; Nirmal, H. K.; Yadav, Rashmi

    This paper reports the simulation of optical gain in type-II InGaAs/GaAsSb quantum well based nano-scale heterostructure. In order to simulate the optical gain, the heterostructure has been modeled with the help of six band k.p method. The 6 × 6 diagonalized k.p Hamiltonian has been solved to evaluate the valence sub-bands (i.e. light and heavy hole energies); and then optical matrix elements and optical gain within TE (Transverse Electric) mode has been calculated. The results obtained suggest that peak optical gain of the order of ∼ 9000 /cm in the heterostructure can be achieved at the lasing wavelength ∼ 1.95 µmmore » (SWIR region). The application of high pressure (2 and 5 GPa) on the structure shows that the gain as well as lasing wavelength both approach to higher values. Thus, the structure can be tuned externally by the application of high pressure.« less

  7. Fiber optic medical pressure-sensing system employing intelligent self-calibration

    NASA Astrophysics Data System (ADS)

    He, Gang

    1996-01-01

    In this article, we describe a fiber-optic catheter-type pressure-sensing system that has been successfully introduced for medical diagnostic applications. We present overall sensors and optoelectronics designs, and highlight product development efforts that lead to a reliable and accurate disposable pressure-sensing system. In particular, the incorporation of an intelligent on-site self-calibration approach allows limited sensor reuses for reducing end-user costs and for system adaptation to wide sensor variabilities associated with low-cost manufacturing processes. We demonstrate that fiber-optic sensors can be cost-effectively produced to satisfy needs of certain medical market segments.

  8. Real-Time Optical Monitoring of Flow Kinetics and Gas Phase Reactions Under High-Pressure OMCVD Conditions

    NASA Technical Reports Server (NTRS)

    Dietz, N.; McCall, S.; Bachmann, K. J.

    2001-01-01

    This contribution addresses the real-time optical characterization of gas flow and gas phase reactions as they play a crucial role for chemical vapor phase depositions utilizing elevated and high pressure chemical vapor deposition (HPCVD) conditions. The objectives of these experiments are to validate on the basis of results on real-time optical diagnostics process models simulation codes, and provide input parameter sets needed for analysis and control of chemical vapor deposition at elevated pressures. Access to microgravity is required to retain high pressure conditions of laminar flow, which is essential for successful acquisition and interpretation of the optical data. In this contribution, we describe the design and construction of the HPCVD system, which include access ports for various optical methods of real-time process monitoring and to analyze the initial stages of heteroepitaxy and steady-state growth in the different pressure ranges. To analyze the onset of turbulence, provisions are made for implementation of experimental methods for in-situ characterization of the nature of flow. This knowledge will be the basis for the design definition of experiments under microgravity, where gas flow conditions, gas phase and surface chemistry, might be analyzed by remote controlled real-time diagnostics tools, developed in this research project.

  9. The influence of local pressure on evaluation parameters of skin blood perfusion and fluorescence

    NASA Astrophysics Data System (ADS)

    Zherebtsov, E. A.; Kandurova, K. Y.; Seryogina, E. S.; Kozlov, I. O.; Dremin, V. V.; Zherebtsova, A. I.; Dunaev, A. V.; Meglinski, I.

    2017-03-01

    This article presents the results of the study of the pressure applied on optical diagnostic probes as a significant factor affecting the results of measurements. During stepwise increasing and decreasing of local pressure on skin we conducted measurements using the methods of laser Doppler flowmetry and fluorescence spectroscopy. It was found out that pressure on optical probe has sufficient impact on skin microcirculation to affect registered fluorescence intensity. Data obtained in this study are of interest for design and development of diagnostic technologies for wearable devices. This data will also inform further investigation into issues of compensation of blood absorption influence on fluorescence spectrum, allowing increased accuracy and reproducibility of measurements by fluorescence spectroscopy methods in optical diagnosis.

  10. High pressure far infrared spectroscopy of ionic solids

    NASA Technical Reports Server (NTRS)

    Lowndes, R. P.

    1974-01-01

    A high-pressure far-infrared cell operating at up to truly hydrostatic pressures of 8 kbar is described and used to determine the anharmonic self-energies associated with the transverse optic modes of ionic solids in which q approximately equals zero. The cell allows far-infrared studies in the spectral range below 120 reciprocal cm. The transverse optic modes were investigated to determine their mode Gruneisen constants and the pressure dependence of their inverse lifetimes in RbI, CsI, and TlCl.

  11. Fiber optic photoelastic pressure sensor for high temperature gases

    NASA Technical Reports Server (NTRS)

    Wesson, Laurence N.; Redner, Alex S.; Baumbick, Robert J.

    1990-01-01

    A novel fiber optic pressure sensor based on the photoelastic effects has been developed for extremely high temperature gases. At temperatures varying from 25 to 650 C, the sensor experiences no change in the peak pressure of the transfer function and only a 10 percent drop in dynamic range. Refinement of the sensor has resulted in an optoelectronic interface and processor software which can calculate pressure values within 1 percent of full scale at any temperature within the full calibrated temperature range.

  12. Effect of Intraocular Pressure and Anisotropy on the Optical Properties of the Cornea: A Study Using Polarization Sensitive Optical Coherence Tomography.

    PubMed

    Richhariya, Ashutosh; Verma, Yogesh; Rao, Divakar K; Roberts, Cynthia J; Mahmoud, Ashraf M; Sangwan, Virender S; Punjabi, Sunil; Gupta, Pradeep K

    2014-01-01

    We hypothesize that because of the anisotropic properties of the cornea, there should be a nonuniform change in birefringence with an increase in intraocular pressure (IOP). In this in vitro study, anisotropic properties, stress distribution within the cornea, and the effect of IOP on changes in stress level were investigated. Button inflation tests for deformation with polarization sensitive optical coherence tomography were used to demonstrate optical and material anisotropy on ex vivo human corneas. Inflation tests were performed on human donor corneoscleral rims. Using a turntable and hydrostatic column, each corneoscleral rim was subjected to a hydrostatic pressure of 0, 10, 15, and 20 mm Hg. At each pressure step, 4 scans at 0, 45, 90, and 135 degrees were taken by a polarization sensitive optical coherence tomography system, and the birefringence images and normal intensity-based images were recorded; images were later compiled for analysis. The retardation changed with the axis of orientation (P [T ≤ t] 1-tailed = 0.025) and IOP (P [T ≤ t] 1-tailed = 0.019). Optical thickness of the cornea decreased with increasing IOP. The optical properties of the cornea are modified with change in IOP. This is not uniform because of distinct anisotropic properties. Anisotropic properties may unpredictably affect the optical quality of cornea during or after the surgeries. Changes in corneal birefringence can be also used as a tool for measuring the IOP of the eye.

  13. Quantitative relations between the eyeball, the optic nerve, and the optic canal important for intracranial pressure monitoring

    PubMed Central

    2014-01-01

    Objective To find correlations between diameters of the optic nerve sheath (ONSD), the eyeball, and the optic canal that might be important for intracranial pressure monitoring. Methods In a prospective cohort study, the CT data of consecutive 400 adults (18+) with healthy eyes and optic nerves and absence of neurological diseases were collected and analyzed. When the CT scans were obtained, the diameters of the optic nerve sheath, the eyeball, and the optic canal were measured and statistically analyzed. The data obtained from the left and from the right eyeballs and optic nerves were compared. The correlation analysis was performed within these variables, with the gender, and the age. Results In healthy persons, the ONSD varies from 3.65 mm to 5.17 mm in different locations within the intraorbital space with no significant difference between sexes and age groups. There is a strong correlation between the eyeball transverse diameter (ETD) and ONSD that can be presented as ONSD/ETD index. In healthy subjects, the ONSD/ETD index equals 0.19. Conclusion The calculation of an index when ONSD is divided by the ETD of the eyeball presents precise normative database for ONSD intracranial pressure measurement technique. When the ONSD is measured for intracranial pressure monitoring, the most stable results can be obtained if the diameter is measured 10 mm from the globe. These data might serve as a normative database at emergency departments and in general neurological practice. PMID:25130267

  14. Quantitative relations between the eyeball, the optic nerve, and the optic canal important for intracranial pressure monitoring.

    PubMed

    Vaiman, Michael; Gottlieb, Paul; Bekerman, Inessa

    2014-08-17

    To find correlations between diameters of the optic nerve sheath (ONSD), the eyeball, and the optic canal that might be important for intracranial pressure monitoring. In a prospective cohort study, the CT data of consecutive 400 adults (18+) with healthy eyes and optic nerves and absence of neurological diseases were collected and analyzed. When the CT scans were obtained, the diameters of the optic nerve sheath, the eyeball, and the optic canal were measured and statistically analyzed. The data obtained from the left and from the right eyeballs and optic nerves were compared. The correlation analysis was performed within these variables, with the gender, and the age. In healthy persons, the ONSD varies from 3.65 mm to 5.17 mm in different locations within the intraorbital space with no significant difference between sexes and age groups. There is a strong correlation between the eyeball transverse diameter (ETD) and ONSD that can be presented as ONSD/ETD index. In healthy subjects, the ONSD/ETD index equals 0.19. The calculation of an index when ONSD is divided by the ETD of the eyeball presents precise normative database for ONSD intracranial pressure measurement technique. When the ONSD is measured for intracranial pressure monitoring, the most stable results can be obtained if the diameter is measured 10 mm from the globe. These data might serve as a normative database at emergency departments and in general neurological practice.

  15. Bacterial carbonate precipitation improves water absorption of interlocking compressed earth block (ICEB)

    NASA Astrophysics Data System (ADS)

    Zamer, M. M.; Irwan, J. M.; Othman, N.; Faisal, S. K.; Anneza, L. H.; Alshalif, A. F.; Teddy, T.

