Fiber-linked interferometric pressure sensor
NASA Technical Reports Server (NTRS)
Beheim, G.; Fritsch, K.; Poorman, R. N.
1987-01-01
A fiber-optic pressure sensor is described which uses a diaphragm to modulate the mirror separation of a Fabry-Perot cavity (the sensing cavity). A multimode optical fiber delivers broadband light to the sensing cavity and returns the spectrally modulated light which the cavity reflects. The sensor's output spectrum is analyzed using a tunable Fabry-Perot cavity (the reference cavity) to determine the mismatch in the mirror separations of the two cavities. An electronic servo control uses this result to cause the mirror separation of the reference cavity to equal that of the sensing cavity. The displacement of the pressure-sensing diaphragm is then obtained by measuring the capacitance of the reference cavity's metal-coated mirrors. Relative to other fiber-optic sensors, an important advantage of this instrument is its high immunity to the effects of variations in both the transmissivity of the fiber link and the wavelength of the optical source.
Flight-Like Optical Reference Cavity for GRACE Follow-On Laser Frequency Stabilization
NASA Technical Reports Server (NTRS)
Folkner, W. M.; deVine, G.; Klipstein, W. M.; McKenzie, K.; Spero, R.; Thompson, R.; Yu, N.; Stephens, M.; Leitch, J.; Pierce, R.;
2011-01-01
We describe a prototype optical cavity and associated optics that has been developed to provide a stable frequency reference for a future space-based laser ranging system. This instrument is being considered for inclusion as a technology demonstration on the recently announced GRACE follow-on mission, which will monitor variations in the Earth's gravity field.
Mounting system for optical frequency reference cavities
NASA Technical Reports Server (NTRS)
Notcutt, Mark (Inventor); Hall, John L. (Inventor); Ma, Long-Sheng (Inventor)
2008-01-01
A technique for reducing the vibration sensitivity of laser-stabilizing optical reference cavities is based upon an improved design and mounting method for the cavity, wherein the cavity is mounted vertically. It is suspended at one plane, around the spacer cylinder, equidistant from the mirror ends of the cavity. The suspension element is a collar of an extremely low thermal expansion coefficient material, which surrounds the spacer cylinder and contacts it uniformly. Once the collar has been properly located, it is cemented in place so that the spacer cylinder is uniformly supported and does not have to be squeezed at all. The collar also includes a number of cavities partially bored into its lower flat surface, around the axial bore. These cavities are support points, into which mounting base pins will be inserted. Hence the collar is supported at a minimum of three points.
Cavity-enhanced eigenmode and angular hybrid multiplexing in holographic data storage systems.
Miller, Bo E; Takashima, Yuzuru
2016-12-26
Resonant optical cavities have been demonstrated to improve energy efficiencies in Holographic Data Storage Systems (HDSS). The orthogonal reference beams supported as cavity eigenmodes can provide another multiplexing degree of freedom to push storage densities toward the limit of 3D optical data storage. While keeping the increased energy efficiency of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modification of current angular multiplexing HDSS.
Thermal-noise-limited higher-order mode locking of a reference cavity
NASA Astrophysics Data System (ADS)
Zeng, X. Y.; Ye, Y. X.; Shi, X. H.; Wang, Z. Y.; Deng, K.; Zhang, J.; Lu, Z. H.
2018-04-01
Higher-order mode locking has been proposed to reduce the thermal noise limit of reference cavities. By locking a laser to the HG02 mode of a 10-cm long all ULE cavity, and measure its performance with the three-cornered-hat method among three independently stabilized lasers, we demonstrate a thermal noise limited performance of a fractional frequency instability of 4.9E-16. The results match the theoretical models with higher-order optical modes. The achieved laser instability improves the all ULE short cavity results to a new low level.
High Sensitivity Optomechanical Reference Accelerometer over 10 kHz
2014-06-05
bandwidth of 10 kHz and is traceable. We have incorporated a Fabry-P erot fiber-optic micro-cavity that is currently capable of measuring the test-mass...10 kHz- bandwidth requires displacement detection sensitivities at levels of 10 16 m= Hz p . Optical detection schemes, such as Fabry-P erot ...based micro- mirror Fabry-P erot cavity19,20 was built to operate in reflec- tion as the optical sensor. The mechanical oscillator ground platform and
Thermal-noise-limited higher-order mode locking of a reference cavity.
Zeng, X Y; Ye, Y X; Shi, X H; Wang, Z Y; Deng, K; Zhang, J; Lu, Z H
2018-04-15
Higher-order mode locking has been proposed to reduce the thermal noise limit of reference cavities. By locking a laser to the HG 02 mode of a 10-cm long all ultra-low expansion (ULE) cavity and measuring its performance with the three-cornered-hat method among three independently stabilized lasers, we demonstrate a thermal-noise-limited performance of a fractional frequency instability of 4.9×10 -16 . The results match the theoretical models with higher-order optical modes. The achieved laser instability improves the all ULE short cavity results to a new low level.
Iwakuni, Kana; Inaba, Hajime; Nakajima, Yoshiaki; Kobayashi, Takumi; Hosaka, Kazumoto; Onae, Atsushi; Hong, Feng-Lei
2012-06-18
We have developed an optical frequency comb using a mode-locked fiber ring laser with an intra-cavity waveguide electro-optic modulator controlling the optical length in the laser cavity. The mode-locking is achieved with a simple ring configuration and a nonlinear polarization rotation mechanism. The beat note between the laser and a reference laser and the carrier envelope offset frequency of the comb were simultaneously phase locked with servo bandwidths of 1.3 MHz and 900 kHz, respectively. We observed an out-of-loop beat between two identical combs, and obtained a coherent δ-function peak with a signal to noise ratio of 70 dB/Hz.
NASA Astrophysics Data System (ADS)
Bai, Jiandong; Wang, Jieying; He, Jun; Wang, Junmin
2017-04-01
We demonstrate frequency stabilization of a tunable 318.6 nm ultraviolet (UV) laser system using electronic sideband locking. By indirectly changing the frequency of a broadband electro-optic phase modulator, the laser can be continuously tuned over 4 GHz, while a 637.2 nm laser is directly stabilized to a high-finesse ultra-stable optical cavity. The doubling cavity also remains locked to the 637.2 nm light. We show that the tuning range depends mainly on the gain-flattening region of the modulator and the piezo-tunable range of the seed laser. The frequency-stabilized tunable UV laser system is able to compensate for the offset between reference and target frequencies, and has potential applications in precision spectroscopy of cold atoms.
Cavity enhanced eigenmode multiplexing for volume holographic data storage
NASA Astrophysics Data System (ADS)
Miller, Bo E.; Takashima, Yuzuru
2017-08-01
Previously, we proposed and experimentally demonstrated enhanced recording speeds by using a resonant optical cavity to semi-passively increase the reference beam power while recording image bearing holograms. In addition to enhancing the reference beam power the cavity supports the orthogonal reference beam families of its eigenmodes, which can be used as a degree of freedom to multiplex data pages and increase storage densities for volume Holographic Data Storage Systems (HDSS). While keeping the increased recording speed of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles for expedited recording of four multiplexed holograms. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modifications to current angular multiplexing HDSS.
Frequency-tunable Pre-stabilized Lasers for LISA via Sideband-locking
NASA Technical Reports Server (NTRS)
Livas, Jeffrey C.; Thorpe, James I.; Numata, Kenji; Mitryk, Shawn; Mueller, Guido; Wand, Vinzenz
2008-01-01
Laser frequency noise mitigation is one of the most challenging aspects of the LISA interferometric measurement system. The unstabilized frequency fluctuations must be suppressed by roughly twelve orders of magnitude in order to achieve stability sufficient for gravitational wave detection. This enormous suppression will be achieved through a combination of stabilization and common-mode rejection. The stabilization component will itself be achieved in two stages: pre-stabilization to a local optical cavity followed by arm-locking to some combination of the inter-spacecraft distances. In order for these two stabilization stages to work simultaneously, the lock-point of the pre-stabilization loop must be frequency tunable. The current baseline stabilization technique, locking to an optical cavity, does not provide tunability between cavity resonances, which are typically spaced by 100s of MHz. Here we present a modification to the traditional Pound-Drever-Hall cavity locking technique that allows the laser to be locked to a cavity resonance with an adjustable frequency offset. This technique requires no modifications to the optical cavity itself, thus preserving the stability of the frequency reference. We present measurements of the system performance and demonstrate that we can meet implement the first two stages of stabilization.
NASA Astrophysics Data System (ADS)
Schilt, S.; Dolgovskiy, V.; Bucalovic, N.; Schori, C.; Stumpf, M. C.; Di Domenico, G.; Pekarek, S.; Oehler, A. E. H.; Südmeyer, T.; Keller, U.; Thomann, P.
2012-11-01
We present a detailed investigation of the noise properties of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser operating in the 1.5-μm spectral region. The stabilization of the passively mode-locked Er:Yb:glass laser oscillator, referred to as ERGO, is achieved using pump power modulation for the control of the carrier envelope offset (CEO) frequency and by adjusting the laser cavity length for the control of the repetition rate. The stability and the noise of the ERGO comb are characterized in free-running and in phase-locked operation by measuring the noise properties of the CEO, of the repetition rate, and of a comb line at 1558 nm. The comb line is analyzed from the heterodyne beat signal with a cavity-stabilized ultra-narrow-linewidth laser using a frequency discriminator. Two different schemes to stabilize the comb to a radio-frequency (RF) reference are compared. The comb properties (phase noise, frequency stability) are limited in both cases by the RF oscillator used to stabilize the repetition rate, while the contribution of the CEO is negligible at all Fourier frequencies, as a consequence of the low-noise characteristics of the CEO-beat. A linewidth of ≈150 kHz and a fractional frequency instability of 4.2×10-13 at 1 s are obtained for an optical comb line at 1558 nm. Improved performance is obtained by stabilizing the comb to an optical reference, which is a cavity-stabilized ultra-narrow linewidth laser at 1558 nm. The fractional frequency stability of 8×10-14 at 1 s, measured in preliminary experiments, is limited by the reference oscillator used in the frequency comparison.
LISA Technology Development at GSFC
NASA Technical Reports Server (NTRS)
Thorpe, James Ira; McWilliams, S.; Baker, J.
2008-01-01
The prime focus of LISA technology development efforts at NASA/GSFC has been in LISA interferometry, specifically in the area of laser frequency noise mitigation. Laser frequency noise is addressed through a combination of stabilization and common-mode rejection. Current plans call for two stages of stabilization, pre-stabilization to a local frequency reference and further stabilization using the constellation as a frequency reference. In order for these techniques to be used simultaneously, the pre-stabilization step must provide an adjustable frequency offset. Here, we report on a modification to the standard modulation/demodulation techniques used to stabilize to optical cavities that generates a frequency-tunable reference from a fixed-length cavity. This technique requires no modifications to the cavity itself and only minor modifications to the components. The measured noise performance and dynamic range of the laboratory prototype meets the LISA requirements.
Design and analysis of photonic crystal micro-cavity based optical sensor platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyal, Amit Kumar, E-mail: amitgoyal.ceeri@gmail.com; Dutta, Hemant Sankar, E-mail: hemantdutta97@gmail.com; Pal, Suchandan, E-mail: spal@ceeri.ernet.in
2016-04-13
In this paper, the design of a two-dimensional photonic crystal micro-cavity based integrated-optic sensor platform is proposed. The behaviour of designed cavity is analyzed using two-dimensional Finite Difference Time Domain (FDTD) method. The structure is designed by deliberately inserting some defects in a photonic crystal waveguide structure. Proposed structure shows a quality factor (Q) of about 1e5 and the average sensitivity of 500nm/RIU in the wavelength range of 1450 – 1580 nm. Sensing technique is based on the detection of shift in upper-edge cut-off wavelength for a reference signal strength of –10 dB in accordance with the change in refractive index ofmore » analyte.« less
Absorption line metrology by optical feedback frequency-stabilized cavity ring-down spectroscopy
NASA Astrophysics Data System (ADS)
Burkart, Johannes; Kassi, Samir
2015-04-01
Optical feedback frequency-stabilized cavity ring-down spectroscopy (OFFS-CRDS) is a near-shot-noise-limited technique combining a sensitivity of with a highly linear frequency axis and sub-kHz resolution. Here, we give an in-depth review of the key elements of the experimental setup encompassing a highly stable V-shaped reference cavity, an integrated Mach-Zehnder modulator and a tightly locked ring-down cavity with a finesse of 450,000. Carrying out a detailed analysis of the spectrometer performance and its limitations, we revisit the photo-electron shot-noise limit in CRDS and discuss the impact of optical fringes. We demonstrate different active schemes for fringe cancelation by varying the phase of parasitic reflections. The proof-of-principle experiments reported here include a broadband high-resolution spectrum of carbon dioxide at 1.6 µm and an isolated line-shape measurement with a signal-to-noise ratio of 80,000. Beyond laboratory-based absorption line metrology for fundamental research, OFFS-CRDS holds a considerable potential for field laser measurements of trace gas concentrations and isotopic ratios by virtue of its small sample volume and footprint, the robust cavity-locking scheme and supreme precision.
Compact, thermal-noise-limited reference cavity for ultra-low-noise microwave generation.
Davila-Rodriguez, J; Baynes, F N; Ludlow, A D; Fortier, T M; Leopardi, H; Diddams, S A; Quinlan, F
2017-04-01
We demonstrate an easy-to-manufacture 25-mm-long ultra-stable optical reference cavity for transportable photonic microwave generation systems. Employing a rigid holding geometry that is first-order insensitive to the squeezing force and a cavity geometry that improves the thermal noise limit at room temperature, we observe a laser phase noise that is nearly thermal noise limited for three frequency decades (1 Hz to 1 kHz offset) and supports 10 GHz generation with phase noise near -100 dBc/Hz at 1 Hz offset and <-173 dBc/Hz for all offsets >600 Hz. The fractional frequency stability reaches 2×10-15 at 0.1 s of averaging.
Laser frequency stabilization and control through offset sideband locking to optical cavities.
Thorpe, J I; Numata, K; Livas, J
2008-09-29
We describe a class of techniques whereby a laser frequency can be stabilized to a fixed optical cavity resonance with an adjustable offset, providing a wide tuning range for the central frequency. These techniques require only minor modifications to the standard Pound-Drever-Hall locking techniques and have the advantage of not altering the intrinsic stability of the frequency reference. We discuss the expected performance and limitations of these techniques and present a laboratory investigation in which both the sideband techniques and the standard, on-tunable Pound-Drever- Hall technique reached the 100Hz/square root(Hz) level.
A vibration-insensitive optical cavity and absolute determination of its ultrahigh stability.
Zhao, Y N; Zhang, J; Stejskal, A; Liu, T; Elman, V; Lu, Z H; Wang, L J
2009-05-25
We use the three-cornered-hat method to evaluate the absolute frequency stabilities of three different ultrastable reference cavities, one of which has a vibration-insensitive design that does not even require vibration isolation. An Nd:YAG laser and a diode laser are implemented as light sources. We observe approximately 1 Hz beat note linewidths between all three cavities. The measurement demonstrates that the vibration-insensitive cavity has a good frequency stability over the entire measurement time from 100 ms to 200 s. An absolute, correlation-removed Allan deviation of 1.4 x 10(-15) at s of this cavity is obtained, giving a frequency uncertainty of only 0.44 Hz.
High-Q resonant cavities for terahertz quantum cascade lasers.
Campa, A; Consolino, L; Ravaro, M; Mazzotti, D; Vitiello, M S; Bartalini, S; De Natale, P
2015-02-09
We report on the realization and characterization of two different designs for resonant THz cavities, based on wire-grid polarizers as input/output couplers, and injected by a continuous-wave quantum cascade laser (QCL) emitting at 2.55 THz. A comparison between the measured resonators parameters and the expected theoretical values is reported. With achieved quality factor Q ≈ 2.5 × 10(5), these cavities show resonant peaks as narrow as few MHz, comparable with the typical Doppler linewidth of THz molecular transitions and slightly broader than the free-running QCL emission spectrum. The effects of the optical feedback from one cavity to the QCL are examined by using the other cavity as a frequency reference.
High-Performance Optical Frequency References for Space
NASA Astrophysics Data System (ADS)
Schuldt, Thilo; Döringshoff, Klaus; Milke, Alexander; Sanjuan, Josep; Gohlke, Martin; Kovalchuk, Evgeny V.; Gürlebeck, Norman; Peters, Achim; Braxmaier, Claus
2016-06-01
A variety of future space missions rely on the availability of high-performance optical clocks with applications in fundamental physics, geoscience, Earth observation and navigation and ranging. Examples are the gravitational wave detector eLISA (evolved Laser Interferometer Space Antenna), the Earth gravity mission NGGM (Next Generation Gravity Mission) and missions, dedicated to tests of Special Relativity, e.g. by performing a Kennedy- Thorndike experiment testing the boost dependence of the speed of light. In this context we developed optical frequency references based on Doppler-free spectroscopy of molecular iodine; compactness and mechanical and thermal stability are main design criteria. With a setup on engineering model (EM) level we demonstrated a frequency stability of about 2·10-14 at an integration time of 1 s and below 6·10-15 at integration times between 100s and 1000s, determined from a beat-note measurement with a cavity stabilized laser where a linear drift was removed from the data. A cavity-based frequency reference with focus on improved long-term frequency stability is currently under development. A specific sixfold thermal shield design based on analytical methods and numerical calculations is presented.
Design verification of large time constant thermal shields for optical reference cavities.
Zhang, J; Wu, W; Shi, X H; Zeng, X Y; Deng, K; Lu, Z H
2016-02-01
In order to achieve high frequency stability in ultra-stable lasers, the Fabry-Pérot reference cavities shall be put inside vacuum chambers with large thermal time constants to reduce the sensitivity to external temperature fluctuations. Currently, the determination of thermal time constants of vacuum chambers is based either on theoretical calculation or time-consuming experiments. The first method can only apply to simple system, while the second method will take a lot of time to try out different designs. To overcome these limitations, we present thermal time constant simulation using finite element analysis (FEA) based on complete vacuum chamber models and verify the results with measured time constants. We measure the thermal time constants using ultrastable laser systems and a frequency comb. The thermal expansion coefficients of optical reference cavities are precisely measured to reduce the measurement error of time constants. The simulation results and the experimental results agree very well. With this knowledge, we simulate several simplified design models using FEA to obtain larger vacuum thermal time constants at room temperature, taking into account vacuum pressure, shielding layers, and support structure. We adopt the Taguchi method for shielding layer optimization and demonstrate that layer material and layer number dominate the contributions to the thermal time constant, compared with layer thickness and layer spacing.
Optical cavity furnace for semiconductor wafer processing
Sopori, Bhushan L.
2014-08-05
An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.
Frequency References for Gravitational Wave Missions
NASA Technical Reports Server (NTRS)
Preston, Alix; Thrope, J. I.; Donelan, D.; Miner, L.
2012-01-01
The mitigation of laser frequency noise is an important aspect of interferometry for LISA-like missions. One portion of the baseline mitigation strategy in LISA is active stabilization utilizing opto-mechanical frequency references. The LISA optical bench is an attractive place to implement such frequency references due to its environmental stability and its access to primary and redundant laser systems. We have made an initial investigation of frequency references constructed using the techniques developed for the LISA and LISA Pathfinder optical benches. Both a Mach-Zehnder interferometer and triangular Fabry-Perot cavity have been successfully bonded to a Zerodur baseplate using the hydroxide bonding method. We will describe the construction of the bench along with preliminary stability results.
Athermalization of resonant optical devices via thermo-mechanical feedback
Rakich, Peter; Nielson, Gregory N.; Lentine, Anthony L.
2016-01-19
A passively athermal photonic system including a photonic circuit having a substrate and an optical cavity defined on the substrate, and passive temperature-responsive provisions for inducing strain in the optical cavity of the photonic circuit to compensate for a thermo-optic effect resulting from a temperature change in the optical cavity of the photonic circuit. Also disclosed is a method of passively compensating for a temperature dependent thermo-optic effect resulting on an optical cavity of a photonic circuit including the step of passively inducing strain in the optical cavity as a function of a temperature change of the optical cavity thereby producing an elasto-optic effect in the optical cavity to compensate for the thermo-optic effect resulting on an optical cavity due to the temperature change.
Optical frequency standard development in support of NASA's gravity-mapping missions
NASA Technical Reports Server (NTRS)
Klipstein, W. M.; Seidel, D. J.; White, J. A.; Young, B. C.
2001-01-01
We intend to combine the exquisite performance over short time scales coming from a cavity reference with the long-term stability of an atomic frequency standard with an eye towards reliability in a spaceflight application.
Bright-dark rogue wave in mode-locked fibre laser (Conference Presentation)
NASA Astrophysics Data System (ADS)
Kbashi, Hani; Kolpakov, Stanislav; Martinez, Amós; Mou, Chengbo; Sergeyev, Sergey V.
