2007-01-01
Electro - optic properties of cholesteric liquid crystals with holographically patterned polymer stabilization were examined. It is hypothesized that...enhanced electro - optic properties of the final device. Prior to holographic patterning, polymer stabilization with large elastic memory was generated by way... electro - optic properties appear to stem from a single dimension domain size increase, which allows for a reduction in the LC/polymer interaction.
Coherent Beam Combining of Fiber Amplifiers via LOCSET (Postprint)
2012-07-10
load on final optics , and atmospheric turbulence compensation [20]. More importantly, tiled array systems are being investigated for extension to...compactness, near diffraction limited beam quality, superior thermal- optical properties, and high optical to optical conversion efficiencies. Despite...including: compactness, near diffraction limited beam quality, superior thermal- optical properties, and high optical to optical conversion efficiencies
NASA Astrophysics Data System (ADS)
Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Vignoud, Séverine; Lavaud, Jonathan; Manfait, Michel; Dinten, Jean-Marc
2015-03-01
Light/tissue interactions, like diffuse reflectance, endogenous fluorescence and Raman scattering, are a powerful means for providing skin diagnosis. Instrument calibration is an important step. We thus developed multilayered phantoms for calibration of optical systems. These phantoms mimic the optical properties of biological tissues such as skin. Our final objective is to better understand light/tissue interactions especially in the case of confocal Raman spectroscopy. The phantom preparation procedure is described, including the employed method to obtain a stratified object. PDMS was chosen as the bulk material. TiO2 was used as light scattering agent. Dye and ink were adopted to mimic, respectively, oxy-hemoglobin and melanin absorption spectra. By varying the amount of the incorporated components, we created a material with tunable optical properties. Monolayer and multilayered phantoms were designed to allow several characterization methods. Among them, we can name: X-ray tomography for structural information; Diffuse Reflectance Spectroscopy (DRS) with a homemade fibered bundle system for optical characterization; and Raman depth profiling with a commercial confocal Raman microscope for structural information and for our final objective. For each technique, the obtained results are presented and correlated when possible. A few words are said on our final objective. Raman depth profiles of the multilayered phantoms are distorted by elastic scattering. The signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties, obtained here with DRS, is crucial to properly correct Raman depth profiles. Thus, it would be permitted to consider quantitative studies on skin for drug permeation follow-up or hydration assessment, for instance.
Engineer-able optical properties of trilayer graphene nanoribbon
NASA Astrophysics Data System (ADS)
Meshginqalam, Bahar; T, Hamid Toloue A.; Taghi Ahmadi, Mohammad; Sabatyan, Arash
2016-03-01
Graphene with a single atomic layer of carbon indicates two-dimensional behavior which plays an important role in sensor application, because of its high surface-to-volume ratio. Its interesting optical properties lead to low-cost and accurate optical devices as well. In the presented work trilayer graphene nanoribbon (TGN) with focus on its optical property for different incident wave lengths in the presence of applied voltage is explored. In low bias condition the optical conductance is modeled and dielectric constant and refractive index based on the estimated conductance are calculated theoretically; finally the obtained results are investigated numerically. Controllable optical properties supported by applied voltage on TGN are proved. Consequently, the proposed model indicates TGN as a possible candidate on surface plasmon based sensors, which needs to be explored.
The Optical Properties of Particles Deposited on a Surface
1994-09-01
AD-A286 258 i -G •- o ) * .1111I1 IV -IC,, The optical properties of particles deposited on a surface. Final Technical Report by F. Borghese September...approximation. 4. List of publications. F. Borghese, P. Denti, R. Saija, E. Fucile and 0. I . Sindoni, "Optical properties of particles on or near a...perfectily reflecting surface," Accepted for publication in J. Opt. Soc. Am. A 5. Partecipants to the research. F. Borghese, P. Denti, R. Saija and 0. I
Optical properties of fly ash. Volume 2, Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Self, S.A.
1994-12-01
Research performed under this contract was divided into four tasks under the following headings: Task 1, Characterization of fly ash; Task 2, Measurements of the optical constants of slags; Task 3, Calculations of the radiant properties of fly ash dispersions; and Task 4, Measurements of the radiant properties of fly ash dispersions. Tasks 1 and 4 constituted the Ph.D. research topic of Sarbajit Ghosal, while Tasks 2 and 3 constituted the Ph.D. research topic of Jon Ebert. Together their doctoral dissertations give a complete account of the work performed. This final report, issued in two volumes consists of an executivemore » summary of the whole program followed by the dissertation of Ghosal and Ebert. Volume 2 contains the dissertation of Ebert which covers the measurements of the optical constants of slags, and calculations of the radiant properties of fly ash dispersions. A list of publications and conference presentations resulting from the work is also included.« less
Analysis of Electro-Optic Materials Properties on Guided Wave Devices
1992-12-16
AD-A262 787 APPLIED RESEARCH, INC, ANALYSIS OF ELECTRO - OPTIC MATERIALS PROPERTIES ON GUIDED WAVE DEVICES FINAL REPORT DTI 6700 ODYSSEY DR HUNTSVILLE...ALABAMA 35814-1220 s IMAR1893 APPROVED FOR PUKIC RE’.EASE DISTRIBUTION UNLIMlITED Applied Research Inc. ARI/92iR-048Z ANALYSIS OF ELECTRO - OPTIC MATERIALS...uNiT ATTN: Dr. 2aul Ashley-AMSMI-RD-~WS--CM ELEMENT NO 4 NO IAr SSiON No t1I TI TLE iciup SeawIfy 0Mft*G’I Analysis of Electro - optic Materials
Builes, Daniel H; Hernández-Ortiz, Juan P; Corcuera, Ma Angeles; Mondragon, Iñaki; Tercjak, Agnieszka
2014-01-22
Novel nanostructured unsaturated polyester resin-based thermosets, modified with poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), and two poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) block copolymers (BCP), were developed and analyzed. The effects of molecular weights, blocks ratio, and curing temperatures on the final morphological, optical, and mechanical properties were reported. The block influence on the BCP miscibility was studied through uncured and cured mixtures of unsaturated polyester (UP) resins with PEO and PPO homopolymers having molecular weights similar to molecular weights of the blocks of BCP. The final morphology of the nanostructured thermosetting systems, containing BCP or homopolymers, was investigated, and multiple mechanisms of nanostructuration were listed and explained. By considering the miscibility of each block before and after curing, it was determined that the formation of the nanostructured matrices followed a self-assembly mechanism or a polymerization-induced phase separation mechanism. The miscibility between PEO or PPO blocks with one of two phases of UP matrix was highlighted due to its importance in the final thermoset properties. Relationships between the final morphology and thermoset optical and mechanical properties were examined. The mechanisms and physics behind the morphologies lead toward the design of highly transparent, nanostructured, and toughened thermosetting UP systems.
Electronic and optical properties of Si and Ge nanocrystals: An ab initio study
NASA Astrophysics Data System (ADS)
Pulci, Olivia; Degoli, Elena; Iori, Federico; Marsili, Margherita; Palummo, Maurizia; Del Sole, Rodolfo; Ossicini, Stefano
2010-01-01
First-principles calculations within density functional theory and many-body perturbation theory have been carried out in order to investigate the structural, electronic and optical properties of undoped and doped silicon nanostructures. We consider Si nanoclusters co-doped with B and P. We find that the electronic band gap is reduced with respect to that of the undoped crystals, suggesting the possibility of impurity based engineering of electronic and optical properties of Si nanocrystals. Finally, motivated by recent suggestions concerning the chance of exploiting Ge dots for photovoltaic nanodevices, we present calculations of the electronic and optical properties of a Ge 35H 36 nanocrystal, and compare the results with those for the corresponding Si 35H 36 nanocrystals and the co-doped Si 33BPH 36.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chelikowsky, James R.
2013-04-01
Work in nanoscience has increased substantially in recent years owing to its potential technological applications and to fundamental scientific interest. A driving force for this activity is to capitalize on new phenomena that occurs at the nanoscale. For example, the physical confinement of electronic states, i.e., quantum confinement, can dramatically alter the electronic and optical properties of matter. A prime example of this occurs for the optical properties of nanoscale crystals such as those composed of elemental silicon. Silicon in the bulk state is optically inactive due to the small size of the optical gap, which can only be accessedmore » by indirect transitions. However, at the nanoscale, this material becomes optically active. The size of the optical gap is increased by confinement and the conservation of crystal momentum ceases to hold, resulting in the viability of indirect transitions. Our work associated with this grant has focused on developing new scalable algorithms for describing the electronic and optical properties of matter at the nanoscale such as nano structures of silicon and related semiconductor properties.« less
2016-03-28
PROPERTIES FOR BIO -IMAGING AND PHOTO-THERMAL APPLICATIONS ANTHONY B. POLITO III, Maj, USAF, BSC, PhD, MT(ASCP)SBB March 2016 Final Report for March...HIGH CELLULAR UPTAKE IN VITRO WHILE PRESERVING OPTICAL PROPERTIES FOR BIO -IMAGING AND PHOTO-THERMAL APPLICATIONS. 5a. CONTRACT NUMBER 5b...These findings identify MTAB-TA GNRs as prime candidates for use in nano-based bio -imaging and photo-thermal applications. 15. SUBJECT TERMS
Composition, nanostructure, and optical properties of silver and silver-copper lusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradell, Trinitat; Pavlov, Radostin S.; Carolina Gutierrez, Patricia
2012-09-01
Lusters are composite thin layers of coinage metal nanoparticles in glass displaying peculiar optical properties and obtained by a process involving ionic exchange, diffusion, and crystallization. In particular, the origin of the high reflectance (golden-shine) shown by those layers has been subject of some discussion. It has been attributed to either the presence of larger particles, thinner multiple layers or higher volume fraction of nanoparticles. The object of this paper is to clarify this for which a set of laboratory designed lusters are analysed by Rutherford backscattering spectroscopy, transmission electron microscopy, x-ray diffraction, and ultraviolet-visible spectroscopy. Model calculations and numericalmore » simulations using the finite difference time domain method were also performed to evaluate the optical properties. Finally, the correlation between synthesis conditions, nanostructure, and optical properties is obtained for these materials.« less
Linking Aerosol Optical Properties Between Laboratory, Field, and Model Studies
NASA Astrophysics Data System (ADS)
Murphy, S. M.; Pokhrel, R. P.; Foster, K. A.; Brown, H.; Liu, X.
2017-12-01
The optical properties of aerosol emissions from biomass burning have a significant impact on the Earth's radiative balance. Based on measurements made during the Fourth Fire Lab in Missoula Experiment, our group published a series of parameterizations that related optical properties (single scattering albedo and absorption due to brown carbon at multiple wavelengths) to the elemental to total carbon ratio of aerosols emitted from biomass burning. In this presentation, the ability of these parameterizations to simulate the optical properties of ambient aerosol is assessed using observations collected in 2017 from our mobile laboratory chasing wildfires in the Western United States. The ambient data includes measurements of multi-wavelength absorption, scattering, and extinction, size distribution, chemical composition, and volatility. In addition to testing the laboratory parameterizations, this combination of measurements allows us to assess the ability of core-shell Mie Theory to replicate observations and to assess the impact of brown carbon and mixing state on optical properties. Finally, both laboratory and ambient data are compared to the optical properties generated by a prominent climate model (Community Earth System Model (CESM) coupled with the Community Atmosphere Model (CAM 5)). The discrepancies between lab observations, ambient observations and model output will be discussed.
Microfiber Optical Sensors: A Review
Lou, Jingyi; Wang, Yipei; Tong, Limin
2014-01-01
With diameter close to or below the wavelength of guided light and high index contrast between the fiber core and the surrounding, an optical microfiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, evanescent fields and waveguide dispersion. Among various microfiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, fast response, high flexibility and low optical power consumption. Here we review recent progress in microfiber optical sensors regarding their fabrication, waveguide properties and sensing applications. Typical microfiber-based sensing structures, including biconical tapers, optical gratings, circular cavities, Mach-Zehnder interferometers and functionally coated/doped microfibers, are summarized. Categorized by sensing structures, microfiber optical sensors for refractive index, concentration, temperature, humidity, strain and current measurement in gas or liquid environments are reviewed. Finally, we conclude with an outlook for challenges and opportunities of microfiber optical sensors. PMID:24670720
Optical properties of fly ash. Volume 1, Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Self, S.A.
1994-12-01
Research performed under this contract was divided into four tasks under the following headings: Task 1, Characterization of fly ash; Task 2, Measurements of the optical constants of slags; Task 3, Calculations of the radiant properties of fly ash dispersions; and Task 4, Measurements of the radiant properties of fly ash dispersions. Tasks 1 and 4 constituted the Ph.D. research topic of Sarbajit Ghosal, while Tasks 2 and 3 constituted the Ph.D. research topic of Jon Ebert. Together their doctoral dissertations give a complete account of the work performed. This final report, issued in two volumes consists of an executivemore » summary of the whole program followed by the dissertation of Ghosal. Volume 1 contains the dissertation of Ghosal which covers the characterization of fly ash and the measurements of the radiant properties of fly ash dispersions. A list of publications and conference presentations resulting from the work is also included.« less
2016-07-30
27TH STREET STE 4308 AUSTIN , TX 78712 08/03/2016 Final Report DISTRIBUTION A: Distribution approved for public release. Air Force Research ...4308 Austin , TX 78712-1500 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Office of...AFRL-AFOSR-VA-TR-2016-0281 MANIPULATING THE INTERFACIAL ELECTRIAL & OPTICAL PROPERTIES OF DISSIMILA Seth Bank UNIVERSITY OF TEXAS AT AUSTIN 101 EAST
Porous silicon platform for optical detection of functionalized magnetic particles biosensing.
Ko, Pil Ju; Ishikawa, Ryousuke; Sohn, Honglae; Sandhu, Adarsh
2013-04-01
The physical properties of porous materials are being exploited for a wide range of applications including optical biosensors, waveguides, gas sensors, micro capacitors, and solar cells. Here, we review the fast, easy and inexpensive electrochemical anodization based fabrication porous silicon (PSi) for optical biosensing using functionalized magnetic particles. Combining magnetically labeled biomolecules with PSi offers a rapid and one-step immunoassay and real-time detection by magnetic manipulation of superparamagnetic beads (SPBs) functionalized with target molecules onto corresponding probe molecules immobilized inside nano-pores of PSi. We first give an introduction to electrochemical and chemical etching procedures used to fabricate a wide range of PSi structures. Next, we describe the basic properties of PSi and underlying optical scattering mechanisms that govern their unique optical properties. Finally, we give examples of our experiments that demonstrate the potential of combining PSi and magnetic beads for real-time point of care diagnostics.
Controlling of the optical properties of the solutions of the PTCDI-C8 organic semiconductor
NASA Astrophysics Data System (ADS)
Erdoğan, Erman; Gündüz, Bayram
2016-09-01
N,N'-Dioctyl-3,4,9,10 perylenedicarboximide (PTCDI-C8) organic semiconductor have vast applications in solar cells, thermoelectric generators, thin film photovoltaics and many other optoelectronic devices. These applications of the materials are based on their spectral and optical properties. The solutions of the PTCDI-C8 for different molarities were prepared and the spectral and optical mesaurements were analyzed. Effects of the molarities on optical properties were investigated. Vibronic structure has been observed based on the absorption bands of PTCDI-C8 semiconductor with seven peaks at 2.292, 2.451, 2.616, 3.212, 3.851, 4.477 and 4.733 eV. The important spectral parameteres such as molar/mass extinction coefficients, absorption coefficient of the PTCDI-C8 molecule were calculated. Optical properties such as angle of incidence/refraction, optical band gap, real and imaginary parts of dielectric constant, loss factor and electrical susceptibility of the the PTCDI-C8 were obtained. Finally, we discussed these parameters for optoelectronic applications and compared with related parameters in literature.
Ross, Michael B.; Ku, Jessie C.; Blaber, Martin G.; ...
2015-08-03
Bottom-up assemblies of plasmonic nanoparticles exhibit unique optical effects such as tunable reflection, optical cavity modes, and tunable photonic resonances. In this paper, we compare detailed simulations with experiment to explore the effect of structural inhomogeneity on the optical response in DNA-gold nanoparticle superlattices. In particular, we explore the effect of background environment, nanoparticle polydispersity (>10%), and variation in nanoparticle placement (~5%). At volume fractions less than 20% Au, the optical response is insensitive to particle size, defects, and inhomogeneity in the superlattice. At elevated volume fractions (20% and 25%), structures incorporating different sized nanoparticles (10-, 20-, and 40-nm diameter)more » each exhibit distinct far-field extinction and near-field properties. These optical properties are most pronounced in lattices with larger particles, which at fixed volume fraction have greater plasmonic coupling than those with smaller particles. Moreover, the incorporation of experimentally informed inhomogeneity leads to variation in far-field extinction and inconsistent electric-field intensities throughout the lattice, demonstrating that volume fraction is not sufficient to describe the optical properties of such structures. Finally, these data have important implications for understanding the role of particle and lattice inhomogeneity in determining the properties of plasmonic nanoparticle lattices with deliberately designed optical properties.« less
Optical sensors and multiplexing for aircraft engine control
NASA Astrophysics Data System (ADS)
Berkcan, Ertugrul
1993-02-01
Time division multiplexing of spectral modulation fiber optic sensors for aircraft engine control is presented. The paper addresses the architectural properties, the accuracy, the benefits and problems of different type of sources, the spectral stability and update times using these sources, the size, weight, and power issues, and finally the technology needs regarding FADEC mountability. The fiber optic sensors include temperature, pressure, and position spectral modulation sensors.
Optical properties of implanted Xe color centers in diamond
Sandstrom, Russell; Ke, Li; Martin, Aiden; ...
2017-12-20
Optical properties of color centers in diamond have been the subject of intense research due to their promising applications in quantum photonics. Here in this work we study the optical properties of Xe related color centers implanted into nitrogen rich (type IIA) and an ultrapure, electronic grade diamond. The Xe defect has two zero phonon lines at 794 nm and 811 nm, which can be effectively excited using both green and red excitation, however, its emission in the nitrogen rich diamond is brighter. Near resonant excitation is performed at cryogenic temperatures and luminescence is probed under strong magnetic field. Finally,more » our results are important towards the understanding of the Xe related defect and other near infrared color centers in diamond.« less
Optical properties of implanted Xe color centers in diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandstrom, Russell; Ke, Li; Martin, Aiden
Optical properties of color centers in diamond have been the subject of intense research due to their promising applications in quantum photonics. Here in this work we study the optical properties of Xe related color centers implanted into nitrogen rich (type IIA) and an ultrapure, electronic grade diamond. The Xe defect has two zero phonon lines at 794 nm and 811 nm, which can be effectively excited using both green and red excitation, however, its emission in the nitrogen rich diamond is brighter. Near resonant excitation is performed at cryogenic temperatures and luminescence is probed under strong magnetic field. Finally,more » our results are important towards the understanding of the Xe related defect and other near infrared color centers in diamond.« less
NASA Astrophysics Data System (ADS)
Nichols, Brandon S.; Rajaram, Narasimhan; Tunnell, James W.
2012-05-01
Diffuse optical spectroscopy (DOS) provides a powerful tool for fast and noninvasive disease diagnosis. The ability to leverage DOS to accurately quantify tissue optical parameters hinges on the model used to estimate light-tissue interaction. We describe the accuracy of a lookup table (LUT)-based inverse model for measuring optical properties under different conditions relevant to biological tissue. The LUT is a matrix of reflectance values acquired experimentally from calibration standards of varying scattering and absorption properties. Because it is based on experimental values, the LUT inherently accounts for system response and probe geometry. We tested our approach in tissue phantoms containing multiple absorbers, different sizes of scatterers, and varying oxygen saturation of hemoglobin. The LUT-based model was able to extract scattering and absorption properties under most conditions with errors of less than 5 percent. We demonstrate the validity of the lookup table over a range of source-detector separations from 0.25 to 1.48 mm. Finally, we describe the rapid fabrication of a lookup table using only six calibration standards. This optimized LUT was able to extract scattering and absorption properties with average RMS errors of 2.5 and 4 percent, respectively.
Near-Infrared Fluorescence-Enhanced Optical Tomography
2016-01-01
Fluorescence-enhanced optical imaging using near-infrared (NIR) light developed for in vivo molecular targeting and reporting of cancer provides promising opportunities for diagnostic imaging. The current state of the art of NIR fluorescence-enhanced optical tomography is reviewed in the context of the principle of fluorescence, the different measurement schemes employed, and the mathematical tools established to tomographically reconstruct the fluorescence optical properties in various tissue domains. Finally, we discuss the recent advances in forward modeling and distributed memory parallel computation to provide robust, accurate, and fast fluorescence-enhanced optical tomography. PMID:27803924
Near-Infrared Fluorescence-Enhanced Optical Tomography.
Zhu, Banghe; Godavarty, Anuradha
2016-01-01
Fluorescence-enhanced optical imaging using near-infrared (NIR) light developed for in vivo molecular targeting and reporting of cancer provides promising opportunities for diagnostic imaging. The current state of the art of NIR fluorescence-enhanced optical tomography is reviewed in the context of the principle of fluorescence, the different measurement schemes employed, and the mathematical tools established to tomographically reconstruct the fluorescence optical properties in various tissue domains. Finally, we discuss the recent advances in forward modeling and distributed memory parallel computation to provide robust, accurate, and fast fluorescence-enhanced optical tomography.
NASA Astrophysics Data System (ADS)
Bellier, Quentin; Bouit, Pierre-Antoine; Kamada, Kenji; Feneyrou, Patrick; Malmström, E.; Maury, Olivier; Andraud, Chantal
2009-09-01
The rapid development of frequency-tunable pulsed lasers up to telecommunication wavelengths (1400-1600 nm) led to the design of new materials for nonlinear absorption in this spectral range. In this context, two families of near infra-red (NIR) chromophores, namely heptamethine cyanine and aza-borondipyrromethene (aza-bodipy) dyes were studied. In both cases, they show significant two-photon absorption (TPA) cross-sections in the 1400-1600 nm spectral range and display good optical power limiting (OPL) properties. OPL curves were interpreted on the basis of TPA followed by excited state absorption (ESA) phenomena. Finally these systems have several relevant properties like nonlinear absorption properties, gram scale synthesis and high solubility. In addition, they could be functionalized on several sites which open the way to numerous practical applications in biology, solid-state optical limiting and signal processing.
Magnetism, optical, and thermoelectric response of CdFe2O4 by using DFT scheme
NASA Astrophysics Data System (ADS)
Mahmood, Q.; Yaseen, M.; Bhamu, K. C.; Mahmood, Asif; Javed, Y.; Ramay, Shahid M.
2018-03-01
Comparative analysis of electronic, magnetic, optical, and thermoelectric properties of CdFe2O4, calculated by employing PBEsol + mBJ has been done. The PBEsol reveals metallic nature, while TB-mBJ illustrates ferromagnetic semiconducting behavior. The reasons behind the origin of ferromagnetism are explored by observing the exchange, crystal field, and John–Teller energies. The optical nature is investigated by analyzing dielectric constants, refraction, absorption coefficient, reflectivity, and optical conductivity. Finally, thermoelectric properties are elaborated by describing the electrical and thermal conductivities, Seebeck coefficient, and power factor. The strong absorption for the visible energy and high power factor suggest CdFe2O4 as the potential candidate for renewable energy applications.
In Situ Identification of Nanoparticle Structural Information Using Optical Microscopy.
Culver, Kayla S B; Liu, Tingting; Hryn, Alexander J; Fang, Ning; Odom, Teri W
2018-05-11
Diffraction-limited optical microscopy lacks the resolution to characterize directly nanoscale features of single nanoparticles. This paper describes how surprisingly rich structural features of small gold nanostars can be identified using differential interference contrast (DIC) microscopy. First, we established a library of structure-property relationships between nanoparticle shape and DIC optical image and then validated the correlation with electrodynamic simulations and electron microscopy. We found that DIC image patterns of single nanostars could be differentiated between 2D and 3D geometries. Also, DIC images could elucidate the symmetry properties and orientation of nanoparticles. Finally, we demonstrated how this wide-field optical technique can be used for in situ characterization of single nanoparticles rotating at a glass-water interface.
Global Multispectral Cloud Retrievals from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Ackerman, Steven A.; Menzel, W. Paul; Riedi, Jerome C.; Baum, Bryan A.
2003-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4,2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua, and will show characteristics of cloud optical and microphysical properties as a function of latitude for land and ocean separately, and contrast the statistical properties of similar cloud types in various parts of the world.
The effect of MgO on the optical properties of lithium sodium borate doped with Cu+ ions
NASA Astrophysics Data System (ADS)
Alajerami, Yasser Saleh Mustafa; Hashim, Suhairul; Hassan, Wan Muhamad Saridan Wan; Ramli, Ahmad Termizi; Saleh, Muneer Aziz
2013-04-01
The current work presented the photoluminescence (PL) properties of a new glass system, which are reported for the first time. Based on the attractive properties of borate glass, a mixture of boric acid (70-x mol %) modified with lithium (20 mol %) and sodium carbonate (10 mol %) was prepared. The current study illustrated the effect of dopant and co-dopant techniques on the lithium sodium borate (LNB). Firstly, 0.1 mol % of copper ions doped with LNB was excited at 610 nm. The emission spectrum showed two prominent peaks in the violet region (403 and 440 nm). Then, we remarked the effect of adding different concentration of MgO on the optical properties of LNB. The results showed the great effect of magnesium oxide on the PL intensities (enhanced more than two times). Moreover, an obvious shifting has been defined toward the blue region (440 → 475 nm). The up-conversion optical properties were observed in all emission spectra. This enhancement is contributed to the energy transfer from MgO ions to monovalent Cu+ ion. It is well known that magnesium oxide alone generates weak emission intensity, but during this increment the MgO act as an activator (co-doped) for Cu+ ions. Finally, energy band gap, density, ion concentration, molar volume, Polaron radius and inter-nuclear distance all were measured for the current samples. The current samples were subjected to XRD for amorphous confirmation and IR for glass characterization before and after dopants addition. Finally, some of significant physical and optical parameters were also calculated.
Optical diffraction properties of multimicrogratings
Rothenbach, Christian A.; Kravchenko, Ivan I.; Gupta, Mool C.
2015-02-27
This paper shows the results of optical diffraction properties of multimicrograting structures fabricated by e-beam lithography. Multimicrograting consist of arrays of hexagonally shaped cells containing periodic one-dimensional (1D) grating lines in different orientations and arrayed to form large area patterns. We analyzed the optical diffraction properties of multimicrogratings by studying the individual effects of the several periodic elements of multimicrogratings. The observed optical diffraction pattern is shown to be the combined effect of the periodic and non-periodic elements that define the multimicrogratings and the interaction between different elements. We measured the total transverse electric (TE) diffraction efficiency of multimicrogratings andmore » found it to be 32.1%, which is closely related to the diffraction efficiency of 1D periodic grating lines of the same characteristics, measured to be 33.7%. Beam profiles of the optical diffraction patterns from multimicrogratings are captured with a CCD sensor technique. Interference fringes were observed under certain conditions formed by multimicrograting beams interfering with each other. Finally, these diffraction structures may find applications in sensing, nanometrology, and optical interconnects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garbuio, Viviana; Pulci, Olivia; Cascella, Michele
The proton disorder in ice has a key role in several properties such as the growth mode, thermodynamical properties, and ferroelectricity. While structural phase transitions from proton disordered to proton ordered ices have been extensively studied, much less is known about their electronic and optical properties. Here, we present ab initio many body perturbation theory-based calculations of the electronic and optical properties of cubic ice at different levels of proton disorder. We compare our results with those from liquid water, that acts as an example of a fully (proton- and oxygen-)disordered system. We find that by increasing the proton disorder,more » a shrinking of the electronic gap occurs in ice, and it is smallest in the liquid water. Simultaneously, the excitonic binding energy decreases, so that the final optical gaps result to be almost independent on the degree of proton disorder. We explain these findings as an interplay between the local dipolar disorder and the electronic correlation.« less
NASA Astrophysics Data System (ADS)
Guembe, V.; Alvarado, C. G.; Fernández-Rodriguez, M.; Gallego, P.; Belenguer, T.; Díaz, E.
2017-11-01
The Raman Laser Spectrometer is one of the ExoMars Pasteur Rover's payload instruments that is devoted to the analytical analysis of the geochemistry content and elemental composition of the observed minerals provided by the Rover through Raman spectroscopy technique. One subsystem of the RLS instrument is the Internal Optical Head unit (IOH), which is responsible for focusing the light coming from the laser onto the mineral under analysis and for collecting the Raman signal emitted by the excited mineral. The IOH is composed by 4 commercial elements for Raman spectroscopy application; 2 optical filters provided by Iridian Spectral Technologies Company and 1 optical filter and 1 mirror provided by Semrock Company. They have been exposed to proton radiation in order to analyze their optical behaviour due to this hostile space condition. The proton irradiation test was performed following the protocol of LINES lab (INTA). The optical properties have been studied through transmittance, reflectance and optical density measurements, the final results and its influence on optical performances are presented.
aerosol radiative effects and forcing: spatial and temporal distributions
NASA Astrophysics Data System (ADS)
Kinne, Stefan
2014-05-01
A monthly climatology for aerosol optical properties based on a synthesis from global modeling and observational data has been applied to illustrate spatial distributions and global averages of aerosol radiative impacts. With the help of a pre-industrial reference for aerosol optical properties from global modeling, also the aerosol direct forcing (ca -0.35W/m2 globally and annual averaged) and their spatial and seasonal distributions and contributions by individual aerosol components are estimated. Finally, CCN and IN concentrations associated with this climatology are applied to estimate aerosol indirect effects and forcing.
Facile growth of barium oxide nanorods: structural and optical properties.
Ahmad, Naushad; Wahab, Rizwan; Alam, Manawwer
2014-07-01
This paper reports a large-scale synthesis of barium oxide nanorods (BaO-NRs) by simple solution method at a very low-temperature of - 60 degrees C. The as-grown BaO-NRs were characterized in terms of their morphological, structural, compositional, optical and thermal properties. The morphological characterizations of as-synthesized nanorods were done by scanning electron microscopy (SEM) which confirmed that the synthesized products are rod shaped and grown in high density. The nanorods exhibits smooth and clean surfaces throughout their lengths. The crystalline property of the material was analyzed with X-ray diffraction pattern (XRD). The compositional and thermal properties of synthesized nanorods were observed via Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis which confirmed that the synthesized nanorods are pure BaO and showed good thermal stability. The nanorods exhibited good optical properties as was confirmed from the room-temperature UV-vis spectroscopy. Finally, a plausible mechanism for the formation of BaO-NRs is also discussed in this paper.
Phantom Preparation and Optical Property Determination
NASA Astrophysics Data System (ADS)
He, Di; He, Jie; Mao, Heng
2018-12-01
Tissue-like optical phantoms are important in testing new imaging algorithms. Homogeneous optical phantoms with determined optical properties are the first step of making a proper heterogeneous phantom for multi-modality imaging. Typical recipes for such phantoms consist of epoxy resin, hardener, India ink and titanium oxide. By altering the concentration of India ink and titanium oxide, we are able to get multiple homogeneous phantoms with different absorption and scattering coefficients by carefully mixing all the ingredients. After fabricating the phantoms, we need to find their individual optical properties including the absorption and scattering coefficients. This is achieved by solving diffusion equation of each phantom as a homogeneous slab under canonical illumination. We solve the diffusion equation of homogeneous slab in frequency domain and get the formula for theoretical measurements. Under our steady-state diffused optical tomography (DOT) imaging system, we are able to obtain the real distribution of the incident light produced by a laser. With this source distribution we got and the formula we derived, numerical experiments show how measurements change while varying the value of absorption and scattering coefficients. Then we notice that the measurements alone will not be enough for us to get unique optical properties for steady-state DOT problem. Thus in order to determine the optical properties of a homogeneous slab we want to fix one of the coefficients first and use optimization methods to find another one. Then by assemble multiple homogeneous slab phantoms with different optical properties, we are able to obtain a heterogeneous phantom suitable for testing multi-modality imaging algorithms. In this paper, we describe how to make phantoms, derive a formula to solve the diffusion equation, demonstrate the non-uniqueness of steady-state DOT problem by analysing some numerical results of our formula, and finally propose a possible way to determine optical properties for homogeneous slab for our future work.
Optical trapping performance of dielectric-metallic patchy particles
Lawson, Joseph L.; Jenness, Nathan J.; Clark, Robert L.
2015-01-01
We demonstrate a series of simulation experiments examining the optical trapping behavior of composite micro-particles consisting of a small metallic patch on a spherical dielectric bead. A full parameter space of patch shapes, based on current state of the art manufacturing techniques, and optical properties of the metallic film stack is examined. Stable trapping locations and optical trap stiffness of these particles are determined based on the particle design and potential particle design optimizations are discussed. A final test is performed examining the ability to incorporate these composite particles with standard optical trap metrology technologies. PMID:26832054
NASA Astrophysics Data System (ADS)
Murphy, N. R.; Grant, J. T.; Sun, L.; Jones, J. G.; Jakubiak, R.; Shutthanandan, V.; Ramana, C. V.
2014-05-01
Germanium oxide (GeOx) films were grown on (1 0 0) Si substrates by reactive Direct-Current (DC) magnetron sputter-deposition using an elemental Ge target. The effects of oxygen gas fraction, Г = O2/(Ar + O2), on the deposition rate, structure, chemical composition and optical properties of GeOx films have been investigated. The chemistry of the films exhibits an evolution from pure Ge to mixed Ge + GeO + GeO2 and then finally to GeO2 upon increasing Г from 0.00 to 1.00. Grazing incidence X-ray analysis indicates that the GeOx films grown were amorphous. The optical properties probed by spectroscopic ellipsometry indicate that the effect of Г is significant on the optical constants of the GeOx films. The measured index of refraction (n) at a wavelength (λ) of 550 nm is 4.67 for films grown without any oxygen, indicating behavior characteristic of semiconducting Ge. The transition from germanium to mixed Ge + GeO + GeO2 composition is associated with a characteristic decrease in n (λ = 550 nm) to 2.62 and occurs at Г = 0.25. Finally n drops to 1.60 for Г = 0.50-1.00, where the films become GeO2. A detailed correlation between Г, n, k and stoichiometry in DC sputtered GeOx films is presented and discussed.
Spinelli, L.; Botwicz, M.; Zolek, N.; Kacprzak, M.; Milej, D.; Sawosz, P.; Liebert, A.; Weigel, U.; Durduran, T.; Foschum, F.; Kienle, A.; Baribeau, F.; Leclair, S.; Bouchard, J.-P.; Noiseux, I.; Gallant, P.; Mermut, O.; Farina, A.; Pifferi, A.; Torricelli, A.; Cubeddu, R.; Ho, H.-C.; Mazurenka, M.; Wabnitz, H.; Klauenberg, K.; Bodnar, O.; Elster, C.; Bénazech-Lavoué, M.; Bérubé-Lauzière, Y.; Lesage, F.; Khoptyar, D.; Subash, A. A.; Andersson-Engels, S.; Di Ninni, P.; Martelli, F.; Zaccanti, G.
2014-01-01
A multi-center study has been set up to accurately characterize the optical properties of diffusive liquid phantoms based on Intralipid and India ink at near-infrared (NIR) wavelengths. Nine research laboratories from six countries adopting different measurement techniques, instrumental set-ups, and data analysis methods determined at their best the optical properties and relative uncertainties of diffusive dilutions prepared with common samples of the two compounds. By exploiting a suitable statistical model, comprehensive reference values at three NIR wavelengths for the intrinsic absorption coefficient of India ink and the intrinsic reduced scattering coefficient of Intralipid-20% were determined with an uncertainty of about 2% or better, depending on the wavelength considered, and 1%, respectively. Even if in this study we focused on particular batches of India ink and Intralipid, the reference values determined here represent a solid and useful starting point for preparing diffusive liquid phantoms with accurately defined optical properties. Furthermore, due to the ready availability, low cost, long-term stability and batch-to-batch reproducibility of these compounds, they provide a unique fundamental tool for the calibration and performance assessment of diffuse optical spectroscopy instrumentation intended to be used in laboratory or clinical environment. Finally, the collaborative work presented here demonstrates that the accuracy level attained in this work for optical properties of diffusive phantoms is reliable. PMID:25071947
Thin-film optical shutter. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matlow, S.L.
1981-02-01
A specific embodiment of macroconjugated macromolecules, the poly (p-phenylene)'s, has been chosen as the one most likely to meet all of the requirements of the Thin Film Optical Shutter project (TFOS). The reason for this choice is included. In order to be able to make meaningful calculations of the thermodynamic and optical properties of the poly (p-phenylene)'s a new quantum mechanical method was developed - Equilibrium Bond Length (EBL) Theory. Some results of EBL Theory are included.
Modulation properties of optically injection-locked quantum cascade lasers.
Wang, Cheng; Grillot, Fédéric; Kovanis, Vassilios I; Bodyfelt, Joshua D; Even, Jacky
2013-06-01
A rate equation analysis on the modulation response of an optical injection-locked quantum cascade laser is outlined. It is found that the bifurcation diagram exhibits both bistable and unstable locked regions. In addition, the stable locked regime widens as the linewidth enhancement factor increases. It is also shown that both positive and negative optical detunings as well as strong injection strength enhance the 3 dB modulation bandwidth by as much as 30 GHz. Finally, the peak in the modulation response is significantly influenced by the optical frequency detuning.
NASA Technical Reports Server (NTRS)
King, Michael D.
2005-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven
2005-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.
Scattering and Absorption Properties of Biomaterials for Dental Restorative Applications
NASA Astrophysics Data System (ADS)
Fernandez-Oliveras, A.; Rubiño, M.; Pérez, M. M.
2013-08-01
The physical understanding of the optical properties of dental biomaterials is mandatory for their final success in restorative applications.Light propagation in biological media is characterized by the absorption coefficient, the scattering coefficient, the scattering phase function,the refractive index, and the surface conditions (roughness). We have employed the inverse adding-doubling (IAD) method to combine transmittance and reflectance measurements performed using an integrating-sphere setup with the results of the previous scattering-anisotropygoniometric measurements. This has led to the determination of the absorption and the scattering coefficients. The aim was to optically characterize two different dental-resin composites (nanocomposite and hybrid) and one type of zirconia ceramic, and comparatively study them. The experimental procedure was conducted under repeatability conditions of measurement in order to determine the uncertainty associated to the optical properties of the biomaterials. Spectral variations of the refraction index and the scattering anisotropy factor were also considered. The whole experimental procedure fulfilled all the necessary requirements to provide optical-property values with lower associated uncertainties. The effective transport coefficient presented a similar spectral behavior for the two composites but completely different for the zirconia ceramic. The results demonstrated that the scattering anisotropy exerted a clearly distinct impact on the optical properties of the zirconia ceramic compared with those of the dental-resin composites.
Investigating the Impact of Optical Selection Effects on Observed Rest-frame Prompt GRB Properties
NASA Astrophysics Data System (ADS)
Turpin, D.; Heussaff, V.; Dezalay, J.-P.; Atteia, J.-L.; Klotz, A.; Dornic, D.
2016-11-01
Measuring gamma-ray burst (GRB) properties in their rest frame is crucial for understanding the physics at work in GRBs. This can only be done for GRBs with known redshifts. Since redshifts are usually measured from the optical spectrum of the afterglow, correlations between prompt and afterglow emissions may introduce biases into the distribution of the rest-frame properties of the prompt emission, especially considering that we measure the redshift of only one-third of Swift GRBs. In this paper, we study the optical flux of GRB afterglows and its connection to various intrinsic properties of GRBs. We also discuss the impact of the optical selection effect on the distribution of rest-frame prompt properties of GRBs. Our analysis is based on a sample of 90 GRBs with good optical follow-up and well-measured prompt emission. Seventy-six of them have a measure of redshift and 14 have no redshift. We compare the rest-frame prompt properties of GRBs with different afterglow optical fluxes in order to check for possible correlations between the promt properties and the optical flux of the afterglow. The optical flux is measured two hours after the trigger, which is a typical time for the measure of the redshift. We find that the optical flux of GRB afterglows in our sample is mainly driven by their optical luminosity and depends only slightly on their redshift. We show that GRBs with low and high afterglow optical fluxes have similar E {}{{pi}}, E {}{{iso}}, and L {}{{iso}}, indicating that the rest-frame distributions computed from GRBs with a redshift are not significantly distorted by optical selection effects. However, we found that the {T}90{rest} distribution is not immune to optical selection effects, which favor the selection of GRBs with longer durations. Finally, we note that GRBs well above the E {}{{pi}}-E {}{{iso}} relation have lower optical fluxes and we show that optical selection effects favor the detection of GRBs with bright optical afterglows located close to or below the best-fit E {}{{pi}}-E {}{{iso}} relation (Amati relation), whose redshift is easily measurable. With more than 300 GRBs with a redshift, we now have a much better view of the intrinsic properties of these remarkable events. At the same time, increasing statistics allow us to understand the biases acting on the measurements. The optical selection effects induced by the redshift measurement strategies cannot be neglected when we study the properties of GRBs in their rest frame, even for studies focused on prompt emission.
Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations.
Kamran, Faisal; Andersen, Peter E
2015-08-10
Oblique incidence reflectometry has developed into an effective, noncontact, and noninvasive measurement technology for the quantification of both the reduced scattering and absorption coefficients of a sample. The optical properties are deduced by analyzing only the shape of the reflectance profiles. This article presents a sensitivity analysis of the technique in turbid media. Monte Carlo simulations are used to investigate the technique and its potential to distinguish the small changes between different levels of scattering. We present various regions of the dynamic range of optical properties in which system demands vary to be able to detect subtle changes in the structure of the medium, translated as measured optical properties. Effects of variation in anisotropy are discussed and results presented. Finally, experimental data of milk products with different fat content are considered as examples for comparison.
NASA Astrophysics Data System (ADS)
Dadashi, S.; Poursalehi, R.; Delavari, H.
2018-06-01
Colloidal Bi/Bi2O3 and single phase Bi nanoparticles were synthesized by pulsed Nd:YAG laser ablation of metallic bismuth target in different organic liquids. In this research, the structural characteristic, optical properties, and colloidal stability of Bi and Bi/Bi2O3 nanoparticles have been studied. Furthermore, the mechanism of nanoparticles formation in liquid media by laser ablation of Bi-based nanoparticles was proposed in different liquid environments based on their chemical nature. X-ray diffraction, scanning electron microscopy and optical extinction spectroscopy indicate the formation of pure Bi and Bi/Bi2O3 nanoparticles with mean size of 32, 43 and 54 nm in methanol, ethanol, and EMK, respectively, which indicate a mixture of different phases including rhombohedra crystal structure of Bi, monoclinic α-Bi2O3, and tetragonal β-Bi2O3. Finally, this research demonstrates the effect of the surrounding environment on characteristic properties of nanoparticles and clarifies the size, structural characteristics, and optical properties of the synthesized nanoparticles.
NASA Astrophysics Data System (ADS)
Sadeghipour, Negar; Davis, Scott C.; Tichauer, Kenneth M.
2018-02-01
Dynamic fluorescence imaging approaches can be used to estimate the concentration of cell surface receptors in vivo. Kinetic models are used to generate the final estimation by taking the targeted imaging agent concentration as a function of time. However, tissue absorption and scattering properties cause the final readout signal to be on a different scale than the real fluorescent agent concentration. In paired-agent imaging approaches, simultaneous injection of a suitable control imaging agent with a targeted one can account for non-specific uptake and retention of the targeted agent. Additionally, the signal from the control agent can be a normalizing factor to correct for tissue optical property differences. In this study, the kinetic model used for paired-agent imaging analysis (i.e., simplified reference tissue model) is modified and tested in simulation and experimental data in a way that accounts for the scaling correction within the kinetic model fit to the data to ultimately extract an estimate of the targeted biomarker concentration.
Review of human hair optical properties in possible relation to melanoma development.
Huang, Xiyong; Protheroe, Michael D; Al-Jumaily, Ahmed M; Paul, Sharad P; Chalmers, Andrew N
2018-05-01
Immigration and epidemiological studies provide evidence indicating the correlation of high ultraviolet exposure during childhood and increased risks of melanoma in later life. While the explanation of this phenomenon has not been found in the skin, a class of hair has been hypothesized to be involved in this process by transmitting sufficient ultraviolet rays along the hair shaft to possibly cause damage to the stem cells in the hair follicle, ultimately resulting in melanoma in later life. First, the anatomy of hair and its possible contribution to melanoma development, and the tissue optical properties are briefly introduced to provide the necessary background. This paper emphasizes on the review of the experimental studies of the optical properties of human hair, which include the sample preparation, measurement techniques, results, and statistical analysis. The Monte Carlo photon simulation of human hair is next outlined. Finally, current knowledge of the optical studies of hair is discussed in the light of their possible contribution to melanoma development; the necessary future work needed to support this hypothesis is suggested. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Early Risk Reduction Phase 1 FLIR/Laser Designator Window. Revision
1991-12-31
Sandwich-Type FLIR Windows," Air Force AFWAL-TR-83- 4122, Nov 1983. 4-1 Hughes Danbury Optical Systems Final Report, "ATA Window Technology Program," PRBll...Risk Reduction -- Phase I, Optical Properties Measurement Techniques of Three Wide Band Window Materials," 22 August 1991. xii I i 86PR0869 30... Optical Systems, Lexington, MA, 02173, 1 Feb 1991. 5-7 McDonnell Aircraft Company Technical Memorandum TM 256.91.0056.01, "Early Risk Reduction -- Phase
Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E; Ramanujam, Nimmi
2011-02-01
Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.
NASA Astrophysics Data System (ADS)
Rezaei, G.; Vaseghi, B.; Doostimotlagh, N. A.
2012-03-01
Simultaneous effects of an on-center hydrogenic impurity and band edge non-parabolicity on intersubband optical absorption coefficients and refractive index changes of a typical GaAs/AlxGa1-x As spherical quantum dot are theoretically investigated, using the Luttinger—Kohn effective mass equation. So, electronic structure and optical properties of the system are studied by means of the matrix diagonalization technique and compact density matrix approach, respectively. Finally, effects of an impurity, band edge non-parabolicity, incident light intensity and the dot size on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes are investigated. Our results indicate that, the magnitudes of these optical quantities increase and their peaks shift to higher energies as the influences of the impurity and the band edge non-parabolicity are considered. Moreover, incident light intensity and the dot size have considerable effects on the optical absorption coefficients and refractive index changes.
Optical contrast for identifying the thickness of two-dimensional materials
NASA Astrophysics Data System (ADS)
Bing, Dan; Wang, Yingying; Bai, Jing; Du, Ruxia; Wu, Guoqing; Liu, Liyan
2018-01-01
One of the most intriguing properties of two-dimensional (2D) materials is their thickness dependent properties. A quick and precise technique to identify the layer number of 2D materials is therefore highly desirable. In this review, we will introduce the basic principle of using optical contrast to determine the thickness of 2D material and also its advantage as compared to other modern techniques. Different 2D materials, including graphene, graphene oxide, transitional metal dichalcogenides, black phosphorus, boron nitride, have been used as examples to demonstrate the capability of optical contrast methods. A simple and more efficient optical contrast image technique is also emphasized, which is suitable for quick and large-scale thickness identification. We have also discussed the factors that could affect the experimental results of optical contrast, including incident light angle, anisotropic nature of materials, and also the twisted angle between 2D layers. Finally, we give perspectives on future development of optical contrast methods for the study and application of 2D materials.
NASA Astrophysics Data System (ADS)
Hamioud, L.; Boumaza, A.; Touam, S.; Meradji, H.; Ghemid, S.; El Haj Hassan, F.; Khenata, R.; Omran, S. Bin
2016-06-01
The present paper aims to study the structural, electronic, optical and thermal properties of the boron nitride (BN) and BAs bulk materials as well as the BNxAs1-x ternary alloys by employing the full-potential-linearised augmented plane wave method within the density functional theory. The structural properties are determined using the Wu-Cohen generalised gradient approximation that is based on the optimisation of the total energy. For band structure calculations, both the Wu-Cohen generalised gradient approximation and the modified Becke-Johnson of the exchange-correlation energy and potential, respectively, are used. We investigated the effect of composition on the lattice constants, bulk modulus and band gap. Deviations of the lattice constants and the bulk modulus from the Vegard's law and the linear concentration dependence, respectively, were observed for the alloys where this result allows us to explain some specific behaviours in the electronic properties of the alloys. For the optical properties, the calculated refractive indices and the optical dielectric constants were found to vary nonlinearly with the N composition. Finally, the thermal effect on some of the macroscopic properties was predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.
Electronic and optical properties of strained graphene and other strained 2D materials: a review.
Naumis, Gerardo G; Barraza-Lopez, Salvador; Oliva-Leyva, Maurice; Terrones, Humberto
2017-09-01
This review presents the state of the art in strain and ripple-induced effects on the electronic and optical properties of graphene. It starts by providing the crystallographic description of mechanical deformations, as well as the diffraction pattern for different kinds of representative deformation fields. Then, the focus turns to the unique elastic properties of graphene, and to how strain is produced. Thereafter, various theoretical approaches used to study the electronic properties of strained graphene are examined, discussing the advantages of each. These approaches provide a platform to describe exotic properties, such as a fractal spectrum related with quasicrystals, a mixed Dirac-Schrödinger behavior, emergent gravity, topological insulator states, in molecular graphene and other 2D discrete lattices. The physical consequences of strain on the optical properties are reviewed next, with a focus on the Raman spectrum. At the same time, recent advances to tune the optical conductivity of graphene by strain engineering are given, which open new paths in device applications. Finally, a brief review of strain effects in multilayered graphene and other promising 2D materials like silicene and materials based on other group-IV elements, phosphorene, dichalcogenide- and monochalcogenide-monolayers is presented, with a brief discussion of interplays among strain, thermal effects, and illumination in the latter material family.
[Biooptical properties of marine phytoplankton as they apply to satellite remote sensing
NASA Technical Reports Server (NTRS)
Yentsch, Charles S.
1992-01-01
This final report covers research performed over a period of 10 years from 1982 to 1992. During this time, Grant #NAGW410 was funded under three titles through a series of Supplements. The original proposal was entitled 'Photoecology, optical properties and remote sensing of warm core rings'; the second and major portion was entitled 'Continuation of studies of biooptical properties of phytoplankton and the study of mesoscale and submesoscale features using fluorescence and colorimetry'; with the final portion named 'Studies of biooptical properties of phytoplankton, with reference to identification of spectral types associated with meso- and submesoscale features in the ocean'. The focus of these projects was to try to expand our knowledge of the biooptical properties of marine phytoplankton as they apply to satellite remote sensing. We used a variety of techniques, new and old, to better measure these optical properties at appropriate scales, in some cases at the level of individual cells. We also exploited the specialized oceanic conditions that occur within certain regions and features of the ocean around the world in order to explain the tremendous variability one sees in a single remote sensing image. This document strives to provide as complete a summary as possible for this large body of work, including the pertinent publications supported by this funding.
Temporal model of an optically pumped co-doped solid state laser
NASA Technical Reports Server (NTRS)
Wangler, T. G.; Swetits, J. J.; Buoncristiani, A. M.
1993-01-01
Currently, research is being conducted on the optical properties of materials associated with the development of solid state lasers in the two micron region. In support of this effort, a mathematical model describing the energy transfer in a holmium laser sensitized with thulium is developed. In this paper, we establish some qualitative properties of the solution of the model, such as non-negativity, boundedness, and integrability. A local stability analysis is then performed from which conditions for asymptotic stability are attained. Finally, we report on our numerical analysis of the system and how it compares with experimental results.
Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures.
Lee, Jae Yoon; Shin, Jun-Hwan; Lee, Gwan-Hyoung; Lee, Chul-Ho
2016-10-27
Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from conventional bulk counterparts. In this short review, we first present the atomic and electronic structures of 2D semiconducting TMDCs and their exceptional optical properties, and further discuss the fabrication and distinctive features of vdW heterostructures assembled from different kinds of 2D materials with various physical properties. We then focus on reviewing the recent progress on the fabrication of 2D semiconductor optoelectronic devices based on vdW heterostructures including photodetectors, solar cells, and light-emitting devices. Finally, we highlight the perspectives and challenges of optoelectronics based on 2D semiconductor heterostructures.
Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures
Lee, Jae Yoon; Shin, Jun-Hwan; Lee, Gwan-Hyoung; Lee, Chul-Ho
2016-01-01
Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from conventional bulk counterparts. In this short review, we first present the atomic and electronic structures of 2D semiconducting TMDCs and their exceptional optical properties, and further discuss the fabrication and distinctive features of vdW heterostructures assembled from different kinds of 2D materials with various physical properties. We then focus on reviewing the recent progress on the fabrication of 2D semiconductor optoelectronic devices based on vdW heterostructures including photodetectors, solar cells, and light-emitting devices. Finally, we highlight the perspectives and challenges of optoelectronics based on 2D semiconductor heterostructures. PMID:28335321
Case study of modeled aerosol optical properties during the SAFARI 2000 campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzmanoski, Maja; Box, Michael A.; Schmid, Beat
2007-08-01
We present modeled aerosol optical properties (single scattering albedo, asymmetry parameter, and lidar ratio) in two layers with different aerosol loadings and particle sizes, observed during the Southern African Regional Science Initiative 2000 (SAFARI 2000) campaign. The optical properties were calculated from aerosol size distributions retrieved from aerosol layer optical thickness spectra, measured using the NASA Ames airborne tracking 14-channel sunphotometer (AATS-14) and the refractive index based on the available information on aerosol chemical composition. The study focuses on sensitivity of modeled optical properties in the 0.3–1.5 μm wavelength range to assumptions regarding the mixing scenario. We considered two modelsmore » for the mixture of absorbing and nonabsorbing aerosol components commonly used to model optical properties of biomass burning aerosol: a layered sphere with absorbing core and nonabsorbing shell and the Maxwell–Garnett effective medium model. In addition, comparisons of modeled optical properties with the measurements are discussed. We also estimated the radiative effect of the difference in aerosol absorption implied by the large difference between the single scattering albedo values (~0.1 at midvisible wavelengths) obtained from different measurement methods for the case with a high amount of biomass burning particles. For that purpose, the volume fraction of black carbon was varied to obtain a range of single scattering albedo values (0.81–0.91 at λ=0.50 μm). Finally, the difference in absorption resulted in a significant difference in the instantaneous radiative forcing at the surface and the top of the atmosphere (TOA) and can result in a change of the sign of the aerosol forcing at TOA from negative to positive.« less
Designing Optical Properties in DNA-Programmed Nanoparticle Superlattices
NASA Astrophysics Data System (ADS)
Ross, Michael Brendan
A grand challenge of modern science has been the ability to predict and design the properties of new materials. This approach to the a priori design of materials presents a number of challenges including: predictable properties of the material building blocks, a programmable means for arranging such building blocks into well understood architectures, and robust models that can predict the properties of these new materials. In this dissertation, we present a series of studies that describe how optical properties in DNA-programmed nanoparticle superlattices can be predicted prior to their synthesis. The first chapter provides a history and introduction to the study of metal nanoparticle arrays. Chapter 2 surveys and compares several geometric models and electrodynamics simulations with the measured optical properties of DNA-nanoparticle superlattices. Chapter 3 describes silver nanoparticle superlattices (rather than gold) and identifies their promise as plasmonic metamaterials. In chapter 4, the concept of plasmonic metallurgy is introduced, whereby it is demonstrated that concepts from materials science and metallurgy can be applied to the optical properties of mixed metallic plasmonic materials, unveiling rich and tunable optical properties such as color and asymmetric reflectivity. Chapter 5 presents a comprehensive theoretical exploration of anisotropy (non-spherical) in nanoparticle superlattice architectures. The role of anisotropy is discussed both on the nanoscale, where several desirable metamaterial properties can be tuned from the ultraviolet to near-infrared, and on the mesoscale, where the size and shape of a superlattice is demonstrated to have a pronounced effect on the observed far-field optical properties. Chapter 6 builds upon those theoretical data presented in chapter 5, including the experimental realization of size and shape dependent properties in DNA-programmed superlattices. Specifically, nanoparticle spacing is explored as a parameter that can be used to influence the properties of mesoscale single crystal superlattices, such that they exhibit either plasmonic absorption or photonic scattering. This concept is generalized through simulation, which demonstrates that the crystal habit (size, shape, and morphology) is a powerful design parameter for optical properties in mesoscale nanoparticle assemblies. Finally, chapter 7 summarizes these data and their impact, and puts them in context regarding future opportunities. This work presents a comprehensive demonstration that the optical properties of nanoparticle-based architectures can be precisely controlled and deliberately designed a priori using the unique programmability of DNA and the use of several levels of predictive electromagnetic theory.
Effects of silver impurity on the structural, electrical, and optical properties of ZnO nanowires
2011-01-01
1, 3, and 5 wt.% silver-doped ZnO (SZO) nanowires (NWs) are grown by hot-walled pulsed laser deposition. After silver-doping process, SZO NWs show some change behaviors, including structural, electrical, and optical properties. In case of structural property, the primary growth plane of SZO NWs is switched from (002) to (103) plane, and the electrical properties of SZO NWs are variously measured to be about 4.26 × 106, 1.34 × 106, and 3.04 × 105 Ω for 1, 3, and 5 SZO NWs, respectively. In other words, the electrical properties of SZO NWs depend on different Ag ratios resulting in controlling the carrier concentration. Finally, the optical properties of SZO NWs are investigated to confirm p-type semiconductor by observing the exciton bound to a neutral acceptor (A0X). Also, Ag presence in ZnO NWs is directly detected by both X-ray photoelectron spectroscopy and energy dispersive spectroscopy. These results imply that Ag doping facilitates the possibility of changing the properties in ZnO NWs by the atomic substitution of Ag with Zn in the lattice. PMID:21985620
NASA Astrophysics Data System (ADS)
Ladner, S. D.; Arnone, R.; Casey, B.; Weidemann, A.; Gray, D.; Shulman, I.; Mahoney, K.; Giddings, T.; Shirron, J.
2009-05-01
Current United States Navy Mine-Counter-Measure (MCM) operations primarily use electro-optical identification (EOID) sensors to identify underwater targets after detection via acoustic sensors. These EOID sensors which are based on laser underwater imaging by design work best in "clear" waters and are limited in coastal waters especially with strong optical layers. Optical properties and in particular scattering and absorption play an important role on systems performance. Surface optical properties alone from satellite are not adequate to determine how well a system will perform at depth due to the existence of optical layers. The spatial and temporal characteristics of the 3d optical variability of the coastal waters along with strength and location of subsurface optical layers maximize chances of identifying underwater targets by exploiting optimum sensor deployment. Advanced methods have been developed to fuse the optical measurements from gliders, optical properties from "surface" satellite snapshot and 3-D ocean circulation models to extend the two-dimensional (2-D) surface satellite optical image into a three-dimensional (3-D) optical volume with subsurface optical layers. Modifications were made to an EOID performance model to integrate a 3-D optical volume covering an entire region of interest as input and derive system performance field. These enhancements extend present capability based on glider optics and EOID sensor models to estimate the system's "image quality". This only yields system performance information for a single glider profile location in a very large operational region. Finally, we define the uncertainty of the system performance by coupling the EOID performance model with the 3-D optical volume uncertainties. Knowing the ensemble spread of EOID performance field provides a new and unique capability for tactical decision makers and Navy Operations.
2D Materials for Optical Modulation: Challenges and Opportunities.
Yu, Shaoliang; Wu, Xiaoqin; Wang, Yipei; Guo, Xin; Tong, Limin
2017-04-01
Owing to their atomic layer thickness, strong light-material interaction, high nonlinearity, broadband optical response, fast relaxation, controllable optoelectronic properties, and high compatibility with other photonic structures, 2D materials, including graphene, transition metal dichalcogenides and black phosphorus, have been attracting increasing attention for photonic applications. By tuning the carrier density via electrical or optical means that modifies their physical properties (e.g., Fermi level or nonlinear absorption), optical response of the 2D materials can be instantly changed, making them versatile nanostructures for optical modulation. Here, up-to-date 2D material-based optical modulation in three categories is reviewed: free-space, fiber-based, and on-chip configurations. By analysing cons and pros of different modulation approaches from material and mechanism aspects, the challenges faced by using these materials for device applications are presented. In addition, thermal effects (e.g., laser induced damage) in 2D materials, which are critical to practical applications, are also discussed. Finally, the outlook for future opportunities of these 2D materials for optical modulation is given. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Song, Hong-Lian; Yu, Xiao-Fei; Huang, Qing; ...
2017-01-28
Ion irradiation has been a popular method to modify properties of different kinds of materials. Ion-irradiated crystals have been studied for years, but the effects on microstructure and optical properties during irradiation process are still controversial. In this study, we used 6 MeV C ions with a fluence of 1 × 10 15 ion/cm 2 irradiated Y 2SiO 5 (YSO) crystal at room temperature, and discussed the influence of C ion irradiation on the microstructure, mechanical and optical properties of YSO crystal by Rutherford backscattering/channeling analyzes (RBS/C), X-ray diffraction patterns (XRD), Raman, nano-indentation test, transmission and absorption spectroscopy, the prismmore » coupling and the end-facet coupling experiments. We also used the secondary ion mass spectrometry (SIMS) to analyze the elements distribution along sputtering depth. Finally, 6 MeV C ions with a fluence of 1 × 10 15 ion/cm 2 irradiated caused the deformation of YSO structure and also influenced the spectral properties and lattice vibrations.« less
Optical design and system characterization of an imaging microscope at 121.6 nm
NASA Astrophysics Data System (ADS)
Gao, Weichuan; Finan, Emily; Kim, Geon-Hee; Kim, Youngsik; Milster, Thomas D.
2018-03-01
We present the optical design and system characterization of an imaging microscope prototype at 121.6 nm. System engineering processes are demonstrated through the construction of a Schwarzschild microscope objective, including tolerance analysis, fabrication, alignment, and testing. Further improvements on the as-built system with a correction phase plate are proposed and analyzed. Finally, the microscope assembly and the imaging properties of the prototype are demonstrated.
1990-02-01
which are being gladly sought but also the i property of being very easy to fabricate . This work has led to considerable progress. We are now at the point...where immensely powerful optical pattern recognition mask can be 3 designed and fabricated in a very simple way. Finally, there was some preliminary...energetic oxygen atoms. In the proposed source (see Fig. 17) electrons are generated at a heated Bromley, "Rapid Unbiased Bipolar Incoherent Calculator Cu
Electrical and optical properties of Ar/NH{sub 3} atmospheric pressure plasma jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Zheng-Shi, E-mail: changzhsh1984@163.com, E-mail: gjzhang@xjtu.edu.cn; Yao, Cong-Wei; Chen, Si-Le
Inspired by the Penning effect, we obtain a glow-like plasma jet by mixing ammonia (NH{sub 3}) into argon (Ar) gas under atmospheric pressure. The basic electrical and optical properties of an atmospheric pressure plasma jet (APPJ) are investigated. It can be seen that the discharge mode transforms from filamentary to glow-like when a little ammonia is added into the pure argon. The electrical and optical analyses contribute to the explanation of this phenomenon. The discharge mode, power, and current density are analyzed to understand the electrical behavior of the APPJ. Meanwhile, the discharge images, APPJ's length, and the components ofmore » plasma are also obtained to express its optical characteristics. Finally, we diagnose several parameters, such as gas temperature, electron temperature, and density, as well as the density number of metastable argon atoms of Ar/NH{sub 3} APPJ to help judge the usability in its applications.« less
Tunable optical and excitonic properties of phosphorene via oxidation
NASA Astrophysics Data System (ADS)
Sadki, S.; Drissi, L. B.
2018-06-01
The optical properties and excitonic wave function of phosphorene oxides (PO) are studied using the first principle many-body Green function and the Bethe–Salpeter equation formalism. In this work, the optical properties are determined using ab initio calculations of the dielectric function. At the long wavelength limit q of EM wave (i.e. ), the dielectric function, the absorption spectrum, the lectivity, the electron energy loss spectra (EELS) and the wave function are calculated. The results show an excitonic binding energy of 818 meV with a bright exciton located in the armchair direction in pristine phosphorene. For PO, the arrangement of the oxygen atoms significantly influences the optical properties. In particular, the absorption spectrum is extended along the solar spectrum, with a high absorption coefficient observed in the dangling structures. The maximum lectivity values are observed for the high energies of the light spectrum. Moreover, the first EELS peak is located in the visible region in all the structures except for one configuration that exhibits the same behavior as pure phosphorene. Finally, the exciton effect reveals that all PO conformers have a dark exciton state, which is suitable for long-lived applications.
Nonuniform carrier density in Cd 3 As 2 evidenced by optical spectroscopy
Crassee, I.; Martino, E.; Homes, C. C.; ...
2018-03-22
In this paper, we report the detailed optical properties of Cd 3As 2 crystals in a wide parameter space: temperature, magnetic field, carrier concentration, and crystal orientation. We investigate high-quality crystals synthesized by three different techniques. In all the studied samples, independently of how they were prepared and how they were treated before the optical experiments, our data indicate conspicuous fluctuations in the carrier density (up to 30%). These charge puddles have a characteristic scale of 100 μm, they become more pronounced at low temperatures, and possibly, they become enhanced by the presence of crystal twinning. The Drude response ismore » characterized by very small scattering rates (~1 meV) for as-grown samples. Mechanical treatment, such as cutting or polishing, influences the optical properties of single crystals, by increasing the Drude scattering rate and also modifying the high-frequency optical response. Finally, magnetoreflectivity and Kerr rotation are consistent with electronlike charge carriers and a spatially nonuniform carrier density.« less
Nonuniform carrier density in Cd 3 As 2 evidenced by optical spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crassee, I.; Martino, E.; Homes, C. C.
In this paper, we report the detailed optical properties of Cd 3As 2 crystals in a wide parameter space: temperature, magnetic field, carrier concentration, and crystal orientation. We investigate high-quality crystals synthesized by three different techniques. In all the studied samples, independently of how they were prepared and how they were treated before the optical experiments, our data indicate conspicuous fluctuations in the carrier density (up to 30%). These charge puddles have a characteristic scale of 100 μm, they become more pronounced at low temperatures, and possibly, they become enhanced by the presence of crystal twinning. The Drude response ismore » characterized by very small scattering rates (~1 meV) for as-grown samples. Mechanical treatment, such as cutting or polishing, influences the optical properties of single crystals, by increasing the Drude scattering rate and also modifying the high-frequency optical response. Finally, magnetoreflectivity and Kerr rotation are consistent with electronlike charge carriers and a spatially nonuniform carrier density.« less
Plasmonic hole arrays for combined photon and electron management
Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.