    2017-11-01

    Interlocking compressed earth blocks (ICEB) are soil based blocks that allows for mortarless construction. The addition of many alternative materials into interlocking block in order to improve the durability has been reported. However there are currently lack of report and evidence on the application of biocalcification or microbiologically induced calcite precipitation (MICP) in improving the engineering properties of ICEB. This paper evaluate the effect of UB in improving the water absorption properties of ICEB. This paper also provide the results on SEM analysis of addition of 1%, 3% and 5% UB in ICEB. The bacteria were added as partial replacement of limestone water in ICEB. The results showed the reduction of 14.72% with 5% UB on initial water absorption followed by the results for water absorption by 24-hour soaking which also indicates reduction of 14.68% with 5% UB on 28th days of testing compared to control specimen. It was expected that the reduction of water absorption was due to the plugging of pores by the bacterial calcite which prevent ingression of water in ICEB samples. Therefore this study hopes that the positive results from the UB as improving in water absorption of ICEB will lead to improve others ICEB properties and others construction materials.

  16. Organism Detection in Permeable Pavement Parking Lot Infiltrates at the Edison Environmental Center, New Jersey.

    PubMed

    Selvakumar, Ariamalar; O'Connor, Thomas P

    2018-01-01

      Three types of permeable pavements were monitored at the Edison Environmental Center in Edison, New Jersey, for indicator organisms such as fecal coliform, enterococci, and Escherichia coli. Results showed that porous asphalt had a much lower concentration in monitored infiltrate compared to pervious concrete and permeable interlocking concrete pavers; concentrations of monitored organisms in infiltrate from porous asphalt were consistently below the bathing water quality standard and actually had limited detection. Fecal coliform and enterococci exceeded bathing water quality standards more than 72 and 34% of the time for permeable interlocking concrete pavers and pervious concrete, respectively. Concentration reductions greater than 90% were observed for all three indicator organisms for porous asphalt and fecal coliform and E. coli for pervious concrete when compared to runoff values, while permeable interlocking concrete pavers only had a modest (39%) observable reduction for E. coli only. The near absence of indicator organisms observed in the porous asphalt infiltrate may be due to the high pH potentially due to asphalt processing. Neither rain intensity nor temperature was demonstrated to have an observable effect in both concentrations of organisms and performance of permeable pavement; but this may due to the limitations of the dataset consisting of 16 events over an 8-month period.

  17. Diaphragm size and sensitivity for fiber optic pressure sensors

    NASA Technical Reports Server (NTRS)

    He, Gang; Cuomo, Frank W.; Zuckerwar, Allan J.

    1991-01-01

    A mechanism which leads to a significant increase in sensitivity and linear operating range in reflective type fiber optic pressure transducers with minute active dimensions is studied. A general theoretical formalism is presented which is in good agreement with the experimental data. These results are found useful in the development of small pressure sensors used in turbulent boundary layer studies and other applications.

  18. High-pressure versus isoelectronic doping effect on the honeycomb iridate Na2IrO3

    NASA Astrophysics Data System (ADS)

    Hermann, V.; Ebad-Allah, J.; Freund, F.; Pietsch, I. M.; Jesche, A.; Tsirlin, A. A.; Deisenhofer, J.; Hanfland, M.; Gegenwart, P.; Kuntscher, C. A.

    2017-11-01

    We study the effect of isoelectronic doping and external pressure in tuning the ground state of the honeycomb iridate Na2IrO3 by combining optical spectroscopy with synchrotron x-ray diffraction measurements on single crystals. The obtained optical conductivity of Na2IrO3 is discussed in terms of a Mott-insulating picture versus the formation of quasimolecular orbitals and in terms of Kitaev interactions. With increasing Li content x , (Na1 -xLix )2IrO3 moves deeper into the Mott-insulating regime, and there are indications that up to a doping level of 24% the compound comes closer to the Kitaev limit. The optical conductivity spectrum of single-crystalline α -Li2IrO3 does not follow the trends observed for the series up to x =0.24 . There are strong indications that α -Li2IrO3 is not as close to the Kitaev limit as Na2IrO3 and lies closer to the quasimolecular orbital picture instead. Except for the pressure-induced hardening of the phonon modes, the optical properties of Na2IrO3 seem to be robust against external pressure. Possible explanations of the unexpected evolution of the optical conductivity with isolectronic doping and the drastic change between x =0.24 and x =1 are given by comparing the pressure-induced changes of lattice parameters and the optical conductivity with the corresponding changes induced by doping.

  19. Removal torque of nail interlocking screws is related to screw proximity to the fracture and screw breakage.

    PubMed

    White, Alexander A; Kubacki, Meghan R; Samona, Jason; Telehowski, Paul; Atkinson, Patrick J

    2016-06-01

    Studies have shown that titanium implants can be challenging to explant due to the material's excellent biocompatibility and resulting osseointegration. Clinically, titanium alloy nail interlocking screws may require removal to dynamize a construct or revise the nail due to nonunion, infection, pain, or periprosthetic fracture. This study was designed to determine what variables influence the removal torque for titanium alloy interlocking screws. An intramedullary nail with four interlocking screws was used to stabilize a 1-cm segmental femoral defect in a canine model for 16 weeks. The animals were observed to be active following a several-day recovery after surgery. In six animals, the femora and implanted nail/screws were first tested to failure in torsion to simulate periprosthetic fracture of an implant after which the screws were then removed. In four additional animals, the screws were removed without mechanical testing. Both intraoperative insertional and extraction torques were recorded for all screws. Mechanical testing to failure broke 10/24 screws. On average, the intact screws required 70% of the insertional torque during removal while broken screws only required 16% of the insertional torque (p < 0.001). In addition, intact screws closer to the fracture required 2.8 times more removal torque than the outboard distal screw (p < 0.005). On average, the angle of rotation to peak torque was ∼80°. The peak axial load did not significantly correlate with the torque required to remove the screws. On average, the removal torque was lower than at the time of insertion, and less torque was required to remove broken screws and screws remote to the fracture. However, broken screws will require additional time to retrieve the remaining screw fragment. This study suggests that broken screws and screws in prematurely active patients will require less torque to remove. © IMechE 2016.

  20. High-Pressure Gaseous Burner (HPGB) Facility Completed for Quantitative Laser Diagnostics Calibration

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2002-01-01

    A gas-fueled high-pressure combustion facility with optical access, which was developed over the last 2 years, has just been completed. The High Pressure Gaseous Burner (HPGB) rig at the NASA Glenn Research Center can operate at sustained pressures up to 60 atm with a variety of gaseous fuels and liquid jet fuel. The facility is unique as it is the only continuous-flow, hydrogen-capable, 60-atm rig in the world with optical access. It will provide researchers with new insights into flame conditions that simulate the environment inside the ultra-high-pressure-ratio combustion chambers of tomorrow's advanced aircraft engines. The facility provides optical access to the flame zone, enabling the calibration of nonintrusive optical diagnostics to measure chemical species and temperature. The data from the HPGB rig enables the validation of numerical codes that simulate gas turbine combustors, such as the National Combustor Code (NCC). The validation of such numerical codes is often best achieved with nonintrusive optical diagnostic techniques that meet these goals: information-rich (multispecies) and quantitative while providing good spatial and time resolution. Achieving these goals is a challenge for most nonintrusive optical diagnostic techniques. Raman scattering is a technique that meets these challenges. Raman scattering occurs when intense laser light interacts with molecules to radiate light at a shifted wavelength (known as the Raman shift). This shift in wavelength is unique to each chemical species and provides a "fingerprint" of the different species present. The facility will first be used to gather a comprehensive data base of laser Raman spectra at high pressures. These calibration data will then be used to quantify future laser Raman measurements of chemical species concentration and temperature in this facility and other facilities that use Raman scattering.

  1. Pressure-induced nano-crystallization of silicate garnets from glass

    PubMed Central

    Irifune, T.; Kawakami, K.; Arimoto, T.; Ohfuji, H.; Kunimoto, T.; Shinmei, T.

    2016-01-01

    Transparent ceramics are important for scientific and industrial applications because of the superior optical and mechanical properties. It has been suggested that optical transparency and mechanical strength are substantially enhanced if transparent ceramics with nano-crystals are available. However, synthesis of the highly transparent nano-crystalline ceramics has been difficult using conventional sintering techniques at relatively low pressures. Here we show direct conversion from bulk glass starting material in mutianvil high-pressure apparatus leads to pore-free nano-polycrystalline silicate garnet at pressures above ∼10 GPa in a limited temperature range around 1,400 °C. The synthesized nano-polycrystalline garnet is optically as transparent as the single crystal for almost the entire visible light range and harder than the single crystal by ∼30%. The ultrahigh-pressure conversion technique should provide novel functional ceramics having various crystal structures, including those of high-pressure phases, as well as ideal specimens for some mineral physics applications. PMID:27924866

  2. Pressure-Induced Structural Evolution and Band Gap Shifts of Organometal Halide Perovskite-Based Methylammonium Lead Chloride.

    PubMed

    Wang, Lingrui; Wang, Kai; Xiao, Guanjun; Zeng, Qiaoshi; Zou, Bo

    2016-12-15

    Organometal halide perovskites are promising materials for optoelectronic devices. Further development of these devices requires a deep understanding of their fundamental structure-property relationships. The effect of pressure on the structural evolution and band gap shifts of methylammonium lead chloride (MAPbCl 3 ) was investigated systematically. Synchrotron X-ray diffraction and Raman experiments provided structural information on the shrinkage, tilting distortion, and amorphization of the primitive cubic unit cell. In situ high pressure optical absorption and photoluminescence spectra manifested that the band gap of MAPbCl 3 could be fine-tuned to the ultraviolet region by pressure. The optical changes are correlated with pressure-induced structural evolution of MAPbCl 3 , as evidenced by band gap shifts. Comparisons between Pb-hybrid perovskites and inorganic octahedra provided insights on the effects of halogens on pressure-induced transition sequences of these compounds. Our results improve the understanding of the structural and optical properties of organometal halide perovskites.