2017-05-01
Bright-Dark Rogue Wave in Mode-Locked Fibre Laser Hani Kbashi1*, Amos Martinez1, S. A. Kolpakov1, Chengbo Mou, Alex Rozhin1, Sergey V. Sergeyev1 1Aston Institute of Photonic Technologies, School of Engineering and Applied Science Aston University, Birmingham, B4 7ET, UK kbashihj@aston.ac.uk , 0044 755 3534 388 Keywords: Optical rogue wave, Bright-Dark rogue wave, rogue wave, mode-locked fiber laser, polarization instability. Abstract: Rogue waves (RWs) are statistically rare localized waves with high amplitude that suddenly appear and disappear in oceans, water tanks, and optical systems [1]. The investigation of these events in optics, optical rogue waves, is of interest for both fundamental research and applied science. Recently, we have shown that the adjustment of the in-cavity birefringence and pump polarization leads to emerge optical RW events [2-4]. Here, we report the first experimental observation of vector bright-dark RWs in an erbium-doped stretched pulse mode-locked fiber laser. The change of induced in-cavity birefringence provides an opportunity to observe RW events at pump power is a little higher than the lasing threshold. Polarization instabilities in the laser cavity result in the coupling between two orthogonal linearly polarized components leading to the emergence of bright-dark RWs. The observed clusters belongs to the class of slow optical RWs because their lifetime is of order of a thousand of laser cavity roundtrip periods. References: 1. D. R. Solli, C. Ropers, P. Koonath,and B. Jalali, Optical rogue waves," Nature, 450, 1054-1057, 2007. 2. S. V. Sergeyev, S. A. Kolpakov, C. Mou, G. Jacobsen, S. Popov, and V. Kalashnikov, "Slow deterministic vector rogue waves," Proc. SPIE 9732, 97320K (2016). 3. S. A. Kolpakov, H. Kbashi, and S. V. Sergeyev, "Dynamics of vector rogue waves in a fiber laser with a ring cavity," Optica, 3, 8, 870, (2016). 5. S. Kolpakov, H. Kbashi, and S. Sergeyev, "Slow optical rogue waves in a unidirectional fiber laser," in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW2A.56.
An optical transduction chain for the AURIGA detector
NASA Astrophysics Data System (ADS)
Conti, L.; Marin, F.; de Rosa, M.; Prodi, G. A.; Taffarello, L.; Zendri, J. P.; Cerdonio, M.; Vitale, S.
2000-06-01
We describe the principle of operation of an opto-mechanical readout for resonant mass gravitational wave detectors; with such a device the AURIGA detector is expected to reach a sensitivity at the level of Shh=10-22/Hz over a bandwidth of about 40Hz. Recent developments in the implementation of this transduction chain are also reported. In particular we achieve quantum limited laser power noise in the frequency range of 200Hz around the bar fundamental frequency (about 1kHz) by means of active stabilization. We also set up a reference cavity of finesse 40000 with optically contacted mirrors on a 0.2m long Zerodur spacer. The cavity can be heated from room temperature to about 100 °C and temperature stabilized with fluctuations within 1mK over a period of several days. The cavity is under vacuum and isolated from mechanical disturbancies by means of a double stage cantilever system. .
LISA Beyond Einstein: From the Big Bang to Black Holes. LISA Technology Development at GSFC
NASA Technical Reports Server (NTRS)
Thorpe, James Ira
2008-01-01
This viewgraph presentation reviews the work that has been ongoing at the Goddard Space Flight Center (GSFC) in the development of the technology to be used in the Laser Interferometer Space Antenna (LISA) spacecrafts. The prime focus of LISA technology development efforts at NASA/GSFC has been in LISA interferometry. Specifically efforts have been made in the area of laser frequency noise mitigation. Laser frequency noise is addressed through a combination of stabilization and common-mode rejection. Current plans call for two stages of stabilization, pre-stabilization to a local frequency reference and further stabilization using the constellation as a frequency reference. In order for these techniques to be used simultaneously, the pre-stabilization step must provide an adjustable frequency offset. This presentation reports on a modification to the standard modulation/demodulation technique used to stabilize to optical cavities that generates a frequency-tunable reference from a fixed length cavity. This technique requires no modifications to the cavity itself and only minor modifications to the components. The measured noise performance and dynamic range of the laboratory prototype meet the LISA requirements.
NASA Technical Reports Server (NTRS)
Burkholder, Robert J.; Pathak, Prabhakar H.
1991-01-01
Gaussian beam (GB) representation methods are used to analyze the electromagnetic coupling into and the scattering by a large nonuniform cavity. The aperture field in the cavity is decomposed into beams using the Gabor expansion, and shooting techniques are then employed. The method is illustrated only for the two-dimensional (2-D) case. The GBs are tracked axially using the rules of beam optics which ignore any beam distortion upon reflection at the walls. The effects of beam distortion are not significant for relatively slowly varying waveguide cavities. The field scattered into the exterior by the termination within the cavity is found using a reciprocity integral formulation which requires a knowledge of the beam fields near the termination. Numerical results based on this GB approach are presented and compared with results based on an independent reference solution.
Optical Sensors Using Stimulated Brillouin Scattering
NASA Technical Reports Server (NTRS)
Christensen, Caleb A (Inventor); Zavriyev, Anton (Inventor)
2017-01-01
A method for enhancing a sensitivity of an optical sensor having an optical cavity counter-propagates beams of pump light within the optical cavity to produce scattered light based on Stimulated Brillouin Scattering (SBS). The properties of the pump light are selected to generate fast-light conditions for the scattered light, such that the scattered light includes counter-propagating beams of fast light. The method prevents the pump light from resonating within the optical cavity, while allowing the scattered light to resonate within the optical cavity. At least portions of the scattered light are interfered outside of the optical cavity to produce a beat note for a measurement of the optical sensor. The disclosed method is particularly applicable to optical gyroscopes.
Specimen illumination apparatus with optical cavity for dark field illumination
Pinkel, Daniel; Sudar, Damir; Albertson, Donna
1999-01-01
An illumination apparatus with a specimen slide holder, an illumination source, an optical cavity producing multiple reflection of illumination light to a specimen comprising a first and a second reflective surface arranged to achieve multiple reflections of light to a specimen is provided. The apparatus can further include additional reflective surfaces to achieve the optical cavity, a slide for mounting the specimen, a coverslip which is a reflective component of the optical cavity, one or more prisms for directing light within the optical cavity, antifading solutions for improving the viewing properties of the specimen, an array of materials for analysis, fluorescent components, curved reflective surfaces as components of the optical cavity, specimen detection apparatus, optical detection equipment, computers for analysis of optical images, a plane polarizer, fiberoptics, light transmission apertures, microscopic components, lenses for viewing the specimen, and upper and lower mirrors above and below the specimen slide as components of the optical cavity. Methods of using the apparatus are also provided.
Suppressing ghost beams: Backlink options for LISA
NASA Astrophysics Data System (ADS)
Isleif, K.-S.; Gerberding, O.; Penkert, D.; Fitzsimons, E.; Ward, H.; Robertson, D.; Livas, J.; Mueller, G.; Reiche, J.; Heinzel, G.; Danzmann, K.
2017-05-01
In this article we discuss possible design options for the optical phase reference system, the so called backlink, between two moving optical benches in a LISA satellite. The candidates are based on two approaches: Fiber backlinks, with additional features like mode cleaning cavities and Faraday isolators, and free beam backlinks with angle compensation techniques. We will indicate dedicated ghost beam mitigation strategies for the design options and we will point out critical aspects in case of an implementation in LISA.
Frequency Measurements of Superradiance from the Strontium Clock Transition
NASA Astrophysics Data System (ADS)
Norcia, Matthew A.; Cline, Julia R. K.; Muniz, Juan A.; Robinson, John M.; Hutson, Ross B.; Goban, Akihisa; Marti, G. Edward; Ye, Jun; Thompson, James K.
2018-04-01
We present the first characterization of the spectral properties of superradiant light emitted from the ultranarrow, 1-mHz-linewidth optical clock transition in an ensemble of cold
George, E.V.; Schipper, J.F.
Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a T configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.
George, E. Victor; Schipper, John F.
1985-01-01
Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a "T" configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.
Optical binding of two microparticles levitated in vacuum
NASA Astrophysics Data System (ADS)
Arita, Yoshihiko; Wright, Ewan M.; Dholakia, Kishan
2017-04-01
Optical binding refers to an optically mediated inter-particle interaction that creates new equilibrium positions for closely spaced particles [1-5]. Optical binding of mesoscopic particles levitated in vacuum can pave the way towards the realisation of a large scale quantum bound array in cavity-optomechanics [6-9]. Recently we have demonstrated trapping and rotation of two mesoscopic particles in vacuum using a spatial-light-modulator-based approach to trap more than one particle, induce controlled rotation of individual particles, and mediate interparticle separation [10]. By trapping and rotating two vaterite particles, we observe intensity modulation of the scattered light at the sum and difference frequencies with respect to the individual rotation rates. This first demonstration of optical interference between two microparticles in vacuum has lead to a platform to explore optical binding. Here we demonstrate for the first time optically bound two microparticles mediated by light scattering in vacuum. We investigate autocorrelations between the two normal modes of oscillation, which are determined by the centre-of-mass and the relative positions of the two-particle system. In situ determination of the optical restoring force acting on the bound particles are based on measurement of the oscillation frequencies of the autocorrelation functions of the two normal modes, thereby providing a powerful and original platform to explore multiparticle entanglement in cavity-optomechanics.
NASA Technical Reports Server (NTRS)
Zhang, Kuanshou; Xie, Changde; Peng, Kunchi
1996-01-01
The dependence of the quantum fluctuation of the output fundamental and second-harmonic waves upon cavity configuration has been numerically calculated for the intracavity frequency-doubled laser. The results might provide a direct reference for the design of squeezing system through the second-harmonic-generation.
Hybrid catadioptric system for advanced optical cavity velocimetry
Frayer, Daniel K.
2018-02-06
A probe including reflector is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface by the probe and then reflected back from the surface, is Doppler shifted by the moving surface, collected into probe, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to one or more lens groups and a reflector, such as a parabolic reflector having a mirrored interior surface.
Design and realization of the optical and electron beam alignment system for the HUST-FEL oscillator
NASA Astrophysics Data System (ADS)
Fu, Q.; Tan, P.; Liu, K. F.; Qin, B.; Liu, X.
2018-06-01
A Free Electron Laser(FEL) oscillator with radiation wavelength at 30-100 μ m is under commissioning at Huazhong University of Science and Technology (HUST). This work presents the schematic design and realization procedures for the optical and beam alignment system in the HUST FEL facility. The optical cavity misalignment effects are analyzed with the code OPC + Genesis 1.3, and the tolerance of misalignment is proposed with the simulation result. Depending on undulator mechanical benchmarks, a laser indicating system has been built up as reference datum. The alignment of both optical axis and beam trajectory were achieved by this alignment system.
Temporal laser pulse manipulation using multiple optical ring-cavities
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor)
2010-01-01
An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.
High average power laser using a transverse flowing liquid host
Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.
2003-07-29
A laser includes an optical cavity. A diode laser pumping device is located within the optical cavity. An aprotic lasing liquid containing neodymium rare earth ions fills the optical cavity. A circulation system that provides a closed loop for circulating the aprotic lasing liquid into and out of the optical cavity includes a pump and a heat exchanger.
Mode Matching for Optical Antennas
NASA Astrophysics Data System (ADS)
Feichtner, Thorsten; Christiansen, Silke; Hecht, Bert
2017-11-01
The emission rate of a point dipole can be strongly increased in the presence of a well-designed optical antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring, e.g., Ohmic losses and non-negligible field penetration in metals at optical frequencies. Here, we combine reciprocity and Poynting's theorem to derive a set of optical-frequency antenna design rules for benchmarking and optimizing the performance of optical antennas driven by single quantum emitters. Based on these findings a novel plasmonic cavity antenna design is presented exhibiting a considerably improved performance compared to a reference two-wire antenna. Our work will be useful for the design of high-performance optical antennas and nanoresonators for diverse applications ranging from quantum optics to antenna-enhanced single-emitter spectroscopy and sensing.
Integrated fiber-mirror ion trap for strong ion-cavity coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandstätter, B., E-mail: birgit.brandstaetter@uibk.ac.at; Schüppert, K.; Casabone, B.
2013-12-15
We present and characterize fiber mirrors and a miniaturized ion-trap design developed to integrate a fiber-based Fabry-Perot cavity (FFPC) with a linear Paul trap for use in cavity-QED experiments with trapped ions. Our fiber-mirror fabrication process not only enables the construction of FFPCs with small mode volumes, but also allows us to minimize the influence of the dielectric fiber mirrors on the trapped-ion pseudopotential. We discuss the effect of clipping losses for long FFPCs and the effect of angular and lateral displacements on the coupling efficiencies between cavity and fiber. Optical profilometry allows us to determine the radii of curvaturemore » and ellipticities of the fiber mirrors. From finesse measurements, we infer a single-atom cooperativity of up to 12 for FFPCs longer than 200 μm in length; comparison to cavities constructed with reference substrate mirrors produced in the same coating run indicates that our FFPCs have similar scattering losses. We characterize the birefringence of our fiber mirrors, finding that careful fiber-mirror selection enables us to construct FFPCs with degenerate polarization modes. As FFPCs are novel devices, we describe procedures developed for handling, aligning, and cleaning them. We discuss experiments to anneal fiber mirrors and explore the influence of the atmosphere under which annealing occurs on coating losses, finding that annealing under vacuum increases the losses for our reference substrate mirrors. X-ray photoelectron spectroscopy measurements indicate that these losses may be attributable to oxygen depletion in the mirror coating. Special design considerations enable us to introduce a FFPC into a trapped ion setup. Our unique linear Paul trap design provides clearance for such a cavity and is miniaturized to shield trapped ions from the dielectric fiber mirrors. We numerically calculate the trap potential in the absence of fibers. In the experiment additional electrodes can be used to compensate distortions of the potential due to the fibers. Home-built fiber feedthroughs connect the FFPC to external optics, and an integrated nanopositioning system affords the possibility of retracting or realigning the cavity without breaking vacuum.« less
Optical single photons on-demand teleported from microwave cavities
NASA Astrophysics Data System (ADS)
Barzanjeh, Sh; Vitali, D.; Tombesi, P.
2013-03-01
We propose a scheme for entangling the optical and microwave output modes of the respective cavities by using a micro mechanical resonator. The micro mechanical resonator, on one side, is capacitively coupled to the microwave cavity and, on the other side, it is coupled to a high-finesses optical cavity. We then show how this continuous variable entanglement can be profitably used to teleport the non-Gaussian number state |1> and the superposition (|0\\rangle +|1\\rangle )/\\sqrt 2 from the microwave cavity output mode onto an output of the optical cavity mode with fidelity much larger than the no-cloning limit.
Nakajima, Yoshiaki; Inaba, Hajime; Hosaka, Kazumoto; Minoshima, Kaoru; Onae, Atsushi; Yasuda, Masami; Kohno, Takuya; Kawato, Sakae; Kobayashi, Takao; Katsuyama, Toshio; Hong, Feng-Lei
2010-01-18
We demonstrate that fiber-based frequency combs with multi-branch configurations can transfer both linewidth and frequency stability to another wavelength at the millihertz level. An intra-cavity electro-optic modulator is employed to obtain a broad servo bandwidth for repetition rate control. We investigate the relative linewidths between two combs using a stable continuous-wave laser as a common reference to stabilize the repetition rate frequencies in both combs. The achieved energy concentration to the carrier of the out-of-loop beat between the two combs was 99% and 30% at a bandwidth of 1 kHz and 7.6 mHz, respectively. The frequency instability of the comb was 3.7x10(-16) for a 1 s averaging time, improving to 5-8x10(-19) for 10000 s. We show that the frequency noise in the out-of-loop beat originates mainly from phase noise in branched optical fibers.
All-optical transistor based on Rydberg atom-assisted optomechanical system.
Liu, Yi-Mou; Tian, Xue-Dong; Wang, Jing; Fan, Chu-Hui; Gao, Feng; Bao, Qian-Qian
2018-04-30
We study the optical response of a double optomechanical cavity system assisted by two Rydberg atoms. The target atom is only coupled with one side cavity by a single cavity mode, and gate one is outside the cavities. It has been realized that a long-range manipulation of optical properties of a hybrid system, by controlling the Rydberg atom decoupled with the optomechanical cavity. Switching on the coupling between atoms and cavity mode, the original spatial inversion symmetry of the double cavity structure has been broken. Combining the controllable optical non-reciprocity with the coherent perfect absorption/transmission/synthesis effect (CPA/CPT/CPS reported by [ X.-B.Yan Opt. Express 22, 4886 (2014)], we put forward the theoretical schemes of an all-optical transistor which contains functions such as a controllable diode, rectifier, and amplifier by controlling a single gate photon.
Coherence-length-gated distributed optical fiber sensing based on microwave-photonic interferometry.
Hua, Liwei; Song, Yang; Cheng, Baokai; Zhu, Wenge; Zhang, Qi; Xiao, Hai
2017-12-11
This paper presents a new optical fiber distributed sensing concept based on coherent microwave-photonics interferometry (CMPI), which uses a microwave modulated coherent light source to interrogate cascaded interferometers for distributed measurement. By scanning the microwave frequencies, the complex microwave spectrum is obtained and converted to time domain signals at known locations by complex Fourier transform. The amplitudes of these time domain pulses are a function of the optical path differences (OPDs) of the distributed interferometers. Cascaded fiber Fabry-Perot interferometers (FPIs) fabricated by femtosecond laser micromachining were used to demonstrate the concept. The experimental results indicated that the strain measurement resolution can be better than 0.6 µε using a FPI with a cavity length of 1.5 cm. Further improvement of the strain resolution to the nε level is achievable by increasing the cavity length of the FPI to over 1m. The tradeoff between the sensitivity and dynamic range was also analyzed in detail. To minimize the optical power instability (either from the light source or the fiber loss) induced errors, a single reflector was added in front of an individual FPI as an optical power reference for the purpose of compensation.
NASA Astrophysics Data System (ADS)
Schöttl, Peter; Bern, Gregor; van Rooyen, De Wet; Heimsath, Anna; Fluri, Thomas; Nitz, Peter
2017-06-01
A transient simulation methodology for cavity receivers for Solar Tower Central Receiver Systems with molten salt as heat transfer fluid is described. Absorbed solar radiation is modeled with ray tracing and a sky discretization approach to reduce computational effort. Solar radiation re-distribution in the cavity as well as thermal radiation exchange are modeled based on view factors, which are also calculated with ray tracing. An analytical approach is used to represent convective heat transfer in the cavity. Heat transfer fluid flow is simulated with a discrete tube model, where the boundary conditions at the outer tube surface mainly depend on inputs from the previously mentioned modeling aspects. A specific focus is put on the integration of optical and thermo-hydraulic models. Furthermore, aiming point and control strategies are described, which are used during the transient performance assessment. Eventually, the developed simulation methodology is used for the optimization of the aperture opening size of a PS10-like reference scenario with cavity receiver and heliostat field. The objective function is based on the cumulative gain of one representative day. Results include optimized aperture opening size, transient receiver characteristics and benefits of the implemented aiming point strategy compared to a single aiming point approach. Future work will include annual simulations, cost assessment and optimization of a larger range of receiver parameters.
Characterization of Nonlinear Effects in Optically Pumped Vertical Cavity Surface Emitting Lasers
1993-12-01
Vertical Cavity Surface Emitting Lasers ( VCSELs ) are an exciting...lines A-3 X AFIT/GEOiENP/93 D-01 Abstract The nonlinear characteristics of optically pumped Vertical Cavity Surface Emitting Lasers ( VCSELs ) are...uniformity of the VCSEL fabrication. xi Characterization of Nonlinear Effects in Optically Pumped Vertical Cavity Surface Emitting Lasers
Disorder-induced transparency in a one-dimensional waveguide side coupled with optical cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongyou, E-mail: yyzhang@bit.edu.cn; Dong, Guangda; Zou, Bingsuo
2014-05-07
Disorder influence on photon transmission behavior is theoretically studied in a one-dimensional waveguide side coupled with a series of optical cavities. For this sake, we propose a concept of disorder-induced transparency appearing on the low-transmission spectral background. Two kinds of disorders, namely, disorders of optical cavity eigenfrequencies and relative phases in the waveguide side coupled with optical cavities are considered to show the disorder-induced transparency. They both can induce the optical transmission peaks on the low-transmission backgrounds. The statistical mean value of the transmission also increases with increasing the disorders of the cavity eigenfrequencies and relative phases.
Design and characterization of an integrated surface ion trap and micromirror optical cavity.
Van Rynbach, Andre; Schwartz, George; Spivey, Robert F; Joseph, James; Vrijsen, Geert; Kim, Jungsang
2017-08-10
We have fabricated and characterized laser-ablated micromirrors on fused silica substrates for constructing stable Fabry-Perot optical cavities. We highlight several design features which allow these cavities to have lengths in the 250-300 μm range and be integrated directly with surface ion traps. We present a method to calculate the optical mode shape and losses of these micromirror cavities as functions of cavity length and mirror shape, and confirm that our simulation model is in good agreement with experimental measurements of the intracavity optical mode at a test wavelength of 780 nm. We have designed and tested a mechanical setup for dampening vibrations and stabilizing the cavity length, and explore applications for these cavities as efficient single-photon sources when combined with trapped Yb171 + ions.
High power continuous-wave titanium:sapphire laser
Erbert, G.V.; Bass, I.L.; Hackel, R.P.; Jenkins, S.L.; Kanz, V.K.; Paisner, J.A.