2016-11-14
Material architectures that balance optical transparency and electrical conductivity are highly sought after for thin-film device applications. However, these are competing properties, since the electronic structure that gives rise to conductivity typically also leads to optical opacity. Nanostructured metal films that exhibit extraordinary optical transmission, while at the same time being electrically continuous, offer considerable flexibility in the design of their transparency and resistivity. In this paper, we present design guidelines for metal films perforated with arrays of nanometer-scale holes, discussing the consequences of the choice of nanostructure dimensions, of the type of metal, and of the underlying substrate onmore » their electrical, optical, and interfacial properties. We experimentally demonstrate that such films can be designed to have broad-band optical transparency while being an order of magnitude more conductive than indium tin oxide. Finally, prototypical photovoltaic devices constructed with perforated metal contacts convert ~18% of the incident photons, compared to <1% for identical devices having contacts without the hole array.« less
Side effects of the strain-doping approach to develop optical materials based on Ge
NASA Astrophysics Data System (ADS)
Escalante, Jose M.
2018-05-01
Following the strain-doping approach for development of Ge based optical gain material, we have studied the impact of doping and strain on the optical properties of Germanium. Emphasizing the importance of the bandgap narrowing effect due to doping on the emission wavelength, we have computed a strain-doping-energy maps, which provide the strain and doping windows that can be considered in order to achieve a specific value of the Γ bandgap. Finally, we discuss the polarization of the emitted light, and its dependence on strains.
Developing improved silica materials and devices for integrated optics applications
NASA Astrophysics Data System (ADS)
Maker, Ashley Julia
Due to their favorable optical and material properties, silica-based materials and devices have found many important applications throughout science and engineering, especially in sensing, communications, lasers, and integrated optics. Often, silica's properties ultimately limit the performance of these applications. To address this limitation, this thesis investigates the development of improved silica materials and optical devices, including silica films, coatings, waveguides, resonators, lasers, and sensors. Using sol-gel chemistry and microfabrication procedures, custom silica materials and devices are developed to benefit many applications. In this thesis, it is first demonstrated how the low optical loss of silica enables fabrication of low loss integrated waveguides and toroidal resonators with ultra-high quality factors. Then, by adding various rare earth and metal dopants to sol-gel silica, hybrid silica materials and devices are made with custom properties such as high refractive index and lasing capabilities. Finally, several applications are demonstrated, including the use of high refractive index coatings to control the behavior of light, development of Raman and ultra-low threshold rare earth microlasers, and a heterodyned microlaser sensor with significantly improved sensing performance. Future applications and directions of this research are also discussed.
Effects of different wetting layers on the growth of smooth ultra-thin silver thin films
NASA Astrophysics Data System (ADS)
Ni, Chuan; Shah, Piyush; Sarangan, Andrew M.
2014-09-01
Ultrathin silver films (thickness below 10 nm) are of great interest as optical coatings on windows and plasmonic devices. However, producing these films has been a continuing challenge because of their tendency to form clusters or islands rather than smooth contiguous thin films. In this work we have studied the effect of Cu, Ge and ZnS as wetting layers (1.0 nm) to achieve ultrasmooth thin silver films. The silver films (5 nm) were grown by RF sputter deposition on silicon and glass substrates using a few monolayers of the different wetting materials. SEM imaging was used to characterize the surface properties such as island formation and roughness. Also the optical properties were measured to identify the optical impact of the different wetting layers. Finally, a multi-layer silver based structure is designed and fabricated, and its performance is evaluated. The comparison between the samples with different wetting layers show that the designs with wetting layers which have similar optical properties to silver produce the best overall performance. In the absence of a wetting layer, the measured optical spectra show a significant departure from the model predictions, which we attribute primarily to the formation of clusters.
NASA Technical Reports Server (NTRS)
Smith, J. G., Jr.; Delozier, D. M.; Watson, K. A.; Connell, J. W.; Yu, Aiping; Haddon, R. C.; Bekyarova, E.
2006-01-01
As part of a continuing materials development activity, low color space environmentally stable polymeric materials that possess sufficient electrical conductivity for electrostatic charge dissipation (ESD) have been investigated. One method of incorporating sufficient electrical conductivity for ESD without detrimental effects on other polymer properties of interest (i.e., optical and thermo-optical) is through the incorporation of single-walled carbon nanotubes (SWNTs). However, SWNTs are difficult to fully disperse in the polymer matrix. One means of improving dispersion is by shortening and functionalizing SWNTs. While this improves dispersion, other properties (i.e., electrical) of the SWNTs can be affected which can in turn alter the final nanocomposite properties. Additionally, functionalization of the polymer matrix can also influence nanocomposite properties obtained from shortened, functionalized SWNTs. The preparation and characterization of nanocomposites fabricated from a polyimide, both functionalized and unfunctionalized, and shortened, functionalized SWNTs will be presented.
NASA Astrophysics Data System (ADS)
Bonnet, Loïck; Boulesteix, Rémy; Maître, Alexandre; Sallé, Christian; Couderc, Vincent; Brenier, Alain
2015-12-01
In this work, a comparative study of reactive sintering and optical properties of three laser composite transparent ceramics doped with neodymium: Nd:YAG/Nd:YS1AG, Nd:YAG/Nd:LuAG and Nd:YS1AG/Nd:LuAG has been achieved. Samples were manufactured thanks to pressureless co-sintering under vacuum of bilayer powder compacts. The reaction sequence from primary oxides to final garnet phases has been investigated. Similar dilatometric behavior was observed during reactive-sintering for each composition. Differential shrinkage can be thus accommodated to some extent. Second, this work has shown that the intermediate zone at composites interface is composed of single-phased garnet solid-solution with continuous evolution from one side to the other. The thickness of the interdiffusion zone was found to be limited to about 100 μm in all cases and appeared to be well described by classical diffusion laws of Fick and Whipple-Le Claire. The analyses of spectroscopic properties of transparent ceramics composites have finally shown that composite ceramics should be suitable to produce dual wavelength emission for terahertz generation.
Experimental demonstration of spectrum-sliced elastic optical path network (SLICE).
Kozicki, Bartłomiej; Takara, Hidehiko; Tsukishima, Yukio; Yoshimatsu, Toshihide; Yonenaga, Kazushige; Jinno, Masahiko
2010-10-11
We describe experimental demonstration of spectrum-sliced elastic optical path network (SLICE) architecture. We employ optical orthogonal frequency-division multiplexing (OFDM) modulation format and bandwidth-variable optical cross-connects (OXC) to generate, transmit and receive optical paths with bandwidths of up to 1 Tb/s. We experimentally demonstrate elastic optical path setup and spectrally-efficient transmission of multiple channels with bit rates ranging from 40 to 140 Gb/s between six nodes of a mesh network. We show dynamic bandwidth scalability for optical paths with bit rates of 40 to 440 Gb/s. Moreover, we demonstrate multihop transmission of a 1 Tb/s optical path over 400 km of standard single-mode fiber (SMF). Finally, we investigate the filtering properties and the required guard band width for spectrally-efficient allocation of optical paths in SLICE.
Classifying aerosol type using in situ surface spectral aerosol optical properties
NASA Astrophysics Data System (ADS)
Schmeisser, Lauren; Andrews, Elisabeth; Ogren, John A.; Sheridan, Patrick; Jefferson, Anne; Sharma, Sangeeta; Kim, Jeong Eun; Sherman, James P.; Sorribas, Mar; Kalapov, Ivo; Arsov, Todor; Angelov, Christo; Mayol-Bracero, Olga L.; Labuschagne, Casper; Kim, Sang-Woo; Hoffer, András; Lin, Neng-Huei; Chia, Hao-Ping; Bergin, Michael; Sun, Junying; Liu, Peng; Wu, Hao
2017-10-01
Knowledge of aerosol size and composition is important for determining radiative forcing effects of aerosols, identifying aerosol sources and improving aerosol satellite retrieval algorithms. The ability to extrapolate aerosol size and composition, or type, from intensive aerosol optical properties can help expand the current knowledge of spatiotemporal variability in aerosol type globally, particularly where chemical composition measurements do not exist concurrently with optical property measurements. This study uses medians of the scattering Ångström exponent (SAE), absorption Ångström exponent (AAE) and single scattering albedo (SSA) from 24 stations within the NOAA/ESRL Federated Aerosol Monitoring Network to infer aerosol type using previously published aerosol classification schemes.Three methods are implemented to obtain a best estimate of dominant aerosol type at each station using aerosol optical properties. The first method plots station medians into an AAE vs. SAE plot space, so that a unique combination of intensive properties corresponds with an aerosol type. The second typing method expands on the first by introducing a multivariate cluster analysis, which aims to group stations with similar optical characteristics and thus similar dominant aerosol type. The third and final classification method pairs 3-day backward air mass trajectories with median aerosol optical properties to explore the relationship between trajectory origin (proxy for likely aerosol type) and aerosol intensive parameters, while allowing for multiple dominant aerosol types at each station.The three aerosol classification methods have some common, and thus robust, results. In general, estimating dominant aerosol type using optical properties is best suited for site locations with a stable and homogenous aerosol population, particularly continental polluted (carbonaceous aerosol), marine polluted (carbonaceous aerosol mixed with sea salt) and continental dust/biomass sites (dust and carbonaceous aerosol); however, current classification schemes perform poorly when predicting dominant aerosol type at remote marine and Arctic sites and at stations with more complex locations and topography where variable aerosol populations are not well represented by median optical properties. Although the aerosol classification methods presented here provide new ways to reduce ambiguity in typing schemes, there is more work needed to find aerosol typing methods that are useful for a larger range of geographic locations and aerosol populations.
Probing optical excitations in chevron-like armchair graphene nanoribbons.
Denk, Richard; Lodi-Rizzini, Alberto; Wang, Shudong; Hohage, Michael; Zeppenfeld, Peter; Cai, Jinming; Fasel, Roman; Ruffieux, Pascal; Berger, Reinhard Franz Josef; Chen, Zongping; Narita, Akimitsu; Feng, Xinliang; Müllen, Klaus; Biagi, Roberto; De Renzi, Valentina; Prezzi, Deborah; Ruini, Alice; Ferretti, Andrea
2017-11-30
The bottom-up fabrication of graphene nanoribbons (GNRs) has opened new opportunities to specifically tune their electronic and optical properties by precisely controlling their atomic structure. Here, we address excitation in GNRs with periodic structural wiggles, the so-called chevron GNRs. Based on reflectance difference and high-resolution electron energy loss spectroscopies together with ab initio simulations, we demonstrate that their excited-state properties are of excitonic nature. The spectral fingerprints corresponding to different reaction stages in their bottom-up fabrication are also unequivocally identified, allowing us to follow the exciton build-up from the starting monomer precursor to the final GNR structure.
Polymer optical fiber sensors in human life safety
NASA Astrophysics Data System (ADS)
Marques, C. A. F.; Webb, D. J.; Andre, P.
2017-07-01
The current state of research into polymer optical fiber (POF) sensors linked to safety in human life is summarized in this paper. This topic is directly related with new solutions for civil aircraft, structural health monitoring, healthcare and biomedicine fields. In the last years, the properties of polymers have been explored to identify situations offering potential advantages over conventional silica fiber sensing technology, replacing, in some cases, problematic electronic technology used in these mentioned fields, where there are some issues to overcome. POFs could preferably replace their silica counterparts, with improved performance and biocompatibility. Finally, new developments are reported which use the unique properties of POF.
NASA Astrophysics Data System (ADS)
González-Gómez, Roberto; Vonlanthen, Mireille; Ortíz-Palacios, Jesús; Ruiu, Andrea; Valderrama-García, Bianca X.; Rivera, Ernesto
2018-05-01
In this work, the synthesis and characterization of a series of star azo-oligomers bearing amino, amino-methoxy, amino-nitro and amino-cyano substituted azobenzene units and oligo(ethylene glycol) segments is reported. The full characterization of the obtained compounds was achieved by FTIR, 1H and 13C NMR spectroscopies, and their molecular weights were determined by MALDI-TOF mass spectrometry. The optical properties of these compounds were studied by absorption spectroscopy in solution. Finally, light polarized microscopy experiments as a function of the temperature were performed in order to study the liquid-crystalline behavior of these star azo-oligomers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aita, C.R.
1993-09-30
The research developed process parameter-growth environment-film property relations (phase maps) for model sputter-deposited transition metal oxides, nitrides, and oxynitrides grown by reactive sputter deposition at low temperature. Optical emission spectrometry was used for plasma diagnostics. The results summarized here include the role of sputtered metal-oxygen molecular flux in oxide film growth; structural differences in highest valence oxides including conditions for amorphous growth; and using fundamental optical absorption edge features to probe short range structural disorder. Eight appendices containing sixteen journal articles are included.
Biological and chemical sensors based on graphene materials.
Liu, Yuxin; Dong, Xiaochen; Chen, Peng
2012-03-21
Owing to their extraordinary electrical, chemical, optical, mechanical and structural properties, graphene and its derivatives have stimulated exploding interests in their sensor applications ever since the first isolation of free-standing graphene sheets in year 2004. This article critically and comprehensively reviews the emerging graphene-based electrochemical sensors, electronic sensors, optical sensors, and nanopore sensors for biological or chemical detection. We emphasize on the underlying detection (or signal transduction) mechanisms, the unique roles and advantages of the used graphene materials. Properties and preparations of different graphene materials, their functionalizations are also comparatively discussed in view of sensor development. Finally, the perspective and current challenges of graphene sensors are outlined (312 references).
Extended depth of focus adaptive optics spectral domain optical coherence tomography
Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki
2012-01-01
We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278
Extended depth of focus adaptive optics spectral domain optical coherence tomography.
Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki
2012-10-01
We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliaga, C., E-mail: caliaga@itene.com; Zhang, H.; Dobon, A.
Highlights: • Study of the influence of components of printed electronics in paper recycling. • Comparison between paper recycled with and without resistors, batteries and layouts. • Mechanical and optical properties are evaluated in paper handsheets obtained. • Tensile strength of recycled paper is slighted reduced by layouts. • Optical properties of recycled paper slightly varies with layouts and batteries. - Abstract: The aim of this paper is to analyse the effects of the presence of printed electronics on the paper waste streams and specifically on paper recyclability. The analysis is based on a case study focussed on envelopes formore » postal and courier services provided with these intelligent systems. The smart printed envelope of the study includes a combination of both conventional (thin flexible batteries and resistors) and printed electronic components (conductive track layout based on nanosilver ink). For this purpose, a comparison between envelopes with and without these components (batteries, resistors and conductive track layouts) was carried out through pilot scale paper recycling tests. The generation of rejects during the recycling process as well as the final quality of the recycled paper (mechanical and optical properties) were tested and quantitatively evaluated. The results show that resistors are retained during the screening process in the sieves and consequently they cannot end up in the final screened pulp. Therefore, mechanical and optical properties of the recycled paper are not affected. Nevertheless, inks from the conductive track layouts and batteries were partially dissolved in the process water. These substances were not totally retained in the sieving systems resulting in slight changes in the optical properties of the final recycled paper (variations are 7.2–7.5% in brightness, 8.5–10.7% in whiteness, 1.2–2.2% in L{sup ∗} values, 3.3–3.5% in opacity and 16.1–27% in yellowness). These variations are not in ranges able to cause problems in current paper recycling processes and restrict the use of recycled paper in current applications. Moreover, real impacts on industrial recycling are expected to be even significantly lower since the proportion of paper product with printed circuits in the current paper waste streams are much lower than the ones tested in this work. However, it should be underlined the fact that this situation may change over the next years due to the future developments in printed electronics and the gradual penetration of these types of devices in the market.« less
Opto-electronic oscillator and its applications
NASA Astrophysics Data System (ADS)
Yao, X. S.; Maleki, Lute
1997-04-01
We review the properties of a new class of microwave oscillators called opto-electronic oscillators (OEO). We present theoretical and experimental results of a multi-loop technique for single mode selection. We then describe a new development called coupled OEO (COEO) in which the electrical oscillation is directly coupled with the optical oscillation, producing an OEO that generates stable optical pulses and single mode microwave oscillation simultaneously. Finally we discuss various applications of OEO.
Fast Electron Spectroscopy of Enhanced Plasmonic N anoantenna Resonances
NASA Astrophysics Data System (ADS)
Day, Jared K.
Surface plasmons are elementary excitations of the collective and coherent oscillations of conductive band electrons coupled with photons at the surface of metals. Surface plasmons of metallic nanostructures can efficiently couple to light making them a new class of optical antennas that can confine and control light at nanometer scale dimensions. Nanoscale optical antennas can be used to enhance the energy transfer between nanoscale systems and freely-propagating radiation. Plasmonic nanoantennas have already been used to enhance single molecule detection, diagnosis and treat cancer, harvest solar energy, to create metamaterials with new optical properties and to enhance photo-chemical reactions. The applications for plasmonic nanoantennas are only limited by the fundamental understanding of their unique optical properties and the rational design of new coupled antenna systems. It is therefore necessary to interrogate and image the local electromagnetic response of nanoantenna systems to establish intuition between near-field coupling dynamics and far-field optical properties. This thesis focuses on the characterization and enhancement of the longitudinal multipolar plasmonic resonances of Au nanorod nanoantennas. To better understand these resonances fast electron spectroscopy is used to both visualize and probe the near- and far-field properties of multipolar resonances of individual nanorods and more complex nanorod systems through cathodoluminescence (CL). CL intensity maps show that coupled nanorod systems enhance and alter nanorod resonances away from ideal resonant behavior creating hybridized longitudinal modes that expand and relax at controllable locations along the nanorod. These measurements show that complex geometries can strengthen and alter the local density of optical states for nanoantenna designs with more functionality and better control of localized electromagnetic fields. Finally, the electron excitations are compared to plane wave optical stimulation both experimentally and through Finite Difference Time Domain simulations to begin to develop a qualitative picture of how the local density of optical states affects the far-field optical scattering properties of plasmonic nanoantennas.
Interaction of light with hematite hierarchical structures: Experiments and simulations
NASA Astrophysics Data System (ADS)
Distaso, Monica; Zhuromskyy, Oleksander; Seemann, Benjamin; Pflug, Lukas; Mačković, Mirza; Encina, Ezequiel; Taylor, Robin Klupp; Müller, Rolf; Leugering, Günter; Spiecker, Erdmann; Peschel, Ulf; Peukert, Wolfgang
2017-03-01
Mesocrystalline particles have been recognized as a class of multifunctional materials with potential applications in different fields. However, the internal organization of nanocomposite mesocrystals and its influence on the final properties have not yet been investigated. In this paper, a novel strategy based on electrodynamic simulations is developed to shed light on how the internal structure of mesocrystals influences their optical properties. In a first instance, a unified design protocol is reported for the fabrication of hematite/PVP particles with different morphologies such as pseudo-cubes, rods-like and apple-like structures and controlled particle size distributions. The optical properties of hematite/PVP mesocrystals are effectively simulated by taking their aggregate and nanocomposite structure into consideration. The superposition T-Matrix approach accounts for the aggregate nature of mesocrystalline particles and validate the effective medium approximation used in the framework of the Mie theory and electromagnetic simulation such as Finite Element Method. The approach described in our paper provides the framework to understand and predict the optical properties of mesocrystals and more general, of hierarchical nanostructured particles.
Optical potential approach to the electron-atom impact ionization threshold problem
NASA Technical Reports Server (NTRS)
Temkin, A.; Hahn, Y.
1973-01-01
The problem of the threshold law for electron-atom impact ionization is reconsidered as an extrapolation of inelastic cross sections through the ionization threshold. The cross sections are evaluated from a distorted wave matrix element, the final state of which describes the scattering from the Nth excited state of the target atom. The actual calculation is carried for the e-H system, and a model is introduced which is shown to preserve the essential properties of the problem while at the same time reducing the dimensionability of the Schrodinger equation. Nevertheless, the scattering equation is still very complex. It is dominated by the optical potential which is expanded in terms of eigen-spectrum of QHQ. It is shown by actual calculation that the lower eigenvalues of this spectrum descend below the relevant inelastic thresholds; it follows rigorously that the optical potential contains repulsive terms. Analytical solutions of the final state wave function are obtained with several approximations of the optical potential.
Nonlinear multilayers as optical limiters
NASA Astrophysics Data System (ADS)
Turner-Valle, Jennifer Anne
1998-10-01
In this work we present a non-iterative technique for computing the steady-state optical properties of nonlinear multilayers and we examine nonlinear multilayer designs for optical limiters. Optical limiters are filters with intensity-dependent transmission designed to curtail the transmission of incident light above a threshold irradiance value in order to protect optical sensors from damage due to intense light. Thin film multilayers composed of nonlinear materials exhibiting an intensity-dependent refractive index are used as the basis for optical limiter designs in order to enhance the nonlinear filter response by magnifying the electric field in the nonlinear materials through interference effects. The nonlinear multilayer designs considered in this work are based on linear optical interference filter designs which are selected for their spectral properties and electric field distributions. Quarter wave stacks and cavity filters are examined for their suitability as sensor protectors and their manufacturability. The underlying non-iterative technique used to calculate the optical response of these filters derives from recognizing that the multi-valued calculation of output irradiance as a function of incident irradiance may be turned into a single-valued calculation of incident irradiance as a function of output irradiance. Finally, the benefits and drawbacks of using nonlinear multilayer for optical limiting are examined and future research directions are proposed.
Photodynamic diagnosis and related optical techniques for the management of malignant glioma
NASA Astrophysics Data System (ADS)
Sroka, R.; Stepp, H.; Beyer, W.; Markwardt, N.; Rühm, A.
2017-04-01
Malignant gliomas are a devastating brain tumor disease with very poor prognosis. Stereotactic biopsy sampling is routinely used in larger neurosurgical centers to confirm the diagnosis of a suspected brain tumor. This procedure is associated with risk of blood vessel rupture as well as false-negative results. Recent investigations suggest a potential of light-based techniques to improve both therapy and diagnosis of GBM. Optical guidance can be utilized to improve the biopsy sampling procedure in terms of safety, reliability, and efficacy. Recording of optical signals (transmission, remission, fluorescence) can be potentially integrated into a biopsy needle for providing optical detection of tumor tissue and blood vessel recognition during the biopsy sampling. Optical signals can also be used for monitoring purposes during photodynamic therapy. Here, fluorescence signals recorded before the treatment indicate the presence and accumulation level of photosensitizer, while photobleaching of the photosensitizer fluorescence during the treatment can be used as a measure of the effectiveness of the therapy. Finally, transmitted light can reveal problematic tissue-optical conditions as well as changes of the optical properties of the treated tissue, which may be relevant with regard to treatment prognosis and strategy. Different optical concepts for interstitial PDT monitoring and optical tissue property assessment are presented.
Al-/Ga-Doped ZnO Window Layers for Highly Efficient Cu₂ZnSn(S,Se)₄ Thin Film Solar Cells.
Seo, Se Won; Seo, Jung Woo; Kim, Donghwan; Cheon, Ki-Beom; Lee, Doh-Kwon; Kim, Jin Young
2018-09-01
The successful use of Al-/Ga-doped ZnO (AGZO) thin films as a transparent conducting oxide (TCO) layer of a Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cell is demonstrated. The AGZO thin films were prepared by radio frequency (RF) sputtering. The structural, crystallographic, electrical, and optical properties of the AGZO thin films were systematically investigated. The photovoltaic properties of CZTSSe thin film solar cells incorporating the AGZO-based TCO layer were also reported. It has been found that the RF power and substrate temperature of the AGZO thin film are important factors determining the electrical, optical, and structural properties. The optimization process involving the RF power and the substrate temperature leads to good electrical and optical transmittance of the AGZO thin films. Finally, the CZTSSe solar cell with the AGZO TCO layer demonstrated a high conversion efficiency of 9.68%, which is higher than that of the conventional AZO counterpart by 12%.
NASA Astrophysics Data System (ADS)
Song, Jun-Tao; Zhang, Jian-Min
2018-06-01
The investigations of the electronic and magnetic properties show the binary Heusler alloys ZCl3 (Z = Be, Mg, Ca, Sr) are half-metallic (HM) ferromagnets with an integer magnetic moment (Mt) of 1 μB /f.u.. The alloy BeCl3 is thermodynamic meta-stable, while other alloys are thermodynamic stable according to their cohesive energies and formation energies. Moreover, wide HM regions for alloys ZCl3 (Z = Be, Mg, Ca, Sr) show their HM characters are robust when the lattices are expanded or compressed under uniform and tetragonal strains. Finally, some optical properties are analyzed in detail, such as the dielectric function, the absorption coefficient, the refractive index and the extinction coefficient.
NASA Astrophysics Data System (ADS)
Liu, Wei-Chun; Lo, Yu-Lung; Phan, Quoc-Hung
2018-03-01
A method is proposed for extracting the circular birefringence (CB), circular dichroism (CD) and depolarization (Dep) properties of optical scattering samples using an amplitude-modulation polarimetry technique. The validity of the proposed method is demonstrated by extracting the CB property of pure glucose aqueous samples, the CB/Dep properties of glucose solutions containing 0.02% lipofundin particles, and the CD/Dep properties of chlorophyllin solutions containing suspended polystyrene microspheres. The results show that the proposed technique has the ability to detect pure glucose with a resolution of 66 mg/dL over a concentration range of 0-500 mg/dL. Moreover, the glucose concentration of the CB/Dep samples can be detected over the same range with a resolution of 168 mg/dL. Finally, the chlorophyllin concentration of the CD/Dep sample can be detected over the range of 0-200 μg/dL with a resolution of 6.5 × 10-5. In general, the results show that the proposed technique provides a reliable and accurate means of measuring the CB/CD properties of optical samples with scattering effects, and thus has significant potential for biological sensing applications.
Broken symmetries, non-reciprocity, and multiferroicity
Cheong, Sang-Wook; Talbayev, Diyar; Kiryukhin, Valery; ...
2018-04-03
The interplay of space and time symmetries, ferroic properties, chirality and notions of reciprocity determines many of the technologically important properties of materials such as optical diode effect, e.g., in polar ferromagnet FeZnMo 3O 8. Here, we illustrate these concepts, including the non-reciprocal directional dichroism, through a number of practical examples. In particular, the conditions for non-reciprocity of ferro-rotational order are discussed and the possible use of linear optical gyration is suggested as a way to detect ferro-rotational domains. In addition, we provide the means to achieve high-temperature optical diode effect and elucidate multiferroic behaviors as a result of helicalmore » vs. cycloidal spins. Finally, we identify different entities behaving similarly under all symmetry operations, which are useful to understand non-reciprocity and multiferroicity in various materials intuitively.« less
Broken symmetries, non-reciprocity, and multiferroicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheong, Sang-Wook; Talbayev, Diyar; Kiryukhin, Valery
The interplay of space and time symmetries, ferroic properties, chirality and notions of reciprocity determines many of the technologically important properties of materials such as optical diode effect, e.g., in polar ferromagnet FeZnMo 3O 8. Here, we illustrate these concepts, including the non-reciprocal directional dichroism, through a number of practical examples. In particular, the conditions for non-reciprocity of ferro-rotational order are discussed and the possible use of linear optical gyration is suggested as a way to detect ferro-rotational domains. In addition, we provide the means to achieve high-temperature optical diode effect and elucidate multiferroic behaviors as a result of helicalmore » vs. cycloidal spins. Finally, we identify different entities behaving similarly under all symmetry operations, which are useful to understand non-reciprocity and multiferroicity in various materials intuitively.« less
Radiation tests on optical fibres: good and bad practice
NASA Astrophysics Data System (ADS)
Kuhnhenn, J.
2017-11-01
Testing optical fibers for their response to ionizing radiation is unavoidable if their properties in radiation environments need to be known. So far, no model exists that would be able to predict the behavior of optical fibers in the presence of radiation, for example because too many, mostly unknown parameters influence the changes in the fiber. To obtain reliable results from irradiation tests of optical fibers a well-defined setup and thorough experience is needed to avoid erroneous data that might lead to wrong decisions for the final application. This presentation tries to introduce basic concepts of radiation testing of optical fibers, focusing on not so well known influences or typical errors. Focus will be laid on the measurement of radiation-induced attenuation (RIA) in optical fibers.
Ab Initio Study of Ultracold Polar Molecules in Optical Lattices
2010-01-01
collisions of Li and alkaline-earth or rare- earth atoms, such LiSr and LiYb. Finally, we calculated the isotropic and anisotropic interaction potentials... LiSr and LiYb molecules. To the best of our knowledge, only LiMg was experimentally investigated [3], which allowed us to compare our predictions...alkaline-earth or rare-earth atoms. Interest in the LiSr and LiYb molecules stems from prospects to achieve optical Feshbach tuning of scattering properties
2011-10-01
lighter line) the multiple backscatter peak is stronger and the target return is weaker. Finally, the reflection from the target in the object plane... beam attenuation lengths). Optical properties were monitored by a Wetlabs ac-9 meter with attenuation and absorption being adjusted for scattering...UNCLASSIFIED UNCLASSIFIED 923 center of the imager optical axis between two positions, such that in one position the laser beam clearly passed through the hole
Characterizing and Understanding Aerosol Optical Properties: CARES - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappa, Christopher D; Atkinson, Dean B
The scientific focus of this study was to use ambient measurements to develop new insights into the understanding of the direct radiative forcing by atmospheric aerosol particles. The study used data collected by the PI’s and others as part of both the 2010 U.S. Department of Energy (DOE) sponsored Carbonaceous Aerosols and Radiative Effects Study (CARES), which took place in and around Sacramento, CA, and the 2012 Clean Air for London (ClearfLo) study. We focus on measurements that were made of aerosol particle optical properties, namely the wavelength-dependent light absorption, scattering and extinction. Interpretation of these optical property measurements ismore » facilitated through consideration of complementary measurements of the aerosol particle chemical composition and size distributions. With these measurements, we addressed the following general scientific questions: 1. How does light scattering and extinction by atmospheric aerosol particles depend on particle composition, water uptake, and size? 2. To what extent is light absorption by aerosol particles enhanced through the mixing of black carbon with other particulate components? 3. What relationships exist between intensive aerosol particle optical properties, and how do these depend on particle source and photochemical aging? 4. How well do spectral deconvolution methods, which are commonly used in remote sensing, retrieve information about particle size distributions?« less
Photonic structures based on hybrid nanocomposites
NASA Astrophysics Data System (ADS)
Husaini, Saima
In this thesis, photonic structures embedded with two types of nanomaterials, (i) quantum dots and (ii) metal nanoparticles are studied. Both of these exhibit optical and electronic properties different from their bulk counterpart due to their nanoscale physical structure. By integrating these nanomaterials into photonic structures, in which the electromagnetic field can be confined and controlled via modification of geometry and composition, we can enhance their linear and nonlinear optical properties to realize functional photonic structures. Before embedding quantum dots into photonic structures, we study the effect of various host matrices and fabrication techniques on the optical properties of the colloidal quantum dots. The two host matrices of interest are SU8 and PMMA. It is shown that the emission properties of the quantum dots are significantly altered in these host matrices (especially SU8) and this is attributed to a high rate of nonradiative quenching of the dots. Furthermore, the effects of fabrication techniques on the optical properties of quantum dots are also investigated. Finally a microdisk resonator embedded with quantum dots is fabricated using soft lithography and luminescence from the quantum dots in the disk is observed. We investigate the absorption and effective index properties of silver nanocomposite films. It is shown that by varying the fill factor of the metal nanoparticles and fabrication parameters such as heating time, we can manipulate the optical properties of the metal nanocomposite. Optimizing these parameters, a silver nanocomposite film with a 7% fill factor is prepared. A one-dimensional photonic crystal consisting of alternating layers of the silver nanocomposite and a polymer (Polymethyl methacrylate) is fabricated using spin coating and its linear and nonlinear optical properties are investigated. Using reflectivity measurements we demonstrate that the one-dimensional silver-nanocomposite-dielectric photonic crystal exhibits a 200% enhancement of the reflection band which is attributed to the interplay between the plasmon resonance of the silver nanoparticles and the Bloch modes of the photonic crystal. Nonlinear optical studies on this one-dimensional silver-nanocomposite-dielectric structure using z-scan measurements are conducted. These measurements indicate a three-fold enhancement in the nonlinear absorption coefficient when compared to a single film of comparable metal composite thickness.
Magnetic ordering induced giant optical property change in tetragonal BiFeO3
NASA Astrophysics Data System (ADS)
Tong, Wen-Yi; Ding, Hang-Chen; Gong, Shi Jing; Wan, Xiangang; Duan, Chun-Gang
2015-12-01
Magnetic ordering could have significant influence on band structures, spin-dependent transport, and other important properties of materials. Its measurement, especially for the case of antiferromagnetic (AFM) ordering, however, is generally difficult to be achieved. Here we demonstrate the feasibility of magnetic ordering detection using a noncontact and nondestructive optical method. Taking the tetragonal BiFeO3 (BFO) as an example and combining density functional theory calculations with tight-binding models, we find that when BFO changes from C1-type to G-type AFM phase, the top of valance band shifts from the Z point to Γ point, which makes the original direct band gap become indirect. This can be explained by Slater-Koster parameters using the Harrison approach. The impact of magnetic ordering on band dispersion dramatically changes the optical properties. For the linear ones, the energy shift of the optical band gap could be as large as 0.4 eV. As for the nonlinear ones, the change is even larger. The second-harmonic generation coefficient d33 of G-AFM becomes more than 13 times smaller than that of C1-AFM case. Finally, we propose a practical way to distinguish the two AFM phases of BFO using the optical method, which is of great importance in next-generation information storage technologies.
NASA Astrophysics Data System (ADS)
Biazar, Nooshin; Poursalehi, Reza; Delavari, Hamid
2018-01-01
Synthesis and development of visible active catalysts is an important issue in photocatalytic applications of nanomaterials. TiO2 nanostructures coupled with carbon dots demonstrate a considerable photocatalytic activity in visible wavelengths. Extending optical absorption of a wide band gap semiconductor such as TiO2 with carbon dots is the origin of the visible activity of carbon dots modified semiconductor nanostructures. In addition, carbon dots exhibit high photostability, appropriate electron transport and chemical stability without considerable toxicity or environmental footprints. In this study, optical and structural properties of carbon dots/TiO2 nanostructures prepared via (direct current) DC arc discharge in liquid were investigated. Crystal structure, morphology and optical properties of the samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-visible spectroscopy respectively. SEM images show formation of spherical nanoparticles with an average size of 27 nm. In comparison with pristine TiO2, optical transmission spectrum of carbon dots/TiO2 nanostructures demonstrates an absorption edge at longer wavelengths as well a high optical absorption in visible wavelengths which is significant for visible activity of nanostructures as a photocatalyst. Finally, these results can provide a flexible and versatile pathway for synthesis of carbon dots/oxide semiconductor nanostructures with an appropriate activity under visible light.
Effects of optical and geometrical properties on YORP effect for inactive satellites
NASA Astrophysics Data System (ADS)
Albuja, A.; Scheeres, D.
2014-09-01
With the increasing number of space debris in Earth orbit, it is important to understand the dynamics of these objects. Initial studies have demonstrated that the Yarkovsky, O'Keefe, Radzievskii, Paddack (YORP) effect on inactive satellite needs to be further explored as it could be noticeably affecting the rotational dynamics of these Earth orbiting objects. The YORP effect is created by torques resulting from light and thermal energy being re-emitted from the surface of a body. This effect has been well studied and observed to affect the spin states of asteroids. The purpose of this paper is to further investigate YORP in the realm of large inactive Geosynchronous Earth Orbit (GEO) satellites. The forces that cause the YORP effect are highly dependent on the optical, thermal and geometrical properties of the facets making up the surface of the body being analyzed. This paper focuses on exploring the effect of these properties on the YORP effect for inactive satellite. Two different satellite models that represent bus types of inactive satellites in GEO are used for this study. By varying the optical, thermal and geometrical properties of these models, in a manner that remains consistent with realistic satellite parameters, we can understand the relationship between these properties and the torques created by YORP. Having this knowledge allows for better understanding of the possible attitude states (spin rate and obliquity) for uncontrolled satellites in GEO. This information can then be used to make predictions of the long-term behavior of the rotation rate and obliquity of these objects. Categories of potential final states for defunct GEO satellites can then be created based on geometrical and optical properties (e.g. spin up continuously, spin down continuously, etc.). This allows the population of inactive GEO satellites to be studied in a more general sense and final attitude states for these objects can be quickly identified. Furthermore, an understanding of the sensitivity of YORP to each individual parameter is gained through this paper. Having knowledge of the attitude dynamics for these objects is key for accurate prediction of the orbital dynamics as these two are closely coupled when torques such as YORP are acting on the body.
Salehpour, Mehdi; Behrad, Alireza
2017-10-01
This study proposes a new algorithm for nonrigid coregistration of synthetic aperture radar (SAR) and optical images. The proposed algorithm employs point features extracted by the binary robust invariant scalable keypoints algorithm and a new method called weighted bidirectional matching for initial correspondence. To refine false matches, we assume that the transformation between SAR and optical images is locally rigid. This property is used to refine false matches by assigning scores to matched pairs and clustering local rigid transformations using a two-layer Kohonen network. Finally, the thin plate spline algorithm and mutual information are used for nonrigid coregistration of SAR and optical images.
Analysis and Design of a Fiber-optic Probe for DNA Sensors Final Report CRADA No. TSB-1147-95
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molau, Nicole; Vail, Curtis
In 1995, a challenge in the field of genetics dealt with the acquisition of efficient DNA sequencing techniques for reading the 3 billion base-pairs that comprised the human genome. AccuPhotonics, Inc. proposed to develop and manufacture a state-of-the-art near-field scanning optical microscopy (NSOM) fiber-optic probe that was expected to increase probe efficiency by two orders of magnitude over the existing state-of-the-art and to improve resolution to 10Å. The detailed design calculation and optimization of electrical properties of the fiber-optic probe tip geometry would be performed at LLNL, using existing finite-difference time-domain (FDTD) electromagnetic (EM) codes.
NASA Astrophysics Data System (ADS)
Pizarro, Guadalupe del C.; Marambio, Oscar G.; Jeria-Orell, Manuel; Sánchez, Julio; Oyarzún, Diego P.
2018-02-01
The current work presents the synthesis, characterization and preparation of organic-inorganic hybrid polymer films that contain inorganic magnetic nanoparticles (NPs). The block copolymer, prepared by Atom-Transfer Radical Polymerization (ATRP), was used as a nanoreactor for iron oxide NPs. The NPs were embedded in poly(hydroxypropyl methacrylate)-block-poly(N-phenylmaleimide) matrix. The following topographical modifications of the surface of the film were specially analyzed: control of pore features and changes in surface roughness. Finally, the NPs functionality inside the polymer matrix and how it may affect the thermal and optical properties of the films were assessed.
Modified rod-in-tube for high-NA tellurite glass fiber fabrication: materials and technologies.
Chen, Qiuling; Wang, Hui; Wang, Qingwei; Chen, Qiuping; Hao, Yinlei
2015-02-01
In this paper, we report the whole fabrication process for high-numerical aperture (NA) tellurite glass fibers from material preparation to preform fabrication, and eventually, fiber drawing. A tellurite-based high-NA (0.9) magneto-optical glass fiber was drawn successfully and characterized. First, matchable core and cladding glasses were fabricated and matched in terms of physical properties. Second, a uniform bubble-free preform was fabricated by means of a modified rod-in-tube technique. Finally, the fiber drawing process was studied and optimized. The high-NA fibers (∅(core), 40-50 μm and ∅(cladding), 120-130 μm) so obtained were characterized for their geometrical and optical properties.
Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties
Island, Joshua O.; Biele, Robert; Barawi, Mariam; Clamagirand, José M.; Ares, José R.; Sánchez, Carlos; van der Zant, Herre S. J.; Ferrer, Isabel J.; D’Agosta, Roberto; Castellanos-Gomez, Andres
2016-01-01
We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance. PMID:26931161
Optics for coherent X-ray applications.
Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya
2014-09-01
Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiszpanski, Anna M.
Metamaterials are composites with patterned subwavelength features where the choice of materials and subwavelength structuring bestows upon the metamaterials unique optical properties not found in nature, thereby enabling optical applications previously considered impossible. However, because the structure of optical metamaterials must be subwavelength, metamaterials operating at visible wavelengths require features on the order of 100 nm or smaller, and such resolution typically requires top-down lithographic fabrication techniques that are not easily scaled to device-relevant areas that are square centimeters in size. In this project, we developed a new fabrication route using block copolymers to make over large device-relevant areas opticalmore » metamaterials that operate at visible wavelengths. Our structures are smaller in size (sub-100 nm) and cover a larger area (cm 2) than what has been achieved with traditional nanofabrication routes. To guide our experimental efforts, we developed an algorithm to calculate the expected optical properties (specifically the index of refraction) of such metamaterials that predicts that we can achieve surprisingly large changes in optical properties with small changes in metamaterials’ structure. In the course of our work, we also found that the ordered metal nanowires meshes produced by our scalable fabrication route for making optical metamaterials may also possibly act as transparent electrodes, which are needed in electrical displays and solar cells. We explored the ordered metal nanowires meshes’ utility for this application and developed design guidelines to aide our experimental efforts.« less
Transformation optics beyond the manipulation of light trajectories.
Ginis, Vincent; Tassin, Philippe
2015-08-28
Since its inception in 2006, transformation optics has become an established tool to understand and design electromagnetic systems. It provides a geometrical perspective into the properties of light waves without the need for a ray approximation. Most studies have focused on modifying the trajectories of light rays, e.g. beam benders, lenses, invisibility cloaks, etc. In this contribution, we explore transformation optics beyond the manipulation of light trajectories. With a few well-chosen examples, we demonstrate that transformation optics can be used to manipulate electromagnetic fields up to an unprecedented level. In the first example, we introduce an electromagnetic cavity that allows for deep subwavelength confinement of light. The cavity is designed with transformation optics even though the concept of trajectory ceases to have any meaning in a structure as small as this cavity. In the second example, we show that the properties of Cherenkov light emitted in a transformation-optical material can be understood and modified from simple geometric considerations. Finally, we show that optical forces--a quadratic function of the fields--follow the rules of transformation optics too. By applying a folded coordinate transformation to a pair of waveguides, optical forces can be enhanced just as if the waveguides were closer together. With these examples, we open up an entirely new spectrum of devices that can be conceived using transformation optics. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Transformation optics beyond the manipulation of light trajectories
Ginis, Vincent; Tassin, Philippe
2015-01-01
Since its inception in 2006, transformation optics has become an established tool to understand and design electromagnetic systems. It provides a geometrical perspective into the properties of light waves without the need for a ray approximation. Most studies have focused on modifying the trajectories of light rays, e.g. beam benders, lenses, invisibility cloaks, etc. In this contribution, we explore transformation optics beyond the manipulation of light trajectories. With a few well-chosen examples, we demonstrate that transformation optics can be used to manipulate electromagnetic fields up to an unprecedented level. In the first example, we introduce an electromagnetic cavity that allows for deep subwavelength confinement of light. The cavity is designed with transformation optics even though the concept of trajectory ceases to have any meaning in a structure as small as this cavity. In the second example, we show that the properties of Cherenkov light emitted in a transformation-optical material can be understood and modified from simple geometric considerations. Finally, we show that optical forces—a quadratic function of the fields—follow the rules of transformation optics too. By applying a folded coordinate transformation to a pair of waveguides, optical forces can be enhanced just as if the waveguides were closer together. With these examples, we open up an entirely new spectrum of devices that can be conceived using transformation optics. PMID:26217057
Linear and nonlinear optical discussions of nanostructured Zn-doped CdO thin films
NASA Astrophysics Data System (ADS)
Yahia, I. S.; Salem, G. F.; Iqbal, Javed; Yakuphanoglu, F.
2017-04-01
Here, we report the doping effect of zinc (Zn) on the physical properties of cadmium oxide (CdO) at various concentrations (1, 2, 3 and 4 wt% of Zn). The studied samples were prepared using sol-gel in addition with sol gel spin coating technique. The structural, optical and dispersive properties were compared with the already reported work in the literature. The structural properties were observed by using atomic force microscopy (AFM). The AFM images show that the grain size decreases with increasing the concentration of Zn. The highest value of average cluster size (78. 71 nm) was found at 1% and the lowest (60.23 nm) when the doping concentration of Zn was 4%. Similar trend was observed in the roughness of the doped thin film when the Zn concentration was increased. The optical properties were examined using Shimadzu UV-Vis-NIR spectrophotometer and we found that the optical band gap of the un-doped CdO and the Zn-doped CdO thin films increases from 2.54 to 2.62 eV as the Zn concentration is increased from 1% to 4%. Also, the optical dispersion parameters (Eo, Ed, n2∞, λ0 and So) were calculated and discussed. We observed that the refractive index dispersion of undoped CdO and the Zn-doped CdO thin films follow the single oscillator model. Finally, spectroscopic method has been exploited to analyze the 3rd order non-linear optical susceptibility χ (3) and nonlinear refractive index n (2).
Modeling of anisotropic properties of double quantum rings by the terahertz laser field.
Baghramyan, Henrikh M; Barseghyan, Manuk G; Kirakosyan, Albert A; Ojeda, Judith H; Bragard, Jean; Laroze, David
2018-04-18
The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field.
Optical design and optical properties of a VUV spectrographic imager for ICON mission
NASA Astrophysics Data System (ADS)
Loicq, Jerome; Kintziger, Christian; Mazzoli, Alexandra; Miller, Tim; Chou, Cathy; Frey, Harald U.; Immel, Thomas J.; Mende, Stephen B.
2016-07-01
In the frame of the ICON (Ionospheric Connection Explorer) mission of NASA led by UC Berkeley, CSL and SSL Berkeley have designed in cooperation a new Far UV spectro-imager. The instrument is based on a Czerny-Turner spectrograph coupled with two back imagers. The whole field of view covers [+/- 12° vertical, +/- 9° horizontal]. The instrument is surmounted by a rotating mirror to adjust the horizontal field of view pointing by +/- 30°. To meet the scientific imaging and spectral requirements the instrument has been optimized. The optimization philosophy and related analysis are presented in the present paper. PSF, distortion map and spectral properties are described. A tolerance study and alignment cases were performed to prove the instrument can be built and aligned. Finally straylight and out of band properties are discussed.
NASA Astrophysics Data System (ADS)
Chen, Yin-Chu; Ferracane, Jack L.; Prahl, Scott A.
2005-03-01
Photo-cured dental composites are widely used in dental practices to restore teeth due to the esthetic appearance of the composites and the ability to cure in situ. However, their complex optical characteristics make it difficult to understand the light transport within the composites and to predict the depth of cure. Our previous work showed that the absorption and scattering coefficients of the composite changed after the composite was cured. The static Monte Carlo simulation showed that the penetration of radiant exposures differed significantly for cured and uncured optical properties. This means that a dynamic model is required for accurate prediction of radiant exposure in the composites. The purpose of this study was to develop and verify a dynamic Monte Carlo (DMC) model simulating light propagation in dental composites that have dynamic optical properties while photons are absorbed. The composite was divided into many small cubes, each of which had its own scattering and absorption coefficients. As light passed through the composite, the light was scattered and absorbed. The amount of light absorbed in each cube was calculated using Beer's Law and was used to determine the next optical properties in that cube. Finally, the predicted total reflectance and transmittance as well as the optical property during curing were verified numerically and experimentally. Our results showed that the model predicted values agreed with the theoretical values within 1% difference. The DMC model results are comparable with experimental results within 5% differences.
NASA Astrophysics Data System (ADS)
Avtzi, Stella; Zacharopoulos, Athanasios; Psycharakis, Stylianos; Zacharakis, Giannis
2013-11-01
In vivo optical imaging of biological tissue not only requires the development of new theoretical models and experimental procedures, but also the design and construction of realistic tissue-mimicking phantoms. However, most of the phantoms available currently in literature or the market, have either simple geometrical shapes (cubes, slabs, cylinders) or when realistic in shape they use homogeneous approximations of the tissue or animal under investigation. The goal of this study is to develop a non-homogeneous realistic phantom that matches the anatomical geometry and optical characteristics of the mouse head in the visible and near-infrared spectral range. The fabrication of the phantom consisted of three stages. Initially, anatomical information extracted from either mouse head atlases or structural imaging modalities (MRI, XCT) was used to design a digital phantom comprising of the three main layers of the mouse head; the brain, skull and skin. Based on that, initial prototypes were manufactured by using accurate 3D printing, allowing complex objects to be built layer by layer with sub-millimeter resolution. During the second stage the fabrication of individual molds was performed by embedding the prototypes into a rubber-like silicone mixture. In the final stage the detailed phantom was constructed by loading the molds with epoxy resin of controlled optical properties. The optical properties of the resin were regulated by using appropriate quantities of India ink and intralipid. The final phantom consisted of 3 layers, each one with different absorption and scattering coefficient (μa,μs) to simulate the region of the mouse brain, skull and skin.
Investigation on photoluminescence emission of (reduced) graphene oxide paper
NASA Astrophysics Data System (ADS)
Ding, J. J.; Chen, H. X.; Feng, D. Q.; Fu, H. W.
2018-01-01
In order to contrastively investigate optical properties of graphene oxide (GO) and reduced graphene oxide (rGO) paper, GO is prepared by improved Hummer method and controlled reduced using hydration hydrazine to obtain good dispersive rGO in organic solvent. Finally, GO and rGO paper are obtained by vacuum filtration method. Samples morphology and optical properties are analyzed by scanning electron microscopy (SEM) images, Raman spectra, absorbance spectra and photoluminescence (PL) spectra. Results indicate that there are large numbers of localized states in both GO and rGO paper, and optical gaps of two samples are 0.62 eV. In PL spectra of GO paper, we observe three emission peaks at 565, 578 and 608 nm, respectively whose intensity decreases evidently after reduced, which is due to the decrease of oxide functionalized groups and expansion of sp2 clusters. PL emission will gradually decrease during GO are reduced.
NASA Astrophysics Data System (ADS)
Hora, Daniela A.; Andrade, Adriano B.; Ferreira, Nilson S.; Teixeira, Verônica C.; dos S. Rezende, Marcos V.
2016-10-01
The influence of the polyvinyl alcohol (PVA) concentration on the synthesis and structural, morphological and optical properties of Y3Al5O13: Eu (Eu-doped YAG) was systematically investigated in this work. The final concentration of PVA in the preparation step influenced the crystallite size and also the degree of particle agglomeration in Eu-doped YAG phosphors. X-ray excited optical luminescence (XEOL) emission spectra results indicated typical Eu3+ emission lines and an abnormally intense 5D0 → 7F4. The intensity parameters Ω2 and Ω4 were calculated and indicated the PVA concentration affects the ratio Ω2:Ω4. X-ray absorption spectroscopy (XAS) results showed Eu valence did not change and the symmetry around the Eu3+ is influenced by the PVA concentration. XEOL-XAS showed the luminescence increases as a function of energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Neil R.; Grant, J. T.; Sun, L.
2014-03-18
Germanium oxide (GeO x) films were grown on (1 0 0) Si substrates by reactive Direct-Current (DC) magnetron sputter-deposition using an elemental Ge target. The effects of oxygen gas fraction, Г = O 2/(Ar + O 2), on the deposition rate, structure, chemical composition and optical properties of GeOx films have been investigated. The chemistry of the films exhibits an evolution from pure Ge to mixed Ge + GeO + GeO 2 and then finally to GeO 2 upon increasing Г from 0.00 to 1.00. Grazing incidence X-ray analysis indicates that the GeO x films grown were amorphous. The opticalmore » properties probed by spectroscopic ellipsometry indicate that the effect of Г is significant on the optical constants of the GeO x films. The measured index of refraction (n) at a wavelength (λ) of 550 nm is 4.67 for films grown without any oxygen, indicating behavior characteristic of semiconducting Ge. The transition from germanium to mixed Ge + GeO + GeO 2 composition is associated with a characteristic decrease in n (λ = 550 nm) to 2.62 and occurs at Г = 0.25. Finally n drops to 1.60 for Г = 0.50–1.00, where the films become GeO 2. A detailed correlation between Г, n, k and stoichiometry in DC sputtered GeO x films is presented and discussed.« less
Evaluation of Aerogel Clad Optical Fibers Final Report CRADA No. TSB-1448-97
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maitland, Duncan; Droege, M. W.
Fiber-optic based sensors will be needed for in situ monitoring of degradation products in various components of nuclear weapons. These sensors typically consist of a transducer located at the measurement site whose optical properties are modulated by interaction with the targeted degradation product. The interrogating light source and the detector for determining sensor response are located remotely. These two subsystems are connected by fiber optic cables. LLNL has developed a new technology, aerogel clad optical fibers, that have the advantage of accepting incident rays over a much wider angular range than normal glass clad fibers. These fibers are also capablemore » of transmitting light more efficiently. These advantages can lead to a factor of 2-4 improvement in sensitivity and detection limit.« less
Symmetry and optical selection rules in graphene quantum dots
NASA Astrophysics Data System (ADS)
Pohle, Rico; Kavousanaki, Eleftheria G.; Dani, Keshav M.; Shannon, Nic
2018-03-01
Graphene quantum dots (GQD's) have optical properties which are very different from those of an extended graphene sheet. In this paper, we explore how the size, shape, and edge structure of a GQD affect its optical conductivity. Using representation theory, we derive optical selection rules for regular-shaped dots, starting from the symmetry properties of the current operator. We find that, where the x and y components of the current operator transform with the same irreducible representation (irrep) of the point group (for example in triangular or hexagonal GQD's), the optical conductivity is independent of the polarization of the light. On the other hand, where these components transform with different irreps (for example in rectangular GQD's), the optical conductivity depends on the polarization of light. We carry out explicit calculations of the optical conductivity of GQD's described by a simple tight-binding model and, for dots of intermediate size, find an absorption peak in the low-frequency range of the spectrum which allows us to distinguish between dots with zigzag and armchair edges. We also clarify the one-dimensional nature of states at the Van Hove singularity in graphene, providing a possible explanation for very high exciton-binding energies. Finally, we discuss the role of atomic vacancies and shape asymmetry.
Light-Emitting GaAs Nanowires on a Flexible Substrate.
Valente, João; Godde, Tillmann; Zhang, Yunyan; Mowbray, David J; Liu, Huiyun
2018-06-18
Semiconductor nanowire-based devices are among the most promising structures used to meet the current challenges of electronics, optics and photonics. Due to their high surface-to-volume ratio and excellent optical and electrical properties, devices with low power, high efficiency and high density can be created. This is of major importance for environmental issues and economic impact. Semiconductor nanowires have been used to fabricate high performance devices, including detectors, solar cells and transistors. Here, we demonstrate a technique for transferring large-area nanowire arrays to flexible substrates while retaining their excellent quantum efficiency in emission. Starting with a defect-free self-catalyzed molecular beam epitaxy (MBE) sample grown on a Si substrate, GaAs core-shell nanowires are embedded in a dielectric, removed by reactive ion etching and transferred to a plastic substrate. The original structural and optical properties, including the vertical orientation, of the nanowires are retained in the final plastic substrate structure. Nanowire emission is observed for all stages of the fabrication process, with a higher emission intensity observed for the final transferred structure, consistent with a reduction in nonradiative recombination via the modification of surface states. This transfer process could form the first critical step in the development of flexible nanowire-based light-emitting devices.
Polymer-Nanoparticle Composites: From Synthesis to Modern Applications
Hanemann, Thomas; Szabó, Dorothée Vinga
2010-01-01
The addition of inorganic spherical nanoparticles to polymers allows the modification of the polymers physical properties as well as the implementation of new features in the polymer matrix. This review article covers considerations on special features of inorganic nanoparticles, the most important synthesis methods for ceramic nanoparticles and nanocomposites, nanoparticle surface modification, and composite formation, including drawbacks. Classical nanocomposite properties, as thermomechanical, dielectric, conductive, magnetic, as well as optical properties, will be summarized. Finally, typical existing and potential applications will be shown with the focus on new and innovative applications, like in energy storage systems.
Scintillator Design Via Codoping
NASA Astrophysics Data System (ADS)
Melcher, C. L.; Koschan, M.; Zhuravleva, M.; Wu, Y.; Rothfuss, H.; Meng, F.; Tyagi, M.; Donnald, S.; Yang, K.; Hayward, J. P.; Eriksson, L.
Scintillation materials that lack intrinsic luminescence centers must be doped with optically active ions in order to provide luminescent centers that radiatively de-excite as the final step of the scintillation process. Codoping, on the other hand, can be defined as the incorporation of additional specific impurity species usually for the purpose of modifying the scintillation properties, mechanical properties, or the crystal growth behavior. In recent years codoping has become an increasingly popular approach for engineering scintillators with optimal performance for targeted applications. This report reviews several successful examples and its effect on specific properties.
Yum, Kyungsuk; McNicholas, Thomas P.; Mu, Bin; Strano, Michael S.
2013-01-01
This article reviews research efforts on developing single-walled carbon nanotube (SWNT)-based near-infrared (NIR) optical glucose sensors toward long-term in vivo continuous glucose monitoring (CGM). We first discuss the unique optical properties of SWNTs and compare SWNTs with traditional organic and nanoparticle fluorophores regarding in vivo glucose-sensing applications. We then present our development of SWNT-based glucose sensors that use glucose-binding proteins and boronic acids as a high-affinity molecular receptor for glucose and transduce binding events on the receptors to modulate SWNT fluorescence. Finally, we discuss opportunities and challenges in translating the emerging technology of SWNT-based NIR optical glucose sensors into in vivo CGM for practical clinical use. PMID:23439162
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Hubanks, Paul; Pincus, Robert
2006-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of operational algorithms for the retrieval of cloud physical and optical properties (optical thickness, effective particle radius, water path, thermodynamic phase) have recently been updated and are being used in the new "Collection 5" processing stream being produced by the MODIS Adaptive Processing System (MODAPS) at NASA GSFC. All Terra and Aqua data are undergoing Collection 5 reprocessing with an expected completion date by the end of 2006. The archived products from these algorithms include 1 km pixel-level (Level-2) and global gridded Level-3 products. The cloud products have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In this talk, we will summarize the available Level-3 cloud properties and their associated statistical data sets, and show preliminary Terra and Aqua results from the available Collection 5 reprocessing effort. Anticipated results include the latitudinal distribution of cloud optical and radiative properties for both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.
Classification of X-ray sources in the direction of M31
NASA Astrophysics Data System (ADS)
Vasilopoulos, G.; Hatzidimitriou, D.; Pietsch, W.
2012-01-01
M31 is our nearest spiral galaxy, at a distance of 780 kpc. Identification of X-ray sources in nearby galaxies is important for interpreting the properties of more distant ones, mainly because we can classify nearby sources using both X-ray and optical data, while more distant ones via X-rays alone. The XMM-Newton Large Project for M31 has produced an abundant sample of about 1900 X-ray sources in the direction of M31. Most of them remain elusive, giving us little signs of their origin. Our goal is to classify these sources using criteria based on properties of already identified ones. In particular we construct candidate lists of high mass X-ray binaries, low mass X-ray binaries, X-ray binaries correlated with globular clusters and AGN based on their X-ray emission and the properties of their optical counterparts, if any. Our main methodology consists of identifying particular loci of X-ray sources on X-ray hardness ratio diagrams and the color magnitude diagrams of their optical counterparts. Finally, we examined the X-ray luminosity function of the X-ray binaries populations.
Nanoparticles in alumina: Microscopy and Theory
NASA Astrophysics Data System (ADS)
Idrobo, Juan C.; Halabica, Andrej; Rashkeev, Sergey; Glazoff, Michael V.; Boatner, Lynn A.; Haglund, Richard F.; Pennycook, Stephen. J.; Pantelides, Sokrates T.
2007-03-01
Transition-metal nanoparticles formed by ion implantation in alumina can be used to modify the optical properties of naturally oxidized and anodized aluminum. Here, we report atomic-resolution Z-contrast images using a scanning transmission electron microscope (STEM) of CoFe and other metal nanoparticles in alumina. We also report electron energy loss spectra (EELS) and relate them to visual appearance and optical properties. Finally, we report first-principles density- functional calculations of nucleation mechanisms for these nanoparticles. This research was sponsored by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy, under contract DE-AC05- 00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, by NSF grant No. DMR-0513048, and by Alcoa Inc.
NASA Astrophysics Data System (ADS)
Najafi-Ashtiani, Hamed; Bahari, Ali
2016-08-01
In the field of materials for electrochromic (EC) applications much attention was paid to the derivatives of aniline. We report on the optical, structural and electrochromic properties of electrochromic thin film based on composite of WO3 nanoparticles and copolymer of aniline and o-toluidine prepared by electrochemical polymerization method on fluorine doped tin oxide (FTO) coated glass. The thin film was studied by X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectroscopy. The morphology of prepared thin film was characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and the thermal gravimetric analysis (TGA) as well. The optical spectra of nanocomposite thin film were characterized in the 200-900 nm wavelength range and EC properties of nanocomposite thin film were studied by cyclic voltammetry (CV). The calculation of optical band gaps of thin film exhibited that the thin film has directly allowed transition with the values of 2.63 eV on first region and 3.80 eV on second region. Dispersion parameters were calculated based on the single oscillator model. Finally, important parameters such as dispersion energy, oscillator energy and lattice dielectric constant were determined and compared with the data from other researchers. The nonlinear optical properties such as nonlinear optical susceptibility, nonlinear absorption coefficient and nonlinear refractive index were extracted. The obtained results of nanocomposite thin film can be useful for the optoelectronic applications.
NASA Astrophysics Data System (ADS)
Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.
2016-09-01
Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.
Multi-scale Modeling, Design Strategies and Physical Properties of 2D Composite Sheets
2014-09-22
talks and training of two postdoctoral candidates, one graduate student The theoretical work on thennal, elecu·onic and optical prope1iies of 2D ...materials led to several new experimentalists to validate our predictions. 1S. SUBJECT TERMS 2D materials, multi scale modeling 16. SECURITY...strategies and physical properties of 2D composite sheets: Final Report Report Title This report describes the progress made as part of the subject contract
Engineering of head-mounted projective displays.
Hua, H; Girardot, A; Gao, C; Rolland, J P
2000-08-01
Head-mounted projective displays (HMPD's) are a novel type of head-mounted display. A HMPD consists of a miniature projection lens mounted upon the user's head and retroreflective sheeting material placed strategically in the environment. First, the imaging concept of a HMPD is reviewed and its potential advantages and disadvantages are discussed. The design and a bench prototype implementation are then presented. Finally, the effects of retroreflective materials on the imaging properties and the optical properties of HMPD's are comprehensively investigated.
Zhang, Hui; Toudert, Johann
2018-01-01
Abstract In a few years only, solar cells using hybrid organic–inorganic lead halide perovskites as optical absorber have reached record photovoltaic energy conversion efficiencies above 20%. To reach and overcome such values, it is required to tailor both the electrical and optical properties of the device. For a given efficient device, optical optimization overtakes electrical one. Here, we provide a synthetic review of recent works reporting or proposing so-called optical management approaches for improving the efficiency of perovskite solar cells, including the use of anti-reflection coatings at the front substrate surface, the design of optical cavities integrated within the device, the incorporation of plasmonic or dielectric nanostructures into the different layers of the device and the structuration of its internal interfaces. We finally give as outlooks some insights into the less-explored management of the perovskite fluorescence and its potential for enhancing the cell efficiency. PMID:29868146
NASA Astrophysics Data System (ADS)
Rehfeldt, Florian; Schmidt, Christoph F.
2017-11-01
In the last two decades, it has become evident that the mechanical properties of the microenvironment of biological cells are as important as traditional biochemical cues for the control of cellular behavior and fate. The field of cell and matrix mechanics is quickly growing and so is the development of the experimental approaches used to study active and passive mechanical properties of cells and their surroundings. Within this topical review we will provide a brief overview, on the one hand, over how cellular mechanics can be probed physically, how different geometries allow access to different cellular properties, and, on the other hand, how forces are generated in cells and transmitted to the extracellular environment. We will describe the following experimental techniques: atomic force microscopy, traction force microscopy, magnetic tweezers, optical stretcher and optical tweezers pointing out both their advantages and limitations. Finally, we give an outlook on the future of the physical probing of cells.
Ultrasonic synthesis of In-doped SnS nanoparticles and their physical properties
NASA Astrophysics Data System (ADS)
Jamali-Sheini, Farid; Cheraghizade, Mohsen; Yousefi, Ramin
2018-05-01
Indium (In)-doped Tin (II) Sulfide (SnS) nanoparticles (NPs) were synthesized by an ultra-sonication method and their optical, electrical, dielectric and photocatalytic properties were investigated. XRD patterns of the obtained NPs indicated formation of orthorhombic polycrystalline SnS. Field emission scanning electron microscopy exhibited flower-like NPs with particle sizes below 100 nm for both SnS and In-doped SnS samples. Optical analysis showed a decrease in energy band gap of SnS NPs upon In doping. In addition, electrical results demonstrated p-type nature of the synthesized SnS NPs and enhanced electrical conductivity of the NPs due to increased tin vacancy. Dielectric experiments on SnS NPs suggested an electronic polarizations effect to be responsible for changing dielectric properties of the particles, in terms of frequency. Finally, photocatalytic experiments revealed that high degradation power can be obtained using In-doped SnS NPs.
NASA Astrophysics Data System (ADS)
Chiker, F.; Khachai, H.; Mathieu, C.; Bin-Omran, S.; Kada, Belkacem; Sun, Xiao-Wei; Sandeep; Rai, D. P.; Khenata, R.
2018-05-01
In this study, first-principles investigations were performed using the full-potential linearized augmented plane-wave method of the structural and optoelectronic properties of thorium germinate (ThGeO4), a high-K dielectric material. Under ambient conditions, the structural properties calculated for ThGeO4 in the zircon phase were in excellent agreement with the available experimental data. Furthermore, using the modified Becke -Johnson correction method, the calculated band gaps and optical constants accurately described this compound. Finally, the thermal properties were predicted over a temperature range of 0-700 K and pressures up to 11 GPa using the quasi-harmonic Debye model, where the variations in the heat capacity, primitive cell volume, and thermal expansion coefficients were determined successfully.
Excitons in atomically thin 2D semiconductors and their applications
NASA Astrophysics Data System (ADS)
Xiao, Jun; Zhao, Mervin; Wang, Yuan; Zhang, Xiang
2017-06-01
The research on emerging layered two-dimensional (2D) semiconductors, such as molybdenum disulfide (MoS2), reveals unique optical properties generating significant interest. Experimentally, these materials were observed to host extremely strong light-matter interactions as a result of the enhanced excitonic effect in two dimensions. Thus, understanding and manipulating the excitons are crucial to unlocking the potential of 2D materials for future photonic and optoelectronic devices. In this review, we unravel the physical origin of the strong excitonic effect and unique optical selection rules in 2D semiconductors. In addition, control of these excitons by optical, electrical, as well as mechanical means is examined. Finally, the resultant devices such as excitonic light emitting diodes, lasers, optical modulators, and coupling in an optical cavity are overviewed, demonstrating how excitons can shape future 2D optoelectronics.
OPTICAL PROPERTIES OF THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1 AND ITS STELLAR ENVIRONMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grise, F.; Kaaret, P.; Pakull, M. W.