  3. Nanoshells as a high-pressure gauge

    NASA Astrophysics Data System (ADS)

    Tempere, Jacques; van den Broeck, Nick; Putteneers, Katrijn; Silvera, Isaac

    2012-02-01

    Nanoshells, consisting of multiple spherical layers, have an extensive list of applications, usually performing the function of a probe. We add a new application to this list in the form of a high-pressure gauge in a Diamond Anvil Cell (DAC). In a DAC, where high pressures are reached by pressing two diamonds together, existing gauges fail at higher pressures because of calibration difficulties and obscuring effects in the diamonds. The nanoshell gauge does not face this issue since its optical spectrum can be engineered by altering the thickness of its layers. Furthermore their properties are measured by broad band optical transmission spectroscopy leading to a very large signal-to-noise ratio even in the multi-megabar pressure regime where ruby measurements become challenging. Theoretical calculations based on the Maxwell equations in a spherical geometry combined with the Vinet equation of state show that a three-layer geometry (SiO2-Au-SiO2) indeed has a measurable pressure-dependent optical response desirable for gauges.

  4. A hybrid demodulation method of fiber-optic Fabry-Perot pressure sensor

    NASA Astrophysics Data System (ADS)

    Yu, Le; Lang, Jianjun; Pan, Yong; Wu, Di; Zhang, Min

    2013-12-01

    The fiber-optic Fabry-Perot pressure sensors have been widely applied to measure pressure in oilfield. For multi-well it will take a long time (dozens of seconds) to demodulate downhole pressure values of all wells by using only one demodulation system and it will cost a lot when every well is equipped with one system, which heavily limits the sensor applied in oilfield. In present paper, a new hybrid demodulation method, combining the windowed nonequispaced discrete Fourier Transform (nDFT) method with segment search minimum mean square error estimation (MMSE) method, was developed, by which the demodulation time can be reduced to 200ms, i.e., measuring 10 channels/wells was less than 2s. Besides, experimental results showed the demodulation cavity length of the fiber-optic Fabry-Perot sensor has a maximum error of 0.5 nm and consequently pressure measurement accuracy can reach 0.4% F.S.

  5. CRISTAPRESS: an optical cell for structure development in high-pressure crystallization.

    PubMed

    Boyer, S A E; Fournier, F E J; Gandin, Ch-A; Haudin, J-M

    2014-01-01

    An original optical high-pressure cell, named CRISTAPRESS, has been especially designed to investigate phase transitions of complex liquids, i.e., polymers, polymer blends, nano-composites, etc. The design of the cell is based on the optical properties of morphological entities through in situ light depolarizing microscopic observations. Pressure up to 200 MPa with a fine temperature control up to 300 °C can be applied. A striking advantage of this cell is the possibility to select the pressure transmitting medium that can be water, silicone oil, a fluid in the supercritical state, etc. The potential of the novel technique was demonstrated by carrying out time-resolved measurements during polymer crystallization induced by water pressure. These preliminary experimental investigations permit to discriminate the role of the barometric and thermal histories on the kinetics of polymer growth, as well as on the subsequent morphologies. It should lead to new reliable crystallization kinetics models.

  6. Tri-functional cannula for retinal endovascular surgery

    DOEpatents

    Weiss, Jonathan D [Albuquerque, NM

    2010-07-27

    A tri-functional cannula combines the functions of tissue Plasminogen Activator (tPA) solution delivery, illumination and venous pressure measurement. The cannula utilizes a tapered hollow-core optical fiber having an inlet for tPA solution, an attached fiber optic splitter configured to receive illumination light from an optical source such and a LED. A window in the cannula transmits the light to and from a central retinal vein. The return light is coupled to an optical detector to measure the pressure within the vein and determine whether an occlusion has been removed.

  7. Electronic and optical properties of Fe2SiO4 under pressure effect: ab initio study

    NASA Astrophysics Data System (ADS)

    Xiao, Lingping; Li, Xiaobin; Yang, Xue

    2018-05-01

    We report first-principles studies the structural, electronic, and optical properties of the Fe2SiO4 fayalite in orthorhombic structure, including pressure dependence of structural parameters, band structures, density of states, and optical constants up to 30 GPa. The calculated results indicate that the linear compressibility along b axis is significantly higher than a and c axes, which is in agreement with earlier work. Meanwhile, the pressure dependence of the electronic band structure, density of states and partial density of states of Fe2SiO4 fayalite up to 30 GPa were presented. Moreover, the evolution of the dielectric function, absorption coefficient (α(ω)), reflectivity (R(ω)), and the real part of the refractive index (n(ω)) at high pressure are also presented.

  8. Maintenance measures for preservation and recovery of permeable pavement surface infiltration rate--The effects of street sweeping, vacuum cleaning, high pressure washing, and milling.

    PubMed

    Winston, Ryan J; Al-Rubaei, Ahmed M; Blecken, Godecke T; Viklander, Maria; Hunt, William F

    2016-03-15

    The surface infiltration rates (SIR) of permeable pavements decline with time as sediment and debris clog pore spaces. Effective maintenance techniques are needed to ensure the hydraulic functionality and water quality benefits of this stormwater control. Eight different small-scale and full-scale maintenance techniques aimed at recovering pavement permeability were evaluated at ten different permeable pavement sites in the USA and Sweden. Maintenance techniques included manual removal of the upper 2 cm of fill material, mechanical street sweeping, regenerative-air street sweeping, vacuum street sweeping, hand-held vacuuming, high pressure washing, and milling of porous asphalt. The removal of the upper 2 cm of clogging material did not significantly improve the SIR of concrete grid paves (CGP) and permeable interlocking concrete pavers (PICP) due to the inclusion of fines in the joint and bedding stone during construction, suggesting routine maintenance cannot overcome improper construction. For porous asphalt maintenance, industrial hand-held vacuum cleaning, pressure washing, and milling were increasingly successful at recovering the SIR. Milling to a depth of 2.5 cm nearly restored the SIR for a 21-year old porous asphalt pavement to like-new conditions. For PICP, street sweepers employing suction were shown to be preferable to mechanical sweepers; additionally, maintenance efforts may become more intensive over time to maintain a threshold SIR, as maintenance was not 100% effective at removing clogging material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effect of Hydrostatic Pressure on the Structural, Electronic and Optical Properties of SnS2 with a Cubic Structure: The DFT Approach

    NASA Astrophysics Data System (ADS)

    Bakhshayeshi, A.; Taghavi Mendi, R.; Majidiyan Sarmazdeh, M.

    2018-02-01

    Recently, a cubic structure of polymorphic SnS2 has been synthesized experimentally, which is stable at room temperature. In this paper, we calculated some structural, electronic and optical properties of the cubic SnS2 structure based on the full potential-linearized augmented plane waves method. We also studied the effect of hydrostatic pressure on the physical properties of the cubic SnS2 structure. Structural results show that the compressibility of the cubic SnS2 phase is greater than its trigonal phase and the compressibility decreases with increasing pressure. Investigations of the electronic properties indicate that pressure changes the density of states and the energy band gap increases with increasing pressure. The variation of energy band gap versus pressure is almost linear. We concluded that cubic SnS2 is a semiconductor with an indirect energy band gap, like its trigonal phase. The optical calculations revealed that the dielectric constant decreases with increasing pressure, and the width of the forbidden energy interval increases for electromagnetic wave propagation. Moreover, plasmonic energy and refractive index are changed with increasing pressure.

  10. Dynamically variable spot size laser system

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R. (Inventor); Hurst, John F. (Inventor); Middleton, James R. (Inventor)

    2012-01-01

    A Dynamically Variable Spot Size (DVSS) laser system for bonding metal components includes an elongated housing containing a light entry aperture coupled to a laser beam transmission cable and a light exit aperture. A plurality of lenses contained within the housing focus a laser beam from the light entry aperture through the light exit aperture. The lenses may be dynamically adjusted to vary the spot size of the laser. A plurality of interoperable safety devices, including a manually depressible interlock switch, an internal proximity sensor, a remotely operated potentiometer, a remotely activated toggle and a power supply interlock, prevent activation of the laser and DVSS laser system if each safety device does not provide a closed circuit. The remotely operated potentiometer also provides continuous variability in laser energy output.

  11. Topological interlocking provides stiffness to stochastically micro-cracked materials beyond the transport percolation limit

    NASA Astrophysics Data System (ADS)

    Pal, Anirban; Picu, Catalin; Lupulescu, Marian V.

    We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold, due to topological interlocking of sample sub-domains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes non-linear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks. We associate this behavior to that of itacolumite, a sandstone that exhibits unusual flexibility.

  12. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure

    PubMed Central

    2012-01-01

    The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  13. Self-compensating fiber optic flow sensor having an end of a fiber optics element and a reflective surface within a tube

    DOEpatents

    Peng, Wei; Qi, Bing; Wang, Anbo

    2006-05-16

    A flow rate fiber optic transducer is made self-compensating for both temperature and pressure by using preferably well-matched integral Fabry-Perot sensors symmetrically located around a cantilever-like structure. Common mode rejection signal processing of the outputs allows substantially all effects of both temperature and pressure to be compensated. Additionally, the integral sensors can individually be made insensitive to temperature.

  14. International Instrumentation Symposium, 34th, Albuquerque, NM, May 2-6, 1988, Proceedings

    NASA Astrophysics Data System (ADS)

    Various papers on aerospace instrumentation are presented. The general topics addressed include: blast and shock, wind tunnel instrumentations and controls, digital/optical sensors, software design/development, special test facilities, fiber optic techniques, electro/fiber optical measurement systems, measurement uncertainty, real time systems, pressure. Also discussed are: flight test and avionics instrumentation, data acquisition techniques, computer applications, thermal force and displacement, science and government, modeling techniques, reentry vehicle testing, strain and pressure.