1993-09-21
A high-power continuous-wave laser resonator is provided, wherein first, second, third, fourth, fifth and sixth mirrors form a double-Z optical cavity. A first Ti:sapphire rod is disposed between the second and third mirrors and at the mid-point of the length of the optical cavity, and a second Ti:sapphire rod is disposed between the fourth and fifth mirrors at a quarter-length point in the optical cavity. Each Ti:sapphire rod is pumped by two counter-propagating pump beams from a pair of argon-ion lasers. For narrow band operation, a 3-plate birefringent filter and an etalon are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors are disposed between the first and second mirrors to form a triple-Z optical cavity. A third Ti:sapphire rod is disposed between the seventh and eighth mirrors at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers. 5 figures.
Zhang, Shuangyou; Wu, Jiutao; Leng, Jianxiao; Lai, Shunnan; Zhao, Jianye
2014-11-15
In this Letter, we demonstrate a fully stabilized Er:fiber frequency comb by using a fiber-based, high-precision optical-microwave phase detector. To achieve high-precision and long-term phase locking of the repetition rate to a microwave reference, frequency control techniques (tuning pump power and cavity length) are combined together as its feedback. Since the pump power has been used for stabilization of the repetition rate, we introduce a pair of intracavity prisms as a regulator for carrier-envelope offset frequency, thereby phase locking one mode of the comb to the rubidium saturated absorption transition line. The stabilized comb performs the same high stability as the reference for the repetition rate and provides a residual frequency instability of 3.6×10(-13) for each comb mode. The demonstrated stabilization scheme could provide a high-precision comb for optical communication, direct frequency comb spectroscopy.
High pulse rate high resolution optical radar system
NASA Technical Reports Server (NTRS)
Goss, W. C.; Burns, R. H.; Chi, K. (Inventor)
1973-01-01
The system is composed of an optical cavity with a laser and a mode locking means to build up an optical pulse. An optical switch is also provided within the cavity to convert the polarization of the optical pulse generated within the cavity. The optical switch comprises an electro-optical crystal driven by a time delayed driver circuit which is triggered by a coincident signal made from an optical pulse signal and a gating pulse signal. The converted optical pulse strikes a polarization sensitive prism and is deflected out of the cavity toward the pending target in the form of a pulse containing most of the optical energy generated by the laser in the pulse build-up period. After striking the target, the reflected energy is picked up by a transceiver with the total travel time of the pulse being recorded.
Cheng, C-F; Sun, Y R; Pan, H; Lu, Y; Li, X-F; Wang, J; Liu, A-W; Hu, S-M
2012-04-23
A continuous-wave cavity ring-down spectrometer has been built for precise determination of absolute frequencies of Doppler-broadened absorption lines. Using a thermo-stabilized Fabry-Pérot interferometer and Rb frequency references at the 780 nm and 795 nm, 0.1 - 0.6 MHz absolute frequency accuracy has been achieved in the 775-800 nm region. A water absorption line at 12579 cm(-1) is studied to test the performance of the spectrometer. The line position at zero-pressure limit is determined with an uncertainty of 0.3 MHz (relative accuracy of 0.8 × 10(-9)). © 2012 Optical Society of America
Atom detection and photon production in a scalable, open, optical microcavity.
Trupke, M; Goldwin, J; Darquié, B; Dutier, G; Eriksson, S; Ashmore, J; Hinds, E A
2007-08-10
A microfabricated Fabry-Perot optical resonator has been used for atom detection and photon production with less than 1 atom on average in the cavity mode. Our cavity design combines the intrinsic scalability of microfabrication processes with direct coupling of the cavity field to single-mode optical waveguides or fibers. The presence of the atom is seen through changes in both the intensity and the noise characteristics of probe light reflected from the cavity input mirror. An excitation laser passing transversely through the cavity triggers photon emission into the cavity mode and hence into the single-mode fiber. These are first steps toward building an optical microcavity network on an atom chip for applications in quantum information processing.
Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics.
Kwon, Yeong-Dae; Armen, Michael A; Mabuchi, Hideo
2013-11-15
We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multiatom cavity quantum electrodynamical (cavity QED) system and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed by using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our results highlight the interest of cavity QED systems for ultralow power photonic signal processing as well as for fundamental studies of mesoscopic nonlinear dynamics.
Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics
Cimmarusti, A. D.; Yan, Z.; Patterson, B. D.; ...
2015-06-11
We measure the quantum speed of the state evolution of the field in a weakly-driven optical cavity QED system. To this end, the mode of the electromagnetic field is considered as a quantum system of interest with a preferential coupling to a tunable environment: the atoms. By controlling the environment, i.e., changing the number of atoms coupled to the optical cavity mode, an environment assisted speed-up is realized: the quantum speed of the state re-population in the optical cavity increases with the coupling strength between the optical cavity mode and this non-Markovian environment (the number of atoms).
Quasi-monolithic tunable optical resonator
NASA Technical Reports Server (NTRS)
Arbore, Mark (Inventor); Tapos, Francisc (Inventor)
2003-01-01
An optical resonator has a piezoelectric element attached to a quasi-monolithic structure. The quasi-monolithic structure defines an optical path. Mirrors attached to the structure deflect light along the optical path. The piezoelectric element controllably strains the quasi-monolithic structure to change a length of the optical path by about 1 micron. A first feedback loop coupled to the piezoelectric element provides fine control over the cavity length. The resonator may include a thermally actuated spacer attached to the cavity and a mirror attached to the spacer. The thermally actuated spacer adjusts the cavity length by up to about 20 microns. A second feedback loop coupled to the sensor and heater provides a coarse control over the cavity length. An alternative embodiment provides a quasi-monolithic optical parametric oscillator (OPO). This embodiment includes a non-linear optical element within the resonator cavity along the optical path. Such an OPO configuration is broadly tunable and capable of mode-hop free operation for periods of 24 hours or more.
Ring resonant cavities for spectroscopy
Zare, R.N.; Martin, J.; Paldus, B.A.; Xie, J.
1999-06-15
Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS). 6 figs.
Ring resonant cavities for spectroscopy
Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.; Xie, Jinchun
1999-01-01
Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS).
Modelling the excitation field of an optical resonator
NASA Astrophysics Data System (ADS)
Romanini, Daniele
2014-06-01
Assuming the paraxial approximation, we derive efficient recursive expressions for the projection coefficients of a Gaussian beam over the Gauss--Hermite transverse electro-magnetic (TEM) modes of an optical cavity. While previous studies considered cavities with cylindrical symmetry, our derivation accounts for "simple" astigmatism and ellipticity, which allows to deal with more realistic optical systems. The resulting expansion of the Gaussian beam over the cavity TEM modes provides accurate simulation of the excitation field distribution inside the cavity, in transmission, and in reflection. In particular, this requires including counter-propagating TEM modes, usually neglected in textbooks. As an illustrative application to a complex case, we simulate reentrant cavity configurations where Herriott spots are obtained at cavity output. We show that the case of an astigmatic cavity is also easily modelled. To our knowledge, such relevant applications are usually treated under the simplified geometrical optics approximation, or using heavier numerical methods.
Optically thin hybrid cavity for terahertz photo-conductive detectors
Thompson, Robert J.; Siday, T.; Glass, S.; ...
2017-01-23
Here, the efficiency of photoconductive (PC) devices, including terahertz detectors, is constrained by the bulk optical constants of PC materials. Here, we show that optical absorption in a PC layer can be modified substantially within a hybrid cavity containing nanoantennas and a Distributed Bragg Reflector. We find that a hybrid cavity, consisting of a GaAs PC layer of just 50 nm, can be used to absorb >75% of incident photons by trapping the light within the cavity. We provide an intuitive model, which describes the dependence of the optimum operation wavelength on the cavity thickness. We also find that themore » nanoantenna size is a critical parameter, small variations of which lead to both wavelength shifting and reduced absorption in the cavity, suggesting that impedance matching is key for achieving efficient absorption in the optically thin hybrid cavities.« less
Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties
Pipino, Andrew Charles Rule
1999-11-16
An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.
Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties
Pipino, Andrew C. R.; Hudgens, Jeffrey W.
1999-08-24
An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.
Compound parabolic concentrator with cavity for tubular absorbers
Winston, Roland
1983-01-01
A compond parabolic concentrator with a V-shaped cavity is provided in which an optical receiver is emplaced. The cavity redirects all energy entering between the receiver and the cavity structure onto the receiver, if the optical receiver is emplaced a distance from the cavity not greater than 0.27 r (where r is the radius of the receiver).
Cavity solitons and localized patterns in a finite-size optical cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozyreff, G.; Gelens, L.
2011-08-15
In appropriate ranges of parameters, laser-driven nonlinear optical cavities can support a wide variety of optical patterns, which could be used to carry information. The intensity peaks appearing in these patterns are called cavity solitons and are individually addressable. Using the Lugiato-Lefever equation to model a perfectly homogeneous cavity, we show that cavity solitons can only be located at discrete points and at a minimal distance from the edges. Other localized states which are attached to the edges are identified. By interpreting these patterns in an information coding frame, the information capacity of this dynamical system is evaluated. The resultsmore » are explained analytically in terms of the the tail characteristics of the cavity solitons. Finally, the influence of boundaries and of cavity imperfections on cavity solitons are compared.« less
Design and fabrication of plasmonic cavities for magneto-optical sensing
NASA Astrophysics Data System (ADS)
Loughran, T. H. J.; Roth, J.; Keatley, P. S.; Hendry, E.; Barnes, W. L.; Hicken, R. J.; Einsle, J. F.; Amy, A.; Hendren, W.; Bowman, R. M.; Dawson, P.
2018-05-01
The design and fabrication of a novel plasmonic cavity, intended to allow far-field recovery of signals arising from near field magneto-optical interactions, is presented. Finite element modeling is used to describe the interaction between a gold film, containing cross-shaped cavities, with a nearby magnetic under-layer. The modeling revealed strong electric field confinement near the center of the cross structure for certain optical wavelengths, which may be tuned by varying the length of the cross through a range that is compatible with available fabrication techniques. Furthermore, the magneto optical Kerr effect (MOKE) response of the composite structure can be enhanced with respect to that of the bare magnetic film. To confirm these findings, cavities were milled within gold films deposited upon a soluble film, allowing relocation to a ferromagnetic film using a float transfer technique. Cross cavity arrays were fabricated and characterized by optical transmission spectroscopy prior to floating, revealing resonances at optical wavelengths in good agreement with the finite element modeling. Following transfer to the magnetic film, circular test apertures within the gold film yielded clear magneto-optical signals even for diameters within the sub-wavelength regime. However, no magneto-optical signal was observed for the cross cavity arrays, since the FIB milling process was found to produce nanotube structures within the soluble under-layer that adhered to the gold. Further optimization of the fabrication process should allow recovery of magneto-optical signal from cross cavity structures.
Cavity-enhanced optical bottle beam as a mechanical amplifier
NASA Astrophysics Data System (ADS)
Freegarde, Tim; Dholakia, Kishan
2002-07-01
We analyze the resonant cavity enhancement of a hollow ``optical bottle beam'' for the dipole-force trapping of dark-field-seeking species. We first improve upon the basic bottle beam by adding further Laguerre-Gaussian components to deepen the confining potential. Each of these components itself corresponds to a superposition of transverse cavity modes, which are then enhanced simultaneously in a confocal cavity to produce a deep optical trap needing only a modest incident power. The response of the trapping field to displacement of the cavity mirrors offers an unusual form of mechanical amplifier in which the Gouy phase shift produces an optical Vernier scale between the Laguerre-Gaussian beam components.
Interference effects in a cavity for optical amplification
NASA Astrophysics Data System (ADS)
Cardimona, D. A.; Alsing, P. M.
2009-08-01
In space situational awareness scenarios, the objects needed to be characterized and identified are usually quite far away and quite dim. Thus, optical detectors need to be able to sense these very dim optical signals. Quantum interference in a three-level system can lead to amplification of optical signals. If we put a three-level system into a cavity tuned to the frequency of an incoming optical signal, we anticipate the amplification possibilities should be increased proportional to the quality factor of the cavity. Our vision is to utilize quantum dots in photonic crystal cavities, but as a stepping stone we first investigate a simple three-level system in a free-space optical cavity. We investigate quantum interference and classical interference effects when a three-level system interacts with both a cavity field mode and an external driving field mode. We find that under certain circumstances the cavity field evolves to be equal in magnitude to, but 180° out-of-phase with the external pump field when the pump field frequency equals the cavity frequency. At this point the resonance fluorescence from the atom in the cavity goes to zero due to a purely classical interference effect between the two out-of-phase fields. This is quite different from the quantum interference that occurs under the right circumstances, when the state populations are coherently driven into a linear combination that is decoupled from any applied field - and population is trapped in the excited states, thus allowing for a population inversion and an amplification of incoming optical signals.
NASA Astrophysics Data System (ADS)
Aketagawa, Masato; Kimura, Shohei; Yashiki, Takuya; Iwata, Hiroshi; Banh, Tuan Quoc; Hirata, Kenji
2011-02-01
In this paper, we discuss a method to measure the free spectral range (FSR) of a Fabry-Perot cavity (FP-cavity) using frequency modulation with one electric optical modulator (EOM) and the null method. A laser beam modulated by the EOM, to which a sine wave signal is supplied from a radio frequency (RF) oscillator, is incident on the FP-cavity. The transmitted or reflected light from the FP-cavity is observed and converted to an RF signal by a high-speed photodetector, and the RF signal is synchronously demodulated with a lock-in amplifier by referring to a cosine wave signal from the oscillator. We theoretically and experimentally demonstrate that the lock-in amplifier signal for the transmitted or reflected light becomes null with a steep slope when the modulation frequency is equal to the FSR under the condition that the carrier frequency of the laser is slightly detuned from the resonance of the FP-cavity. To reduce the measurement uncertainty for the FSR, we also discuss a selection method for laser power, a modulation index and the detuning shift of the carrier frequency, respectively.
Enhancing optical nonreciprocity by an atomic ensemble in two coupled cavities
NASA Astrophysics Data System (ADS)
Song, L. N.; Wang, Z. H.; Li, Yong
2018-05-01
We study the optical nonreciprocal propagation in an optical molecule of two coupled cavities with one of them interacting with a two-level atomic ensemble. The effect of increasing the number of atoms on the optical isolation ratio of the system is studied. We demonstrate that the significant nonlinearity supplied by the coupling of the atomic ensemble with the cavity leads to the realization of greatly-enhanced optical nonreciprocity compared with the case of single atom.
Lasing by driven atoms-cavity system in collective strong coupling regime.
Sawant, Rahul; Rangwala, S A
2017-09-12
The interaction of laser cooled atoms with resonant light is determined by the natural linewidth of the excited state. An optical cavity is another optically resonant system where the loss from the cavity determines the resonant optical response of the system. The near resonant combination of an optical Fabry-Pérot cavity with laser cooled and trapped atoms couples two distinct optical resonators via light and has great potential for precision measurements and the creation of versatile quantum optics systems. Here we show how driven magneto-optically trapped atoms in collective strong coupling regime with the cavity leads to lasing at a frequency red detuned from the atomic transition. Lasing is demonstrated experimentally by the observation of a lasing threshold accompanied by polarization and spatial mode purity, and line-narrowing in the outcoupled light. Spontaneous emission into the cavity mode by the driven atoms stimulates lasing action, which is capable of operating as a continuous wave laser in steady state, without a seed laser. The system is modeled theoretically, and qualitative agreement with experimentally observed lasing is seen. Our result opens up a range of new measurement possibilities with this system.
Electric-optic resonant phase modulator
NASA Technical Reports Server (NTRS)
Chen, Chien-Chung (Inventor); Robinson, Deborah L. (Inventor); Hemmati, Hamid (Inventor)
1994-01-01
An electro-optic resonant cavity is used to achieve phase modulation with lower driving voltages. Laser damage thresholds are inherently higher than with previously used integrated optics due to the utilization of bulk optics. Phase modulation is achieved at higher speeds with lower driving voltages than previously obtained with non-resonant electro-optic phase modulators. The instant scheme uses a data locking dither approach as opposed to the conventional sinusoidal locking schemes. In accordance with a disclosed embodiment, a resonant cavity modulator has been designed to operate at a data rate in excess of 100 Mbps. By carefully choosing the cavity finesse and its dimension, it is possible to control the pulse switching time to within 4 ns and to limit the required switching voltage to within 10 V. Experimentally, the resonant cavity can be maintained on resonance with respect to the input laser signal by monitoring the fluctuation of output intensity as the cavity is switched. This cavity locking scheme can be applied by using only the random data sequence, and without the need of additional dithering of the cavity. Compared to waveguide modulators, the resonant cavity has a comparable modulating voltage requirement. Because of its bulk geometry, resonant cavity modulator has the potential of accommodating higher throughput power. Furthermore, mode matching into a bulk device is easier and typically can be achieved with higher efficiency. On the other hand, unlike waveguide modulators which are essentially traveling wave devices, the resonant cavity modulator requires that the cavity be maintained in resonance with respect to the incoming laser signal. An additional control loop is incorporated into the modulator to maintain the cavity on resonance.
FPGA-Based Optical Cavity Phase Stabilization for Coherent Pulse Stacking
Xu, Yilun; Wilcox, Russell; Byrd, John; ...
2017-11-20
Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy from fiber lasers. We develop a robust, scalable, and distributed digital control system with firmware and software integration for algorithms, to support the CPS application. We model CPS as a digital filter in the Z domain and implement a pulse-pattern-based cavity phase detection algorithm on an field-programmable gate array (FPGA). A two-stage (2+1 cavities) 15-pulse stacking system achieves an 11.0 peak-power enhancement factor. Each optical cavity is fed back at 1.5kHz, and stabilized at anmore » individually-prescribed round-trip phase with 0.7deg and 2.1deg rms phase errors for Stages 1 and 2, respectively. Optical cavity phase control with nanometer accuracy ensures 1.2% intensity stability of the stacked pulse over 12 h. The FPGA-based feedback control system can be scaled to large numbers of optical cavities.« less
LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties
Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald
2014-11-11
An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.
FPGA-Based Optical Cavity Phase Stabilization for Coherent Pulse Stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yilun; Wilcox, Russell; Byrd, John
Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy from fiber lasers. We develop a robust, scalable, and distributed digital control system with firmware and software integration for algorithms, to support the CPS application. We model CPS as a digital filter in the Z domain and implement a pulse-pattern-based cavity phase detection algorithm on an field-programmable gate array (FPGA). A two-stage (2+1 cavities) 15-pulse stacking system achieves an 11.0 peak-power enhancement factor. Each optical cavity is fed back at 1.5kHz, and stabilized at anmore » individually-prescribed round-trip phase with 0.7deg and 2.1deg rms phase errors for Stages 1 and 2, respectively. Optical cavity phase control with nanometer accuracy ensures 1.2% intensity stability of the stacked pulse over 12 h. The FPGA-based feedback control system can be scaled to large numbers of optical cavities.« less
Non-linear optics of ultrastrongly coupled cavity polaritons
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Liu, Bin; McMaster, Michael; Singer, Kenneth
2016-05-01
Experiments at CWRU have developed organic cavity polaritons that display world-record vacuum Rabi splittings of more than an eV. This ultrastrongly coupled polaritonic matter is a new regime for exploring non-linear optical effects. We apply quantum optics theory to quantitatively determine various non-linear optical effects including types of low harmonic generation (SHG and THG) in single and double cavity polariton systems. Ultrastrongly coupled photon-matter systems such as these may be the foundation for technologies including low-power optical switching and computing.
Cavity-Enhanced Optical Readout of a Single Solid-State Spin
NASA Astrophysics Data System (ADS)
Sun, Shuo; Kim, Hyochul; Solomon, Glenn S.; Waks, Edo
2018-05-01
We demonstrate optical readout of a single spin using cavity quantum electrodynamics. The spin is based on a single trapped electron in a quantum dot that has a poor branching ratio of 0.43. Selectively coupling one of the optical transitions of the quantum dot to the cavity mode results in a spin-dependent cavity reflectivity that enables spin readout by monitoring the reflected intensity of an incident optical field. Using this approach, we demonstrate spin-readout fidelity of 0.61. Achieving this fidelity using resonance fluorescence from a bare dot would require 43 times improvement in photon collection efficiency.
NASA Astrophysics Data System (ADS)
Lange, W.; Gerard, J.-M.