2011-06-10
Holmberg IX X-1 is an archetypal ultraluminous X-ray source (ULX). Here we study the properties of the optical counterpart and of its stellar environment using optical data from SUBARU/Faint Object Camera and Spectrograph, GEMINI/GMOS-N and Hubble Space Telescope (HST)/Advanced Camera for Surveys, as well as simultaneous Chandra X-ray data. The V {approx} 22.6 spectroscopically identified optical counterpart is part of a loose cluster with an age {approx}< 20 Myr. Consequently, the mass upper limit on individual stars in the association is about 20 M{sub sun}. The counterpart is more luminous than the other stars of the association, suggesting a non-negligiblemore » optical contribution from the accretion disk. An observed UV excess also points to non-stellar light similar to X-ray active low-mass X-ray binaries. A broad He II {lambda}4686 emission line identified in the optical spectrum of the ULX further suggests optical light from X-ray reprocessing in the accretion disk. Using stellar evolutionary tracks, we have constrained the mass of the counterpart to be {approx}> 10 M{sub sun}, even if the accretion disk contributes significantly to the optical luminosity. Comparison of the photometric properties of the counterpart with binary models show that the donor may be more massive, {approx}> 25 M{sub sun}, with the ULX system likely undergoing case AB mass transfer. Finally, the counterpart exhibits photometric variability of 0.14 mag between two HST observations separated by 50 days which could be due to ellipsoidal variations and/or disk reprocessing of variable X-ray emission.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susan J. Foulk
Project Objective: The objectives of this study are to develop an accurate and stable on-line sensor system to monitor color and composition on-line in polymer melts, to develop a scheme for using the output to control extruders to eliminate the energy, material and operational costs of off-specification product, and to combine or eliminate some extrusion processes. Background: Polymer extrusion processes are difficult to control because the quality achieved in the final product is complexly affected by the properties of the extruder screw, speed of extrusion, temperature, polymer composition, strength and dispersion properties of additives, and feeder system properties. Extruder systemsmore » are engineered to be highly reproducible so that when the correct settings to produce a particular product are found, that product can be reliably produced time after time. However market conditions often require changes in the final product, different products or grades may be processed in the same equipment, and feed materials vary from lot to lot. All of these changes require empirical adjustment of extruder settings to produce a product meeting specifications. Optical sensor systems that can continuously monitor the composition and color of the extruded polymer could detect process upsets, drift, blending oscillations, and changes in dispersion of additives. Development of an effective control algorithm using the output of the monitor would enable rapid corrections for changes in materials and operating conditions, thereby eliminating most of the scrap and recycle of current processing. This information could be used to identify extruder systems issues, diagnose problem sources, and suggest corrective actions in real-time to help keep extruder system settings within the optimum control region. Using these advanced optical sensor systems would give extruder operators real-time feedback from their process. They could reduce the amount of off-spec product produced and significantly reduce energy consumption. Also, because blending and dispersion of additives and components in the final product could be continuously verified, we believe that, in many cases, intermediate compounding steps could be eliminated (saving even more time and energy).« less
Visual receptive field properties of cells in the optic tectum of the archer fish.
Ben-Tov, Mor; Kopilevich, Ivgeny; Donchin, Opher; Ben-Shahar, Ohad; Giladi, Chen; Segev, Ronen
2013-08-01
The archer fish is well known for its extreme visual behavior in shooting water jets at prey hanging on vegetation above water. This fish is a promising model in the study of visual system function because it can be trained to respond to artificial targets and thus to provide valuable psychophysical data. Although much behavioral data have indeed been collected over the past two decades, little is known about the functional organization of the main visual area supporting this visual behavior, namely, the fish optic tectum. In this article we focus on a fundamental aspect of this functional organization and provide a detailed analysis of receptive field properties of cells in the archer fish optic tectum. Using extracellular measurements to record activities of single cells, we first measure their retinotectal mapping. We then determine their receptive field properties such as size, selectivity for stimulus direction and orientation, tuning for spatial frequency, and tuning for temporal frequency. Finally, on the basis of all these measurements, we demonstrate that optic tectum cells can be classified into three categories: orientation-tuned cells, direction-tuned cells, and direction-agnostic cells. Our results provide an essential basis for future investigations of information processing in the archer fish visual system.
NASA Astrophysics Data System (ADS)
Mahmood, Asif; Ramay, Shahid M.; Rafique, Hafiz Muhammad; Al-Zaghayer, Yousef; Khan, Salah Ud-Din
2014-05-01
In this paper, first-principles calculations of structural, electronic, optical and thermoelectric properties of AgMO3 (M = V, Nb and Ta) have been carried out using full potential linearized augmented plane wave plus local orbitals method (FP - LAPW + lo) and BoltzTraP code within the framework of density functional theory (DFT). The calculated structural parameters are found to agree well with the experimental data, while the electronic band structure indicates that AgNbO3 and AgTaO3 are semiconductors with indirect bandgaps of 1.60 eV and 1.64 eV, respectively, between the occupied O 2p and unoccupied d states of Nb and Ta. On the other hand, AgVO3 is found metallic due to the overlapping behavior of states across the Fermi level. Furthermore, optical properties, such as dielectric function, absorption coefficient, optical reflectivity, refractive index and extinction coefficient of AgNbO3 and AgTaO3, are calculated for incident photon energy up to 50 eV. Finally, we calculate thermo power for AgNbO3 and AgTaO3 at fixed doping 1019 cm-3. Electron doped thermo power of AgNbO3 shows significant increase over AgTaO3 with temperature.
High-resolution optical polarimetric elastography for measuring the mechanical properties of tissue
NASA Astrophysics Data System (ADS)
Hudnut, Alexa W.; Armani, Andrea M.
2018-02-01
Traditionally, chemical and molecular markers have been the predominate method in diagnostics. Recently, alternate methods of determining tissue and disease characteristics have been proposed based on testing the mechanical behavior of biomaterials. Existing methods for performing elastography measurements, such as atomic force microscopy, compression testing, and ultrasound elastography, require either extensive sample processing or have poor resolution. In the present work, we demonstrate an optical polarimetric elastography device to characterize the mechanical properties of salmon skeletal muscle. A fiber-coupled 1550nm laser paired with an optical polarizer is used to create a fiber optic sensing region. By measuring the change in polarization from the initial state to the final state within the fiber sensing region with a polarimeter, the loading-unloading curves can be determined for the biomaterial. The device is used to characterize the difference between samples with a range of collagen membranes. The loading-unloading curves are used to determine the change in polarization phase and energy loss of the samples at 10%, 20% and 30% strain. As expected, the energy loss is a better metric for measuring the mechanical properties of the tissues because it incorporates the entire loading-unloading curve rather than a single point. Using this metric, it is demonstrated the device can repeatedly differentiate between the different membrane configurations.
Optics for coherent X-ray applications
Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya
2014-01-01
Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed. PMID:25177986
NASA Astrophysics Data System (ADS)
Oueslati, H.; Rabeh, M. Ben; Kanzari, M.
2018-02-01
In this work, the effect of different types of thermal annealing on the properties of Cu2FeSnS4 (CFTS) thin films deposited by thermal evaporation at room temperature on glass substrate were investigated. CFTS powder was synthesized by direct melting of the constituent elements taken in stoichiometry compositions. The X-ray diffraction experimental data indicating that the Cu2FeSnS4 powder illustrating a stannite structure in space group I\\bar {4}2m. From the XRD analysis we have found that the polycrystalline CFTS thin film was only obtained by thermal annealed in sulfur atmosphere under a high vacuum of 400 °C temperature during 2 h. Optical study reveals that the thin films have relatively high absorption coefficients (≈ 105cm-1) and the values of optical band gap energy ranged between 1.38 and 1.48 eV. Other optical parameters were evaluated according to the models of Wemple Di-Domenico and Spitzer-Fan. Finally, hot probe measurements of CFTS thin films reveal p-type conductivity.
NASA Astrophysics Data System (ADS)
Mao, Jin-Jin; Tian, Shou-Fu; Zou, Li; Zhang, Tian-Tian
2018-05-01
In this paper, we consider a generalized Hirota equation with a bounded potential, which can be used to describe the propagation properties of optical soliton solutions. By employing the hypothetical method and the sub-equation method, we construct the bright soliton, dark soliton, complexitons and Gaussian soliton solutions of the Hirota equation. Moreover, we explicitly derive the power series solutions with their convergence analysis. Finally, we provide the graphical analysis of such soliton solutions in order to better understand their dynamical behavior.
Excimer laser ablation of the cornea
NASA Astrophysics Data System (ADS)
Pettit, George H.; Ediger, Marwood N.; Weiblinger, Richard P.
1995-03-01
Pulsed ultraviolet laser ablation is being extensively investigated clinically to reshape the optical surface of the eye and correct vision defects. Current knowledge of the laser/tissue interaction and the present state of the clinical evaluation are reviewed. In addition, the principal findings of internal Food and Drug Administration research are described in some detail, including a risk assessment of the laser-induced-fluorescence and measurement of the nonlinear optical properties of cornea during the intense UV irradiation. Finally, a survey is presented of the alternative laser technologies being explored for this ophthalmic application.
NASA Astrophysics Data System (ADS)
Zheng, Yonghui; Sun, Huayan; Zhao, Yanzhong; Chen, Jianbiao
2015-10-01
Active laser detection technique has a broad application prospect in antimissile and air defense, however the aerodynamic flow field around the planes and missiles cause serious distortion effect on the detecting laser beams. There are many computational fluid dynamics(CFD) codes that can predict the air density distribution and also the density fluctuations of the flow field, it's necessary for physical optics to be used to predict the distortion properties after propagation through the complex process. Aiming at the physical process of laser propagation in "Cat-eye" lenses and aerodynamic flow field for twice, distortion propagation calculation method is researched in this paper. In the minds of dividing the whole process into two parts, and tread the aero-optical optical path difference as a phase distortion, the incidence and reflection process are calculated using Collins formula and angular spectrum diffraction theory respectively. In addition, turbulent performance of the aerodynamic flow field is estimated according to the electromagnetic propagation theory through a random medium, the rms optical path difference and Strehl ratio of the turbulent optical distortion are obtained. Finally, Computational fluid mechanics and aero-optical distortion properties of the detecting laser beams are calculated with the hemisphere-on-cylinder turret as an example, calculation results are showed and analysed.
Development of self-sensing BFRP bars with distributed optic fiber sensors
NASA Astrophysics Data System (ADS)
Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Shen, Sheng; Wu, Gang; Hong, Wan
2009-03-01
In this paper, a new type of self-sensing basalt fiber reinforced polymer (BFRP) bars is developed with using the Brillouin scattering-based distributed optic fiber sensing technique. During the fabrication, optic fiber without buffer and sheath as a core is firstly reinforced through braiding around mechanically dry continuous basalt fiber sheath in order to survive the pulling-shoving process of manufacturing the BFRP bars. The optic fiber with dry basalt fiber sheath as a core embedded further in the BFRP bars will be impregnated well with epoxy resin during the pulling-shoving process. The bond between the optic fiber and the basalt fiber sheath as well as between the basalt fiber sheath and the FRP bar can be controlled and ensured. Therefore, the measuring error due to the slippage between the optic fiber core and the coating can be improved. Moreover, epoxy resin of the segments, where the connection of optic fibers will be performed, is uncured by isolating heat from these parts of the bar during the manufacture. Consequently, the optic fiber in these segments of the bar can be easily taken out, and the connection between optic fibers can be smoothly carried out. Finally, a series of experiments are performed to study the sensing and mechanical properties of the propose BFRP bars. The experimental results show that the self-sensing BFRP bar is characterized by not only excellent accuracy, repeatability and linearity for strain measuring but also good mechanical property.
DNA-carbon nano onion aggregate: triangle, hexagon, six-petal flower to dead-end network
NASA Astrophysics Data System (ADS)
Babar, Dipak Gorakh; Pakhira, Bholanath; Sarkar, Sabyasachi
2017-08-01
The interaction between calf-thymus (CT) dsDNA and water soluble carbon nano onion (wsCNO) in water follows denaturation of dsDNA (double stranded) to ssDNA (single stranded) as monitored by optical spectroscopy. The ssDNA concomitantly wraps the spiky surface of wsCNO to create triangular aggregate as the building block as observed by time-dependent SEM images. These triangles further aggregate leading to six-petal flower arrangement via hexagon and finally reach a dead end network as imaged by SEM and optical fluorescence microscopy. The dead-end network aggregate lost the intrinsic optical property of DNA suggesting complete loss of its activity.
NASA Astrophysics Data System (ADS)
Choueikani, Fadi; Royer, François; Jamon, Damien; Siblini, Ali; Rousseau, Jean Jacques; Neveu, Sophie; Charara, Jamal
2009-02-01
This paper describes a way to develop magneto-optical waveguides via sol-gel process. They are made of cobalt ferrite nanoparticles embedded in a silica/zirconia matrix. Thin films are coated on glass substrate using the dip-coating technique. Annealing and UV treatment are applied to finalize sample preparation. Therefore, planar waveguides combining magneto-optical properties with a low refractive index (≈1,5) are obtained. M-lines and free space ellipsometry measurements show a specific Faraday rotation of 250°/cm and a modal birefringence of 1×10-4 at 820 nm. Thus, the mode conversion efficiency can reach a maximum value around 56%.
NASA Astrophysics Data System (ADS)
Cano-Lara, Miroslava; Severiano-Carrillo, Israel; Trejo-Durán, Mónica; Alvarado-Méndez, Edgar
2017-09-01
In this work, we present a study of non-linear optical response in thin films elaborated with Gelite Bloom and extract of Hibiscus Sabdariffa. Non-linear refraction and absorption effects were studied experimentally (Z-scan technique) and numerically, by considering the transmittance as non-linear absorption and refraction contribution. We observe large phase shifts to far field, and diffraction due to self-phase modulation of the sample. Diffraction and self-diffraction effects were observed as time function. The aim of studying non-linear optical properties in thin films is to eliminate thermal vortex effects that occur in liquids. This is desirable in applications such as non-linear phase contrast, optical limiting, optics switches, etc. Finally, we find good agreement between experimental and theoretical results.
Chemical Vapor Deposited Zinc Sulfide. SPIE Press Monograph
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloy, John S.; Tustison, Randal W.
2013-04-22
Zinc sulfide has shown unequaled utility for infrared windows that require a combination of long-wavelength infrared transparency, mechanical durability, and elevated-temperature performance. This book reviews the physical properties of chemical vapor deposited ZnS and their relationship to the CVD process that produced them. An in-depth look at the material microstructure is included, along with a discussion of the material's optical properties. Finally, because the CVD process itself is central to the development of this material, a brief history is presented.
Li+ ions diffusion into sol-gel V2O5 thin films: electrochromic properties
NASA Astrophysics Data System (ADS)
Benmoussa, M.; Outzourhit, A.; Bennouna, A.; Ihlal, A.
2009-10-01
V{2}O{5} thin films were prepared by the sol-gel spin coating process. The Li+ ions insertion effect on optical and electrochromic properties of those films was studied. The diffusion coefficient was calculated using both cyclic voltammograms and chronoamperometric curves. The amount x of Li+ ions in LixV{2}O{5} was also calculated. Finally, the electrochromic performance evolution characteristics such as the reversibility, coloration efficiency, coloration memory stability and response time were studied.
Sumpter, Bobby G.; Ivanov, Ilia N.; Kumar, Rajeev; ...
2017-04-26
Understanding the relative humidity (RH) response of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is critical for improving the stability of organic electronic devices and developing selective sensors. In this work combined gravimetric sensing, nanoscale surface probing, and mesoscale optoelectronic characterization are used to directly compare the RH dependence of electrical and optical conductivities and unfold connections between the rate of water adsorption and changes in functional properties of PEDOT:PSS film. We report three distinct regimes where changes in electrical conductivity, optical conductivity, and optical bandgap are correlated with the mass of adsorbed water. At low (RH < 25%) and high (RH > 60%) humiditymore » levels dramatic changes in electrical, optical and structural properties occur, while changes are insignificant in mid-RH (25% < RH < 60%) conditions. We associate the three regimes with water adsorption at hydrophilic moieties at low RH, diffusion and swelling throughout the film at mid-RH, and saturation of the film by water at high RH. Optical film thickness increased by 150% as RH was increased from 9% to 80%. Low frequency (1 kHz) impedance increased by ~100% and film capacitance increased by ~30% as RH increased from 9% to 80% due to an increase in the film dielectric constant. Finally, changes in electrical and optical conductivities concomitantly decrease across the full range of RH tested.« less
Diamond like carbon nanocomposites with embedded metallic nanoparticles
NASA Astrophysics Data System (ADS)
Tamulevičius, Sigitas; Meškinis, Šarūnas; Tamulevičius, Tomas; Rubahn, Horst-Günter
2018-02-01
In this work we present an overview on structure formation, optical and electrical properties of diamond like carbon (DLC) based metal nanocomposites deposited by reactive magnetron sputtering and treated by plasma and laser ablation methods. The influence of deposition mode and other technological conditions on the properties of the nanosized filler, matrix components and composition were studied systematically in relation to the final properties of the nanocomposites. Applications of the nanocomposites in the development of novel biosensors combining resonance response of wave guiding structures in DLC based nanocomposites as well as plasmonic effects are also presented.
Kolaczkowski, Matthew A.; He, Bo; Liu, Yi
2016-10-10
In this work, a selective stepwise annulation of indigo has been demonstrated as a means of providing both monoannulated and differentially double-annulated indigo derivatives. Disparate substitution of the electron accepting bay-annulated indigo system allows for fine control over both the electronic properties as well as donor-acceptor structural architectures. Optical and electronic properties were characterized computationally as well as through UV-vis absorption spectroscopy and cyclic voltammetry. Finally, this straightforward method provides a modular approach for the design of indigo-based materials with tailored optoelectronic properties.
Zhao, Xinne; Zhang, Panpan; Chen, Yuting; Su, Zhiqiang; Wei, Gang
2015-03-12
The preparation and applications of graphene (G)-based materials are attracting increasing interests due to their unique electronic, optical, magnetic, thermal, and mechanical properties. Compared to G-based hybrid and composite materials, G-based inorganic hybrid membrane (GIHM) offers enormous advantages ascribed to their facile synthesis, planar two-dimensional multilayer structure, high specific surface area, and mechanical stability, as well as their unique optical and mechanical properties. In this review, we report the recent advances in the technical fabrication and structure-specific applications of GIHMs with desirable thickness and compositions. In addition, the advantages and disadvantages of the methods utilized for creating GIHMs are discussed in detail. Finally, the potential applications and key challenges of GIHMs for future technical applications are mentioned.
Optical, electrical, and photovoltaic properties of PbS thin films by anionic and cationic dopants
NASA Astrophysics Data System (ADS)
Cheraghizade, Mohsen; Jamali-Sheini, Farid; Yousefi, Ramin
2017-06-01
Lead sulfide (PbS) thin films were deposited by CVD method to examine the effects of anionic and cationic dopants on optical and electrical properties for photovoltaic applications. XRD diffractograms verified the formation of cubic phase of multicrystalline PbS thin films. FESEM images showed surface morphologies in nano-dimensions (rods and flowers). UV-Vis-NIR spectrum revealed absorbance in the visible and NIR regions for all samples, in which dopants decreased the intensity of absorbance. Se as an anionic dopant for PbS thin films increased electrical resistance, acceptor concentrations, and crystallite defects, and decreased flat-band voltage and depletion width. Finally, photovoltaic measurements indicated that Zn-doped PbS thin film, as a photovoltaic cell, exhibited higher conversion efficiency and external quantum efficiency (EQE).
Optical reading of contaminants in aqueous media based on gold nanoparticles.
Du, Jianjun; Zhu, Bowen; Peng, Xiaojun; Chen, Xiaodong
2014-09-10
With increasing trends of global population growth, urbanization, pollution over-exploitation, and climate change, the safe water supply has become a global issue and is threatening our society in terms of sustainable development. Therefore, there is a growing need for a water-monitoring platform with the capability of rapidness, specificity, low-cost, and robustness. This review summarizes the recent developments in the design and application of gold nanoparticles (AuNPs) based optical assays to detect contaminants in aqueous media with a high performance. First, a brief discussion on the correlation between the optical reading strategy and the optical properties of AuNPs is presented. Then, we summarize the principle behind AuNP-based optical assays to detect different contaminants, such as toxic metal ion, anion, and pesticides, according to different optical reading strategies: colorimetry, scattering, and fluorescence. Finally, the comparison of these assays and the outlook of AuNP-based optical detection are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sakota, Daisuke; Takatani, Setsuo
2012-05-01
Optical properties of flowing blood were analyzed using a photon-cell interactive Monte Carlo (pciMC) model with the physical properties of the flowing red blood cells (RBCs) such as cell size, shape, refractive index, distribution, and orientation as the parameters. The scattering of light by flowing blood at the He-Ne laser wavelength of 632.8 nm was significantly affected by the shear rate. The light was scattered more in the direction of flow as the flow rate increased. Therefore, the light intensity transmitted forward in the direction perpendicular to flow axis decreased. The pciMC model can duplicate the changes in the photon propagation due to moving RBCs with various orientations. The resulting RBC's orientation that best simulated the experimental results was with their long axis perpendicular to the direction of blood flow. Moreover, the scattering probability was dependent on the orientation of the RBCs. Finally, the pciMC code was used to predict the hematocrit of flowing blood with accuracy of approximately 1.0 HCT%. The photon-cell interactive Monte Carlo (pciMC) model can provide optical properties of flowing blood and will facilitate the development of the non-invasive monitoring of blood in extra corporeal circulatory systems.
Zhang, Rongxiao; Glaser, Adam K.; Andreozzi, Jacqueline; Jiang, Shudong; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.
2017-01-01
This study’s goal was to determine how Cherenkov radiation emission observed in radiotherapy is affected by predictable factors expected in patient imaging. Factors such as tissue optical properties, radiation beam properties, thickness of tissues, entrance/exit geometry, curved surface effects, curvature and imaging angles were investigated through Monte Carlo simulations. The largest physical cause of variation of the correlation factor between of Cherenkov emission and dose was the entrance/exit geometry (~50%). The largest human tissue effect was from different optical properties (~45%). Beyond these, clinical beam energy varies the correlation factor significantly (~20% for x-ray beams), followed by curved surfaces (~15% for x-ray beams and ~8% for electron beams), and finally, the effect of field size (~5% for x-ray beams). Other investigated factors which caused variations less than 5% were tissue thicknesses and source to surface distance. The effect of non-Lambertian emission was negligible for imaging angles smaller than 60 degrees. The spectrum of Cherenkov emission tends to blue-shift along the curved surface. A simple normalization approach based on the reflectance image was experimentally validated by imaging a range of tissue phantoms, as a first order correction for different tissue optical properties. PMID:27507213
Hu, Yaowen; Ji, Chuting; Wang, Xiaoxu; Huo, Jinrong; Liu, Qing; Song, Yipu
2017-11-28
The magnetic transition-metal (TM) @ oxide nanoparticles have been of great interest due to their wide range of applications, from medical sensors in magnetic resonance imaging to photo-catalysis. Although several studies on small clusters of TM@oxide have been reported, the understanding of the physical electronic properties of TM n @(ZnO) 42 is far from sufficient. In this work, the electronic, magnetic and optical properties of TM n @(ZnO) 42 (TM = Fe, Co and Ni) hetero-nanostructure are investigated using the density functional theory (DFT). It has been found that the core-shell nanostructure Fe 13 @(ZnO) 42 , Co 15 @(ZnO) 42 and Ni 15 @(ZnO) 42 are the most stable structures. Moreover, it is also predicted that the variation of the magnetic moment and magnetism of Fe, Co and Ni in TM n @ZnO 42 hetero-nanostructure mainly stems from effective hybridization between core TM-3d orbitals and shell O-2p orbitals, and a magnetic moment inversion for Fe 15 @(ZnO) 42 is investigated. Finally, optical properties studied by calculations show a red shift phenomenon in the absorption spectrum compared with the case of (ZnO) 48 .
NASA Astrophysics Data System (ADS)
Sona, Alberto
1992-03-01
Lasers are being increasingly used in bioptics and in life sciences in general, especially for medical applications for therapy and diagnostics. Lasers are also broadly used in environment sciences to monitor atmospheric parameters and concentrations of molecular species of natural origin or coming from human activities such as the various kind of pollutants. The peculiar features of lasers exploited in these areas are mainly the capability of developing an action or performing a measurement without physical contact with the target and, if required, from a remote position with the assistance of suitable beam delivery systems such as telescopes, microscopes, or optical fibers. These features are directly related to the space and time coherence of the laser light and to the energy storage capability of the laser material which allow an extremely effective concentration of the beam energy in space, direction frequency, or time. A short description of the principle of operation and relevant properties of lasers are given and the most significant properties of the laser emission are briefly reviewed. Lasers for medical applications (mainly for therapy) will be mentioned, pointing out the specific property exploited for the various applications. Finally, examples of laser applications to the environmental sciences will be reported. A summary of the properties exploited in the various bio-optical applications is shown.
Chen, Yu-Wen; Guo, Jun-Yen; Tzeng, Shih-Yu; Chou, Ting-Chun; Lin, Ming-Jen; Huang, Lynn Ling-Huei; Yang, Chao-Chun; Hsu, Chao-Kai; Tseng, Sheng-Hao
2016-01-01
Spatially resolved diffuse reflectance spectroscopy (SRDRS) has been employed to quantify tissue optical properties and its interrogation volume is majorly controlled by the source-to-detector separations (SDSs). To noninvasively quantify properties of dermis, a SRDRS setup that includes SDS shorter than 1 mm is required. It will be demonstrated in this study that Monte Carlo simulations employing the Henyey-Greenstein phase function cannot always precisely predict experimentally measured diffuse reflectance at such short SDSs, and we speculated this could be caused by the non-negligible backward light scattering at short SDSs that cannot be properly modeled by the Henyey-Greenstein phase function. To accurately recover the optical properties and functional information of dermis using SRDRS, we proposed the use of the modified two-layer (MTL) geometry. Monte Carlo simulations and phantom experiment results revealed that the MTL probing geometry was capable of faithfully recovering the optical properties of upper dermis. The capability of the MTL geometry in probing the upper dermis properties was further verified through a swine study, and it was found that the measurement results were reasonably linked to histological findings. Finally, the MTL probe was utilized to study psoriatic lesions. Our results showed that the MTL probe was sensitive to the physiological condition of tissue volumes within the papillary dermis and could be used in studying the physiology of psoriasis. PMID:26977361
Chen, Yu-Wen; Guo, Jun-Yen; Tzeng, Shih-Yu; Chou, Ting-Chun; Lin, Ming-Jen; Huang, Lynn Ling-Huei; Yang, Chao-Chun; Hsu, Chao-Kai; Tseng, Sheng-Hao
2016-02-01
Spatially resolved diffuse reflectance spectroscopy (SRDRS) has been employed to quantify tissue optical properties and its interrogation volume is majorly controlled by the source-to-detector separations (SDSs). To noninvasively quantify properties of dermis, a SRDRS setup that includes SDS shorter than 1 mm is required. It will be demonstrated in this study that Monte Carlo simulations employing the Henyey-Greenstein phase function cannot always precisely predict experimentally measured diffuse reflectance at such short SDSs, and we speculated this could be caused by the non-negligible backward light scattering at short SDSs that cannot be properly modeled by the Henyey-Greenstein phase function. To accurately recover the optical properties and functional information of dermis using SRDRS, we proposed the use of the modified two-layer (MTL) geometry. Monte Carlo simulations and phantom experiment results revealed that the MTL probing geometry was capable of faithfully recovering the optical properties of upper dermis. The capability of the MTL geometry in probing the upper dermis properties was further verified through a swine study, and it was found that the measurement results were reasonably linked to histological findings. Finally, the MTL probe was utilized to study psoriatic lesions. Our results showed that the MTL probe was sensitive to the physiological condition of tissue volumes within the papillary dermis and could be used in studying the physiology of psoriasis.
NASA Astrophysics Data System (ADS)
Hoat, D. M.; Silva, J. F. Rivas; Blas, A. Méndez
2018-07-01
In this work, we present the first principles calculations for structural, electronic and optical properties of perovskites CaZrO3 and CaHfO3 using the full-potential linearized augmented plane wave method (FP-LAPW) within the framework of density functional theory (DFT) as implemented in WIEN2k package. The exchange-correlation potential is treated with local density approximation (LDA) and generalized gradient approximation (GGA-PBE and PBESol). Additionally, the Tran Blaha modified Becke-Johnson exchange potential (mBJ) also is employed for electronic and optical calculations due to that it gives very accurate band gap of solids. Our obtained structural parameters are in good agreement with experimental datas and other theoretical results. The energy band gap obtained with mBJ is 4.56 eV for CaZrO3 and 5.27 eV for CaHfO3. The hybridization of states of O atom with those of Zr and Hf atoms in CaZrO3 and CaHfO3, respectively, is observed. The spin-orbit coupling effect on electronic properties of considered compounds also is investigated. Finally, the linear optical properties of CaZrO3 and CaHfO3 are derived from their complex dielectric function calculated with mBJ potential for wide energy range up to 45 eV, and all of them analyzed in details.
Deposition and characterization of B4C/CeO2 multilayers at 6.x nm extreme ultraviolet wavelengths
NASA Astrophysics Data System (ADS)
Sertsu, M. G.; Giglia, A.; Brose, S.; Park, D.; Wang, Z. S.; Mayer, J.; Juschkin, L.; Nicolosi, P.
2016-03-01
New multilayers of boron carbide/cerium dioxide (B4C/CeO2) combination on silicon (Si) substrate are manufactured to represent reflective-optics candidates for future lithography at 6.x nm wavelength. This is one of only a few attempts to make multilayers of this kind. Combination of several innovative experiments enables detailed study of optical properties, structural properties, and interface profiles of the multilayers in order to open up a room for further optimization of the manufacturing process. The interface profile is visualized by high-angle annular dark-field imaging which provides highly sensitive contrast to atomic number. Synchrotron based at-wavelength extreme ultraviolet (EUV) reflectance measurements near the boron (B) absorption edge allow derivation of optical parameters with high sensitivity to local atom interactions. X-ray reflectivity measurements at Cu-Kalpha (8 keV ) determine the period of multilayers with high in-depth resolution. By combining these measurements and choosing robust nonlinear curve fitting algorithms, accuracy of the results has been significantly improved. It also enables a comprehensive characterization of multilayers. Interface diffusion is determined to be a major cause for the low reflectivity performance. Optical constants of B4C and CeO2 layers are derived in EUV wavelengths. Besides, optical properties and asymmetric thicknesses of inter-diffusion layers (interlayers) in EUV wavelengths near the boron edge are determined. Finally, ideal reflectivity of the B4C/CeO2 combination is calculated by using optical constants derived from the proposed measurements in order to evaluate the potentiality of the design.
First-principles study of a MXene terahertz detector.
Jhon, Y I; Seo, M; Jhon, Y M
2017-12-21
2D transition metal carbides, nitrides, and carbonitrides called MXenes have attracted increasing attention due to their outstanding properties in many fields. By performing systematic density functional theory calculations, here we show that MXenes can serve as excellent terahertz detecting materials. Giant optical absorption and extinction coefficients are observed in the terahertz range in the most popular MXene, namely, Ti 3 C 2 , which is regardless of the stacking degree. Various other optical properties have been investigated as well in the terahertz range for in-depth understanding of its optical response. We find that the thermoelectric figure of merit (ZT) of stacked Ti 3 C 2 flakes is comparable to that of carbon nanotube films. Based on excellent terahertz absorption and decent thermoelectric efficiency in MXenes, we finally suggest the promise of MXenes in terahertz detection applications, which includes terahertz bolometers and photothermoelectric detectors. Possible ZT improvements are discussed in large-scale MXene flake films and/or MXene-polymer composite films.
Warenghem, Marc; Henninot, Jean François; Blach, Jean François; Buchnev, Oleksandr; Kaczmarek, Malgosia; Stchakovsky, Michel
2012-03-01
Spectroscopic ellipsometry is a technique especially well suited to measure the effective optical properties of a composite material. However, as the sample is optically thick and anisotropic, this technique loses its accuracy for two reasons: anisotropy means that two parameters have to be determined (ordinary and extraordinary indices) and optically thick means a large order of interference. In that case, several dielectric functions can emerge out of the fitting procedure with a similar mean square error and no criterion to discriminate the right solution. In this paper, we develop a methodology to overcome that drawback. It combines ellipsometry with refractometry. The same sample is used in a total internal reflection (TIR) setup and in a spectroscopic ellipsometer. The number of parameters to be determined by the fitting procedure is reduced in analysing two spectra, the correct final solution is found by using the TIR results both as initial values for the parameters and as check for the final dielectric function. A prefitting routine is developed to enter the right initial values in the fitting procedure and so to approach the right solution. As an example, this methodology is used to analyse the optical properties of BaTiO(3) nanoparticles embedded in a nematic liquid crystal. Such a methodology can also be used to analyse experimentally the validity of the mixing laws, since ellipsometry gives the effective dielectric function and thus, can be compared to the dielectric function of the components of the mixture, as it is shown on the example of BaTiO(3)/nematic composite.
Glass and glass-ceramic photonic systems
NASA Astrophysics Data System (ADS)
Zur, Lidia; Thi Ngoc Tran, Lam; Meneghetti, Marcello; Varas, Stefano; Armellini, Cristina; Ristic, Davor; Chiasera, Alessandro; Scotognella, Francesco; Pelli, Stefano; Nunzi Conti, Gualtiero; Boulard, Brigitte; Zonta, Daniele; Dorosz, Dominik; Lukowiak, Anna; Righini, Giancarlo C.; Ramponi, Roberta; Ferrari, Maurizio
2017-02-01
The development of optically confined structure is a major topic in both basic and applied physics not solely ICT oriented but also concerning lighting, laser, sensing, energy, environment, biological and medical sciences, and quantum optics. Glasses and glass-ceramics activated by rare earth ions are the bricks of such structures. Glass-ceramics are nanocomposite systems that exhibit specific morphologic, structural and spectroscopic properties allowing developing new physical concepts, for instance the mechanism related to the transparency, as well as novel photonic devices based on the enhancement of the luminescence. The dependence of the final product on the specific parent glass and on the fabrication protocol still remain an important task of the research in material science. Looking to application, the enhanced spectroscopic properties typical of glass ceramic in respect to those of the amorphous structures constitute an important point for the development of integrated optics devices, including optical amplifiers, monolithic waveguide laser, novel sensors, coating of spherical microresonators, and up and down converters. This paper presents some results obtained by our consortium regarding glass-based photonics systems. We will comment the energy transfer mechanism in transparent glass ceramics taking as examples the up and down conversion systems and the role of SnO2 nanocrystals as sensitizers. Coating of spherical resonators by glass ceramics, 1D-Photonic Crystals for luminescence enhancement, laser action and disordered 1-D photonic structures will be also discussed. Finally, RF-Sputtered rare earth doped P2O5- SiO2-Al2O3-Na2O-Er2O3 planar waveguides, will be presented.
NASA Astrophysics Data System (ADS)
Cone, R. L.; Thiel, C. W.; Sun, Y.; Böttger, Thomas; Macfarlane, R. M.
2012-02-01
Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.
Biopatterning of Silk Proteins for Soft Micro-optics.
Pal, Ramendra K; Kurland, Nicholas E; Wang, Congzhou; Kundu, Subhas C; Yadavalli, Vamsi K
2015-04-29
Silk proteins from spiders and silkworms have been proposed as outstanding candidates for soft micro-optic and photonic applications because of their optical transparency, unique biological properties, and mechanical robustness. Here, we present a method to form microstructures of the two constituent silk proteins, fibroin and sericin for use as an optical biomaterial. Using photolithography, chemically modified silk protein photoresists are patterned in 2D arrays of periodic patterns and Fresnel zone plates. Angle-dependent iridescent colors are produced in these periodic micropatterns because of the Bragg diffraction. Silk protein photolithography can used to form patterns on different substrates including flexible sheets with features of any shape with high fidelity and resolution over large areas. Finally, we show that these mechanically stable and transparent iridescent architectures are also completely biodegradable. This versatile and scalable technique can therefore be used to develop biocompatible, soft micro-optic devices that can be degraded in a controlled manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Wenjun; Tian Bo, E-mail: tian.bupt@yahoo.com.c; State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191
2010-08-15
Symbolically investigated in this paper is a nonlinear Schroedinger equation with the varying dispersion and nonlinearity for the propagation of optical pulses in the normal dispersion regime of inhomogeneous optical fibers. With the aid of the Hirota method, analytic one- and two-soliton solutions are obtained. Relevant properties of physical and optical interest are illustrated. Different from the previous results, both the bright and dark solitons are hereby derived in the normal dispersion regime of the inhomogeneous optical fibers. Moreover, different dispersion profiles of the dispersion-decreasing fibers can be used to realize the soliton control. Finally, soliton interaction is discussed withmore » the soliton control confirmed to have no influence on the interaction. The results might be of certain value for the study of the signal generator and soliton control.« less
Excitons in atomically thin 2D semiconductors and their applications
Xiao, Jun; Zhao, Mervin; Wang, Yuan; ...
2017-01-01
The research on emerging layered two-dimensional (2D) semiconductors, such as molybdenum disulfide (MoS 2), reveals unique optical properties generating significant interest. Experimentally, these materials were observed to host extremely strong light-matter interactions as a result of the enhanced excitonic effect in two dimensions. Thus, understanding and manipulating the excitons are crucial to unlocking the potential of 2D materials for future photonic and optoelectronic devices. Here in this review, we unravel the physical origin of the strong excitonic effect and unique optical selection rules in 2D semiconductors. In addition, control of these excitons by optical, electrical, as well as mechanical meansmore » is examined. Finally, the resultant devices such as excitonic light emitting diodes, lasers, optical modulators, and coupling in an optical cavity are overviewed, demonstrating how excitons can shape future 2D optoelectronics.« less
Pumpe, Sebastian; Chemnitz, Mario; Kobelke, Jens; Schmidt, Markus A
2017-09-18
We present a monolithic fiber device that enables investigation of the thermo- and piezo-optical properties of liquids using straightforward broadband transmission measurements. The device is a directional mode coupler consisting of a multi-mode liquid core and a single-mode glass core with pronounced coupling resonances whose wavelength strongly depend on the operation temperature. We demonstrated the functionality and flexibility of our device for carbon disulfide, extending the current knowledge of the thermo-optic coefficient by 200 nm at 20 °C and uniquely for high temperatures. Moreover, our device allows measuring the piezo-optic coefficient of carbon disulfide, confirming results first obtained by Röntgen in 1891. Finally, we applied our approach to obtain the dispersion of the thermo-optic coefficients of benzene and tetrachloroethylene between 450 and 800 nm, whereas no data was available for the latter so far.
New life of recycled rare earth-oxides powders for lighting applications.
NASA Astrophysics Data System (ADS)
Carlo Ricci, Pier; Murgia, Massimiliano; Carbonaro, Carlo Maria; Sgariotto, Serena; Stagi, Luigi; Corpino, Riccardo; Chiriu, Daniele; Grilli, Maria Luisa
2018-03-01
In this work we analysed the optical and structural properties of Ce:YAG regenerated phosphors. The concentrate resulted as the final product of an industrial recycling process of waste electrical and electronic equipment (WEEE), and in particular fluorescent powders coming from spent lamps treatment plant. The waste pristine materials were re-utilized without any further purification and or separation process as starting materials to obtain a YAG matrix (Y2Al5O12) doped with Cerium ions. We tested out the recovered concentrate against commercial Ce:YAG phosphors comparing their structural and optical properties by means of XRD measurements and steady time and time resolved luminescence. The analysis reveals that the new phosphors obtained by scrap powder have the same crystal structure as the commercial reference sample and comparable optical properties. In particular, the Ce-related emission efficiency has a quantum yield of about 0.75 when excited at 450 nm, in good agreement with our reference sample and with the one of commercial powder presently exploited in white LED. This achievement strongly suggests the possibility of a new life for the exhausted phosphors and a possible step forward to a complete circular process for lighting equipment.
Liao, Bo-Huei; Hsiao, Chien-Nan
2014-02-01
Silicon nitride films are prepared by a combined high-power impulse/unbalanced magnetron sputtering (HIPIMS/UBMS) deposition technique. Different unbalance coefficients and pulse on/off ratios are applied to improve the optical properties of the silicon nitride films. The refractive indices of the Si3N4 films vary from 2.17 to 2.02 in the wavelength ranges of 400-700 nm, and all the extinction coefficients are smaller than 1×10(-4). The Fourier transform infrared spectroscopy and x-ray diffractometry measurements reveal the amorphous structure of the Si3N4 films with extremely low hydrogen content and very low absorption between the near IR and middle IR ranges. Compared to other deposition techniques, Si3N4 films deposited by the combined HIPIMS/UBMS deposition technique possess the highest refractive index, the lowest extinction coefficient, and excellent structural properties. Finally a four-layer coating is deposited on both sides of a silicon substrate. The average transmittance from 3200 to 4800 nm is 99.0%, and the highest transmittance is 99.97% around 4200 nm.
Relevant optical properties for direct restorative materials.
Pecho, Oscar E; Ghinea, Razvan; do Amaral, Erika A Navarro; Cardona, Juan C; Della Bona, Alvaro; Pérez, María M
2016-05-01
To evaluate relevant optical properties of esthetic direct restorative materials focusing on whitened and translucent shades. Enamel (E), body (B), dentin (D), translucent (T) and whitened (Wh) shades for E (WhE) and B (WhB) from a restorative system (Filtek Supreme XTE, 3M ESPE) were evaluated. Samples (1 mm thick) were prepared. Spectral reflectance (R%) and color coordinates (L*, a*, b*, C* and h°) were measured against black and white backgrounds, using a spectroradiometer, in a viewing booth, with CIE D65 illuminant and d/0° geometry. Scattering (S) and absorption (K) coefficients and transmittance (T%) were calculated using Kubelka-Munk's equations. Translucency (TP) and opalescence (OP) parameters and whiteness index (W*) were obtained from differences of CIELAB color coordinates. R%, S, K and T% curves from all shades were compared using VAF (Variance Accounting For) coefficient with Cauchy-Schwarz inequality. Color coordinates and optical parameters were statistically analyzed using one-way ANOVA, Tukey's test with Bonferroni correction (α=0.0007). Spectral behavior of R% and S were different for T shades. In addition, T shades showed the lowest R%, S and K values, as well as the highest T%, TP an OP values. In most cases, WhB shades showed different color and optical properties (including TP and W*) than their corresponding B shades. WhE shades showed similar mean W* values and higher mean T% and TP values than E shades. When using whitened or translucent composites, the final color is influenced not only by the intraoral background but also by the color and optical properties of multilayers used in the esthetic restoration. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bestenlehner, J. M.; Gräfener, G.; Vink, J. S.; Najarro, F.; de Koter, A.; Sana, H.; Evans, C. J.; Crowther, P. A.; Hénault-Brunet, V.; Herrero, A.; Langer, N.; Schneider, F. R. N.; Simón-Díaz, S.; Taylor, W. D.; Walborn, N. R.
2014-10-01
The evolution and fate of very massive stars (VMS) is tightly connected to their mass-loss properties. Their initial and final masses differ significantly as a result of mass loss. VMS have strong stellar winds and extremely high ionising fluxes, which are thought to be critical sources of both mechanical and radiative feedback in giant H ii regions. However, how VMS mass-loss properties change during stellar evolution is poorly understood. In the framework of the VLT-Flames Tarantula Survey (VFTS), we explore the mass-loss transition region from optically thin O star winds to denser WNh Wolf-Rayet star winds, thereby testing theoretical predictions. To this purpose we select 62 O, Of, Of/WN, and WNh stars, an unprecedented sample of stars with the highest masses and luminosities known. We perform a spectral analysis of optical VFTS as well as near-infrared VLT/SINFONI data using the non-LTE radiative transfer code CMFGEN to obtain both stellar and wind parameters. For the first time, we observationally resolve the transition between optically thin O star winds and optically thick hydrogen-rich WNh Wolf-Rayet winds. Our results suggest the existence of a "kink" between both mass-loss regimes, in agreement with recent Monte Carlo simulations. For the optically thick regime, we confirm the steep dependence on the classical Eddington factor Γe from previous theoretical and observational studies. The transition occurs on the main sequence near a luminosity of 106.1L⊙, or a mass of 80 ... 90 M⊙. Above this limit, we find that - even when accounting for moderate wind clumping (with fv = 0.1) - wind mass-loss rates are enhanced with respect to standard prescriptions currently adopted in stellar evolution calculations. We also show that this results in substantial helium surface enrichment. Finally, based on our spectroscopic analyses, we are able to provide the most accurate ionising fluxes for VMS known to date, confirming the pivotal role of VMS in ionising and shaping their environments. Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Sciancalepore, C.; Cassano, T.; Curri, M. L.; Mecerreyes, D.; Valentini, A.; Agostiano, A.; Tommasi, R.; Striccoli, M.
2008-05-01
Original nanocomposites have been obtained by direct incorporation of pre-synthesized oleic acid capped TiO2 nanorods into properly functionalized poly(methyl methacrylate) copolymers, carrying carboxylic acid groups on the repeating polymer unit. The presence of carboxylic groups on the alkyl chain of the host functionalized copolymer allows an highly homogeneous dispersion of the nanorods in the organic matrix. The prepared TiO2/PMMA-co-MA nanocomposites show high optical transparency in the visible region, even at high TiO2 nanorod content, and tunable linear refractive index depending on the nanoparticle concentration. Finally measurements of nonlinear optical properties of TiO2 polymer nanocomposites demonstrate a negligible two-photon absorption and a negative value of nonlinear refractive index, highlighting the potential of the nanocomposite for efficient optical devices operating in the visible region.
Characterization of the Optical and X-ray Properties of the Northwestern Wisps in the Crab Nebula
NASA Technical Reports Server (NTRS)
Weisskopf, M. C.; Tennant, A.; Schweizer, T.; Bucciantini, N.; Nilsson, K.
2013-01-01
We have studied the variability of the Crab Nebula both in the visible and in X -rays. Optical observations were obtained using the Nordic Optical Telescope in La Palma and X -ray observations were made with the Chandra X -Ray Observatory. We observe wisps forming and peeling off from the region commonly associated with the termination shock of the pulsar wind. We measure a number of properties of the wisps to the Northwest of the pulsar. We find that the exact locations of the wisps in the optical and in X-rays are similar but not coincident, with the X-ray wisp preferentially located closer to the pulsar. Our measurements and their implications are interpreted in terms of a MHD model. We find that the optical wisps are more strongly Doppler boosted than X-ray wisps, a result inconsistent with current MHD simulations. Indeed the inferred optical boosting factors exceed MHD simulation values by about one order of magnitude. These findings suggest that the optical and X-ray wisps are not produced by the same particle distribution, a result which is consistent with the spatial differences. Further, the X -ray wisps and optical wisps are apparently developing independently from each other, but every time a new X ]ray wisp is born so is an optical wisp, thus pointing to a possible common cause or trigger. Finally, we find that the typical wisp formation rate is approximately once per year, interestingly at about the same rate of production of the large gamma-ray flares.
NASA Astrophysics Data System (ADS)
Zgrabik, Christine Michelle
Transition metal nitrides have recently garnered much interest as alternative materials for robust plasmonic device architecture including potential applications in solar absorbers, photothermal medical therapy, and heat-assisted magnetic recording. Titanium nitride (TiN) is one such potential candidate. One advantage of the transition metal nitrides is that their optical properties are tunable according to the deposition conditions. The controlled achievement of tunability, however, is also a challenge. Although the formation of TiN has been the subject of numerous previous studies, a thorough analysis of the deposition parameters necessary to form metallic TiN films optimized for plasmonic applications had not been demonstrated. Similarly, such TiN films had not been subjected to detailed optical measurements which could be used in FDTD device simulations to optimize plasmonic device designs. To be able to design, simulate and build robust and optimal device structures, in this work a systematic and thorough examination of the effect of varied substrates, temperatures, and reactive gas compositions on magnetron sputtered TiN was conducted. In addition, the effects of application of an additional substrate bias were studied. The resulting optical properties at visible to near-infrared frequencies were the focus of this thesis. The optical properties of each film were measured via spectroscopic ellipsometry with more "metallic" films demonstrating a larger negative value of the real part of the permittivity. These optical measurements were correlated with both the films' deposition conditions and microstructural measurements including x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), and transmission electron microscopy (TEM) measurements; the different deposition conditions resulted in TiN and TiOxNy films with widely tunable optical responses. By sputtering under different conditions, the value of the real part of the permittivity was tuned from small positive values, through small and moderate negative values, and finally all of the way to large negative values which are comparable to those measured in gold. It was determined that both the chemical composition as well as the film crystallinity had a significant effect on the resulting properties with the most metallic films in general exhibiting a Ti:N ratio close to 1:1, low oxygen incorporation, more N bound as TiN rather than in oxynitride form, and better crystallinity. Increased substrate temperature in general increased the metallic character while application of a substrate bias reduced crystalline order, however also reduced oxygen incorporation and allowed for deposition of metallic TiN at room temperature. The close lattice match of TiN and MgO allowed for heteroepitaxial growth on this substrate under carefully controlled conditions. Finally, to demonstrate the viability of the optimized TiN thin films for plasmonic applications, three benchmark plasmonic structures were simulated using the measured, optimized optical properties including a plasmonic grating coupler, infrared nanoantennas, and a nanopyramidal array. The devices were successfully fabricated and preliminary measurements show promise for plasmonic applications for example in solar conversion and photothermal medical therapy.
NASA Astrophysics Data System (ADS)
Philip, Elizabath; Zeki Güngördü, M.; Pal, Sharmistha; Kung, Patrick; Kim, Seongsin Margaret
2017-09-01
In this article, recent progress and development of terahertz chiral metamaterials including stereometamaterials are thoroughly reviewed. This review mainly focuses on the fundamental principles of design and arrangement of meta-atoms in metamaterials exhibiting chirality with various asymmetry and symmetry and 2D and 3D configuration. Related optical and propagation properties in chiral metamaterials, such as optical activity, circular dichroism, and negative refraction for each different chiral metamaterials, are compared and investigated. Finally, comparison between chiral metamaterials with stereometamaterials in terms of the polarization selective operation along with the similarity and the distinction is addressed as well.
Structural, morphological and optical properties of LiCo0.5Ni0.45Ag0.05O2 thin films
NASA Astrophysics Data System (ADS)
Haider, Adawiya J.; AL-Rsool, Rusul Abed; AL-Tabbakh, Ahmed A.; Al-Gebori, Abdul Nasser M.; Mohamed, Aliaa
2018-05-01
Pulsed Laser Deposition (PLD) method has been successfully used for the synthesized of nano-crystalline cathode m aterial LiCo0.5Ni0.45Ag0.05O2 (LCNAO) thin film. LCNAO Ferromagnetic using pulsed Nd-YAG laser with wavelength (λ = 532 nm) and duration (10 ns) and energy fluence (1.4 J/cm2) with different substrate temperature (100, 200, 300) ˚C and O2 pressure at 10 mbar. The structural, morphological and optical properties of the films were determined by X-ray Diffraction (XRD), Scan Electron Microscopy (SEM), Atomic Force microscope (AFM) and UV-VIS spectroscopy respectively. It is observed that partial layer to spinel transformation takes place during post annealing and the average particle size of the LiCo0.5Ni0.45Ag0.05O2 is found to be (1-12) nm from SEM measurement. Finally the optical properties of the thin films have been studied at different Substrate temperature. It found the energy gap decreases from 4.2 to 3.8 eV when the substrate's temperature increasing from 100° C into 300 °C of the LCNAO films. These mean that the optical quality of LCNAO films is improved due to the increase in crystalline size and reduction of defect sites.
The properties of electromagnetic responses and optical modulation in terahertz metamaterials
NASA Astrophysics Data System (ADS)
Chen, Wei; Shi, Yulei; Wang, Wei; Zhou, Qingli; Zhang, Cunlin
2016-11-01
Metamaterials with subwavelength structural features show unique electromagnetic responses that are unattainable with natural materials. Recently, the research on these artificial materials has been pushed forward to the terahertz (THz) region because of potential applications in biological fingerprinting, security imaging, and high frequency magnetic and electric resonant devices. Furthermore, active control of their properties could further facilitate and open up new applications in terms of modulation and switching. In our work, we will first present our studies of dipole arrays at terahertz frequencies. Then in experimental and theoretical studies of terahertz subwavelength L-shaped structure, we proposed an unusual-mode current resonance responsible for low-frequency characteristic dip in transmission spectra. Comparing spectral properties of our designed simplified structures with that of split-ring resonators, we attribute this unusual mode to the resonance coupling and splitting under the broken symmetry of the structure. Finally, we use optical pump-terahertz probe method to investigate the spectral and dynamic behaviour of optical modulation in the split-ring resonators. We have observed the blue-shift and band broadening in the spectral changes of transmission under optical excitation at different delay times. The calculated surface currents using finite difference time domain simulation are presented to characterize these resonances, and the blue-shift can be explained by the changed refractive index and conductivity in the photoexcited semiconductor substrate.
Nonlinear photonic metasurfaces
NASA Astrophysics Data System (ADS)
Li, Guixin; Zhang, Shuang; Zentgraf, Thomas
2017-03-01
Compared with conventional optical elements, 2D photonic metasurfaces, consisting of arrays of antennas with subwavelength thickness (the 'meta-atoms'), enable the manipulation of light-matter interactions on more compact platforms. The use of metasurfaces with spatially varying arrangements of meta-atoms that have subwavelength lateral resolution allows control of the polarization, phase and amplitude of light. Many exotic phenomena have been successfully demonstrated in linear optics; however, to meet the growing demand for the integration of more functionalities into a single optoelectronic circuit, the tailorable nonlinear optical properties of metasurfaces will also need to be exploited. In this Review, we discuss the design of nonlinear photonic metasurfaces — in particular, the criteria for choosing the materials and symmetries of the meta-atoms — for the realization of nonlinear optical chirality, nonlinear geometric Berry phase and nonlinear wavefront engineering. Finally, we survey the application of nonlinear photonic metasurfaces in optical switching and modulation, and we conclude with an outlook on their use for terahertz nonlinear optics and quantum information processing.
NASA Astrophysics Data System (ADS)
Bundke, Ulrich; Freedman, Andrew; Herber, Andreas; Mattis, Ina; Berg, Marcel; De Faira, Julia; Petzold, Andreas
2016-04-01
The atmospheric aerosol influences the climate twofold via the direct interaction with solar radiation and indirectly effecting microphysical properties of clouds. The latter has the largest uncertainty according to the last IPPC Report. A measured in situ climatology of the aerosol microphysical and optical properties is needed to reduce the reported uncertainty of the aerosol climate impact. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. The prototype of the IAGOS Aerosol Package (IAGOS-P2E) consists of two modified CAPS (Cavity Attenuated Phase Shift) instruments from Aerodyne Research, Inc. and one optical particle counter (Model Grimm Sky OPC 1.129). The CAPS PMex monitor provides a measurement of the optical extinction (the sum of scattering and absorption) of an ambient sample of particles. There is a choice of 5 different wavelengths - blue (450 nm), green (530 nm), red (630 nm), far red (660 nm) and near infrared (780 nm) - which match the spectral bands of most other particle optical properties measurement equipment. In our prototype setup we used the instrument operating at 630nm wavelength (red). The second CAPS instrument we have chosen is the CAPS NO2 monitor. This instrument provides a direct absorption measurement of nitrogen dioxide in the blue region of the electromagnetic spectrum (450 nm). Unlike standard chemiluminescence-based monitors, the instrument requires no conversion of NO2 to another species and thus is not sensitive to other nitro-containing species. In the final IAGOS Setup, up to 4 CAPS might be used to get additional aerosol properties using the different spectral information. The number of CAPS units to be used will depend on the size of the final electronic boards which are currently under development. The Sky OPC measures the size distribution theoretically up to 32 μm covering the relevant size information for calculation of aerosol optical properties. Because of the inlet cut off diameter of D50 = 3μm we are using the 16 channel mode in the range of 250 nm - 2.5 μm at 1 Hz resolution. In this presentation the setup of the IAGOS Aerosol package P2E is presented and characterized for pressure levels relevant for the planned application, down to cruising level of 150 hPa. In our aerosol lab we have tested the system against standard instrumentation with different aerosol test substances. In addition first results for airborne measurements are shown from a first airborne field campaign where in situ profiles are compared to LIDAR measurements over Bornholm (Denmark) and Lindenberg (Germany).
Visualization of polarization state and its application in optics classroom teaching
NASA Astrophysics Data System (ADS)
Lei, Bing; Liu, Wei; Shi, Jianhua; Wang, Wei; Yao, Tianfu; Liu, Shugang
2017-08-01
Polarization of light and the related knowledge are key and difficult points in optical teaching, and they are difficult to be understood since they are very abstract concepts. To help students understand the polarization properties of light, some classroom demonstration experiments have been constructed by employing the optical source, polarizers, wave plates optical cage system and polarization axis finder (PAF). The PAF is a polarization indicating device with many linear polarizing components concentric circles, which can visualize the polarization axis's direction of linearly polarized light intuitively. With the help of these demonstration experiment systems, the conversion and difference between the linear polarized light and circularly polarized light have been observed directly by inserting or removing a quarter-wave plate. The rotation phenomenon of linearly polarized light's polarization axis when it propagates through an optical active medium has been observed and studied in experiment, and the strain distribution of some mounted and unmounted lenses have also been demonstrated and observed in experiment conveniently. Furthermore, some typical polarization targets, such as liquid crystal display (LCD), polarized dark glass and skylight, have been observed based on PAF, which is quite suitable to help students understand these targets' polarization properties and the related physical laws. Finally, these demonstration experimental systems have been employed in classroom teaching of our university in physical optics, optoelectronics and photoelectric detection courses, and they are very popular with teachers and students.
Diffuse optical tomography and spectroscopy of breast cancer and fetal brain
NASA Astrophysics Data System (ADS)
Choe, Regine
Diffuse optical techniques utilize light in the near infrared spectral range to measure tissue physiology non-invasively. Based on these measurements, either on average or a three-dimensional spatial map of tissue properties such as total hemoglobin concentration, blood oxygen saturation and scattering can be obtained using model-based reconstruction algorithms. In this thesis, diffuse optical techniques were applied for in vivo breast cancer imaging and trans-abdominal fetal brain oxygenation monitoring. For in vivo breast cancer imaging, clinical diffuse optical tomography and related instrumentation was developed and used in several contexts. Bulk physiological properties were quantified for fifty-two healthy subjects in the parallel-plate transmission geometry. Three-dimensional images of breast were reconstructed for subjects with breast tumors and, tumor contrast with respect to normal tissue was found in total hemoglobin concentration and scattering and was quantified for twenty-two breast carcinomas. Tumor contrast and tumor volume changes during neoadjuvant chemotherapy were tracked for one subject and compared to the dynamic contrast-enhanced MRI. Finally, the feasibility for measuring blood flow of breast tumors using optical methods was demonstrated for seven subjects. In a qualitatively different set of experiments, the feasibility for trans-abdominal fetal brain oxygenation monitoring was demonstrated on pregnant ewes with induced fetal hypoxia. Preliminary clinical experiences were discussed to identify future directions. In total, this research has translated diffuse optical tomography techniques into clinical research environment.
Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology
Xie, Wen-Ge; Wang, Peng-Zhao; Wang, Jian-Zhang
2018-01-01
A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach–Zehnder interferometer (MZI) typed sensors, Fabry–Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed. PMID:29419745
Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.
Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang
2018-02-08
A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.
A 3-D Model Study of Aerosol Composition and Radiative Forcing in the Asian-Pacific Region
NASA Technical Reports Server (NTRS)
Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xuepeng; Einaudi, Franco (Technical Monitor)
2000-01-01
The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model will be used in analyzing the aerosol data in the ACE-Asia program. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosol and the processes that control these properties over the Asian-Pacific region, (2) to determine the aerosol radiative forcing over the Asian-Pacific region, and (3) to investigate the interaction between aerosol and tropospheric chemistry. We will present the GOCART aerosol simulations of sulfate, dust, carbonaceous, and sea salt concentrations, their optical thicknesses, and their radiative effects. We will also show the comparisons of model results with data taken from previous field campaigns, ground-based sun photometer measurements, and satellite observations. Finally, we will present our plan for the ACE-Asia study.
The Chandra Deep Field-North Survey and the cosmic X-ray background.
Brandt, W Nielsen; Alexander, David M; Bauer, Franz E; Hornschemeier, Ann E
2002-09-15
Chandra has performed a 1.4 Ms survey centred on the Hubble Deep Field-North (HDF-N), probing the X-ray Universe 55-550 times deeper than was possible with pre-Chandra missions. We describe the detected point and extended X-ray sources and discuss their overall multi-wavelength (optical, infrared, submillimetre and radio) properties. Special attention is paid to the HDF-N X-ray sources, luminous infrared starburst galaxies, optically faint X-ray sources and high-to-extreme redshift active galactic nuclei. We also describe how stacking analyses have been used to probe the average X-ray-emission properties of normal and starburst galaxies at cosmologically interesting distances. Finally, we discuss plans to extend the survey and argue that a 5-10 Ms Chandra survey would lay key groundwork for future missions such as XEUS and Generation-X.
Biomimetic Photonic Crystals based on Diatom Algae Frustules
NASA Astrophysics Data System (ADS)
Mishler, Jonathan; Alverson, Andrew; Herzog, Joseph
2015-03-01
Diatom algae are unicellular, photosynthetic microorganisms with a unique external shell known as a frustule. Frustules, which are composed of amorphous silica, exhibit a unique periodic nano-patterning, distinguishing diatoms from other types of phytoplankton. Diatoms have been studied for their distinctive optical properties due to their resemblance of photonic crystals. In this regard, diatoms are not only considered for their applications as photonic crystals, but also for their use as biomimetic templates for artificially fabricated photonic crystals. Through the examination and measurement of the physical characteristics of many scanning electron microscope (SEM) images of diatom frustules, a biomimetic photonic crystal derived from diatom frustules can be recreated and modeled with the finite element method. In this approach, the average geometries of the diatom frustules are used to recreate a 2-dimensional photonic crystal, after which the electric field distribution and optical transmission through the photonic crystal are both measured. The optical transmission is then compared to the transmission spectra of a regular hexagonal photonic crystal, revealing the effects of diatom geometry on their optical properties. Finally, the dimensions of the photonic crystal are parametrically swept, allowing for further control over the transmission of light through the photonic crystal.
NASA Astrophysics Data System (ADS)
Blanco, E.; Domínguez, M.; González-Leal, J. M.; Márquez, E.; Outón, J.; Ramírez-del-Solar, M.
2018-05-01
The microstructure and optical properties of TiO2 thin films, prepared by the sol-gel dip coating technique on glass substrates, were inspected. After deposition, the films were annealed at several temperatures in the 400-850 °C range and the resulting nanostructured films were studied by different techniques showing that their structural and optical characteristics evolved significantly with the increased annealing temperature. The analysis of these results by the assumption of the Tauc Lorenz model and the use of Wemple-DiDomenico equation leads to a correlation between microstructural aspects and optical characteristics of the films. Thus, crystallization processes (nucleation, growth and phase transformation) and the evolution of films texture and thickness with increasing annealing temperatures are related with the variation of the refractive index, average gap and extinction coefficient during annealing. Finally, the free-carrier concentration in the films, estimated from the Spitzer-Fan model, ranged from 1.44 × 1019 cm-3 to 3.07 × 1019 cm-3 with the changing annealing temperature, which is in agreement with those obtained in similar anatase thin films from electrical measurement techniques.
Keum, Chang-Min; Liu, Shiyi; Al-Shadeedi, Akram; Kaphle, Vikash; Callens, Michiel Koen; Han, Lu; Neyts, Kristiaan; Zhao, Hongping; Gather, Malte C; Bunge, Scott D; Twieg, Robert J; Jakli, Antal; Lüssem, Björn
2018-01-15
Liquid-crystalline organic semiconductors exhibit unique properties that make them highly interesting for organic optoelectronic applications. Their optical and electrical anisotropies and the possibility to control the alignment of the liquid-crystalline semiconductor allow not only to optimize charge carrier transport, but to tune the optical property of organic thin-film devices as well. In this study, the molecular orientation in a liquid-crystalline semiconductor film is tuned by a novel blading process as well as by different annealing protocols. The altered alignment is verified by cross-polarized optical microscopy and spectroscopic ellipsometry. It is shown that a change in alignment of the liquid-crystalline semiconductor improves charge transport in single charge carrier devices profoundly. Comparing the current-voltage characteristics of single charge carrier devices with simulations shows an excellent agreement and from this an in-depth understanding of single charge carrier transport in two-terminal devices is obtained. Finally, p-i-n type organic light-emitting diodes (OLEDs) compatible with vacuum processing techniques used in state-of-the-art OLEDs are demonstrated employing liquid-crystalline host matrix in the emission layer.
Sifain, Andrew E.; Tadesse, Loza F.; Bjorgaard, Josiah August; ...
2017-03-21
Conjugated energetic molecules (CEMs) are a class of explosives with high nitrogen content that posses both enhanced safety and energetic performance properties and are ideal for direct optical initiation. As isolated molecules, they absorb within the range of conventional lasers. Crystalline CEMs are used in practice, however, and their properties can differ due to intermolecular interaction. Herein, time-dependent density functional theory was used to investigate one-photon absorption (OPA) and two-photon absorption (TPA) of monomers and dimers obtained from experimentally determined crystal structures of CEMs. OPA scales linearly with the number of chromophore units, while TPA scales nonlinearly, where a moremore » than 3-fold enhancement in peak intensity, per chromophore unit, is calculated. Cooperative enhancement depends on electronic delocalization spanning both chromophore units. An increase in sensitivity to nonlinear laser initiation makes these materials suitable for practical use. This is the first study predicting a cooperative enhancement of the nonlinear optical response in energetic materials composed of relatively small molecules. Finally, the proposed model quantum chemistry is validated by comparison to crystal structure geometries and the optical absorption of these materials dissolved in solution.« less
Probing metamaterials with structured light
Xu, Yun; Sun, Jingbo; Walasik, Wiktor; ...