  15. Particle-based optical pressure sensors for 3D pressure mapping.

    PubMed

    Banerjee, Niladri; Xie, Yan; Chalaseni, Sandeep; Mastrangelo, Carlos H

    2015-10-01

    This paper presents particle-based optical pressure sensors for in-flow pressure sensing, especially for microfluidic environments. Three generations of pressure sensitive particles have been developed- flat planar particles, particles with integrated retroreflectors and spherical microballoon particles. The first two versions suffer from pressure measurement dependence on particles orientation in 3D space and angle of interrogation. The third generation of microspherical particles with spherical symmetry solves these problems making particle-based manometry in microfluidic environment a viable and efficient methodology. Static and dynamic pressure measurements have been performed in liquid medium for long periods of time in a pressure range of atmospheric to 40 psi. Spherical particles with radius of 12 μm and balloon-wall thickness of 0.5 μm are effective for more than 5 h in this pressure range with an error of less than 5%.

  16. Non-destructive residual pressure self-measurement method for the sensing chip of optical Fabry-Perot pressure sensor.

    PubMed

    Wang, Xue; Wang, Shuang; Jiang, Junfeng; Liu, Kun; Zhang, Xuezhi; Xiao, Mengnan; Xiao, Hai; Liu, Tiegen

    2017-12-11

    We introduce a simple residual pressure self-measurement method for the Fabry-Perot (F-P) cavity of optical MEMS pressure sensor. No extra installation is required and the structure of the sensor is unchanged. In the method, the relationship between residual pressure and external pressure under the same diaphragm deflection condition at different temperatures is analyzed by using the deflection formula of the circular plate with clamped edges and the ideal gas law. Based on this, the residual pressure under the flat condition can be obtained by pressure scanning process and calculation process. We carried out the experiment to compare the residual pressures of two batches MEMS sensors fabricated by two kinds of bonding process. The measurement result indicates that our approach is reliable enough for the measurement.

  17. Age-related posterior ciliary muscle restriction – A link between trabecular meshwork and optic nerve head pathophysiology

    PubMed Central

    Lütjen-Drecoll, Elke; Kaufman, Paul L.

    2016-01-01

    The ciliary muscle plays a major role in controlling both accommodation and outflow facility in primates. The ciliary muscle and the choroid functionally form an elastic network that extends from the trabecular meshwork all the way to the back of the eye and ultimately attaches to the elastic fiber ring that surrounds the optic nerve and to the lamina cribrosa through which the nerve passes. The ciliary muscle governs the accommodative movement of the elastic network. With age ciliary muscle mobility is restricted by progressively inelastic posterior attachments and the posterior restriction makes the contraction progressively isometric; placing increased tension on the optic nerve region. In addition, outflow facility also declines with age and limbal corneoscleral contour bows inward. Age-related loss in muscle movement and altered limbal corneoscleral contour could both compromise the basal function of the trabecular meshwork. Further, recent studies in non-human primates show that the central vitreous moves posteriorly all the way back to the optic nerve region, suggesting a fluid current and a pressure gradient toward the optic nerve. Thus, there may be pressure and tension spikes on the optic nerve region during accommodation and these pressure and tension spikes may increase with age. This constellation of events could be relevant to glaucomatous optic neuropathy. In summary, our hypothesis is that glaucoma and presbyopia may be literally linked to each other, via the choroid, and that damage to the optic nerve may be inflicted by accommodative intraocular pressure and choroidal tension “spikes”, which may increase with age. PMID:27453343

  18. Age-related posterior ciliary muscle restriction - A link between trabecular meshwork and optic nerve head pathophysiology.

    PubMed

    Croft, Mary Ann; Lütjen-Drecoll, Elke; Kaufman, Paul L

    2017-05-01

    The ciliary muscle plays a major role in controlling both accommodation and outflow facility in primates. The ciliary muscle and the choroid functionally form an elastic network that extends from the trabecular meshwork all the way to the back of the eye and ultimately attaches to the elastic fiber ring that surrounds the optic nerve and to the lamina cribrosa through which the nerve passes. The ciliary muscle governs the accommodative movement of the elastic network. With age ciliary muscle mobility is restricted by progressively inelastic posterior attachments and the posterior restriction makes the contraction progressively isometric; placing increased tension on the optic nerve region. In addition, outflow facility also declines with age and limbal corneoscleral contour bows inward. Age-related loss in muscle movement and altered limbal corneoscleral contour could both compromise the basal function of the trabecular meshwork. Further, recent studies in non-human primates show that the central vitreous moves posteriorly all the way back to the optic nerve region, suggesting a fluid current and a pressure gradient toward the optic nerve. Thus, there may be pressure and tension spikes on the optic nerve region during accommodation and these pressure and tension spikes may increase with age. This constellation of events could be relevant to glaucomatous optic neuropathy. In summary, our hypothesis is that glaucoma and presbyopia may be literally linked to each other, via the choroid, and that damage to the optic nerve may be inflicted by accommodative intraocular pressure and choroidal tension "spikes", which may increase with age. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Pressure dependence of the optical properties of the charge-density-wave compound LaTe2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavagnini, M.; Sacchetti, A.; Degiorgi, L.

    2009-12-14

    We report the pressure dependence of the optical response of LaTe{sub 2}, which is deep in the charge-density-wave (CDW) ground state even at 300 K. The reflectivity spectrum is collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 7 GPa. We extract the energy scale due to the single particle excitation across the CDW gap and the Drude weight. We establish that the gap decreases upon compressing the lattice, while the Drude weight increases. This signals a reduction in the quality of nesting upon applying pressure, therefore inducing a lesser impact of the CDWmore » condensate on the electronic properties of LaTe{sub 2}. The consequent suppression of the CDW gap leads to a release of additional charge carriers, manifested by the shift of weight from the gap feature into the metallic component of the optical response. On the contrary, the power-law behavior, seen in the optical conductivity at energies above the gap excitation and indicating a weakly interacting limit within the Tomonaga-Luttinger liquid scenario, seems to be only moderately dependent on pressure.« less

  20. Optical fiber pressure sensors for adaptive wings

    NASA Astrophysics Data System (ADS)

    Duncan, Paul G.; Jones, Mark E.; Shinpaugh, Kevin A.; Poland, Stephen H.; Murphy, Kent A.; Claus, Richard O.

    1997-06-01

    Optical fiber pressure sensors have been developed for use on a structurally-adaptive `smart wing'; further details of the design, fabrication and testing of the smart wing concept are presented in companion papers. This paper describes the design, construction, and performance of the pressure sensor and a combined optical and electronic signal processing system implemented to permit the measurement of a large number of sensors distributed over the control surfaces of a wing. Optical fiber pressure sensors were implemented due to anticipated large electromagnetic interference signals within the operational environment. The sensors utilized the principle of the extrinsic Fabry-Perot interferometer (EFPI) already developed for the measurement of strain and temperature. Here, the cavity is created inside a micromachined hollow-core tube with a silicon diaphragm at one end. The operation of the sensor is similar to that of the EFPI strain gage also discussed in several papers at this conference. The limitations placed upon the performance of the digital signal processing system were determined by the required pressure range of the sensors and the cycle time of the control system used to adaptively modify the shape of the wing. Sensor calibration and the results of testing performed are detailed.

  1. Effects of Hydrostatic Pressure and Electric Field on the Electron-Related Optical Properties in GaAs Multiple Quantum Well.

    PubMed

    Ospina, D A; Mora-Ramos, M E; Duque, C A

    2017-02-01

    The properties of the electronic structure of a finite-barrier semiconductor multiple quantum well are investigated taking into account the effects of the application of a static electric field and hydrostatic pressure. With the information of the allowed quasi-stationary energy states, the coefficients of linear and nonlinear optical absorption and of the relative refractive index change associated to transitions between allowed subbands are calculated with the use of a two-level scheme for the density matrix equation of motion and the rotating wave approximation. It is noticed that the hydrostatic pressure enhances the amplitude of the nonlinear contribution to the optical response of the multiple quantum well, whilst the linear one becomes reduced. Besides, the calculated coefficients are blueshifted due to the increasing of the applied electric field, and shows systematically dependence upon the hydrostatic pressure. The comparison of these results with those related with the consideration of a stationary spectrum of states in the heterostructure-obtained by placing infinite confining barriers at a conveniently far distance-shows essential differences in the pressure-induced effects in the sense of resonant frequency shifting as well as in the variation of the amplitudes of the optical responses.

  2. Cavitation Inside High-Pressure Optically Transparent Fuel Injector Nozzles

    NASA Astrophysics Data System (ADS)

    Falgout, Z.; Linne, M.

    2015-12-01

    Nozzle-orifice flow and cavitation have an important effect on primary breakup of sprays. For this reason, a number of studies in recent years have used injectors with optically transparent nozzles so that orifice flow cavitation can be examined directly. Many of these studies use injection pressures scaled down from realistic injection pressures used in modern fuel injectors, and so the geometry must be scaled up so that the Reynolds number can be matched with the industrial applications of interest. A relatively small number of studies have shown results at or near the injection pressures used in real systems. Unfortunately, neither the specifics of the design of the optical nozzle nor the design methodology used is explained in detail in these papers. Here, a methodology demonstrating how to prevent failure of a finished design made from commonly used optically transparent materials will be explained in detail, and a description of a new design for transparent nozzles which minimizes size and cost will be shown. The design methodology combines Finite Element Analysis with relevant materials science to evaluate the potential for failure of the finished assembly. Finally, test results imaging a cavitating flow at elevated pressures are presented.