2003-06-01
Cavity QED interactions of light and matter have been investigated in a wide range of systems covering the spectrum from microwaves to optical frequencies, using media as diverse as single atoms and semiconductors. Impressive progress has been achieved technologically as well as conceptually. This topical issue of Journal of Optics B: Quantum and Semiclassical Optics is intended to provide a comprehensive account of the current state of the art of cavity QED by uniting contributions from researchers active across this field. As Guest Editors of this topical issue, we invite manuscripts on current theoretical and experimental work on any aspects of cavity QED. The topics to be covered will include, but are not limited to: bulletCavity QED in optical microcavities bulletSemiconductor cavity QED bulletQuantum dot cavity QED bulletRydberg atoms in microwave cavities bulletPhotonic crystal cavity QED bulletMicrosphere resonators bulletMicrolasers and micromasers bulletMicrodroplets bulletDielectric cavity QED bulletCavity QED-based quantum information processing bulletQuantum state engineering in cavities The DEADLINE for submission of contributions is 31 July 2003 to allow the topical issue to appear in about February 2004. All papers will be peer-reviewed in accordance with the normal refereeing procedures and standards of Journal of Optics B: Quantum and Semiclassical Optics. Advice on publishing your work in the journal may be found at www.iop.org/journals/authors/jopb. Submissions should ideally be in either standard LaTeX form or Microsoft Word. There are no page charges for publication. In addition to the usual 50 free reprints, the corresponding author of each paper published will receive a complimentary copy of the topical issue. Contributions to the topical issue should if possible be submitted electronically at www.iop.org/journals/jopb. or by e-mail to jopb@iop.org. Authors unable to submit online or by e-mail may send hard copy contributions (enclosing the electronic code) to: Dr Claire Bedrock (Publisher), Journal of Optics B: Quantum and Semiclassical Optics, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK. All contributions should be accompanied by a readme file or covering letter, quoting `JOPB topical issue - Cavity QED', giving the postal and e-mail addresses for correspondence. Any subsequent change of address should be notified to the publishing office. We look forward to receiving your contribution to this topical issue.
Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Han; Zhang, Xingwang; Chau, Fook Siong
2016-04-25
We report the experimental observation of lateral shearing optical gradient forces in nanoelectromechanical systems (NEMS) controlled dual-coupled photonic crystal (PhC) nanobeam cavities. With an on-chip integrated NEMS actuator, the coupled cavities can be mechanically reconfigured in the lateral direction while maintaining a constant coupling gap. Shearing optical gradient forces are generated when the two cavity centers are laterally displaced. In our experiments, positive and negative lateral shearing optical forces of 0.42 nN and 0.29 nN are observed with different pumping modes. This study may broaden the potential applications of the optical gradient force in nanophotonic devices and benefit the futuremore » nanooptoelectromechanical systems.« less
Feasibility of a feedback control of atomic self-organization in an optical cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, D. A., E-mail: ivanov-den@yandex.ru; Ivanova, T. Yu.
Many interesting nonlinear effects are based on the strong interaction of motional degrees of freedom of atoms with an optical cavity field. Among them is the spatial self-organization of atoms in a pattern where the atoms group in either odd or even sites of the cavity-induced optical potential. An experimental observation of this effect can be simplified by using, along with the original cavity-induced feedback, an additional electronic feedback based on the detection of light leaking the cavity and the control of the optical potential for the atoms. Following our previous study, we show that this approach is more efficientmore » from the laser power perspective than the original scheme without the electronic feedback.« less
High power continuous-wave titanium:sapphire laser
Erbert, Gaylen V.; Bass, Isaac L.; Hackel, Richard P.; Jenkins, Sherman L.; Kanz, Vernon K.; Paisner, Jeffrey A.
1993-01-01
A high-power continuous-wave laser resonator (10) is provided, wherein first, second, third, fourth, fifth and sixth mirrors (11-16) form a double-Z optical cavity. A first Ti:Sapphire rod (17) is disposed between the second and third mirrors (12,13) and at the mid-point of the length of the optical cavity, and a second Ti:Sapphire rod (18) is disposed between the fourth and fifth mirrors (14,15) at a quarter-length point in the optical cavity. Each Ti:Sapphire rod (17,18) is pumped by two counter-propagating pump beams from a pair of argon-ion lasers (21-22, 23-24). For narrow band operation, a 3-plate birefringent filter (36) and an etalon (37) are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors (101, 192) are disposed between the first and second mirrors (11, 12) to form a triple-Z optical cavity. A third Ti:Sapphire rod (103) is disposed between the seventh and eighth mirrors (101, 102) at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers (104, 105).
An historical overview of cavity-enhanced methods
NASA Astrophysics Data System (ADS)
Paldus, B. A.; Kachanov, A. A.
2005-10-01
An historical overview of laser-based, spectroscopic methods that employ high-finesse optical resonators is presented. The overview begins with the early work in atomic absorption (1962) and optical cavities (1974) that led to the first mirror reflectivity measurements in 1980. This paper concludes with very recent extensions of cavity-enhanced methods for the study of condensed-phase media and biological systems. Methods described here include cavity ring-down spectroscopy, integrated cavity output spectroscopy, and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. Given the explosive growth of the field over the past decade, this review does not attempt to present a comprehensive bibliography of all work published in cavity-enhanced spectroscopy, but rather strives to illustrate the rich history, creative diversity, and broad applications potential of these methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coles, David M.; Lidzey, David G.
We construct a microcavity in which the extended optical path length of the cavity (5.9 μm) permits a series of closely spaced optical modes to be supported. By placing a J-aggregated cyanine dye into the cavity, we reach the strong-coupling regime and evidence a simultaneous optical hybridization between the organic-exciton and a number of the confined cavity modes, forming an effective ladder of polariton branches. We explore the emission from such cavities and evidence a polariton-population on adjacent polariton branches around k{sub ∥} = 0.
External Cavity Coherent Transmitter Modules
1990-11-01
Lasers 141 Tunability Aspects of DFB External Cavity Semiconductor Lasers Harish R. D. Sunak & Clark P. Engert Fiber Optical Communications Laboratory...Linewidth Considerations for DFB External Cavity Semiconductor Lasers Harish R. D. Sunak & Clark P. Engert Fiber Optical Communications Laboratory
Ma, Tian-Xue; Zou, Kui; Wang, Yue-Sheng; Zhang, Chuanzeng; Su, Xiao-Xing
2014-11-17
Phoxonic crystal is a promising material for manipulating sound and light simultaneously. In this paper, we theoretically demonstrate the propagation of acoustic and optical waves along the truncated surface of a two-dimensional square-latticed phoxonic crystal. Further, a phoxonic crystal hetero-structure cavity is proposed, which can simultaneously confine surface acoustic and optical waves. The interface motion and photoelastic effects are taken into account in the acousto-optical coupling. The results show obvious shifts in eigenfrequencies of the photonic cavity modes induced by different phononic cavity modes. The symmetry of the phononic cavity modes plays a more important role in the single-phonon exchange process than in the case of the multi-phonon exchange. Under the same deformation, the frequency shift of the photonic transverse electric mode is larger than that of the transverse magnetic mode.
Directional amplifier in an optomechanical system with optical gain
NASA Astrophysics Data System (ADS)
Jiang, Cheng; Song, L. N.; Li, Yong
2018-05-01
Directional amplifiers are crucial nonreciprocal devices in both classical and quantum information processing. Here we propose a scheme for realizing a directional amplifier between optical and microwave fields based on an optomechanical system with optical gain, where an active optical cavity and two passive microwave cavities are coupled to a common mechanical resonator via radiation pressure. The two passive cavities are coupled via hopping interaction to facilitate the directional amplification between the active and passive cavities. We obtain the condition of achieving optical directional amplification and find that the direction of amplification can be controlled by the phase differences between the effective optomechanical couplings. The effects of the gain rate of the active cavity and the effective coupling strengths on the maximum gain of the amplifier are discussed. We show that the noise added to this amplifier can be greatly suppressed in the large cooperativity limit.
Electro-optic resonant phase modulator
NASA Technical Reports Server (NTRS)
Chen, Chien-Chung (Inventor); Hemmati, Hamid (Inventor); Robinson, Deborah L. (Inventor)
1992-01-01
An electro-optic resonant cavity is used to achieve phase modulation with lower driving voltages. Laser damage thresholds are inherently higher than with previously used integrated optics due to the utilization of bulk optics. Phase modulation is achieved at higher speeds with lower driving voltages than previously obtained with non-resonant electro-optic phase modulators. The instant scheme uses a data locking dither approach as opposed to the conventional sinusoidal locking schemes. In accordance with a disclosed embodiment, a resonant cavity modulator has been designed to operate at a data rate in excess of 100 megabits per sec. By carefully choosing the cavity finesse and its dimension, it is possible to control the pulse switching time to within 4 nano-sec. and to limit the required switching voltage to within 10 V. This cavity locking scheme can be applied by using only the random data sequence, and without the need of dithering of the cavity. Compared to waveguide modulators, the resonant cavity has a comparable modulating voltage requirement. Because of its bulk geometry, the resonant cavity modulator has the potential of accommodating higher throughput power. Mode matching into the bulk device is easier and typically can be achieved with higher efficiency. An additional control loop is incorporated into the modulator to maintain the cavity on resonance.
Rotation Sensing with Trapped Ions
2016-09-01
Sagnac effect can be used to measure the rotational velocity Ω of a reference frame by observing the phase shift of an interferometer in that frame whose...sensitivity of interferometric gyroscopes. For photons, optical fibers (or ring laser cavities) allow many effective round-trips through the Sagnac...interferometer, thereby increasing the effective area A by 2 times the number of round trips (M) without increasing the actual area of the apparatus. This
Enhanced photoelastic modulation in silica phononic crystal cavities
NASA Astrophysics Data System (ADS)
Kim, Ingi; Iwamoto, Satoshi; Arakawa, Yasuhiko
2018-04-01
The enhanced photoelastic modulation in quasi-one-dimensional (1D) phononic crystal (PnC) cavities made of fused silica is experimentally demonstrated. A confined acoustic wave in the cavity can induce a large birefringence through the photoelastic effect and enable larger optical modulation amplitude at the same acoustic power. We observe a phase retardation of ∼26 mrad of light passing through the cavity when the exciting acoustic frequency is tuned to the cavity mode resonance of ∼500 kHz at 2.5 V. In the present experiment, a 16-fold enhancement of retardation in the PnC cavity is demonstrated compared with that in a bar-shaped silica structure. Spatially resolved optical retardation measurement reveals that the large retardation is realized only around the cavity reflecting the localized nature of the acoustic cavity mode. The enhanced interactions between acoustic waves and light can be utilized to improve the performance of acousto-optic devices such as photoelastic modulators.
Comparison of coherently coupled multi-cavity and quantum dot embedded single cavity systems.
Kocaman, Serdar; Sayan, Gönül Turhan
2016-12-12
Temporal group delays originating from the optical analogue to electromagnetically induced transparency (EIT) are compared in two systems. Similar transmission characteristics are observed between a coherently coupled high-Q multi-cavity array and a single quantum dot (QD) embedded cavity in the weak coupling regime. However, theoretically generated group delay values for the multi-cavity case are around two times higher. Both configurations allow direct scalability for chip-scale optical pulse trapping and coupled-cavity quantum electrodynamics (QED).
Steering optical comb frequencies by rotating the polarization state
NASA Astrophysics Data System (ADS)
Zhang, Yanyan; Zhang, Xiaofei; Yan, Lulu; Zhang, Pan; Rao, Bingjie; Han, Wei; Guo, Wenge; Zhang, Shougang; Jiang, Haifeng
2017-12-01
Optical frequency combs, with precise control of repetition rate and carrier-envelope-offset frequency, have revolutionized many fields, such as fine optical spectroscopy, optical frequency standards, ultra-fast science research, ultra-stable microwave generation and precise ranging measurement. However, existing high bandwidth frequency control methods have small dynamic range, requiring complex hybrid control techniques. To overcome this limitation, we develop a new approach, where a home-made intra-cavity electro-optic modulator tunes polarization state of laser signal rather than only optical length of the cavity, to steer frequencies of a nonlinear-polarization-rotation mode-locked laser. By taking advantage of birefringence of the whole cavity, this approach results in not only broadband but also relative large-dynamic frequency control. Experimental results show that frequency control dynamic range increase at least one order in comparison with the traditional intra-cavity electro-optic modulator technique. In additional, this technique exhibits less side-effect than traditional frequency control methods.
Graphene photonics for resonator-enhanced electro-optic devices and all-optical interactions
Englund, Dirk R.; Gan, Xuetao
2017-03-21
Techniques for coupling light into graphene using a planar photonic crystal having a resonant cavity characterized by a mode volume and a quality factor and at least one graphene layer positioned in proximity to the planar photonic crystal to at least partially overlap with an evanescent field of the resonant cavity. At least one mode of the resonant cavity can couple into the graphene layer via evanescent coupling. The optical properties of the graphene layer can be controlled, and characteristics of the graphene-cavity system can be detected. Coupling light into graphene can include electro-optic modulation of light, photodetection, saturable absorption, bistability, and autocorrelation.
Ognibene, Ted; Bench, Graham; McCartt, Alan Daniel; Turteltaub, Kenneth; Rella, Chris W.; Tan, Sze; Hoffnagle, John A.; Crosson, Eric
2017-05-09
Optical spectrometer apparatus, systems, and methods for analysis of carbon-14 including a resonant optical cavity configured to accept a sample gas including carbon-14, an optical source configured to deliver optical radiation to the resonant optical cavity, an optical detector configured to detect optical radiation emitted from the resonant cavity and to provide a detector signal; and a processor configured to compute a carbon-14 concentration from the detector signal, wherein computing the carbon-14 concentration from the detector signal includes fitting a spectroscopic model to a measured spectrogram, wherein the spectroscopic model accounts for contributions from one or more interfering species that spectroscopically interfere with carbon-14.
Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.
Shambat, Gary; Ellis, Bryan; Mayer, Marie A; Majumdar, Arka; Haller, Eugene E; Vučković, Jelena
2011-04-11
We demonstrate a gallium arsenide photonic crystal cavity injection-based electro-optic modulator coupled to a fiber taper waveguide. The fiber taper serves as a convenient and tunable waveguide for cavity coupling with minimal loss. Localized electrical injection of carriers into the cavity region via a laterally doped p-i-n diode combined with the small mode volume of the cavity enable ultra-low energy modulation at sub-fJ/bit levels. Speeds of up to 1 GHz are demonstrated with photoluminescence lifetime measurements revealing that the ultimate limit goes well into the tens of GHz. © 2011 Optical Society of America
NASA Technical Reports Server (NTRS)
Wilkerson, Gary W.; Huegele, Vinson
1998-01-01
The Marshall Space Flight Center (MSFC) has been developing a space deployable, lightweight membrane concentrator to focus solar energy into a solar furnace while remaining aligned to the sun. For an inner surface, this furnace has a cylindrical heat exchanger cavity coaligned to the optical axis; the furnace warms gas to propel the spacecraft. The membrane concentrator is a 1727 mm (68.00 in.) diameter, F/1.7 Fresnel lens. This large membrane is made from polyimide and is 0.076 mm (0.0030 in.) thick; it has the Fresnel grooves cast into it. The solar concentrator system has a super fast paraboloid reflector near the lens focus and immediately adjacent to the cylindrical exchanger cavity. The paraboloid collects the wide bandwidth and some of the solar energy scattered by the Fresnel lens. Finally, the paraboloid feeds the light into the cylinder. The Fresnel lens also possesses a narrow annular zone that focuses a reference beam toward four detectors that keep the optical system aligned to the sun; thus, occurs a refracting lens that focuses two places! The result can be summarized as a composite Fresnel lens for solar concentration and alignment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veselov, D A; Pikhtin, N A; Lyutetskiy, A V
2015-07-31
We report an experimental study of power characteristics of semiconductor lasers based on MOVPE-grown asymmetric separate-confinement heterostructures with a broadened waveguide as functions of cavity length, stripe contact width and mirror reflectivities. It is shown that at high current pump levels, the variation of the cavity parameters of a semiconductor laser (width, length and mirror reflectivities) influences the light – current (L – I) characteristic saturation and maximum optical power by affecting such laser characteristics, as the current density and the optical output loss. A model is elaborated and an optical power of semiconductor lasers is calculated by taking intomore » account the dependence of the internal optical loss on pump current density and concentration distribution of charge carriers and photons along the cavity axis of the cavity. It is found that only introduction of the dependence of the internal optical loss on pump current density to the calculation model provides a good agreement between experimental and calculated L – I characteristics for all scenarios of variations in the laser cavity parameters. (lasers)« less
Bloch oscillations of a Bose-Einstein condensate in a cavity-induced optical lattice
NASA Astrophysics Data System (ADS)
Georges, Ch.; Vargas, J.; Keßler, H.; Klinder, J.; Hemmerich, A.
2017-12-01
This article complements previous work on the nondestructive observation of Bloch oscillations of a Bose-Einstein condensate in an optical lattice formed inside a high-finesse optical cavity [H. Keßler et al., New J. Phys. 18, 102001 (2016), 10.1088/1367-2630/18/10/102001]. We present measurements showing that the observed Bloch frequency is independent of the atom number and hence the cooperative coupling strength, the intracavity lattice depth, and the detuning between the external pump light and the effective cavity resonance. We find that in agreement with theoretical predictions, despite the atom-cavity dynamics, the value of the Bloch frequency agrees with that expected in conventional optical lattices, where it solely depends on the sizes of the force and the lattice constant. We also show that Bloch oscillations are observed in a self-organized two-dimensional lattice, which is formed if, instead of axially pumping the cavity through one of its mirrors, the Bose-Einstein condensate is irradiated by an optical standing wave oriented perpendicularly with respect to the cavity axis. For this case, however, excessive decoherence prevents a meaningful quantitative assessment.
High precision measurements of 16O12C17O using a new type of cavity ring down spectrometer
NASA Astrophysics Data System (ADS)
Daëron, M.; Stoltmann, T.; Kassi, S.; Burkhart, J.; Kerstel, E.
2016-12-01
Laser absorption techniques for the measurement of isotopologue abundances in gases have been dripping into the geoscientific community over the past decade. In the field of carbon dioxide such instruments have mostly been restricted to measurements of the most abundant stable isotopologues. Distinct advantages of CRDS techniques are non-destructiveness and the ability to resolve isobaric isotopologues. The determination of low-abundance isotopologues is predominantly limited by the linewidth of the probing laser, laser jitter, laser drift and system stability. Here we present first measurements of 16O12C17O abundances using a new type of ultra-precise cavity ring down spectrometer. By the use of Optical Feedback Frequency Stabilization, we achieved a laser line width in the sub-kHz regime with a frequency drift of less than 20 Hz/s. A tight coupling with an ultra-stable ring down cavity combined with a frequency tuning mechanism which enables us to arbitrarily position spectral points (Burkart et al., 2013) allowed us to demonstrate a single-scan (2 minutes) precision of 40 ppm on the determination of the 16O12C17O abundance. These promising results imply that routine, direct, high-precision measurements of 17O-anomalies in CO2 using this non-destructive method are in reach. References:Burkart J, Romanini D, Kassi S; Optical feedback stabilized laser tuned by single-sideband modulation; Optical Letters 12:2062-2063 (2013)
Ultra-stable clock laser system development towards space applications.
Świerad, Dariusz; Häfner, Sebastian; Vogt, Stefan; Venon, Bertrand; Holleville, David; Bize, Sébastien; Kulosa, André; Bode, Sebastian; Singh, Yeshpal; Bongs, Kai; Rasel, Ernst Maria; Lodewyck, Jérôme; Le Targat, Rodolphe; Lisdat, Christian; Sterr, Uwe
2016-09-26
The increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.9 × 10 -16 at 300 ms averaging time. The laser system uses a single extended cavity diode laser that gives enough power for interrogating the atoms, frequency comparison by a frequency comb and diagnostics. It includes fibre link stabilisation to the atomic package and to the comb. The optics module containing the laser has dimensions 60 × 45 × 8 cm 3 ; and the ultra-stable reference cavity used for frequency stabilisation with its vacuum system takes 30 × 30 × 30 cm 3 . The acceleration sensitivities in three orthogonal directions of the cavity are 3.6 × 10 -10 /g, 5.8 × 10 -10 /g and 3.1 × 10 -10 /g, where g ≈ 9.8 m/s 2 is the standard gravitational acceleration.
NASA Astrophysics Data System (ADS)
Tan, Yan
Prediction and control of optical wave front distortions and aberrations in a high energy laser beam due to interaction with an unsteady highly non-uniform flow field is of great importance in the development of directed energy weapon systems for Unmanned Air Vehicles (UAV). The unsteady shear layer over the weapons bay cavity is the primary cause of this distortion of the optical wave front. The large scale vortical structure of the shear layer over the cavity can be significantly reduced by employing an active flow control technique combined with passive flow control. This dissertation explores various active and passive control methods to suppress the cavity oscillations and thereby improve the aero-optics of cavity flow. In active flow control technique, a steady or a pulsed jet is applied at the sharp leading edge of cavities of different aspect ratios L/D (=2, 4, 15), where L and D are the width and the depth of a cavity respectively. In the passive flow control approach, the sharp leading or trailing edge of the cavity is modified into a round edge of different radii. Both of these active and passive flow control approaches are studied independently and in combination. Numerical simulations are performed, with and without active flow control for subsonic free stream flow past two-dimensional sharp and round leading or trailing edge cavities using Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a two-equation Shear Stress Transport (SST) turbulence model or a hybrid SST/Large Eddy Simulation (LES) model. Aero-optical analysis is developed and applied to all the simulation cases. Index of refraction and Optical Path Difference (OPD) are compared for flow fields without and with active flow control. Root-Mean-Square (RMS) value of OPD is calculated and compared with the experimental data, where available. The effect of steady and pulsed blowing on buffet loading on the downstream face of the cavity is also computed. Using the numerical simulations, the most effective approach for controlling the cavity oscillations and aero-optical signatures is determined.