2016-11-03
Photonic metamaterials and metasurfaces are nanostructured optical materials engineered to enable properties that have not been found in nature. Optical characterization of these structures is a challenging task. We report a reliable technique that is particularly useful for characterization of phase properties introduced by small and spatially inhomogeneous samples of metamaterials and metasurfaces. The proposed structured light, or vortex based interferometric method is used to directly visualize phase changes introduced by subwavelength-thick nanostructures. In order to demonstrate the efficiency of the proposed technique, we designed and fabricated several metasurface samples consisting of metal nano-antennas introducing different phase shifts and experimentallymore » measured phase shifts of the transmitted light. The experimental results are in good agreement with numerical simulations and with the designed properties of the antenna arrays. Finally, due to the presence of the singularity in the vortex beam, one of the potential applications of the proposed approach based on structured light is step-by-step probing of small fractions of the micro-scale samples or images.« less
Emissive and reflective properties of curved displays in relation to image quality
NASA Astrophysics Data System (ADS)
Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique; Blanc, Pierre; Sandré-Chardonnal, Etienne
2016-03-01
Different aspects of the characterization of curved displays are presented. The limit of validity of viewing angle measurements without angular distortion on such displays using goniometer or Fourier optics viewing angle instrument is given. If the condition cannot be fulfilled the measurement can be corrected using a general angular distortion formula as demonstrated experimentally using a Samsung Galaxy S6 edge phone display. The reflective properties of the display are characterized by measuring the spectral BRDF using a multispectral Fourier optics viewing angle system. The surface of a curved OLED TV has been measured. The BDRF patterns show a mirror like behavior with and additional strong diffraction along the pixels lines and columns that affect the quality of the display when observed with parasitic lighting. These diffraction effects are very common on OLED surfaces. We finally introduce a commercial ray tracing software that can use directly the measured emissive and reflective properties of the display to make realistic simulation under any lighting environment.
2008-10-15
the material efficiently , reducing This report lists only the major advances of the program and is NOT exhaustive. 9 Final Report • FA9550-05-1-0234...literature. This strong relationship between a number of variables and the optical properties of nanoparticle arrays has led to significant...Novel New electroluminescent polymers 1. Synthesis of 4,7-dibromo-2,l,3- benzothiadiazole N N N \\\\ // W // \\ / Br- \\ / A
ERIC Educational Resources Information Center
Zimmerlin, Timothy A.; And Others
An effort to construct a model of the thermal properties of materials based on theoretical thermo-electromagnetic models, to construct a data base of the dense cultural hospital scene according to Defense Mapping Agency Aerospace Center (DMAAC) specifications, and to design and implement a program to evaluate the tonal model and generate imagery…
Synthesis, Structure, Te Alloying, and Physical Properties of CuSbS 2
Hobbis, Dean; Wei, Kaya; Wang, Hsin; ...
2017-10-30
Materials with very low thermal conductivities continue to be of interest for a variety of applications. In this paper, we synthesized CuSbS 2 employing a mechanical alloying technique in order to investigate its physical properties. The trigonal pyramid arrangement of the S atoms around the Sb atoms allows for lone-pair electron formation that results in very low thermal conductivity. Finally, in addition to thermal properties, the structural, electrical, and optical properties, as well as compositional stability measurements, are also discussed. CuSbS 1.8Te 0.2 was similarly synthesized and characterized in order to compare its structural and transport properties with that ofmore » CuSbS 2, in addition to investigating the effect of Te alloying on these properties.« less
Synthesis, Structure, Te Alloying, and Physical Properties of CuSbS 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbis, Dean; Wei, Kaya; Wang, Hsin
Materials with very low thermal conductivities continue to be of interest for a variety of applications. In this paper, we synthesized CuSbS 2 employing a mechanical alloying technique in order to investigate its physical properties. The trigonal pyramid arrangement of the S atoms around the Sb atoms allows for lone-pair electron formation that results in very low thermal conductivity. Finally, in addition to thermal properties, the structural, electrical, and optical properties, as well as compositional stability measurements, are also discussed. CuSbS 1.8Te 0.2 was similarly synthesized and characterized in order to compare its structural and transport properties with that ofmore » CuSbS 2, in addition to investigating the effect of Te alloying on these properties.« less
Properties of the X-ray emitting gas in early-type galaxies
NASA Technical Reports Server (NTRS)
Canizares, Claude R.; Fabbiano, Giuseppina; Trinchieri, Ginevra
1987-01-01
The properties of the X-ray emitting gas in a sample of 81 E and S0 galaxies observed with the Einstein Observatory are studied. Measured fluxes for 55 of the galaxies and upper limits for 26 of them are reported. An attempt is made to use consistent optical parameters for the galaxies, including a correction to the velocities for the Virgocentric flow. The sample is then used to explore the contribution from discrete sources, the global physical properties of the hot gas, and the implications for heating by supernovae and gravity. Finally, the question of the presence of heavy halos is addressed.
Vibrational and optical properties of MoS2: From monolayer to bulk
NASA Astrophysics Data System (ADS)
Molina-Sánchez, Alejandro; Hummer, Kerstin; Wirtz, Ludger
2015-12-01
Molybdenum disulfide, MoS2, has recently gained considerable attention as a layered material where neighboring layers are only weakly interacting and can easily slide against each other. Therefore, mechanical exfoliation allows the fabrication of single and multi-layers and opens the possibility to generate atomically thin crystals with outstanding properties. In contrast to graphene, it has an optical gap of ~1.9 eV. This makes it a prominent candidate for transistor and opto-electronic applications. Single-layer MoS2 exhibits remarkably different physical properties compared to bulk MoS2 due to the absence of interlayer hybridization. For instance, while the band gap of bulk and multi-layer MoS2 is indirect, it becomes direct with decreasing number of layers. In this review, we analyze from a theoretical point of view the electronic, optical, and vibrational properties of single-layer, few-layer and bulk MoS2. In particular, we focus on the effects of spin-orbit interaction, number of layers, and applied tensile strain on the vibrational and optical properties. We examine the results obtained by different methodologies, mainly ab initio approaches. We also discuss which approximations are suitable for MoS2 and layered materials. The effect of external strain on the band gap of single-layer MoS2 and the crossover from indirect to direct band gap is investigated. We analyze the excitonic effects on the absorption spectra. The main features, such as the double peak at the absorption threshold and the high-energy exciton are presented. Furthermore, we report on the the phonon dispersion relations of single-layer, few-layer and bulk MoS2. Based on the latter, we explain the behavior of the Raman-active A1g and E2g1 modes as a function of the number of layers. Finally, we compare theoretical and experimental results of Raman, photoluminescence, and optical-absorption spectroscopy.
NASA Astrophysics Data System (ADS)
Yadav, P. S.; Pandey, D. K.; Agrawal, S.; Agrawal, B. K.
2010-03-01
An ab initio study of the stability, structural, electronic. and optical properties has been performed for 46 zinc sulfide nanoclusters Zn x S y ( x + y = n = 2 to 5). Five out of them are seen to be unstable as their vibrational frequencies are found to be imaginary. A B3LYP-DFT/6-311G(3df) method is employed to optimize the geometries and a TDDFT method is used for the study of the optical properties. The binding energies (BE), HOMO-LUMO gaps and the bond lengths have been obtained for all the clusters. For the ZnS2, ZnS3, and ZnS4 nanoclusters, our stable structures are seen to be different from those obtained earlier by using the effective core potentials. We have also considered the zero point energy (ZPE) corrections ignored by the earlier workers. For a fixed value of n, we designate the most stable structure the one, which has maximum final binding energy per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), charges on the atoms, dipole moments, optical properties, vibrational frequencies, infrared intensities, relative infrared intensities, and Raman scattering activities have been investigated for the most stable structures. The nanoclusters containing large number of S atoms for each n is found to be most stable. The HOMO-LUMO gap decreases from n = 2-3 and then increases above n = 3. The IP and EA both fluctuate with the cluster size n. The optical absorption is quite weak in visible region but strong in the ultraviolet region in most of the nanoclusters except a few. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every nanocluster and may be used to characterize a specific nanocluster. The growth of most stable nanoclusters may be possible in the experiments.
Autofluorescence and diffuse reflectance patterns in cervical spectroscopy
NASA Astrophysics Data System (ADS)
Marin, Nena Maribel
Fluorescence and diffuse reflectance spectroscopy are two new optical technologies, which have shown promise to aid in the real time, non-invasive identification of cancers and precancers. Spectral patterns carry a fingerprint of scattering, absorption and fluorescence properties in tissue. Scattering, absorption and fluorescence in tissue are directly affected by biological features that are diagnostically significant, such as nuclear size, micro-vessel density, volume fraction of collagen fibers, tissue oxygenation and cell metabolism. Thus, analysis of spectral patterns can unlock a wealth of information directly related with the onset and progression of disease. Data from a Phase II clinical trial to assess the technical efficacy of fluorescence and diffuse reflectance spectroscopy acquired from 850 women at three clinical locations with two research grade optical devices is calibrated and analyzed. Tools to process and standardize spectra so that data from multiple spectrometers can be combined and analyzed are presented. Methodologies for calibration and quality assurance of optical systems are established to simplify design issues and ensure validity of data for future clinical trials. Empirically based algorithms, using multivariate statistical approaches are applied to spectra and evaluated as a clinical diagnostic tool. Physically based algorithms, using mathematical models of light propagation in tissue are presented. The presented mathematical model combines a diffusion theory in P3 approximation reflectance model and a 2-layer fluorescence model using exponential attenuation and diffusion theory. The resulting adjoint fluorescence and reflectance model extracts twelve optical properties characterizing fluorescence efficiency of cervical epithelium and stroma fluorophores, stromal hemoglobin and collagen absorption, oxygen saturation, and stromal scattering strength and shape. Validations with Monte Carlo simulations show that adjoint model extracted optical properties of the epithelium and the stroma can be estimated accurately. Adjoint model is applied to 926 clinical measurements from 503 patients. Mean values of extracted optical properties have demonstrated to characterize the biological changes associated with dysplastic progression. Finally, penalized logistic regression algorithms are applied to discriminate dysplastic stages in tissue based on extracted optical features. This work provides understandable and interpretable information regarding predictive and generalization ability of optical spectroscopy in neoplastic changes using a minimum subset of optical measurements. Ultimately these methodologies would facilitate the transfer of these optical technologies into clinical practice.
Nanodiamonds for In Vivo Applications.
van der Laan, KiranJ; Hasani, Masoumeh; Zheng, Tingting; Schirhagl, Romana
2018-05-01
Due to their unique optical properties, diamonds are the most valued gemstones. However, beyond the sparkle, diamonds have a number of unique properties. Their extreme hardness gives them outstanding performance as abrasives and cutting tools. Similar to many materials, their nanometer-sized form has yet other unique properties. Nanodiamonds are very inert but still can be functionalized on the surface. Additionally, they can be made in very small sizes and a narrow size distribution. Nanodiamonds can also host very stable fluorescent defects. Since they are protected in the crystal lattice, they never bleach. These defects can also be utilized for nanoscale sensing since they change their optical properties, for example, based on temperature or magnetic fields in their surroundings. In this Review, in vivo applications are focused upon. To this end, how different diamond materials are made and how this affects their properties are discussed first. Next, in vivo biocompatibility studies are reviewed. Finally, the reader is introduced to in vivo applications of diamonds. These include drug delivery, aiding radiology, labeling, and use in cosmetics. The field is critically reviewed and a perspective on future developments is provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of a multichannel hyperspectral imaging probe for food property and quality assessment
NASA Astrophysics Data System (ADS)
Huang, Yuping; Lu, Renfu; Chen, Kunjie
2017-05-01
This paper reports on the development, calibration and evaluation of a new multipurpose, multichannel hyperspectral imaging probe for property and quality assessment of food products. The new multichannel probe consists of a 910 μm fiber as a point light source and 30 light receiving fibers of three sizes (i.e., 50 μm, 105 μm and 200 μm) arranged in a special pattern to enhance signal acquisitions over the spatial distances of up to 36 mm. The multichannel probe allows simultaneous acquisition of 30 spatially-resolved reflectance spectra of food samples with either flat or curved surface over the spectral region of 550-1,650 nm. The measured reflectance spectra can be used for estimating the optical scattering and absorption properties of food samples, as well as for assessing the tissues of the samples at different depths. Several calibration procedures that are unique to this probe were carried out; they included linearity calibrations for each channel of the hyperspectral imaging system to ensure consistent linear responses of individual channels, and spectral response calibrations of individual channels for each fiber size group and between the three groups of different size fibers. Finally, applications of this new multichannel probe were demonstrated through the optical property measurement of liquid model samples and tomatoes of different maturity levels. The multichannel probe offers new capabilities for optical property measurement and quality detection of food and agricultural products.
NASA Astrophysics Data System (ADS)
Letu, H.; Nagao, T. M.; Nakajima, T. Y.; Ishimoto, H.; Riedi, J.; Shang, H.
2017-12-01
Ice cloud property product from satellite measurements is applicable in climate change study, numerical weather prediction, as well as atmospheric study. Ishimoto et al., (2010) and Letu et al., (2016) developed a single scattering property of the highly irregular ice particle model, called the Voronoi model for developing ice cloud product of the GCOM-C satellite program. It is investigated that Voronoi model has a good performance on retrieval of the ice cloud properties by comparing it with other well-known scattering models. Cloud property algorithm (Nakajima et al., 1995, Ishida and Nakajima., 2009, Ishimoto et al., 2009, Letu et al., 2012, 2014, 2016) of the GCOM-C satellite program is improved to produce the Himawari-8/AHI cloud products based on the variation of the solar zenith angle. Himawari-8 is the new-generational geostationary meteorological satellite, which is successfully launched by the Japan Meteorological Agency (JMA) on 7 October 2014. In this study, ice cloud optical and microphysical properties are simulated from RSTAR radiative transfer code by using various model. Scattering property of the Voronoi model is investigated for developing the AHI ice cloud products. Furthermore, optical and microphysical properties of the ice clouds are retrieved from Himawari-8/AHI satellite measurements. Finally, retrieval results from Himawari-8/AHI are compared to MODIS-C6 cloud property products for validation of the AHI cloud products.
NASA Astrophysics Data System (ADS)
AL-Baradi, Ateyyah M.; Al-Shehri, Samar F.; Badawi, Ali; Merazga, Amar; Atta, A. A.
2018-06-01
This work is concerned with the study of the effect of titanium dioxide (TiO2) nanofillers on the optical, mechanical and electrical properties of poly(methacrylic acid) (PMAA) networks as a function of TiO2 concentration and crosslink density. The structure of the prepared samples was investigated by X-ray diffractometry (XRD) and Transmittance Electron Microscope (TEM). XRD results showed a single phase for the nanocomposites indicating that no large TiO2 aggregates in the polymer matrix. The optical properties of the prepared samples including the absorption, transmittance, energy band gap and refractive index were explored using Spectrophotometer. These measurements showed that there is a red-shift in the absorption caused by the increase of TiO2 concentration. However, the crosslink density in the polymer plays no role in changing the absorption. The energy band gap (Eg) decreases with increasing the concentration of TiO2 in the polymer matrix; whereas Eg increases with increasing the crosslink density. Moreover, the mechanical properties of PMAA/TiO2 nanocomposites by Dynamic Mechanical Analysis (DMA) showed that the viscoelasticity of PMAA decreases with adding TiO2 nanoparticles and the glass transition temperature (Tg) was also found to drop from 130 °C to 114 °C. Finally, the DC conductivity of the obtained systems was found to increase with increasing TiO2 nanoparticles in the matrix.
NASA Astrophysics Data System (ADS)
Junda, Maxwell M.; Karki Gautam, Laxmi; Collins, Robert W.; Podraza, Nikolas J.
2018-04-01
Virtual interface analysis (VIA) is applied to real time spectroscopic ellipsometry measurements taken during the growth of hydrogenated amorphous silicon (a-Si:H) thin films using various hydrogen dilutions of precursor gases and on different substrates during plasma enhanced chemical vapor deposition. A procedure is developed for optimizing VIA model configurations by adjusting sampling depth into the film and the analyzed spectral range such that model fits with the lowest possible error function are achieved. The optimal VIA configurations are found to be different depending on hydrogen dilution, substrate composition, and instantaneous film thickness. A depth profile in the optical properties of the films is then extracted that results from a variation in an optical absorption broadening parameter in a parametric a-Si:H model as a function of film thickness during deposition. Previously identified relationships are used linking this broadening parameter to the overall shape of the optical properties. This parameter is observed to converge after about 2000-3000 Å of accumulated thickness in all layers, implying that similar order in the a-Si:H network can be reached after sufficient thicknesses. In the early stages of growth, however, significant variations in broadening resulting from substrate- and processing-induced order are detected and tracked as a function of bulk layer thickness yielding an optical property depth profile in the final film. The best results are achieved with the simplest film-on-substrate structures while limitations are identified in cases where films have been deposited on more complex substrate structures.
Chattopadhyaya, M; Murugan, N Arul; Rinkevicius, Zilvinas
2016-09-15
We study the linear and nonlinear optical properties of a well-known acid-base indicator, bromophenol blue (BPB), in aqueous solution by employing static and integrated approaches. In the static approach, optical properties have been calculated using time-dependent density functional theory (TD-DFT) on the fully relaxed geometries of the neutral and different unprotonated forms of BPB. Moreover, both closed and open forms of BPB were considered. In the integrated approach, the optical properties have been computed over many snapshots extracted from molecular dynamics simulation using a hybrid time-dependent density functional theory/molecular mechanics approach. The static approach suggests closed neutral ⇒ anionic interconversion as the dominant mechanism for the red shift in the absorption spectra of BPB due to a change from acidic to basic pH. It is found by employing an integrated approach that the two interconversions, namely open neutral ⇒ anionic and open neutral ⇒ dianionic, can contribute to the pH-dependent shift in the absorption spectra of BPB. Even though both static and integrated approaches reproduce the pH-dependent red shift in the absorption spectra of BPB, the latter one is suitable to determine both the spectra and spectral broadening. Finally, the computed static first hyperpolarizability for various protonated and deprotonated forms of BPB reveals that this molecule can be used as a nonlinear optical probe for pH sensing in addition to its highly exploited use as an optical probe.
Improving Pixel Level Cloud Optical Property Retrieval using Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Marshak, Alexander; Cahalan, Robert F.
1999-01-01
The accurate pixel-by-pixel retrieval of cloud optical properties from space is influenced by radiative smoothing due to high order photon scattering and radiative roughening due to low order scattering events. Both are caused by cloud heterogeneity and the three-dimensional nature of radiative transfer and can be studied with the aid of computer simulations. We use Monte Carlo simulations on variable 1-D and 2-D model cloud fields to seek for dependencies of smoothing and roughening phenomena on single scattering albedo, solar zenith angle, and cloud characteristics. The results are discussed in the context of high resolution satellite (such as Landsat) retrieval applications. The current work extends the investigation on the inverse NIPA (Non-local Independent Pixel Approximation) as a tool for removing smoothing and improving retrievals of cloud optical depth. This is accomplished by: (1) Delineating the limits of NIPA applicability; (2) Exploring NIPA parameter dependences on cloud macrostructural features, such as mean cloud optical depth and geometrical thickness, degree of extinction and cloud top height variability. We also compare parameter values from empirical and theoretical considerations; (3) Examining the differences between applying NIPA on radiation quantities vs direct application on optical properties; (4) Studying the radiation budget importance of the NIPA corrections as a function of scale. Finally, we discuss fundamental adjustments that need to be considered for successful radiance inversion at non-conservative wavelengths and oblique Sun angles. These adjustments are necessary to remove roughening signatures which become more prominent with increasing absorption and solar zenith angle.
NASA Astrophysics Data System (ADS)
Wang, Yi-Xian; Hu, Cui-E.; Chen, Yang-Mei; Cheng, Yan; Ji, Guang-Fu
2016-11-01
The structural, optical, dynamical, and thermodynamic properties of BaZnO2 under pressure are studied based on the density functional theory. The calculated structural parameters are consistent with the available experimental data. In the ground state, the electronic band structure and density of states indicate that BaZnO2 is an insulator with a direct gap of 2.2 eV. The Mulliken charges are also analyzed to characterize the bonding property. After the structural relaxation, the optical properties are studied. It is found that the dielectric function of E Vert x and EVert y are isotropic, whereas the EVert x and EVert z are anisotropic. The effect of pressure on the energy-loss function in the ultraviolet region becomes more obvious as the pressure increases. Furthermore, the dynamical properties under different pressures are investigated using the finite displacement method. We find that the P3121 phase of BaZnO2 is dynamically stable under the pressure ranging from 0 GPa to 30 GPa. The phonon dispersion curves, phonon density of states, vibrational modes and atoms that contribute to these vibrations at {{\\varvec{Γ }}} point under different pressures are also reported in this work. Finally, by employing the quasi-harmonic approximation, the thermodynamic properties such as the temperature dependence of the thermal expansion coefficient, specific heat, entropy and Gibbs free energy under different pressures are investigated. It is found that the influences of the temperature on the heat capacity are much more significant than that of the pressure on it.
Relating Cirrus Cloud Properties to Observed Fluxes: A Critical Assessment.
NASA Astrophysics Data System (ADS)
Vogelmann, A. M.; Ackerman, T. P.
1995-12-01
The accuracy needed in cirrus cloud scattering and microphysical properties is quantified such that the radiative effect on climate can he determined. Our ability to compute and observe these properties to within needed accuracies is assessed, with the greatest attention given to those properties that most affect the fluxes.Model calculations indicate that computing net longwave fluxes at the surface to within ±5% requires that cloud temperature be known to within as little as ±3 K in cold climates for extinction optical depths greater than two. Such accuracy could be more difficult to obtain than that needed in the values of scattering parameters. For a baseline case (defined in text), computing net shortwave fluxes at the surface to within ±5% requires accuracies in cloud ice water content that, when the optical depth is greater than 1.25, are beyond the accuracies of current measurements. Similarly, surface shortwave flux computations require accuracies in the asymmetry parameter that are beyond our current abilities when the optical depth is greater than four. Unless simplifications are discovered, the scattering properties needed to compute cirrus cloud fluxes cannot be obtained explicitly with existing scattering algorithms because the range of crystal sizes is too great and crystal shapes are too varied to be treated computationally. Thus, bulk cirrus scattering properties might be better obtained by inverting cirrus cloud fluxes and radiances. Finally, typical aircraft broadband flux measurements are not sufficiently accurate to provide a convincing validation of calculations. In light of these findings we recommend a reexamination of the methodology used in field programs such as FIRE and suggest a complementary approach.
Micro/Nanofibre Optical Sensors: Challenges and Prospects
Tong, Limin
2018-01-01
Micro/nanofibres (MNFs) are optical fibres with diameters close to or below the vacuum wavelength of visible or near-infrared light. Due to its wavelength- or sub-wavelength scale diameter and relatively large index contrast between the core and cladding, an MNF can offer engineerable waveguiding properties including optical confinement, fractional evanescent fields and surface intensity, which is very attractive to optical sensing on the micro and nanometer scale. In particular, the waveguided low-loss tightly confined large fractional evanescent fields, enabled by atomic level surface roughness and extraordinary geometric and material uniformity in a glass MNF, is one of its most prominent merits in realizing optical sensing with high sensitivity and great versatility. Meanwhile, the mesoporous matrix and small diameter of a polymer MNF, make it an excellent host fibre for functional materials for fast-response optical sensing. In this tutorial, we first introduce the basics of MNF optics and MNF optical sensors, and review the progress and current status of this field. Then, we discuss challenges and prospects of MNF sensors to some extent, with several clues for future studies. Finally, we conclude with a brief outlook for MNF optical sensors.
Monitoring the Stimulated Uncapping Process of Gold-Capped Mesoporous Silica Nanoparticles
Augspurger, Ashley E.; Sun, Xiaoxing; Trewyn, Brian G.; ...
2018-02-05
To establish a new method for tracking the interaction of nanoparticles with chemical cleaving agents, we exploited the optical effects caused by attaching 5-10 nm gold nanoparticles with molecular linkers to large mesoporous silica nanoparticles (MSN). At low levels of gold loading onto MSN, the optical spectra resemble colloidal suspensions of gold. As the gold is removed, by cleaving agents, the MSN revert to the optical spectra typical of bare silica. Time-lapse images of gold-capped MSN stationed in microchannels reveal that the rate of gold release is dependent on the concentration of the cleaving agent. Finally, the uncapping process wasmore » also monitored successfully for MSN endocytosed by A549 cancer cells, which produce the cleaving agent glutathione. These experiments demonstrate that the optical properties of MSN can be used to directly monitor cleaving kinetics, even in complex cellular settings.« less
Research on conformal dome of Karman-curve shape
NASA Astrophysics Data System (ADS)
Zhang, Yunqiang; Chang, Jun; Niu, Yajun
2018-01-01
Because the conformal optical technology can obviously improve the aerodynamic performance of the infrared guidance missile, it has been studied deeply in recent years. By comparing the performance of the missiles with conformal dome and conventional missiles, the advantages of the conformal optical technology are demonstrated in the maneuverability and stealth of the missile. At present, the study of conformal optical systems focuses on ellipsoid or quadratic curve types. But in actual use, the dome using these curves is not the best choice. In this paper, the influence of different shape of the dome on aerodynamic performance, aerodynamic heating, internal space volume and other properties is discussed. The result shows infrared optical system with conformal dome of Karman-curve shape has a good application prospect, is the future direction of development. Finally, the difficult problems of conformal dome of Karman-curve shape are discussed.
Electro-optical interfacial effects on a graphene/π-conjugated organic semiconductor hybrid system
Araujo, Karolline A S; Cury, Luiz A; Matos, Matheus J S; Fernandes, Thales F D; Cançado, Luiz G
2018-01-01
The influence of graphene and retinoic acid (RA) – a π-conjugated organic semiconductor – interface on their hybrid system is investigated. The physical properties of the interface are assessed via scanning probe microscopy, optical spectroscopy (photoluminescence and Raman) and ab initio calculations. The graphene/RA interaction induces the formation of a well-organized π-conjugated self-assembled monolayer (SAM) at the interface. Such structural organization leads to the high optical emission efficiency of the RA SAM, even at room temperature. Additionally, photo-assisted electrical force microscopy, photo-assisted scanning Kelvin probe microscopy and Raman spectroscopy indicate a RA-induced graphene doping and photo-charge generation. Finally, the optical excitation of the RA monolayer generates surface potential changes on the hybrid system. In summary, interface-induced organized structures atop 2D materials may have an important impact on both design and operation of π-conjugated nanomaterial-based hybrid systems. PMID:29600157
Monitoring the Stimulated Uncapping Process of Gold-Capped Mesoporous Silica Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augspurger, Ashley E.; Sun, Xiaoxing; Trewyn, Brian G.
To establish a new method for tracking the interaction of nanoparticles with chemical cleaving agents, we exploited the optical effects caused by attaching 5-10 nm gold nanoparticles with molecular linkers to large mesoporous silica nanoparticles (MSN). At low levels of gold loading onto MSN, the optical spectra resemble colloidal suspensions of gold. As the gold is removed, by cleaving agents, the MSN revert to the optical spectra typical of bare silica. Time-lapse images of gold-capped MSN stationed in microchannels reveal that the rate of gold release is dependent on the concentration of the cleaving agent. Finally, the uncapping process wasmore » also monitored successfully for MSN endocytosed by A549 cancer cells, which produce the cleaving agent glutathione. These experiments demonstrate that the optical properties of MSN can be used to directly monitor cleaving kinetics, even in complex cellular settings.« less
The relative importance of aerosol scattering and absorption in remote sensing
NASA Technical Reports Server (NTRS)
Fraser, R. S.; Kaufman, Y. J.
1983-01-01
The relative importance of aerosol optical thickness and absorption is illustrated through computing radiances for radiative transfer models. The radiance of sunlight reflected from models of the earth-atmosphere system is computed as a function of the aerosol optical thickness and its albedo of single scattering; it is noted that the albedo varies from 0.6 in urban environment to nearly 1 in areas with low graphitic carbon content. The calculations are applied to the example of satellite measurements of biomass. It is found that when surface classifications are made by means of clustering techniques the presence of gradients in the aerosol optical properties results in the dispersion of points in the plot correlating radiances viewed in two different directions. Finally, though such a remote sensing parameter as contrast is weakly affected by aerosol absorption, it is highly dependent on its optical thickness.
Epoxy and Silicone Optical Nanocomposites Filled with Grafted Nanoparticles
NASA Astrophysics Data System (ADS)
Tao, Peng
Polymer nanocomposites, as a technologically important class of materials, exhibit diverse functional properties, and are used for applications ranging from structural and biomedical to electronic and optical. The properties of polymer nanocomposites are determined, in part, by the chemical composition of the polymer matrix and the nanofillers. Their properties are also sensitive to the geometry and size of the nanofillers, and to spatial distribution of the fillers. Control of the nanoparticle size and dispersion within a given polymer provides opportunities to tailor and optimize the properties of nanocomposites for specific application. For optical applications such as encapsulation of light emitting diodes (LEDs), polymer nanocomposites filled with homogeneously dispersed nanoparticles would endow the polymer encapsulant with new functionality without sacrificing optical transparency. To this end, this thesis focuses on developing a simple and versatile approach towards the fabrication of epoxy and silicone transparent nanocomposites using matrix compatible chain-grafted nanoparticles as fillers, and studying the optical properties of the nanocomposites. The surface chemistry and grafted polymer chain design have been shown to play an important role in determining the dispersion state of the grafted nanoparticles and hence the final optical properties of the nanocomposites. To prepare transparent epoxy nanocomposites, poly (glycidyl methacrylate) (PGMA) chains were grafted onto the optical nanoparticle surfaces via a combined phosphate ligand exchange process and azide-alkyne "click" chemistry. The dispersion behavior of PGMA-grafted nanoparticles within the epoxy matrix was investigated by systematically varying the grafting density and grafted chain length. It was found that within the small molecular weight epoxy resins, the dispersion states are more sensitive to the grafting density than the molecular weight of grafted chains. With high grafting densities, the grafted PGMA brushes effectively screen the van der Waals attraction between the particles, and homogenous nanoparticle dispersions of grafted nanoparticles were obtained. Transparent high refractive index TiO2/epoxy thin film and bulk nancomposites were obtained by dispersing PGMA brushes-grafted TiO2 nanoparticles into a commercial epoxy matrix. The refractive index of the nanocomposites showed a linear dependence on the volume fraction of TiO2 nanoparticles and the optical transparency could be generally described by the Rayleigh scattering model. This powerful dispersing technique was further employed to make visibly transparent, UV/IR blocking ITO/epoxy nanocomposites which can be easily applied onto glass and plastic substrates as energy saving optical coating materials. To produce transparent silicone nanocomposites, we directly coupled phosphate-terminated PDMS chains onto the optical nanoparticle surface. It was observed that the mono-modal PDMS-grafted particles usually formed agglomerates within silicone matrices, whereas the bimodal PDMS-grafted particles were able to be individually dispersed even within high molecular weight matrices. Transparent high refractive index bulk TiO2/silicone nanocomposites were successfully prepared by filling with bimodal PDMS-grafted TiO2 nanoparticles. Furthermore, we used the PDMS-grafted TiO2/silicone nanocomposite as a model system to create a methodology to predict and control the dispersion behavior of grafted nanoparticles. The good agreement between experimental observation of dispersion of mono-modal and bimodal grafted particles and theoretical prediction would better guide future experiments and lead to predictability in polymer composite design. Finally, the bimodal grafted chain design was implemented in the preparation of transparent and luminescent CdSe/silicone nanocomposites with potential application as non-scattering light conversion materials for LEDs. The homogeneous dispersion of bimodal PDMS-grafted CdSe quantum dots not only minimizes the transparency loss due to scattering, but also benefits the uniformity and long-term stability of photoluminescence of the nanocomposites.
Curing dynamics of photopolymers measured by single-shot heterodyne transient grating method.
Arai, Mika; Fujii, Tomomi; Inoue, Hayato; Kuwahara, Shota; Katayama, Kenji
2013-01-01
The heterodyne transient grating (HD-TG) method was first applied to the curing dynamics measurement of photopolymers. The curing dynamics for various monomers including an initiator (2.5 vol%) was monitored optically via the refractive index change after a single UV pulse irradiation. We could obtain the polymerization time and the final change in the refractive index, and the parameters were correlated with the viscosity, molecular structure, and reaction sites. As the polymerization time was longer, the final refractive change was larger, and the polymerization time was explained in terms of the monomer properties.
Better ceramics through chemistry. 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelinski, B.J.J.; Brinker, C.J.; Clark, D.E.
1990-01-01
At this year's meeting, research into the area of reaction mechanisms and kinetics of silicon species remained strong, while significant advances in the area of structure and properties of modified and unmodified metal alkoxide species were reported. The complementary area of processing in water based systems also received considerable attention with emphasis being placed on the hydrolysis behavior of ions in solution. The nature of particle/aggregate growth was also a major topic of discussion with papers being presented on the role of aggregation in particle growth and on the nature and rheology of concentrated suspensions. Important developments in the areamore » of mechanical properties of aerogels, fibers and films were presented as well as research into techniques for in situ monitoring of films during dip coating. Continued advances in applications which utilize solution derived ceramics were also reported. These applications included GRIN lenses, planar waveguides, optical filters and switches, transpiration cooled windows, dye-polymer composites for nonlinear optics, dielectrics and electro-optic materials including PLZT's and the niobates, and chemical sensors. Finally, one of the meeting highlights was a special evening session on biomimetics: ceramic processing in natural systems.« less
NASA Astrophysics Data System (ADS)
Muller, T. F. G.; Jacobs, S.; Cummings, F. R.; Oliphant, C. J.; Malgas, G. F.; Arendse, C. J.
2015-06-01
Hydrogenated amorphous silicon nitride (a-SiNx:H) is used as anti-reflection coatings in commercial solar cells. A final firing step in the production of micro-crystalline silicon solar cells allows hydrogen effusion from the a-SiNx:H into the solar cell, and contributes to bulk passivation of the grain boundaries. In this study a-SiNx:H deposited in a hot-wire chemical vapour deposition (HWCVD) chamber with reduced gas flow rates and filament temperature compared to traditional deposition regimes, were annealed isochronally. The UV-visible reflection spectra of the annealed material were subjected to the Bruggeman Effective Medium Approximation (BEMA) treatment, in which a theoretical amorphous semiconductor was combined with particle inclusions due to the structural complexities of the material. The extraction of the optical functions and ensuing Wemple-DeDomenici analysis of the wavelength-dependent refractive index allowed for the correlation of the macroscopic optical properties with the changes in the local atomic bonding configuration, involving silicon, nitrogen and hydrogen.
Peptides and proteins in matter wave interferometry: Challenges and prospects
NASA Astrophysics Data System (ADS)
Sezer, Ugur; Geyer, Philipp; Mairhofer, Lukas; Brand, Christian; Doerre, Nadine; Rodewald, Jonas; Schaetti, Jonas; Koehler, Valentin; Mayor, Marcel; Arndt, Markus
2016-05-01
Recent developments in matter wave physics suggest that quantum interferometry with biologically relevant nanomaterials is becoming feasible for amino acids, peptides, proteins and RNA/DNA strands. Quantum interference of biomolecules is interesting as it can mimic Schrödinger's cat states with molecules of high mass, elevated temperature and biological functionality. Additionally, the high internal complexity can give rise to a rich variety of couplings to the environment and new handles for quantitative tests of quantum decoherence. Finally, matter wave interferometers are highly sensitive force sensors and pave the way for quantum-assisted measurements of biomolecular properties in interaction with tailored or biomimetic environments. Recent interferometer concepts such as the Kapitza-Dirac-Talbot-Lau interferometer (KDTLI) or the Optical Time-domain Matter Wave interferometer (OTIMA) have already proven their potential for quantum optics in the mass range beyond 10000 amu and for metrology. Here we show our advances in quantum interferometry with vitamins and peptides and discuss methods of realizing cold, intense and sufficiently slow beams of synthetically tailored or hydrated polypeptides with promising properties for a new generation of quantum optics.
Testing and Optimization of Electrically Conductive Spacecraft Coatings
NASA Technical Reports Server (NTRS)
Mell, R. J.; Wertz, G. E.; Edwards, D. L. (Technical Monitor)
2001-01-01
This is the final report discussing the work done for the Space Environments and Effects (SEE) Program. It discusses test chamber design, coating research, and test results on electrically thermal control coatings. These thermal control coatings are being developed to have several orders of magnitude higher electrical conductivity than most available thermal control coatings. Most current coatings tend to have a range in surface resistivity from 1,011 to 1,013 ohms/sq. Historically, spacecraft have had thermal control surfaces composed of dielectric materials of either polymers (paints and metalized films) or glasses (ceramic paints and optical solar reflectors). Very seldom has the thermal control surface of a spacecraft been a metal where the surface would be intrinsically electrically conductive. The poor thermal optical properties of most metals have, in most cases, stopped them from being used as a thermal control surface. Metals low infrared emittance (generally considered poor for thermal control surfaces) and/or solar absorptance, have resulted in the use of various dielectric coatings or films being applied over the substrate materials in order to obtain the required optical properties.
Synthesis and characterization of cadmium sulphide thin films prepared by spin coating
NASA Astrophysics Data System (ADS)
Chodavadiya, Nisarg; Chapanari, Amisha; Zinzala, Jignesh; Ray, Jaymin; Pandya, Samir
2018-05-01
An II-VI group semiconductor is Wide band gap materials and has been widely studied due to their fundamental optical, structural, and electrical properties. Cadmium sulphide (CdS) is one of the most emerged materials in II-VI group. It has many applications such as buffer later in photovoltaic cell, multilayer light emitting diodes, optical filters, thin film field effect transistors, gas sensors, light detectors etc. It is fundamentally an n-type material with an optical band gap of 2.4 eV. Owing to these properties we had studied CdS thin films synthesis and characterized by Raman, Ultraviolet - Visible spectroscopy (UV-VIS) and Hot probe method. CdS thin films were prepared by spin coating of the Cadmium-thiourea precursor solution. Visual inspection after 20 minute thermolysis time the films were looks uniform and shiny pale yellow in color. Raman confirms the A1 vibration of pure CdS. UV-VIS gives the band gap about 2.52 eV, which confirms the formation of nanocrystalline form of CdS. Finally, hot probe signifies the n-type conductivity of the CdS film.
Dynamic Camouflage Materials Based on Silk-Reflectin Chimeras
2012-08-01
Dynamic Camouflage Materials Based on Silk -Reflectin Chimeras Final Performance Report for FA9550-09-1-0513 (Program Manager: Hugh DeLong...efforts to bioengineer silk -reflectin chimeric proteins, with the silk component serving as one of the organizing elements for material functions and...Further contributions may also come from the silk due to its novel light guiding properties and diffractive optics. Variants in silk block sizes
Aliaga, C; Zhang, H; Dobon, A; Hortal, M; Beneventi, D
2015-04-01
The aim of this paper is to analyse the effects of the presence of printed electronics on the paper waste streams and specifically on paper recyclability. The analysis is based on a case study focussed on envelopes for postal and courier services provided with these intelligent systems. The smart printed envelope of the study includes a combination of both conventional (thin flexible batteries and resistors) and printed electronic components (conductive track layout based on nanosilver ink). For this purpose, a comparison between envelopes with and without these components (batteries, resistors and conductive track layouts) was carried out through pilot scale paper recycling tests. The generation of rejects during the recycling process as well as the final quality of the recycled paper (mechanical and optical properties) were tested and quantitatively evaluated. The results show that resistors are retained during the screening process in the sieves and consequently they cannot end up in the final screened pulp. Therefore, mechanical and optical properties of the recycled paper are not affected. Nevertheless, inks from the conductive track layouts and batteries were partially dissolved in the process water. These substances were not totally retained in the sieving systems resulting in slight changes in the optical properties of the final recycled paper (variations are 7.2-7.5% in brightness, 8.5-10.7% in whiteness, 1.2-2.2% in L(∗) values, 3.3-3.5% in opacity and 16.1-27% in yellowness). These variations are not in ranges able to cause problems in current paper recycling processes and restrict the use of recycled paper in current applications. Moreover, real impacts on industrial recycling are expected to be even significantly lower since the proportion of paper product with printed circuits in the current paper waste streams are much lower than the ones tested in this work. However, it should be underlined the fact that this situation may change over the next years due to the future developments in printed electronics and the gradual penetration of these types of devices in the market. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ultralong time response of magnetic fluid based on fiber-optic evanescent field.
Du, Bobo; Yang, Dexing; Bai, Yang; Yuan, Yuan; Xu, Jian; Jiang, Yajun; Wang, Meirong
2016-07-20
The ultralong time (a few hours) response properties of magnetic fluid using etched optical fiber are visualized and investigated experimentally. The operating structure is made by injecting magnetic fluid into a capillary tube that contains etched single-mode fiber. An interesting extreme asymmetry is observed, in which the transmitted light intensity after the etched optical fiber cannot reach the final steady value when the external magnetic field is turned on (referred to as the falling process), while it can reach the stable state quickly once the magnetic field is turned off (referred to as the rising process). The relationship between the response times/loss rates of the transmitted light and the strength of the applied magnetic field is obtained. The physical mechanisms of two different processes are discussed qualitatively.
Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography.
Alayo, Nerea; Conde-Rubio, Ana; Bausells, Joan; Borrisé, Xavier; Labarta, Amilcar; Batlle, Xavier; Pérez-Murano, Francesc
2015-11-06
Cone-like and empty cup-shaped nanoparticles of noble metals have been demonstrated to provide extraordinary optical properties for use as optical nanoanntenas or nanoresonators. However, their large-scale production is difficult via standard nanofabrication methods. We present a fabrication approach to achieve arrays of nanoparticles with tunable shape and composition by a combination of nanoimprint lithography, hard-mask definition and various forms of metal deposition. In particular, we have obtained arrays of empty cup-shaped Au nanoparticles showing an optical response with distinguishable features associated with the excitations of localized surface plasmons. Finally, this route avoids the most common drawbacks found in the fabrication of nanoparticles by conventional top-down methods, such as aspect ratio limitation, blurring, and low throughput, and it can be used to fabricate nanoparticles with heterogeneous composition.
Novel Diffusivity Measurement Technique
NASA Technical Reports Server (NTRS)
Rashidnia, Nasser
2001-01-01
A common-path interferometer (CPI) system was developed to measure the diffusivity of liquid pairs. The CPI is an optical technique that can be used to measure changes in the gradient of the refraction index of transparent materials. This system uses a shearing interferometer that shares the same optical path from a laser light source to the final imaging plane. Hence, the molecular diffusion coefficient of liquids can be determined using the physical relations between changes in the optical path length and the liquid phase properties. The data obtained with this interferometer were compared with similar results from other techniques and demonstrated that the instrument is superior in measuring the diffusivity of miscible liquids while keeping the system very compact and robust. CPI can also be used for studies in interface dynamics and other diffusion-dominated-process applications.
Yakovlev, Aleksandr V.; Milichko, Valentin A.; Pidko, Evgeny A.; Vinogradov, Vladimir V.; Vinogradov, Alexandr V.
2016-01-01
This paper describes a practical approach for the fabrication of highly visible interference color images using sol-gel ink technique and a common desktop inkjet printer. We show the potential of titania-boehmite inks for the production of optical heterostructures on various surfaces, which after drying on air produce optical solid layers with low and high refractive index. The optical properties of the surface heterostructures were adjusted following the principles of antireflection coating resulting in the enhancement of the interference color optical visibility of the prints by as much as 32%. Finally, the presented technique was optimized following the insights into the mechanisms of the drop-surface interactions and the drop-on-surface coalescence to make it suitable for the production of even thickness coatings suitable for printing at a large scale. We propose that the technology described herein is a promising new green and sustainable approach for color printing. PMID:27848979
Optoelectronic properties of single-wall carbon nanotubes.
Nanot, Sébastien; Hároz, Erik H; Kim, Ji-Hee; Hauge, Robert H; Kono, Junichiro
2012-09-18
Single-wall carbon nanotubes (SWCNTs), with their uniquely simple crystal structures and chirality-dependent electronic and vibrational states, provide an ideal laboratory for the exploration of novel 1D physics, as well as quantum engineered architectures for applications in optoelectronics. This article provides an overview of recent progress in optical studies of SWCNTs. In particular, recent progress in post-growth separation methods allows different species of SWCNTs to be sorted out in bulk quantities according to their diameters, chiralities, and electronic types, enabling studies of (n,m)-dependent properties using standard macroscopic characterization measurements. Here, a review is presented of recent optical studies of samples enriched in 'armchair' (n = m) species, which are truly metallic nanotubes but show excitonic interband absorption. Furthermore, it is shown that intense ultrashort optical pulses can induce ultrafast bandgap oscillations in SWCNTs, via the generation of coherent phonons, which in turn modulate the transmission of a delayed probe pulse. Combined with pulse-shaping techniques, coherent phonon spectroscopy provides a powerful method for studying exciton-phonon coupling in SWCNTs in a chirality-selective manner. Finally, some of the basic properties of highly aligned SWCNT films are highlighted, which are particularly well-suited for optoelectronic applications including terahertz polarizers with nearly perfect extinction ratios and broadband photodetectors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of multi-depositions on the final properties of thermally evaporated TlBr films
NASA Astrophysics Data System (ADS)
Destefano, N.; Mulato, M.
2010-12-01
Thallium bromide is a promising candidate material for photodetectors in medical imaging systems. This work investigates the structural, optical and electrical properties of thermally evaporated TlBr films. The main fabrication parameter is the number of depositions. The use of sequential runs is aimed to increase the thickness of the films, as necessary, for technological applications. We deposited films using one-four runs, that led to maximum thickness of about 50 μm. Crystallographic and morphological changes were observed with varying deposition runs. Nevertheless, the optical gap and electrical resistivity in the dark remained constant at about 2.85 eV and 10 9 Ω cm, respectively. Thicker samples have a larger ratio of photo-to-dark signal under medical X-ray exposure, with a larger linear region as a function of applied voltage. The results are discussed aiming at future technological applications in medical imaging.
Cantero-López, Plinio; Le Bras, Laura; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro
2015-12-14
The chemical bond between actinide and the transition metal unsupported by bridging ligands is not well characterized. In this paper we study the electronic properties, bonding nature and optical spectra in a family of [Cp2ThMCp(CO)2](+) complexes where M = Fe, Ru, Os, based on the relativistic two component density functional theory calculations. The Morokuma-Ziegler energy decomposition analysis shows an important ionic contribution in the Th-M interaction with around 25% of covalent character. Clearly, charge transfer occurs on Th-M bond formation, however the orbital term most likely represents a strong charge rearrangement in the fragments due to the interaction. Finally the spin-orbit-ZORA calculation shows the possible NIR emission induced by the [FeCp(CO)2](-) chromophore accomplishing the antenna effect that justifies the sensitization of the actinide complexes.
Chen, Tao-Hsing; Chen, Ting-You
2015-11-03
An investigation is performed into the optical, electrical, and microstructural properties of Ti-Ga-doped ZnO films deposited on polyimide (PI) flexible substrates and then annealed at temperatures of 300 °C, 400 °C, and 450 °C, respectively. The X-ray diffraction (XRD) analysis results show that all of the films have a strong (002) Ga doped ZnO (GZO) preferential orientation. As the annealing temperature is increased to 400 °C, the optical transmittance increases and the electrical resistivity decreases. However, as the temperature is further increased to 450 °C, the transmittance reduces and the resistivity increases due to a carbonization of the PI substrate. Finally, the crystallinity of the ZnO film improves with an increasing annealing temperature only up to 400 °C and is accompanied by a smaller crystallite size and a lower surface roughness.
Structural evolution and properties of small-size thiol-protected gold nanoclusters
NASA Astrophysics Data System (ADS)
Ma, Miaomiao; Liu, Liren; Zhu, Hengjiang; Lu, Junzhe; Tan, Guiping
2018-07-01
Ligand-protected gold clusters are widely used in biosensors and catalysis. Understanding the structural evolution of these kinds of nanoclusters is important for experimental synthesis. Herein, based on the particle swarm optimisation algorithm and density functional theory method, we use [Au1(SH)2]n, [Au2(SH)3]n, [Au3(SH)4]n (n = 1-3) as basic units to research the structural evolution relationships from building blocks to the final whole structures. Results show that there is a 'line-ring-core' structural evolution pattern in the growth process of the nanoclusters. The core structures of the ligand-protected gold clusters consist of Au3, Au4, Au6 and Au7 atoms. The electronics and optics analysis reflects that stability and optical properties gradually enhance with increase in size. These results can be used to understand the initial growth stage and design new ligand-protected nanoclusters.
Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition
NASA Astrophysics Data System (ADS)
Tolosa, Maria D. Reyes; Damonte, Laura C.; Brine, Hicham; Bolink, Henk J.; Hernández-Fenollosa, María A.
2013-03-01
Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used. Previous studies on different electrodeposition methods for nucleation and growth are considered in the final discussion.
Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition.
Tolosa, Maria D Reyes; Damonte, Laura C; Brine, Hicham; Bolink, Henk J; Hernández-Fenollosa, María A
2013-03-23
Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used. Previous studies on different electrodeposition methods for nucleation and growth are considered in the final discussion.
Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition
2013-01-01
Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used. Previous studies on different electrodeposition methods for nucleation and growth are considered in the final discussion. PMID:23522332
Graphene-based nanoprobes for molecular diagnostics.
Chen, Shixing; Li, Fuwu; Fan, Chunhai; Song, Shiping
2015-10-07
In recent years, graphene has received widespread attention owing to its extraordinary electrical, chemical, optical, mechanical and structural properties. Lately, considerable interest has been focused on exploring the potential applications of graphene in life sciences, particularly in disease-related molecular diagnostics. In particular, the coupling of functional molecules with graphene as a nanoprobe offers an excellent platform to realize the detection of biomarkers, such as nucleic acids, proteins and other bioactive molecules, with high performance. This article reviews emerging graphene-based nanoprobes in electrical, optical and other assay methods and their application in various strategies of molecular diagnostics. In particular, this review focuses on the construction of graphene-based nanoprobes and their special advantages for the detection of various bioactive molecules. Properties of graphene-based materials and their functionalization are also comprehensively discussed in view of the development of nanoprobes. Finally, future challenges and perspectives of graphene-based nanoprobes are discussed.
Design of a highly parallel board-level-interconnection with 320 Gbps capacity
NASA Astrophysics Data System (ADS)
Lohmann, U.; Jahns, J.; Limmer, S.; Fey, D.; Bauer, H.
2012-01-01
A parallel board-level interconnection design is presented consisting of 32 channels, each operating at 10 Gbps. The hardware uses available optoelectronic components (VCSEL, TIA, pin-diodes) and a combination of planarintegrated free-space optics, fiber-bundles and available MEMS-components, like the DMD™ from Texas Instruments. As a specific feature, we present a new modular inter-board interconnect, realized by 3D fiber-matrix connectors. The performance of the interconnect is evaluated with regard to optical properties and power consumption. Finally, we discuss the application of the interconnect for strongly distributed system architectures, as, for example, in high performance embedded computing systems and data centers.
Carbon Nanotubes as Optical Sensors in Biomedicine.
Farrera, Consol; Torres Andón, Fernando; Feliu, Neus
2017-11-28
Single-walled carbon nanotubes (SWCNTs) have become potential candidates for a wide range of medical applications including sensing, imaging, and drug delivery. Their photophysical properties (i.e., the capacity to emit in the near-infrared), excellent photostability, and fluorescence, which is highly sensitive to the local environment, make SWCNTs promising optical probes in biomedicine. In this Perspective, we discuss the existing strategies for and challenges of using carbon nanotubes for medical diagnosis based on intracellular sensing as well as discuss also their biocompatibility and degradability. Finally, we highlight the potential improvements of this nanotechnology and future directions in the field of carbon nanotubes for biomedical applications.
Holey fibers for low bend loss
NASA Astrophysics Data System (ADS)
Nakajima, Kazuhide; Saito, Kotaro; Yamada, Yusuke; Kurokawa, Kenji; Shimizu, Tomoya; Fukai, Chisato; Matsui, Takashi
2013-12-01
Bending-loss insensitive fiber (BIF) has proved an essential medium for constructing the current fiber to the home (FTTH) network. By contrast, the progress that has been made on holey fiber (HF) technologies provides us with novel possibilities including non-telecom applications. In this paper, we review recent progress on hole-assisted type BIF. A simple design consideration is overviewed. We then describe some of the properties of HAF including its mechanical reliability. Finally, we introduce some applications of HAF including to high power transmission. We show that HAF with a low bending loss has the potential for use in various future optical technologies as well as in the optical communication network.
The Tuning of Optical Properties of Nanoscale MOFs-Based Thin Film through Post-Modification.
Yin, Wenchang; Tao, Cheng-An; Zou, Xiaorong; Wang, Fang; Qu, Tianlian; Wang, Jianfang
2017-08-29
Optical properties, which determine the application of optical devices in different fields, are the most significant properties of optical thin films. In recent years, Metal-organic framework (MOF)-based optical thin films have attracted increasing attention because of their novel optical properties and important potential applications in optical and photoelectric devices, especially optical thin films with tunable optical properties. This study reports the first example of tuning the optical properties of a MOF-based optical thin film via post-modification. The MOF-based optical thin film was composed of NH₂-MIL-53(Al) nanorods (NRs) (MIL: Materials from Institute Lavoisier), and was constructed via a spin-coating method. Three aldehydes with different lengths of carbon chains were chosen to modify the MOF optical thin film to tune their optical properties. After post-modification, the structural color of the NH₂-MIL-53(Al) thin film showed an obvious change from purple to bluish violet and cyan. The reflection spectrum and the reflectivity also altered in different degrees. The effective refractive index ( n eff ) of MOFs thin film can also be tuned from 1.292 to 1.424 at a wavelength of 750 nm. The success of tuning of the optical properties of MOFs thin films through post-modification will make MOFs optical thin films meet different needs of optical properties in various optical and optoelectronic devices.
The Tuning of Optical Properties of Nanoscale MOFs-Based Thin Film through Post-Modification
Zou, Xiaorong; Wang, Fang; Qu, Tianlian; Wang, Jianfang
2017-01-01
Optical properties, which determine the application of optical devices in different fields, are the most significant properties of optical thin films. In recent years, Metal-organic framework (MOF)-based optical thin films have attracted increasing attention because of their novel optical properties and important potential applications in optical and photoelectric devices, especially optical thin films with tunable optical properties. This study reports the first example of tuning the optical properties of a MOF-based optical thin film via post-modification. The MOF-based optical thin film was composed of NH2-MIL-53(Al) nanorods (NRs) (MIL: Materials from Institute Lavoisier), and was constructed via a spin-coating method. Three aldehydes with different lengths of carbon chains were chosen to modify the MOF optical thin film to tune their optical properties. After post-modification, the structural color of the NH2-MIL-53(Al) thin film showed an obvious change from purple to bluish violet and cyan. The reflection spectrum and the reflectivity also altered in different degrees. The effective refractive index (neff) of MOFs thin film can also be tuned from 1.292 to 1.424 at a wavelength of 750 nm. The success of tuning of the optical properties of MOFs thin films through post-modification will make MOFs optical thin films meet different needs of optical properties in various optical and optoelectronic devices. PMID:28850057
Development of a wearable CMOS-based contact imaging system for real-time skin condition diagnosis
NASA Astrophysics Data System (ADS)
Petitdidier, Nils; Koenig, Anne; Gerbelot, Rémi; Gioux, Sylvain; Dinten, Jean-Marc
2017-07-01
Diffuse reflectance spectroscopy has been widely used in the field of biological tissue characterization with various modalities [1-5,6]. One of these modalities consists in measuring the spatially resolved diffuse reflectance (SRDR). In this technique, light is collected at multiple distances from the excitation point. The obtained reflectance decay curve is used to determine scattering and absorption properties of the tissue [7], which are directly related to tissue content and structure. Existing systems usually use fiber optics to collect light reflected from the tissue and transfer it to an optical sensor [1,6]. Such devices make it possible to perform SRDR measurements directly in contact with the tissue. However, they offer poor spatial sampling of the reflectance and low light collection efficiency. We propose to overcome these limitations by using a CMOS sensor placed in contact with the tissue to achieve light collection with high spatial sampling over several millimeters and with increased fill factor. Our objective in this paper is to demonstrate the potential of our instrument to determine the optical properties of tissues from SRDR measurements. We first describe the instrument and the employed methodology. Then, preliminary results obtained on optical phantoms are presented. Finally, the potential of our system for SRDR measurements is evaluated through comparison with a fiber-optic probe previously developed in our laboratory [6,8].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hostetler, Chris; Ferrare, Richard
Measurements of the vertical profile of atmospheric aerosols and aerosol optical and microphysical characteristics are required to: 1) determine aerosol direct and indirect radiative forcing, 2) compute radiative flux and heating rate profiles, 3) assess model simulations of aerosol distributions and types, and 4) establish the ability of surface and space-based remote sensors to measure the indirect effect. Consequently the ASR program calls for a combination of remote sensing and in situ measurements to determine aerosol properties and aerosol influences on clouds and radiation. As part of our previous DOE ASP project, we deployed the NASA Langley airborne High Spectralmore » Resolution Lidar (HSRL) on the NASA B200 King Air aircraft during major field experiments in 2006 (MILAGRO and MaxTEX), 2007 (CHAPS), 2009 (RACORO), and 2010 (CalNex and CARES). The HSRL provided measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm). These measurements were typically made in close temporal and spatial coincidence with measurements made from DOE-funded and other participating aircraft and ground sites. On the RACORO, CARES, and CalNEX missions, we also deployed the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). RSP provided intensity and degree of linear polarization over a broad spectral and angular range enabling column-average retrievals of aerosol optical and microphysical properties. Under this project, we analyzed observations and model results from RACORO, CARES, and CalNex and accomplished the following objectives. 1. Identified aerosol types, characterize the vertical distribution of the aerosol types, and partition aerosol optical depth by type, for CARES and CalNex using HSRL data as we have done for previous missions. 2. Investigated aerosol microphysical and macrophysical properties using the RSP. 3. Used the aerosol backscatter and extinction profiles measured by the HSRL to characterize the planetary boundary layer height (PBL) and the transition zone thickness, for the RACORO and CARES and CalNex campaigns as we have done for previous campaigns. 4. Investigated how optical properties measured by HSRL vary near clouds. 5. Assessed model simulations of aerosol spatial distributions and optical and microphysical properties.« less
High-performance polymer waveguide devices via low-cost direct photolithography process
NASA Astrophysics Data System (ADS)
Wang, Jianguo; Shustack, Paul J.; Garner, Sean M.
2002-09-01
All-optical networks provide unique opportunities for polymer waveguide devices because of their excellent mechanical, thermo-optic, and electro-optic properties. Polymer materials and components have been viewed as a viable solution for metropolitan and local area networks where high volume and low cost components are needed. In this paper, we present our recent progress on the design and development of photoresist-like highly fluorinated maleimide copolymers including waveguide fabrication and optical testing. We have developed and synthesized a series of thermally stable, (Tg>150 oC, Td>300 oC) highly fluorinated (>50%) maleimide copolymers by radical co-polymerization of halogenated maleimides with various halogenated co-monomers. A theoretical correlation between optical loss and different co-polymer structures has been quantitatively established from C-H overtone analysis. We studied this correlation through design and manipulation of the copolymer structure by changing the primary properties such as molecular weight, copolymer composition, copolymer sequence distribution, and variations of the side chain including photochemically functional side units. Detailed analysis has been obtained using various characterization methods such as (H, C13, F19) NMR, UV-NIR, FTIR, GPC and so forth. The co-polymers exhibit excellent solubility in ketone solvents and high quality thin films can be prepared by spin coating. The polymer films were found to have a refractive index range of 1.42-1.67 and optical loss in the range of 0.2 to 0.4 dB/cm at 1550nm depending on the composition as extrapolated from UV-NIR spectra. When glycidyl methacrylate is incorporated into the polymer backbone, the material behaves like a negative photoresist with the addition of cationic photoinitiator. The final crosslinked waveguides show excellent optical and thermal properties. The photolithographic processing of the highly fluorinated copolymer material was examined in detail using in-situ FTIR. The influence of various polymer
The optical afterglow of the short gamma-ray burst GRB 050709.
Hjorth, Jens; Watson, Darach; Fynbo, Johan P U; Price, Paul A; Jensen, Brian L; Jørgensen, Uffe G; Kubas, Daniel; Gorosabel, Javier; Jakobsson, Páll; Sollerman, Jesper; Pedersen, Kristian; Kouveliotou, Chryssa
2005-10-06
It has long been known that there are two classes of gamma-ray bursts (GRBs), mainly distinguished by their durations. The breakthrough in our understanding of long-duration GRBs (those lasting more than approximately 2 s), which ultimately linked them with energetic type Ic supernovae, came from the discovery of their long-lived X-ray and optical 'afterglows', when precise and rapid localizations of the sources could finally be obtained. X-ray localizations have recently become available for short (duration <2 s) GRBs, which have evaded optical detection for more than 30 years. Here we report the first discovery of transient optical emission (R-band magnitude approximately 23) associated with a short burst: GRB 050709. The optical afterglow was localized with subarcsecond accuracy, and lies in the outskirts of a blue dwarf galaxy. The optical and X-ray afterglow properties 34 h after the GRB are reminiscent of the afterglows of long GRBs, which are attributable to synchrotron emission from ultrarelativistic ejecta. We did not, however, detect a supernova, as found in most nearby long GRB afterglows, which suggests a different origin for the short GRBs.
Oleophobic optical coating deposited by magnetron PVD
NASA Astrophysics Data System (ADS)
Bernt, D.; Ponomarenko, V.; Pisarev, A.
2016-09-01
Thin oxinitride films of Zn-Sn-O-N and Si-Al-O-N were deposited on glass by reactive magnetron sputtering at various nitrogen-to-oxygen ratios. Nitrogen added to oxygen led to decrease of the surface roughness and increase of oleophobic properties studied by the oil-drop test. The best oleophobity was obtained for Zn-Sn-O-N oxinitride at Zn:Sn=1:1 and N:O=1:2. Improved oleophobic properties were also demonstrated if the oxinitride film was deposited on top of the multilayer coating as the final step in the industrial cycle of production of energy efficient glass.
Global direct radiative forcing by process-parameterized aerosol optical properties
NASA Astrophysics Data System (ADS)
KirkevâG, Alf; Iversen, Trond
2002-10-01
A parameterization of aerosol optical parameters is developed and implemented in an extended version of the community climate model version 3.2 (CCM3) of the U.S. National Center for Atmospheric Research. Direct radiative forcing (DRF) by monthly averaged calculated concentrations of non-sea-salt sulfate and black carbon (BC) is estimated. Inputs are production-specific BC and sulfate from [2002] and background aerosol size distribution and composition. The scheme interpolates between tabulated values to obtain the aerosol single scattering albedo, asymmetry factor, extinction coefficient, and specific extinction coefficient. The tables are constructed by full calculations of optical properties for an array of aerosol input values, for which size-distributed aerosol properties are estimated from theory for condensation and Brownian coagulation, assumed distribution of cloud-droplet residuals from aqueous phase oxidation, and prescribed properties of the background aerosols. Humidity swelling is estimated from the Köhler equation, and Mie calculations finally yield spectrally resolved aerosol optical parameters for 13 solar bands. The scheme is shown to give excellent agreement with nonparameterized DRF calculations for a wide range of situations. Using IPCC emission scenarios for the years 2000 and 2100, calculations with an atmospheric global cliamte model (AFCM) yield a global net anthropogenic DRF of -0.11 and 0.11 W m-2, respectively, when 90% of BC from biomass burning is assumed anthropogenic. In the 2000 scenario, the individual DRF due to sulfate and BC has separately been estimated to -0.29 and 0.19 W m-2, respectively. Our estimates of DRF by BC per BC mass burden are lower than earlier published estimates. Some sensitivity tests are included to investigate to what extent uncertain assumptions may influence these results.
NASA Astrophysics Data System (ADS)
De Plano, Laura M.; Scibilia, Santi; Rizzo, Maria Giovanna; Crea, Sara; Franco, Domenico; Mezzasalma, Angela M.; Guglielmino, Salvatore P. P.
2018-03-01
Silicon nanoparticles (SiNPs) are widely used as promising nanoplatform owing to their high specific surface area, optical properties and biocompatibility. Silicon nanoparticles find possible application in biomedical environment for their potential quantum effects and the functionalization with biomaterials, too. In this work, we propose a new approach for bio-functionalization of SiNPs and M13-engineered bacteriophage, displaying specific peptides that selectively recognize peripheral blood mononuclear cells (PBMC). The "one-step" functionalization is conducted during the laser ablation of silicon plate in buffer solution with engineered bacteriophages, to obtain SiNPs binding bacteriophages (phage-SiNPs). The interaction between SiNPs and bacteriophage is investigated. Particularly, the optical and morphological characterizations of phage-SiNPs are performed by UV-Vis spectroscopy, scanning electron microscopy operating in transmission mode (STEM) and X-ray spectroscopy (EDX). The functionality of phage-SiNPs is investigated through the photoemissive properties in recognition test on PBMC. Our results showed that phage-SiNPs maintain the capability and the activity to bind PBMC within 30 min. The fluorescence of phage-SiNPs allowed to obtain an optical signal on cell type targets. Finally, the proposed strategy demonstrated its potential use in in vitro applications and could be exploited to realize an optical biosensor to detect a specific target.
NASA Astrophysics Data System (ADS)
Masada, Genta
2017-08-01
Two-mode squeezed light is an effective resource for quantum entanglement and shows a non-classical correlation between each optical mode. We are developing a two-mode squeezed light source to explore the possibility of quantum radar based on the quantum illumination theory. It is expected that the error probability for discrimination of target presence or absence is improved even in a lossy and noisy environment. We are also expecting to apply two-mode squeezed light source to quantum imaging. In this work we generated two-mode squeezed light and verify its quantum entanglement property towards quantum radar and imaging. Firstly we generated two independent single-mode squeezed light beams utilizing two sub-threshold optical parametric oscillators which include periodically-polled potassium titanyl phosphate crystals for the second order nonlinear interaction. Two single-mode squeezed light beams are combined using a half mirror with the relative optical phase of 90° between each optical field. Then entangled two-mode squeezed light beams can be generated. We observes correlation variances between quadrature phase amplitudes in entangled two-mode fields by balanced homodyne measurement. Finally we verified quantum entanglement property of two-mode squeezed light source based on Duan's and Simon's inseparability criterion.
Optoelectronic Devices and Materials
NASA Astrophysics Data System (ADS)
Sweeney, Stephen; Adams, Alfred
Unlike the majority of electronic devices, which are silicon based, optoelectronic devices are predominantly made using III-V semiconductor compounds such as GaAs, InP, GaN and GaSb and their alloys due to their direct band gap. Understanding the properties of these materials has been of vital importance in the development of optoelectronic devices. Since the first demonstration of a semiconductor laser in the early 1960s, optoelectronic devices have been produced in their millions, pervading our everyday lives in communications, computing, entertainment, lighting and medicine. It is perhaps their use in optical-fibre communications that has had the greatest impact on humankind, enabling high-quality and inexpensive voice and data transmission across the globe. Optical communications spawned a number of developments in optoelectronics, leading to devices such as vertical-cavity surface-emitting lasers, semiconductor optical amplifiers, optical modulators and avalanche photodiodes. In this chapter we discuss the underlying theory of operation of the most important optoelectronic devices. The influence of carrier-photon interactions is discussed in the context of producing efficient emitters and detectors. Finally we discuss how the semiconductor band structure can be manipulated to enhance device properties using quantum confinement and strain effects, and how the addition of dilute amounts of elements such as nitrogen is having a profound effect on the next generation of optoelectronic devices.