  3. Technical Capability Upgrades to the NASA Langley Research Center 6 ft. by 6 ft. Thermal Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Thornblom, Mark N.; Beverly, Joshua; O'Connell, Joseph J.; Mau, Johnny C.; Duncan, Dwight L.

    2014-01-01

    The 6 ft. by 6 ft. thermal vacuum chamber (TVAC), housed in Building 1250 at the NASA Langley Research Center (LaRC), and managed by the Systems Integration and Test Branch within the Engineering Directorate, has undergone several significant modifications to increase testing capability, safety, and quality of measurements of articles under environmental test. Significant modifications include: a new nitrogen thermal conditioning unit for controlling shroud temperatures from -150degC to +150degC; two horizontal auxiliary cold plates for independent temperature control from -150degC to +200degC; a suite of contamination monitoring sensors for outgassing measurements and species identification; signal and power feed-throughs; new pressure gauges; and a new data acquisition and control commanding system including safety interlocks. This presentation will provide a general overview of the LaRC 6 ft. by 6 ft. TVAC chamber, an overview of the new technical capabilities, and illustrate each upgrade in detail, in terms of mechanical design and predicted performance. Additionally, an overview of the scope of tests currently being performed in the chamber will be documented, and sensor plots from tests will be provided to show chamber temperature and pressure performance with actual flight hardware under test.

  4. Hybrid photonic signal processing

    NASA Astrophysics Data System (ADS)

    Ghauri, Farzan Naseer

    This thesis proposes research of novel hybrid photonic signal processing systems in the areas of optical communications, test and measurement, RF signal processing and extreme environment optical sensors. It will be shown that use of innovative hybrid techniques allows design of photonic signal processing systems with superior performance parameters and enhanced capabilities. These applications can be divided into domains of analog-digital hybrid signal processing applications and free-space---fiber-coupled hybrid optical sensors. The analog-digital hybrid signal processing applications include a high-performance analog-digital hybrid MEMS variable optical attenuator that can simultaneously provide high dynamic range as well as high resolution attenuation controls; an analog-digital hybrid MEMS beam profiler that allows high-power watt-level laser beam profiling and also provides both submicron-level high resolution and wide area profiling coverage; and all optical transversal RF filters that operate on the principle of broadband optical spectral control using MEMS and/or Acousto-Optic tunable Filters (AOTF) devices which can provide continuous, digital or hybrid signal time delay and weight selection. The hybrid optical sensors presented in the thesis are extreme environment pressure sensors and dual temperature-pressure sensors. The sensors employ hybrid free-space and fiber-coupled techniques for remotely monitoring a system under simultaneous extremely high temperatures and pressures.

  5. Pressure dependence of the electro-optic response function in partially exposed polymer dispersed ferroelectric liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Holmes, H. K.

    1993-01-01

    Ferroelectric liquid crystals in a new configuration, termed partially exposed polymer dispersed ferroelectric liquid crystal (PEPDFLC), respond to external pressures and demonstrate pressure-induced electro-optic switching response. When the PEPDFLC thin film is sandwiched between two transparent conducting electrodes, one a glass plate and the other a flexible sheet such as polyvenylidene fluoride, the switching characteristics of the thin film are a function of the pressure applied to the flexible transparent electrode and the bias voltage across the electrodes. Response time measurements reveal a linear dependence of the change in electric field with external pressure.

  6. Effects of Pressure on Stability of Biomolecules in Solutions Studied by Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Bellissent-Funel, Marie-Claire-; Appavou, Marie-Sousai; Gibrat, Gabriel

    Studies of the pressure dependence on protein structure and dynamics contribute not only to the basic knowledge of biological molecules but have also a considerable relevance in full technology, like in food sterilization and pharmacy. Conformational changes induced by pressure as well as the effects on the protein stability have been mostly studied by optical techniques (optical absorption, fluorescence, phosphorescence), and by NMR. Most optical techniques used so far give information related to the local nature of the used probe (fluorescent or phosphorescent tryptophan). Small angle neutron scattering and quasi-elastic neutron scattering provide essential complementary information to the optical data, giving quantitative data on change of conformation of soluble globular proteins such as bovine pancreatic trypsin inhibitor (BPTI) and on the mobility of protons belonging to the protein surface residues.

  7. Optical Fiber-Tip Sensors Based on In-Situ µ-Printed Polymer Suspended-Microbeams.

    PubMed

    Yao, Mian; Ouyang, Xia; Wu, Jushuai; Zhang, A Ping; Tam, Hwa-Yaw; Wai, P K A

    2018-06-05

    Miniature optical fiber-tip sensors based on directly µ-printed polymer suspended-microbeams are presented. With an in-house optical 3D μ-printing technology, SU-8 suspended-microbeams are fabricated in situ to form Fabry⁻Pérot (FP) micro-interferometers on the end face of standard single-mode optical fiber. Optical reflection spectra of the fabricated FP micro-interferometers are measured and fast Fourier transform is applied to analyze the cavity of micro-interferometers. The applications of the optical fiber-tip sensors for refractive index (RI) sensing and pressure sensing, which showed 917.3 nm/RIU to RI change and 4.29 nm/MPa to pressure change, respectively, are demonstrated in the experiments. The sensors and their optical µ-printing method unveil a new strategy to integrate complicated microcomponents on optical fibers toward 'lab-on-fiber' devices and applications.

  8. A flowing liquid test system for assessing the linearity and time-response of rapid fibre optic oxygen partial pressure sensors.

    PubMed

    Chen, R; Hahn, C E W; Farmery, A D

    2012-08-15

    The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Optical properties of m-plane GaN grown on patterned Si(112) substrates by MOCVD using a two-step approach

    NASA Astrophysics Data System (ADS)

    Izyumskaya, N.; Okur, S.; Zhang, F.; Monavarian, M.; Avrutin, V.; Özgür, Ü.; Metzner, S.; Karbaum, C.; Bertram, F.; Christen, J.; Morkoç, H.

    2014-03-01

    Nonpolar m-plane GaN layers were grown on patterned Si (112) substrates by metal-organic chemical vapor deposition (MOCVD). A two-step growth procedure involving a low-pressure (30 Torr) first step to ensure formation of the m-plane facet and a high-pressure step (200 Torr) for improvement of optical quality was employed. The layers grown in two steps show improvement of the optical quality: the near-bandedge photoluminescence (PL) intensity is about 3 times higher than that for the layers grown at low pressure, and deep emission is considerably weaker. However, emission intensity from m-GaN is still lower than that of polar and semipolar (1 100 ) reference samples grown under the same conditions. To shed light on this problem, spatial distribution of optical emission over the c+ and c- wings of the nonpolar GaN/Si was studied by spatially resolved cathodoluminescence and near-field scanning optical microscopy.

  10. Graphene-based ultrasonic detector for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Song, Wei; Zhang, Chonglei; Fang, Hui; Min, Changjun; Yuan, Xiaocong

    2018-03-01

    Taking advantage of optical absorption imaging contrast, photoacoustic imaging technology is able to map the volumetric distribution of the optical absorption properties within biological tissues. Unfortunately, traditional piezoceramics-based transducers used in most photoacoustic imaging setups have inadequate frequency response, resulting in both poor depth resolution and inaccurate quantification of the optical absorption information. Instead of the piezoelectric ultrasonic transducer, we develop a graphene-based optical sensor for detecting photoacoustic pressure. The refractive index in the coupling medium is modulated due to photoacoustic pressure perturbation, which creates the variation of the polarization-sensitive optical absorption property of the graphene. As a result, the photoacoustic detection is realized through recording the reflectance intensity difference of polarization light. The graphene-based detector process an estimated noise-equivalentpressure (NEP) sensitivity of 550 Pa over 20-MHz bandwidth with a nearby linear pressure response from 11.0 kPa to 53.0 kPa. Further, a graphene-based photoacoustic microscopy is built, and non-invasively reveals the microvascular anatomy in mouse ears label-freely.

  11. Photoacoustic Studies on Iodine.

    NASA Astrophysics Data System (ADS)

    Bhan, Avtar N.

    A photoacoustic cavity was constructed which employs a temperature-controlled cylindrical cavity with optical windows at either end. It was operated in the lowest longitudinal mode using a small electret microphone for detecting the acoustic signal and a photomultiplier tube for detecting the optical signal. Molecular Iodine was used as the specimen gas and argon as the buffer gas. The photoacoustic characteristics of the system were studied. Iodine molecules, excited periodically by intensity modulated optical radiation (xenon discharge), de-excited by non-radiative processes which result in pressure waves having the same modulation frequency as that of the light. These pressure waves are detected as acoustical pulses by the microphone situated in the wall of the cavity. Studies were conducted for different pressures of buffer gas (100 torr to 800 torr) at several different Iodine pressures in the range between 0.3 and 1 torr. The longitudinal mode of excitation provides an opportunity to compare the response of the cavity under acoustical excitation with that under optical excitation. The relevant parameters in the investigation were: Q, the quality factor of the cavity; the resonant frequency, partial pressures of argon and Iodine; temperature; and the signal amplitude. It was found that the Q of the cavity was well -behaved following the theoretically predicted dependence on SQRT.(P and on T('- 3/4). The absorption coefficient of Iodine determined photometrically, increased with increasing argon pressure up to a limiting value of pressure that depended on Iodine concentration. The photoacoustic signal showed a similar increase with increasing argon pressure. This signal reached a limiting value at a pressure which corresponded closely with that found optically. This is taken to indicate that the extinction coefficient of Iodine in argon, at the level of dilution used in these studies, depends on the argon pressure. A method was developed for measuring the concentration of Iodine at low levels through application of the shift in the frequency of the longitudinal mode resonance of the cavity. Also, resonance technique was employed for determining the velocity of sound in argon. A value of 307.7 M/sec was established as compared with the value of 319 M/sec as reported in various standard handbooks.