Performance of an untethered micro-optical pressure sensor
NASA Astrophysics Data System (ADS)
Ioppolo, Tindaro; Manzo, Maurizio; Krueger, Paul
2012-11-01
We present analytical and computational studies of the performance of a novel untethered micro-optical pressure sensor for fluid dynamics measurements. In particular, resolution and dynamic range will be presented. The sensor concept is based on the whispering galley mode (WGM) shifts that are observed in micro-scale dielectric optical cavities. A micro-spherical optical cavity (liquid or solid) is embedded in a thin polymeric sheet. The applied external pressure perturbs the morphology of the optical cavity leading to a shift in its optical resonances. The optical sensors are interrogated remotely, by embedding quantum dots or fluorescent dye in the micro-optical cavity. This allows a free space coupling of excitation and monitoring of the optical modes without the need of optical fibers or other cabling. With appropriate excitation and monitoring equipment, the micro-scale sensors can be distributed over a surface (e.g., including flexible biological surfaces) to monitor the local pressure field. We acknowledge the financial support from the National Science Foundation through grant CBET-1133876 with Dr. Horst Henning Winter as the program director.
Tuning the Sensitivity of an Optical Cavity with Slow and Fast Light
NASA Technical Reports Server (NTRS)
Smith, David D.; Myneni, Krishna; Chang, H.; Toftul, A.; Schambeau, C.; Odutola, J. A.; Diels, J. C.
2012-01-01
We have measured mode pushing by the dispersion of a rubidium vapor in a Fabry-Perot cavity and have shown that the scale factor and sensitivity of a passive cavity can be strongly enhanced by the presence of such an anomalous dispersion medium. The enhancement is the result of the atom-cavity coupling, which provides a positive feedback to the cavity response. The cavity sensitivity can also be controlled and tuned through a pole by a second, optical pumping, beam applied transverse to the cavity. Alternatively, the sensitivity can be controlled by the introduction of a second counter-propagating input beam that interferes with the first beam, coherently increasing the cavity absorptance. We show that the pole in the sensitivity occurs when the sum of the effective group index and an additional cavity delay factor that accounts for mode reshaping goes to zero, and is an example of an exceptional point, commonly associated with coupled non-Hermitian Hamiltonian systems. Additionally we show that a normal dispersion feature can decrease the cavity scale factor and can be generated through velocity selective optical pumping
NASA Astrophysics Data System (ADS)
Deng, Shaoyong; Zhang, Shiqiang; He, Minbo; Zhang, Zheng; Guan, Xiaowei
2017-05-01
The positive-branch confocal unstable resonator with inhomogeneous gain medium was studied for the normal used high energy DF laser system. The fast changing process of the resonator's eigenmodes was coupled with the slow changing process of the thermal deformation of cavity mirrors. Influences of the thermal deformation of cavity mirrors to the outcoupled beam quality and transmission loss of high frequency components of high energy laser were computed. The simulations are done through programs compiled by MATLAB and GLAD software and the method of combination of finite elements and Fox-li iteration algorithm was used. Effects of thermal distortion, misaligned of cavity mirrors and inhomogeneous distribution of gain medium were introduced to simulate the real physical circumstances of laser cavity. The wavefront distribution and beam quality (including RMS of wavefront, power in the bucket, Strehl ratio, diffraction limit β, position of the beam spot center, spot size and intensity distribution in far-field ) of the distorted outcoupled beam were studied. The conclusions of the simulation agree with the experimental results. This work would supply references of wavefront correction range to the adaptive optics system of interior alleyway.
Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer
NASA Astrophysics Data System (ADS)
Washenfelder, R. A.; Langford, A. O.; Fuchs, H.; Brown, S. S.
2008-12-01
We describe an instrument for simultaneous measurements of glyoxal (CHOCHO) and nitrogen dioxide (NO2) using cavity enhanced absorption spectroscopy with a broadband light source. The output of a Xenon arc lamp is coupled into a 1 m optical cavity, and the spectrum of light exiting the cavity is recorded by a grating spectrometer with a charge-coupled device (CCD) array detector. The mirror reflectivity and effective path lengths are determined from the known Rayleigh scattering of He and dry zero air (N2+O2). Least-squares fitting, using published reference spectra, allow the simultaneous retrieval of CHOCHO, NO2, O4, and H2O in the 441 to 469 nm spectral range. For a 1-min sampling time, the precision (±1σ) on signal for measurements of CHOCHO and NO2 is 29 pptv and 20 pptv, respectively. We directly compare measurements made with the incoherent broadband cavity enhanced absorption spectrometer with those from cavity ringdown instruments detecting CHOCHO and NO2 at 404 and 532 nm, respectively, and find linear agreement over a wide range of concentrations. The instrument has been tested in the laboratory with both synthetic and real air samples, and the demonstrated sensitivity and specificity suggest a strong potential for field measurements of both CHOCHO and NO2.
NASA Astrophysics Data System (ADS)
Nayak, Kali P.; Sadgrove, Mark; Yalla, Ramachandrarao; Le Kien, Fam; Hakuta, Kohzo
2018-07-01
Recent advances in the coherent control of single quanta of light, photons, is a topic of prime interest, and is discussed under the banner of quantum photonics. In the last decade, the subwavelength diameter waist of a tapered optical fiber, referred to as an optical nanofiber, has opened promising new avenues in the field of quantum optics, paving the way toward a versatile platform for quantum photonics applications. The key feature of the technique is that the optical field can be tightly confined in the transverse direction while propagating over long distances as a guided mode and enabling strong interaction with the surrounding medium in the evanescent region. This feature has led to surprising possibilities to manipulate single atoms and fiber-guided photons, e.g. the efficient channeling of emission from single atoms and solid-state quantum emitters into the fiber-guided modes, high optical depth with a few atoms around the nanofiber, trapping atoms around a nanofiber, and atomic memories for fiber-guided photons. Furthermore, implementing a moderate longitudinal confinement in nanofiber cavities has enabled the strong coupling regime of cavity quantum electrodynamics to be reached, and the long-range dipole–dipole interaction between quantum emitters mediated by the nanofiber offers a platform for quantum nonlinear optics with an ensemble of atoms. In addition, the presence of a longitudinal component of the guided field has led to unique capabilities for chiral light–matter interactions on nanofibers. In this article, we review the key developments of the nanofiber technology toward a vision for quantum photonics on an all-fiber interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dong-Yang; Wen, Jing-Ji; Bai, Cheng-Hua
2015-09-15
An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.
Cavity Optical Pulse Extraction: ultra-short pulse generation as seeded Hawking radiation.
Eilenberger, Falk; Kabakova, Irina V; de Sterke, C Martijn; Eggleton, Benjamin J; Pertsch, Thomas
2013-01-01
We show that light trapped in an optical cavity can be extracted from that cavity in an ultrashort burst by means of a trigger pulse. We find a simple analytic description of this process and show that while the extracted pulse inherits its pulse length from that of the trigger pulse, its wavelength can be completely different. Cavity Optical Pulse Extraction is thus well suited for the development of ultrashort laser sources in new wavelength ranges. We discuss similarities between this process and the generation of Hawking radiation at the optical analogue of an event horizon with extremely high Hawking temperature. Our analytic predictions are confirmed by thorough numerical simulations.
Cavity Optical Pulse Extraction: ultra-short pulse generation as seeded Hawking radiation
Eilenberger, Falk; Kabakova, Irina V.; de Sterke, C. Martijn; Eggleton, Benjamin J.; Pertsch, Thomas
2013-01-01
We show that light trapped in an optical cavity can be extracted from that cavity in an ultrashort burst by means of a trigger pulse. We find a simple analytic description of this process and show that while the extracted pulse inherits its pulse length from that of the trigger pulse, its wavelength can be completely different. Cavity Optical Pulse Extraction is thus well suited for the development of ultrashort laser sources in new wavelength ranges. We discuss similarities between this process and the generation of Hawking radiation at the optical analogue of an event horizon with extremely high Hawking temperature. Our analytic predictions are confirmed by thorough numerical simulations. PMID:24060831
Semi-monolithic cavity for external resonant frequency doubling and method of performing the same
NASA Technical Reports Server (NTRS)
Hemmati, Hamid (Inventor)
1999-01-01
The fabrication of an optical cavity for use in a laser, in a frequency doubling external cavity, or any other type of nonlinear optical device, can be simplified by providing the nonlinear crystal in combination with a surrounding glass having an index of refraction substantially equal to that of the nonlinear crystal. The closed optical path in this cavity is formed in the surrounding glass and through the nonlinear crystal which lies in one of the optical segments of the light path. The light is transmitted through interfaces between the surrounding glass in the nonlinear crystal through interfaces which are formed at the Brewster-angle to minimize or eliminate reflection.
Observation of an optical spring with a beam splitter
NASA Astrophysics Data System (ADS)
Cripe, Jonathan; Danz, Baylee; Lane, Benjamin; Lorio, Mary Catherine; Falcone, Julia; Cole, Garrett D.; Corbitt, Thomas
2018-05-01
We present the experimental observation of an optical spring without the use of an optical cavity. The optical spring is produced by interference at a beamsplitter and, in principle, does not have the damping force associated with optical springs created in detuned cavities. The experiment consists of a Michelson-Sagnac interferometer (with no recycling cavities) with a partially reflective GaAs microresonator as the beamsplitter that produces the optical spring. Our experimental measurements at input powers of up to 360 mW show the shift of the optical spring frequency as a function of power and are in excellent agreement with theoretical predictions. In addition, we show that the optical spring is able to keep the interferometer stable and locked without the use of external feedback.
Solid-state lasers for coherent communication and remote sensing
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1992-01-01
Semiconductor-diode laser-pumped solid-state lasers have properties that are superior to other lasers for the applications of coherent communication and remote sensing. These properties include efficiency, reliability, stability, and capability to be scaled to higher powers. We have demonstrated that an optical phase-locked loop can be used to lock the frequency of two diode-pumped 1.06 micron Nd:YAG lasers to levels required for coherent communication. Monolithic nonplanar ring oscillators constructed from solid pieces of the laser material provide better than 10 kHz frequency stability over 0.1 sec intervals. We have used active feedback stabilization of the cavity length of these lasers to demonstrate 0.3 Hz frequency stabilization relative to a reference cavity. We have performed experiments and analysis to show that optical parametric oscillators (OPO's) reproduce the frequency stability of the pump laser in outputs that can be tuned to arbitrary wavelengths. Another measurement performed in this program has demonstrated the sub-shot-noise character of correlations of the fluctuations in the twin output of OPO's. Measurements of nonlinear optical coefficients by phase-matched second harmonic generation are helping to resolve inconsistency in these important parameters.
[The study of CO2 cavity enhanced absorption and highly sensitive absorption spectroscopy].
Pei, Shi-Xin; Gao, Xiao-Ming; Cui, Fen-Ping; Huang, Wei; Shao, Jie; Fan, Hong; Zhang, Wei-Jun
2005-12-01
Cavity enhanced absorption spectroscopy (CEAS) is a new spectral technology that is based on the cavity ring down absorption spectroscopy. In the present paper, a DFB encapsulation narrow line width tunable diode laser (TDL) was used as the light source. At the center output, the TDL radiation wavelength was 1.573 microm, and an optical cavity, which consisted of two high reflectivity mirrors (near 1.573 microm, the mirror reflectivity was about 0.994%), was used as a sample cell. A wavemeter was used to record the accurate frequency of the laser radiation. In the experiment, the method of scanning the optical cavity to change the cavity mode was used, when the laser frequency was coincident with one of the cavity mode; the laser radiation was coupled into the optical cavity and the detector could receive the light signals that escaped the optical cavity. As a result, the absorption spectrum of carbon dioxide weak absorption at low pressure was obtained with an absorption intensity of 1.816 x 10(-23) cm(-1) x (molecule x cm(-2)(-1) in a sample cell with a length of only 33.5 cm. An absorption sensitivity of about 3.62 x 10(-7) cm(-1) has been achieved. The experiment result indicated that the cavity enhanced absorption spectroscopy has the advantage of high sensivity, simple experimental setup, and easy operation.
Optical Bench for LISA-like missions
NASA Astrophysics Data System (ADS)
Mueller, Guido
The detection of B-modes in the μ-Wave background has rattled the scientific community and further enhanced the large scientific interest in gravitational waves and gravitational wave astronomy. The first direct detection of gravitational waves by Advanced LIGO and maybe also by pulsar timing arrays in the second half of this decade will be another watershed event which will start a new era in astronomy and astrophysics. However, the holy grail of gravitational wave astronomy will be opened by a LISA-like mission. Only space provides the environment that allows to cover the signal-rich mHz frequency range where we expect to see gravitational waves from massive black hole mergers, compact galactic binaries, and many other sources. All mature concepts use laser interferometry between free falling test masses separated by millions of km. The central piece in all these concepts is a stable optical bench which is used to prepare and exchange the laser beams between the different arms. It has always been assumed that the base material for the optical bench has to be one of the ultra-low expansion glasses such as Zerodur or ULE to meet the pm/#Hz stability requirements. This very conservative approach was a reflection of the state-of-the-art in frequency stabilization experiments which used optical reference cavities in the early ‘90s. It is not surprising that the LISA pathfinder (LPF) uses also an all Zerodur bench where each optical component is precision bonded to the bench using hydroxide bonding, a nonreversible bonding technique. The manufacturing of this bench was a very time consuming one-mirror-a-day effort and was one of the highest risk items in terms of schedule and cost. The original LISA design uses the same approach except that the LISA bench is far more complex than the LPF bench and manufacturing of the required 10+ benches, six flight units and at least four pre-flight models and spares, will be even more time consuming and expensive. We question the need for ultra-low expansion glass for the optical bench. We will streamline the design of the bench and explore other materials and assembly techniques to significantly simplify the manufacturing process. Why are we confident that this is possible? One argument is that in early LISA designs the reference cavity was also part of the bench. This cavity drove the requirements to 30 fm/#Hz, a factor 30 more stringent compared to the current requirements. Since the cavity has now been removed from the bench, the requirements have been relaxed. A second argument is that we demonstrated pm/#Hz performance for a number of different materials and structures which are all candidate materials for the telescopes which also have to meet the same requirements over actually a larger distance. Our objective is to take a fresh look at the optical bench. We will redesign core parts of the interferometer bench with a focus on reducing the number and lengths of critical paths and moving non-critical parts away from the core part of the bench and sometimes even into optical fibers. We also propose to use different materials and assembly techniques for the optical bench and strongly believe that they will still meet the pm/#Hz requirement and will also be stable on long time scales. This confidence is based on nearly ten years of experience during which we investigated different materials and structures for the telescopes which we plan to apply now to the optical bench.
Sensitivity of optical mass sensor enhanced by optomechanical coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yong, E-mail: hey@cczu.edu.cn
Optical mass sensors based on cavity optomechanics employ radiation pressure force to drive mechanical resonator whose mechanical susceptibility can be described by nonlinear optical transmission spectrum. In this paper, we present an optical mass sensor based on a two-cavity optomechanical system where the mechanical damping rate can be decreased by adjusting a pump power so that the mass sensitivity which depends on the mechanical quality factor has been enhanced greatly. Compared with that of an optical mass sensor based on single-cavity optomechanics, the mass sensitivity of the optical mass sensor is improved by three orders of magnitude. This is anmore » approach to enhance the mass sensitivity by means of optomechanical coupling, which is suitable for all mass sensor based on cavity optomechanics. Finally, we illustrate the accurate measurement for the mass of a few chromosomes, which can be achieved based on the current experimental conditions.« less
Laser frequency stabilization for LISA
NASA Technical Reports Server (NTRS)
Mueller, Guido; McNamara, Paul; Thorpe, Ira; Camp, Jordan
2005-01-01
The requirement on laser frequency noise in the Laser Interferometer Space Antenna (LISA) depends on the velocity and our knowledge of the position of each spacecraft of the interferometer. Currently it is assumed that the lasers must have a pre-stabilized frequency stability of 30Hz/square root of Hz over LISA'S most sensitive frequency band (3 mHz - 30 mHz). The intrinsic frequency stability of even the most stable com- mercial lasers is several orders of magnitude above this level. Therefore it is necessary to stabilize the laser frequency to an ultra-stable frequency reference which meets the LISA requirements. The baseline frequency reference for the LISA lasers are high finesse optical cavities based on ULE spacers. We measured the stability of two ULE spacer cavities with respect to each other. Our current best results show a noise floor at, or below, 30 Hz/square root of Hz above 3 mHz. In this report we describe the experimental layout of the entire experiment and discuss the limiting noise sources.
Liu, Zhengqi; Liu, Guiqiang; Liu, Xiaoshan; Huang, Shan; Wang, Yan; Pan, Pingping; Liu, Mulin
2015-06-12
Resonant plasmonic and metamaterial absorbers are of particular interest for applications in a wide variety of nanotechnologies including thermophotovoltaics, photothermal therapy, hot-electron collection and biosensing. However, it is rather challenging to realize ultra-narrow absorbers using plasmonic materials due to large optical losses in metals that inevitably decrease the quality of optical resonators. Here, we theoretically report methods to achieve an ultra-narrow light absorption meta-surface by using photonic modes of the optical cavities, which strongly couple with the plasmon resonances of the metallic nanostructures. Multispectral light absorption with absorption amplitude exceeding 99% and a bandwidth approaching 10 nm is achieved at the optical frequencies. Moreover, by introducing a thick dielectric coupling cavity, the number of absorption bands can be strongly increased and the bandwidth can even be narrowed to less than 5 nm due to the resonant spectrum splitting enabled by strong coupling between the plasmon resonances and the optical cavity modes. Designing such optical cavity-coupled meta-surface structures is a promising route for achieving ultra-narrow multiband absorbers, which can be used in absorption filters, narrow-band multispectral thermal emitters and thermophotovoltaics.
Precision interferometric measurements of mirror birefringence in high-finesse optical resonators
NASA Astrophysics Data System (ADS)
Fleisher, Adam J.; Long, David A.; Liu, Qingnan; Hodges, Joseph T.
2016-01-01
High-finesse optical resonators found in ultrasensitive laser spectrometers utilize supermirrors ideally consisting of isotropic high-reflectivity coatings. Strictly speaking, however, the optical coatings are often nonuniformly stressed during the deposition process and therefore do possess some small amount of birefringence. When physically mounted the cavity mirrors can be additionally stressed in such a way that large optical birefringence is induced. Here we report a direct measurement of optical birefringence in a two-mirror Fabry-Pérot cavity with R =99.99 % by observing TEM00 mode beating during cavity decays. Experiments were performed at a wavelength of 4.53 μ m , with precision limited by both quantum and technical noise sources. We report a splitting of δν=618 (1 ) Hz, significantly less than the intrinsic cavity line width of δcav≈3 kHz. With a cavity free spectral range of 96.9 MHz, the equivalent fractional change in mirror refractive index due to birefringence is therefore Δ n /n =6.38 (1 ) ×10-6 .
Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells
Stelling, Christian; Singh, Chetan R.; Karg, Matthias; König, Tobias A. F.; Thelakkat, Mukundan; Retsch, Markus
2017-01-01
In this contribution, the optical losses and gains attributed to periodic nanohole array electrodes in polymer solar cells are systematically studied. For this, thin gold nanomeshes with hexagonally ordered holes and periodicities (P) ranging from 202 nm to 2560 nm are prepared by colloidal lithography. In combination with two different active layer materials (P3HT:PC61BM and PTB7:PC71BM), the optical properties are correlated with the power conversion efficiency (PCE) of the solar cells. A cavity mode is identified at the absorption edge of the active layer material. The resonance wavelength of this cavity mode is hardly defined by the nanomesh periodicity but rather by the absorption of the photoactive layer. This constitutes a fundamental dilemma when using nanomeshes as ITO replacement. The highest plasmonic enhancement requires small periodicities. This is accompanied by an overall low transmittance and high parasitic absorption losses. Consequently, larger periodicities with a less efficient cavity mode, yet lower absorptive losses were found to yield the highest PCE. Nevertheless, ITO-free solar cells reaching ~77% PCE compared to ITO reference devices are fabricated. Concomitantly, the benefits and drawbacks of this transparent nanomesh electrode are identified, which is of high relevance for future ITO replacement strategies. PMID:28198406
Tian, Feng; Sumikura, Hisashi; Kuramochi, Eiichi; Taniyama, Hideaki; Takiguchi, Masato; Notomi, Masaya
2016-11-28
Optomechanical control of on-chip emitters is an important topic related to integrated all-optical circuits. However, there is neither a realization nor a suitable optomechanical structure for this control. The biggest obstacle is that the emission signal can hardly be distinguished from the pump light because of the several orders' power difference. In this study, we designed and experimentally verified an optomechanical oscillation system, in which a lumped mechanical oscillator connected two optically isolated pairs of coupled one-dimensional photonic crystal cavities. As a functional device, the two pairs of coupled cavities were respectively used as an optomechanical pump for the lumped oscillator (cavity pair II, wavelengths were designed to be within a 1.5 μm band) and a modulation target of the lumped oscillator (cavity pair I, wavelengths were designed to be within a 1.2 μm band). By conducting finite element method simulations, we found that the lumped-oscillator-supported configurations of both cavity pairs enhance the optomechanical interactions, especially for higher order optical modes, compared with their respective conventional side-clamped configurations. Besides the desired first-order in-plane antiphase mechanical mode, other mechanical modes of the lumped oscillator were investigated and found to possibly have optomechanical applications with a versatile degree of freedom. In experiments, the oscillator's RF spectra were probed using both cavity pairs I and II, and the results matched those of the simulations. Dynamic detuning of the optical spectrum of cavity pair I was then implemented with a pumped lumped oscillator. This was the first demonstration of an optomechanical lumped oscillator connecting two optically isolated pairs of coupled cavities, whose biggest advantage is that one cavity pair can be modulated with an lumped oscillator without interference from the pump light in the other cavity pair. Thus, the oscillator is a suitable platform for optomechanical control of integrated lasers, cavity quantum electrodynamics, and spontaneous emission. Furthermore, this device may open the door on the study of interactions between photons, phonons, and excitons in the quantum regime.
Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities
Liberal, Iñigo; Engheta, Nader
2016-01-01
Controlling the emission and interaction properties of quantum emitters (QEs) embedded within an optical cavity is a key technique in engineering light-matter interactions at the nanoscale, as well as in the development of quantum information processing. State-of-the-art optical cavities are based on high quality factor photonic crystals and dielectric resonators. However, wealthier responses might be attainable with cavities carved in more exotic materials. We theoretically investigate the emission and interaction properties of QEs embedded in open epsilon-near-zero (ENZ) cavities. Using analytical methods and numerical simulations, we demonstrate that open ENZ cavities present the unique property of supporting nonradiating modes independently of the geometry of the external boundary of the cavity (shape, size, topology, etc.). Moreover, the possibility of switching between radiating and nonradiating modes enables a dynamic control of the emission by, and the interaction between, QEs. These phenomena provide unprecedented degrees of freedom in controlling and trapping fields within optical cavities, as well as in the design of cavity opto- and acoustomechanical systems. PMID:27819047
Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities.
Liberal, Iñigo; Engheta, Nader
2016-10-01
Controlling the emission and interaction properties of quantum emitters (QEs) embedded within an optical cavity is a key technique in engineering light-matter interactions at the nanoscale, as well as in the development of quantum information processing. State-of-the-art optical cavities are based on high quality factor photonic crystals and dielectric resonators. However, wealthier responses might be attainable with cavities carved in more exotic materials. We theoretically investigate the emission and interaction properties of QEs embedded in open epsilon-near-zero (ENZ) cavities. Using analytical methods and numerical simulations, we demonstrate that open ENZ cavities present the unique property of supporting nonradiating modes independently of the geometry of the external boundary of the cavity (shape, size, topology, etc.). Moreover, the possibility of switching between radiating and nonradiating modes enables a dynamic control of the emission by, and the interaction between, QEs. These phenomena provide unprecedented degrees of freedom in controlling and trapping fields within optical cavities, as well as in the design of cavity opto- and acoustomechanical systems.
Nanocrystal waveguide (NOW) laser
Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.
2005-02-08
A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.
NASA Astrophysics Data System (ADS)
Chen, Bin; Wang, Xiao-Fang; Yan, Jia-Kai; Zhu, Xiao-Fei; Jiang, Cheng
2018-01-01
We theoretically investigate the optical bistable behavior in a three-mode optomechanical system with atom-cavity-mirror couplings. The effects of the cavity-pump detuning and the pump power on the bistable behavior are discussed detailedly, the impacts of the atom-pump detuning and the atom-cavity coupling strength on the bistability of the system are also explored, and the influences of the cavity-resonator coupling strength and the cavity decay rate are also taken into consideration. The numerical results demonstrate that by tuning these parameters the bistable behavior of the system can be freely switched on or off, and the threshold of the pump power for the bistability as well as the bistable region width can also be effectively controlled. These results can find potential applications in optical bistable switch in the quantum information processing.
Raman laser with controllable suppression of parasitics
George, E. Victor
1986-01-01
Method and apparatus for switching energy out of a Raman laser optical cavity. Coherent radiation at both the pump and first Stokes wave frequencies are introduced into the optical cavity from the same direction, and a second Stokes wave is utilized to switch the energy out of the cavity.
Raman laser with controllable suppression of parasitics
George, E.V.
Method and apparatus for switching energy out of a Raman laser optical cavity. Coherent radiation at both the pump and first Stokes wave frequencies are introduced into the optical cavity from the same direction, and a second Stokes wave is utilized to switch the energy out of the cavity.
Observation of an optical spring with a beam splitter.
Cripe, Jonathan; Danz, Baylee; Lane, Benjamin; Lorio, Mary Catherine; Falcone, Julia; Cole, Garrett D; Corbitt, Thomas
2018-05-01
We present the experimental observation of an optical spring without the use of an optical cavity. The optical spring is produced by interference at a beam splitter and, in principle, does not have the damping force associated with optical springs created in detuned cavities. The experiment consists of a Michelson-Sagnac interferometer (with no recycling cavities) with a partially reflective GaAs microresonator as the beam splitter that produces the optical spring. Our experimental measurements at input powers of up to 360 mW show the shift of the optical spring frequency as a function of power and are in excellent agreement with theoretical predictions. In addition, we show that the optical spring is able to keep the interferometer stable and locked without the use of external feedback.
Cavity cooling of an optically levitated submicron particle
Kiesel, Nikolai; Blaser, Florian; Delić, Uroš; Grass, David; Kaltenbaek, Rainer; Aspelmeyer, Markus
2013-01-01
The coupling of a levitated submicron particle and an optical cavity field promises access to a unique parameter regime both for macroscopic quantum experiments and for high-precision force sensing. We report a demonstration of such controlled interactions by cavity cooling the center-of-mass motion of an optically trapped submicron particle. This paves the way for a light–matter interface that can enable room-temperature quantum experiments with mesoscopic mechanical systems. PMID:23940352
Low-loss tunable 1D ITO-slot photonic crystal nanobeam cavity
NASA Astrophysics Data System (ADS)
Amin, Rubab; Tahersima, Mohammad H.; Ma, Zhizhen; Suer, Can; Liu, Ke; Dalir, Hamed; Sorger, Volker J.
2018-05-01
Tunable optical material properties enable novel applications in both versatile metamaterials and photonic components including optical sources and modulators. Transparent conductive oxides (TCOs) are able to highly tune their optical properties with applied bias via altering their free carrier concentration and hence plasma dispersion. The TCO material indium tin oxide (ITO) exhibits unity-strong index change and epsilon-near-zero behavior. However, with such tuning the corresponding high optical losses, originating from the fundamental Kramers–Kronig relations, result in low cavity finesse. However, achieving efficient tuning in ITO-cavities without using light–matter interaction enhancement techniques such as polaritonic modes, which are inherently lossy, is a challenge. Here we discuss a novel one-dimensional photonic crystal nanobeam cavity to deliver a cavity system offering a wide range of resonance tuning range, while preserving physical compact footprints. We show that a vertical silicon-slot waveguide incorporating an actively gated-ITO layer delivers ∼3.4 nm of tuning. By deploying distributed feedback, we are able to keep the Q-factor moderately high with tuning. Combining this with the sub-diffraction limited mode volume (0.1 (λ/2n)3) from the photonic (non-plasmonic) slot waveguide, facilitates a high Purcell factor exceeding 1000. This strong light–matter-interaction shows that reducing the mode volume of a cavity outweighs reducing the losses in diffraction limited modal cavities such as those from bulk Si3N4. These tunable cavities enable future modulators and optical sources such as tunable lasers.
Controlled directional scattering cavity for tubular absorbers
Winston, Roland
1982-01-01
A specular cavity is provided in which an optical receiver is emplaced. The cavity is provided with a series of V groove-like indentations (or pyramidal-type indentations) which redirect energy entering between the receiver and cavity structure onto the receiver. The aperture opening of each V groove is less than half the cavity opening and in most preferred embodiments, much less than half. This enables the optical receiver to be emplaced a distance g from the cavity wherein 0.414r
Phonon Routing in Integrated Optomechanical Cavity-waveguide Systems
2015-08-20
optomechanical crystal cavities connected by a dispersion-engineered phonon waveguide. Pulsed and continuous- wave measurements are first used to char- acterize...device layer of a silicon-on-insulator wafer (see App. A), and consists of several parts: an op- tomechanical cavity with co- localized optical and acous... localized cavity mode and the nearly- resonant phonon waveguide modes. The optical coupling waveg- uide is fabricated in the near-field of the nanobeam
Electrically injected visible vertical cavity surface emitting laser diodes
Schneider, Richard P.; Lott, James A.
1994-01-01
Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors.
Electrically injected visible vertical cavity surface emitting laser diodes
Schneider, R.P.; Lott, J.A.
1994-09-27
Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.
Cavity-induced mirror-mirror entanglement in a single-atom Raman laser
NASA Astrophysics Data System (ADS)
Teklu, Berihu; Byrnes, Tim; Khan, Faisal Shah
2018-02-01
We address an experimental scheme to analyze the optical bistability and the entanglement of two movable mirrors coupled to a two-mode laser inside a doubly resonant cavity. With this aim we investigate the master equations of the atom-cavity subsystem in conjunction with the quantum Langevin equations that describe the interaction of the mirror cavity. The parametric amplification-type coupling induced by the two-photon coherence on the optical bistability of the intracavity mean photon numbers is found and investigated. Under this condition, the optical intensities exhibit bistability for all large values of cavity laser detuning. We also provide numerical evidence for the generation of strong entanglement between the movable mirrors and show that it is robust against environmental thermalization.
NASA Astrophysics Data System (ADS)
Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Rudich, Y.; Brown, S. S.
2015-09-01
Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity enhanced spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99933 ± 0.00003 (670 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.49 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device (CCD) array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity enhanced spectroscopy and cavity ringdown spectroscopy agree within 2 % (slope for linear fit = 0.98 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity enhanced spectroscopy and calculated based on flow dilution are also well-correlated, with r2 = 0.9998. During constant, mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1-min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically-based trace gas detection that may complement higher precision techniques based on non-absolute detection methods. In addition to trace gases, this approach will be appropriate for measurements of aerosol extinction in ambient air, and this spectral region is important for characterizing the strong ultraviolet absorption by brown carbon aerosol.
Hou, Hong Q.; Coltrin, Michael E.; Choquette, Kent D.
2001-01-01
A process for forming an array of vertical cavity optical resonant structures wherein the structures in the array have different detection or emission wavelengths. The process uses selective area growth (SAG) in conjunction with annular masks of differing dimensions to control the thickness and chemical composition of the materials in the optical cavities in conjunction with a metalorganic vapor phase epitaxy (MOVPE) process to build these arrays.
The Choice of a Laser for Airborne Depth Sounding
1981-09-01
cavity, polariser, Pockels cell and have the same resonator length,. The Porro prisms of the PCCP are replaced by mirrors in the conventional...crossed Porro resonator The operation of this resonator is described in references 6 and 7. It contains two Porro prisms , one at each end of the...p968, March 1980 "Laser Resonator : An Electrooptically Q-Switched Porro Prism Device" Applied Optics, 15, 8, pl942, August 1976 10 11 See, B.A
Gaber, Noha; Malak, Maurine; Marty, Frédéric; Angelescu, Dan E; Richalot, Elodie; Bourouina, Tarik
2014-07-07
In this article, microparticles are manipulated inside an optofluidic Fabry-Pérot cylindrical cavity embedding a fluidic capillary tube, taking advantage of field enhancement and multiple reflections within the optically-resonant cavity. This enables trapping of suspended particles with single-side injection of light and with low optical power. A Hermite-Gaussian standing wave is developed inside the cavity, forming trapping spots at the locations of the electromagnetic field maxima with a strong intensity gradient. The particles get arranged in a pattern related to the mechanism affecting them: either optical trapping or optical binding. This is proven to eventually translate into either an axial one dimensional (1D) particle array or a cluster of particles. Numerical simulations are performed to model the field distributions inside the cavity allowing a behavioral understanding of the phenomena involved in each case.
Electro-optic Modulation Using a DAST Single-crystal Film in a Fabry-Perot Cavity
NASA Astrophysics Data System (ADS)
Kutty, S. P.
2005-03-01
In this paper, we report a multiple-pass electro-optic modulator using a single- crystal film of 4'-dimethyamino-N-methyl-4-stilbazolium tosylate (DAST) placed inside a Fabry-Perot cavity. The single-crystal film was prepared using the modified shear method. Electro-optic modulation was achieved at 633 nm using field-induced birefringence in the cross polarized geometry including the Fabry-Perot cavity. The modulation due to the electro-optic effect was recorded as a function of phase while the phase was controlled by moving one of the mirrors in the cavity. The observed modulation was high (80 percent) for a low field (0.5V/micron) applied along the charge transfer axis on the film. Similar modulation using the Fabry-Perot cavity with a lower modulation depth was observed involving electroabsorption at 633 nm. Electroabsorption in the DAST film has been recently reported [1]. These are important results considering applications in photonics. [1] ``Electroabsorption in single-crystal film of a second-order optical material,'' R. K. Swamy, S. P. Kutty, J. Titus, S. Khatavkar, and M. Thakur, APL, Vol. 85, 4025, (2004).
Precision Atomic Beam Laser Spectroscopy
1999-02-20
optical efficiency with a new coupled- cavity scheme. We have locked a MISER Nd:YAG laser to a finesse 50,000 cavity with a...sensitivity of optical heterodyne detection is preserved with ZERO sensitivity to small laser / cavity frequency noises. The new method is called Noise-Immune...1996), P. Dube, L.- S. Ma, J. Ye, and J.L.Hall. 9 . "Free-induction decay in molecular iodine measured with an extended - cavity diode laser ,"
Hohimer, John P.; Craft, David C.
1994-01-01
Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction.
Liles, Alexandros A; Debnath, Kapil; O'Faolain, Liam
2016-03-01
We report the experimental demonstration of a new design for external cavity hybrid lasers consisting of a III-V semiconductor optical amplifier (SOA) with fiber reflector and a photonic crystal (PhC)-based resonant reflector on SOI. The silicon reflector is composed of an SU8 polymer bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and side-mode suppression ratios of more than 25 dB.
Dinesan, H; Fasci, E; D'Addio, A; Castrillo, A; Gianfrani, L
2015-01-26
Frequency fluctuations of an optical frequency standard at 1.39 µm have been measured by means of a highly-sensitive optical frequency discriminator based on the fringe-side transmission of a high finesse optical resonator. Built on a Zerodur spacer, the optical resonator exhibits a finesse of 5500 and a cavity-mode width of about 120 kHz. The optical frequency standard consists of an extended-cavity diode laser that is tightly stabilized against the center of a sub-Doppler H(2) (18)O line, this latter being detected by means of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. The emission linewidth has been carefully determined from the frequency-noise power spectral density by using a rather simple approximation, known as β-line approach, as well as the exact method based on the autocorrelation function of the laser light field. It turns out that the linewidth of the optical frequency standard amounts to about 7 kHz (full width at half maximum) for an observation time of 1 ms. Compared to the free-running laser, the measured width corresponds to a line narrowing by a factor of ~220.
Near field optical probe for critical dimension measurements
Stallard, Brian R.; Kaushik, Sumanth
1999-01-01
A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations.
Bistability in a hybrid optomechanical system: effect of a gain medium
NASA Astrophysics Data System (ADS)
Asghari Nejad, A.; Baghshahi, H. R.; Askari, H. R.
2017-11-01
In this paper, we investigate the optical bistability of a hybrid optomechanical system consisting of two coupled cavities: a bare optomechanical cavity (with an oscillating mirror at one end) and a traditional one. The traditional cavity is filled with an optical parametric amplifier (OPA), and an input pump laser is applied to it. The Hamiltonian of the system is written in a rotating frame. The dynamics of the system is driven by the quantum Langevin equations of motion. We demonstrate that the presence of an OPA can dramatically affect the type of stability of the optomechanical cavity. We show that it is possible to create a proper optical bistability for the optomechanical cavity by changing the gain coefficient of the OPA. Also, it is shown that changing the phase of the field driving the OPA has two different effects on the bistability region of the optomechanical cavity. Moreover, we show that by choosing a proper value for the detuning of the traditional cavity it is possible to observe a tristable behavior in the optomechanical cavity.
Koshel, R J; Walmsley, I A
1993-03-20
We investigate the absorption distribution in a cylindrical gain medium that is pumped by a source of distributed laser diodes by means of a pump cavity developed from the edge-ray principle of nonimaging optics. The performance of this pumping arrangement is studied by using a nonsequential, numerical, three-dimensional ray-tracing scheme. A figure of merit is defined for the pump cavities that takes into account the coupling efficiency and uniformity of the absorption distribution. It is found that the nonimaging pump cavity maintains a high coupling efficiency with extended two-dimensional diode arrays and obtains a fairly uniform absorption distribution. The nonimaging cavity is compared with two other designs: a close-coupled side-pumped cavity and an imaging design in the form of a elliptical cavity. The nonimaging cavity has a better figure of merit per diode than these two designs. It also permits the use of an extended, sparse, two-dimensional diode array, which reduces thermal loading of the source and eliminates all cavity optics other than the main reflector.
Synthetic topological Kondo insulator in a pumped optical cavity
NASA Astrophysics Data System (ADS)
Zheng, Zhen; Zou, Xu-Bo; Guo, Guang-Can
2018-02-01
Motivated by experimental advances on ultracold atoms coupled to a pumped optical cavity, we propose a scheme for synthesizing and observing the Kondo insulator in Fermi gases trapped in optical lattices. The synthetic Kondo phase arises from the screening of localized atoms coupled to mobile ones, which in our proposal is generated via the pumping laser as well as the cavity. By designing the atom-cavity coupling, it can engineer a nearest-neighbor-site Kondo coupling that plays an essential role for supporting topological Kondo phase. Therefore, the cavity-induced Kondo transition is associated with a nontrivial topological features, resulting in the coexistence of the superradiant and topological Kondo state. Our proposal can be realized with current technique, and thus has potential applications in quantum simulation of the topological Kondo insulator in ultracold atoms.
Circuit QED: generation of two-transmon-qutrit entangled states via resonant interaction
NASA Astrophysics Data System (ADS)
Ye, Xi-Mei; Zheng, Zhen-Fei; Lu, Dao-Ming; Yang, Chui-Ping
2018-04-01
We present a way to create entangled states of two superconducting transmon qutrits based on circuit QED. Here, a qutrit refers to a three-level quantum system. Since only resonant interaction is employed, the entanglement creation can be completed within a short time. The degree of entanglement for the prepared entangled state can be controlled by varying the weight factors of the initial state of one qutrit, which allows the prepared entangled state to change from a partially entangled state to a maximally entangled state. Because a single cavity is used, only resonant interaction is employed, and none of identical qutrit-cavity coupling constant, measurement, and auxiliary qutrit is needed, this proposal is easy to implement in experiments. The proposal is quite general and can be applied to prepare a two-qutrit partially or maximally entangled state with two natural or artificial atoms of a ladder-type level structure, coupled to an optical or microwave cavity.
Exploiting Repulsive and Attractive Optical Forces in Advanced Nanophotonic Systems
2015-10-26
in the same device. Such all-optical interaction is achieved without involving any optoelectronic interaction or nonlinear optical effect and thus...other cavity and tilt the see-saw, causing detuning of both cavities but in opposite directions. Furthermore, the see- saw oscillation can “shuttle
NASA Technical Reports Server (NTRS)
Tratt, David M.; Mansour, Kamjou; Menzies, Robert T.; Qiu, Yueming; Forouhar, Siamak; Maker, Paul D.; Muller, Richard E.
2001-01-01
The NASA Earth Science Enterprise Advanced Technology Initiatives Program is supporting a program for the development of semiconductor laser reference oscillators for application to coherent optical remote sensing from Earth orbit. Local oscillators provide the frequency reference required for active spaceborne optical remote sensing concepts that involve heterodyne (coherent) detection. Two recent examples of such schemes are Doppler wind lidar and tropospheric carbon dioxide measurement by laser absorption spectrometry, both of which are being proposed at a wavelength of 2.05 microns. Frequency-agile local oscillator technology is important to such applications because of the need to compensate for large platform-induced Doppler components that would otherwise interfere with data interpretation. Development of frequency-agile local oscillator approaches has heretofore utilized the same laser material as the transmitter laser (Tm,Ho:YLF in the case of the 2.05-micron wavelength mentioned above). However, a semiconductor laser-based frequency-agile local oscillator offers considerable scope for reduced mechanical complexity and improved frequency agility over equivalent crystal laser devices, while their potentially faster tuning capability suggest the potential for greater scanning versatility. The program we report on here is specifically tasked with the development of prototype novel architecture semiconductor lasers with the power, tunability, and spectral characteristics required for coherent Doppler lidar. The baseline approach for this work is the distributed feedback (DFB) laser, in which gratings are etched into the semiconductor waveguide structures along the entire length of the laser cavity. However, typical DFB lasers at the wavelength of interest have linewidths that exhibit unacceptable growth when driven at the high currents and powers that are required for the Doppler lidar application. Suppression of this behavior by means of corrugation pitch-modulation (using a detuned central section to prevent intensity peaking in the center of the cavity) is currently under investigation to achieve the required performance goals.