Investigating smoke's influence on primary production throughout the Amazon
NASA Astrophysics Data System (ADS)
Flanner, M. G.; Mahowald, N. M.; Zender, C. S.; Randerson, J. T.; Tosca, M. G.
2007-12-01
Smoke from annual burning in the Amazon causes large reduction in surface insolation and increases the diffuse fraction of photosynthetically-active radiation (PAR). These effects have competing influence on gross primary production (GPP). Recent studies indicate that the sign of net influence depends on aerosol optical depth, but the magnitude of smoke's effect on continental-scale carbon cycling is very poorly constrained and may constitute an important term of fire's net impact on carbon storage. To investigate widespread effects of Amazon smoke on surface radiation properties, we apply a version of the NCAR Community Atmosphere Model with prognostic aerosol transport, driven with re-analysis winds. Carbon aerosol emissions are derived from the Global Fire Emissions Database (GFED). We use AERONET observations to identify model biases in aerosol optical depth, single-scatter albedo, and surface radiative forcing, and prescribe new aerosol optical properties based on field observations to improve model agreement with AERONET data. Finally, we quantify a potential range of smoke-induced change in large-scale GPP based on: 1) ground measurements of GPP in the Amazon as a function of aerosol optical depth and diffuse fraction of PAR, and 2) empirical functions of ecosystem-scale photosynthesis rates currently employed in models such as the Community Land Model (CLM).
Characterization on Smart Optics Using Ellipsometry
NASA Technical Reports Server (NTRS)
Song, Kyo D.
2002-01-01
Recently, NASA Langley Research Center developed a smart active optical concept to filter narrow band pass or to control optical intensity. To characterize developed smart optics materials, we have measured thickness and reflection properties of the materials using a WVASE32 ellipsometry. This project allowed us to: (1) prepare the smart optical materials for measurement of thickness and optical properties at NASA Langley Research Center; (2) measure thickness and optical properties of the smart optical materials; (3) evaluate the measured properties in terms of applications for narrow band-pass filters. The outcomes of this research provide optical properties and physical properties of the smart optics on a selected spectral range. The applications of this development were used for field-controlled spectral smart filters.
THE CHANDRA COSMOS LEGACY SURVEY: OPTICAL/IR IDENTIFICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchesi, S.; Civano, F.; Urry, C. M.
2016-01-20
We present the catalog of optical and infrared counterparts of the Chandra COSMOS-Legacy Survey, a 4.6 Ms Chandra program on the 2.2 deg{sup 2} of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 μm identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS,more » using new K and 3.6 μm information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while ≃54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift toward faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2–10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGNs and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction.« less
NASA Astrophysics Data System (ADS)
Mozdbar, Afsaneh; Nouralishahi, Amideddin; Fatemi, Shohreh; Mirakhori, Ghazaleh
2018-01-01
In the recent decade, Carbon Quantum Dots (CQDs) have attracted lots of attention due to their excellent properties such as tunable photoluminescence, high chemical stability, low toxicity, and biocompatibility. Among all synthesis methods, the hydrothermal/solvothermal rout has been considered as one of the most common and simplest method. The type of precursors can affect the size of CQDs and determine their surface functional groups, the essential properties that deeply influence the optical specifications. In this work, the effect of different precursors on the final properties of carbon quantum dots is investigated. The carbon quantum dots were synthesized by hydrothermal/solvothermal rout using citric acid, thiourea, ethylamine and monoethanolamine as precursors in almost the same conditions of time and temperature. Resultant CQDs were characterized by using FTIR, UV-Visible Spectroscopy and Photoluminescence (PL) analysis. The results of UV-Vis spectroscopy showed that quantum dots synthesized from monoethanolamine have wider absorption band rather than the CQDs from other precursors and the absorption edge shifted from about 270 nm for ethylamine to about 470 nm in monoethanolamine. Furthermore, the results demonstrate that using citric acid and monoethanolamine as precursor improved production efficiency and emission quantum yield of the carbon dots.
NASA Astrophysics Data System (ADS)
Sun, Zuoming; Wang, Shuhua; Li, Junwei
2017-02-01
Microhole collapse property of polarization maintaining photonic crystal fibers (PM-PCF) and its effect on the splice loss and polarization cross-coupling during fusion splicing were investigated. The relationship between the microhole collapse and polarization cross-coupling are analyzed through simulation and experiment. Finally their influence to the phase error of the FOG is calculated and tested.
Kile, D.E.; Foord, E.E.
1998-01-01
Optical properties are presented for 66 samples of mica covering the range from annite ??? biotite ??? zinnwaldite ??? ferroan lepidolite and ferroan muscovite from occurrences of granitic pegmatite (NYF type) throughout the Pikes Peak batholith (PPB) in Colorado. Chemical composition was determined for 34 of these samples. The optical data are correlated with composition, mode of occurrence, and relation to pegmatite paragenesis. Optical properties of the trioctahedral micas show a consistent trend of decreasing ?? index of refraction, from an average of 1.693 in annite of the host granite to 1.577 in zinnwaldite and ferroan lepidolite of the miarolitic cavities, which correlates with a progressively decreasing content of Fe. A comparison of optical and compositional data for micas from localities throughout the PPB indicates a variation in geochemical evolution among pegmatites of different districts, and between the Pikes Peak Granite and its late satellite plutons. Analyses of mica samples taken from cross-sections through individual pegmatites reveal a decrease in index of refraction and total iron that unambiguously document a progressive geochemical evolution within a given pegmatite. Such data, in addition to field evidence, indicate that micas enclosed within massive quartz are paragenetically older than those within miarolitic cavities; minerals within miarolitic cavities represent the final stages of primary crystallization. A general model of pegmatite paragenesis is proposed that hypothesizes formation of miarolitic cavities as a consequence of pegmatite configuration and inclination, as well as early crystallization of massive quartz that confines the silicate melt and volatile phase, resulting in closed-system crystallization with a concomitant increase in pressure, consequent episodic cavity-rupture events, and corresponding changes in mica composition.
Prokopowicz, Magdalena; Czarnobaj, Katarzyna; Raczyńska, Krystyna; Łukasiak, Jerzy; Przyjazny, Andrzej
2002-01-01
The objective of these investigations was an in vitro evaluation whether silicone oil OXANE of viscosity 5700 cSt clinically used in eye surgery as a substitute of the vitreous body, being in contact with an artificial polymer lens used as an implant of human lens, causes the changes in its optical properties. The paper presents the results of spectral analysis of transmission of visible (VIS) radiation of three types of artificial lenses: hard PMMA, hydrogel, heparin surface modified (HSM) hard PMMA, and the same lenses damaged by YAG laser radiation with an energy increasing from 1.7 mJ to 3.7 mJ, exposed to clinically applied silicone oil. The studies were carried out, in two-week intervals, over a period of 20 weeks. Hard PMMA and HSM lenses were found not to have changed their optical properties after 20 weeks of exposure to silicone oil. The measured transmittance values were within the range of instrumental error (+/- 1%). Optical properties of hydrogel lenses exposed to silicone oils deteriorated with exposure and after 20-week exposure to silicone oil the average transmittance value decreased by about 18%, reaching its final value of 67.08 +/- 2.37% (RSD = 5.56%). A minimal decrease of the initial transmittance values was observed only for the lenses exposed to laser radiation of highest energy (3.7 mJ). After completed exposure to silicone oil, two kinds of lenses were found to have a slightly improved transmittance: hard PMMA lenses by about 4% and HSM lenses by about 2%. On the other hand, in case of hydrogel lenses the deterioration of optical properties to the extent comparable to that of hydrogel lenses not damaged by laser radiation was observed.
NASA Astrophysics Data System (ADS)
Gharibzadeh, Maryam; Alam, Khan; Abedini, Yousefali; Bidokhti, Abbasali Aliakbari; Masoumi, Amir
2017-11-01
Aerosol optical properties and radiative forcing over Zanjan in northwest of Iran has been analyzed during 2010-2013. The aerosol optical and radiative properties are less studied over Zanjan, and therefore, require a careful and in depth analysis. The optical properties like Aerosol Optical Depth (AOD), Ångström Exponent (AE), ASYmmetry parameter (ASY), Single Scattering Albedo (SSA), and Aerosol Volume Size Distribution (AVSD) have been evaluated using the ground-based AErosol RObotic NETwork (AERONET) data. Higher AOD while relatively lower AE were observed in the spring and summer, which showed the presence of coarse mode particles in these seasons. An obvious increase of coarse mode particles in AVSD distribution, as well as a higher value of SSA represented considerable addition of coarse mode particles like dust into the atmosphere of Zanjan in these two seasons. Increase in AE, while a decrease in AOD was detected in the winter and fall. The presence of fine particles indicates the dominance of particles like urban-industrial aerosols from local sources especially in the winter. The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model was utilized to calculate the Aerosol Radiative Forcing (ARF) at the Top of the Atmosphere (TOA), earth's surface and within the atmosphere. The annual averaged ARF values were -13.47 W m-2 and -36.1 W m-2 at the TOA and earth's surface, respectively, which indicate a significant cooling effect. Likewise, the ARF efficiencies at the TOA and earth's surface were -65.08 W m-2 and -158.43 W m-2, respectively. The annual mean atmospheric ARF and heating rate within the atmosphere were 22.63 W m-2 and 0.27 Kday-1 respectively, represented the warming effect within the atmosphere. Finally, a good agreement was found between AERONET retrieved ARF and SBDART simulated ARF.
FINAL REPORT "Extreme non-linear optics of plasmas" Pierre Michel (16-LW-022)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, Pierre
2017-11-03
Large laser facilities such as the National Ignition Facility (NIF) are typically limited in performance and physical scale (and thus cost) by optics damage. In this LDRD, we investigated a radically new way to manipulate light at extreme powers and energies, where “traditional” (crystal-based) optical elements are replaced by a medium that is already “broken” and thus does not suffer from optics damage: a plasma. Our method consisted in applying multiple lasers into plasmas to imprint refractive micro-structures with optical properties designed to be similar to those of crystals or dielectric structures used in optics. In particular, we focused ourmore » efforts on two elements used to manipulate the polarization of lasers (i.e. the orientation of the light’s electric field vector): i) a polarizer, which only lets a given polarization direction pass and blocks the others, and ii) a “Pockels cell”, which can “rotate” the polarization direction or convert it from linear to elliptical or circular. These two elements are essential building blocks in almost all laser systems – for example, they can be combined to design optical gates. Here, we introduced the new concepts of a “plasma polarizer” and a “plasma Pockels cell”. Both concepts were demonstrated in proof-of-principle laboratory experiments in this LDRD. We also demonstrated that such laser-plasma systems could be used to provide full control of the refractive index of plasmas as well as their dispersion (variation of the index vs. the light wavelength), which constituted the basis for a final experiment aimed at demonstrating the feasibility of “slow light” in plasmas, i.e. the capability to slow down a light pulse almost to a full stop.« less
NASA Astrophysics Data System (ADS)
Chethan Prathap, K. N.; Lokanath, N. K.
2018-04-01
Coumarin derivatives are an important class of heterocyclic compounds due to their physical and biological properties. Coumarin derivatives have been identified with many significant electro-optical properties and biological activities. Three novel coumarin derivatives containing benzene sulfonohydrazide group were synthesized by condensation reaction. The synthesized compounds were characterized by various spectroscopic techniques (Mass, 1H/13C NMR and FTIR). Thermal and optical properties were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and UV-Vis spectroscopic studies. Finally their structures were confirmed by single crystal X-ray diffraction (XRD) studies. The three compounds exhibit diverse intermolecular interactions, as observed by the crystal packing and Hirshfeld surface analysis. Further, their structures were optimized by density functional theory (DFT) calculations using B3LYP hybrid functionals with 6-311G+(d,p) level basis set. The Mulliken charge, molecular electrostatic potential (MEP), frontier molecular orbitals (HOMO-LUMO) were investigated. The experimentally determined parameters were compared with those calculated theoretically and they complement each other with a very good correlation. The transitions among the molecular orbitals were investigated using time-dependent density functional theory (TD-DFT) and the electronic absorption spectra obtained showed very good agreement with the experimentally measured UV-Vis spectra. Furthermore, non-linear optical (NLO) properties were investigated by calculating polarizabilities and hyperpolarizabilities. All three compounds exhibit significantly high hyperpolarizabilities compared to the reference material urea, which makes them potential candidates for NLO applications.
Final Technical Report for DE-SC0001878 [Theory and Simulation of Defects in Oxide Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chelikowsky, James R.
2014-04-14
We explored a wide variety of oxide materials and related problems, including materials at the nanoscale and generic problems associated with oxide materials such as the development of more efficient computational tools to examine these materials. We developed and implemented methods to understand the optical and structural properties of oxides. For ground state properties, our work is predominantly based on pseudopotentials and density functional theory (DFT), including new functionals and going beyond the local density approximation (LDA): LDA+U. To study excited state properties (quasiparticle and optical excitations), we use time dependent density functional theory, the GW approach, and GW plusmore » Bethe-Salpeter equation (GW-BSE) methods based on a many-body Green function approaches. Our work focused on the structural, electronic, optical and magnetic properties of defects (such as oxygen vacancies) in hafnium oxide, titanium oxide (both bulk and clusters) and related materials. We calculated the quasiparticle defect states and charge transition levels of oxygen vacancies in monoclinic hafnia. we presented a milestone G0W0 study of two of the crystalline phases of dye-sensitized TiO{sub 2} clusters. We employed hybrid density functional theory to examine the electronic structure of sexithiophene/ZnO interfaces. To identify the possible effect of epitaxial strain on stabilization of the ferromagnetic state of LaCoO{sub 3} (LCO), we compare the total energy of the magnetic and nonmagnetic states of the strained theoretical bulk structure.« less
Optical and mechanical behaviors of glassy silicone networks derived from linear siloxane precursors
NASA Astrophysics Data System (ADS)
Jang, Heejun; Seo, Wooram; Kim, Hyungsun; Lee, Yoonjoo; Kim, Younghee
2016-01-01
Silicon-based inorganic polymers are promising materials as matrix materials for glass fiber composites because of their good process ability, transparency, and thermal property. In this study, for utilization as a matrix precursor for a glass-fiber-reinforced composite, glassy silicone networks were prepared via hydrosilylation of linear/pendant Si-H polysiloxanes and the C=C bonds of viny-lterminated linear/cyclic polysiloxanes. 13C nuclear magnetic resonance spectroscopy was used to determine the structure of the cross-linked states, and a thermal analysis was performed. To assess the mechanical properties of the glassy silicone networks, we performed nanoindentation and 4-point bending tests. Cross-linked networks derived from siloxane polymers are thermally and optically more stable at high temperatures. Different cross-linking agents led to final networks with different properties due to differences in the molecular weights and structures. After stepped postcuring, the Young's modulus and the hardness of the glassy silicone networks increased; however, the brittleness also increased. The characteristics of the cross-linking agent played an important role in the functional glassy silicone networks.
Machado, Cláudia Emanuele; Tartuci, Letícia Gazola; de Fátima Gorgulho, Honória; de Oliveira, Luiz Fernando Cappa; Bettini, Jefferson; Pereira dos Santos, Daniela; Ferrari, Jefferson Luis; Schiavon, Marco Antônio
2016-03-18
This work used L-tartaric acid as a model molecule to evaluate how the use of inert and oxidizing atmospheres during pyrolysis affected the physical and optical properties of the resulting carbon dots (CDs). Pyrolysis revealed to be a simple procedure that afforded CDs in a single step, dismissed the addition of organic solvents, and involved only one extraction stage that employed water. By X-ray diffraction a dependency between the structure of the CDs and the atmosphere (oxidizing or inert) used during the pyrolysis was found. Potentiometric titration demonstrated that the CDs were largely soluble in water; it also aided characterization of the various groups that contained sp(3) -hybridized carbon atoms on the surface of the dots. Raman spectroscopy suggested that different amounts of sp(2)- and sp(3)-hybridized carbon atoms emerged on the CDs depending on the pyrolysis atmosphere. In conclusion, the pyrolysis atmosphere influenced the physical properties, such as the composition and the final structure. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optical characterisation of hydroxide catalysed bonds applied to phosphate glass
NASA Astrophysics Data System (ADS)
Lacaille, Grégoire; Mangano, Valentina; van Veggel, Anna-Maria A.; Killow, Christian J.; MacKay, Peter E.; Rowan, Sheila; Hough, James
2017-10-01
We apply the Hydroxide Catalysis Bonding (HCB) technique to phosphate glass and measure the reflectivity and Light Induced Damage Threshold (LITD) of the newly formed interface. HCB is a room temperature, high performing process which was designed for astronomical research glass assemblies and played a key role in the detection of gravitational waves, a breakthrough in contemporary science. The bonds have numerous assets including mechanical strength, stability, no outgassing and resistance to contamination which are of high interest in the precision optics industry. However only little research has been done on their optical properties and mostly on silica based materials. In this paper, we use HCB to bond phosphate glass at room temperature with the goal of designing composite components for solid state laser gain media. We change the solution parameters to identify how they influence the final properties of the bonds: the LIDT at 1535 nm in long pulse regime and the reflectivity at 532 nm are investigated. The measurement of the incidence dependent reflectance allows estimating the thickness and refractive index of the bond in a non destructive process. The best performing set of parameters yields a LIDT of 1.6 GW/cm2 (16 J/cm2) and a reflectivity below 0.03 % which makes it suitable for use in high power lasers. The bond thickness is derived both from Scanning Electron Microscopy and the reflectivity measurements and is in the range of 50-150 nm depending on the parameters. Finally, the bonds survive cutting and polishing which is promising for manufacturing purpose.
Sas, Jan; Kvačkaj, Tibor; Milkovič, Ondrej; Zemko, Michal
2016-11-30
The main goal of this study was to develop a new processing technology for a high-strength low-alloy (HSLA) steel in order to maximize the mechanical properties attainable at its low alloy levels. Samples of the steel were processed using thermal deformation schedules carried out in single-phase (γ) and dual-phase (γ + α) regions. The samples were rolled at unconventional finishing temperatures, their final mechanical properties were measured, and their strength and plasticity behavior was analyzed. The resulting microstructures were observed using optical and transmission electron microscopy (TEM). They consisted of martensite, ferrite and (NbV)CN precipitates. The study also explored the process of ferrite formation and its influence on the mechanical properties of the material.
Optical tuning of electronic valleys (Conference Presentation)
NASA Astrophysics Data System (ADS)
Sie, Edbert J.; Gedik, Nuh
2017-02-01
Monolayer transition-metal dichalcogenides such as MoS2 and WS2 are prime examples of atomically thin semiconducting crystals that exhibit remarkable electronic and optical properties. They have a pair of valleys that can serve as a new electronic degree of freedom, and these valleys obey optical selection rules with circularly polarized light. Here, we discuss how ultrafast laser pulses can be used to tune their energy levels in a controllable valley-selective manner. The energy tunability is extremely large, comparable to what would be obtained using a hundred Tesla of magnetic field. We will also show that such valley tunability can be performed while we effectively manipulate the valley selection rules. Finally, we will explore the prospect of using this technique through photoemission spectroscopy to create a new phase of matter called a valley Floquet topological insulator.
Optically stimulated luminescence (OSL) dosimetry in medicine.
Yukihara, E G; McKeever, S W S
2008-10-21
This paper reviews fundamental and practical aspects of optically stimulated luminescence (OSL) dosimetry pertaining to applications in medicine, having particularly in mind new researchers and medical physicists interested in gaining familiarity with the field. A basic phenomenological model for OSL is presented and the key processes affecting the outcome of an OSL measurement are discussed. Practical aspects discussed include stimulation modalities (continuous-wave OSL, pulsed OSL and linear modulation OSL), basic experimental setup, available OSL readers, optical fiber systems and basic properties of available OSL dosimeters. Finally, results from the recent literature on applications of OSL in radiotherapy, radiodiagnostics and heavy charged particle dosimetry are discussed in light of the theoretical and practical framework presented in this review. Open questions and future challenges in OSL dosimetry are highlighted as a guide to the research needed to further advance the field.
Tomita, Yasuo; Hata, Eiji; Momose, Keisuke; Takayama, Shingo; Liu, Xiangming; Chikama, Katsumi; Klepp, Jürgen; Pruner, Christian; Fally, Martin
2016-01-01
We present an overview of recent investigations of photopolymerizable nanocomposite photonic materials in which, thanks to their high degree of material selectivity, recorded volume gratings possess high refractive index modulation amplitude and high mechanical/thermal stability at the same time, providing versatile applications in light and neutron optics. We discuss the mechanism of grating formation in holographically exposed nanocomposite materials, based on a model of the photopolymerization-driven mutual diffusion of monomer and nanoparticles. Experimental inspection of the recorded grating’s morphology by various physicochemical and optical methods is described. We then outline the holographic recording properties of volume gratings recorded in photopolymerizable nanocomposite materials consisting of inorganic/organic nanoparticles and monomers having various photopolymerization mechanisms. Finally, we show two examples of our holographic applications, holographic digital data storage and slow-neutron beam control. PMID:27594769
NASA Astrophysics Data System (ADS)
China, Swarup
Atmospheric particles are ubiquitous in Earth's atmosphere and impact the environment and the climate while affecting human health and Earth's radiation balance, and degrading visibility. Atmospheric particles directly affect our planet's radiation budget by scattering and absorbing solar radiation, and indirectly by interacting with clouds. Single particle morphology (shape, size and internal structure) and mixing state (coating by organic and inorganic material) can significantly influence the particle optical properties as well as various microphysical processes, involving cloud-particle interactions and including heterogeneous ice nucleation and water uptake. Conversely, aerosol cloud processing can affect the morphology and mixing of the particles. For example, fresh soot has typically an open fractal-like structure, but aging and cloud processing can restructure soot into more compacted shapes, with different optical and ice nucleation properties. During my graduate research, I used an array of electron microscopy and image analysis tools to study morphology and mixing state of a large number of individual particles collected during several field and laboratory studies. To this end, I investigated various types of particles such as tar balls (spherical carbonaceous particles emitted during biomass burning) and dust particles, but with a special emphasis on soot particles. In addition, I used the Stony Brook ice nucleation cell facility to investigate heterogeneous ice nucleation and water uptake by long-range transported particles collected at the Pico Mountain Observatory, in the Archipelago of the Azores. Finally, I used ice nucleation data from the SAAS (Soot Aerosol Aging Study) chamber study at the Pacific Northwest National Laboratory to understand the effects that ice nucleation and supercooled water processing has on the morphology of residual soot particles. Some highlights of our findings and implications are discussed next. We found that the morphology of fresh soot emitted by vehicles depends on the driving conditions (i.e.; the vehicle specific power). Soot emitted by biomass burning is often heavily coated by other materials while processing of soot in urban environment exhibits complex mixing. We also found that long-range transported soot over the ocean after atmospheric processing is very compacted. In addition, our results suggest that freezing process can facilitate restructuring of soot and results into collapsed soot. Furthermore, numerical simulations showed strong influence on optical properties when fresh open fractal-like soot evolved to collapsed soot. Further investigation of long-range transported aged particles exhibits that they are efficient in water uptake and can induce ice nucleation in colder temperature. Our results have implications for assessing the impact of the morphology and mixing state of soot particles on human health, environment and climate. Our findings can provide guidance to numerical models such as particle-resolved mixing state models to account for, and better understand, vehicular emissions and soot evolution since its emission to atmospheric processing in urban environment and finally in remote regions after long-range transport. Morphology and mixing state information can be used to model observational-constrained optical properties. The details of morphology and mixing state of soot particles are crucial to assess the accuracy of climate models in describing the contribution of soot radiative forcing and their direct and indirect climate effects. Finally, our observations of ice nucleation ability by aged particles show that nucleated particles are internally mixed and coated with several materials.
Chen, Alvin I.; Balter, Max L.; Chen, Melanie I.; Gross, Daniel; Alam, Sheikh K.; Maguire, Timothy J.; Yarmush, Martin L.
2016-01-01
Purpose: This paper describes the design, fabrication, and characterization of multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties. The phantoms comprise epidermis, dermis, and hypodermis skin layers, blood vessels, and blood mimicking fluid. Each tissue component may be individually tailored to a range of physiological and demographic conditions. Methods: The skin layers were constructed from varying concentrations of gelatin and agar. Synthetic melanin, India ink, absorbing dyes, and Intralipid were added to provide optical absorption and scattering in the skin layers. Bovine serum albumin was used to increase acoustic attenuation, and 40 μm diameter silica microspheres were used to induce acoustic backscatter. Phantom vessels consisting of thin-walled polydimethylsiloxane tubing were embedded at depths of 2–6 mm beneath the skin, and blood mimicking fluid was passed through the vessels. The phantoms were characterized through uniaxial compression and tension experiments, rheological frequency sweep studies, diffuse reflectance spectroscopy, and ultrasonic pulse-echo measurements. Results were then compared to in vivo and ex vivo literature data. Results: The elastic and dynamic shear behavior of the phantom skin layers and vessel wall closely approximated the behavior of porcine skin tissues and human vessels. Similarly, the optical properties of the phantom tissue components in the wavelength range of 400–1100 nm, as well as the acoustic properties in the frequency range of 2–9 MHz, were comparable to human tissue data. Normalized root mean square percent errors between the phantom results and the literature reference values ranged from 1.06% to 9.82%, which for many measurements were less than the sample variability. Finally, the mechanical and imaging characteristics of the phantoms were found to remain stable after 30 days of storage at 21 °C. Conclusions: The phantoms described in this work simulate the mechanical, optical, and acoustic properties of human skin tissues, vessel tissue, and blood. In this way, the phantoms are uniquely suited to serve as test models for multimodal imaging techniques and image-guided interventions. PMID:27277058
NASA Astrophysics Data System (ADS)
Chen, Pengfei; Li, Neng; Chen, Xingzhu; Ong, Wee-Jun; Zhao, Xiujian
2018-01-01
Black phosphorus, which is a relatively rare allotrope of phosphorus, was first discovered by Bridgman in 1914. Since the advent of two-dimensional (2D) black phosphorus (which is known as phosphorene due to its resembling graphene sheets) in early 2014, research interest in the arena of black phosphorus was reignited in the scientific and technological communities. Henceforth, a myriad of research studies on this new member of the 2D world have been extensively emerged. Fascinatingly, 2D black phosphorus exhibits a distinctive wrinkled structure with the high hole mobility up to 1000 cm2 V-1 s-1, excellent mechanical properties, tunable band structures, anisotropic thermal, electrical and optical properties, thus leading to its marvelous prospects in device applications. This review firstly introduces the state-of-the-art development, structural properties and preparation routes of black phosphorus. In particular, anisotropy involved in mechanical properties, thermal conductivity, carrier transport as well as optical properties is comprehensively discussed. Apart from discussing the recent progress in black phosphorus which is applied to devices (i.e. field effect transistors and optoelectronic), the review also highlights the bottlenecks encountered by the society and finally casts an invigorating perspective and insightful outlook on the future direction of the next-generation 2D black phosphorus by harnessing its remarkable characteristics for energy production.
NASA Astrophysics Data System (ADS)
Yan, Xue-Wei; Tian, Shou-Fu; Dong, Min-Jie; Zou, Li
2018-01-01
In this paper, we consider the cubic Schrödinger equation with a bounded potential, which describes the propagation properties of optical soliton solutions. By employing an ansatz method, we precisely derive the bright and dark soliton solutions of the equation. Moreover, we obtain three classes of analytic periodic wave solutions expressed in terms of the Jacobi's elliptic functions including cn ,sn and dn functions. Finally, by using a tanh function method, its complexitons solutions are derived in a very natural way. It is hoped that our results can enrich the nonlinear dynamical behaviors of the cubic Schrödinger equation with a bounded potential.
NASA Astrophysics Data System (ADS)
Jamali-Sheini, Farid; Cheraghizade, Mohsen; Yousefi, Ramin
2018-06-01
In this study, electrodeposition technique was applied to deposit un-, lead (Pb), and zinc (Zn)-doped SnSe films. X-ray diffraction (XRD) patterns of the films showed a polycrystalline SnSe phase with orthorhombic crystalline lattice. SEM images revealed ball-shaped, rod-shaped, and wire-shaped morphologies for SnSe films. Moreover, optical measurements indicated incorporation of dopant in the crystalline lattice of films by varying the optical energy band gap. Electrical characterization of Pb- and Zn-doped SnSe films showed their p-type nature. Finally, the solar cell device fabricated using the Zn-doped SnSe films reveal a higher efficiency because of their higher carrier concentration.
Large-core single-mode rib SU8 waveguide using solvent-assisted microcontact molding.
Huang, Cheng-Sheng; Wang, Wei-Chih
2008-09-01
This paper describes a novel fabrication technique for constructing a polymer-based large-core single-mode rib waveguide. A negative tone SU8 photoresist with a high optical transmission over a large wavelength range and stable mechanical properties was used as a waveguide material. A waveguide was constructed by using a polydimethylsiloxane stamp combined with a solvent-assisted microcontact molding technique. The effects on the final pattern's geometry of four different process conditions were investigated. Optical simulations were performed using beam propagation method software. Single-mode beam propagation was observed at the output of the simulated waveguide as well as the actual waveguide through the microscope image.
Electronic and optical properties of GaAs/AlGaAs Fibonacci ordered multiple quantum well systems
NASA Astrophysics Data System (ADS)
Amini, M.; Soleimani, M.; Ehsani, M. H.
2017-12-01
We numerically investigated the optical rectification coefficients (ORCs), transmission coefficient, energy levels and corresponding eigen-functions of GaAs/AlGaAs Fibonacci ordered multiple quantum well systems (FO-MQWs) in the presence of an external electric field. In our calculations, two different methods, including transfer matrix and finite-difference have been used. It has been illustrated that with three types of the FO-MQWs, presented here, localization of the wave-function in any position of the structure is possible. Therefore, managing the electron distribution within the system is easier now. Finally, using the presented structures we could tune the position and amplitude of the ORCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saad, Yousef
2014-03-19
The master project under which this work is funded had as its main objective to develop computational methods for modeling electronic excited-state and optical properties of various nanostructures. The specific goals of the computer science group were primarily to develop effective numerical algorithms in Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TDDFT). There were essentially four distinct stated objectives. The first objective was to study and develop effective numerical algorithms for solving large eigenvalue problems such as those that arise in Density Functional Theory (DFT) methods. The second objective was to explore so-called linear scaling methods ormore » Methods that avoid diagonalization. The third was to develop effective approaches for Time-Dependent DFT (TDDFT). Our fourth and final objective was to examine effective solution strategies for other problems in electronic excitations, such as the GW/Bethe-Salpeter method, and quantum transport problems.« less
NASA Astrophysics Data System (ADS)
Nose, T.; Watanabe, Y.; Kon, A.; Ito, R.; Honma, M.
2018-02-01
Recently, millimeter-waves (MMWs) have become indispensable for application in next-generation high-speed wireless communication i.e., 5G, in addition to conventional applications such as in automobile collision avoidance radars and airport security inspection systems. Some manageable devices to control MMW propagation will be necessary with the development of this new technology field. We believe that liquid crystal (LC) devices are one of the major candidates for such applications because it is known that LC materials are excellent electro-optic materials. However, as the wavelength of MMWs is extremely longer than the optics region, extremely thick LC layers are necessary if we choose the quasioptic approach to attain LC MMW control devices. Therefore, we adopt a PDLC structure to attain the extremely thick LC layers by using porous (polymethyl methacrylate) PMMA materials, which can be easily obtained using a solvent consisting of a mixture of ethanol/water and a little heating. In this work, we focus on Fresnel lens, which is an important quasi-optic device for MMW application, to introduce a tunable property by using LC materials. Here, we adopt the thin film deposition method to obtain a porous PMMA matrix with the aim of obtaining final composite structure based on the Fresnel substrate. First, the fundamental material properties of porous PMMA are investigated to control the microscopic porous structure. Then, the LC-MMW Fresnel lens substrate is prepared using a 3D printer, and the fundamental MMW focusing properties of the prototype composite Fresnel structure are investigated.
Dey, Arjun; Nayak, Manish Kumar; Esther, A Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A K; Bera, Parthasarathi; Barshilia, Harish C; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D Raghavendra; Sridhara, N; Sharma, Anand Kumar
2016-11-17
Vanadium oxide-molybdenum oxide (VO-MO) thin (21-475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V 2 O 5 , V 2 O 3 and VO 2 along with MoO 3 . Reversible or smart transition was found to occur just above the room temperature i.e., at ~45-50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10 -5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azarang, Majid, E-mail: azarangmajid@gmail.com, E-mail: azarang@phys.usb.ac.ir; Department of Physics, University of Sistan and Baluchestan, 98135-674 Zahedan; Shuhaimi, Ahmad
2014-08-28
The effects of different concentrations of graphene oxide (GO) on the structure and optical properties of ZnO nanoparticles (NPs) were investigated. The nanocomposites were synthesized via the sol-gel method in a gelatin medium. X-ray diffraction patterns (XRD) and Fourier transform infrared spectroscopy indicated that the GO sheets were reduced and changed to reduced GO (RGO) during the calcination of the nanocomposites at 400 °C. In addition, the XRD patterns of the NPs indicated a hexagonal (wurtzite) structure for all the products. Microscopic studies showed that the NPs were decorated and dispersed on the RGO sheets very well. However, these studies revealedmore » that the RGO concentration had an effect on the crystal growth process for the ZnO NPs. Furthermore, these studies showed that the NPs could be grown with a single crystal quality in an optimum RGO concentration. According to the XRD results that were obtained from pure ZnO NPs, the calcinations temperature was decreased by the RGO. UV–vis and room temperature photoluminescence studies showed that the optical properties of the ZnO/RGO nanocomposite were affected by the RGO concentration. Finally, the obtained ZnO/RGO nanocomposite was used to generate a photocurrent. Observations showed that the photocurrent intensity of the nanocomposite was significantly increased by increasing the RGO, with an optimum RGO concentration.« less
NASA Astrophysics Data System (ADS)
Dey, Arjun; Nayak, Manish Kumar; Esther, A. Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A. K.; Bera, Parthasarathi; Barshilia, Harish C.; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D. Raghavendra; Sridhara, N.; Sharma, Anand Kumar
2016-11-01
Vanadium oxide-molybdenum oxide (VO-MO) thin (21-475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V2O5, V2O3 and VO2 along with MoO3. Reversible or smart transition was found to occur just above the room temperature i.e., at ~45-50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10-5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films.
NASA Astrophysics Data System (ADS)
Bouzidia, Nabaa; Salah, Najet; Hamdi, Besma; Ben Salah, Abdelhamid
2017-04-01
The study of metal phosphate has been a proactive field of research thanks to its applied and scientific importance, especially in terms of the development of optical devices such as solid state lasers as well as optical fibers. The present paper seeks to investigate the synthesis, crystal structure, elemental analysis and properties of FeAlF2(C10H8N2)(HPO4)2(H2O) compound investigated by spectroscopic studies (FT-IR and FT-Raman), thermal behavior and luminescence. The Hirshfeld surface analysis and 2-D fingerprint plot have been performed to explore the behavior of these weak interactions and crystal cohesion. This investigation shows that the molecules are connected by hydrogen bonds of the type Osbnd H⋯O and Osbnd H⋯F. In addition, the 2,2'‒bipyridine ligand plays a significant role in the construction of 3-D supramolecular framework via π‒π stacking. FT‒IR and FT‒Raman spectra were used so as to ease the responsibilities of the vibration modes of the title compound. The thermal analysis (TGA) study shows a mass loss evolution as a temperature function. Finally, the optical properties were evaluated by photoluminescence spectroscopy.
Optimizing ITO for incorporation into multilayer thin film stacks for visible and NIR applications
NASA Astrophysics Data System (ADS)
Roschuk, Tyler; Taddeo, David; Levita, Zachary; Morrish, Alan; Brown, Douglas
2017-05-01
Indium Tin Oxide, ITO, is the industry standard for transparent conductive coatings. As such, the common metrics for characterizing ITO performance are its transmission and conductivity/resistivity (or sheet resistance). In spite of its recurrent use in a broad range of technological applications, the performance of ITO itself is highly variable, depending on the method of deposition and chamber conditions, and a single well defined set of properties does not exist. This poses particular challenges for the incorporation of ITO in complex optical multilayer stacks while trying to maintain electronic performance. Complicating matters further, ITO suffers increased absorption losses in the NIR - making the ability to incorporate ITO into anti-reflective stacks crucial to optimizing overall optical performance when ITO is used in real world applications. In this work, we discuss the use of ITO in multilayer thin film stacks for applications from the visible to the NIR. In the NIR, we discuss methods to analyze and fine tune the film properties to account for, and minimize, losses due to absorption and to optimize the overall transmission of the multilayer stacks. The ability to obtain high transmission while maintaining good electrical properties, specifically low resistivity, is demonstrated. Trade-offs between transmission and conductivity with variation of process parameters are discussed in light of optimizing the performance of the final optical stack and not just with consideration to the ITO film itself.
Design rules for phase-change materials in data storage applications.
Lencer, Dominic; Salinga, Martin; Wuttig, Matthias
2011-05-10
Phase-change materials can rapidly and reversibly be switched between an amorphous and a crystalline phase. Since both phases are characterized by very different optical and electrical properties, these materials can be employed for rewritable optical and electrical data storage. Hence, there are considerable efforts to identify suitable materials, and to optimize them with respect to specific applications. Design rules that can explain why the materials identified so far enable phase-change based devices would hence be very beneficial. This article describes materials that have been successfully employed and dicusses common features regarding both typical structures and bonding mechanisms. It is shown that typical structural motifs and electronic properties can be found in the crystalline state that are indicative for resonant bonding, from which the employed contrast originates. The occurence of resonance is linked to the composition, thus providing a design rule for phase-change materials. This understanding helps to unravel characteristic properties such as electrical and thermal conductivity which are discussed in the subsequent section. Then, turning to the transition kinetics between the phases, the current understanding and modeling of the processes of amorphization and crystallization are discussed. Finally, present approaches for improved high-capacity optical discs and fast non-volatile electrical memories, that hold the potential to succeed present-day's Flash memory, are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dai, Jun; Zhou, Pengxia; Lu, Junfeng; Zheng, Hongge; Guo, Jiyuan; Wang, Fang; Gu, Ning; Xu, Chunxiang
2016-01-14
Bandgap tunable semiconductor materials have wide application in integrated-optoelectronic and communication devices. The CdS1-xSex ternary semiconductor materials covering green-red bands have been reported previously, but their basic band-gap and optical properties crucial to the performance of the CdS1-xSex-based optoelectronic devices have not been deeply understood. In this paper, we theoretically simulated and discussed the feasibility of bandgap-tunable CdS1-xSex nanomaterials for designing wavelength tunable microlasers. Then we fabricated the CdS1-xSex nanobelts with their band gap ranging from 2.4 to 1.74 eV by adjusting the composition ratio x in the vapor-phase-transport growth process. The temperature-dependent photoluminescence and exciton-related optical constants of the CdS1-xSex nanobelts were carefully demonstrated. Finally, the wavelength-tunable Fabry-Perot lasing in CdS1-xSex nanobelts was obtained, and the Fabry-Perot lasing mechanism was numerically simulated by the FDTD method. The systematic results on the mechanism of the tunable band gap, exciton properties and lasing of the CdS1-xSex nanostructure help us deeply understand the intrinsic optical properties of this material, and will build a strong foundation for future application of green-red wavelength-tunable CdS1-xSex microlasers.
Characterization of pi-Conjugated Polymers for Transistor and Photovoltaic Applications
NASA Astrophysics Data System (ADS)
Paulsen, Bryan D.
pi-Conjugated polymers represent a unique class of optoelectronic materials. Being polymers, they are solution processable and inherently "soft" materials. This makes them attractive candidates for the production of roll-to-roll printed electronic devices on flexible substrates. The optical and electronic properties of pi-conjugated polymers are synthetically tunable allowing material sets to be tailored to specific applications. Two of the most heavily researched applications are the thin film transistor, the building block of electronic circuits, and the bulk heterojunction solar cell, which holds great potential as a renewable energy source. Key to developing commercially feasible pi-conjugated polymer devices is a thorough understanding of the electronic structure and charge transport behavior of these materials in relationship with polymer structure. Here this structure property relationship has been investigated through electrical and electrochemical means in concert with a variety of other characterization techniques and device test beds. The tunability of polymer optical band gap and frontier molecular orbital energy level was investigated in systems of vinyl incorporating statistical copolymers. Energy levels and band gaps are crucial parameters in developing efficient photovoltaic devices, with control of these parameters being highly desirable. Additionally, charge transport and density of electronic states were investigated in pi-conjugated polymers at extremely high electrochemically induced charge density. Finally, the effects of molecular weight on pi-conjugated polymer optical properties, energy levels, charge transport, morphology, and photovoltaic device performance was examined.
Femtosecond laser processing of optical fibres for novel sensor development
NASA Astrophysics Data System (ADS)
Kalli, Kyriacos; Theodosiou, Antreas; Ioannou, Andreas; Lacraz, Amedee
2017-04-01
We present results of recent research where we have utilized a femtosecond laser to micro-structure silica and polymer optical fibres in order to realize versatile optical components such as diffractive optical elements on the fibre end face, the inscription of integrated waveguide circuits in the fibre cladding and novel optical fibre sensors designs based on Bragg gratings in the core. A major hurdle in tailoring or modifying the properties of optical fibres is the development of an inscription method that can prove to be a flexible and reliable process that is generally applicable to all optical fibre types; this requires careful matching of the laser parameters and optics in order to examine the spatial limits of direct laser writing, whether the application is structuring at the surface of the optical fibre or inscription in the core and cladding of the fibre. We demonstrate a variety of optical components such as two-dimensional grating structures, Bessel, Airy and vortex beam generators; moreover, optical bridging waveguides inscribed in the cladding of single-mode fibre as a means to selectively couple light from single-core to multi-core optical fibres, and demonstrate a grating based sensor; finally, we have developed a novel femtosecond laser inscription method for the precise inscription of tailored Bragg grating sensors in silica and polymer optical fibres. We also show that this novel fibre Bragg grating inscription technique can be used to modify and add versatility to an existing, encapsulated optical fibre pressure sensor.
Note: Near infrared spectral and transient measurements of PbS quantum dots luminescence.
Parfenov, P S; Litvin, A P; Ushakova, E V; Fedorov, A V; Baranov, A V; Berwick, K
2013-11-01
We describe an experimental setup for the characterization of luminescence from nanostructures. The setup is intended for steady-state and time-resolved luminescence measurements in the near-infrared region. The setup allows us to study spectral luminescence properties in the spectral range of 0.8-2.0 μm with high spectral resolution and kinetic luminescence properties between 0.8 and 1.7 μm with a time resolution of 3 ns. The capabilities of the system are illustrated by taking luminescence measurements from PbS quantum dots. We established the size dependencies of the optical properties of the PbS quantum dots over a wide spectral range. Finally, the energy transfer process was studied with a high temporal and spectral resolution.
The undergraduate optics course at Millersville University
NASA Astrophysics Data System (ADS)
Gilani, Tariq H.; Dushkina, Natalia M.
2009-06-01
For many years, there was no stand alone course in optics at Millersville University (MU). In the fall of 2007, the Physics Department offered for the first time PHYS 331: Fundamentals in Optics, a discovery based lab course in geometrical, physical and modern optics. This 300-level, 2 credits course consists of four contact hours per week including one-hour lecture and three hours laboratory. This course is required for BS in physics majors, but is open also to other science majors, who have the appropriate background and have met the prerequisites. This course deals with fundamental optics and optical techniques in greater depth so that the student is abreast of the activities in the forefront of the field. The goal of the course is to provide hands-on experience and in-depth preparation of our students for graduate programs in optics or as a workforce for new emerging high-tech local industries. Students learn applied optics through sequence of discovery based laboratory experiments chosen from a broad range of topics in optics and lasers, as the emphasis is on geometrical optics, geometrical aberrations in optical systems, wave optics, microscopy, spectroscopy, polarization, birefringence, laser generation, laser properties and applications, and optical standards. The peer-guided but open-ended approach provides excellent practice for the academic model of science research. Solving problems is embedded in the laboratory part as an introduction to or a conclusion of the experiment performed during the lab period. The homework problems are carefully chosen to reflect the most important relations from the covered material. Important part of the student learning strategy is the individual work on a final mini project which is presented in the class and is included in the final grading. This new course also impacted the department's undergraduate research and training programs. Some of the individual projects were extended to senior research projects in optics as part of the senior research and seminar courses, PHYS 492 and PHYS 498, which are required for graduation for all physics majors. The optics course also provides basic resources for both research and training in the classical and modern optics of high-school students and K-12 teachers. The successful implementation of the optics course was secured by a budget of about $60,000.
Accretion Rates for T Tauri Stars Using Nearly Simultaneous Ultraviolet and Optical Spectra
NASA Astrophysics Data System (ADS)
Ingleby, Laura; Calvet, Nuria; Herczeg, Gregory; Blaty, Alex; Walter, Frederick; Ardila, David; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne; Brown, Alexander
2013-04-01
We analyze the accretion properties of 21 low-mass T Tauri stars using a data set of contemporaneous near-UV (NUV) through optical observations obtained with the Hubble Space Telescope Imaging Spectrograph and the ground-based Small and Medium Aperture Research Telescope System, a unique data set because of the nearly simultaneous broad wavelength coverage. Our data set includes accreting T Tauri stars in Taurus, Chamaeleon I, η Chamaeleon, and the TW Hydra Association. For each source we calculate the accretion rate (\\dot{M}) by fitting the NUV and optical excesses above the photosphere, produced in the accretion shock, introducing multiple accretion components characterized by a range in energy flux (or density) for the first time. This treatment is motivated by models of the magnetospheric geometry and accretion footprints, which predict that high-density, low filling factor accretion spots coexist with low-density, high filling factor spots. By fitting the UV and optical spectra with multiple accretion components, we can explain excesses which have been observed in the near-IR. Comparing our estimates of \\dot{M} to previous estimates, we find some discrepancies; however, they may be accounted for when considering assumptions for the amount of extinction and variability in optical spectra. Therefore, we confirm many previous estimates of the accretion rate. Finally, we measure emission line luminosities from the same spectra used for the \\dot{M} estimates, to produce correlations between accretion indicators (Hβ, Ca II K, C II], and Mg II) and accretion properties obtained simultaneously.
NASA Astrophysics Data System (ADS)
Zhou, Yijie; Huang, Aibin; Zhou, Huaijuan; Ji, Shidong; Jin, Ping
2018-03-01
Research on functional flexible films has recently been attracting widespread attention especially with regards to foils, which can be designed artificially on the basis of the practical requirements. In this work, a foil with high visible reflection and a strong near infrared shielding efficiency was prepared by a simple wet chemical method. In the process of making this kind of optical foil, emulsion polymerization was first introduced to synthesize polymer opals, which were further compressed between two pieces of polyethylene terephthalate (PET) foil under polymer melting temperature to obtain a photonic crystal film with a strong reflection in the visible region to block blue rays. The following step was to coat a layer of the inorganic nano paint, which was synthesized by dispersing Cs-doped WO3 (CWO) nanoparticles homogenously into organic resin on the surface of the PET to achieve a high near infrared shielding ability. The final composite foil exhibited unique optical properties such as high visible reflectance (23.9%) to block blue rays, and excellent near infrared shielding efficiency (98.0%), meanwhile it still maintained a high transparency meaning that this foil could potentially be applied in energy-saving window films. To sum up, this study provides new insight into devising flexible hybrid films with novel optical properties, which could be further extended to prepare other optical films for potential use in automobile, architectural and other decorative fields.
NASA Astrophysics Data System (ADS)
Naznin, Shakila; Sher, Md. Sohel Mahmud
2016-08-01
A label-free optical microring resonator biosensor based on lithium niobate-on-insulator (LNOI) technology is designed and simulated for biosensing applications. Although silicon-on-insulator technology is quite mature over LNOI for fabricating more compact microring resonators, the latter is attractive for its excellent electro-optic, ferroelectric, piezoelectric, photoelastic, and nonlinear optic properties, which can offer a wide range of tuning facilities for sensing. To satisfy the requirement of high sensitivity in biosensing, the dual-microring resonator model is applied to design the proposed sensor. The transmission spectrum obtained from two-dimensional simulations based on finite-difference time-domain method demonstrates that the designed LNOI microring sensor consisting of a 10-μm outer ring and a 5-μm inner ring offers a sensitivity of ˜68 nm/refractive index unit (RIU) and a minimum detection limit of 10-2 RIU. Finally, the sensor's performance is simulated for glucose sensing, a biosensing application.
Investigation of multilayer domains in large-scale CVD monolayer graphene by optical imaging
NASA Astrophysics Data System (ADS)
Yu, Yuanfang; Li, Zhenzhen; Wang, Wenhui; Guo, Xitao; Jiang, Jie; Nan, Haiyan; Ni, Zhenhua
2017-03-01
CVD graphene is a promising candidate for optoelectronic applications due to its high quality and high yield. However, multi-layer domains could inevitably form at the nucleation centers during the growth. Here, we propose an optical imaging technique to precisely identify the multilayer domains and also the ratio of their coverage in large-scale CVD monolayer graphene. We have also shown that the stacking disorder in twisted bilayer graphene as well as the impurities on the graphene surface could be distinguished by optical imaging. Finally, we investigated the effects of bilayer domains on the optical and electrical properties of CVD graphene, and found that the carrier mobility of CVD graphene is seriously limited by scattering from bilayer domains. Our results could be useful for guiding future optoelectronic applications of large-scale CVD graphene. Project supported by the National Natural Science Foundation of China (Nos. 61422503, 61376104), the Open Research Funds of Key Laboratory of MEMS of Ministry of Education (SEU, China), and the Fundamental Research Funds for the Central Universities.
Ladder-structured photonic variable delay device
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
1998-01-01
An ladder-structured variable delay device for providing variable true time delay to multiple optical beams simultaneously. The device comprises multiple basic units stacked on top of each other resembling a ladder. Each basic unit comprises a polarization sensitive corner reflector formed by two polarization beamsplitters and a polarization rotator array placed parallel to the hypotenuse of the corner reflector. Controlling an array element of the polarization rotator array causes an optical beam passing through the array element to either go up to a basic unit above it or reflect back towards output. The beams going higher on the ladder experience longer optical path delay. Finally, the ladder-structured variable device can be cascaded with another multi-channel delay device to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.
On marginally resolved objects in optical interferometry
NASA Astrophysics Data System (ADS)
Lachaume, R.
2003-03-01
With the present and soon-to-be breakthrough of optical interferometry, countless objects shall be within reach of interferometers; yet, most of them are expected to remain only marginally resolved with hectometric baselines. In this paper, we tackle the problem of deriving the properties of a marginally resolved object from its optical visibilities. We show that they depend on the moments of flux distribution of the object: centre, mean angular size, asymmetry, and curtosis. We also point out that the visibility amplitude is a second-order phenomenon, whereas the phase is a combination of a first-order term, giving the location of the photocentre, and a third-order term, more difficult to detect than the visibility amplitude, giving an asymmetry coefficient of the object. We then demonstrate that optical visibilities are not a good model constraint while the object stays marginally resolved, unless observations are carried out at different wavelengths. Finally, we show an application of this formalism to circumstellar discs.
Isotope effects on the optical spectra of semiconductors
NASA Astrophysics Data System (ADS)
Cardona, Manuel; Thewalt, M. L. W.
2005-10-01
Since the end of the cold war, macroscopic amounts of separated stable isotopes of most elements have been available “off the shelf” at affordable prices. Using these materials, single crystals of many semiconductors have been grown and the dependence of their physical properties on isotopic composition has been investigated. The most conspicuous effects observed have to do with the dependence of phonon frequencies and linewidths on isotopic composition. These affect the electronic properties of solids through the mechanism of electron-phonon interaction, in particular, in the corresponding optical excitation spectra and energy gaps. This review contains a brief introduction to the history, availability, and characterization of stable isotopes, including their many applications in science and technology. It is followed by a concise discussion of the effects of isotopic composition on the vibrational spectra, including the influence of average isotopic masses and isotopic disorder on the phonons. The final sections deal with the effects of electron-phonon interaction on energy gaps, the concomitant effects on the luminescence spectra of free and bound excitons, with particular emphasis on silicon, and the effects of isotopic composition of the host material on the optical transitions between the bound states of hydrogenic impurities.
Fabrication and mechanical behavior of dye-doped polymer optical fiber
NASA Astrophysics Data System (ADS)
Jiang, Changhong; Kuzyk, Mark G.; Ding, Jow-Lian; Johns, William E.; Welker, David J.
2002-07-01
The purpose of this article is to study the materials physics behind dye-doped polymethyl metharcylate (PMMA) that is important for the optical fiber drawing process. We report effects of the fabrication process on the mechanical properties of the final fiber. The qualitative degree of polymer chain alignment is found to increase with the drawing force, which in turn decreases with the drawing temperature and increases with the drawing ratio. The chain alignment relaxes when the fibers are annealed at 95 degC with a commensurate decrease in fiber length and increase in diameter. The annealed fiber has higher ductility but lower strength than the unannealed fiber. Both the yield and tensile strengths are dependent on the strain rate. The relationship between tensile strength, sigmab, and fiber diameter, d, is found empirically to be sigmab[is proportional to]d-0.5. The yield strength appears to be less sensitive to the fiber diameter than the tensile strength. For PMMA doped with disperse red 1 azo dye, the yield strength, tensile strength, and Young's modulus peak at a dye concentration of 0.0094 wt %. These results are useful for designing polymer optical fibers with well-defined mechanical properties.
NASA Astrophysics Data System (ADS)
Vytykáčová, Soňa; Mrázek, Jan; Puchý, Viktor; Džunda, Róbert; Skála, Roman; Peterka, Pavel; Kašík, Ivan
2018-04-01
We present a generic sol-gel route to the preparation of optically active nanocrystalline holmium-yttrium titanate (Ho0.05Y0.95)2Ti2O7 thin films, which exhibit a strong luminescence at 2 μm. The films were prepared by the sol-gel process and thermally treated in a rapid thermal annealing furnace. The nanocrystal size and optical properties were tailored by the processing temperature. The final film thickness was around 500 nm. X-ray diffraction analysis and Raman spectroscopy confirmed the high purity of the crystal phase of (Ho0.05Y0.95)2Ti2O7. The activation energy of crystal growth was 35.7 kJ mol-1. The films had excellent structural and surface homogeneity causing their high transparency close to the theoretical limit of 93.39%. Refractive index of the film heat-treated at 1000 °C was around 1.98. The films exhibited strong emission at 2 μm with a luminescence lifetime around 4.6 ms. Their properties together with processing feasibility make them promising materials for photonic applications.
Theory of optical transitions in π-conjugated macrocycles
NASA Astrophysics Data System (ADS)
Marcus, Max; Coonjobeeharry, Jaymee; Barford, William
2016-04-01
We describe a theoretical and computational investigation of the optical properties of π-conjugated macrocycles. Since the low-energy excitations of these systems are Frenkel excitons that couple to high-frequency dispersionless phonons, we employ the quantized Frenkel-Holstein model and solve it via the density matrix renormalization group (DMRG) method. First we consider optical emission from perfectly circular systems. Owing to optical selection rules, such systems radiate via two mechanisms: (i) within the Condon approximation, by thermally induced emission from the optically allowed j = ± 1 states and (ii) beyond the Condon approximation, by emission from the j = 0 state via coupling with a totally non-symmetric phonon (namely, the Herzberg-Teller effect). Using perturbation theory, we derive an expression for the Herzberg-Teller correction and show via DMRG calculations that this expression soon fails as ħ ω/J and the size of the macrocycle increase. Next, we consider the role of broken symmetry caused by torsional disorder. In this case the quantum number j no longer labels eigenstates of angular momentum, but instead labels localized local exciton groundstates (LEGSs) or quasi-extended states (QEESs). As for linear polymers, LEGSs define chromophores, with the higher energy QEESs being extended over numerous LEGSs. Within the Condon approximation (i.e., neglecting the Herzberg-Teller correction) we show that increased disorder increases the emissive optical intensity, because all the LEGSs are optically active. We next consider the combined role of broken symmetry and curvature, by explicitly evaluating the Herzberg-Teller correction in disordered systems via the DMRG method. The Herzberg-Teller correction is most evident in the emission intensity ratio, I00/I01. In the Condon approximation I00/I01 is a constant function of curvature, whereas in practice it vanishes for closed rings and only approaches a constant in the limit of vanishing curvature. We calculate the optical spectra of a model system, cyclo-poly(para-phenylene ethynylene), for different amounts of torsional disorder within and beyond the Condon approximation. We show how broken symmetry and the Herzberg-Teller effect explain the spectral features. The Herzberg-Teller correction to the 0-1 emission vibronic peak is always significant. Finally, we note the qualitative similarities between the optical properties of conformationally disordered linear polymers and macrocycles in the limit of sufficiently large disorder, because in both cases they are determined by the optical properties of curved chromophores.
Evaluation of polymer based third order nonlinear integrated optics devices
NASA Astrophysics Data System (ADS)
Driessen, A.; Hoekstra, H. J. W. M.; Blom, F. C.; Horst, F.; Krijnen, G. J. M.; van Schoot, J. B. P.; Lambeck, P. V.; Popma, Th. J. A.; Diemeer, M. B.
1998-01-01
Nonlinear polymers are promising materials for high speed active integrated optics devices. In this paper we evaluate the perspectives polymer based nonlinear optical devices can offer. Special attention is directed to the materials aspects. In our experimental work we applied mainly Akzo Nobel DANS side-chain polymer that exhibits large second and third order coefficients. This material has been characterized by third harmonic generation, z-scan and pump-probe measurements. In addition, various waveguiding structures have been used to measure the nonlinear absorption (two photon absorption) on a ps time-scale. Finally an integrated optics Mach Zehnder interferometer has been realized and evaluated. It is shown that the DANS side-chain polymer has many of the desired properties: the material is easily processable in high-quality optical waveguiding structures, has low linear absorption and its nonlinearity has a pure electronic origin. More materials research has to be done to arrive at materials with higher nonlinear coefficients to allow switching at moderate light intensity ( < 1 W peak power) and also with lower nonlinear absorption coefficients.
Threshold thickness for applying diffusion equation in thin tissue optical imaging
NASA Astrophysics Data System (ADS)
Zhang, Yunyao; Zhu, Jingping; Cui, Weiwen; Nie, Wei; Li, Jie; Xu, Zhenghong
2014-08-01
We investigated the suitability of the semi-infinite model of the diffusion equation when using diffuse optical imaging (DOI) to image thin tissues with double boundaries. Both diffuse approximation and Monte Carlo methods were applied to simulate light propagation in the thin tissue model with variable optical parameters and tissue thicknesses. A threshold value of the tissue thickness was defined as the minimum thickness in which the semi-infinite model exhibits the same reflected intensity as that from the double-boundary model and was generated as the final result. In contrast to our initial hypothesis that all optical properties would affect the threshold thickness, our results show that only absorption coefficient is the dominant parameter and the others are negligible. The threshold thickness decreases from 1 cm to 4 mm as the absorption coefficient grows from 0.01 mm-1 to 0.2 mm-1. A look-up curve was derived to guide the selection of the appropriate model during the optical diagnosis of thin tissue cancers. These results are useful in guiding the development of the endoscopic DOI for esophageal, cervical and colorectal cancers, among others.
Graphene and graphene-like 2D materials for optical biosensing and bioimaging: a review
NASA Astrophysics Data System (ADS)
Zhu, Chengzhou; Du, Dan; Lin, Yuehe
2015-09-01
The increasing demands of bioassay and biomedical applications have significantly promoted the rational design and fabrication of a wide range of functional nanomaterials. Coupling these advanced nanomaterials with biomolecule recognition events leads to novel sensing and diagnostic platforms. Because of their unique structures and multifunctionalities, two-dimensional nanomaterials, such as graphene and graphene-like materials (e.g., graphitic carbon nitride, transition metal dichalcogenides, boron nitride, and transition metal oxides), have stimulated great interest in the field of optical biosensors and imaging because of their innovative mechanical, physicochemical and optical properties. Depending on the different applications, the graphene and graphene-like nanomaterials can be tailored to form either fluorescent emitters or efficient fluorescence quenchers, making them powerful platforms for fabricating a series of optical biosensors to sensitively detect various targets including ions, small biomolecules, DNA/RNA and proteins. This review highlights the recent progress in optical biosensors based on graphene and graphene-like 2D materials and their imaging applications. Finally, the opportunities and some critical challenges in this field are also addressed.
Fast propagation of electromagnetic fields through graded-index media.
Zhong, Huiying; Zhang, Site; Shi, Rui; Hellmann, Christian; Wyrowski, Frank
2018-04-01
Graded-index (GRIN) media are widely used for modeling different situations: some components are designed considering GRIN modulation, e.g., multi-mode fibers, optical lenses, or acousto-optical modulators; on the other hand, there are other components where the refractive-index variation is undesired due to, e.g., stress or heating; and finally, some effects in nature are characterized by a GRIN variation, like turbulence in air or biological tissues. Modeling electromagnetic fields propagating in GRIN media is then of high importance for optical simulation and design. Though ray tracing can be used to evaluate some basic effects in GRIN media, the field properties are not considered and evaluated. The general physical optics techniques, like finite element method or finite difference time domain, can be used to calculate fields in GRIN media, but they need great numerical effort or may even be impractical for large-scale components. Therefore, there still exists a demand for a fast physical optics model of field propagation through GRIN media on a large scale, which will be explored in this paper.
Lazebnik, Mariya; Zhu, Changfang; Palmer, Gregory M.; Harter, Josephine; Sewall, Sarah; Ramanujam, Nirmala; Hagness, Susan C.
2009-01-01
Techniques utilizing electromagnetic energy at microwave and optical frequencies have been shown to be promising for breast cancer detection and diagnosis. Since different biophysical mechanisms are exploited at these frequencies to discriminate between healthy and diseased tissue, combining these two modalities may result in a more powerful approach for breast cancer detection and diagnosis. Toward this end, we performed microwave dielectric spectroscopy and optical diffuse reflectance spectroscopy measurements at the same sites on freshly-excised normal breast tissues obtained from reduction surgeries at the University of Wisconsin Hospital, using microwave and optical probes with very similar sensing volumes. We found that the microwave dielectric constant and effective conductivity are correlated with tissue composition across the entire measurement frequency range (|r|~0.5–0.6, p<0.01), and that the optical absorption coefficient at 460 nm and optical scattering coefficient are correlated with tissue composition (|r|~ 0.4–0.6, p<0.02). Finally, we found that the optical absorption coefficient at 460 nm is correlated with the microwave dielectric constant and effective conductivity (r=−0.55, p<0.01). Our results suggest that combining optical and microwave modalities for analyzing breast tissue samples may serve as a crosscheck and provide complementary information about tissue composition. PMID:18838370
Lazebnik, Mariya; Zhu, Changfang; Palmer, Gregory M; Harter, Josephine; Sewall, Sarah; Ramanujam, Nirmala; Hagness, Susan C
2008-10-01
Techniques utilizing electromagnetic energy at microwave and optical frequencies have been shown to be promising for breast cancer detection and diagnosis. Since different biophysical mechanisms are exploited at these frequencies to discriminate between healthy and diseased tissue, combining these two modalities may result in a more powerful approach for breast cancer detection and diagnosis. Toward this end, we performed microwave dielectric spectroscopy and optical diffuse reflectance spectroscopy measurements at the same sites on freshly excised normal breast tissues obtained from reduction surgeries at the University of Wisconsin Hospital, using microwave and optical probes with very similar sensing volumes. We found that the microwave dielectric constant and effective conductivity are correlated with tissue composition across the entire measurement frequency range (|r| approximately 0.5-0.6, p<0.01) and that the optical absorption coefficient at 460 nm and optical scattering coefficient are correlated with tissue composition (|r| approximately 0.4-0.6, p<0.02). Finally, we found that the optical absorption coefficient at 460 nm is correlated with the microwave dielectric constant and effective conductivity (r=-0.55, p<0.01). Our results suggest that combining optical and microwave modalities for analyzing breast tissue samples may serve as a crosscheck and provide complementary information about tissue composition.
NASA Astrophysics Data System (ADS)
Vahidi, K.; Jalili, Y. Seyed; Salar Elahi, A.
2017-10-01
Electrical and physical properties of conducting polymers are generally enhanced via modifications in the chemical structure of the final product, there appears to be a void in facile physical means to improve the materials' properties without utilizing additives which remain in the final product as impurity. In this research, we presented the effect of altering the introduction method of reactants in emulsion polymerization of PPy with CTAB on the electrical, physical and stability properties of the final product. Three samples were prepared: one via a conventional non-emulsion polymerization method as a reference sample, the second in which the reactants were added simultaneously and the goal sample in which the monomer/surfactant mixture was allowed to be stirred separately then it was added dropwise to the oxidant solution. UV-vis, FTIR, 4-point Van Derr Paw probe, FESEM and contact angle measurements were used to investigate optical, electrical, physical, heat stability and solubility properties of the samples. The results indicate that since in the final sample a higher portion of the reaction occurred on the hydrophobic interior of the micelles, the final material had a lower number of structural and chemical defects which leads to higher conjugation lengths and thus higher properties such as a 9-fold difference in conductivity and improved solubility and thermal stability. The novelty of this work lies in the simplicity of the alterations that have been made, both in terms of optimization of the synthetic route which had been thoroughly investigated and also in terms of the differences that our work poses compared to that of the others; namely: the parameters have been thoroughly studied and analyzed but not the method of addition as in our experiments the sequence of addition and the method of addition of the reactants were altered to observe their effect on the physical and the electronic properties which has led to the conclusion that in case of drop-wise addition, a larger portion of the reaction occurs inside the micelles hence giving rise to inhibition of the defect-producing chemical bonds which is supported by the analysis in our investigations.
LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET
NASA Astrophysics Data System (ADS)
Amiridis, V.; Marinou, E.; Tsekeri, A.; Wandinger, U.; Schwarz, A.; Giannakaki, E.; Mamouri, R.; Kokkalis, P.; Binietoglou, I.; Solomos, S.; Herekakis, T.; Kazadzis, S.; Gerasopoulos, E.; Proestakis, E.; Kottas, M.; Balis, D.; Papayannis, A.; Kontoes, C.; Kourtidis, K.; Papagiannopoulos, N.; Mona, L.; Pappalardo, G.; Le Rille, O.; Ansmann, A.