  12. Assessment of multiple DWI offender restrictions

    DOT National Transportation Integrated Search

    1989-12-01

    This report discusses nine new approaches for reducing recidivism among multiple DWI offenders: dedicated detention facilities, diversion programs, electronic monitoring, ignition interlock systems, intensive probation supervision, publishing offende...

  13. 76 FR 42767 - Management Officials Interlocks

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... information collection on respondents, including through the use of information technology. We will summarize... background, including any past history in dealing with regulatory authorities, indicates an ability to...

  14. Fiber optic pressure sensors in skin-friction measurements

    NASA Technical Reports Server (NTRS)

    Cuomo, F. W.

    1986-01-01

    A fiber optic lever sensing technique that can be used to measure normal pressure as well as shear stresses is discussed. This method uses three unequal fibers combining small size and good sensitivity. Static measurements appear to confirm the theoretical models predicted by geometrical optics and dynamic tests performed at frequencies up to 10 kHz indicate a flat response within this frequency range. These sensors are intended for use in a low speed wind tunnel environment.

  15. Demonstration of a high speed hybrid electrical and optical sensing system for next generation launcher applications

    NASA Astrophysics Data System (ADS)

    Ibrahim, Selwan K.; O'Dowd, John A.; Honniball, Arthur; Bessler, Vivian; Farnan, Martin; O'Connor, Peter; Melicher, Milos; Gleeson, Danny

    2017-09-01

    The Future Launchers Preparatory Programme (FLPP) supported by the European Space Agency (ESA) has a goal of developing various launch vehicle system concepts and identifying the technologies required for the design of Europe's Next-Generation Launcher (NGL) while maintaining competitiveness on the commercial market. Avionics fiber optic sensing technology was investigated as part of the FLPP programme. Here we demonstrate and evaluate a high speed hybrid electrical/optical data acquisition system based on commercial off the shelf (COTS) technology capable of acquiring data from traditional electrical sensors and optical Fibre Bragg Grating (FBG) sensors. The proposed system consists of the KAM-500 data acquisition system developed by Curtis-Wright and the I4 tunable laser based fiber optic sensor interrogator developed by FAZ Technology. The key objective was to demonstrate the capability of the hybrid system to acquire data from traditional electrical sensors used in launcher applications e.g. strain, temperature and pressure in combination with optical FBG sensors, as well as data delivery to spacecraft avionics systems. The KAM-500 was configured as the main acquisition unit (MAU) and provided a 1 kHz sampling clock to the I4 interrogator that was configured as the secondary acquisition unit (SAU) to synchronize the data acquisition sample rate between both systems. The SAU acquired data from an array of optical FBG sensors, while the MAU data acquisition system acquired data from the electrical sensors. Data acquired from the optical sensors was processed by the FAZ I4 interrogation system and then encapsulated into UDP/IP packets and transferred to the KAM-500. The KAM-500 encapsulated the optical sensor data together with the data acquired from electrical sensors and transmitted the data over MIL-STD-1553 and Ethernet data interface. The temperature measurements resulted in the optical and electrical sensors performing on a par with each other, with all sensors recording an accuracy within 0.35% FS over the full temperature range of -70°C to +180°C. The pressure measurements were performed over a 0 to 5 bar absolute pressure range and over different temperatures across a -40°C to +80°C range. The tests concluded that the optical pressure sensors performed on par with the electrical pressure sensor for each temperature set, where both sensor technologies measured a pressure accuracy of 1.2% FS. As for the strain measurements, the results show the optical and electrical sensors can measure to within 1% FS (Full Scale) of measurement range +/-1,200 μstrain. The proposed hybrid system can be potentially used for next generation launcher applications delivering weight reduction, improvement in measurement coverage and reduction in Assembly, Integration and Testing (AIT) over traditional electrical systems.

  16. Perspectives for a new realization of the pascal by optical methods

    NASA Astrophysics Data System (ADS)

    Jousten, Karl; Hendricks, Jay; Barker, Daniel; Douglas, Kevin; Eckel, Steve; Egan, Patrick; Fedchak, James; Flügge, Jens; Gaiser, Christof; Olson, Douglas; Ricker, Jacob; Rubin, Tom; Sabuga, Wladimir; Scherschligt, Julia; Schödel, Rene; Sterr, Uwe; Stone, Jack; Strouse, Gregory

    2017-12-01

    Since the beginning of measurement of pressure in the 17th century, the unit of pressure has been defined by the relationship of force per unit area. The present state of optical technology now offers the possibility of using a thermodynamic definition—specifically the ideal gas law—for the realization of the pressure unit, in the vacuum regime and slightly above, with an accuracy comparable to or better than the traditional methods of force per area. The changes planned for the SI in 2018 support the application of this thermodynamic definition that is based on the ideal gas law with the necessary corrections for real-gas effects. The paper reviews the theoretical and experimental foundations of those optical methods that are considered to be most promising to realize the unit of pressure at the highest level of metrology.

  17. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grass, David, E-mail: david.grass@univie.ac.at; Fesel, Julian; Hofer, Sebastian G.

    2016-05-30

    We demonstrate an optical conveyor belt for levitated nanoparticles over several centimeters inside both air-filled and evacuated hollow-core photonic crystal fibers (HCPCF). Detection of the transmitted light field allows three-dimensional read-out of the particle center-of-mass motion. An additional laser enables axial radiation pressure based feedback cooling over the full fiber length. We show that the particle dynamics is a sensitive local probe for characterizing the optical intensity profile inside the fiber as well as the pressure distribution along the fiber axis. In contrast to some theoretical predictions, we find a linear pressure dependence inside the HCPCF, extending over three ordersmore » of magnitude from 0.2 mbar to 100 mbar. A targeted application is the controlled delivery of nanoparticles from ambient pressure into medium vacuum.« less

  18. Analysis and investigation of temperature and hydrostatic pressure effects on optical characteristics of multiple quantum well slow light devices.

    PubMed

    Abdolhosseini, Saeed; Kohandani, Reza; Kaatuzian, Hassan

    2017-09-10

    This paper represents the influences of temperature and hydrostatic pressure variations on GaAs/AlGaAs multiple quantum well slow light systems based on coherence population oscillations. An analytical model in non-integer dimension space is used to study the considerable effects of these parameters on optical properties of the slow light apparatus. Exciton oscillator strength and fractional dimension constants have special roles on the analytical model in fractional dimension. Hence, the impacts of hydrostatic pressure and temperature on exciton oscillator strength and fractional dimension quantity are investigated theoretically in this paper. Based on the achieved results, temperature and hydrostatic pressure play key roles on optical parameters of the slow light systems, such as the slow down factor and central energy of the device. It is found that the slope and value of the refractive index real part change with alterations of temperature and hydrostatic pressure in the range of 5-40 deg of Kelvin and 1 bar to 2 kbar, respectively. Thus, the peak value of the slow down factor can be adjusted by altering these parameters. Moreover, the central energy of the device shifts when the hydrostatic pressure is applied to the slow light device or temperature is varied. In comparison with previous reported experimental results, our simulations follow them successfully. It is shown that the maximum value of the slow down factor is estimated close to 5.5×10 4 with a fine adjustment of temperature and hydrostatic pressure. Meanwhile, the central energy shift of the slow light device rises up to 27 meV, which provides an appropriate basis for different optical devices in which multiple quantum well slow light is one of their essential subsections. This multiple quantum well slow light device has potential applications for use as a tunable optical buffer and pressure/temperature sensors.

  19. Evaluation of Peripheral Blood Circulation Disorder in Scleroderma Patients Using an Optical Sensor with a Pressurization Mechanism

    PubMed Central

    Yamakoshi, Yoshiki

    2016-01-01

    Blood circulation function of peripheral blood vessels in skin dermis was evaluated employing an optical sensor with a pressurization mechanism using the blood outflow and reflow characteristics. The device contains a light source and an optical sensor. When applied to the skin surface, it first exerts the primary pressure (higher than the systolic blood pressure), causing an outflow of blood from the dermal peripheral blood vessels. After two heartbeats, the pressure is lowered (secondary pressure) and blood reflows into the peripheral blood vessels. Hemoglobin concentration, which changes during blood outflow and reflow, is derived from the received light intensity using the Beer–Lambert law. This method was evaluated in 26 healthy female volunteers and 26 female scleroderma patients. In order to evaluate the blood circulation function of the peripheral blood vessels of scleroderma patients, pressurization sequence which consists of primary pressure followed by secondary pressure was adopted. Blood reflow during the first heartbeat period after applying the secondary pressure of 40mmHg was (mean±SD) 0.059±0.05%mm for scleroderma patients and 0.173±0.104%mm for healthy volunteers. Blood reflow was significantly lower in scleroderma patients than in healthy volunteers (p<0.05). This result indicates that the information necessary for assessing blood circulation disorder of peripheral blood vessels in scleroderma patients is objectively obtained by the proposed method. PMID:27479094

  20. Evaluation of Peripheral Blood Circulation Disorder in Scleroderma Patients Using an Optical Sensor with a Pressurization Mechanism.