Shankar, Raji; Bulu, Irfan; Leijssen, Rick; Lončar, Marko
2011-11-21
We report the observation of optical bistability in Si-based photonic crystal cavities operating around 4.5 µm. Time domain measurements indicate that the source of this optical bistability is thermal, with a time constant on the order of 5 µs. Quality (Q) factor improvement is shown by the use of surface treatments (wet processes and annealing), resulting in a significant increase in Q-factor, which in our best devices is on the order of ~45,000 at 4.48 µm. After annealing in a N(2) environment, optical bistability is no longer seen in our cavities. © 2011 Optical Society of America
Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer
NASA Astrophysics Data System (ADS)
Washenfelder, R. A.; Langford, A. O.; Fuchs, H.; Brown, S. S.
2008-08-01
We describe an instrument for simultaneous measurements of glyoxal (CHOCHO) and nitrogen dioxide (NO2) using cavity enhanced absorption spectroscopy with a broadband light source. The output of a Xenon arc lamp is coupled into a 1 m optical cavity, and the spectrum of light exiting the cavity is recorded by a grating spectrometer with a charge-coupled device (CCD) array detector. The mirror reflectivity and effective path lengths are determined from the known Rayleigh scattering of He and dry zero air (N2+O2). Least-squares fitting, using published reference spectra, allow the simultaneous retrieval of CHOCHO, NO2, O4, and H2O in the 441 to 469 nm spectral range. For a 1-min sampling time, the minimum detectable absorption is 4×10-10 cm-1, and the precision (±1σ) on signal for measurements of CHOCHO and NO2 is 29 pptv and 20 pptv, respectively. We directly compare the incoherent broadband cavity enhanced absorption spectrometer to 404 and 532 nm cavity ringdown instruments for CHOCHO and NO2 detection, and find linear agreement over a wide range of concentrations. The instrument has been tested in the laboratory with both synthetic and real air samples, and the demonstrated sensitivity and specificity suggest a strong potential for field measurements of both CHOCHO and NO2.
NASA Astrophysics Data System (ADS)
Dupraz, K.; Cassou, K.; Martens, A.; Zomer, F.
2015-10-01
The ABCD matrix for parabolic reflectors is derived for any incident angles. It is used in numerical studies of four-mirror cavities composed of two flat and two parabolic mirrors. Constraints related to laser beam injection efficiency, optical stability, cavity-mode, beam-waist size and high stacking power are satisfied. A dedicated alignment procedure leading to stigmatic cavity-modes is employed to overcome issues related to the optical alignment of parabolic reflectors.
Excess Noise Depletion of a Bose-Einstein Condensate in an Optical Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szirmai, G.; Nagy, D.; Domokos, P.
2009-02-27
Quantum fluctuations of a cavity field coupled into the motion of ultracold bosons can be strongly amplified by a mechanism analogous to the Petermann excess noise factor in lasers with unstable cavities. For a Bose-Einstein condensate in a stable optical resonator, the excess noise effect amounts to a significant depletion on long time scales.
Observation of polariton resonances with five-level M-type atoms in an optical cavity
NASA Astrophysics Data System (ADS)
Liu, Yutong; Lin, Gongwei; Ying, Kang; Liang, Lin; Niu, Yueping; Gong, Shangqing
2017-11-01
We study the polariton resonances with the five-level M-type atoms inside an optical cavity through the observation of the cavity transmission spectrum. The ultranarrow peaks associated with the dark-state polaritons in the system can be achieved by adjusting three coupling fields. Simple theory analysis and numerical simulations are also presented.
Swann, William C; Baumann, Esther; Giorgetta, Fabrizio R; Newbury, Nathan R
2011-11-21
Low phase-noise microwave generation has previously been demonstrated using self-referenced frequency combs to divide down a low noise optical reference. We demonstrate an approach based on a fs Er-fiber laser that avoids the complexity of self-referenced stabilization of the offset frequency. Instead, the repetition rate of the femtosecond Er-fiber laser is phase locked to two cavity-stabilized cw fiber lasers that span 3.74 THz by use of an intracavity electro-optic modulator with over 2 MHz feedback bandwidth. The fs fiber laser effectively divides the 3.74 THz difference signal to produce microwave signals at harmonics of the repetition rate. Through comparison of two identical dividers, we measure a residual phase noise on a 1.5 GHz carrier of -120 dBc/Hz at 1 Hz offset. © 2011 Optical Society of America
Optical response of two coupled optomechanical systems in the presence of nonlinear mediums
NASA Astrophysics Data System (ADS)
Asghari Nejad, A.; Askari, H. R.; Baghshahi, H. R.
2018-01-01
In this paper, we investigate response of a hybrid optomechanical system in different situations. This system is composed of two coupled optomechanical cavities, which one of them is filled with an optical parametric amplifier (OPA) and the other one encompasses a nonlinear Kerr medium. The Hamiltonian of the system is written in a rotating frame. The dynamics of the system is obtained by the quantum Langevin equations of motion in a steady state regime. The results show that the presence of OPA and the Kerr medium in the system can considerably change the behavior of both cavities. For this reason, we show that by choosing different values for the optical parameters of the system, one can switches the behaviors of the cavities between mono-, bi- and tristability. Also, we show that by changing the detunings of the cavities, one can obtain uncommon responses from the system. Furthermore, we show that it is possible to create proper optical multistability regions for both cavities.
NASA Astrophysics Data System (ADS)
Si, Liu-Gang; Guo, Ling-Xia; Xiong, Hao; Wu, Ying
2018-02-01
We investigate the high-order-sideband generation (HSG) in a hybrid cavity electro-photomechanical system in which an optical cavity is driven by two optical fields (a monochromatic pump field and a nanosecond Gaussian probe pulse with huge numbers of wave cycles), and at the same time a microwave cavity is driven by a monochromatic ac voltage bias. We show that even if the input powers of two driven optical fields are comparatively low the HSG spectra can be induced and enhanced, and the sideband plateau is extended remarkably with the power of the ac voltage bias increasing. It is also shown that the driven ac voltage bias has profound effects on the carrier-envelope-phase-dependent effects of the HSG in the hybrid cavity electro-photomechanical system. Our research may provide an effective way to control the HSG of optical fields by using microwave fields in cavity optomechanics systems.
Balram, Krishna C.; Davanço, Marcelo I.; Song, Jin Dong; Srinivasan, Kartik
2016-01-01
Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency (RF) field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic crystal waveguides, or optically through the strong photoelastic effect. Along with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical, and mechanical domains. PMID:27446234
NASA Astrophysics Data System (ADS)
Magne, Sylvian; de Carlan, Loïc; Bordy, Jean-Marc; Isambert, Aurélie; Bridier, André; Ferdinand, Pierre
2011-04-01
A multichannel OSL fiber optic dosimeter based on optically stimulated luminescence (OSL) of alumina is proposed for online in vivo dosimetry (IVD) in radiation therapy (RT). Two types of dosimetric-grade Al2O3:C crystals are compared and show different behavior according to manufacturing process. Metrological validations have been performed with a Saturne 43 LINAC in reference conditions at CEA LIST LNHB (French Ionizing Radiation Reference Laboratory). The dose response of OSL integrals under photon beam irradiation (6, 12, and 20 MV) show sublinearity behavior modeled by second-order equations and exhibit a small energy dependence (between 0.7% and 1.4%), explained by a modified intermediate cavity model adapted to a LINAC photon spectrum. Preclinical tests at Institut Gustave Roussy (IGR) prove that a proper design for a PMMA build-up cap leads to a low dependence vs photon beam orientation (± 1.5% and ± 0.9%) and vs field size in view of surface measurements.
NASA Astrophysics Data System (ADS)
Diao, Liyong
This thesis deals with design, fabrication and modeling of bistable and multi-stable switching dynamics and second-harmonic generation in two groups of thin film coupled cavity photonic crystal structures. The first component studies optical bistability and multistability in such structures. Optical bistability and multistability are modelled by a nonlinear transfer matrix method. The second component is focused on the modelling and experimental measurement of second-harmonic generation in such structures. It is found that coupled cavity structures can reduce the threshold and index change for bistable operation, but single cavity structures can do the same. However, there is a clear advantage in using coupled cavity structures for multistability in that the threshold for multistability can be reduced. Second-harmonic generation is enhanced by field localization due to the resonant effect at the fundamental wavelength in single and coupled cavity structures by simulated and measured results. The work in this thesis makes three significant contributions. First, in the successful fabrication of thin film coupled cavity structures, the simulated linear transmissions of such structures match those of the fabricated structures almost exactly. Second, the newly defined figure of merit at the maximum transmission point on the bistable curve can be used to compare the material damage tolerance to any other Kerr effect nonlinear gate. Third, the simulated second-harmonic generation agrees excellently with experimental results. More generally optical thin film fabrication has commercial applications in many industry sections, such as electronics, opto-electronics, optical coating, solar cell and MEMS.
NASA Astrophysics Data System (ADS)
Chen, Kaixin; Zhang, Hongbo; Zhang, Daming; Yang, Han; Yi, Maobin
2002-09-01
External electro-optic sampling utilizing a poled polymer asymmetry Fabry-Perot cavity as electro-optic probe tip has been demonstrated. Electro-optical polymer spin coated on the high-reflectivity mirror (HRM) was corona poled. Thus, an asymmetric F-P cavity was formed based on the different reflectivity of the polymer and HRM and it converted the phase modulation that originates from electro-optic effect of the poled polymer to amplitude modulation, so only one laser beam is needed in this system. The principle of the sampling was analyzed by multiple reflection and index ellipsoid methods. A 1.2 GHz microwave signal propagating on coplanar waveguide transmission line was sampled, and the voltage sensitivity about 0.5 mV/ Hz was obtained.
Refractive-index-sensing fiber comb using intracavity multi-mode interference fiber sensor
NASA Astrophysics Data System (ADS)
Oe, Ryo; Minamikawa, Takeo; Taue, Shuji; Fukano, Hideki; Nakajima, Yoshiaki; Minoshima, Kaoru; Yasui, Takeshi
2018-02-01
Refractive index measurement is important for evaluation of liquid materials, optical components, and bio sensing. One promising approach for such measurement is use of optical fiber sensors such as surface plasmonic resonance or multi-mode interference (MMI), which measure the change of optical spectrum resulting from the refractive index change. However, the precision of refractive index measurement is limited by the performance of optical spectrum analyzer. If such the refractive index measurement can be performed in radio frequency (RF) region in place of optical region, the measurement precision will be further improved by the frequency-standard-based RF measurement. To this end, we focus on the disturbance-to-RF conversion in a fiber optical frequency comb (OFC) cavity. Since frequency spacing frep of OFC depends on an optical cavity length nL, frep sensitively reflects the external disturbance interacted with nL. Although we previously demonstrated the precise strain measurement based on the frep measurement, the measurable physical quantity is limited to strain or temperature, which directly interacts with the fiber cavity itself. If a functional fiber sensor can be installed into the fiber OFC cavity, the measurable physical quantity will be largely expanded. In this paper, we introduce a MMI fiber sensor into a ring-type fiber OFC cavity for refractive index measurement. We confirmed the refractive-index-dependent frep shift.
Thermal design and test results for SUNLITE ultra-stable reference cavity
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.
1991-01-01
SUNLITE (Stanford University-NASA Laser In-Space Technology Experiment) is a space-based experiment which uses a reference cavity to provide a stable frequency reference for a terahertz laser oscillator. Thermal stability of the cavity is a key factor in attaining a stable narrow-linewidth laser beam. The mount which is used to support and align the cavity will provide thermal isolation from the environment. The baseline requirement for thermal stability of the cavity is 0.025 C/min, but the design is directed toward achieving stability well beyond this requirement to improve the science data gained. A prototype of the cavity mount was fabricated and tested to characterize the thermal performance. The thermal vacuum test involved stable high-resolution temperature measurements and stable baseplate temperature control over long durations. Based on test data, the cavity mount design satisfies the severe requirement for the cavity thermal stability.
Hohimer, J.P.; Craft, D.C.
1994-09-20
Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity is disclosed. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction. 21 figs.
Small-volume cavity cell using hollow optical fiber for Raman scattering-based gas detection
NASA Astrophysics Data System (ADS)
Okita, Y.; Katagiri, T.; Matsuura, Y.
2011-03-01
The highly sensitive Raman cell based on the hollow optical fiber that is suitable for the real-time breath analysis is reported. Hollow optical fiber with inner coating of silver is used as a gas cell and a Stokes light collector. A very small cell whose volume is only 0.4 ml or less enables fast response and real-time measurement of trace gases. To increase the sensitivity the cell is arranged in a cavity which includes of a long-pass filter and a high reflective mirror. The sensitivity of the cavity cell is more than two times higher than that of the cell without cavity.
Laser Pulse-Stretching Using Multiple Optical Ring-Cavities
NASA Technical Reports Server (NTRS)
Kojima, Jun; Nguyen, Quang-Viet; Lee, Chi-Ming (Technical Monitor)
2002-01-01
We describe a simple and passive nanosecond-long (ns-long) laser 'pulse-stretcher' using multiple optical ring-cavities. We present a model of the pulse-stretching process for an arbitrary number of optical ring-cavities. Using the model, we optimize the design of a pulse-stretcher for use in a spontaneous Raman scattering excitation system that avoids laser-induced plasma spark problems. From the optimized design, we then experimentally demonstrate and verify the model with a 3-cavity pulse-stretcher system that converts a 1000 mJ, 8.4 ns-long input laser pulse into an approximately 75 ns-long (FWHM) output laser pulse with a peak power reduction of 0.10X, and an 83% efficiency.
Power enhancement of burst-mode UV pulses using a doubly-resonant optical cavity
Rahkman, Abdurahim; Notcutt, Mark; Liu, Yun
2015-11-24
We report a doubly-resonant enhancement cavity (DREC) that can realize a simultaneous enhancement of two incoming laser beams at different wavelengths and different temporal structures. The double-resonance condition is theoretically analyzed and different DREC locking methods are experimentally investigated. Simultaneous locking of a Fabry-Perot cavity to both an infrared (IR, 1064 nm) and its frequency tripled ultraviolet (UV, 355 nm) pulses has been demonstrated by controlling the frequency difference between the two beams with a fiber optic frequency shifter. The DREC technique opens a new paradigm in the applications of optical cavities to power enhancement of burst-mode lasers with arbitrarymore » macropulse width and repetition rate.« less
NASA Astrophysics Data System (ADS)
Machiya, H.; Uda, T.; Ishii, A.; Kato, Y. K.
2018-01-01
We demonstrate control over optical coupling between air-suspended carbon nanotubes and air-mode nanobeam cavities by spectral tuning. Taking advantage of the large dielectric screening effects caused by adsorbed molecules, laser heating is used to blueshift the nanotube photoluminescence. A significant increase in the cavity peak is observed when the nanotube emission is brought into resonance, and the spontaneous emission enhancement is estimated from the photoluminescence spectra. We find that the enhancement shows good correlation with the spectral overlap of the nanotube emission and the cavity peak. Our technique offers a convenient method for controlling the optical coupling of air-suspended nanotubes to photonic structures.
Near field optical probe for critical dimension measurements
Stallard, B.R.; Kaushik, S.
1999-05-18
A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below is disclosed. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations. 8 figs.
Double-cavity radiometer for high-flux density solar radiation measurements.
Parretta, A; Antonini, A; Armani, M; Nenna, G; Flaminio, G; Pellegrino, M
2007-04-20
A radiometric method has been developed, suitable for both total power and flux density profile measurement of concentrated solar radiation. The high-flux density radiation is collected by a first optical cavity, integrated, and driven to a second optical cavity, where, attenuated, it is measured by a conventional radiometer operating under a stationary irradiation regime. The attenuation factor is regulated by properly selecting the aperture areas in the two cavities. The radiometer has been calibrated by a pulsed solar simulator at concentration levels of hundreds of suns. An optical model and a ray-tracing study have also been developed and validated, by which the potentialities of the radiometer have been largely explored.
NASA Astrophysics Data System (ADS)
Li, Guolong; Xiao, Xiao; Li, Yong; Wang, Xiaoguang
2018-02-01
We propose a multimode optomechanical system to realize tunable optical nonreciprocity that has the prospect of making an optical diode for information technology. The proposed model consists of two subsystems, each of which contains two optical cavities, injected with a classical field and a quantum signal via a 50:50 beam splitter, and a mechanical oscillator, coupled to both cavities via optomechanical coupling. Meanwhile two cavities and an oscillator in a subsystem are respectively coupled to their corresponding cavities and an oscillator in the other subsystem. Our scheme yields nonreciprocal effects at different frequencies with opposite directions, but each effective linear optomechanical coupling can be controlled by an independent classical one-frequency pump. With this setup one is able to apply quantum states with large fluctuations, which extends the scope of applicable quantum states, and exploit the independence of paths. Moreover, the optimal frequencies for nonreciprocal effects can be controlled by adjusting the relevant parameters. We also exhibit the path switching of two directions, from a mechanical input to two optical output channels, via tuning the signal frequency. In experiment, the considered scheme can be tuned to reach small damping rates of the oscillators relative to those of the cavities, which is more practical and requires less power than in previous schemes.
Spectral and Radiometric Calibration Using Tunable Lasers
NASA Technical Reports Server (NTRS)
McCorkel, Joel (Inventor)
2017-01-01
A tunable laser system includes a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, and a controller operable to simultaneously control parameters of at least the tunable laser, the first optical parametric oscillator, and the adjustable laser cavity to produce a range of wavelengths emitted from the tunable laser system. A method of operating a tunable laser system includes using a controller to simultaneously control parameters of a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, and a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, to produce a range of wavelengths emitted from the tunable laser system.
Nanoscale Biosensor Based on Silicon Photonic Cavity for Home Healthcare Diagnostic Application
NASA Astrophysics Data System (ADS)
Ebrahimy, Mehdi N.; Moghaddam, Aydin B.; Andalib, Alireza; Naziri, Mohammad; Ronagh, Nazli
2015-09-01
In this paper, a new ultra-compact optical biosensor based on photonic crystal (phc) resonant cavity is proposed. This sensor has ability to work in chemical optical processes for the determination and analysis of liquid material. Here, we used an optical filter based on two-dimensional phc resonant cavity on a silicon layer and an active area is created in center of cavity. According to results, with increasing the refractive index of cavity, resonant wavelengths shift so that this phenomenon provides the ability to measure the properties of materials. This novel designed biosensor has more advantage to operate in the biochemical process for example sensing protein and DNA molecule refractive index. This nanoscale biosensor has quality factor higher than 1.5 × 104 and it is suitable to be used in the home healthcare diagnostic applications.
Mass sensor based on split-nanobeam optomechanical oscillator
NASA Astrophysics Data System (ADS)
Zhang, Yeping; Ai, Jie; Xiang, Yanjun; He, Qinghua; Li, Tao; Ma, Jingfang
2016-03-01
Mass sensing based on monitoring the frequency shifts induced by added mass in oscillators is a well-known and widely used technique. The optomechanical crystal cavity has strong interaction between optical mode and mechanical mode. Radiation pressure driven optomechanical crystal cavity are excellent candidates for mass detection due to their simplicity, sensitivity and all optical operation. In an optomechanical crystal cavity, a high quality factor optical mode simultaneously serves as an efficient actuator and a sensitive probe for precise monitoring the mechanical frequency change of the cavity structure. Here, a split-nanobeam optomechanical crystal cavity is proposed, the sensing resolution as small as 0.33ag (1ag=10-21kg) and the frequency shift is more than 30MHz. This is important and promising for achieve ultimate-precision mass sensing including proteins and other molecules.
Wavelength-controlled external-cavity laser with a silicon photonic crystal resonant reflector
NASA Astrophysics Data System (ADS)
Gonzalez-Fernandez, A. A.; Liles, Alexandros A.; Persheyev, Saydulla; Debnath, Kapil; O'Faolain, Liam
2016-03-01
We report the experimental demonstration of an alternative design of external-cavity hybrid lasers consisting of a III-V Semiconductor Optical Amplifier with fiber reflector and a Photonic Crystal (PhC) based resonant reflector on SOI. The Silicon reflector comprises a polymer (SU8) bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and sidemode suppression ratio of more than 25 dB.
Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond
Zhang, Jingyuan Linda; Sun, Shuo; Burek, Michael J.; ...
2018-01-29
Quantum emitters are an integral component for a broad range of quantum technologies, including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum optics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single-photon generation and photon-mediated entanglement generation. Herein, we demonstrate strong enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond embedded within a monolithic optical cavity, reaching a regime in which the excited-state lifetime is dominated by spontaneous emission into themore » cavity mode. We observe 10-fold lifetime reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited-state energy decay occurring through spontaneous emission into the cavity mode. Here, we also demonstrate the largest coupling strength ( g/2π = 4.9 ± 0.3 GHz) and cooperativity ( C = 1.4) to date for color-center-based cavity quantum electrodynamics systems, bringing the system closer to the strong coupling regime.« less
Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jingyuan Linda; Sun, Shuo; Burek, Michael J.