2015-07-01
We present LIVAS (LIdar climatology of Vertical Aerosol Structure for space-based lidar simulation studies), a 3-D multi-wavelength global aerosol and cloud optical database, optimized to be used for future space-based lidar end-to-end simulations of realistic atmospheric scenarios as well as retrieval algorithm testing activities. The LIVAS database provides averaged profiles of aerosol optical properties for the potential spaceborne laser operating wavelengths of 355, 532, 1064, 1570 and 2050 nm and of cloud optical properties at the wavelength of 532 nm. The global database is based on CALIPSO observations at 532 and 1064 nm and on aerosol-type-dependent backscatter- and extinction-related Ångström exponents, derived from EARLINET (European Aerosol Research Lidar Network) ground-based measurements for the UV and scattering calculations for the IR wavelengths, using a combination of input data from AERONET, suitable aerosol models and recent literature. The required spectral conversions are calculated for each of the CALIPSO aerosol types and are applied to CALIPSO backscatter and extinction data corresponding to the aerosol type retrieved by the CALIPSO aerosol classification scheme. A cloud optical database based on CALIPSO measurements at 532 nm is also provided, neglecting wavelength conversion due to approximately neutral scattering behavior of clouds along the spectral range of LIVAS. Averages of particle linear depolarization ratio profiles at 532 nm are provided as well. Finally, vertical distributions for a set of selected scenes of specific atmospheric phenomena (e.g., dust outbreaks, volcanic eruptions, wild fires, polar stratospheric clouds) are analyzed and spectrally converted so as to be used as case studies for spaceborne lidar performance assessments. The final global data set includes 4-year (1 January 2008-31 December 2011) time-averaged CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) data on a uniform grid of 1° × 1° with the original high vertical resolution of CALIPSO in order to ensure realistic simulations of the atmospheric variability in lidar end-to-end simulations.
The application of diffraction grating in the design of virtual reality (VR) system
NASA Astrophysics Data System (ADS)
Chen, Jiekang; Huang, Qitai; Guan, Min
2017-10-01
Virtual Reality (VR) products serve for human eyes ultimately, and the optical properties of VR optical systems must be consistent with the characteristic of human eyes. The monocular coaxial VR optical system is simulated in ZEMAX. A diffraction grating is added to the optical surface next to the eye, and the lights emitted from the diffraction grating are deflected, which can forming an asymmetrical field of view(FOV). Then the lateral chromatic aberration caused by the diffraction grating was corrected by the chromatic dispersion of the prism. Finally, the aspheric surface was added to further optimum design. During the optical design of the system, how to balance the dispersion of the diffraction grating and the prism is the main problem. The balance was achieved by adjusting the parameters of the grating and the prism constantly, and then using aspheric surfaces finally. In order to make the asymmetric FOV of the system consistent with the angle of the visual axis, and to ensure the stereo vision area clear, the smaller half FOV of monocular system is required to reach 30°. Eventually, a system with asymmetrical FOV of 30°+40° was designed. In addition, the aberration curve of the system was analyzed by ZEMAX, and the binocular FOV was calculated according to the principle of binocular overlap. The results show that the asymmetry of FOV of VR monocular optical system can fit to human eyes and the imaging quality match for the human visual characteristics. At the same time, the diffraction grating increases binocular FOV, which decreases the requirement for the design FOV of monocular system.
Photonic jet etching: Justifying the shape of optical fiber tip
NASA Astrophysics Data System (ADS)
Abdurrochman, Andri; Zelgowski, Julien; Lecler, Sylvain; Mermet, Frédéric; Tumbelaka, Bernard; Fontaine, Joël
2016-02-01
Photonic jet (PJ) is a low diverging and highly concentrated beam in the shadow side of dielectric particle (cylinder or sphere). The concentration can be more than 200 times higher than the incidence wave. It is a non-resonance phenomenon in the near-field can propagate in a few wavelengths. Many potential applications have been proposed, including PJ etching. Hence, a guided-beam is considered increasing the PJ mobility control. While the others used a combination of classical optical fibers and spheres, we are concerned on a classical optical fiber with spherical tip to generate the PJ. This PJ driven waveguide has been realized using Gaussian mode beam inside the core. It has different variable parameters compared to classical PJ, which will be discussed in correlation with the etching demonstrations. The parameters dependency between the tip and PJ properties are complex; and theoretical aspect of this interaction will be exposed to justify the shape of our tip and optical fiber used in our demonstrations. Methods to achieve such a needed optical fiber tip will also be described. Finally the ability to generate PJ out of the shaped optical fiber will be experimentally demonstrated and the potential applications for material processing will be exposed.
Liu, Jun; Zhang, Liqun; Cao, Dapeng; Wang, Wenchuan
2009-12-28
Polymer nanocomposites (PNCs) often exhibit excellent mechanical, thermal, electrical and optical properties, because they combine the performances of both polymers and inorganic or organic nanoparticles. Recently, computer modeling and simulation are playing an important role in exploring the reinforcement mechanism of the PNCs and even the design of functional PNCs. This report provides an overview of the progress made in past decades in the investigation of the static, rheological and mechanical properties of polymer nanocomposites studied by computer modeling and simulation. Emphases are placed on exploring the mechanisms at the molecular level for the dispersion of nanoparticles in nanocomposites, the effects of nanoparticles on chain conformation and glass transition temperature (T(g)), as well as viscoelastic and mechanical properties. Finally, some future challenges and opportunities in computer modeling and simulation of PNCs are addressed.
Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husko, Chad; Wulf, Matthias; Lefrancois, Simon
Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing themore » free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrodinger equation model. Finally, these results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Si-Yong; Hsieh, Chien-Te; Lin, Tzu-Wei
The present work develops an atomic layer reduction (ALR) method to accurately tune oxidation level, electrical conductance, band-gap structure, and photoluminescence (PL) response of graphene oxide (GO) sheets. The ALR route is carried out at 200 °C within ALR cycle number of 10–100. The ALR treatment is capable of striping surface functionalities (e.g., hydroxyl, carbonyl, and carboxylic groups), producing thermally-reduced GO sheets. The ALR cycle number serves as a controlling factor in adjusting the crystalline, surface chemistry, electrical, optical properties of GO sheets. With increasing the ALR cycle number, ALR-GO sheets display a high crystallinity, a low oxidation level, anmore » improved electrical conductivity, a narrow band gap, and a tunable PL response. Finally, on the basis of the results, the ALR technique offers a great potential for accurately tune electrical and optical properties of carbon materials through the cyclic removal of oxygen functionalities, without any complicated thermal and chemical desorption processes.« less
NASA Astrophysics Data System (ADS)
Broch, Katharina; Aufderheide, Antje; Novak, Jiri; Hinderhofer, Alexander; Gerlach, Alexander; Banerjee, Rupak; Schreiber, Frank
2013-03-01
Binary mixtures of organic semiconductors (OSCs) have recently become an important field of research, as they find applications in opto-electronic devices. In these systems, the mixing (intermixing vs. phase separation) and ordering behavior is crucial, since it affects the optical and electronic properties. We present a comprehensive study of binary mixtures of the three prototypical OSCs pentacene (PEN), perfluoropentacene (PFP) and diindenoperlyene (DIP) in all possible combinations. Using X-ray reflectivity and grazing incidence X-ray diffraction we investigate the stuctural properties of the mixed films as well as their impact on the optical spectra obtained by spectroscopic ellipsometry. For PEN:DIP we find an anisotropic ordering behavior, comparable to that observed in some liquid crystals, which is fundamentally new for OSCs. The influence of sterical compatibility and the strength of the intermolecular interactions on the mixing and ordering behavior in the different blends will be discussed by extending a conventional mean-field model. Finally, we discuss general rules for the targeted preparation of blends of OSCs.
Gu, Si-Yong; Hsieh, Chien-Te; Lin, Tzu-Wei; ...
2018-05-12
The present work develops an atomic layer reduction (ALR) method to accurately tune oxidation level, electrical conductance, band-gap structure, and photoluminescence (PL) response of graphene oxide (GO) sheets. The ALR route is carried out at 200 °C within ALR cycle number of 10–100. The ALR treatment is capable of striping surface functionalities (e.g., hydroxyl, carbonyl, and carboxylic groups), producing thermally-reduced GO sheets. The ALR cycle number serves as a controlling factor in adjusting the crystalline, surface chemistry, electrical, optical properties of GO sheets. With increasing the ALR cycle number, ALR-GO sheets display a high crystallinity, a low oxidation level, anmore » improved electrical conductivity, a narrow band gap, and a tunable PL response. Finally, on the basis of the results, the ALR technique offers a great potential for accurately tune electrical and optical properties of carbon materials through the cyclic removal of oxygen functionalities, without any complicated thermal and chemical desorption processes.« less
Optical and magnetic properties of zinc oxide quantum dots doped with cobalt and lanthanum.
Yu, Shiyong; Zhao, Jing; Su, Hai-Quan
2013-06-01
Cobalt and Lanthanum-doped ZnO QDs are synthesized by a modified sol-gel method under atmospheric conditions. The as-prepared quantum dots are characterized by X-ray powder diffraction (XRD), energy dispersive X-ray (EDX) analysis and high resolution transmission electron microscopy (HRTEM). The optical properties of the products are studied by fluorescent spectroscopy. With a proper Co and La doping, these nanoparticles possess exceptionally small size and enhanced fluorescence. Hysteresis loops of un-doped ZnO QDs and Co and La-doped ZnO QDs indicate that both the samples show ferromagnetic behavior at room temperature. Finally, these nanoparticles can label the BGC 803 cells successfully in short time and present no evidence of toxicity or adverse affect on cell growth even at the concentration up to 1 mM. We expect that the as-prepared Co and La-doped ZnO QDs can provide a better reliability of the collected data and find promising applications in biological, medical and other fields.
Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides
Husko, Chad; Wulf, Matthias; Lefrancois, Simon; ...
2016-04-15
Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing themore » free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrodinger equation model. Finally, these results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotov, Valeri
2016-05-29
The research in this program involves theoretical investigations of electronic, optical and mechanical properties of graphene and its derivatives, such as bi-layer graphene, graphene-based van der Waals heterostructures, strained graphene, as well as graphene on various surfaces. One line of research has been development of theoretical models that support graphene’s large array of possible technological applications. For example one of our goals has been the understanding of surface plasmons and spin relaxation mechanisms in graphene, related to novel optoelectronics and spintronics applications. Our current research focus is on understanding the role of correlations in graphene under mechanical deformations, such asmore » strain. The main goal is to describe the mutual interplay between strain and electron-electron interactions which could lead to the formation of novel elec- tronic phases with strongly modified electronic, magnetic and optical properties. This direction of research contributes to deeper understanding of interactions in graphene and related atomically-thin materials - a subject at the forefront of research on graphene and its derivatives.« less
Photoelectrochemical properties of highly mobilized Li-doped ZnO thin films.
Shinde, S S; Bhosale, C H; Rajpure, K Y
2013-03-05
Li-doped ZnO thin films with preferred (002) orientation have been prepared by spray pyrolysis technique in aqueous medium on to the corning glass substrates. The effect of Li-doping on to the photoelectrochemical, structural, morphological, optical, luminescence, electrical and thermal properties has been investigated. XRD and Raman study indicates that the films have hexagonal crystal structure. The transmittance, reflectance, refractive index, extinction coefficient and bandgap have been analyzed by optical study. PL spectra consist of a near band edge and visible emission due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial zinc (Zni), interstitial oxygen (Oi) and zinc vacancy (VZn). The Li-doped ZnO films prepared for 1at% doping possesses the highest electron mobility of 102cm(2)/Vs and carrier concentration of 3.62×10(19)cm(-3). Finally, degradation of 2,4,6-Trinitrotoluene using Li-doped ZnO thin films has been reported. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Do, Minh Thanh; Tong, Quang Cong; Luong, Mai Hoang; Lidiak, Alexander; Ledoux-Rak, Isabelle; Lai, Ngoc Diep
2016-05-01
We report fabrication of Au nanoisland films on different substrates by thermally annealing a sputtered Au nanolayer and investigation of their structure, morphology, and optical properties. It was found that high-temperature annealing leads to transformation of the initial, continuous film into the forms of hillock and isolated island film. The final nanoisland films exhibit remarkably enhanced and localized plasmon resonance spectra with respect to the original sputtered film. The strong dependence of the resonance band spectra of the resulting structures on the annealing temperature and supporting substrate is presented and analyzed, suggesting that both of these factors could be used to tune the optical spectroscopic properties of such structures. Moreover, we propose and demonstrate a novel and effective approach for fabrication of patterned Au structures by thermally annealing the Au layer deposited onto modulated-surface substrates. The experimental results indicate that this method could become a promising approach for manufacturing plasmonic array structures, which have been extensively investigated and widely applied in many fields.
Trottier-Lapointe, W; Zabeida, O; Schmitt, T; Martinu, L
2016-11-01
Ultralow refractive index materials (n less than 1.38 at 550 nm) are of particular interest in the context of antireflective coatings, allowing one to enhance their overall optical performance. However, application of such materials is typically limited by their mechanical properties. In this study, we explore the characteristics of a new category of hybrid (organic/inorganic) SiOCH thin films prepared by glancing angle deposition (GLAD) using electron beam evaporation of SiO2 in the presence of an organosilicon precursor. The resulting layers exhibited n as low as 1.2, showed high elastic rebound, and generally better mechanical properties than their inorganic counterparts. In addition, hybrid GLAD films were found to be highly hydrophobic. The performance of the films is discussed in terms of their hybridicity (organic/inorganic) ratio determined by infrared spectroscopic ellipsometry as well as the presence of anisotropy assessed by the nanostructure-based spectroscopic ellipsometry model. Finally, we demonstrate successful implementation of the ultralow-index material in a complete antireflective stack.
Recent progress of obliquely deposited thin films for industrial applications
NASA Astrophysics Data System (ADS)
Suzuki, Motofumi; Itoh, Tadayoshi; Taga, Yasunori
1999-06-01
More than 10 years ago, birefringent films of metal oxides were formed by oblique vapor deposition and investigated with a view of their application to optical retardation plates. The retardation function of the films was explained in terms of the birefringence caused by the characteristic anisotropic nanostructure inside the films. These films are now classified in the genre of the so-called sculptured thin films. However, the birefringent films thus prepared are not yet industrialized even now due to the crucial lack of the durability and the yield of products. In this review paper, we describe the present status of application process of the retardation films to the information systems such as compact disc and digital versatile disc devices with a special emphasis on the uniformity of retardation properties in a large area and the stability of the optical properties of the obliquely deposited thin films. Finally, further challenges for wide application of the obliquely deposited thin films are also discussed.
High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applications
NASA Astrophysics Data System (ADS)
Marcaud, Guillaume; Matzen, Sylvia; Alonso-Ramos, Carlos; Le Roux, Xavier; Berciano, Mathias; Maroutian, Thomas; Agnus, Guillaume; Aubert, Pascal; Largeau, Ludovic; Pillard, Valérie; Serna, Samuel; Benedikovic, Daniel; Pendenque, Christopher; Cassan, Eric; Marris-Morini, Delphine; Lecoeur, Philippe; Vivien, Laurent
2018-03-01
Functional oxides are considered as promising materials for photonic applications due to their extraordinary and various optical properties. Especially, yttria-stabilized zirconia (YSZ) has a high refractive index (˜2.15), leading to a good confinement of the optical mode in waveguides. Furthermore, YSZ can also be used as a buffer layer to expand toward a large family of oxides-based thin-films heterostructures. In this paper, we report a complete study of the structural properties of YSZ for the development of integrated optical devices on sapphire in telecom wavelength range. The substrate preparation and the epitaxial growth using pulsed-laser deposition technique have been studied and optimized. High-quality YSZ thin films with remarkably sharp x-ray diffraction rocking curve peaks in 10-3∘ range have then been grown on sapphire (0001). It was demonstrated that a thermal annealing of sapphire substrate before the YSZ growth allowed controlling the out-of-plane orientation of the YSZ thin film. Single-mode waveguides were finally designed, fabricated, and characterized for two different main orientations of high-quality YSZ (001) and (111). Propagation loss as low as 2 dB/cm at a wavelength of 1380 nm has been demonstrated for both orientations. These results pave the way for the development of a functional oxides-based photonics platform for numerous applications including on-chip optical communications and sensing.
Liao, Yu-Kai; Tseng, Sheng-Hao
2014-01-01
Accurately determining the optical properties of multi-layer turbid media using a layered diffusion model is often a difficult task and could be an ill-posed problem. In this study, an iterative algorithm was proposed for solving such problems. This algorithm employed a layered diffusion model to calculate the optical properties of a layered sample at several source-detector separations (SDSs). The optical properties determined at various SDSs were mutually referenced to complete one round of iteration and the optical properties were gradually revised in further iterations until a set of stable optical properties was obtained. We evaluated the performance of the proposed method using frequency domain Monte Carlo simulations and found that the method could robustly recover the layered sample properties with various layer thickness and optical property settings. It is expected that this algorithm can work with photon transport models in frequency and time domain for various applications, such as determination of subcutaneous fat or muscle optical properties and monitoring the hemodynamics of muscle. PMID:24688828
Willander, M; Nur, O; Zhao, Q X; Yang, L L; Lorenz, M; Cao, B Q; Zúñiga Pérez, J; Czekalla, C; Zimmermann, G; Grundmann, M; Bakin, A; Behrends, A; Al-Suleiman, M; El-Shaer, A; Che Mofor, A; Postels, B; Waag, A; Boukos, N; Travlos, A; Kwack, H S; Guinard, J; Le Si Dang, D
2009-08-19
Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include metal-organic chemical vapour deposition (MOCVD), vapour phase epitaxy (VPE), pulse laser deposition (PLD), vapour-liquid-solid (VLS), aqueous chemical growth (ACG) and finally the electrodeposition technique as an example of a selective growth approach. Results from structural as well as optical properties of a variety of ZnO nanorods are shown and analysed using different techniques, including high resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), photoluminescence (PL) and cathodoluminescence (CL), for both room temperature and for low temperature performance. These results indicate that the grown ZnO nanorods possess reproducible and interesting optical properties. Results on obtaining p-type doping in ZnO micro- and nanorods are also demonstrated using PLD. Three independent indications were found for p-type conducting, phosphorus-doped ZnO nanorods: first, acceptor-related CL peaks, second, opposite transfer characteristics of back-gate field effect transistors using undoped and phosphorus doped wire channels, and finally, rectifying I-V characteristics of ZnO:P nanowire/ZnO:Ga p-n junctions. Then light emitting diodes (LEDs) based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed. The hybrid LEDs reviewed and discussed here are mainly presented for two groups: those based on n-ZnO nanorods and p-type crystalline substrates, and those based on n-ZnO nanorods and p-type amorphous substrates. Promising electroluminescence characteristics aimed at the development of white LEDs are demonstrated. Although some of the presented LEDs show visible emission for applied biases in excess of 10 V, optimized structures are expected to provide the same emission at much lower voltage. Finally, lasing from ZnO nanorods is briefly reviewed. An example of a recent whispering gallery mode (WGM) lasing from ZnO is demonstrated as a way to enhance the stimulated emission from small size structures.
NASA Astrophysics Data System (ADS)
Rodríguez-Vidal, E.; Quintana, I.; Etxarri, J.; Otaduy, D.; González, F.; Moreno, F.
2012-06-01
Laser transmission welding (LTW) of polymers is a direct bonding technique which is already used in different industrial applications sectors such as automobile, microfluidic, electronic and biomedicine. This technique offers several advantages over conventional methods, especially when a local deposition of energy and minimum thermal distortions are required. In LTW one of the polymeric materials needs to be transparent to the laser wavelength and the second part needs to be designed to be absorbed in IR spectrum. This report presents a study of laser weldability of ABS (acrylonitrile/butadiene/styrene) filled with two different concentrations of carbon nanotubes (0.01% and 0.05% CNTs). These additives are used as infrared absorbing components in the laser welding process, affecting the thermal and optical properties of the material and, hence, the final quality of the weld seam. A tailored laser system has been designed to obtain high quality weld seams with widths between 0.4 and 1.0mm. It consists of two diode laser bars (50W per bar) coupled into an optical fiber using a non-imaging solution: equalization of the beam quality factor (M2) in the slow and fast axes by a pair of micro step-mirrors. The beam quality factor has been analyzed at different laser powers with the aim to guarantee a coupling efficiency to the multimode optical fiber. The power scaling is carried out by means of multiplexing polarization technique. The analysis of energy balance and beam quality is performed in two linked steps: first by means ray tracing simulations (ZEMAX®) and second, by validation. Quality of the weld seams is analyzed in terms of the process parameters (welding speed, laser power and clamping pressure) by visual and optical microscope inspections. The optimum laser power range for three different welding speeds is determinate meanwhile the clamping pressure is held constant. Additionally, the corresponding mechanical shear tests were carried out to analyze the mechanical properties of the weld seams. This work provides a detailed study concerning the effect of the material microstructure and laser beam quality on the final weld formation and surface integrity.
NASA Astrophysics Data System (ADS)
Wang, Kai; Cross, Nick; Boulesbaa, Abdelaziz; Pudasaini, Pushpa R.; Tian, Mengkun; Mahjouri-Samani, Masoud; Oxley, Mark P.; Rouleau, Christopher M.; Puretzky, Alexander A.; Rack, Philip D.; Xiao, Kai; Yoon, Mina; Eres, Gyula; Duscher, Gerd; Geohegan, David B.
2017-02-01
Incorporating dopants in monolayer transition metal dichalcogenides (TMD) can enable manipulations of their electrical and optical properties. Previous attempts in amphoteric doping in monolayer TMDs have proven to be challenging. Here we report the incorporation of molybdenum (Mo) atoms in monolayer WS2 during growth by chemical vapor deposition, and correlate the distribution of Mo atoms with the optical properties including photoluminescence and ultrafast transient absorption dynamics. Dark field scanning transmission electron microscopy imaging quantified the isoelectronic doping of Mo in WS2 and revealed its gradual distribution along a triangular WS2 monolayer crystal, increasing from 0% at the edge to 2% in the center of the triangular WS2 triangular crystals. This agrees well with the Raman spectra data that showed two obvious modes between 360 cm-1 and 400 cm-1 that corresponded to MoS2 in the center. This in-plane gradual distribution of Mo in WS2 was found to account for the spatial variations in photoluminescence intensity and emission energy. Transition absorption spectroscopy further indicated that the incorporation of Mo in WS2 regulate the amplitude ratio of XA and XB of WS2. The effect of Mo incorporation on the electronic structure of WS2 was further elucidated by density functional theory. Finally, we compared the electrical properties of Mo incorporated and pristine WS2 monolayers by fabricating field-effect transistors. The isoelectronic doping of Mo in WS2 provides an alternative approach to engineer the bandgap and also enriches our understanding the influence of the doping on the excitonic dynamics.
Self-healing gold mirrors and filters at liquid-liquid interfaces
NASA Astrophysics Data System (ADS)
Smirnov, Evgeny; Peljo, Pekka; Scanlon, Micheál D.; Gumy, Frederic; Girault, Hubert H.
2016-03-01
The optical and morphological properties of lustrous metal self-healing liquid-like nanofilms were systematically studied for different applications (e.g., optical mirrors or filters). These nanofilms were formed by a one-step self-assembly methodology of gold nanoparticles (AuNPs) at immiscible water-oil interfaces, previously reported by our group. We investigated a host of experimental variables and herein report their influence on the optical properties of nanofilms: AuNP mean diameter, interfacial AuNP surface coverage, nature of the organic solvent, and nature of the lipophilic organic molecule that caps the AuNPs in the interfacial nanofilm. To probe the interfacial gold nanofilms we used in situ (UV-vis-NIR spectroscopy and optical microscopy) as well as ex situ (SEM and TEM of interfacial gold nanofilms transferred to silicon substrates) techniques. The interfacial AuNP surface coverage strongly influenced the morphology of the interfacial nanofilms, and in turn their maximum reflectance and absorbance. We observed three distinct morphological regimes; (i) smooth 2D monolayers of ``floating islands'' of AuNPs at low surface coverages, (ii) a mixed 2D/3D regime with the beginnings of 3D nanostructures consisting of small piles of adsorbed AuNPs even under sub-full-monolayer conditions and, finally, (iii) a 3D regime characterised by the 2D full-monolayer being covered in significant piles of adsorbed AuNPs. A maximal value of reflectance reached 58% in comparison with a solid gold mirror, when 38 nm mean diameter AuNPs were used at a water-nitrobenzene interface. Meanwhile, interfacial gold nanofilms prepared with 12 nm mean diameter AuNPs exhibited the highest extinction intensities at ca. 690 nm and absorbance around 90% of the incident light, making them an attractive candidate for filtering applications. Furthermore, the interparticle spacing, and resulting interparticle plasmon coupling derived optical properties, varied significantly on replacing tetrathiafulvalene with neocuproine as the AuNP capping ligand in the nanofilm. These interfacial nanofilms formed with neocuproine and 38 nm mean diameter AuNPs, at monolayer surface coverages and above, were black due to aggregation and broadband absorbance.The optical and morphological properties of lustrous metal self-healing liquid-like nanofilms were systematically studied for different applications (e.g., optical mirrors or filters). These nanofilms were formed by a one-step self-assembly methodology of gold nanoparticles (AuNPs) at immiscible water-oil interfaces, previously reported by our group. We investigated a host of experimental variables and herein report their influence on the optical properties of nanofilms: AuNP mean diameter, interfacial AuNP surface coverage, nature of the organic solvent, and nature of the lipophilic organic molecule that caps the AuNPs in the interfacial nanofilm. To probe the interfacial gold nanofilms we used in situ (UV-vis-NIR spectroscopy and optical microscopy) as well as ex situ (SEM and TEM of interfacial gold nanofilms transferred to silicon substrates) techniques. The interfacial AuNP surface coverage strongly influenced the morphology of the interfacial nanofilms, and in turn their maximum reflectance and absorbance. We observed three distinct morphological regimes; (i) smooth 2D monolayers of ``floating islands'' of AuNPs at low surface coverages, (ii) a mixed 2D/3D regime with the beginnings of 3D nanostructures consisting of small piles of adsorbed AuNPs even under sub-full-monolayer conditions and, finally, (iii) a 3D regime characterised by the 2D full-monolayer being covered in significant piles of adsorbed AuNPs. A maximal value of reflectance reached 58% in comparison with a solid gold mirror, when 38 nm mean diameter AuNPs were used at a water-nitrobenzene interface. Meanwhile, interfacial gold nanofilms prepared with 12 nm mean diameter AuNPs exhibited the highest extinction intensities at ca. 690 nm and absorbance around 90% of the incident light, making them an attractive candidate for filtering applications. Furthermore, the interparticle spacing, and resulting interparticle plasmon coupling derived optical properties, varied significantly on replacing tetrathiafulvalene with neocuproine as the AuNP capping ligand in the nanofilm. These interfacial nanofilms formed with neocuproine and 38 nm mean diameter AuNPs, at monolayer surface coverages and above, were black due to aggregation and broadband absorbance. Electronic supplementary information (ESI) available: Interfacial tension measurements for various water-organic solvent systems, step-by-step optical microscopy and SEM characterization of the obtained film, optical photographs of all tested solvents and molecules, and influence of the interfacial tension on optical responses of AuNPs assemblies. See DOI: 10.1039/c6nr00371k
Improved mathematical and computational tools for modeling photon propagation in tissue
NASA Astrophysics Data System (ADS)
Calabro, Katherine Weaver
Light interacts with biological tissue through two predominant mechanisms: scattering and absorption, which are sensitive to the size and density of cellular organelles, and to biochemical composition (ex. hemoglobin), respectively. During the progression of disease, tissues undergo a predictable set of changes in cell morphology and vascularization, which directly affect their scattering and absorption properties. Hence, quantification of these optical property differences can be used to identify the physiological biomarkers of disease with interest often focused on cancer. Diffuse reflectance spectroscopy is a diagnostic tool, wherein broadband visible light is transmitted through a fiber optic probe into a turbid medium, and after propagating through the sample, a fraction of the light is collected at the surface as reflectance. The measured reflectance spectrum can be analyzed with appropriate mathematical models to extract the optical properties of the tissue, and from these, a set of physiological properties. A number of models have been developed for this purpose using a variety of approaches -- from diffusion theory, to computational simulations, and empirical observations. However, these models are generally limited to narrow ranges of tissue and probe geometries. In this thesis, reflectance models were developed for a much wider range of measurement parameters, and influences such as the scattering phase function and probe design were investigated rigorously for the first time. The results provide a comprehensive understanding of the factors that influence reflectance, with novel insights that, in some cases, challenge current assumptions in the field. An improved Monte Carlo simulation program, designed to run on a graphics processing unit (GPU), was built to simulate the data used in the development of the reflectance models. Rigorous error analysis was performed to identify how inaccuracies in modeling assumptions can be expected to affect the accuracy of extracted optical property values from experimentally-acquired reflectance spectra. From this analysis, probe geometries that offer the best robustness against error in estimation of physiological properties from tissue, are presented. Finally, several in vivo studies demonstrating the use of reflectance spectroscopy for both research and clinical applications are presented.
NASA Astrophysics Data System (ADS)
Peltier, Abigail; Sapkota, Gopal; Potter, Matthew; Busse, Lynda E.; Frantz, Jesse A.; Shaw, L. Brandon; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.; Poutous, Menelaos K.
2017-02-01
Random anti-reflecting subwavelength surface structures (rARSS) have been shown to suppress Fresnel reflection and scatter from optical surfaces. The structures effectively function as a gradient-refractive-index at the substrate boundary, and the spectral transmission properties of the boundary have been shown to depend on the structure's statistical properties (diameter, height, and density.) We fabricated rARSS on fused silica substrates using gold masking. A thin layer of gold was deposited on the surface of the substrate and then subjected to a rapid thermal annealing (RTA) process at various temperatures. This RTA process resulted in the formation of gold "islands" on the surface of the substrate, which then acted as a mask while the substrate was dry etched in a reactive ion etching (RIE) process. The plasma etch yielded a fused silica surface covered with randomly arranged "rods" that act as the anti-reflective layer. We present data relating the physical characteristics of the gold "island" statistical populations, and the resulting rARSS "rod" population, as well as, optical scattering losses and spectral transmission properties of the final surfaces. We focus on comparing results between samples processed at different RTA temperatures, as well as samples fabricated without undergoing RTA, to relate fabrication process statistics to transmission enhancement values.
New Multispectral Cloud Retrievals from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Tsay, Si-Chee; Ackerman, Steven A.; Menzel, W. Paul; Gray, Mark A.; Moody, Eric G.; Li, Jason Y.; Arnold, G. Thomas
2001-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999. It achieved its final orbit and began Earth observations on February 24, 2000. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun- synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (two bands), 500 m (five bands) and 1000 m (29 bands). In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Results will be presented of MODIS cloud properties both over the land and over the ocean, showing the consistency in cloud retrievals over various ecosystems used in the retrievals. The implications of this new observing system on global analysis of the Earth's environment will be discussed.
Design principles and realization of electro-optical circuit boards
NASA Astrophysics Data System (ADS)
Betschon, Felix; Lamprecht, Tobias; Halter, Markus; Beyer, Stefan; Peterson, Harry
2013-02-01
The manufacturing of electro-optical circuit boards (EOCB) is based to a large extent on established technologies. First products with embedded polymer waveguides are currently produced in series. The range of applications within the sensor and data communication markets is growing with the increasing maturity level. EOCBs require design flows, processes and techniques similar to existing printed circuit board (PCB) manufacturing and appropriate for optical signal transmission. A key aspect is the precise and automated assembly of active and passive optical components to the optical waveguides which has to be supported by the technology. The design flow is described after a short introduction into the build-up of EOCBs and the motivation for the usage of this technology within the different application fields. Basis for the design of EOCBs are the required optical signal transmission properties. Thereafter, the devices for the electro-optical conversion are chosen and the optical coupling approach is defined. Then, the planar optical elements (waveguides, splitters, couplers) are designed and simulated. This phase already requires co-design of the optical and electrical domain using novel design flows. The actual integration of an optical system into a PCB is shown in the last part. The optical layer is thereby laminated to the purely electrical PCB using a conventional PCB-lamination process to form the EOCB. The precise alignment of the various electrical and optical layers is thereby essential. Electrical vias are then generated, penetrating also the optical layer, to connect the individual electrical layers. Finally, the board has to be tested electrically and optically.
A Study of Material and Optical Properties of Nano Diamond Wires
2016-02-24
These nanomaterials were further characterized by transmission electron microscopy (TEM) in Figure 6. This analysis was made possible by the...development of a new methodology: direct growth on a SiOx-supported TEM grid. These preliminary characterizations suggested the grown nanomaterials are... currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 09-11-2016 2. REPORT TYPE Final
2012-06-27
of the critical contributors to deviation include structural relaxation of the glass, thermal expansion of the molds, TRS and viscoelastic behavior...the critical contributors to deviation include structural relaxation of the glass, thermal expansion of the molds, TRS and viscoelastic behavior of the...data. In that article glass was modeled as purely viscous and thermal expansion was accounted for with a constant coefficient of thermal expansion (CTE
NASA Technical Reports Server (NTRS)
Kreidenweis, Sonia
2002-01-01
This report serves as the final report for the Colorado State University portion of this grant. The original grant was awarded to CSU under the direction of co-Principal Investigators Kirk Fuller and Sonia Kreidenweis. Upon Dr. Fuller's relocation to the University of Alabama - Huntsville, the major portion of the award was also relocated. The following summarizes only that work completed by Prof. Kreidenweis under her remaining award.
Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.
Khan, Md Rajibur Rahaman; Kang, Shin-Won
2016-11-09
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.
Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique
Khan, Md. Rajibur Rahaman; Kang, Shin-Won
2016-01-01
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865
3D printing of tissue-simulating phantoms as a traceable standard for biomedical optical measurement
NASA Astrophysics Data System (ADS)
Dong, Erbao; Wang, Minjie; Shen, Shuwei; Han, Yilin; Wu, Qiang; Xu, Ronald
2016-01-01
Optical phantoms are commonly used to validate and calibrate biomedical optical devices in order to ensure accurate measurement of optical properties in biological tissue. However, commonly used optical phantoms are based on homogenous materials that reflect neither optical properties nor multi-layer heterogeneities of biological tissue. Using these phantoms for optical calibration may result in significant bias in biological measurement. We propose to characterize and fabricate tissue simulating phantoms that simulate not only the multi-layer heterogeneities but also optical properties of biological tissue. The tissue characterization module detects tissue structural and functional properties in vivo. The phantom printing module generates 3D tissue structures at different scales by layer-by-layer deposition of phantom materials with different optical properties. The ultimate goal is to fabricate multi-layer tissue simulating phantoms as a traceable standard for optimal calibration of biomedical optical spectral devices.
Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices
NASA Astrophysics Data System (ADS)
Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla
2017-08-01
We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6 mm2) has been previously developed for range finding applications and is able to provide short, high energy (˜100 ps, ˜0.5 nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades.
qF-SSOP: real-time optical property corrected fluorescence imaging
Valdes, Pablo A.; Angelo, Joseph P.; Choi, Hak Soo; Gioux, Sylvain
2017-01-01
Fluorescence imaging is well suited to provide image guidance during resections in oncologic and vascular surgery. However, the distorting effects of tissue optical properties on the emitted fluorescence are poorly compensated for on even the most advanced fluorescence image guidance systems, leading to subjective and inaccurate estimates of tissue fluorophore concentrations. Here we present a novel fluorescence imaging technique that performs real-time (i.e., video rate) optical property corrected fluorescence imaging. We perform full field of view simultaneous imaging of tissue optical properties using Single Snapshot of Optical Properties (SSOP) and fluorescence detection. The estimated optical properties are used to correct the emitted fluorescence with a quantitative fluorescence model to provide quantitative fluorescence-Single Snapshot of Optical Properties (qF-SSOP) images with less than 5% error. The technique is rigorous, fast, and quantitative, enabling ease of integration into the surgical workflow with the potential to improve molecular guidance intraoperatively. PMID:28856038
All-optical nanoscale thermometry with silicon-vacancy centers in diamond
NASA Astrophysics Data System (ADS)
Nguyen, Christian T.; Evans, Ruffin E.; Sipahigil, Alp; Bhaskar, Mihir K.; Sukachev, Denis D.; Agafonov, Viatcheslav N.; Davydov, Valery A.; Kulikova, Liudmila F.; Jelezko, Fedor; Lukin, Mikhail D.
2018-05-01
We demonstrate an all-optical thermometer based on an ensemble of silicon-vacancy centers (SiVs) in diamond by utilizing the sensitivity of the zero-phonon line wavelength to temperature, Δλ/ΔT =0.0124 (2 ) nm K-1 [6.8(1) GHz K-1]. Using SiVs in bulk diamond, we achieve 70 mK precision at room temperature with a temperature uncertainty σT=360 mK/√{H z } . Finally, we use SiVs in 200 nm nanodiamonds as local temperature probes with 521 mK/ √{H z } uncertainty and achieve sub-Kelvin precision. These properties deviate by less than 1% between nanodiamonds, enabling calibration-free thermometry for sensing and control of complex nanoscale systems.
Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States
NASA Astrophysics Data System (ADS)
Walschaers, Mattia; Fabre, Claude; Parigi, Valentina; Treps, Nicolas
2017-11-01
Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable quantum information protocols. We focus on mode-selective photon addition and subtraction as experimentally promising processes to create multimode non-Gaussian states. Our approach is based on correlation functions, as is common in quantum statistical mechanics and condensed matter physics, mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an experimentally generated multimode Gaussian state.
Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States.
Walschaers, Mattia; Fabre, Claude; Parigi, Valentina; Treps, Nicolas
2017-11-03
Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable quantum information protocols. We focus on mode-selective photon addition and subtraction as experimentally promising processes to create multimode non-Gaussian states. Our approach is based on correlation functions, as is common in quantum statistical mechanics and condensed matter physics, mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an experimentally generated multimode Gaussian state.
On the response of alloyed ZnCdSeS quantum dot films
NASA Astrophysics Data System (ADS)
Valais, I.; Michail, C.; Fountzoula, C.; Tseles, D.; Yannakopoulos, P.; Nikolopoulos, D.; Bakas, A.; Fountos, G.; Saatsakis, G.; Sianoudis, I.; Kandarakis, I.; Panayiotakis, G.
The aim of this work was to prepare composite ZnCdSeS quantum dot (QD) flexible films and to examine their optical properties under ultraviolet excitation. PMMA/QD ZnCdSeS composite films, with emission covering the visual spectrum (480-630 nm) were prepared with concentrations 10 mg/mL and 20 mg/mL by homogenously diluting dry powder QD samples in toluene and subsequently mixing with a PMMA/MMA polymer solution to the final ZnCdSeS/Toluene mixture. Scanning electron microscopy (SEM) images of the produced films were obtained. The ZnCdSeS films were excited by ultraviolet light of varying intensities and the spectral matching with various optical detectors was estimated.
NASA Technical Reports Server (NTRS)
Clarke, Antony D.; Porter, John N.
1997-01-01
Our research effort is focused on improving our understanding of aerosol properties needed for optical models for remote marine regions. This includes in-situ and vertical column optical closure and involves a redundancy of approaches to measure and model optical properties that must be self consistent. The model is based upon measured in-situ aerosol properties and will be tested and constrained by the vertically measured spectral differential optical depth of the marine boundary layer, MBL. Both measured and modeled column optical properties for the boundary layer, when added to the free-troposphere and stratospheric optical depth, will be used to establish spectral optical depth over the entire atmospheric column for comparison to and validation of satellite derived radiances (AVHRR).
In pursuit of photo-induced magnetic and chiral microscopy
NASA Astrophysics Data System (ADS)
Zeng, Jinwei; Kamandi, Mohammad; Darvishzadeh-Varcheie, Mahsa; Albooyeh, Mohammad; Veysi, Mehdi; Guclu, Caner; Hanifeh, Mina; Rajaei, Mohsen; Potma, Eric O.; Wickramasinghe, H. Kumar; Capolino, Filippo
2018-06-01
Light-matter interactions enable the perception of specimen properties such as its shape and dimensions by measuring the subtle differences carried by an illuminating beam after interacting with the sample. However, major obstacles arise when the relevant properties of the specimen are weakly coupled to the incident beam, for example when measuring optical magnetism and chirality. To address this challenge we propose the idea of detecting such weakly-coupled properties of matter through the photo-induced force, aiming at developing photo-induced magnetic or chiral force microscopy. Here we review our pursuit consisting of the following steps: (1) Development of a theoretical blueprint of a magnetic nanoprobe to detect a magnetic dipole oscillating at an optical frequency when illuminated by an azimuthally polarized beam via the photo-induced magnetic force; (2) Conducting an experimental study using an azimuthally polarized beam to probe the near fields and axial magnetism of a Si disk magnetic nanoprobe, based on photo-induced force microscopy; (3) Extending the concept of force microscopy to probe chirality at the nanoscale, enabling enantiomeric detection of chiral molecules. Finally, we discuss difficulties and how they could be overcome, as well as our plans for future work. Invited Paper
Differences between time domain and Fourier domain optical coherence tomography in imaging tissues.
Gao, W; Wu, X
2017-11-01
It has been numerously demonstrated that both time domain and Fourier domain optical coherence tomography (OCT) can generate high-resolution depth-resolved images of living tissues and cells. In this work, we compare the common points and differences between two methods when the continuous and random properties of live tissue are taken into account. It is found that when relationships that exist between the scattered light and tissue structures are taken into account, spectral interference measurements in Fourier domain OCT (FDOCT) is more advantageous than interference fringe envelope measurements in time domain OCT (TDOCT) in the cases where continuous property of tissue is taken into account. It is also demonstrated that when random property of tissue is taken into account FDOCT measures the Fourier transform of the spatial correlation function of the refractive index and speckle phenomena will limit the effective limiting imaging resolution in both TDOCT and FDOCT. Finally, the effective limiting resolution of both TDOCT and FDOCT are given which can be used to estimate the effective limiting resolution in various practical applications. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Directly observable optical properties of sprites in Central Europe
NASA Astrophysics Data System (ADS)
Bór, József
2013-04-01
Luminous optical emissions accompanying streamer-based natural electric breakdown processes initiating in the mesosphere are called sprites. 489 sprite events have been observed with a TV frame rate video system in Central Europe from Sopron (47.68N, 16.58E, 230 m MSL), Hungary between 2007 and 2009. On the basis of these observations, characteristic morphological properties of sprites, i.e. basic forms (e.g. column, carrot, angel, etc.) as well as common morphological features (e.g. tendrils, glows, puffs, beads, etc.), have been identified. Probable time sequences of streamer propagation directions were associated with each of the basic sprite forms. It is speculated that different sequences of streamer propagation directions can result in very similar final sprite shapes. The number and type variety of sprite elements appearing in an event as well as the total optical duration of an event was analyzed statistically. Jellyfish and dancing sprite events were considered as special subsets of sprite clusters. It was found that more than 90% of the recorded sprite elements appeared in clusters rather than alone and more than half of the clusters contained more than one basic sprite forms. The analysis showed that jellyfish sprites and clusters of column sprites featuring glows and tendrils do not tend to have optical lifetimes longer than 80 ms. Such very long optical lifetimes have not been observed in sprite clusters containing more than 25 elements of any type, either. In contrast to clusters containing sprite entities of only one form, sprite events showing more sprite forms seem to have extended optical durations more likely. The need for further investigation and for finding theoretical concepts to link these observations to electric conditions ambient for sprite formation is emphasized.
Topological Phase Transitions in the Photonic Spin Hall Effect
Kort-Kamp, Wilton Junior de Melo
2017-10-04
The recent synthesis of two-dimensional staggered materials opens up burgeoning opportunities to study optical spin-orbit interactions in semiconducting Dirac-like systems. In this work, we unveil topological phase transitions in the photonic spin Hall effect in the graphene family materials. It is shown that an external static electric field and a high frequency circularly polarized laser allow for active on-demand manipulation of electromagnetic beam shifts. The spin Hall effect of light presents a rich dependence with radiation degrees of freedom, and material properties, and features nontrivial topological properties. Finally, we discover that photonic Hall shifts are sensitive to spin and valleymore » properties of the charge carriers, providing an unprecedented pathway to investigate spintronics and valleytronics in staggered 2D semiconductors.« less
NASA Astrophysics Data System (ADS)
Yeranossian, Vahagn Frounzig
Nanoemulsions as an emerging technology have found many applications in consumer products, drug delivery, and even particle formation. However, knowledge gaps exist in how some of these emulsions are formed, specifically what pathways are traversed to reach the final state. Moreover, how these pathways affect the final properties of the nanoemulsions would affect the applications that these droplets possess. Some nanoemulsions possess unique properties, including the assembly of droplets. While the assembly of droplets is being studied in the Helgeson lab, work must be done to understand how the assembly itself could be used to control the growth of porous materials, such a hydrogels. Thus, this thesis aims to address two factors of nanoemulsions: the formation of water-in-oil nanoemulsions and the use of assemblying droplets in oil-in-water nanoemulsions to form macroporous hydrogels. To elucidate the formation mechanism of water-in-oil nanoemulsions, a combination of dynamic light scattering and small angle neutron scattering were used to study the intermediate and final states of the nanoemulsion during its formation. These nanoemulsions were prepared by slowly adding water to an oil and surfactant mixture and were diluted to effectively measure using scattering techniques without multiple scattering events. To develop a procedure to use assembled nanoemulsions for the growth of porous materials, a combination of optical microscopy and diffusional studies were employed. Optical microscopy images taken at various stages of the procedure help elucidate how the pore sizes of the final porous material is related to the droplet-rich domains of the assembled nanoemulsion. Meanwhile, diffusional measurements help confirm the size and interconnectedness of the macropores. From the work done in the completion of my thesis, the formation mechanism of the water-in-oil nanoemulsion studied has been elucidated. The neutron scattering measurements show that during the formation of the nanoemulsion, a combination of droplets and vesicles form. The presence of vesicles provides insight into how chemical additives in the water would affect the final droplet properties. This insight can be used to design water-in-oil nanoemulsions to be used for the controlled synthesis of solid nanoparticles. Additionally, this work demonstrates a potential procedure for developing macroporous hydrogels using nanoemulsions that are assembled into droplet-rich and droplet-poor domains. Through mild UV cross-linking conditions and mild solvent extraction techniques, the pore sizes could be equivalent to the droplet-rich domain sizes. The final hydrogels can control diffusivity of molecules, giving them potential applications in drug delivery.
NASA Astrophysics Data System (ADS)
vant-Hull, B.; Li, Z.; Taubman, B.; Marufu, L.; Levy, R.; Chang, F.; Doddridge, B.; Dickerson, R.
2004-12-01
In July 2002 Canadian forest fires produced a major smoke episode that blanketed the U.S. East Coast. Properties of the smoke aerosol were measured in-situ from aircraft, complementing operational AERONET and MODIS remote sensed aerosol retrievals. This study compares single scattering albedo and phase function derived from the in-situ measurements and AERONET retrievals in order to evaluate their consistency for application to satellite retrievals of optical depth and radiative forcing. These optical properties were combined with MODIS reflectance observations to calculate optical depth. The use of AERONET optical properties yielded optical depths 2% to 16% lower than those directly measured by AERONET. The use of in-situ derived optical properties resulted in optical depths 22% to 43% higher than AERONET measurements. These higher optical depths are attributed primarily to the higher absorption measured in-situ, which is roughly twice that retrieved by AERONET. The resulting satellite retrieved optical depths were in turn used to calculate integrated radiative forcing at both the surface and TOA. Comparisons to surface (SurfRad and ISIS) and to satellite (CERES) broadband radiometer measurements demonstrate that the use of optical properties derived from the aircraft measurements provided a better broadband forcing estimate (21% error) than those derived from AERONET (33% error). Thus AERONET derived optical properties produced better fits to optical depth measurements, while in-situ properties resulted in better fits to forcing measurements. These apparent inconsistencies underline the significant challenges facing the aerosol community in achieving column closure between narrow and broadband measurements and calculations.
NASA Astrophysics Data System (ADS)
Mallet, M.; Solmon, F.; Roblou, L.; Peers, F.; Turquety, S.; Waquet, F.; Jethva, H.; Torres, O.
2017-10-01
The regional climate model RegCM has been modified to better account for the climatic effects of biomass-burning particles. Smoke aerosols are represented by new tracers with consistent radiative and hygroscopic properties to simulate the direct radiative forcing (DRF), and a new parameterization has been integrated for relating the droplet number concentration to the aerosol concentration for marine stratocumulus clouds (Sc). RegCM has been tested during the summer of 2008 over California, when extreme concentration of smoke, together with the presence of Sc, is observed. This work indicates that significant aerosol optical depth (AOD) ( 1-2 at 550 nm) is related to the intense 2008 fires. Compared to Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer, the regional pattern of RegCM AOD is well represented although the magnitude is lower than satellite observations. Comparisons with Polarization and Directionality of Earth Reflectances (POLDER) above-clouds aerosol optical depth (ACAOD) show the ability of RegCM to simulate realistic ACAOD during the transport of smoke above the Pacific Ocean. The simulated single scattering albedo is 0.90 (at 550 nm) near biomass-burning sources, consistent with OMI and POLDER, and smoke leads to shortwave heating rates 1.5-2°K d-1. RegCM is not able to correctly resolve the daily patterns in cloud properties notably due to its coarse horizontal resolutions. However, the changes in the sign of the DRF at top of atmosphere (TOA) (negative to positive) from clear-sky to all-sky conditions is well simulated. Finally, the "aerosol-cloud" parameterization allows simulating an increase of the cloud optical depth for significant concentrations, leading to large perturbations of radiative fluxes at TOA.
Optical Spectroscopy and Imaging of Correlated Spin Orbit Phases
2016-06-14
Unlimited UU UU UU UU 14-06-2016 15-Mar-2013 14-Mar-2016 Final Report: Optical Spectroscopy and Imaging of Correlated Spin-Orbit Phases The views...Box 12211 Research Triangle Park, NC 27709-2211 Ultrafast optical spectroscopy , nonlinear optical spectroscopy , iridates, cuprates REPORT...California Blvd. Pasadena, CA 91125 -0001 ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Optical Spectroscopy and
NASA Astrophysics Data System (ADS)
Venkatachalam, Shanmugam; Hayashi, Hiromichi; Ebina, Takeo; Nakamura, Takashi; Nanjo, Hiroshi
2013-03-01
In the present work, transparent flexible polymer-doped clay (P-clay) substrates were prepared for flexible organic light emitting diode (OLED) applications. Nanocrystalline indium tin oxide (ITO) thin films were prepared on P-clay substrates by ion-beam sputter deposition method. The structural, optical, and electrical properties of as-prepared ITO/P-clay showed that the as-prepared ITO thin film was amorphous, and the average optical transparency and sheet resistance were around 84% and 56 Ω/square, respectively. The as-prepared ITO/P-clay samples were annealed at 200 and 270 °C for 1 h to improve the optical transparency and electrical conductivity. The average optical transparency was found to be maximum at an annealing temperature of 200 °C. Finally, N,N-bis[(1-naphthyl)-N,N '-diphenyl]-1,1'-biphenyl)-4,4'-diamine (NPB), tris(8-hydroxyquinoline) aluminum (Alq3) thin films, and aluminum (Al) electrode were prepared on ITO/P-clay substrates by thermal evaporation method. The current density-voltage (J-V) characteristic of Al/NPB/ITO/P-clay showed linear Ohmic behaviour. In contrast, J-V characteristic of Al/Alq3/NPB/ITO/P-clay showed non-linear Schottky behaviour. Finally, a very flexible OLED was successfully fabricated on newly fabricated transparent flexible P-clay substrates. The electroluminescence study showed that the emission intensity of light from the flexible OLED device gradually increased with increasing applied voltage.
Fiber optic systems in the UV region
NASA Astrophysics Data System (ADS)
Huebner, Michael; Meyer, H.; Klein, Karl-Friedrich; Hillrichs, G.; Ruetting, Martin; Veidemanis, M.; Spangenberg, Bernd; Clarkin, James P.; Nelson, Gary W.
2000-05-01
Mainly due to the unexpected progress in manufacturing of solarization-reduced all-silica fibers, new fiber-optic applications in the UV-region are feasible. However, the other components like the UV-sources and the detector- systems have to be improved, too. Especially, the miniaturization is very important fitting to the small-sized fiber-optic assemblies leading to compact and mobile UV- analytical systems. Based on independent improvements in the preform and fiber processing, UV-improved fibers with different properties have been developed. The best UV-fiber for the prosed applications is selectable by its short and long-term spectral behavior, especially in the region from 190 to 350 nm. The spectrum of the UV-source and the power density in the fiber have an influence on the nonlinear transmission and the damaging level; however, hydrogen can reduce the UV-defect concentration. After determining the diffusion processes in the fiber, the UV-lifetime in commercially available all-silica fibers can be predicted. Newest results with light from deuterium-lamps, excimer- lasers and 5th harmonics of Nd:YAG laser will be shown. Many activities are in the field of UV-sources. In addition to new UV-lasers like the Nd:YAG laser at 213 nm, a new low- power deuterium-lamp with smaller dimensions has been introduced last year. Properties of this lamp will be discussed, taking into account some of the application requirements. Finally, some new applications with UV-fiber optics will be shown; especially the TLC-method can be improved significantly, combining a 2-row fiber-array with a diode-array spectrometer optimized for fiber-optics.
NASA Astrophysics Data System (ADS)
Noda, H. M.; Muraoka, H.
2014-12-01
Satellite remote sensing of structure and function of canopy is crucial to detect temporal and spatial distributions of forest ecosystems dynamics in changing environments. The spectral reflectance of the canopy is determined by optical properties (spectral reflectance and transmittance) of single leaves and their spatial arrangements in the canopy. The optical properties of leaves reflect their pigments contents and anatomical structures. Thus detailed information and understandings of the consequence between ecophysiological traits and optical properties from single leaf to canopy level are essential for remote sensing of canopy ecophysiology. To develop the ecophysiological remote sensing of forest canopy, we have been promoting multiple and cross-scale measurements in "Takayama site" belonging to AsiaFlux and JaLTER networks, located in a cool-temperate deciduous broadleaf forest on a mountainous landscape in Japan. In this forest, in situ measurement of canopy spectral reflectance has been conducted continuously by a spectroradiometer as part of the "Phenological Eyes Network (PEN)" since 2004. To analyze the canopy spectral reflectance from leaf ecophysiological viewpoints, leaf mass per area, nitrogen content, chlorophyll contents, photosynthetic capacities and the optical properties have been measured for dominant canopy tree species Quercus crispla and Betula ermanii throughout the seasons for multiple years.Photosynthetic capacity was largely correlated with chlorophyll contents throughout the growing season in both Q. crispla and B. ermanii. In these leaves, the reflectance at "red edge" (710 nm) changed by corresponding to the changes of chlorophyll contents throughout the seasons. Our canopy-level examination showed that vegetation indices obtained by red edge reflectance have linear relationship with leaf chlorophyll contents and photosynthetic capacity. Finally we apply this knowledge to the Rapid Eye satellite imagery around Takayama site to scale-up the leaf-level findings to canopy and landscape levels on a mountainous landscape.
Aerosol optical depth in a western Mediterranean site: An assessment of different methods
NASA Astrophysics Data System (ADS)
Sanchez-Romero, A.; González, J. A.; Calbó, J.; Sanchez-Lorenzo, A.; Michalsky, J.
2016-06-01
Column aerosol optical properties were derived from multifilter rotating shadowing radiometer (MFRSR) observations carried out at Girona (northeast Spain) from June 2012 to June 2014. We used a technique that allows estimating simultaneously aerosol optical depth (AOD) and Ångström exponent (AE) at high time-resolution. For the period studied, mean AOD at 500 nm was 0.14, with a noticeable seasonal pattern, i.e. maximum in summer and minimum in winter. Mean AE from 500 to 870 nm was 1.2 with a strong day-to-day variation and slightly higher values in summer. So, the summer increase in AOD seems to be linked with an enhancement in the number of fine particles. A radiative closure experiment, using the SMARTS2 model, was performed to confirm that the MFRSR-retrieved aerosol optical properties appropriately represent the continuously varying atmospheric conditions in Girona. Thus, the calculated broadband values of the direct flux show a mean absolute difference of less than 5.9 W m- 2 (0.77%) and R = 0.99 when compared to the observed fluxes. The sensitivity of the achieved closure to uncertainties in AOD and AE was also examined. We use this MFRSR-based dataset as a reference for other ground-based and satellite measurements that might be used to assess the aerosol properties at this site. First, we used observations obtained from a 100 km away AERONET station; despite a general similar behavior when compared with the in-situ MFRSR observations, certain discrepancies for AOD estimates in the different channels (R < 0.84 and slope < 1) appear. Second, AOD products from MISR and MODIS satellite observations were compared with our ground-based retrievals. Reasonable agreements are found for the MISR product (R = 0.92), with somewhat poorer agreement for the MODIS product (R = 0.70). Finally, we apply all these methods to study in detail the aerosol properties during two singular aerosol events related to a forest fire and a desert dust intrusion.
NASA Astrophysics Data System (ADS)
Boiyo, Richard; Kumar, K. Raghavendra; Zhao, Tianliang
2018-03-01
A better understanding of aerosol optical, microphysical and radiative properties is a crucial challenge for climate change studies. In the present study, column-integrated aerosol optical and radiative properties observed at a rural site, Mbita (0.42°S, 34.20 °E, and 1125 m above sea level) located in Kenya, East Africa (EA) are investigated using ground-based Aerosol Robotic Network (AERONET) data retrieved during January, 2007 to December, 2015. The annual mean aerosol optical depth (AOD500 nm), Ångström exponent (AE440-870 nm), fine mode fraction of AOD500 nm (FMF500 nm), and columnar water vapor (CWV, cm) were found to be 0.23 ± 0.08, 1.01 ± 0.16, 0.60 ± 0.07, and 2.72 ± 0.20, respectively. The aerosol optical properties exhibited a unimodal distribution with substantial seasonal heterogeneity in their peak values being low (high) during the local wet (dry) seasons. The observed data showed that Mbita and its environs are significantly influenced by various types of aerosols, with biomass burning and/or urban-industrial (BUI), mixed (MXD), and desert dust (DDT) aerosol types contributing to 37.72%, 32.81%, and 1.40%, respectively during the local dry season (JJA). The aerosol volume size distribution (VSD) exhibited bimodal lognormal structure with a geometric mean radius of 0.15 μm and 3.86-5.06 μm for fine- and coarse-mode aerosols, respectively. Further, analysis of single scattering albedo (SSA), asymmetry parameter (ASY) and refractive index (RI) revealed dominance of fine-mode absorbing aerosols during JJA. The averaged aerosol direct radiative forcing (ARF) retrieved from the AERONET showed a strong cooling effect at the bottom of the atmosphere (BOA) and significant warming within the atmosphere (ATM), representing the important role of aerosols played in this rural site of Kenya. Finally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that aerosols from distinct sources resulted in enhanced loading during JJA.
NASA Astrophysics Data System (ADS)
Zvietcovich, Fernando; Rolland, Jannick P.; Grygotis, Emma; Wayson, Sarah; Helguera, Maria; Dalecki, Diane; Parker, Kevin J.
2018-02-01
Determining the mechanical properties of tissue such as elasticity and viscosity is fundamental for better understanding and assessment of pathological and physiological processes. Dynamic optical coherence elastography uses shear/surface wave propagation to estimate frequency-dependent wave speed and Young's modulus. However, for dispersive tissues, the displacement pulse is highly damped and distorted during propagation, diminishing the effectiveness of peak tracking approaches. The majority of methods used to determine mechanical properties assume a rheological model of tissue for the calculation of viscoelastic parameters. Further, plane wave propagation is sometimes assumed which contributes to estimation errors. To overcome these limitations, we invert a general wave propagation model which incorporates (1) the initial force shape of the excitation pulse in the space-time field, (2) wave speed dispersion, (3) wave attenuation caused by the material properties of the sample, (4) wave spreading caused by the outward cylindrical propagation of the wavefronts, and (5) the rheological-independent estimation of the dispersive medium. Experiments were conducted in elastic and viscous tissue-mimicking phantoms by producing a Gaussian push using acoustic radiation force excitation, and measuring the wave propagation using a swept-source frequency domain optical coherence tomography system. Results confirm the effectiveness of the inversion method in estimating viscoelasticity in both the viscous and elastic phantoms when compared to mechanical measurements. Finally, the viscoelastic characterization of collagen hydrogels was conducted. Preliminary results indicate a relationship between collagen concentration and viscoelastic parameters which is important for tissue engineering applications.
Dey, Arjun; Nayak, Manish Kumar; Esther, A. Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A. K.; Bera, Parthasarathi; Barshilia, Harish C.; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D. Raghavendra; Sridhara, N.; Sharma, Anand Kumar
2016-01-01
Vanadium oxide-molybdenum oxide (VO-MO) thin (21–475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V2O5, V2O3 and VO2 along with MoO3. Reversible or smart transition was found to occur just above the room temperature i.e., at ~45–50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10−5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films. PMID:27853234
Acousto-Optic and Linear Electro-Optic Properties of Organic Polymeric Materials
1989-04-27
Naval Research Laboratory Washington, DC 20375-5000 NRL Memorandum Report 6454 od I3 Acousto - Optic and Linear Electro-Optic Properties of Organic...PROGRAM P1RC;EC7 ASK Arlington, VA 22217-5000 ELEMENT NO NO1 I1I TITLE (Include Security Classification) Acousto - Optic and Linear Electro-Optic...briefly discussing the important molecular properties for enhanced acousto ~ optic and electro-Ooptic ef fects and then relating these to "current
Monocrystalline CVD-diamond optics for high-power laser applications
NASA Astrophysics Data System (ADS)
Holly, C.; Traub, M.; Hoffmann, D.; Widmann, C.; Brink, D.; Nebel, C.; Gotthardt, T.; Sözbir, M. C.; Wenzel, C.
2016-03-01
The potential of diamond as an optical material for high-power laser applications in the wavelength regime from the visible spectrum (VIS) to the near infrared (NIR) is investigated. Single-crystal diamonds with lateral dimensions up to 7×7mm2 are grown with microwave plasma assisted chemical vapor deposition (MPACVD) in parallel with up to 60 substrates and are further processed to spherical optics for beam guidance and shaping. The synthetic diamonds offer superior thermal, mechanical and optical properties, including low birefringence, scattering and absorption, also around 1 μm wavelength. We present dielectric (AR and HR) coated single-crystal diamond optics which are tested under high laser power in the multi-kW regime. The thermally induced focal shift of the diamond substrates is compared to the focal shift of a standard collimating and focusing unit for laser cutting made of fused silica optics. Due to the high thermal conductivity and low absorption of the diamond substrates compared to the fused silica optics no additional focal shift caused by a thermally induced refractive index change in the diamond is observed in our experiments. We present experimental results regarding the performance of the diamond substrates with and without dielectric coatings under high power and the influences of growth induced birefringence on the optical quality. Finally, we discuss the potential of the presented diamond lenses for high-power applications in the field of laser materials processing.
Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices.
Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla
2017-08-01
We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6 mm2) has been previously developed for range finding applications and is able to provide short, high energy (∼100 ps, ∼0.5 nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Mignoli, M.; Vignali, C.; Gilli, R.; Comastri, A.; Zamorani, G.; Bolzonella, M.; Bongiorno, A.; Lamareille, F.; Nair, P.; Pozzetti, L.; Lilly, S. J.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Le Fèvre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Caputi, K.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Pellò, R.; Peng, Y.; Perez Montero, E.; Presotto, V.; Silverman, J. D.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.; Bordoloi, R.; Cappi, A.; Cimatti, A.; Koekemoer, A. M.; McCracken, H. J.; Moresco, M.; Welikala, N.
2013-08-01
Aims: The application of multi-wavelength selection techniques is essential for obtaining a complete and unbiased census of active galactic nuclei (AGN). We present here a method for selecting z ~ 1 obscured AGN from optical spectroscopic surveys. Methods: A sample of 94 narrow-line AGN with 0.65 < z < 1.20 was selected from the 20k-Bright zCOSMOS galaxy sample by detection of the high-ionization [Ne v] λ3426 line. The presence of this emission line in a galaxy spectrum is indicative of nuclear activity, although the selection is biased toward low absorbing column densities on narrow-line region or galactic scales. A similar sample of unobscured (type 1 AGN) was collected applying the same analysis to zCOSMOS broad-line objects. This paper presents and compares the optical spectral properties of the two AGN samples. Taking advantage of the large amount of data available in the COSMOS field, the properties of the [Ne v]-selected type 2 AGN were investigated, focusing on their host galaxies, X-ray emission, and optical line-flux ratios. Finally, a previously developed diagnostic, based on the X-ray-to-[Ne v] luminosity ratio, was exploited to search for the more heavily obscured AGN. Results: We found that [Ne v]-selected narrow-line AGN have Seyfert 2-like optical spectra, although their emission line ratios are diluted by a star-forming component. The ACS morphologies and stellar component in the optical spectra indicate a preference for our type 2 AGN to be hosted in early-type spirals with stellar masses greater than 109.5 - 10 M⊙, on average higher than those of the galaxy parent sample. The fraction of galaxies hosting [Ne v]-selected obscured AGN increases with the stellar mass, reaching a maximum of about 3% at ≈2 × 1011 M⊙. A comparison with other selection techniques at z ~ 1, namely the line-ratio diagnostics and X-ray detections, shows that the detection of the [Ne v] λ3426 line is an effective method for selecting AGN in the optical band, in particular the most heavily obscured ones, but cannot provide a complete census of type 2 AGN by itself. Finally, the high fraction of [Ne v]-selected type 2 AGN not detected in medium-deep (≈100-200 ks) Chandra observations (67%) is suggestive of the inclusion of Compton-thick (i.e., with NH > 1024 cm-2) sources in our sample. The presence of a population of heavily obscured AGN is corroborated by the X-ray-to-[Ne v] ratio; we estimated, by means of an X-ray stacking technique and simulations, that the Compton-thick fraction in our sample of type 2 AGN is 43 ± 4% (statistical errors only), which agrees well with standard assumptions by XRB synthesis models.
NASA Astrophysics Data System (ADS)
Wan, Yimao; McIntosh, Keith R.; Thomson, Andrew F.
2013-03-01
In this work, we investigate how the film properties of silicon nitride (SiNx) depend on its deposition conditions when formed by plasma enhanced chemical vapour deposition (PECVD). The examination is conducted with a Roth & Rau AK400 PECVD reactor, where the varied parameters are deposition temperature, pressure, gas flow ratio, total gas flow, microwave plasma power and radio-frequency bias voltage. The films are evaluated by Fourier transform infrared spectroscopy to determine structural properties, by spectrophotometry to determine optical properties, and by capacitance-voltage and photoconductance measurements to determine electronic properties. After reporting on the dependence of SiNx properties on deposition parameters, we determine the optimized deposition conditions that attain low absorption and low recombination. On the basis of SiNx growth models proposed in the literature and of our experimental results, we discuss how each process parameter affects the deposition rate and chemical bond density. We then focus on the effective surface recombination velocity Seff, which is of primary importance to solar cells. We find that for the SiNx prepared in this work, 1) Seff does not correlate universally with the bulk structural and optical properties such as chemical bond densities and refractive index, and 2) Seff depends primarily on the defect density at the SiNx-Si interface rather than the insulator charge. Finally, employing the optimized deposition condition, we achieve a relatively constant and low Seff,UL on low-resistivity (≤1.1 Ωcm) p- and n-type c-Si substrates over a broad range of n = 1.85-4.07. The results of this study demonstrate that the trade-off between optical transmission and surface passivation can be circumvented. Although we focus on photovoltaic applications, this study may be useful for any device for which it is desirable to maximize light transmission and surface passivation.