    PubMed

    Yamakoshi, Yoshiki; Motegi, Sei-Ichiro; Ishikawa, Osamu

    2016-01-01

    Blood circulation function of peripheral blood vessels in skin dermis was evaluated employing an optical sensor with a pressurization mechanism using the blood outflow and reflow characteristics. The device contains a light source and an optical sensor. When applied to the skin surface, it first exerts the primary pressure (higher than the systolic blood pressure), causing an outflow of blood from the dermal peripheral blood vessels. After two heartbeats, the pressure is lowered (secondary pressure) and blood reflows into the peripheral blood vessels. Hemoglobin concentration, which changes during blood outflow and reflow, is derived from the received light intensity using the Beer-Lambert law. This method was evaluated in 26 healthy female volunteers and 26 female scleroderma patients. In order to evaluate the blood circulation function of the peripheral blood vessels of scleroderma patients, pressurization sequence which consists of primary pressure followed by secondary pressure was adopted. Blood reflow during the first heartbeat period after applying the secondary pressure of 40mmHg was (mean±SD) 0.059±0.05%mm for scleroderma patients and 0.173±0.104%mm for healthy volunteers. Blood reflow was significantly lower in scleroderma patients than in healthy volunteers (p<0.05). This result indicates that the information necessary for assessing blood circulation disorder of peripheral blood vessels in scleroderma patients is objectively obtained by the proposed method.

  1. Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process.

    PubMed

    Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Zhao, Xuzhe; Ishida, Tohru

    2017-08-01

    Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a) localized deformation; (b) drawing; (c) backward extrusion; and (d) mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures.

  2. Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process

    PubMed Central

    Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Zhao, Xuzhe; Ishida, Tohru

    2017-01-01

    Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a) localized deformation; (b) drawing; (c) backward extrusion; and (d) mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures. PMID:28763027

  3. Insights into the Photoprotective Switch of the Major Light-harvesting Complex II (LHCII)

    PubMed Central

    Sunku, Kiran; de Groot, Huub. J. M.; Pandit, Anjali

    2013-01-01

    Light-harvesting antennae of the LHC family form transmembrane three-helix bundles of which two helices are interlocked by conserved arginine-glutamate (Arg-Glu) ion pairs that form ligation sites for chlorophylls. The antenna proteins of photosystem II have an intriguing dual function. In excess light, they can switch their conformation from a light-harvesting into a photoprotective state, in which the excess and harmful excitation energies are safely dissipated as heat. Here we applied magic angle spinning NMR and selective Arg isotope enrichment as a noninvasive method to analyze the Arg structures of the major light-harvesting complex II (LHCII). The conformations of the Arg residues that interlock helix A and B appear to be preserved in the light-harvesting and photoprotective state. Several Arg residues have very downfield-shifted proton NMR responses, indicating that they stabilize the complex by strong hydrogen bonds. For the Arg Cα chemical shifts, differences are observed between LHCII in the active, light-harvesting and in the photoprotective, quenched state. These differences are attributed to a conformational change of the Arg residue in the stromal loop region. We conclude that the interlocked helices of LHCII form a rigid core. Consequently, the LHCII conformational switch does not involve changes in A/B helix tilting but likely involves rearrangements of the loops and helical segments close to the stromal and lumenal ends. PMID:23629658

  4. Synthetic oligorotaxanes exert high forces when folding under mechanical load

    NASA Astrophysics Data System (ADS)

    Sluysmans, Damien; Hubert, Sandrine; Bruns, Carson J.; Zhu, Zhixue; Stoddart, J. Fraser; Duwez, Anne-Sophie

    2018-01-01

    Folding is a ubiquitous process that nature uses to control the conformations of its molecular machines, allowing them to perform chemical and mechanical tasks. Over the years, chemists have synthesized foldamers that adopt well-defined and stable folded architectures, mimicking the control expressed by natural systems1,2. Mechanically interlocked molecules, such as rotaxanes and catenanes, are prototypical molecular machines that enable the controlled movement and positioning of their component parts3-5. Recently, combining the exquisite complexity of these two classes of molecules, donor-acceptor oligorotaxane foldamers have been synthesized, in which interactions between the mechanically interlocked component parts dictate the single-molecule assembly into a folded secondary structure6-8. Here we report on the mechanochemical properties of these molecules. We use atomic force microscopy-based single-molecule force spectroscopy to mechanically unfold oligorotaxanes, made of oligomeric dumbbells incorporating 1,5-dioxynaphthalene units encircled by cyclobis(paraquat-p-phenylene) rings. Real-time capture of fluctuations between unfolded and folded states reveals that the molecules exert forces of up to 50 pN against a mechanical load of up to 150 pN, and displays transition times of less than 10 μs. While the folding is at least as fast as that observed in proteins, it is remarkably more robust, thanks to the mechanically interlocked structure. Our results show that synthetic oligorotaxanes have the potential to exceed the performance of natural folding proteins.

  5. Influence of sputtering pressure on optical constants of a-GaAs1-xNx thin films

    NASA Astrophysics Data System (ADS)

    Baoshan, Jia; Yunhua, Wang; Lu, Zhou; Duanyuan, Bai; Zhongliang, Qiao; Xin, Gao; Baoxue, Bo

    2012-08-01

    Amorphous GaAs1-xNx (a-GaAs1-xNx) thin films have been deposited at room temperature by a reactive magnetron sputtering technique on glass substrates with different sputtering pressures. The thickness, nitrogen content, carrier concentration and transmittance of the as-deposited films were determined experimentally. The influence of sputtering pressure on the optical band gap, refractive index and dispersion parameters (Eo, Ed) has been investigated. An analysis of the absorption coefficient revealed a direct optical transition characterizing the as-deposited films. The refractive index dispersions of the as-deposited a-GaAs1-xNx films fitted well to the Cauchy dispersion relation and the Wemple model.

  6. Rethinking Mathematics.

    ERIC Educational Resources Information Center

    Abad, Ernesto A.

    1994-01-01

    Poses solutions for our failure to show students how well mathematics interlocks with the physical structures of the Universe. Some examples are provided to illustrate the natural integration of mathematics and science. (ZWH)

  7. 78 FR 26849 - Model Specifications for Breath Alcohol Ignition Interlock Devices (BAIIDs)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ...--Acetone Test 14--Emergency Override Test 15--Radiofrequency Interference/Electromagnetic Interference Test... requirements; temperature extreme testing; radio frequency interference (RFI) or electromagnetic interference...

  8. Textile Pressure Sensor Made of Flexible Plastic Optical Fibers

    PubMed Central

    Rothmaier, Markus; Luong, Minh Phi; Clemens, Frank

    2008-01-01

    In this paper we report the successful development of pressure sensitive textile prototypes based on flexible optical fibers technology. Our approach is based on thermoplastic silicone fibers, which can be integrated into woven textiles. As soon as pressure at a certain area of the textile is applied to these fibers they change their cross section reversibly, due to their elastomeric character, and a simultaneous change in transmitted light intensity can be detected. We have successfully manufactured two different woven samples with fibers of 0.51 and 0.98 mm diameter in warp and weft direction, forming a pressure sensitive matrix. Determining their physical behavior when a force is applied shows that pressure measurements are feasible. Their usable working range is between 0 and 30 N. Small drifts in the range of 0.2 to 4.6%, over 25 load cycles, could be measured. Finally, a sensor array of 2 × 2 optical fibers was tested for sensitivity, spatial resolution and light coupling between fibers at intersections. PMID:27879938

  9. Intracranial and Intraocular Pressure at the Lamina Cribrosa: Gradient Effects.

    PubMed

    Jóhannesson, Gauti; Eklund, Anders; Lindén, Christina

    2018-04-12

    A pressure difference between the intraocular and intracranial compartments at the site of the lamina cribrosa has been hypothesized to have a pathophysiological role in several optic nerve head diseases. This paper reviews the current literature on the translamina cribrosa pressure difference (TLCPD), the associated pressure gradient, and its potential pathophysiological role, as well as the methodology to assess TLCPD. For normal-tension glaucoma (NTG), initial studies indicated low intracranial pressure (ICP) while recent findings indicate that a reduced ICP is not mandatory. Data from studies on the elevated TLCPD as a pathophysiological factor of NTG are equivocal. From the identification of potential postural effects on the cerebrospinal fluid (CSF) communication between the intracranial and retrolaminar space, we hypothesize that the missing link could be a dysfunction of an occlusion mechanism of the optic nerve sheath around the optic nerve. In upright posture, this could cause an elevated TLCPD even with normal ICP and we suggest that this should be investigated as a pathophysiological component in NTG patients.

  10. Temperature and pressure dependence of the optical properties of Cr3+-doped Gd3Ga5O12 nanoparticles.

    PubMed

    Martín-Rodríguez, R; Valiente, R; Rodríguez, F; Bettinelli, M

    2011-07-01

    Since the crystal-field strength at the Cr(3+) site is very close to the excited-state crossover (ESCO), this work investigates the optical properties of Cr(3+)-doped Gd(3)Ga(5)O(12) (GGG) nanoparticles as a function of temperature and pressure in order to establish the effect of the ESCO on the optical behaviour of nanocrystalline GGG. Luminescence, time-resolved emission and lifetime measurements have been performed on GGG:0.5% Cr(3+) nanoparticles in the 25-300 K temperature range, as well as under hydrostatic pressure up to 20 GPa. We show how low temperature and high pressure progressively transforms Cr(3+)(4)T(2) --> (4)A(2) broadband emission into a ruby-like (2)E --> (4)A(2) luminescence. This behaviour together with the lifetime dependence on pressure and temperature are explained on the basis of the spin-orbit interaction between the (4)T(2) and (2)E states of Cr(3+).

  11. Optical pressure and temperature sensor based on the luminescence properties of Nd3+ ion in a gadolinium scandium gallium garnet crystal.

    PubMed

    León-Luis, S F; Muñoz-Santiuste, J E; Lavín, V; Rodríguez-Mendoza, U R

    2012-04-23

    Hypersensitivity to pressure and temperature is observed in the near-infrared emission lines of the Nd(3+) ion in a Cr(3+),Nd(3+):Gd(3)Sc(2)Ga(3)O(12) crystal, associated to the R(1,2)((4)F(3/2))→Z(5)((4)I(9/2)) and R(1,2)((4)F(3/2))→Z(1)((4)I(9/2)) transitions. The former emissions show large linear pressure coefficients of -11.3 cm(-1)/GPa and -8.8 cm(-1)/GPa, while the latter show high thermal sensitivity in the low temperature range. Thus this garnet crystal can be considered a potential optical pressure and/or temperature sensor in high pressure and temperature experiments up to 12 GPa and below room temperature, used in diamond anvil cells and excited with different UV and visible commercial laser due to the multiple Cr(3+) and Nd(3+) absorption bands. © 2012 Optical Society of America

  12. Development of UV Optical Measurements of Nitric Oxide and Hydroxyl Radical at the Exit of High Pressure Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Liscinsky, D. S.; Knight, B. A.; Shirley, J. A.

    1998-01-01

    Measurements of nitric oxide (NO) and hydroxyl radical (OR) have been made in a laboratory flat flame at pressures up to 30 atm using line-of-sight resonant absorption. Data are reported at equivalence ratios of 0.98 and 1.3 and pressures of 1, 5, 10, 20 and 30 atm. The performance of the in-situ LTV absorption technique with assessed at these elevated pressures by comparing the measured absorption with those predicted by detailed theoretical spectroscopic models for NO and OH. Previous to this experiment the resonant models had not been verified at pressures greater than two atmospheres. Agreement within 25% was found between the measurements and predictions with only slight modification of the existing models for both NO and OH to account for line center shifting and pressure broadening. Continuum interference of hot oxygen (O2) on the NO absorption spectra was not significant in the interpretation of the data. The optical methods used in this study are distinct from laser-based diagnostics such as laser induced fluorescence and, hence, have the potential to provide independent verification of the laser-based measurements. The methodology is also of sufficient simplicity to be hardened into a portable optical measurement system that can be deployed in gas turbine engine test cells. A miniature fiber optic couple portable instrument is described.

  13. Non-linear optical techniques and optical properties of condensed molecular systems

    NASA Astrophysics Data System (ADS)

    Citroni, Margherita

    2013-06-01

    Structure, dynamics, and optical properties of molecular systems can be largely modified by the applied pressure, with remarkable consequences on their chemical stability. Several examples of selective reactions yielding technologically attractive products can be cited, which are particularly efficient when photochemical effects are exploited in conjunction with the structural conditions attained at high density. Non-linear optical techniques are a basic tool to unveil key aspects of the chemical reactivity and dynamic properties of molecules. Their application to high-pressure samples is experimentally challenging, mainly because of the small sample dimensions and of the non-linear effects generated in the anvil materials. In this talk I will present results on the electronic spectra of several aromatic crystals obtained through two-photon induced fluorescence and two-photon excitation profiles measured as a function of pressure (typically up to about 25 GPa), and discuss the relationship between the pressure-induced modifications of the electronic structure and the chemical reactivity at high pressure. I will also present the first successful pump-probe infrared measurement performed as a function of pressure on a condensed molecular system. The system under examination is liquid water, in a sapphire anvil cell, up to 1 GPa along isotherms at 298 and 363 K. These measurements give a new enlightening insight into the dynamical properties of low- and high-density water allowing a definition of the two structures.

  14. Differential in vivo urodynamic measurement in a single thin catheter based on two optical fiber pressure sensors

    NASA Astrophysics Data System (ADS)

    Poeggel, Sven; Duraibabu, Dineshbabu; Tosi, Daniele; Leen, Gabriel; Lewis, Elfed; McGrath, Deirdre; Fusco, Ferdinando; Sannino, Simone; Lupoli, Laura; Ippolito, Juliet; Mirone, Vincenzo

    2015-03-01

    Urodynamic analysis is the predominant method for evaluating dysfunctions in the lower urinary tract. The exam measures the pressure during the filling and voiding process of the bladder and is mainly interested in the contraction of the bladder muscles. The data arising out of these pressure measurements enables the urologist to arrive at a precise diagnosis and prescribe an adequate treatment. A technique based on two optical fiber pressure and temperature sensors with a resolution of better than 0.1 cm H2O (˜10 Pa), a stability better than 1 cm H2O/hour, and a diameter of 0.2 mm in a miniature catheter with a diameter of only 5 Fr (1.67 mm), was used. This technique was tested in vivo on four patients with a real-time urodynamic measurement system. The optical system presented showed a very good correlation to two commercially available medical reference sensors. Furthermore, the optical urodynamic system demonstrated a higher dynamic and better sensitivity to detect small obstructions than both pre-existing medical systems currently in use in the urodynamic field.

  15. Differential in vivo urodynamic measurement in a single thin catheter based on two optical fiber pressure sensors.

    PubMed

    Poeggel, Sven; Duraibabu, Dineshbabu; Tosi, Daniele; Leen, Gabriel; Lewis, Elfed; McGrath, Deirdre; Fusco, Ferdinando; Sannino, Simone; Lupoli, Laura; Ippolito, Juliet; Mirone, Vincenzo

    2015-03-01

    Urodynamic analysis is the predominant method for evaluating dysfunctions in the lower urinary tract. The exam measures the pressure during the filling and voiding process of the bladder and is mainly interested in the contraction of the bladder muscles. The data arising out of these pressure measurements enables the urologist to arrive at a precise diagnosis and prescribe an adequate treatment. A technique based on two optical fiber pressure and temperature sensors with a resolution of better than 0.1 cm H₂O (∼10 Pa), a stability better than 1 cm H₂O/hour, and a diameter of 0.2 mm in a miniature catheter with a diameter of only 5 Fr (1.67 mm), was used. This technique was tested in vivo on four patients with a real-time urodynamic measurement system. The optical system presented showed a very good correlation to two commercially available medical reference sensors. Furthermore, the optical urodynamic system demonstrated a higher dynamic and better sensitivity to detect small obstructions than both pre-existing medical systems currently in use in the urodynamic field.

  16. The role of frictional contact of constituent blocks on the stability of masonry domes.

    PubMed

    Beatini, Valentina; Royer-Carfagni, Gianni; Tasora, Alessandro

    2018-01-01

    The observation of old construction works confirms that masonry domes can withstand tensile hoop stresses, at least up to a certain level. Here, such tensile resistance, rather than a priori assumed as a property of the bulk material, is attributed to the contact forces that are developed at the interfaces between interlocked blocks under normal pressure, specified by Coulomb's friction law. According to this rationale, the aspect ratio of the blocks, as well as the bond pattern, becomes of fundamental importance. To investigate the complex assembly of blocks, supposed rigid, we present a non-smooth contact dynamic analysis, implemented in a custom software based on the Project Chrono C++ framework and complemented with parametric-design interfaces for pre- and post-processing complex geometries. Through this advanced tool, we investigate the role of frictional forces resisting hoop stresses in the stability of domes, either circular or oval, under static and dynamic loading, focusing, in particular, on the structural role played by the underlying drum and the surmounting tiburium .

  17. Characterization of laser-driven shock waves in solids using a fiber optic pressure probe.

    PubMed

    Cranch, Geoffrey A; Lunsford, Robert; Grün, Jacob; Weaver, James; Compton, Steve; May, Mark; Kostinski, Natalie

    2013-11-10

    Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry-Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry-Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. The peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.

  18. High precision optical fiber Fabry-Perot sensor for gas pressure detection

    NASA Astrophysics Data System (ADS)

    Mao, Yan; Tong, Xing-lin

    2013-09-01

    An optical fiber Fabry-Perot (F-P) sensor with quartz diaphragm for gas pressure testing was designed and fabricated. It consisted of single-mode fiber, hollow glass tube and quartz diaphragm. It uses the double peak demodulation to obtain the initialized cavity length. The variety of cavity length can be calcultated by the single peak demodulation after changing the gas pressure. The results show that the sensor is small in size, whose sensitivity is 19 pm/kPa in the range of the 10 ~ 260 kPa gas pressure. And it has good linearity and repeatability.

  19. Electrical and optical properties of Ar/NH{sub 3} atmospheric pressure plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Zheng-Shi, E-mail: changzhsh1984@163.com, E-mail: gjzhang@xjtu.edu.cn; Yao, Cong-Wei; Chen, Si-Le

    Inspired by the Penning effect, we obtain a glow-like plasma jet by mixing ammonia (NH{sub 3}) into argon (Ar) gas under atmospheric pressure. The basic electrical and optical properties of an atmospheric pressure plasma jet (APPJ) are investigated. It can be seen that the discharge mode transforms from filamentary to glow-like when a little ammonia is added into the pure argon. The electrical and optical analyses contribute to the explanation of this phenomenon. The discharge mode, power, and current density are analyzed to understand the electrical behavior of the APPJ. Meanwhile, the discharge images, APPJ's length, and the components ofmore » plasma are also obtained to express its optical characteristics. Finally, we diagnose several parameters, such as gas temperature, electron temperature, and density, as well as the density number of metastable argon atoms of Ar/NH{sub 3} APPJ to help judge the usability in its applications.« less

  20. Fiber-linked interferometric pressure sensor

    NASA Technical Reports Server (NTRS)

    Beheim, G.; Fritsch, K.; Poorman, R. N.

    1987-01-01

    A fiber-optic pressure sensor is described which uses a diaphragm to modulate the mirror separation of a Fabry-Perot cavity (the sensing cavity). A multimode optical fiber delivers broadband light to the sensing cavity and returns the spectrally modulated light which the cavity reflects. The sensor's output spectrum is analyzed using a tunable Fabry-Perot cavity (the reference cavity) to determine the mismatch in the mirror separations of the two cavities. An electronic servo control uses this result to cause the mirror separation of the reference cavity to equal that of the sensing cavity. The displacement of the pressure-sensing diaphragm is then obtained by measuring the capacitance of the reference cavity's metal-coated mirrors. Relative to other fiber-optic sensors, an important advantage of this instrument is its high immunity to the effects of variations in both the transmissivity of the fiber link and the wavelength of the optical source.

Top