Magnetic properties of square Py nanowires: Irradiation dose and geometry dependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehrmann, A., E-mail: andrea.ehrmann@fh-bielefeld.de; Blachowicz, T.; Komraus, S.
Arrays of ferromagnetic patterned nanostructures with single particle lateral dimensions between 160 nm and 400 nm were created by electron-beam lithography. The fourfold particles with rectangular-shaped walls around a square open area were produced from permalloy. Their magnetic properties were measured using the longitudinal magneto-optical Kerr effect. The article reports about the angle-dependent coercive fields and the influence of the e-beam radiation dose on sample shapes. It is shown that a broad range of radiation dose intensities enables reliable creation of nanostructures with parameters relevant for the desired magnetization reversal scenario. The experimental results are finally compared with micromagnetic simulations to explainmore » the findings.« less
Advances in magnetic tweezers for single molecule and cell biophysics.
Kilinc, Devrim; Lee, Gil U
2014-01-01
Magnetic tweezers (MTW) enable highly accurate forces to be transduced to molecules to study mechanotransduction at the molecular or cellular level. We review recent MTW studies in single molecule and cell biophysics that demonstrate the flexibility of this technique. We also discuss technical advances in the method on several fronts, i.e., from novel approaches for the measurement of torque to multiplexed biophysical assays. Finally, we describe multi-component nanorods with enhanced optical and magnetic properties and discuss their potential as future MTW probes.
NASA Astrophysics Data System (ADS)
Raju, Thokala Soloman; Pal, Ritu
2018-05-01
We derive the analytical rogue wave solutions for the generalized inhomogeneous nonlinear Schrödinger-Maxwell-Bloch (GINLS-MB) equation describing the pulse propagation in erbium-doped fibre system. Then by suitably choosing the inhomogeneous parameters, we delineate the tunneling properties of rogue waves through dispersion and nonlinearity barriers or wells. Finally, we demonstrate the propagating characteristics of optical solitons by considering their tunneling through periodic barriers by the proper choice of external potential.
NASA Astrophysics Data System (ADS)
Vant-Hull, Brian; Li, Zhanqing; Taubman, Brett F.; Levy, Robert; Marufu, Lackson; Chang, Fu-Lung; Doddridge, Bruce G.; Dickerson, Russell R.
2005-05-01
In July 2002 Canadian forest fires produced a major smoke episode that blanketed the east coast of the United States. Properties of the smoke aerosol were measured in situ from aircraft, complementing operational Aerosol Robotic Network (AERONET), and Moderate Resolution Imaging Spectroradiometer (MODIS) remotely sensed aerosol retrievals. This study compares single scattering albedo and phase function derived from the in situ measurements and AERONET retrievals in order to evaluate their consistency for application to satellite retrievals of optical depth and radiative forcing. These optical properties were combined with MODIS reflectance observations to calculate optical depth. The use of AERONET optical properties yielded optical depths 2-16% lower than those directly measured by AERONET. The use of in situ-derived optical properties resulted in optical depths 22-43% higher than AERONET measurements. These higher optical depths are attributed primarily to the higher absorption measured in situ, which is roughly twice that retrieved by AERONET. The resulting satellite retrieved optical depths were in turn used to calculate integrated radiative forcing at both the surface and top of atmosphere. Comparisons to surface (Surface Radiation Budget Network (SURFRAD) and ISIS) and to satellite (Clouds and Earth Radiant Energy System CERES) broadband radiometer measurements demonstrate that the use of optical properties derived from the aircraft measurements provided a better broadband forcing estimate (21% error) than those derived from AERONET (33% error). Thus AERONET-derived optical properties produced better fits to optical depth measurements, while in situ properties resulted in better fits to forcing measurements. These apparent inconsistencies underline the significant challenges facing the aerosol community in achieving column closure between narrow and broadband measurements and calculations.
A random optimization approach for inherent optic properties of nearshore waters
NASA Astrophysics Data System (ADS)
Zhou, Aijun; Hao, Yongshuai; Xu, Kuo; Zhou, Heng
2016-10-01
Traditional method of water quality sampling is time-consuming and highly cost. It can not meet the needs of social development. Hyperspectral remote sensing technology has well time resolution, spatial coverage and more general segment information on spectrum. It has a good potential in water quality supervision. Via the method of semi-analytical, remote sensing information can be related with the water quality. The inherent optical properties are used to quantify the water quality, and an optical model inside the water is established to analysis the features of water. By stochastic optimization algorithm Threshold Acceptance, a global optimization of the unknown model parameters can be determined to obtain the distribution of chlorophyll, organic solution and suspended particles in water. Via the improvement of the optimization algorithm in the search step, the processing time will be obviously reduced, and it will create more opportunity for the increasing the number of parameter. For the innovation definition of the optimization steps and standard, the whole inversion process become more targeted, thus improving the accuracy of inversion. According to the application result for simulated data given by IOCCG and field date provided by NASA, the approach model get continuous improvement and enhancement. Finally, a low-cost, effective retrieval model of water quality from hyper-spectral remote sensing can be achieved.
Mortazavi, Bohayra; Makaremi, Meysam; Shahrokhi, Masoud; Raeisi, Mostafa; Singh, Chandra Veer; Rabczuk, Timon; Pereira, Luiz Felipe C
2018-02-22
Two-dimensional (2D) structures of boron atoms, so-called borophene, have recently attracted remarkable attention. In a recent exciting experimental study, a hydrogenated borophene structure was realized. Motivated by this success, we conducted extensive first-principles calculations to explore the mechanical, thermal conduction, electronic and optical responses of borophene hydride. The mechanical response of borophene hydride was found to be anisotropic, with an elastic modulus of 131 N m -1 and a high tensile strength of 19.9 N m -1 along the armchair direction. Notably, it was shown that by applying mechanical loading the metallic electronic character of borophene hydride can be altered to direct band-gap semiconducting, very appealing for application in nanoelectronics. The absorption edge of the imaginary part of the dielectric function was found to occur in the visible range of light for parallel polarization. Finally, it was estimated that this novel 2D structure at room temperature can exhibit high thermal conductivities of 335 W mK -1 and 293 W mK -1 along the zigzag and armchair directions, respectively. Our study confirms that borophene hydride shows an outstanding combination of interesting mechanical, electronic, optical and thermal conduction properties, which are promising for the design of novel nanodevices.
Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption
NASA Astrophysics Data System (ADS)
Ghijsen, Michael; Lentsch, Griffin R.; Gioux, Sylvain; Brenner, Matthew; Durkin, Anthony J.; Choi, Bernard; Tromberg, Bruce J.
2018-03-01
The tissue metabolic rate of oxygen consumption (tMRO2) is a clinically relevant marker for a number of pathologies including cancer and arterial occlusive disease. We present and validate a noncontact method for quantitatively mapping tMRO2 over a wide, scalable field of view at 16 frames / s. We achieve this by developing a dual-wavelength, near-infrared coherent spatial frequency-domain imaging (cSFDI) system to calculate tissue optical properties (i.e., absorption, μa, and reduced scattering, μs‧, parameters) as well as the speckle flow index (SFI) at every pixel. Images of tissue oxy- and deoxyhemoglobin concentration ( [ HbO2 ] and [HHb]) are calculated from optical properties and combined with SFI to calculate tMRO2. We validate the system using a series of yeast-hemoglobin tissue-simulating phantoms and conduct in vivo tests in humans using arterial occlusions that demonstrate sensitivity to tissue metabolic oxygen debt and its repayment. Finally, we image the impact of cyanide exposure and toxicity reversal in an in vivo rabbit model showing clear instances of mitochondrial uncoupling and significantly diminished tMRO2. We conclude that dual-wavelength cSFDI provides rapid, quantitative, wide-field mapping of tMRO2 that can reveal unique spatial and temporal dynamics relevant to tissue pathology and viability.
NASA Astrophysics Data System (ADS)
Kempema, Nathan J.; Ma, Bin; Long, Marshall B.
2016-09-01
Soot optical properties are essential to the noninvasive study of the in-flame evolution of soot particles since they allow quantitative interpretation of optical diagnostics. Such experimental data are critical for comparison to results from computational models and soot sub-models. In this study, the thermophoretic sampling particle diagnostic (TSPD) technique is applied along with data from a previous spectrally resolved line-of-sight light attenuation experiment to determine the soot volume fraction and absorption function. The TSPD technique is applied in a flame stabilized on the Yale burner, and the soot scattering-to-absorption ratio is calculated using the Rayleigh-Debye-Gans theory for fractal aggregates and morphology information from a previous sampling experiment. The soot absorption function is determined as a function of wavelength and found to be in excellent agreement with previous in-flame measurements of the soot absorption function in coflow laminar diffusion flames. Two-dimensional maps of the soot dispersion exponent are calculated and show that the soot absorption function may have a positive or negative exponential wavelength dependence depending on the in-flame location. Finally, the wavelength dependence of the soot absorption function is related to the ratio of soot absorption functions, as would be found using two-excitation-wavelength laser-induced incandescence.
Hassaninia, Iman; Bostanabad, Ramin; Chen, Wei; Mohseni, Hooman
2017-11-10
Fabricated tissue phantoms are instrumental in optical in-vitro investigations concerning cancer diagnosis, therapeutic applications, and drug efficacy tests. We present a simple non-invasive computational technique that, when coupled with experiments, has the potential for characterization of a wide range of biological tissues. The fundamental idea of our approach is to find a supervised learner that links the scattering pattern of a turbid sample to its thickness and scattering parameters. Once found, this supervised learner is employed in an inverse optimization problem for estimating the scattering parameters of a sample given its thickness and scattering pattern. Multi-response Gaussian processes are used for the supervised learning task and a simple setup is introduced to obtain the scattering pattern of a tissue sample. To increase the predictive power of the supervised learner, the scattering patterns are filtered, enriched by a regressor, and finally characterized with two parameters, namely, transmitted power and scaled Gaussian width. We computationally illustrate that our approach achieves errors of roughly 5% in predicting the scattering properties of many biological tissues. Our method has the potential to facilitate the characterization of tissues and fabrication of phantoms used for diagnostic and therapeutic purposes over a wide range of optical spectrum.
NASA Astrophysics Data System (ADS)
Sousani, Abbas; Moghadam, Peyman Najafi; Hasanzadeh, Reza; Motiei, Hamideh; Bagheri, Massoumeh
2016-01-01
In this work poly glycidylmethacrylate grafted 4-hydroxy-4‧-methoxy-azobenzene (Azo-PGMA) was synthesized. For this propose firstly 4-hydroxy-4‧-methoxy-azobenzene (AZO) was prepared, then poly glycidylmethacrylate was prepared by free radical polymerization of glycidylmethacrylate in the presence of benzoyl peroxide as initiator under inert atmosphere in dry THF. Finally the homopolymer was functionalized by AZO moieties. The characterization of the synthesized copolymer was carried out by 1H NMR, FT-IR, thermal gravimetric analyze (TGA), differential scanning calorimetry (DSC) and optical polarizing microscope (POM) analysis. The UV-vis studies were carried out on Azo-PGMA copolymer and the results showed that the synthesized Azo-PGMA copolymer has ultra-fast response to UV light and has slow relaxation time. Also the third-order nonlinear optical properties of the Azo-PGMA copolymer and AZO were studied by using Z-scan technique. Nonlinear refraction and absorption coefficients of the above mentioned materials were measured by the closed and open aperture Z-scan method using a continuous wave Nd-YAG laser at 532 nm. The positive nonlinear absorption in Azo-PGMA and AZO was investigated at the wavelength of λ = 532 nm, respectively and the measured values of nonlinear refraction in both of the samples were from the order of 10-8 cm2/W.
Synthesis, characterization and ellipsometric study of ultrasonically sprayed Co3O4 films
NASA Astrophysics Data System (ADS)
Gençyılmaz, O.; Taşköprü, T.; Atay, F.; Akyüz, İ.
2015-10-01
In the present study, cobalt oxide (Co3O4) films were produced using ultrasonic spray pyrolysis technique onto the glass substrate at different temperatures (200-250-300-350 °C). The effect of substrate temperature on the structural, optical, surface and electrical properties of Co3O4 films was reported. Thickness, refractive index and extinction coefficient of the films were determined by spectroscopic ellipsometry, and X-ray diffraction analyses revealed that Co3O4 films were polycrystalline fcc structure and the substrate temperature significantly improved the crystal structure of Co3O4 films. The films deposited at 350 °C substrate temperature showed the best structural quality. Transmittance, absorbance and reflectance spectra were taken by means of UV-Vis spectrophotometer, and optical band gap values were calculated using optical method. Surface images and roughness values of the films were taken by atomic force microscopy to see the effect of deposition temperature on surface properties. The resistivity of the films slightly decreases with increase in the substrate temperature from 1.08 × 104 to 1.46 × 102 Ω cm. Finally, ultrasonic spray pyrolysis technique allowed production of Co3O4 films, which are alternative metal oxide film for technological applications, at low substrate temperature.
Liu, Jing; Chen, Yushan; Cai, Haoyuan; Chen, Xiaoyi; Li, Changwei; Yang, Cheng-Fu
2015-01-01
In this study, the nanosphere lithography (NSL) method was used to fabricate hybrid Au-Ag triangular periodic nanoparticle arrays. The Au-Ag triangular periodic arrays were grown on different substrates, and the effect of the refractive index of substrates on fabrication and optical properties was systematically investigated. At first, the optical spectrum was simulated by the discrete dipole approximation (DDA) numerical method as a function of refractive indexes of substrates and mediums. Simulation results showed that as the substrates had the refractive indexes of 1.43 (quartz) and 1.68 (SF5 glass), the nanoparticle arrays would have better refractive index sensitivity (RIS) and figure of merit (FOM). Simulation results also showed that the peak wavelength of the extinction spectra had a red shift when the medium’s refractive index n increased. The experimental results also demonstrated that when refractive indexes of substrates were 1.43 and 1.68, the nanoparticle arrays and substrate had better adhesive ability. Meanwhile, we found the nanoparticles formed a large-scale monolayer array with the hexagonally close-packed structure. Finally, the hybrid Au-Ag triangular nanoparticle arrays were fabricated on quartz and SF5 glass substrates and their experiment extinction spectra were compared with the simulated results.
PMMA/PS coaxial electrospinning: core-shell fiber morphology as a function of material parameters
NASA Astrophysics Data System (ADS)
Rahmani, Shahrzad; Arefazar, Ahmad; Latifi, Masoud
2017-03-01
Core-shell fibers of polymethyl methacrylate (PMMA) and polystyrene (PS) have been successfully electrospun by coaxial electrospinning. To evaluate the influence of the solvent on the final fiber morphology, four types of organic solvents were used in the shell solution while the core solvent was preserved. Morphological observations with scanning electron microscopy, transmission electron microscopy and optical microscopy revealed that both core and shell solvent properties were involved in the final fiber morphology. To explain this involvement, alongside a discussion of the Bagley solubility graph of PS and PMMA, a novel criterion based on solvent physical properties was introduced. A theoretical model based on the momentum conservation principle was developed and applied for describing the dependence of the core and shell diameters to their solvent combinations. Different concentrations of core and shell were also investigated in the coaxial electrospinning of PMMA/PS. The core-shell fiber morphologies with different core and shell concentrations were compared with their single electrospun fibers.
Waveguide Studies for Fiber Optics and Optical Signal Processing Applications.
1980-04-01
AO-A086 115 UNI!VERtSIT? OF SOUTIUR CALEPCRNA LOS AMUSS / 5 WAVGUIDE STUIES15 FOR FEB53 OpTECS AND OpTICAL SEOSA.o P /0Ksu-y "/6 UNLSIIDAPR N0 E...SAMUE Flola-??-c-sa UNCASZFIORAC-M-8042 U Final Technical Report (1 1April 1950 L V ~ WAVEGUIDE STUDIES FOR FIBER OPTICS AND OPTICAL SIGNAL PROCESSING...and Subtitle) 081 6&4JODO )EI YAVECUIDESTUDIES FOR JIBER OPTICS ANDL 7 Final ,T/echnical epoErt, OPTICAL SI’tNAL PROCESSING APPLICATIONS.4 11 Se 77
Development of micro-mirror slicer integral field unit for space-borne solar spectrographs
NASA Astrophysics Data System (ADS)
Suematsu, Yoshinori; Saito, Kosuke; Koyama, Masatsugu; Enokida, Yukiya; Okura, Yukinobu; Nakayasu, Tomoyasu; Sukegawa, Takashi
2017-12-01
We present an innovative optical design for image slicer integral field unit (IFU) and a manufacturing method that overcomes optical limitations of metallic mirrors. Our IFU consists of a micro-mirror slicer of 45 arrayed, highly narrow, flat metallic mirrors and a pseudo-pupil-mirror array of off-axis conic aspheres forming three pseudo slits of re-arranged slicer images. A prototype IFU demonstrates that the final optical quality is sufficiently high for a visible light spectrograph. Each slicer micro-mirror is 1.58 mm long and 30 μm wide with surface roughness ≤1 nm rms, and edge sharpness ≤ 0.1 μm, etc. This IFU is small size and can be implemented in a multi-slit spectrograph without any moving mechanism and fore optics, in which one slit is real and the others are pseudo slits from the IFU. The IFU mirrors were deposited by a space-qualified, protected silver coating for high reflectivity in visible and near IR wavelength regions. These properties are well suitable for space-borne spectrograph such as the future Japanese solar space mission SOLAR-C. We present the optical design, performance of prototype IFU, and space qualification tests of the silver coating.
Performance improvement of long-range surface plasmon structure for use in an all-optical switch
NASA Astrophysics Data System (ADS)
Jandaghian, Ali; Lotfalian, Ali; Kouhkan, Mohsen; Mohajerani, Ezeddin
2017-12-01
This paper presents important parameters in performance of long-range surface plasmon (LRSP) structure (SF4/PVA/silver/PMMA-DR1) that are improved. We select poly(vinyl alcohol) (PVA) as the first dielectric layer due to its water solubility and good optical properties. The thickness of PVA and silver layers is optimized by transfer matrix method based on Fresnel equations. Surface morphologies of PVA and silver surfaces are analyzed by AFM imaging due to their important role in the performance of an LRSP structure. Furthermore, the sensitivity of an all-optical switch based on plasmon is investigated. In order to compare the sensitivity of LRSP and conventional surface plasmon (SP) structures in switching mode, full wide of half maximum, resonance angles, and pump powers of both structures are measured by a custom-made optical setup based on angular interrogation with a precision of 0.01 deg. Finally, we conclude that for creating equal signal levels in both samples, the required pump power for LRSP structure was about three times less than that for conventional SP; thus, these results led to power savings in optical switches.
New frontier in hypericin-mediated diagnosis of cancer with current optical technologies.
Olivo, Malini; Fu, Chit Yaw; Raghavan, Vijaya; Lau, Weber Kam On
2012-02-01
Photosensitizers (PSs) have shown great potentials as molecular contrast agents in photodynamic diagnosis (PDD) of cancer. While the diagnostic values of PSs have been proven previously, little efforts have been put into developing optical imaging and diagnostic algorithms. In this article, we review the recent development of optical probes that have been used in conjunction with a potent PS, hypericin (HY). Various fluorescence techniques such as laser confocal microscopy, fluorescence urine cytology, endoscopy and endomicroscopy are covered. We will also discuss about image processing and classification approaches employed for accurate PDD. We anticipate that continual efforts in these developments could lead to an objective PDD and complete surgical clearance of tumors. Recent advancements in nanotechnology have also opened new horizons for PSs. The use of biocompatible gold nanoparticles as carrier for enhanced targeted delivery of HY has been attained. In addition, plasmonic properties of nanoparticles were harnessed to induce localized hyperthermia and to manage the release of PS molecules, enabling a better therapeutic outcome of a combined photodynamic and photothermal therapy. Finally, we discuss how nanoparticles can be used as contrast agents for other optical techniques such as optical coherence tomography and surface-enhanced Raman scattering imaging.
NASA Astrophysics Data System (ADS)
Huang, Fu-Chung
Vision problems such as near-sightedness, far-sightedness, as well as others, are due to optical aberrations in the human eye. These conditions are prevalent, and the population is growing rapidly. Correcting optical aberrations is traditionally done optically using eyeglasses, contact lenses, or refractive surgeries; these are sometime not convenient or not always available to everyone. Furthermore, higher order aberrations are not correctable with eyeglasses. In this work, we introduce a new computation based aberration-correcting light field display: by incorporating the persons own optical aberration into the computation, we alter the content shown on the display, such that he or she will be able to see it in sharp focus without wearing eyewear. We analyze the image formation models; through the retinal light field projection, we find it is possible to compensate for the optical blurring on the target image by prefiltering with the inverse blur. Using off-the-shelf components, we built a light field display prototype that supports our desired inverse light field prefiltering. The results show a significant contrast improvement and resolution enhancement over prior approaches. Finally, we also demonstrate the capability to correct for higher order aberrations.
Probing exoplanet clouds with optical phase curves.
Muñoz, Antonio García; Isaak, Kate G
2015-11-03
Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve--from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4-0.5.
Ferroic Crystals for Electro-Optic and Acousto-Optic Applications.
properties for potential application in acousto - optic devices; and, (2) A systematic examination of the role of domain structures in modifying the...macroscopic properties of all types of ferroic crystals and the manner in which these property modifications could be exploited in acousto - optic , electro
Adams, Matthew T.; Cleveland, Robin O.; Roy, Ronald A.
2017-01-01
Abstract. Real-time acousto-optic (AO) sensing has been shown to noninvasively detect changes in ex vivo tissue optical properties during high-intensity focused ultrasound (HIFU) exposures. The technique is particularly appropriate for monitoring noncavitating lesions that offer minimal acoustic contrast. A numerical model is presented for an AO-guided HIFU system with an illumination wavelength of 1064 nm and an acoustic frequency of 1.1 MHz. To confirm the model’s accuracy, it is compared to previously published experimental data gathered during AO-guided HIFU in chicken breast. The model is used to determine an optimal design for an AO-guided HIFU system, to assess its robustness, and to predict its efficacy for the ablation of large volumes. It was found that a through transmission geometry results in the best performance, and an optical wavelength around 800 nm was optimal as it provided sufficient contrast with low absorption. Finally, it was shown that the strategy employed while treating large volumes with AO guidance has a major impact on the resulting necrotic volume and symmetry. PMID:28114454
Determination of plane stress state using terahertz time-domain spectroscopy
Wang, Zhiyong; Kang, Kai; Wang, Shibin; Li, Lin'an; Xu, Ningning; Han, Jiaguang; He, Mingxia; Wu, Liang; Zhang, Weili
2016-01-01
THz wave has been increasingly applied in engineering practice. One of its outstanding advantages is the penetrability through certain optically opaque materials, whose interior properties could be therefore obtained. In this report, we develop an experimental method to determine the plane stress state of optically opaque materials based on the stress-optical law using terahertz time-domain spectroscopy (THz-TDS). In this method, two polarizers are combined into the conventional THz-TDS system to sense and adjust the polarization state of THz waves and a theoretical model is established to describe the relationship between phase delay of the received THz wave and the plane stress applied on the specimen. Three stress parameters that represent the plane stress state are finally determined through an error function of THz wave phase-delay. Experiments were conducted on polytetrafluoroethylene (PTFE) specimen and a reasonably good agreement was found with measurement using traditional strain gauges. The presented results validate the effectiveness of the proposed method. The proposed method could be further used in nondestructive tests for a wide range of optically opaque materials. PMID:27824112
NASA Astrophysics Data System (ADS)
Zhang, Mei; Wang, Zhao-Qi; Wang, Yan; Zuo, Tong
2010-10-01
The aim of this research is to study the properties of the transverse chromatic aberration (TCA) after the LASIK refractive surgery based on the individual eye model involving the angle between visual axis and optical axis. According to the measurements of the corneal surfaces, the optical axis lengths and the wavefront aberrations, the individual eye models before and after LASIK refractive surgery are constructed for 15 eyes by using ZEMAX optic design software, while the angle between the visual axis and optical axis is calculated from the data of the anterior corneal surface. The constructed eye models are then used to investigate the variation of the TCA after the surgery. The statistical distributions of the magnitude of the foveal TCA for 15 eyes over the visible spectrum are provided. Finally, we investigate the influence of the TCA on the visual quality and compare the results with previous research. The TCA is an indispensable criterion to evaluate the performance of the refractive surgery. This research is very meaningful for the studies of not only foveal vision but also the peripheral vision.
Determination of plane stress state using terahertz time-domain spectroscopy
NASA Astrophysics Data System (ADS)
Wang, Zhiyong; Kang, Kai; Wang, Shibin; Li, Lin'an; Xu, Ningning; Han, Jiaguang; He, Mingxia; Wu, Liang; Zhang, Weili
2016-11-01
THz wave has been increasingly applied in engineering practice. One of its outstanding advantages is the penetrability through certain optically opaque materials, whose interior properties could be therefore obtained. In this report, we develop an experimental method to determine the plane stress state of optically opaque materials based on the stress-optical law using terahertz time-domain spectroscopy (THz-TDS). In this method, two polarizers are combined into the conventional THz-TDS system to sense and adjust the polarization state of THz waves and a theoretical model is established to describe the relationship between phase delay of the received THz wave and the plane stress applied on the specimen. Three stress parameters that represent the plane stress state are finally determined through an error function of THz wave phase-delay. Experiments were conducted on polytetrafluoroethylene (PTFE) specimen and a reasonably good agreement was found with measurement using traditional strain gauges. The presented results validate the effectiveness of the proposed method. The proposed method could be further used in nondestructive tests for a wide range of optically opaque materials.
Balaratnasingam, Chandrakumar; Kang, Min H; Yu, Paula; Chan, Geoffrey; Morgan, William H; Cringle, Stephen J; Yu, Dao-Yi
2014-04-01
Retinal ganglion cell (RGC) axonal structure and function in the optic nerve head (ONH) is predominantly supported by astrocytes and capillaries. There is good experimental evidence to demonstrate that RGC axons are perturbed in a non-uniform manner following ONH injury and it is likely that the pattern of RGC axonal modification bears some correlation with the quantitative properties of astrocytes and capillaries within laminar compartments. Although there have been some excellent topographic studies concerning glial and microvascular networks in the ONH our knowledge regarding the quantitative properties of these structures are limited. This report is an in-depth quantitative, structural analysis of astrocytes and capillaries in the pre laminar, lamina cribrosa and post laminar compartments of the ONH. 49 optic nerves from human (n = 10), pig (n = 12), horse (n = 6), rat (n = 11) and rabbit (n = 10) eyes are studied. Immunohistochemical and high-magnification confocal microscopy techniques are used to co-localise astrocytes, capillaries and nuclei in the mid-portion of the optic nerve. Quantitative methodology is used to determine the area occupied by astrocyte processes, microglia processes, nuclei density and the area occupied by capillaries in each laminar compartment. Comparisons are made within and between species. Relationships between ONH histomorphometry and astrocyte-capillary constitution are also explored. This study demonstrates that there are significant differences in the quantitative properties of capillaries and astrocytes between the laminar compartments of the human ONH. Astrocyte processes occupied the greatest area in the lamina cribrosa compartment of the human ONH implicating it as an area of great metabolic demands. Microglia were found to occupy only a small proportion of tissue in the rat, rabbit and pig optic nerve suggesting that the astrocyte is the predominant glia cell type in the optic nerve. This study also demonstrates that there is significant uniformity, with respect to astrocyte and capillary constitution, in the post laminar region of species with an unmyelinated anterior optic nerve. This implicates an important role served by oligodendrocytes and myelin in governing the structural characteristics of the post laminar optic nerve. Finally, this study demonstrates that eyes with similar lamina cribrosa structure do not necessarily share an identical cellular constitution with respect to astrocytes. The quantitative properties of astrocytes in the pre laminar and lamina cribrosa regions of the rat, which has a rudimentary lamina cribrosa with only a few collagenous beams, shared more similarities to the human eye than the pig or horse. The quantitative properties of astrocytes and capillaries in the laminar compartments of the ONH provide a basis for understanding the pathogenic mechanisms that are involved in diseases such as glaucoma and ischemic optic neuropathy. The findings in this study also provide valuable information about the distinct advantages of different animal models for studying human optic nerve diseases. Utilisation of structural data provided in this report together with emerging in vivo technology may potentially permit the early identification of RGC axonal injury by quantifying changes in ONH capillaries and astrocytes. Copyright © 2014 Elsevier Ltd. All rights reserved.
2001-09-30
significance of fluorescence and reflectance characteristics of benthic marine organisms in general, and coral reef cnidarians in particular. We wish to... cnidarians in particular. We wish to determine 1) how biological processes act to produce the optical properties and 2) how optical measurements can be
Angeloni, Livia; Reggente, Melania; Passeri, Daniele; Natali, Marco; Rossi, Marco
2018-04-17
Identification of nanoparticles and nanosystems into cells and biological matrices is a hot research topic in nanobiotechnologies. Because of their capability to map physical properties (mechanical, electric, magnetic, chemical, or optical), several scanning probe microscopy based techniques have been proposed for the subsurface detection of nanomaterials in biological systems. In particular, atomic force microscopy (AFM) can be used to reveal stiff nanoparticles in cells and other soft biomaterials by probing the sample mechanical properties through the acquisition of local indentation curves or through the combination of ultrasound-based methods, like contact resonance AFM (CR-AFM) or scanning near field ultrasound holography. Magnetic force microscopy can detect magnetic nanoparticles and other magnetic (bio)materials in nonmagnetic biological samples, while electric force microscopy, conductive AFM, and Kelvin probe force microscopy can reveal buried nanomaterials on the basis of the differences between their electric properties and those of the surrounding matrices. Finally, scanning near field optical microscopy and tip-enhanced Raman spectroscopy can visualize buried nanostructures on the basis of their optical and chemical properties. Despite at a still early stage, these methods are promising for detection of nanomaterials in biological systems as they could be truly noninvasive, would not require destructive and time-consuming specific sample preparation, could be performed in vitro, on alive samples and in water or physiological environment, and by continuously imaging the same sample could be used to dynamically monitor the diffusion paths and interaction mechanisms of nanomaterials into cells and biological systems. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.
Probing the Influence of Disorder on Lanthanide Luminescence Using Eu-Doped LaPO4 Nanoparticles
2017-01-01
Lanthanide-doped nanocrystals (NCs) differ from their bulk counterparts due to their large surface to volume ratio. It is generally assumed that the optical properties are not affected by size effects as electronic transitions occur within the well-shielded 4f shell of the lanthanide dopant ions. However, defects and disorder in the surface layer can affect the luminescence properties. Trivalent europium is a suitable ion to investigate the subtle influence of the surface, because of its characteristic luminescence and high sensitivity to the local environment. Here, we investigate the influence of disorder in NCs on the optical properties of lanthanide dopants by studying the inhomogeneous linewidth, emission intensity ratios, and luminescence decay curves for LaPO4:Eu3+ samples of different sizes (4 nm to bulk) and core–shell configurations (core, core–isocrystalline shell, and core–silica shell). We show that the emission linewidths increase strongly for NCs. The ratio of the intensities of the forced electric dipole (ED) and magnetic dipole (MD) transitions, a measure for the local symmetry distortion around Eu3+ ions, is higher for samples with a large fraction of Eu3+ ions close to the surface. Finally, we present luminescence decay curves revealing an increased nonradiative decay rate for Eu3+ in NCs. The effects are strongest in core and core–silica shell NCs and can be reduced by growth of an isocrystalline LaPO4 shell. The present systematic study provides quantitative insight into the role of surface disorder on the optical properties of lanthanide-doped NCs. These insights are important in emerging applications of lanthanide-doped nanocrystals. PMID:28919934
Spatial distribution of mineral dust single scattering albedo based on DREAM model
NASA Astrophysics Data System (ADS)
Kuzmanoski, Maja; Ničković, Slobodan; Ilić, Luka
2016-04-01
Mineral dust comprises a significant part of global aerosol burden. There is a large uncertainty in estimating role of dust in Earth's climate system, partly due to poor characterization of its optical properties. Single scattering albedo is one of key optical properties determining radiative effects of dust particles. While it depends on dust particle sizes, it is also strongly influenced by dust mineral composition, particularly the content of light-absorbing iron oxides and the mixing state (external or internal). However, an assumption of uniform dust composition is typically used in models. To better represent single scattering albedo in dust atmospheric models, required to increase accuracy of dust radiative effect estimates, it is necessary to include information on particle mineral content. In this study, we present the spatial distribution of dust single scattering albedo based on the Dust Regional Atmospheric Model (DREAM) with incorporated particle mineral composition. The domain of the model covers Northern Africa, Middle East and the European continent, with horizontal resolution set to 1/5°. It uses eight particle size bins within the 0.1-10 μm radius range. Focusing on dust episode of June 2010, we analyze dust single scattering albedo spatial distribution over the model domain, based on particle sizes and mineral composition from model output; we discuss changes in this optical property after long-range transport. Furthermore, we examine how the AERONET-derived aerosol properties respond to dust mineralogy. Finally we use AERONET data to evaluate model-based single scattering albedo. Acknowledgement We would like to thank the AERONET network and the principal investigators, as well as their staff, for establishing and maintaining the AERONET sites used in this work.
Optical filters for wavelength selection in fluorescence instrumentation.
Erdogan, Turan
2011-04-01
Fluorescence imaging and analysis techniques have become ubiquitous in life science research, and they are poised to play an equally vital role in in vitro diagnostics (IVD) in the future. Optical filters are crucial for nearly all fluorescence microscopes and instruments, not only to provide the obvious function of spectral control, but also to ensure the highest possible detection sensitivity and imaging resolution. Filters make it possible for the sample to "see" light within only the absorption band, and the detector to "see" light within only the emission band. Without filters, the detector would not be able to distinguish the desired fluorescence from scattered excitation light and autofluorescence from the sample, substrate, and other optics in the system. Today the vast majority of fluorescence instruments, including the widely popular fluorescence microscope, use thin-film interference filters to control the spectra of the excitation and emission light. Hence, this unit emphasizes thin-film filters. After briefly introducing different types of thin-film filters and how they are made, the unit describes in detail different optical filter configurations in fluorescence instruments, including both single-color and multicolor imaging systems. Several key properties of thin-film filters, which can significantly affect optical system performance, are then described. In the final section, tunable optical filters are also addressed in a relative comparison.
Pepe, Giulio; Cole, Jacqueline M.; Waddell, Paul G.; ...
2016-04-05
Cyanines are optically tunable dyes with high molar extinction coefficients, suitable for applications in co-sensitized dye-sensitized solar cells (DSCs); yet, barely thus applied. This might be due to the lack of a rational molecular design strategy that efficiently exploits cyanine properties. This study computationally re-designs these dyes, to broaden their optical absorption spectrum and create dye···TiO 2 binding and co-sensitization functionality. This is achieved via a stepwise molecular engineering approach. Firstly, the structural and optical properties of four parent dyes are experimentally and computationally investigated: 3,3’-diethyloxacarbocyanine iodide, 3,3’-diethylthiacarbocyanine iodide, 3,3’-diethylthiadicarbocyanine iodide and 3,3’-diethylthiatricarbocyanine iodide. Secondly, the molecules are theoretically modifiedmore » and their energetics are analyzed and compared to the parent dyes. A dye···TiO 2 anchoring group (carboxylic or cyanoacrylic acid), absent from the parent dyes, is chemically substituted at different molecular positions to investigate changes in optical absorption. We find that cyanoacrylic acid substitution at the para-quinoidal position affects the absorption wavelength of all parent dyes, with an optimal bathochromic shift of ca. 40 nm. The theoretical lengthening of the polymethine chain is also shown to effect dye absorption. Two molecularly engineered dyes are proposed as promising co-sensitizers. Finally, corresponding dye···TiO 2 adsorption energy calculations corroborate their applicability, demonstrating the potential of cyanine dyes in DSC research.« less
NASA Technical Reports Server (NTRS)
Campbell, James R.; Welton, Ellsworth J.; Spinhirne, James D.; Ji, Qiang; Tsay, Si-Chee; Piketh, Stuart J.; Barenbrug, Marguerite; Holben, Brent; Starr, David OC. (Technical Monitor)
2002-01-01
During the ARREX-1999 and SAFARI-2000 Dry Season experiments a micropulse lidar (523 nm) instrument was operated at the Skukuza Airport in northeastern South Africa. The Mar was collocated with a diverse array of passive radiometric equipment. For SAFARI-2000 the processed Mar data yields a daytime time-series of layer mean/derived aerosol optical properties, including extinction-to-backscatter ratios and vertical extinction cross-section profile. Combined with 523 run aerosol optical depth and spectral Angstrom exponent calculations from available CIMEL sun-photometer data and normalized broadband flux measurements the temporal evolution of the near surface aerosol layer optical properties is analyzed for climatological trends. For the densest smoke/haze events the extinction-to-backscatter ratio is found to be between 60-80/sr, and corresponding Angstrom exponent calculations near and above 1.75. The optical characteristics of an evolving smoke event from SAFARI-2000 are extensively detailed. The advecting smoke was embedded within two distinct stratified thermodynamic layers, causing the particulate mass to advect over the instrument array in an incoherent manner on the afternoon of its occurrence. Surface broadband flux forcing due to the smoke is calculated, as is the evolution in the vertical aerosol extinction profile as measured by the Han Finally, observations of persistent elevated aerosol during ARREX-1999 are presented and discussed. The lack of corroborating observations the following year makes these observation; both unique and noteworthy in the scope of regional aerosol transport over southern Africa.
Tissues viability and blood flow sensing based on a new nanophotonics method
NASA Astrophysics Data System (ADS)
Yariv, Inbar; Haddad, Menashe; Duadi, Hamootal; Motiei, Menachem; Fixler, Dror
2018-02-01
Extracting optical parameters of turbid medium (e.g. tissue) by light reflectance signals is of great interest and has many applications in the medical world, life science, material analysis and biomedical optics. The reemitted light from an irradiated tissue is affected by the light's interaction with the tissue components and contains the information about the tissue structure and physiological state. In this research we present a novel noninvasive nanophotonics technique, i.e., iterative multi-plane optical property extraction (IMOPE) based on reflectance measurements. The reflectance based IMOPE was applied for tissue viability examination, detection of gold nanorods (GNRs) within the blood circulation as well as blood flow detection using the GNRs presence within the blood vessels. The basics of the IMOPE combine a simple experimental setup for recording light intensity images with an iterative Gerchberg-Saxton (G-S) algorithm for reconstructing the reflected light phase and computing its standard deviation (STD). Changes in tissue composition affect its optical properties which results in changes in the light phase that can be measured by its STD. This work presents reflectance based IMOPE tissue viability examination, producing a decrease in the computed STD for older tissues, as well as investigating their organic material absorption capability. Finally, differentiation of the femoral vein from adjacent tissues using GNRs and the detection of their presence within blood circulation and tissues are also presented with high sensitivity (better than computed tomography) to low quantities of GNRs (<3 mg).
Fractal scaling laws of black carbon aerosol and their influence on spectral radiative properties
NASA Astrophysics Data System (ADS)
Tiwari, S.; Chakrabarty, R. K.; Heinson, W.
2016-12-01
Current estimates of the direct radiative forcing for Black Carbon (BC) aerosol span over a poorly constrained range between 0.2 and 1 W.m-2. To improve this large uncertainty, tighter constraints need to be placed on BC's key wavelength-dependent optical properties, namely, the absorption (MAC) and scattering (MSC) cross sections per unit mass and hemispherical upscatter fraction (β; a dimensionless scattering directionality parameter). These parameters are very sensitive to changes in particle morphology and complex refractive index nindex. Their interplay determines the magnitude of net positive or negative radiative forcing efficiencies. The current approach among climate modelers for estimating MAC and MSC values of BC is from their optical cross-sections calculated assuming spherical particle morphology with homogeneous, constant-valued refractive index in the visible solar spectrum. The β values are typically assumed to be a constant across this spectrum. This approach, while being computationally inexpensive and convenient, ignores the inherent fractal morphology of BC and its scaling behaviors, and resulting optical properties. In this talk, I will present recent results from my laboratory on determination of the fractal scaling laws of BC aggregate packing density and its complex refractive index for size spanning across three orders of magnitude, and their effects on spectral (Visible-infrared wavelength) scaling of MAC, MSC, and β values. Our experiments synergistically combined novel BC generation techniques, aggregation models, contact-free multi-wavelength optical measurements, and electron microscopy analysis. The scale dependence of nindex on aggregate size followed power-law exponents of -1.4 and -0.5 for sub- and super-micron size aggregates, respectively. The spherical Rayleigh-optics approximation limits, used by climate models for spectral extrapolation of BC optical cross-sections and deconvolution of multi-species mixing ratios, are redefined using the concept of phase shift parameter. I will highlight the importance of size-dependent β values and its role in offsetting the strong light absorbing nature of BC. Finally, the errors introduced in forcing efficiency calculations of BC by assuming spherical homogeneous morphology will be evaluated.
NASA Technical Reports Server (NTRS)
Kellogg, E.; Brissenden, R.; Flanagan, K.; Freeman, M.; Hughes, J.; Jones, M.; Ljungberg, M.; Mckinnon, P.; Podgorski, W.; Schwartz, D.
1992-01-01
Advanced X-ray Astrophysics Facility (AXAF) X-ray optics testing is conducted by VETA-I, which consists of six nested Wolter type I grazing-incidence mirrors; VETA's X-ray Detection System (VXDS) in turn measures the imaging properties of VETA-I, yielding FWHM and encircled energy of the X-ray image obtained, as well as its effective area. VXDS contains a high resolution microchannel plate imaging X-ray detector and a pinhole scanning system in front of proportional-counter detectors. VETA-I's X-ray optics departs from the AXAF flight configuration in that it uses a temporary holding fixture; its mirror elements are not cut to final length, and are not coated with the metal film used to maximize high-energy reflection.
Correcting Bidirectional Effects in Remote Sensing Reflectance from Coastal Waters
NASA Astrophysics Data System (ADS)
Stamnes, K. H.; Fan, Y.; Li, W.; Voss, K. J.; Gatebe, C. K.
2016-02-01
Understanding bidirectional effects including sunglint is important for GEO-CAPE for several reasons: (i) correct interpretation of ocean color data; (ii) comparing consistency of spectral radiance data derived from space observations with a single instrument for a variety of illumination and viewing conditions; (iii) merging data collected by different instruments operating simultaneously. We present a new neural network (NN) method to correct bidirectional effects in water-leaving radiance for both Case 1 and Case 2 waters. We also discuss a new BRDF and 2D sun-glint model that was validated by comparing simulated surface reflectances with Cloud Absorption Radiometer (CAR) data. Finally, we present an extension of our marine bio-optical model to the UV range that accounts for the seasonal dependence of the inherent optical properties (IOPs).
Photonic crystals for improving light absorption in organic solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duché, D., E-mail: david.duche@im2np.fr; Le Rouzo, J.; Masclaux, C.
2015-02-07
We theoretically and experimentally study the structuration of organic solar cells in the shape of photonic crystal slabs. By taking advantage of the optical properties of photonic crystals slabs, we show the possibility to couple Bloch modes with very low group velocities in the active layer of the cells. These Bloch modes, also called slow Bloch modes (SBMs), allow increasing the lifetime of photons within the active layer. Finally, we present experimental demonstration performed by using nanoimprint to directly pattern the standard poly-3-hexylthiophène:[6,6]-phenyl-C61-butiryc acid methyl ester organic semiconductor blend in thin film form in the shape of a photonic crystalmore » able to couple SBMs. In agreement with the model, optical characterizations will demonstrate significant photonic absorption gains.« less
Ab-initio study of C15-type Laves phase superconductor LaRu2
NASA Astrophysics Data System (ADS)
Kholil, Md. Ibrahim; Islam, Md. Shahinur; Rahman, Md. Atikur
2017-01-01
Structural, elastic, electronic, optical, thermodynamic, and superconducting properties of the Laves phase superconductor LaRu2 with Tc 1.63 K were investigated using the first-principles calculations for the first time. The corresponding evaluated structural parameters are in good agreement with the available theoretical values. The different elastic properties like as, elastic constants, bulk modulus B, shear modulus G, Young's modulus E, and Poisson ratio ν were calculated using the Voigt-Reuss-Hill approximation. The ductility nature appears in both values of Cauchy pressure and Pugh's ratio. The band structure and Cauchy pressure shows that the material behaves metallic nature. The calculated total density of state is 6.80 (electrons/eV) of LaRu2. The optical properties such as reflectivity, absorption spectrum, refractive index, dielectric function, conductivity, and energy loss spectrum are also calculated. The photoconductivity reveals the metallic nature of LaRu2 and absorption coefficient is good in the infrared region. The evaluated density and Debye temperature are 9.55 gm/cm3 and 110.51 K, respectively. In addition, the study of thermodynamic properties like as minimum thermal conductivity, melting temperature, and Dulong-Petit limit are 0.26 (Wm-1 K-1), 1,471.65 K, and 74.80 (J/mole K), respectively. Finally, the investigated electron-phonon coupling constant is 0.66 of LaRu2 superconductor.
Ballesteros, Lina F; Cerqueira, Miguel A; Teixeira, José A; Mussatto, Solange I
2018-01-01
Extracts rich in polysaccharides were obtained by alkali pretreatment (PA) or autohydrolysis (PB) of spent coffee grounds, and incorporated into a carboxymethyl cellulose (CMC)-based film aiming at the development of bio-based films with new functionalities. Different concentrations of PA or PB (up to 0.20% w/v) were added to the CMC-based film and the physicochemical properties of the final films were determined. Scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, as well as determinations of optical and mechanical properties, moisture content, solubility in water, water vapor permeability, contact angle and sorption isotherms were performed. The addition of PA or PB resulted in important changes in the properties of the CMC-based film, mainly in color and opacity. The polysaccharides incorporation significantly improved the light barrier of the film and provided an enhancement or at least a preservation in the physicochemical properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Bertrand, Olivier J. N.; Lindemann, Jens P.; Egelhaaf, Martin
2015-01-01
Avoiding collisions is one of the most basic needs of any mobile agent, both biological and technical, when searching around or aiming toward a goal. We propose a model of collision avoidance inspired by behavioral experiments on insects and by properties of optic flow on a spherical eye experienced during translation, and test the interaction of this model with goal-driven behavior. Insects, such as flies and bees, actively separate the rotational and translational optic flow components via behavior, i.e. by employing a saccadic strategy of flight and gaze control. Optic flow experienced during translation, i.e. during intersaccadic phases, contains information on the depth-structure of the environment, but this information is entangled with that on self-motion. Here, we propose a simple model to extract the depth structure from translational optic flow by using local properties of a spherical eye. On this basis, a motion direction of the agent is computed that ensures collision avoidance. Flying insects are thought to measure optic flow by correlation-type elementary motion detectors. Their responses depend, in addition to velocity, on the texture and contrast of objects and, thus, do not measure the velocity of objects veridically. Therefore, we initially used geometrically determined optic flow as input to a collision avoidance algorithm to show that depth information inferred from optic flow is sufficient to account for collision avoidance under closed-loop conditions. Then, the collision avoidance algorithm was tested with bio-inspired correlation-type elementary motion detectors in its input. Even then, the algorithm led successfully to collision avoidance and, in addition, replicated the characteristics of collision avoidance behavior of insects. Finally, the collision avoidance algorithm was combined with a goal direction and tested in cluttered environments. The simulated agent then showed goal-directed behavior reminiscent of components of the navigation behavior of insects. PMID:26583771
NASA Technical Reports Server (NTRS)
Hanner, Martha
1988-01-01
The optical properties of small grains provide the link between the infrared observations presented in Chapter 1 and the dust composition described in Chapter 3. In this session, the optical properties were discussed from the viewpoint of modeling the emission from the dust coma and the scattering in order to draw inference about the dust size distribution and composition. The optical properties are applied to the analysis of the infrared data in several ways, and these different uses should be kept in mind when judging the validity of the methods for applying optical constants to real grains.
Theoretical study on the electronic and optical properties of bulk and surface (001) InxGa1-xAs
NASA Astrophysics Data System (ADS)
Liu, XueFei; Ding, Zhao; Luo, ZiJiang; Zhou, Xun; Wei, JieMin; Wang, Yi; Guo, Xiang; Lang, QiZhi
2018-05-01
The optical properties of surface and bulk InxGa1-xAs materials are compared systematically first time in this paper. The band structures, density of states and optical properties including dielectric function, reflectivity, absorption coefficient, loss function and refractive index of bulk and surface InxGa1-xAs materials are investigated by first-principles based on plane-wave pseudo-potentials method within the LDA approximation. The results agree well with the available theoretical and experimental studies and indicate that the electronic and optical properties of bulk and surface InxGa1-xAs materials are much different, and the results show that the considered optical properties of the both materials vary with increasing indium composition in an opposite way. The calculations show that the optical properties of surface In0.75Ga0.25As material are unexpected to be far from the other two indium compositions of surface InxGa1-xAs materials while the optical properties of bulk InxGa1-xAs materials vary with increasing indium composition in an expected regular way.
NASA Astrophysics Data System (ADS)
Lan, Sheng; Sugimoto, Yoshimasa; Nishikawa, Satoshi; Ikeda, Naoki; Yang, Tao; Kanamoto, Kozyo; Ishikawa, Hiroshi; Asakawa, Kiyoshi
2002-07-01
We present a systematic study of coupled defects in photonic crystals (PCs) and explore their applications in constructing optical components and devices for ultrafast all-optical signal processing. First, we find that very deep band gaps can be generated in the impurity bands of coupled cavity waveguides (CCWs) by a small periodic modulation of defect modes. This phenomenon implies a high-efficiency all-optical switching mechanism. The switching mechanism can be easily extended from one-dimensional (1D) to two-dimensional and three-dimensional PC structures by utilizing the coupling of defect pairs which are generally present in PCs. Second, we suggest that CCWs with quasiflat and narrow impurity bands can be employed as efficient delay lines for ultrashort pulses. Criteria for designing such kind of CCWs have been derived from the analysis of defect coupling and the investigation of pulse transmission through various CCWs. It is found that the availability of quasiflat impurity bands depends not only on the intrinsic properties of the constituting defects but also on the detailed configuration of CCWs. In experiments, optical delay lines based on 1D monorail CCWs have been successfully fabricated and characterized. Finally, we have proposed a new mechanism for constructing waveguide intersections with broad bandwidth and low cross-talk.
Transport Optical and Magnetic Properties of Solids.
Solid state physics, Band theory of solids, Semiconductors, Strontium compounds, Superconductors, Magnetic properties, Chalcogens, Transport properties, Optical properties, Bibliographies, Scientific research, Magnons
NASA Technical Reports Server (NTRS)
Mcfadden, Lucy-Ann
1991-01-01
The effect of the solar wind on the optical properties of meteorites was studied to determine whether the solar wind can alter the properties of ordinary chondrite parent bodies resulting in the spectral properties of S-type asteroids. The existing database of optical properties of asteroids was analyzed to determine the effect of solar wind in altering asteroid surface properties.
Effect of Heat and Laser Treatment on Cu2S Thin Film Sprayed on Polyimide Substrate
NASA Astrophysics Data System (ADS)
Magdy, Wafaa; Mahmoud, Fawzy A.; Nassar, Amira H.
2018-02-01
Three samples of copper sulfide Cu2S thin film were deposited on polyimide substrate by spray pyrolysis using deposition temperature of 400°C and deposition time of about 45 min. One of the samples was left as deposited, another was heat treated, while the third was laser treated. The structural, surface morphological, optical, mechanical, and electrical properties of the films were investigated. X-ray diffraction (XRD) analysis showed that the copper sulfide films were close to copper-rich phase (Cu2S). Increased crystallite size after heat and laser treatment was confirmed by XRD analysis and scanning electron microscopy. Vickers hardness measurements showed that the samples' hardness values were enhanced with increasing crystallite size, representing an inverse Hall-Petch (H-P) effect. The calculated optical bandgap of the treated films was lower than that of the deposited film. Finally, it was found that both heat and laser treatment enhanced the physical properties of the sprayed Cu2S films on polyimide substrate for use in solar energy applications.
NASA Astrophysics Data System (ADS)
Wei, Jianglin; Lan, Mu; Zhang, Xi; Xiang, Gang
2017-07-01
Mn-doped SixGe1-x nanowires (NWs) with different Ge concentrations have been studied by first-principles calculations. It is found that the spin dependent energy bands of the NWs show rich variations both in bandgap width and type (from indirect to direct) as the Ge concentration changes. The Mn-doped SixGe1-x NWs exhibit half-metallic characteristics for all Ge concentrations, and the ground states of the NWs are found to be ferromagnetic (FM). The net magnetization mapping and spin density of states calculations reveal that Mn 3d electrons have a strong hybridization effect with nearest Ge 4p electrons, which results in the Ge’s nontrivial contribution to the magnetic moment of the NWs. Further magnon dispersion studies show that the magnetic order stability of the NWs is influenced by Ge concentrations. Finally, the dependence of the optical properties of the magnetic NWs on the Ge concentration is demonstrated. Our results suggest that Mn-doped SixGe1-x NWs may be useful in spintronic and optoelectronic devices.
Hydrogel nanocomposites: a potential UV/blue light filtering material for ophthalmic lenses.
Bozukova, Dimitriya; Pagnoulle, Christophe; De Pauw-Gillet, Marie-Claire; Vertruyen, Bénédicte; Jérôme, Robert; Jérôme, Christine
2011-01-01
Poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (poly(HEMA-co-MMA)) and ZnS hydrogel nanocomposites were prepared and characterized. The chemical composition of the inorganic nanoparticles was confirmed by X-ray diffraction, and the homogeneity of their distribution within the hydrogel was assessed by transmission electron microscopy. The influence of the content of ZnS nanoparticles on the optical performances of the nanocomposites was investigated by UV-Vis spectroscopy. The ability of the hydrogel nanocomposites to filter the hazardous UV light and part of the blue light was reported, which makes them valuable candidates for ophthalmic lens application. In contrast to the optical properties, the thermo-mechanical properties of neat poly(HEMA-co-MMA) hydrogels were found to be largely independent of filling by ZnS nanoparticles (≤2 mg/ml co-monomer mixture). Finally, in vitro cell adhesion test with lens epithelial cells (LECs), extracted from porcine lens crystalline capsule, showed that ZnS had no deleterious effect on the biocompatibility of neat hydrogels, at least at low content. © Koninklijke Brill NV, Leiden, 2011
Simulating return signals of a spaceborne high-spectral resolution lidar channel at 532 nm
NASA Astrophysics Data System (ADS)
Xiao, Yu; Binglong, Chen; Min, Min; Xingying, Zhang; Lilin, Yao; Yiming, Zhao; Lidong, Wang; Fu, Wang; Xiaobo, Deng
2018-06-01
High spectral resolution lidar (HSRL) system employs a narrow spectral filter to separate the particulate (cloud/aerosol) and molecular scattering components in lidar return signals, which improves the quality of the retrieved cloud/aerosol optical properties. To better develop a future spaceborne HSRL system, a novel simulation technique was developed to simulate spaceborne HSRL return signals at 532 nm using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) cloud/aerosol extinction coefficients product and numerical weather prediction data. For validating simulated data, a mathematical particulate extinction coefficient retrieval method for spaceborne HSRL return signals is described here. We compare particulate extinction coefficient profiles from the CALIPSO operational product with simulated spaceborne HSRL data. Further uncertainty analysis shows that relative uncertainties are acceptable for retrieving the optical properties of cloud and aerosol. The final results demonstrate that they agree well with each other. It indicates that the return signals of the spaceborne HSRL molecular channel at 532 nm will be suitable for developing operational algorithms supporting a future spaceborne HSRL system.
Yang, Xiaogang; Lin, Xianqing; Zhao, Yong Sheng; Yan, Dongpeng
2018-05-02
Micro- and nanometer-sized metal-organic frameworks (MOFs) materials have attracted great attention due to their unique properties and various potential applications in photonics, electronics, high-density storage, chemo-, and biosensors. The study of these materials supplies insight into how the crystal structure, molecular components, and micro-/nanoscale effects can influence the performance of inorganic-organic hybrid materials. In this Minireview article, we introduce recent breakthroughs in the controlled synthesis of MOF micro-/nanomaterials with specific structures and compositions, the tunable photonic and electronic properties of which would provide a novel platform for multifunctional applications. Firstly, the design strategies for MOFs based on self-assembly and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low-dimensional MOF micro-/nanostructures. Their new applications including two-photon excited fluorescence, multi-photon pumped lasing, optical waveguides, nonlinear optical (NLO), and field-effect transistors are also outlined. Finally, we briefly discuss perspectives on the further development of these hybrid crystalline micro-/nanomaterials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Exciton Rydberg series in mono- and few-layer WS2
NASA Astrophysics Data System (ADS)
Chernikov, Alexey; Berkelbach, Timothy C.; Hill, Heather M.; Rigosi, Albert; Li, Yilei; Aslan, Özgur B.; Hybertsen, Mark S.; Reichman, David R.; Heinz, Tony F.
2014-03-01
Considered a long-awaited semiconducting analogue to graphene, the family of atomically thin transition metal dichalcogenides (TMDs) attracted intense interest in the scientific community due to their remarkable physical properties resulting from the reduced dimensionality. A fundamental manifestation of the two-dimensional nature is a strong increase in the Coulomb interaction. The resulting formation of tightly bound excitons plays a crucial role for a majority of optical and transport phenomena. In our work, we investigate the excitons in atomically thin TMDs by optical micro-spectroscopy and apply a microscopic, ab-initio theoretical approach. We observe a full sequence of excited exciton states, i.e., the Rydberg series, in the monolayer WS2, identifying tightly bound excitons with energies exceeding 0.3 eV - almost an order of magnitude higher than in the corresponding, three-dimensional crystal. We also find significant deviations of the excitonic properties from the conventional hydrogenic physics - a direct evidence of a non-uniform dielectric environment. Finally, an excellent quantitative agreement is obtained between the experimental findings and the developed theoretical approach.
NASA Astrophysics Data System (ADS)
Bai, Ruixiang; Wei, Yuepeng; Lei, Zhenkun; Jiang, Hao; Tao, Wang; Yan, Cheng; Li, Xiaolei
2018-02-01
The mechanical properties of aluminium alloys can be affected by the local high temperature in laser welding. In this paper, an inversion identification method of local zone-wise elastic-plastic constitutive parameters for laser welding of aluminium alloy 6061 was proposed based on full-field optical measurement data using digital image correlation (DIC). Three regions, i.e., the fusion zone, heat-affected zone, and base zone, of the laser-welded joint were distinguished by means of microstructure optical observation and micrometer hardness measurement. The stress data were obtained using a laser-welded specimen via a uniaxial tensile test. Meanwhile, the local strain data of the laser-welded specimen were obtained by the DIC technique. Thus, the stress-strain relationship for different local regions was established. Finally, the constitutive parameters of the Ramberg-Osgood model were identified by least-square fitting to the experimental stress-strain data. Experimental results revealed that the mechanical properties of the local zones of the welded joints clearly weakened, and these results are consistent with the results of the hardness measurement.
Law, Y K; Hassanali, A A
2018-03-14
In this work, we examine the importance of nuclear quantum effects on capturing the line broadening and vibronic structure of optical spectra. We determine the absorption spectra of three aromatic molecules indole, pyridine, and benzene using time dependent density functional theory with several molecular dynamics sampling protocols: force-field based empirical potentials, ab initio simulations, and finally path-integrals for the inclusion of nuclear quantum effects. We show that the absorption spectrum for all these chromophores are similarly broadened in the presence of nuclear quantum effects regardless of the presence of hydrogen bond donor or acceptor groups. We also show that simulations incorporating nuclear quantum effects are able to reproduce the heterogeneous broadening of the absorption spectra even with empirical force fields. The spectral broadening associated with nuclear quantum effects can be accounted for by the broadened distribution of chromophore size as revealed by a particle in the box model. We also highlight the role that nuclear quantum effects have on the underlying electronic structure of aromatic molecules as probed by various electrostatic properties.
NASA Astrophysics Data System (ADS)
Law, Y. K.; Hassanali, A. A.
2018-03-01
In this work, we examine the importance of nuclear quantum effects on capturing the line broadening and vibronic structure of optical spectra. We determine the absorption spectra of three aromatic molecules indole, pyridine, and benzene using time dependent density functional theory with several molecular dynamics sampling protocols: force-field based empirical potentials, ab initio simulations, and finally path-integrals for the inclusion of nuclear quantum effects. We show that the absorption spectrum for all these chromophores are similarly broadened in the presence of nuclear quantum effects regardless of the presence of hydrogen bond donor or acceptor groups. We also show that simulations incorporating nuclear quantum effects are able to reproduce the heterogeneous broadening of the absorption spectra even with empirical force fields. The spectral broadening associated with nuclear quantum effects can be accounted for by the broadened distribution of chromophore size as revealed by a particle in the box model. We also highlight the role that nuclear quantum effects have on the underlying electronic structure of aromatic molecules as probed by various electrostatic properties.
Zeng, Guangjian; Liu, Meiying; Jiang, Ruming; Huang, Qiang; Huang, Long; Wan, Qing; Dai, Yanfeng; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen
2018-02-01
In recent years, the fluorescent polymeric nanoparticles (FPNs) with aggregation-induced emission (AIE) feature have been extensively exploited in various biomedical fields owing to their advantages, such as low toxicity, biodegradation, excellent biocompatibility, good designability and optical properties. Therefore, development of a facile, efficient and well designable strategy should be of great importance for the biomedical applications of these AIE-active FPNs. In this work, a novel method for the fabrication of AIE-active FPNs has been developed through the self-catalyzed photo-initiated reversible addition fragmentation chain transfer (RAFT) polymerization using an AIE dye containing chain transfer agent (CTA), which could initiate the RAFT polymerization under light irradiation. The results suggested that the final AIE-active FPNs (named as TPE-poly(St-PEGMA)) showed great potential for biomedical applications owing to their optical and biological properties. More importantly, the method described in the work is rather simple and effective and can be further extended to prepare many other different AIE-active FPNs owing to the good monomer adoptability of RAFT polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.
Ortiz-Rascón, E; Bruce, N C; Garduño-Mejía, J; Carrillo-Torres, R; Hernández-Paredes, J; Álvarez-Ramos, M E
2017-11-20
This paper discusses the main differences between two different methods for determining the optical properties of tissue optical phantoms by fitting the spatial and temporal intensity distribution functions to the diffusion approximation theory. The consistency in the values of the optical properties is verified by changing the width of the recipient containing the turbid medium; as the optical properties are an intrinsic value of the scattering medium, independently of the recipient width, the stability in these values for different widths implies a better measurement system for the acquisition of the optical properties. It is shown that the temporal fitting method presents higher stability than the spatial fitting method; this is probably due to the addition of the time of flight parameter into the diffusion theory.
Optical characterizations of silver nanoprisms embedded in polymer thin film layers
NASA Astrophysics Data System (ADS)
Carlberg, Miriam; Pourcin, Florent; Margeat, Olivier; Le Rouzo, Judikael; Berginc, Gerard; Sauvage, Rose-Marie; Ackermann, Jorg; Escoubas, Ludovic
2017-10-01
The precise control of light-matter interaction has a wide range of applications and is currently driven by the use of nanoparticles (NPs) by the recent advances in nanotechnology. Taking advantage of the material, size, shape, and surrounding media dependence of the optical properties of plasmonic NPs, thin film layers with tunable optical properties are achieved. The NPs are synthesized by wet chemistry and embedded in a polyvinylpyrrolidone (PVP) polymer thin film layer. Spectrophotometer and spectroscopic ellipsometry measurements are coupled to finite-difference time domain numerical modeling to optically characterize the heterogeneous thin film layers. Silver nanoprisms of 10 to 50 nm edge size exhibit high absorption through the visible wavelength range. A simple optical model composed of a Cauchy law and a Lorentz law, accounting for the optical properties of the nonabsorbing polymer and the absorbing property of the nanoprisms, fits the spectroscopic ellipsometry measurements. Knowing the complex optical indices of heterogeneous thin film layers let us design layers of any optical properties.
Generation of phase edge singularities by coplanar three-beam interference and their detection.
Patorski, Krzysztof; Sluzewski, Lukasz; Trusiak, Maciej; Pokorski, Krzysztof
2017-02-06
In recent years singular optics has gained considerable attention in science and technology. Up to now optical vortices (phase point dislocations) have been of main interest. This paper presents the first general analysis of formation of phase edge singularities by coplanar three-beam interference. They can be generated, for example, by three-slit interference or self-imaging in the Fresnel diffraction field of a sinusoidal grating. We derive a general condition for the ratio of amplitudes of interfering beams resulting in phase edge dislocations, lateral separation of dislocations depends on this ratio as well. Analytically derived properties are corroborated by numerical and experimental studies. We develop a simple, robust, common path optical self-imaging configuration aided by a coherent tilted reference wave and spatial filtering. Finally, we propose an automatic fringe pattern analysis technique for detecting phase edge dislocations, based on the continuous wavelet transform. Presented studies open new possibilities for developing grating based sensing techniques for precision metrology of very small phase differences.
Anisotropic high-harmonic generation in bulk crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Yong Sing; Reis, David A.; Ghimire, Shambhu
2016-11-21
The microscopic valence electron density determines the optical, electronic, structural and thermal properties of materials. However, current techniques for measuring this electron charge density are limited: for example, scanning tunnelling microscopy is confined to investigations at the surface, and electron diffraction requires very thin samples to avoid multiple scattering. Therefore, an optical method is desirable for measuring the valence charge density of bulk materials. Since the discovery of high-harmonic generation (HHG) in solids, there has been growing interest in using HHG to probe the electronic structure of solids. Here, using single-crystal MgO, we demonstrate that high-harmonic generation in solids ismore » sensitive to interatomic bonding. We find that harmonic efficiency is enhanced (diminished) for semi-classical electron trajectories that connect (avoid) neighbouring atomic sites in the crystal. Finally, these results indicate the possibility of using materials’ own electrons for retrieving the interatomic potential and thus the valence electron density, and perhaps even wavefunctions, in an all-optical setting.« less
Nonlinearity analysis of measurement model for vision-based optical navigation system
NASA Astrophysics Data System (ADS)
Li, Jianguo; Cui, Hutao; Tian, Yang
2015-02-01
In the autonomous optical navigation system based on line-of-sight vector observation, nonlinearity of measurement model is highly correlated with the navigation performance. By quantitatively calculating the degree of nonlinearity of the focal plane model and the unit vector model, this paper focuses on determining which optical measurement model performs better. Firstly, measurement equations and measurement noise statistics of these two line-of-sight measurement models are established based on perspective projection co-linearity equation. Then the nonlinear effects of measurement model on the filter performance are analyzed within the framework of the Extended Kalman filter, also the degrees of nonlinearity of two measurement models are compared using the curvature measure theory from differential geometry. Finally, a simulation of star-tracker-based attitude determination is presented to confirm the superiority of the unit vector measurement model. Simulation results show that the magnitude of curvature nonlinearity measurement is consistent with the filter performance, and the unit vector measurement model yields higher estimation precision and faster convergence properties.
Nano-Engineered Biomimetic Optical Sensors for Glucose Monitoring in Diabetes.
Rauf, Sajid; Hayat Nawaz, Muhammad Azhar; Badea, Mihaela; Marty, Jean Louis; Hayat, Akhtar
2016-11-17
Diabetes is a rapidly growing disease that can be monitored at an individual level by controlling the blood glucose level, hence minimizing the negative impact of the disease. Significant research efforts have been focused on the design of novel and improved technologies to overcome the limitations of existing glucose analysis methods. In this context, nanotechnology has enabled the diagnosis at the single cell and molecular level with the possibility of incorporation in advanced molecular diagnostic biochips. Recent years have witnessed the exploration and synthesis of various types of nanomaterials with enzyme-like properties, with their subsequent integration into the design of biomimetic optical sensors for glucose monitoring. This review paper will provide insights on the type, nature and synthesis of different biomimetic nanomaterials. Moreover, recent developments in the integration of these nanomaterials for optical glucose biosensing will be highlighted, with a final discussion on the challenges that must be addressed for successful implementation of these nano-devices in the clinical applications is presented.
Nano-Engineered Biomimetic Optical Sensors for Glucose Monitoring in Diabetes
Rauf, Sajid; Hayat Nawaz, Muhammad Azhar; Badea, Mihaela; Marty, Jean Louis; Hayat, Akhtar
2016-01-01
Diabetes is a rapidly growing disease that can be monitored at an individual level by controlling the blood glucose level, hence minimizing the negative impact of the disease. Significant research efforts have been focused on the design of novel and improved technologies to overcome the limitations of existing glucose analysis methods. In this context, nanotechnology has enabled the diagnosis at the single cell and molecular level with the possibility of incorporation in advanced molecular diagnostic biochips. Recent years have witnessed the exploration and synthesis of various types of nanomaterials with enzyme-like properties, with their subsequent integration into the design of biomimetic optical sensors for glucose monitoring. This review paper will provide insights on the type, nature and synthesis of different biomimetic nanomaterials. Moreover, recent developments in the integration of these nanomaterials for optical glucose biosensing will be highlighted, with a final discussion on the challenges that must be addressed for successful implementation of these nano-devices in the clinical applications is presented. PMID:27869658
Optical and infrared properties of glancing angle-deposited nanostructured tungsten films
Ungaro, Craig; Shah, Ankit; Kravchenko, Ivan; ...
2015-02-06
For this study, nanotextured tungsten thin films were obtained on a stainless steel (SS) substrate using the glancing-angle-deposition (GLAD) method. It was found that the optical absorption and thermal emittance of the SS substrate can be controlled by varying the parameters used during deposition. Finite-difference time-domain (FDTD) simulations were used to predict the optical absorption and infrared (IR) reflectance spectra of the fabricated samples, and good agreement was found between simulated and measured data. FDTD simulations were also used to predict the effect of changes in the height and periodicity of the nanotextures. These simulations show that good control overmore » the absorption can be achieved by altering the height and periodicity of the nanostructure. These nanostructures were shown to be temperature stable up to 500°C with the addition of a protective HfO 2 layer. Finally, applications for this structure are explored, including a promising application for solar thermal energy systems.« less
NASA Astrophysics Data System (ADS)
Kim, Jong Man; Choi, Byung So; Kim, Sun Il; Kim, Jong Min; Bjelkhagen, Hans I.; Phillips, Nicholas J.
2001-02-01
Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOE s). The drawback of DCG is its low sensitivity and limited spectral response. Silver halide materials can be processed in such a way that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-high-resolution silver halide emulsions. An optimized processing technique for transmission HOE s recorded in these materials is introduced. Diffraction efficiencies over 90% can be obtained for transmissive diffraction gratings. Understanding the importance of the selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOE s.
Nonlocal Electron Coherence in MoS2 Flakes Correlated through Spatial Self Phase Modulation
NASA Astrophysics Data System (ADS)
Wu, Yanling; Wu, Qiong; Sun, Fei; Tian, Yichao; Zuo, Xu; Meng, Sheng; Zhao, Jimin
2015-03-01
Electron coherence among different flake domains of MoS2 has been generated using ultrafast or continuous wave laser beams. Such electron coherence generates characteristic far-field diffraction patterns through a purely coherent nonlinear optical effect--spatial self-phase modulation (SSPM). A wind-chime model is developed to describe the establishment of the electron coherence through correlating the photo-excited electrons among different flakes using coherent light. Owing to its finite gap band structure, we find different mechanisms, including two-photon processes, might be responsible for the SSPM in MoS2 [with a large nonlinear dielectric susceptibility χ (3) = 1.6 × 10-9 e.s.u. (SI: 2.23 × 10-17 m2/V2) per layer]. Finally, we realized all optical switching based on SSPM, demonstrating that the electron coherence generation we report here is a ubiquitous property of layered quantum materials, by which novel optical applications are accessible. National Natural Science Foundation of China (11274372).
Light driven optofluidic switch developed in a ZnO-overlaid microstructured optical fiber.
Konidakis, Ioannis; Konstantaki, Maria; Tsibidis, George D; Pissadakis, Stavros
2015-11-30
A great challenge of Optofluidics remains the control of the fluidic properties of a photonic circuit by solely utilizing light. In this study, the development of a ZnO nanolayered microstructured optical fiber (MOF) Fabry-Perot interferometer is demonstrated, along with its fully reversible optofluidic switching behaviour. The actuation and switching principle is entirely based on the employment of light sources, i.e. UV 248 nm and green 532 nm lasers, while using modest irradiation doses. The synthesized ZnO within the MOF capillaries acts as a light triggered wettability transducer, allowing the controlled water filling and draining of the MOF Fabry-Perot cavity. The progression of the optofluidic cycle is monitored in situ with optical microscopy, while Fabry-Perot reflection spectra are monitored in real time to probe temporal infiltration behaviour. Finally, a first insight on the light triggered switching mechanism, employing photoluminescence and spectrophotometric measurements is presented. Results appear highly promising towards the design of smart in-fiber optofluidic light switching devices, suitable for actuating and sensing applications.
ultra-Stable Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (5STAR)
NASA Astrophysics Data System (ADS)
Dunagan, S. E.; Johnson, R. R.; Redemann, J.; Holben, B. N.; Schmid, B.; Flynn, C. J.; Fahey, L.; LeBlanc, S. E.; Liss, J.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.; Shinozuka, Y.; Dahlgren, R. P.; Pistone, K.; Karol, Y.
2017-12-01
The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution and climate. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. Hyperspectral cloud-transmitted radiance measurements enable the retrieval of cloud properties from below clouds. These measurements tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with optical fiber signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical tracking head, and future detector evolution. 4STAR has supported a broad range of flight experiments since it was first flown in 2010. This experience provides the basis for a series of improvements directed toward reducing measurement uncertainty and calibration complexity, and expanding future measurement capabilities, to be incorporated into a new 5STAR instrument. A 9-channel photodiode radiometer with AERONET-matched bandpass filters will be incorporated to improve calibration stability. A wide dynamic range tracking camera will provide a high precision solar position tracking signal as well as an image of sky conditions around the solar axis. An ultrasonic window cleaning system design will be tested. A UV spectrometer tailored for formaldehyde and SO2 gas retrievals will be added to the spectrometer enclosure. Finally, expansion capability for a 4 channel polarized radiometer to measure the Stokes polarization vector of sky light will be incorporated. This paper presents initial progress on this next-generation 5STAR instrument. Keywords: atmosphere; climate; pollution; radiometry; technology; hyperspectral; fiber optic, polarimetry
Tunable infrared reflectance by phonon modulation
Ihlefeld, Jon F.; Sinclair, Michael B.; Beechem, III, Thomas E.
2018-03-06
The present invention pertains to the use of mobile coherent interfaces in a ferroelectric material to interact with optical phonons and, ultimately, to affect the material's optical properties. In altering the optical phonon properties, the optical properties of the ferroelectric material in the spectral range near-to the phonon mode frequency can dramatically change. This can result in a facile means to change to the optical response of the ferroelectric material in the infrared.
Kahnert, Michael; Nousiainen, Timo; Lindqvist, Hannakaisa
2013-04-08
Optical properties of light absorbing carbon (LAC) aggregates encapsulated in a shell of sulfate are computed for realistic model geometries based on field measurements. Computations are performed for wavelengths from the UV-C to the mid-IR. Both climate- and remote sensing-relevant optical properties are considered. The results are compared to commonly used simplified model geometries, none of which gives a realistic representation of the distribution of the LAC mass within the host material and, as a consequence, fail to predict the optical properties accurately. A new core-gray shell model is introduced, which accurately reproduces the size- and wavelength dependence of the integrated and differential optical properties.
NASA Astrophysics Data System (ADS)
Sakhno, Oksana; Gritsai, Yuri; Sahm, Hagen; Stumpe, Joachim
2018-03-01
Thin circular polarization gratings, characterized by high diffraction efficiency and large, up to 42°, diffraction angles were created by polarization holography for the first time. The high efficiency of the gratings is the result of the specific properties of a photo-crosslinkable liquid crystalline polymer and a two-step photochemical/thermal processing procedure. A diffraction efficiency of up to 98% at 532 nm has been achieved for gratings with periods of 700 nm. In contrast to polarization gratings with larger periods these gratings exhibit Bragg properties. So one beam is either transmitted or diffracted depending on the direction of the circular polarization of the incident light, whereas the maximal diffraction efficiency is achieved only at the proper incident angle. The fabrication procedure consists of holographic exposure of the film at room temperature which provides the photo-selective cycloaddition of cinnamic ester groups. Upon subsequent thermal annealing above T g bulk photo-alignment of the LC polymer film occurs enhancing the optical anisotropy within the grating. The holographic patterning provides high spatial resolution, the arbitrary orientation of the LC director as well as high optical quality, thermal and chemical stability of the final gratings. Highly efficient symmetric and slanted circular polarization gratings were fabricated with the proposed technique.
Fabrication and Characterization of N-Type Zinc Oxide/P-Type Boron Doped Diamond Heterojunction
NASA Astrophysics Data System (ADS)
Marton, Marián; Mikolášek, Miroslav; Bruncko, Jaroslav; Novotný, Ivan; Ižák, Tibor; Vojs, Marian; Kozak, Halyna; Varga, Marián; Artemenko, Anna; Kromka, Alexander
2015-09-01
Diamond and ZnO are very promising wide-bandgap materials for electronic, photovoltaic and sensor applications because of their excellent electrical, optical, physical and electrochemical properties and biocompatibility. In this contribution we show that the combination of these two materials opens up the potential for fabrication of bipolar heterojunctions. Semiconducting boron doped diamond (BDD) thin films were grown on Si and UV grade silica glass substrates by HFCVD method with various boron concentration in the gas mixture. Doped zinc oxide (ZnO:Al, ZnO:Ge) thin layers were deposited by diode sputtering and pulsed lased deposition as the second semiconducting layer on the diamond films. The amount of dopants within the films was varied to obtain optimal semiconducting properties to form a bipolar p-n junction. Finally, different ZnO/BDD heterostructures were prepared and analyzed. Raman spectroscopy, SEM, Hall constant and I-V measurements were used to investigate the quality, structural and electrical properties of deposited heterostructures, respectively. I-V measurements of ZnO/BDD diodes show a rectifying ratio of 55 at ±4 V. We found that only very low dopant concentrations for both semiconducting materials enabled us to fabricate a functional p-n junction. Obtained results are promising for fabrication of optically transparent ZnO/BDD bipolar heterojunction.
BiFeO3 epitaxial thin films and devices: past, present and future
NASA Astrophysics Data System (ADS)
Sando, D.; Barthélémy, A.; Bibes, M.
2014-11-01
The celebrated renaissance of the multiferroics family over the past ten years has also been that of its most paradigmatic member, bismuth ferrite (BiFeO3). Known since the 1960s to be a high temperature antiferromagnet and since the 1970s to be ferroelectric, BiFeO3 only had its bulk ferroic properties clarified in the mid-2000s. It is however the fabrication of BiFeO3 thin films and their integration into epitaxial oxide heterostructures that have fully revealed its extraordinarily broad palette of functionalities. Here we review the first decade of research on BiFeO3 films, restricting ourselves to epitaxial structures. We discuss how thickness and epitaxial strain influence not only the unit cell parameters, but also the crystal structure, illustrated for instance by the discovery of the so-called T-like phase of BiFeO3. We then present its ferroelectric and piezoelectric properties and their evolution near morphotropic phase boundaries. Magnetic properties and their modification by thickness and strain effects, as well as optical parameters, are covered. Finally, we highlight various types of devices based on BiFeO3 in electronics, spintronics, and optics, and provide perspectives for the development of further multifunctional devices for information technology and energy harvesting.
NASA Astrophysics Data System (ADS)
Sun, Yinghui; Wang, Rongming; Liu, Kai
2017-03-01
Substrate has great influences on materials syntheses, properties, and applications. The influences are particularly crucial for atomically thin 2-dimensional (2D) semiconductors. Their thicknesses are less than 1 nm; however, the lateral sizes can reach up to several inches or more. Therefore, these materials must be placed onto a variety of substrates before subsequent post-processing techniques for final electronic or optoelectronic devices. Recent studies reveal that substrates have been employed as ways to modulate the optical, electrical, mechanical, and chemical properties of 2D semiconductors. In this review, we summarize recent progress upon the effects of substrates on properties of 2D semiconductors, mostly focused on 2D transition metal dichalcogenides, through viewpoints of both fundamental physics and device applications. First, we discuss various effects of substrates, including interface strain, charge transfer, dielectric screening, and optical interference. Second, we show the modulation of 2D semiconductors by substrate engineering, including novel substrates (patterned substrates, 2D-material substrates, etc.) and active substrates (phase transition materials, ferroelectric materials, flexible substrates, etc.). Last, we present prospectives and challenges in this research field. This review provides a comprehensive understanding of the substrate effects, and may inspire new ideas of novel 2D devices based on substrate engineering.
New Multispectral Cloud Retrievals from MODIS
NASA Technical Reports Server (NTRS)
Platnick, Steven; Tsay, Si-Chee; Ackerman, Steven A.; Gray, Mark A.; Moody, Eric G.; Li, Jason Y.; Arnold, G. T.; King, Michael D. (Technical Monitor)
2000-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999. It achieved its final orbit and began Earth observations on February 24, 2000. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 micrometers with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this paper I will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of cloud optical properties, especially cloud optical thickness and effective radius of cloud drops and ice crystals. Results will be presented of MODIS cloud properties both over the land and over the ocean, showing the consistency in cloud retrievals over various ecosystems used in the retrievals. The implications of this new observing system on global analysis of the Earth's environment will be discussed.
Quantitative phase imaging for enhanced assessment of optomechanical cancer cell properties
NASA Astrophysics Data System (ADS)
Kastl, Lena; Kemper, Björn; Schnekenburger, Jürgen
2018-02-01
Optical cell stretching provides label-free investigations of cells by measuring their biomechanical properties based on deformability determination in a fiber optical two-beam trap. However, the stretching forces in this two-beam laser trap depend on the optical properties of the investigated specimen. Therefore, we characterized in parallel four cancer cell lines with varying degree of differentiation utilizing quantitative phase imaging (QPI) and optical cell stretching. The QPI data allowed enhanced assessment of the mechanical cell properties measured with the optical cell stretcher and demonstrates the high potential of cell phenotyping when both techniques are combined.
2015-04-08
AFRL-OSR-VA-TR-2015-0085 OPTICAL NEAR-FILED PLATES Roberto Merlin UNIVERSITY OF MICHIGAN Final Report 04/08/2015 DISTRIBUTION A: Distribution...03-2015 Final 09/01/2009-12/31/2014 Optical Near-Field Plates FA9550-09-1-0636 erlin, Roberto, D. The University of Michigan Ann Arbor, MI 48109...distribution unlimited Optical near-field plates were designed using antisymmetric plasmon modes to generate abrupt phase changes within a fraction of a
Co-Precipitation Synthesis and Optical Properties of Mn4+-Doped Hexafluoroaluminate w-LED Phosphors
Geitenbeek, Robin G.; Meijerink, Andries
2017-01-01
Mn4+-activated hexafluoroaluminates are promising red-emitting phosphors for white light emitting diodes (w-LEDs). Here, we report the synthesis of Na3AlF6:Mn4+, K3AlF6:Mn4+ and K2NaAlF6:Mn4+ phosphors through a simple two-step co-precipitation method. Highly monodisperse large (~20 μm) smoothed-octahedron shaped crystallites are obtained for K2NaAlF6:Mn4+. The large size, regular shape and small size distribution are favorable for application in w-LEDs. All Mn4+-doped hexafluoroaluminates show bright red Mn4+ luminescence under blue light excitation. We compare the optical properties of Na3AlF6:Mn4+, K3AlF6:Mn4+ and K2NaAlF6:Mn4+ at room temperature and 4 K. The luminescence measurements reveal that multiple Mn4+ sites exist in M3AlF6:Mn4+ (M = Na, K), which is explained by the charge compensation that is required for Mn4+ on Al3+ sites. Thermal cycling experiments show that the site distribution changes after annealing. Finally, we investigate thermal quenching and show that the luminescence quenching temperature is high, around 460–490 K, which makes these Mn4+-doped hexafluoroaluminates interesting red phosphors for w-LEDs. The new insights reported on the synthesis and optical properties of Mn4+ in the chemically and thermally stable hexafluoroaluminates can contribute to the optimization of red-emitting Mn4+ phosphors for w-LEDs. PMID:29149083
NASA Astrophysics Data System (ADS)
Aklesso, Mangamana; Kumar, K. Raghavendra; Bu, Lingbing; Boiyo, Richard
2018-06-01
In the present study, the spatial-temporal distribution and estimation of trends of different aerosol optical properties, and related impact factors were investigated over three countries: Ghana, Togo, and Benin along the Gulf of Guinea Coast in Southern West Africa (SWA). For this purpose, long-term satellite derived aerosol optical properties (aerosol optical depth at 550 nm; AOD550, Ångström exponent at 470-660 nm; AE470-660, and absorption aerosol index; AAI) retrieved from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI) during January 2005-December 2015 were utilized. The annual mean spatial distribution of AOD550 was found to be high (>0.55) over the southern coastal area, moderate-to-high (0.35-0.55) over the central, and low (<0.35) over northern parts of the study domain. The seasonal mean variations showed high (low) values of AOD550 and AAI during the Harmattan or dry (wet) season. Whereas, low (high) AE470-660 values were characterized during the Harmattan (wet) season. Linear trend analysis revealed a decreasing trend in AOD550 and AAI, and increasing trend in AE470-660. Further, an investigation on the potential drivers to AOD distribution over the SWA revealed that precipitation, NDVI, and terrain were negatively correlated with AOD. Finally, the HYSPLIT derived back trajectory analyses revealed diverse transport pathways originated from the North Atlantic Ocean, Sahara Desert, and Nigeria along with locally generated aerosols.
The statistical average of optical properties for alumina particle cluster in aircraft plume
NASA Astrophysics Data System (ADS)
Li, Jingying; Bai, Lu; Wu, Zhensen; Guo, Lixin
2018-04-01
We establish a model for lognormal distribution of monomer radius and number of alumina particle clusters in plume. According to the Multi-Sphere T Matrix (MSTM) theory, we provide a method for finding the statistical average of optical properties for alumina particle clusters in plume, analyze the effect of different distributions and different detection wavelengths on the statistical average of optical properties for alumina particle cluster, and compare the statistical average optical properties under the alumina particle cluster model established in this study and those under three simplified alumina particle models. The calculation results show that the monomer number of alumina particle cluster and its size distribution have a considerable effect on its statistical average optical properties. The statistical average of optical properties for alumina particle cluster at common detection wavelengths exhibit obvious differences, whose differences have a great effect on modeling IR and UV radiation properties of plume. Compared with the three simplified models, the alumina particle cluster model herein features both higher extinction and scattering efficiencies. Therefore, we may find that an accurate description of the scattering properties of alumina particles in aircraft plume is of great significance in the study of plume radiation properties.
Toward high throughput optical metamaterial assemblies.
Fontana, Jake; Ratna, Banahalli R
2015-11-01
Optical metamaterials have unique engineered optical properties. These properties arise from the careful organization of plasmonic elements. Transitioning these properties from laboratory experiments to functional materials may lead to disruptive technologies for controlling light. A significant issue impeding the realization of optical metamaterial devices is the need for robust and efficient assembly strategies to govern the order of the nanometer-sized elements while enabling macroscopic throughput. This mini-review critically highlights recent approaches and challenges in creating these artificial materials. As the ability to assemble optical metamaterials improves, new unforeseen opportunities may arise for revolutionary optical devices.
Hansen, Angela; Kraus, Tamara; Pellerin, Brian; Fleck, Jacob; Downing, Bryan D.; Bergamaschi, Brian
2016-01-01
Advances in spectroscopic techniques have led to an increase in the use of optical properties (absorbance and fluorescence) to assess dissolved organic matter (DOM) composition and infer sources and processing. However, little information is available to assess the impact of biological and photolytic processing on the optical properties of original DOM source materials. We measured changes in commonly used optical properties and indices in DOM leached from peat soil, plants, and algae following biological and photochemical degradation to determine whether they provide unique signatures that can be linked to original DOM source. Changes in individual optical parameters varied by source material and process, with biodegradation and photodegradation often causing values to shift in opposite directions. Although values for different source materials overlapped at the end of the 111-day lab experiment, multivariate statistical analyses showed that unique optical signatures could be linked to original DOM source material even after degradation, with 17 optical properties determined by discriminant analysis to be significant (p<0.05) in distinguishing between DOM source and environmental processing. These results demonstrate that inferring the source material from optical properties is possible when parameters are evaluated in combination even after extensive biological and photochemical alteration.
Characterization of temperature-dependent optical material properties of polymer powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laumer, Tobias; SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen; CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen
2015-05-22
In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystallinemore » thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders.« less
NASA Astrophysics Data System (ADS)
Visconti, Anthony Joseph
The fabrication of gradient-index (GRIN) optical elements is quite challenging, which has traditionally restricted their use in many imaging systems; consequently, commercial-level GRIN components usually exist in one particular market or niche application space. One such fabrication technique, ion exchange, is a well-known process used in the chemical strengthening of glass, the fabrication of waveguide devices, and the production of small diameter GRIN optical relay systems. However, the manufacturing of large diameter ion-exchanged GRIN elements has historically been limited by long diffusion times. For example, the diffusion time for a 20 mm diameter radial GRIN lens in commercially available ion exchange glass for small diameter relays, is on the order of a year. The diffusion time can be dramatically reduced by addressing three key ion exchange process parameters; the composition of the glass, the diffusion temperature, and the composition of the salt bath. Experimental work throughout this thesis aims to (1) scale up the ion exchange diffusion process to 20 mm diameters for a fast-diffusing titania silicate glass family in both (2) sodium ion for lithium ion (Na+ for Li+) and lithium ion for sodium ion (Li+ for Na+) exchange directions, while (3) utilizing manufacturing friendly salt bath compositions. In addition, optical design studies have demonstrated that an important benefit of gradient-index elements in imaging systems is the added degree of freedom introduced with a gradient's optical power. However, these studies have not investigated the potential usefulness of GRIN materials in dual-band visible to short-wave infrared (vis-SWIR) imaging systems. The unique chromatic properties of the titania silicate ion exchange glass become a significant degree of freedom in the design process for these color-limited, broadband imaging applications. A single GRIN element can replace a cemented doublet or even a cemented triplet, without loss in overall system performance. In this work, a polychromatic vis-SWIR gradient-index design model is constructed based on the homogeneous material properties of the titania silicate ion exchange glass. This model is verified by measuring the dispersion of fabricated GRIN profiles across the vis-SWIR spectrum. Finally, the polychromatic GRIN design model is implemented into commercial design software and several design studies are presented which validate the beneficial chromatic properties of the titania silicate GRIN material. In addition, system-level tolerancing with gradient-index elements is a largely unexplored area. This work introduces new methods and techniques for incorporating GRIN manufacturing errors directly into the design and tolerancing analysis of a multi-element optical system. These methods allow for the optical engineer to utilize manufacturable GRIN profiles throughout the design process and to better predict the final performance of an as-built system. Based on these techniques, a true design-for-manufacture high-performance eyepiece, utilizing a spherical gradient-index element, is designed, toleranced, and commissioned for build.
Nozaki, Junji; Fukumura, Musashi; Aoki, Takaaki; Maniwa, Yutaka; Yomogida, Yohei; Yanagi, Kazuhiro
2017-04-05
Remarkable optical properties, such as quantum light emission and large optical nonlinearity, have been observed in peculiar local sites of transition metal dichalcogenide monolayers, and the ability to tune such properties is of great importance for their optoelectronic applications. For that purpose, it is crucial to elucidate and tune their local optical properties simultaneously. Here, we develop an electric field-assisted near-field technique. Using this technique we can clarify and tune the local optical properties simultaneously with a spatial resolution of approximately 100 nm due to the electric field from the cantilever. The photoluminescence at local sites in molybdenum-disulfide (MoS 2 ) monolayers is reversibly modulated, and the inhomogeneity of the charge neutral points and quantum yields is suggested. We successfully etch MoS 2 crystals and fabricate nanoribbons using near-field techniques in combination with an electric field. This study creates a way to tune the local optical properties and to freely design the structural shapes of atomic monolayers using near-field optics.
Cryo-Infrared Optical Characterization at NASA GSFC
NASA Technical Reports Server (NTRS)
Boucarut, Ray; Quijada, Manuel A.; Henry, Ross M.
2004-01-01
The development of large space infrared optical systems, such as the Next Generation Space Telescope (NGST), has increased requirements for measurement accuracy in the optical properties of materials. Many materials used as optical components in infrared optical systems, have strong temperature dependence in their optical properties. Unfortunately, data on the temperature dependence of most of these materials is sparse. In this paper, we provide a description of the capabilities existing in the Optics Branch at the Goddard Space Flight Center that enable the characterization of the refractive index and absorption coefficient changes and other optical properties in infrared materials at cryogenic temperatures. Details of the experimental apparatus, which include continuous flow liquid helium optical cryostat, and a Fourier Transform Infrared (FTIR) spectrometer are discussed.
MODIS Aerosol Optical Depth Bias Adjustment Using Machine Learning Algorithms
NASA Technical Reports Server (NTRS)
Albayrak, Arif; Wei, Jennifer; Petrenko, Maksym; Lary, David; Leptoukh, Gregory
2011-01-01
To monitor the earth atmosphere and its surface changes, satellite based instruments collect continuous data. While some of the data is directly used, some others such as aerosol properties are indirectly retrieved from the observation data. While retrieved variables (RV) form very powerful products, they don't come without obstacles. Different satellite viewing geometries, calibration issues, dynamically changing atmospheric and earth surface conditions, together with complex interactions between observed entities and their environment affect them greatly. This results in random and systematic errors in the final products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dragnea, Bogdan G.
Achievements which resulted from previous DOE funding include: templated virus-like particle assembly thermodynamics, development of single particle photothermal absorption spectroscopy and dark- field spectroscopy instrumentation for the measurement of optical properties of virus-like nanoparticles, electromagnetic simulations of coupled nanoparticle cluster systems, virus contact mechanics, energy transfer and fluorescence quenching in multichromophore systems supported on biomolecular templates, and photo physical work on virus-aptamer systems. A current total of eight published research articles and a book chapter are acknowledging DOE support for the period 2013-2016.
Modeling and properties of an ion-exchanged optical variable attenuator
NASA Astrophysics Data System (ADS)
Orignac, Xavier; Ingenhoff, Jan; Fabricius, Norbert
1999-03-01
The optical signal power needs to be regulated at some locations in transmission lines. That can be done with the help of optical variable attenuators (OVA), devices which allows for the control of their insertion loss. This work describes the design and properties of some OVAs fabricated by the ion-exchange technique. The OVA functionality relies on a Mach-Zehnder structure, where the output optical intensity is tuned via the change in optical path along one of the two interferometer arms. Here, the optical path is varied through thermo-optic effect (change of refractive index with temperature). Modelling is first addressed: a mostly qualitative theoretical investigation is used to clarify how the fabrication parameters (burial depth and Mach-Zehnder arm separation distance) can be related to the OVAs properties (attenuation dynamic, switching power, settling time, PDL). Properties of fabricated OVAs are presented in a second part. They are compared with other existing products. The relationship between fabrication parameters and properties is also re-examined in light of these results.
The Optical Properties of Ion Implanted Silica
NASA Technical Reports Server (NTRS)
Smith, Cydale C.; Ila, D.; Sarkisov, S.; Williams, E. K.; Poker, D. B.; Hensley, D. K.
1997-01-01
We will present our investigation on the change in the optical properties of silica, 'suprasil', after keV through MeV implantation of copper, tin, silver and gold and after annealing. Suprasil-1, name brand of silica glass produced by Hereaus Amerisil, which is chemically pure with well known optical properties. Both linear nonlinear optical properties of the implanted silica were investigated before and after thermal annealing. All implants, except for Sn, showed strong optical absorption bands in agreement with Mie's theory. We have also used Z-scan to measure the strength of the third order nonlinear optical properties of the produced thin films, which is composed of the host material and the metallic nanoclusters. For implants with a measurable optical absorption band we used Doyle's theory and the full width half maximum of the absorption band to calculate the predicted size of the formed nanoclusters at various heat treatment temperatures. These results are compared with those obtained from direct observation using transmission electron microscopic techniques.
2014-01-01
Semiconductor nanowires, due to their unique electronic, optical, and chemical properties, are firmly placed at the forefront of nanotechnology research. The rich physics of semiconductor nanowire optics arises due to the enhanced light–matter interactions at the nanoscale and coupling of optical modes to electronic resonances. Furthermore, confinement of light can be taken to new extremes via coupling to the surface plasmon modes of metal nanostructures integrated with nanowires, leading to interesting physical phenomena. This Perspective will examine how the optical properties of semiconductor nanowires can be altered via their integration with highly confined plasmonic nanocavities that have resulted in properties such as orders of magnitude faster and more efficient light emission and lasing. The use of plasmonic nanocavities for tailored optical absorption will also be discussed in order to understand and engineer fundamental optical properties of these hybrid systems along with their potential for novel applications, which may not be possible with purely dielectric cavities. PMID:25396030
Toward An Understanding of Cluster Evolution: A Deep X-Ray Selected Cluster Catalog from ROSAT
NASA Technical Reports Server (NTRS)
Jones, Christine; Oliversen, Ronald (Technical Monitor)
2002-01-01
In the past year, we have focussed on studying individual clusters found in this sample with Chandra, as well as using Chandra to measure the luminosity-temperature relation for a sample of distant clusters identified through the ROSAT study, and finally we are continuing our study of fossil groups. For the luminosity-temperature study, we compared a sample of nearby clusters with a sample of distant clusters and, for the first time, measured a significant change in the relation as a function of redshift (Vikhlinin et al. in final preparation for submission to Cape). We also used our ROSAT analysis to select and propose for Chandra observations of individual clusters. We are now analyzing the Chandra observations of the distant cluster A520, which appears to have undergone a recent merger. Finally, we have completed the analysis of the fossil groups identified in ROM observations. In the past few months, we have derived X-ray fluxes and luminosities as well as X-ray extents for an initial sample of 89 objects. Based on the X-ray extents and the lack of bright galaxies, we have identified 16 fossil groups. We are comparing their X-ray and optical properties with those of optically rich groups. A paper is being readied for submission (Jones, Forman, and Vikhlinin in preparation).
NASA Astrophysics Data System (ADS)
Aoki, K.
2016-12-01
Aerosols and cloud play an important role in the climate change. We started the long-term monitoring of aerosol and cloud optical properties since 1990's by using sky radiometer (POM-01, 02; Prede Co. Ltd., Japan). We provide the information, in this presentation, on the aerosol optical properties with respect to their temporal and spatial variability in Japan site (ex. Sapporo, Toyama, Kasuga and etc). The global distributions of aerosols have been derived from earth observation satellite and have been simulated in numerical models, which assume optical parameters. However, these distributions are difficult to derive because of variability in time and space. Therefore, Aerosol optical properties were investigated using the measurements from ground-based and ship-borne sky radiometer. The sky radiometer is an automatic instrument that takes observations only in daytime under the clear sky conditions. Observation of diffuse solar intensity interval was made every ten or five minutes by once. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability in Japan area. In this study, we present the temporal and spatial variability of Aerosol optical properties at several Japan sites, applied to validation of satellite and numerical models. This project is validation satellite of GCOM-C, JAXA. The GCOM-C satellite scheduled to be launched in early 2017.
Color, contrast sensitivity, and the cone mosaic.
Williams, D; Sekiguchi, N; Brainard, D
1993-01-01
This paper evaluates the role of various stages in the human visual system in the detection of spatial patterns. Contrast sensitivity measurements were made for interference fringe stimuli in three directions in color space with a psychophysical technique that avoided blurring by the eye's optics including chromatic aberration. These measurements were compared with the performance of an ideal observer that incorporated optical factors, such as photon catch in the cone mosaic, that influence the detection of interference fringes. The comparison of human and ideal observer performance showed that neural factors influence the shape as well as the height of the foveal contrast sensitivity function for all color directions, including those that involve luminance modulation. Furthermore, when optical factors are taken into account, the neural visual system has the same contrast sensitivity for isoluminant stimuli seen by the middle-wavelength-sensitive (M) and long-wavelength-sensitive (L) cones and isoluminant stimuli seen by the short-wavelength-sensitive (S) cones. Though the cone submosaics that feed these chromatic mechanisms have very different spatial properties, the later neural stages apparently have similar spatial properties. Finally, we review the evidence that cone sampling can produce aliasing distortion for gratings with spatial frequencies exceeding the resolution limit. Aliasing can be observed with gratings modulated in any of the three directions in color space we used. We discuss mechanisms that prevent aliasing in most ordinary viewing conditions. Images Fig. 1 Fig. 8 PMID:8234313
Effect of sputtering parameters on optical and electrical properties of ITO films on PET substrates
NASA Astrophysics Data System (ADS)
Tseng, Kun-San; Lo, Yu-Lung
2013-11-01
The optical and electrical properties of indium tin oxide (ITO) thin films deposited on flexible polyethylene terephthalate (PET) substrates using a DC magnetron sputtering technique are investigated as a function of the deposition time, the argon flow rate and the target-substrate distance. It is found that all of the ITO films contain a high fraction of amorphous phase. The volume fraction of crystallite precipitates in the amorphous host increases with an increasing deposition time or a reducing argon flow rate. The deposition time and argon flow rate have higher effects on the optical transparency of the ITO films than the target-substrate distance has. Increasing film thickness is not the only reason for the transmittance reduced. It is found that an increase of the extinction coefficient by increasing deposition time or an increase of the refractive index by decreasing argon flow rate also reduces the transmittance of thin film. For a constant deposition time, the resistivity of the ITO films reduces with a reducing argon flow rate or a reducing target-substrate distance. For a constant argon flow rate, a critical value of the deposition time exists at which both the resistivity and the effect of the target-substrate distance are minimized. Finally, it is concluded that the film resistivity has low sensitivity to the target-substrate distance if the best deposition conditions which mostly attain the lowest resistivity are matched.
Single Step In Situ Synthesis and Optical Properties of Polyaniline/ZnO Nanocomposites
Kaith, B. S.; Rajput, Jaspreet
2014-01-01
Polyaniline/ZnO nanocomposites were prepared by in situ oxidative polymerization of aniline monomer in the presence of different weight percentages of ZnO nanostructures. The steric stabilizer added to prevent the agglomeration of nanostructures in the polymer matrix was found to affect the final properties of the nanocomposite. ZnO nanostructures of various morphologies and sizes were prepared in the absence and presence of sodium lauryl sulphate (SLS) surfactant under different reaction conditions like in the presence of microwave radiation (microwave oven), under pressure (autoclave), under vacuum (vacuum oven), and at room temperature (ambient condition). The conductivity of these synthesized nanocomposites was evaluated using two-probe method and the effect of concentration of ZnO nanostructures on conductivity was observed. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-visible (UV-VIS) spectroscopy techniques were used to characterize nanocomposites. The optical energy band gap of the nanocomposites was calculated from absorption spectra and ranged between 1.5 and 3.21 eV. The reported values depicted the blue shift in nanocomposites as compared to the band gap energies of synthesized ZnO nanostructures. The present work focuses on the one-step synthesis and potential use of PANI/ZnO nanocomposite in molecular electronics as well as in optical devices. PMID:24523653
The system spatial-frequency filtering of birefringence images of human blood layers
NASA Astrophysics Data System (ADS)
Ushenko, A. G.; Boychuk, T. M.; Mincer, O. P.; Angelsky, P. O.; Bodnar, N. B.; Oleinichenko, B. P.; Bizer, L. I.
2013-09-01
Among various opticophysical methods [1 - 3] of diagnosing the structure and properties of the optical anisotropic component of various biological objects a specific trend has been singled out - multidimensional laser polarimetry of microscopic images of the biological tissues with the following statistic, correlative and fractal analysis of the coordinate distributions of the azimuths and ellipticity of polarization in approximating of linear birefringence polycrystalline protein networks [4 - 10]. At the same time, in most cases, experimental obtaining of tissue sample is a traumatic biopsy operation. In addition, the mechanisms of transformation of the state of polarization of laser radiation by means of the opticoanisotropic biological structures are more varied (optical dichroism, circular birefringence). Hereat, real polycrystalline networks can be formed by different types, both in size and optical properties of biological crystals. Finally, much more accessible for an experimental investigation are biological fluids such as blood, bile, urine, and others. Thus, further progress of laser polarimetry can be associated with the development of new methods of analysis and processing (selection) of polarization- heterogeneous images of biological tissues and fluids, taking into account a wider set of mechanisms anisotropic mechanisms. Our research is aimed at developing experimental method of the Fourier polarimetry and a spatialfrequency selection for distributions of the azimuth and the ellipticity polarization of blood plasma laser images with a view of diagnosing prostate cancer.
Optical properties of two-dimensional GaS and GaSe monolayers
NASA Astrophysics Data System (ADS)
Jappor, Hamad Rahman; Habeeb, Majeed Ali
2018-07-01
Optical properties of GaS and GaSe monolayers are investigated using first-principles calculations. The optical properties are studied up to 35 eV. Precisely, our results demonstrated that the optical properties appearance of GaS monolayer is comparative with GaSe monolayer with few informations contrasts. Moreover, the absorption begins in the visible region, although the peaks in the ultraviolet (UV) region. The refractive index values are 1.644 (GaS monolayer) and 2.01 (GaSe monolayer) at zero photon energy limit and increase to 2.092 and 2.698 respectively and both located in the visible region. Furthermore, we notice that the optical properties of both monolayers are obtained in the ultraviolet range and the results are significant. Accordingly, it can be used as a highly promising material in the solar cell, ultraviolet optical nanodevices, nanoelectronics, optoelectronic, and photocatalytic applications.
Optical and biometric relationships of the isolated pig crystalline lens.
Vilupuru, A S; Glasser, A
2001-07-01
To investigate the interrelationships between optical and biometric properties of the porcine crystalline lens, to compare these findings with similar relationships found for the human lens and to attempt to fit this data to a geometric model of the optical and biometric properties of the pig lens. Weight, focal length, spherical aberration, surface curvatures, thickness and diameters of 20 isolated pig lenses were measured and equivalent refractive index was calculated. These parameters were compared and used to geometrically model the pig lens. Linear relationships were identified between many of the lens biometric and optical properties. The existence of these relationships allowed a simple geometrical model of the pig lens to be calculated which offers predictions of the optical properties. The linear relationships found and the agreement observed between measured and modeled results suggest that the pig lens confirms to a predictable, preset developmental pattern and that the optical and biometric properties are predictably interrelated.
Probing exoplanet clouds with optical phase curves
Muñoz, Antonio García; Isaak, Kate G.
2015-01-01
Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve—from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4–0.5. PMID:26489652
Optical trapping inside living organisms
NASA Astrophysics Data System (ADS)
Hansen, Poul M.; Oddershede, Lene B.
2005-08-01
We use optical tweezers to investigate processes happening inside ving cells. In a previous study, we trapped naturally occurring lipid granules inside living yeast cells, and used them to probe the viscoelastic properties of the cytoplasm. However, we prefer to use probes which can be specifically attached to various organelles within the living cells in order to optically quantify the forces acting on these organelles. Therefore, we have chosen to use nanometer sized gold beads as probes. These gold beads can be conjugated and attached chemically to the organelles of interest. Only Rayleigh metallic particles can be optically trapped and for these it is the case that the larger the beads, the larger the forces which can be exerted and thus measured using optical tweezers. The gold nanoparticles are injected into the cytoplasm using micropipettes. The very rigid cell wall of the S. pombe yeast cells poses a serious obstacle to this injection. In order to be able to punch a hole in the cell, first, the cells have to be turned into protoplasts, where only a lipid bilayer separates the cytoplasm from the surrounding media. We show how to perform micropipette delivery into the protoplasts and also how the protoplasts can be ablated using the trapping laserlight. Finally, we demonstrate that we can transform the protoplasts back to normal yeast cells.
Position and mode dependent optical detection back-action in cantilever beam resonators
NASA Astrophysics Data System (ADS)
Larsen, T.; Schmid, S.; Dohn, S.; Sader, J. E.; Boisen, A.; Villanueva, L. G.
2017-03-01
Optical detection back-action in cantilever resonant or static detection presents a challenge when striving for state-of-the-art performance. The origin and possible routes for minimizing optical back-action have received little attention in literature. Here, we investigate the position and mode dependent optical back-action on cantilever beam resonators. A high power heating laser (100 µW) is scanned across a silicon nitride cantilever while its effect on the first three resonance modes is detected via a low-power readout laser (1 µW) positioned at the cantilever tip. We find that the measured effect of back-action is not only dependent on position but also the shape of the resonance mode. Relevant silicon nitride material parameters are extracted by fitting finite element (FE) simulations to the temperature-dependent frequency response of the first three modes. In a second round of simulations, using the extracted parameters, we successfully fit the FEM results with the measured mode and position dependent back-action. From the simulations, we can conclude that the observed frequency tuning is due to temperature induced changes in stress. Effects of changes in material properties and dimensions are negligible. Finally, different routes for minimizing the effect of this optical detection back-action are described, allowing further improvements of cantilever-based sensing in general.
Electronic Properties, Screening, and Efficient Carrier Transport in NaSbS 2
Sun, Jifeng; Singh, David J.
2017-02-13
NaSbS 2 is a semiconductor that was recently shown to have remarkable efficacy as a solar absorber indicating efficient charge collection even in material containing defects. We report first-principles calculations of properties that show (1) an indirect gap only slightly smaller than the direct gap, which may impede the recombination of photoexcited carriers, (2) highly anisotropic electronic and optical properties reflecting a layered crystal structure, (3) a pushed-up valence-band maximum due to repulsion from the Sb 5s states, and (4) cross-gap hybridization between the S p—derived valence bands and the Sb 5p states. This latter feature leads to enhanced Bornmore » effective charges that can provide local screening and, therefore, defect tolerance. Finally, these features are discussed in relation to the performance of the compound as a semiconductor with efficient charge collection.« less
NASA Astrophysics Data System (ADS)
Xie, Yuping; Akpalu, Yvonne A.
2007-03-01
Polyhydroxyalkanoates (PHAs) have recently attracted much interest because of their biodegradability and biocompatibility. Since the ultimate properties of polymers can be controlled by processing conditions, particularly cooling rates, the systematic and thorough understanding of the effects of cooling rates on the final morphology and the resulting mechanical properties of PHAs is necessary and important. In this presentation, the lamellar (tens of nanometers), fibrillar (several hundred nanometers) and spherulitic (˜μm) morphologies of poly (3-hydroxybutyric acid) (PHB) and the copolymer poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) crystallized under different cooling rates were studied using small angle X-ray scattering, ultra small angle X-ray scattering, and polarized optical microscopy, respectively. The morphology was observed to depend strongly on cooling rate. The influence of cooling rate on the morphology and mechanical properties such as toughness, tensile strength and overall stress-strain behavior will be discussed.
Texturing of polypropylene (PP) with nanosecond lasers
NASA Astrophysics Data System (ADS)
Riveiro, A.; Soto, R.; del Val, J.; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J.
2016-06-01
Polypropylene (PP) is a biocompatible and biostable polymer, showing good mechanical properties that has been recently introduced in the biomedical field for bone repairing applications; however, its poor surface properties due to its low surface energy limit their use in biomedical applications. In this work, we have studied the topographical modification of polypropylene (PP) laser textured with Nd:YVO4 nanosecond lasers emitting at λ = 1064 nm, 532 nm, and 355 nm. First, optical response of this material under these laser wavelengths was determined. The application of an absorbing coating was also studied. The influence of the laser processing parameters on the surface modification of PP was investigated by means of statistically designed experiments. Processing maps to tailor the roughness, and wettability, the main parameters affecting cell adhesion characteristics of implants, were also determined. Microhardness measurements were performed to discern the impact of laser treatment on the final mechanical properties of PP.
Porous silicon in drug delivery devices and materials☆
Anglin, Emily J.; Cheng, Lingyun; Freeman, William R.; Sailor, Michael J.
2009-01-01
Porous Si exhibits a number of properties that make it an attractive material for controlled drug delivery applications: The electrochemical synthesis allows construction of tailored pore sizes and volumes that are controllable from the scale of microns to nanometers; a number of convenient chemistries exist for the modification of porous Si surfaces that can be used to control the amount, identity, and in vivo release rate of drug payloads and the resorption rate of the porous host matrix; the material can be used as a template for organic and biopolymers, to prepare composites with a designed nanostructure; and finally, the optical properties of photonic structures prepared from this material provide a self-reporting feature that can be monitored in vivo. This paper reviews the preparation, chemistry, and properties of electrochemically prepared porous Si or SiO2 hosts relevant to drug delivery applications. PMID:18508154
Brownian dynamics of sterically-stabilized colloidal suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
TeGrotenhuis, W.E.; Radke, C.J.; Denn, M.M.
1994-02-01
One application where microstructure plays a critical role is in the production of specialty ceramics, where colloidal suspensions act as precursors; here the microstructure influences the structural, thermal, optical and electrical properties of the ceramic products. Using Brownian dynamics, equilibrium and dynamic properties are calculated for colloidal suspensions that are stabilized through the Milner, Witten and Cates (1988) steric potential. Results are reported for osmotic pressures, radial distributions functions, static structure factors, and self-diffusion coefficients. The sterically-stabilized systems are also approximated by equivalent hard spheres, with good agreement for osmotic pressure and long-range structure. The suitability of the potential tomore » model the behavior of a real system is explored by comparing static structure factors calculated from Brownian dynamics simulations to those measured using SANS. Finally, the effects of Hamaker and hydrodynamic forces on calculated properties are investigated.« less
NASA Astrophysics Data System (ADS)
Ben Issa, Takoua; Ben Ali Hassine, Chedia; Ghalla, Houcine; Barhoumi, Houcine; Benhamada, Latifa
2018-06-01
In this work, the electronic behavior, charge transfer, non linear optical (NLO) properties, and thermal stability of the quinoline phosphate (QP) have been investigated. The experimental UV-Vis spectrum has been recorded in the range of 200-800 nm. Additionally, the absorption spectrum was reproduced by time-dependent density functional theory (TD-DFT) method with B3LYP functional and with empirical dispersion corrections D3BJ in combination with the 6-311+G(d,p) basis set. The electronic properties such as HOMO-LUMO energy gap and chemical reactivity have been calculated. The electrochemical characterization of the title compound is investigated using cyclic voltammetry and impedance spectroscopy methods. Finally, the thermal stability of the QP is discussed in term of differential scanning calorimetry (DSC) measurement, which showed that QP compound is thermally stable up to 150 °C.
Watkins, Arthur D.; Smartt, Herschel B.; Taylor, Paul L.
1994-01-01
An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.
Watkins, A.D.; Smartt, H.B.; Taylor, P.L.
1994-01-04
An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.
Impact of strain on electronic defects in (Mg,Zn)O thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Florian, E-mail: fschmidt@physik.uni-leipzig.de; Müller, Stefan; Wenckstern, Holger von
2014-09-14
We have investigated the impact of strain on the incorporation and the properties of extended and point defects in (Mg,Zn)O thin films by means of photoluminescence, X-ray diffraction, deep-level transient spectroscopy (DLTS), and deep-level optical spectroscopy. The recombination line Y₂, previously detected in ZnO thin films grown on an Al-doped ZnO buffer layer and attributed to tensile strain, was exclusively found in (Mg,Zn)O samples being under tensile strain and is absent in relaxed or compressively strained thin films. Furthermore a structural defect E3´ can be detected via DLTS measurements and is only incorporated in tensile strained samples. Finally it ismore » shown that the omnipresent deep-level E3 in ZnO can only be optically recharged in relaxed ZnO samples.« less
Functional metasurfaces based on metallic and dielectric subwavelength slits and stripes array
NASA Astrophysics Data System (ADS)
Guo, Yinghui; Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Gao, Ping; Wang, Yanqin; Luo, Xiangang
2018-04-01
Starting with the early works of extraordinary optical transmission and extraordinary Young’s interference, researchers have been fascinated by the unusual optical properties displayed by metallic holes/slits and subsequently found similar abnormities in dielectric counterparts. Benefiting from the shrinking wavelength of surface plasmon polaritons excited in metallic slits and high refractive index of dielectric stripes, one can realize local phase modulation and approach desired dispersion by engineering the geometries of a slits and stripes array. In this review, we review recent developments in functional metasurfaces composed of various metallic and dielectric subwavelength slits and stripes arrays, with special emphasis on achromatic, ultra-broadband, quasi-continuous, multifunctional and reconfigurable metasurfaces. Particular attention is paid to provide insight into the design strategies for these devices. Finally, we give an outlook of the development in this fascinating area.
Extreme electron polaron spatial delocalization in π-conjugated materials
Rawson, Jeff; Angiolillo, Paul J.; Therien, Michael J.
2015-10-28
The electron polaron, a spin-1/2 excitation, is the fundamental negative charge carrier in π-conjugated organic materials. Large polaron spatial dimensions result from weak electron-lattice coupling and thus identify materials with unusually low barriers for the charge transfer reactions that are central to electronic device applications. In this paper, we demonstrate electron polarons in π-conjugated multiporphyrin arrays that feature vast areal delocalization. This finding is evidenced by concurrent optical and electron spin resonance measurements, coupled with electronic structure calculations that suggest atypically small reorganization energies for one-electron reduction of these materials. Finally, because the electron polaron dimension can be linked tomore » key performance metrics in organic photovoltaics, light-emitting diodes, and a host of other devices, these findings identify conjugated materials with exceptional optical, electronic, and spintronic properties.« less
Equivalent retarder-rotator approach to on-state twisted nematic liquid crystal displays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duran, Vicente; Lancis, Jesus; Tajahuerce, Enrique
2006-06-01
Polarization properties of a twisted nematic liquid crystal cell are fully characterized by an equivalent optical system that consists of a retarder wave plate and a rotator. In this paper we show that this result is of interest to optimize the light-modulation capabilities of a voltage-addressed liquid crystal display (LCD). We provide two examples. First, we demonstrate a calibration method that can be carried out by a standard polarimetric technique with a high degree of precision. Second, we propose an optical device to generate a family of equiazimuth polarization states by adding a quarter-wave plate to the LCD. We findmore » that the design procedure is best described in geometrical terms on the Poincare sphere by use of the equivalent model. Finally, laboratory results corresponding to a commercial LCD are presented.« less
NASA Technical Reports Server (NTRS)
Radke, C. R.; Meyer, T. R.
2014-01-01
The spray characteristics of a liquid-liquid double swirl coaxial injector were studied using non-invasive optical, laser, and X-ray diagnostics. A parametric study of injector exit geometry demonstrated that spray breakup time, breakup type and sheet stability could be controlled with exit geometry. Phase Doppler interferometry was used to characterize droplet statistics and non-dimensional droplet parameters over a range of inlet conditions and for various fluids allowing for a study on the role of specific fluid properties in atomization. Further, X-ray radiography allowed for investigation of sheet thickness and breakup length to be quantified for different recess exit diameters and inlet pressures. Finally, computed tomography scans revealed that the spray cone was distinctively non-uniform and comprised of several pockets of increased mass flux.
NASA Technical Reports Server (NTRS)
Radke, C. R.; Meyer, T. R.
2014-01-01
The spray characteristics of a Liquid-Liquid Double Swirl Coaxial Injector were studied using noninvasive Optical, Laser, and X-ray diagnostics. A parametric study of injector exit geometry demonstrated that spray breakup time, breakup type and sheet stability could be controlled with exit geometry. Phase Doppler Particle Analysis characterized droplet statistics and non-dimensional droplet parameters over a range of inlet conditions and for various fluids allowing for a study on the role of specific fluid properties in atomization. Further, x-ray radiographs allowed for investigations of sheet thickness and breakup length to be quantified for different recess exits and inlet pressures. Finally Computed Tomography scans revealed that the spray cone was distinctively non-uniform and comprised of several pockets of increased mass flux.
An overview of LED applications for general illumination
NASA Astrophysics Data System (ADS)
Pelka, David G.; Patel, Kavita
2003-11-01
This paper begins by reviewing the current state of development of LEDs, their existing markets as well as their potential for energy conservation and their potential for gaining market share in the general illumination market. It discusses LED metrics such as chip size, lumens per watt, thermal resistance, and the recommended maximum current rating. The paper then goes on to consider the importance of non-imaging optics for both optically efficient and extremely compact LED lighting systems. Finally, microstructures useful for controlling the fields-of-view of LED lighting systems are considered and described in some detail. An extremely efficient and cost effective microstructure, called kinoform diffusers, is shown to have very unique properties that make this technology almost ideal for shaping the output beams of LED lighting systems. It concludes by illustrating some general illumination LED lighting systems
Quantitative first-principles theory of interface absorption in multilayer heterostructures
Hachtel, Jordan A.; Sachan, Ritesh; Mishra, Rohan; ...
2015-09-03
The unique chemical bonds and electronic states of interfaces result in optical properties that are different from those of the constituting bulk materials. In the nanoscale regime, the interface effects can be dominant and impact the optical response of devices. Using density functional theory (DFT), the interface effects can be calculated, but DFT is computationally limited to small systems. In this paper, we describe a method to combine DFT with macroscopic methodologies to extract the interface effect on absorption in a consistent and quantifiable manner. The extracted interface effects are an independent parameter and can be applied to more complicatedmore » systems. Finally, we demonstrate, using NiSi 2/Si heterostructures, that by varying the relative volume fractions of interface and bulk, we can tune the spectral range of the heterostructure absorption.« less
NASA Astrophysics Data System (ADS)
Cai, Huai-yu; Dong, Xiao-tong; Zhu, Meng; Huang, Zhan-hua
2018-01-01
Wavefront coding for athermal technique can effectively ensure the stability of the optical system imaging in large temperature range, as well as the advantages of compact structure and low cost. Using simulation method to analyze the properties such as PSF and MTF of wavefront coding athermal system under several typical temperature gradient distributions has directive function to characterize the working state of non-ideal temperature environment, and can effectively realize the system design indicators as well. In this paper, we utilize the interoperability of data between Solidworks and ZEMAX to simplify the traditional process of structure/thermal/optical integrated analysis. Besides, we design and build the optical model and corresponding mechanical model of the infrared imaging wavefront coding athermal system. The axial and radial temperature gradients of different degrees are applied to the whole system by using SolidWorks software, thus the changes of curvature, refractive index and the distance between the lenses are obtained. Then, we import the deformation model to ZEMAX for ray tracing, and obtain the changes of PSF and MTF in optical system. Finally, we discuss and evaluate the consistency of the PSF (MTF) of the wavefront coding athermal system and the image restorability, which provides the basis and reference for the optimal design of the wavefront coding athermal system. The results show that the adaptability of single material infrared wavefront coding athermal system to axial temperature gradient can reach the upper limit of temperature fluctuation of 60°C, which is much higher than that of radial temperature gradient.
Ultra-Stable Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (5STAR)
NASA Technical Reports Server (NTRS)
Dunagan, Stephen E.; Johnson, Roy R.; Redemann, Jens; Holben, Brent N.; Schmidt, Beat; Flynn, Connor Joseph; Fahey, Lauren; LeBlanc, Samuel; Liss, Jordan; Kacenelenbogen, Meloe S.;
2017-01-01
The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to airpollution and climate. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituentsand determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution.Hyperspectral cloud-transmitted radiance measurements enable the retrieval of cloud properties from below clouds.These measurements tighten the closure between satellite and ground-based measurements. 4STAR incorporates amodular sun-tracking sky-scanning optical head with optical fiber signal transmission to rack mounted spectrometers,permitting miniaturization of the external optical tracking head, and future detector evolution.4STAR has supported a broad range of flight experiments since it was first flown in 2010. This experience provides thebasis for a series of improvements directed toward reducing measurement uncertainty and calibration complexity, andexpanding future measurement capabilities, to be incorporated into a new 5STAR instrument. A 9-channel photodioderadiometer with AERONET-matched bandpass filters will be incorporated to improve calibration stability. A wide dynamic range tracking camera will provide a high precision solar position tracking signal as well as an image of sky conditions around the solar axis. An ultrasonic window cleaning system design will be tested. A UV spectrometer tailored for formaldehyde and SO2 gas retrievals will be added to the spectrometer enclosure. Finally, expansion capability for a 4 channel polarized radiometer to measure the Stokes polarization vector of sky light will be incorporated. This paper presents initial progress on this next-generation 5STAR instrument.
NASA Astrophysics Data System (ADS)
Xie, Weichang; Hagemeier, Sebastian; Bischoff, Jörg; Mastylo, Rostyslav; Manske, Eberhard; Lehmann, Peter
2017-06-01
Optical profilers are mature instruments used in research and industry to study surface topography features. Although the corresponding standards are based on simple step height measurements, in practical applications these instruments are often used to study the fidelity of surface topography. In this context it is well-known that in certain situations a surface profile obtained by an optical profiler will differ from the real profile. With respect to practical applications such deviations often occur in the vicinity of steep walls and in cases of high aspect ratio. In this contribution we compare the transfer characteristics of different 3D optical profiler principles, namely white-light interferometry, focus sensing, and confocal microscopy. Experimental results demonstrate that the transfer characteristics do not only depend on the parameters of the optical measurement system (e. g. wavelength and coherence of light, numerical aperture, evaluated signal feature, polarization) but also on the properties of the measuring object such as step height, aspect ratio, material properties and homogeneity, rounding and steepness of the edges, surface roughness. As a result, typical artefacts such as batwings occur for certain parameter combinations, particularly at certain height-to-wavelength ratio (HWR) values. Understanding of the mechanisms behind these phenomena enables to reduce them by an appropriate parameter adaption. However, it is not only the edge artefacts, but also the position of an edge that may be changed due to the properties of the measuring object. In order to investigate the relevant effects theoretically, several models are introduced. These are based on either an extension of Richards-Wolf modeling or rigorous coupled wave analysis (RCWA). Although these models explain the experimental effects quite well they suffer from different limitations, so that a quantitative correspondence of theoretical modeling and experimental results is hard to achieve. Nevertheless, these models are used to study the characteristics of the measured signals occurring at edges of different step height compared to signals occurring at plateaus. Moreover, a special calibration sample with continuous step height variation was developed to reduce the impact of unknown sample properties. We analyzed the signals in both, the spatial and the spatial frequency domain, and found systematic signal changes that will be discussed. As a consequence, these simulations will help to interpret measurement results appropriately and to improve them by proper parameter settings and calibration and finally to increase the edge detection accuracy.
Organic Materials For Optical Switching
NASA Technical Reports Server (NTRS)
Cardelino, Beatriz H.
1993-01-01
Equations predict properties of candidate materials. Report presents results of theoretical study of nonlinear optical properties of organic materials. Such materials used in optical switching devices for computers and telecommunications, replacing electronic switches. Optical switching potentially offers extremely high information throughout in compact hardware.
NASA Astrophysics Data System (ADS)
Chang, Chih-Yuan; Tsai, Meng-Hsun
2015-12-01
This paper reports a highly effective method for the mass production of large-area plastic optical films with a microlens array pattern based on a continuous roll-to-roll film extrusion and roller embossing process. In this study, a thin steel mold with a micro-circular hole array pattern is fabricated by photolithography and a wet chemical etching process. The thin steel mold was then wrapped onto a metal cylinder to form an embossing roller mold. During the roll-to-roll process operation, a thermoplastic raw material (polycarbonate grains) was put into the barrel of the plastic extruder with a flat T-die. Then, the molten polymer film was extruded and immediately pressed against the surface of the embossing roller mold. Under the proper processing conditions, the molten polymer will just partially fill the micro-circular holes of the mold and due to surface tension form a convex lens surface. A continuous plastic optical film with a microlens array pattern was obtained. Experiments are carried out to investigate the effect of plastic microlens formation on the roll-to-roll process. Finally, the geometrical and optical properties of the fabricated plastic optical film were measured and proved satisfactory. This technique shows great potential for the mass production of large-area plastic optical films with a microlens array pattern.
NASA Astrophysics Data System (ADS)
Soupiona, O.; Papayannis, A.; Kokkalis, P.; Mylonaki, M.; Tsaknakis, G.; Argyrouli, A.; Vratolis, S.
2018-06-01
We present a comprehensive analysis of the seasonal variability of the vertical profiles of the optical and geometrical properties of Saharan dust aerosols, observed in the height region between 1000 and 6000 m, over the city of Athens, Greece, from February 2000 to December 2016. These observations were performed by a multi-wavelength (355-387-532-1064 nm) Raman lidar system under cloud-free conditions. The statistical analysis (using aerosol monthly mean values) is based on nighttime vertical Raman measurements of range-resolved aerosol optical properties (backscatter and extinction coefficients, lidar ratio, Ångström exponent) at 355 nm (57 dust events during more than 80 measurement hours). We found that the number of dust events was highest in spring, summer, and early autumn periods and that during spring the dust layers were moved at higher altitudes (∼4500 m) than in other seasons. The number of the forecasted dusty days (on monthly basis) by the BSC-DREAM8b model compared to those of the performed lidar measurements were found to have a quite strong correlation (R2 = 0.81), with a maximum occurrence predicted for the spring season. In the worst case scenario, at least 50% of the model-forecasted dust events can be observed by lidar under cloudless skies over Athens. For the sampled dust plumes we found mean lidar ratios of 52 ± 13 sr at 355 nm in the height range 2000-4000 m a.s.l. Moreover, the dust layers had a mean thickness of 2497 ± 1026 m and a center of mass of 2699 ± 1017 m. An analysis performed regarding the air mass back-trajectories arriving over Athens revealed two main clusters: one pathway from south-west to north-east, with dust emission areas in Tunisia, Algeria and Libya and a second one from south, across the Mediterranean Sea with emission areas over Libya and the remaining part of Algeria and Tunisia. This clustering enabled us to differentiate between the aerosol optical properties between the two clusters, based on their residence time over the Saharan region, the European continent and the Mediterranean Sea. We finally concluded that even if the dust source regions are about the same, the aging and mixing processes of these air masses, passing over different areas, might have an impact on the aerosol optical properties.
First-principles real-space study of electronic and optical excitations in rutile TiO 2 nanocrystals
Hung, Linda; Baishya, Kopinjol; Öğüt, Serdar
2014-10-17
We model rutile titanium dioxide nanocrystals (NCs) up to ~1.5 nm in size to study the effects of quantum confinement on their electronic and optical properties. Ionization potentials (IPs) and electron affinities (EAs) are obtained via the perturbative GW approximation (G 0W 0) and ΔSCF method for NCs up to 24 and 64 TiO 2 formula units, respectively. These demanding GW computations are made feasible by using a real-space framework that exploits quantum confinement to reduce the number of empty states needed in GW summations. Time-dependent density functional theory (TDDFT) is used to predict the optical properties of NCs upmore » to 64 TiO 2 units. For a NC containing only 2 TiO 2 units, the offsets of the IP and the EA from the corresponding bulk limits are of similar magnitude. However, as NC size increases, the EA is found to converge more slowly to the bulk limit than the IP. The EA values computed at the G 0W 0 and ΔSCF levels of theory are found to agree fairly well with each other, while the IPs computed with ΔSCF are consistently smaller than those computed with G 0W 0 by a roughly constant amount. TDDFT optical gaps exhibit weaker size dependence than GW quasiparticle gaps, and result in exciton binding energies on the order of eV. Finally, altering the dimensions of a fixed-size NC can change electronic and optical excitations up to several tenths of an eV. The largest NCs modeled are still quantum confined and do not yet have quasiparticle levels or optical gaps at bulk values. Nevertheless, we find that classical Mie-Gans theory can quite accurately reproduce the line shape of TDDFT absorption spectra, even for (anisotropic) TiO 2 NCs of subnanometer size.« less
Zhou, Yang; Fu, Xiaping; Ying, Yibin; Fang, Zhenhuan
2015-06-23
A fiber-optic probe system was developed to estimate the optical properties of turbid media based on spatially resolved diffuse reflectance. Because of the limitations in numerical calculation of radiative transfer equation (RTE), diffusion approximation (DA) and Monte Carlo simulations (MC), support vector regression (SVR) was introduced to model the relationship between diffuse reflectance values and optical properties. The SVR models of four collection fibers were trained by phantoms in calibration set with a wide range of optical properties which represented products of different applications, then the optical properties of phantoms in prediction set were predicted after an optimal searching on SVR models. The results indicated that the SVR model was capable of describing the relationship with little deviation in forward validation. The correlation coefficient (R) of reduced scattering coefficient μ'(s) and absorption coefficient μ(a) in the prediction set were 0.9907 and 0.9980, respectively. The root mean square errors of prediction (RMSEP) of μ'(s) and μ(a) in inverse validation were 0.411 cm(-1) and 0.338 cm(-1), respectively. The results indicated that the integrated fiber-optic probe system combined with SVR model were suitable for fast and accurate estimation of optical properties of turbid media based on spatially resolved diffuse reflectance. Copyright © 2015 Elsevier B.V. All rights reserved.