Quantum emitters are an integral component for a broad range of quantum technologies, including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum optics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single-photon generation and photon-mediated entanglement generation. Herein, we demonstrate strong enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond embedded within a monolithic optical cavity, reaching a regime in which the excited-state lifetime is dominated by spontaneous emission into themore » cavity mode. We observe 10-fold lifetime reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited-state energy decay occurring through spontaneous emission into the cavity mode. Here, we also demonstrate the largest coupling strength ( g/2π = 4.9 ± 0.3 GHz) and cooperativity ( C = 1.4) to date for color-center-based cavity quantum electrodynamics systems, bringing the system closer to the strong coupling regime.« less
NASA Astrophysics Data System (ADS)
Flores, Raquel; Janeiro, Ricardo; Dahlem, Marcus; Viegas, Jaime
2015-03-01
We report an optical fiber chemical sensor based on a focused ion beam processed optical fiber. The demonstrated sensor is based on a cavity formed onto a standard 1550 nm single-mode fiber by either chemical etching, focused ion beam milling (FIB) or femtosecond laser ablation, on which side channels are drilled by either ion beam milling or femtosecond laser irradiation. The encapsulation of the cavity is achieved by optimized fusion splicing onto a standard single or multimode fiber. The empty cavity can be used as semi-curved Fabry-Pérot resonator for gas or liquid sensing. Increased reflectivity of the formed cavity mirrors can be achieved with atomic layer deposition (ALD) of alternating metal oxides. For chemical selective optical sensors, we demonstrate the same FIB-formed cavity concept, but filled with different materials, such as polydimethylsiloxane (PDMS), poly(methyl methacrylate) (PMMA) which show selective swelling when immersed in different solvents. Finally, a reducing agent sensor based on a FIB formed cavity partially sealed by fusion splicing and coated with a thin ZnO layer by ALD is presented and the results discussed. Sensor interrogation is achieved with spectral or multi-channel intensity measurements.
Compact optical switch based on 2D photonic crystal and magneto-optical cavity.
Dmitriev, Victor; Kawakatsu, Marcelo N; Portela, Gianni
2013-04-01
A compact optical switch based on a 2D photonic crystal (PhC) and a magneto-optical cavity is suggested and analyzed. The cavity is coupled to two parallel and misaligned PC waveguides and operates with dipole mode. When the cavity is nonmagnetized, the dipole mode excited by a signal in the input waveguide has a node in the output waveguide. Therefore, the input signal is reflected from the cavity. This corresponds to the state off of the switch. Normal to the plane of the PhC magnetization by a dc magnetic field produces a rotation of the dipole pattern in the cavity providing equal amplitudes of the electromagnetic fields in the input and the output waveguides. This corresponds to the state on with high transmission of the input signal. Numerical calculations show that at the 1.55 μm wavelength the device has the insertion loss -0.42 dB in the on state, the isolation -19 dB in the off state and the switch off and on ratio P(on)/P(off) about 72. The frequency band at the level of -15 dB of the resonance curve in off state is about 160 GHz.
Effective optical path length for tandem diffuse cubic cavities as gas absorption cell
NASA Astrophysics Data System (ADS)
Yu, J.; Gao, Q.; Zhang, Y. G.; Zhang, Z. G.; Wu, S. H.
2014-12-01
Tandem diffuse cubic cavities designed by connecting two single diffuse cubic-shaped cavities, A and B, with an aperture (port fraction fap) in the middle of the connecting baffle was developed as a gas absorption cell. The effective optical path length (EOPL) was evaluated by comparing the oxygen absorption signal in the cavity and in air based on tunable diode laser absorption spectroscopy (TDLAS). Experimental results manifested an enhancement of EOPL for the tandem diffuse cubic cavities as the decrease of fap and can be expressed as the sum of EOPL of two single cubic cavities at fap < 0.01, which coincided well with theoretical analysis. The simulating EOPL was smaller than experimental results at fap > 0.01, which indicated that back scattering light from cavity B to cavity A cannot be ignored at this condition.
Resonant-cavity apparatus for cytometry or particle analysis
Gourley, Paul L.
1998-01-01
A resonant-cavity apparatus for cytometry or particle analysis. The apparatus comprises a resonant optical cavity having an analysis region within the cavity for containing one or more biological cells or dielectric particles to be analyzed. In the presence of a cell or particle, a light beam in the form of spontaneous emission or lasing is generated within the resonant optical cavity and is encoded with information about the cell or particle. An analysis means including a spectrometer and/or a pulse-height analyzer is provided within the apparatus for recovery of the information from the light beam to determine a size, shape, identification or other characteristics about the cells or particles being analyzed. The recovered information can be grouped in a multi-dimensional coordinate space for identification of particular types of cells or particles. In some embodiments of the apparatus, the resonant optical cavity can be formed, at least in part, from a vertical-cavity surface-emitting laser. The apparatus and method are particularly suited to the analysis of biological cells, including blood cells, and can further include processing means for manipulating, sorting, or eradicating cells after analysis thereof.
Shooting and bouncing rays - Calculating the RCS of an arbitrarily shaped cavity
NASA Technical Reports Server (NTRS)
Ling, Hao; Chou, Ri-Chee; Lee, Shung-Wu
1989-01-01
A ray-shooting approach is presented for calculating the interior radar cross section (RCS) from a partially open cavity. In the problem considered, a dense grid of rays is launched into the cavity through the opening. The rays bounce from the cavity walls based on the laws of geometrical optics and eventually exit the cavity via the aperture. The ray-bouncing method is based on tracking a large number of rays launched into the cavity through the opening and determining the geometrical optics field associated with each ray by taking into consideration (1) the geometrical divergence factor, (2) polarization, and (3) material loading of the cavity walls. A physical optics scheme is then applied to compute the backscattered field from the exit rays. This method is so simple in concept that there is virtually no restriction on the shape or material loading of the cavity. Numerical results obtained by this method are compared with those for the modal analysis for a circular cylinder terminated by a PEC plate. RCS results for an S-bend circular cylinder generated on the Cray X-MP supercomputer show significant RCS reduction. Some of the limitations and possible extensions of this technique are discussed.
VCSELs for optical communication at Fuji Xerox
NASA Astrophysics Data System (ADS)
Kondo, Takashi; Hayakawa, Junichiro; Jogan, Naoki; Murakami, Akemi; Sakurai, Jun; Gu, Xiaodong; Koyama, Fumio
2017-02-01
We introduce the characteristics of vertical-cavity surface-emitting lasers (VCSELs) for use in optical communications. In the field of optical interconnections and networks, 850 nm VCSELs are key optical transmitters due to their high-speed modulation and low power consumption. One promising candidate for achieving high-speed modulations exceeding 50 Gbps is the transverse-coupled-cavity (TCC) VCSEL. In this talk, we demonstrate the characteristics of 850 nm transverse-coupled-cavity VCSELs, which helped us achieve a high 3dB modulation bandwidth (30 GHz) at 0 °C and realize eye-opening at the large-signal modulation rate of 48 Gbps. The VCSEL's epilayer structure was grown by MOCVD. The active region consists of three strained InGaAs QWs surrounded by AlGaAs barriers. The n-type and p-type DBRs are composed of AlGaAs/AlGaAs, respectively. A line-shaped H+ ion was implanted at the center of the bowtie-shaped post, dividing it into two cavities. The threshold current of the TCC VCSEL with an oxide aperture of 3.6 μm is 0.33 mA. Only the left-side cavity is pumped, while the right cavity is unpumped. The effect of modulation bandwidth enhancement was observed over a wide temperature range of 120K thanks to an optical feedback in the coupled cavities. These results show the possibility of achieving high-speed VCSELs without any temperature or bias control. We also demonstrate an ultra-compact photodetector-integrated VCSEL with two laterally-coupled cavities. An output power and a photocurrent exhibit similar tendencies under a wide range of temperature changes. This device could be also used for monitoring output power without a conventional photodetector mounted separately.
Statistical parity-time-symmetric lasing in an optical fibre network.
Jahromi, Ali K; Hassan, Absar U; Christodoulides, Demetrios N; Abouraddy, Ayman F
2017-11-07
Parity-time (PT)-symmetry in optics is a condition whereby the real and imaginary parts of the refractive index across a photonic structure are deliberately balanced. This balance can lead to interesting optical phenomena, such as unidirectional invisibility, loss-induced lasing, single-mode lasing from multimode resonators, and non-reciprocal effects in conjunction with nonlinearities. Because PT-symmetry has been thought of as fragile, experimental realisations to date have been usually restricted to on-chip micro-devices. Here, we demonstrate that certain features of PT-symmetry are sufficiently robust to survive the statistical fluctuations associated with a macroscopic optical cavity. We examine the lasing dynamics in optical fibre-based coupled cavities more than a kilometre in length with balanced gain and loss. Although fluctuations can detune the cavity by more than the free spectral range, the behaviour of the lasing threshold and the laser power is that expected from a PT-stable system. Furthermore, we observe a statistical symmetry breaking upon varying the cavity loss.
Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity.
Sumikura, Hisashi; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya
2014-05-23
Dopants in silicon (Si) have attracted attention in the fields of photonics and quantum optics. However, the optical characteristics are limited by the small spontaneous emission rate of dopants in Si. This study demonstrates a large increase in the spontaneous emission rate of copper isoelectronic centres (Cu-IECs) doped into Si photonic crystal nanocavities. In a cavity with a quality factor (Q) of ~16,000, the photoluminescence (PL) lifetime of the Cu-IECs is 1.1 ns, which is 30 times shorter than the lifetime of a sample without a cavity. The PL decay rate is increased in proportion to Q/Vc (Vc is the cavity mode volume), which indicates the Purcell effect. This is the first demonstration of a cavity-enhanced ultrafast spontaneous emission from dopants in Si, and it may lead to the development of fast and efficient Si light emitters and Si quantum optical devices based on dopants with efficient optical access.
Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity
SUMIKURA, HISASHI; KURAMOCHI, EIICHI; TANIYAMA, HIDEAKI; NOTOMI, MASAYA
2014-01-01
Dopants in silicon (Si) have attracted attention in the fields of photonics and quantum optics. However, the optical characteristics are limited by the small spontaneous emission rate of dopants in Si. This study demonstrates a large increase in the spontaneous emission rate of copper isoelectronic centres (Cu-IECs) doped into Si photonic crystal nanocavities. In a cavity with a quality factor (Q) of ~16,000, the photoluminescence (PL) lifetime of the Cu-IECs is 1.1 ns, which is 30 times shorter than the lifetime of a sample without a cavity. The PL decay rate is increased in proportion to Q/Vc (Vc is the cavity mode volume), which indicates the Purcell effect. This is the first demonstration of a cavity-enhanced ultrafast spontaneous emission from dopants in Si, and it may lead to the development of fast and efficient Si light emitters and Si quantum optical devices based on dopants with efficient optical access. PMID:24853336
NASA Astrophysics Data System (ADS)
Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon
2017-01-01
We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.
Automated optical inspection and image analysis of superconducting radio-frequency cavities
NASA Astrophysics Data System (ADS)
Wenskat, M.
2017-05-01
The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. For an investigation of this inner surface of more than 100 cavities within the cavity fabrication for the European XFEL and the ILC HiGrade Research Project, an optical inspection robot OBACHT was constructed. To analyze up to 2325 images per cavity, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. The accuracy of this code is up to 97 % and the positive predictive value (PPV) 99 % within the resolution of 15.63 μm. The optical obtained surface roughness is in agreement with standard profilometric methods. The image analysis algorithm identified and quantified vendor specific fabrication properties as the electron beam welding speed and the different surface roughness due to the different chemical treatments. In addition, a correlation of ρ = -0.93 with a significance of 6 σ between an obtained surface variable and the maximal accelerating field was found.
NASA Astrophysics Data System (ADS)
Feng, Jin-Shan; Tan, Lei; Gu, Huai-Qiang; Liu, Wu-Ming
2017-12-01
We theoretically analyze the ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime by introducing a coupled high-quality-factor cavity. On account of the quantum interference stemming from the presence of the coupled cavity, the spectral density of the optical force exerting on the nanosphere gets changed and then the symmetry between the heating and the cooling processes is broken. Through adjusting the detuning of a strong-dissipative cavity mode, one obtains an enhanced net cooling rate for the nanosphere. It is illustrated that the ground-state cooling can be realized in the unresolved sideband regime even if the effective optomechanical coupling is weaker than the frequency of the nanosphere, which can be understood by the picture that the effective interplay of the nanosphere and the auxiliary cavity mode brings the system back to an effective resolved regime. Besides, the coupled cavity refines the dynamical stability of the system.
Optical control of resonant light transmission for an atom-cavity system
NASA Astrophysics Data System (ADS)
Sharma, Arijit; Ray, Tridib; Sawant, Rahul V.; Sheikholeslami, G.; Rangwala, S. A.; Budker, D.
2015-04-01
We demonstrate the manipulation of transmitted light through an optical Fabry-Pérot cavity, built around a spectroscopy cell containing enriched rubidium vapor. Light resonant with the 87RbD2 (F =2 ,F =1 ) ↔F' manifold is controlled by the transverse intersection of the cavity mode by another resonant light beam. The cavity transmission can be suppressed or enhanced depending on the coupling of atomic states due to the intersecting beams. The extreme manifestation of the cavity-mode control is the precipitous destruction (negative logic switching) or buildup (positive logic switching) of the transmitted light intensity on intersection of the transverse control beam with the cavity mode. Both the steady-state and transient responses are experimentally investigated. The mechanism behind the change in cavity transmission is discussed in brief.
A novel nano-sensor based on optomechanical crystal cavity
NASA Astrophysics Data System (ADS)
Zhang, Yeping; Ai, Jie; Ma, Jingfang
2017-10-01
Optical devices based on new sensing principle are widely used in biochemical and medical area. Nowadays, mass sensing based on monitoring the frequency shifts induced by added mass in oscillators is a well-known and widely used technique. It is interesting to note that for nanoscience and nanotechnology applications there is a strong demand for very sensitive mass sensors, being the target a sensor for single molecule detection. The desired mass resolution for very few or even single molecule detection, has to be below the femtogram range. Considering the strong interaction between high co-localized optical mode and mechanical mode in optomechanical crystal (OMC) cavities, we investigate OMC splitnanobeam cavities in silicon operating near at the 1550nm to achieve high optomechanical coupling rate and ultra-small motion mass. Theoretical investigations of the optical and mechanical characteristic for the proposed cavity are carried out. By adjusting the structural parameters, the cavity's effective motion mass below 10fg and mechanical frequency exceed 10GHz. The transmission spectrum of the cavity is sensitive to the sample which located on the center of the cavity. We conducted the fabrication and the characterization of this cavity sensor on the silicon-on-insulator (SOI) chip. By using vertical coupling between the tapered fiber and the SOI chip, we measured the transmission spectrum of the cavity, and verify this cavity is promising for ultimate precision mass sensing and detection.
Analysis Of FEL Optical Systems With Grazing Incidence Mirrors
NASA Astrophysics Data System (ADS)
Knapp, C. E.; Viswanathan, V. K.; Bender, S. C.; Appert, Q. D.; Lawrence, G.; Barnard, C.
1986-11-01
The use of grazing incidence optics in resonators alleviates the problem of damage to the optical elements and permits higher powers in cavities of reasonable dimensions for a free electron laser (FEL). The design and manufacture of a grazing incidence beam expander for the Los Alamos FEL mock up has been completed. In this paper, we describe the analysis of a bare cavity, grazing incidence optical beam expander for an FEL system. Since the existing geometrical and physical optics codes were inadequate for such an analysis, the GLAD code was modified to include global coordinates, exact conic representation, raytracing, and exact aberration features to determine the alignment sensitivities of laser resonators. A resonator cavity has been manufactured and experimentally setup in the Optical Evaluation Laboratory at Los Alamos. Calculated performance is compared with the laboratory measurements obtained so far.
OSCAR a Matlab based optical FFT code
NASA Astrophysics Data System (ADS)
Degallaix, Jérôme
2010-05-01
Optical simulation softwares are essential tools for designing and commissioning laser interferometers. This article aims to introduce OSCAR, a Matlab based FFT code, to the experimentalist community. OSCAR (Optical Simulation Containing Ansys Results) is used to simulate the steady state electric fields in optical cavities with realistic mirrors. The main advantage of OSCAR over other similar packages is the simplicity of its code requiring only a short time to master. As a result, even for a beginner, it is relatively easy to modify OSCAR to suit other specific purposes. OSCAR includes an extensive manual and numerous detailed examples such as simulating thermal aberration, calculating cavity eigen modes and diffraction loss, simulating flat beam cavities and three mirror ring cavities. An example is also provided about how to run OSCAR on the GPU of modern graphic cards instead of the CPU, making the simulation up to 20 times faster.
Intrauterine device for laser light diffusion and method of using the same
Tadir, Yona; Berns, Michael W.; Svaasand, Lars O.; Tromberg, Bruce J.
1995-01-01
An improved device for delivery of photoenergy from a light source, such as a laser, into a uterine cavity for photodynamic therapy is comprised of a plurality of optic fibers, which are bundled together and inserted into the uterine cavity by means of a uterine cannula. The cannula is positioned within the uterine cavity at a preferred location and then withdrawn thereby allowing the plurality of optic fibers to splay or diverge one from the other within the cavity. Different portions of the distal tip of the optic fiber is provided with a light diffusing tip, the remainder being provided with a nondiffusing tip portion. The fiber optic shape, as well as the segment which is permitted to actively diffuse light through the tip, is selected in order to provide a more uniform exposure intensity of the photo energy or at least sufficient radiation directed to each segment of the uterine walls.
Intrauterine device for laser light diffusion and method of using the same
Tadir, Y.; Berns, M.W.; Svaasand, L.O.; Tromberg, B.J.
1995-12-26
An improved device for delivery of photoenergy from a light source, such as a laser, into a uterine cavity for photodynamic therapy is comprised of a plurality of optic fibers, which are bundled together and inserted into the uterine cavity by means of a uterine cannula. The cannula is positioned within the uterine cavity at a preferred location and then withdrawn thereby allowing the plurality of optic fibers to splay or diverge one from the other within the cavity. Different portions of the distal tip of the optic fiber is provided with a light diffusing tip, the remainder being provided with a nondiffusing tip portion. The fiber optic shape, as well as the segment which is permitted to actively diffuse light through the tip, is selected in order to provide a more uniform exposure intensity of the photo energy or at least sufficient radiation directed to each segment of the uterine walls. 5 figs.
Scattering-free optical levitation of a cavity mirror.
Guccione, G; Hosseini, M; Adlong, S; Johnsson, M T; Hope, J; Buchler, B C; Lam, P K
2013-11-01
We demonstrate the feasibility of levitating a small mirror using only radiation pressure. In our scheme, the mirror is supported by a tripod where each leg of the tripod is a Fabry-Perot cavity. The macroscopic state of the mirror is coherently coupled to the supporting cavity modes allowing coherent interrogation and manipulation of the mirror motion. The proposed scheme is an extreme example of the optical spring, where a mechanical oscillator is isolated from the environment and its mechanical frequency and macroscopic state can be manipulated solely through optical fields. We model the stability of the system and find a three-dimensional lattice of trapping points where cavity resonances allow for buildup of optical field sufficient to support the weight of the mirror. Our scheme offers a unique platform for studying quantum and classical optomechanics and can potentially be used for precision gravitational field sensing and quantum state generation.
Spin–cavity interactions between a quantum dot molecule and a photonic crystal cavity
Vora, Patrick M.; Bracker, Allan S.; Carter, Samuel G.; Sweeney, Timothy M.; Kim, Mijin; Kim, Chul Soo; Yang, Lily; Brereton, Peter G.; Economou, Sophia E.; Gammon, Daniel
2015-01-01
The integration of InAs/GaAs quantum dots into nanophotonic cavities has led to impressive demonstrations of cavity quantum electrodynamics. However, these demonstrations are primarily based on two-level excitonic systems. Efforts to couple long-lived quantum dot electron spin states with a cavity are only now succeeding. Here we report a two-spin–cavity system, achieved by embedding an InAs quantum dot molecule within a photonic crystal cavity. With this system we obtain a spin singlet–triplet Λ-system where the ground-state spin splitting exceeds the cavity linewidth by an order of magnitude. This allows us to observe cavity-stimulated Raman emission that is highly spin-selective. Moreover, we demonstrate the first cases of cavity-enhanced optical nonlinearities in a solid-state Λ-system. This provides an all-optical, local method to control the spin exchange splitting. Incorporation of a highly engineerable quantum dot molecule into the photonic crystal architecture advances prospects for a quantum network. PMID:26184654
Zujewski, Mateusz; Thienpont, Hugo; Panajotov, Krassimir
2012-11-19
We present a novel design of an electro-optically modulated coupled-cavity vertical-cavity surface-emitting laser (CC-VCSEL) with traveling wave electrodes of the modulator cavity, which allows to overcome the RC time constant of a traditional lumped electrode structures. The CC-VCSEL optical design is based on longitudinal mode switching which has recently experimentally demonstrated a record modulation speed. We carry out segmented transmission line electrical design of the modulator cavity in order to compensate for the low impedance of the modulator section and to match the 50 Ω electrical network. We have optimized two types of highly efficient modulator structures reaching -3 dB electrical cut-off frequency of f(cut-off) = 330 GHz with maximum reflection of -22 dB in the range from f(LF) = 100 MHz to f(cut-off) and 77 - 89% modulation efficiency.
Wang, Qiong; Ouyang, Zhengbiao; Lin, Mi; Liu, Qiang
2015-11-20
A new type of compact three-port circulator with flat-top transmission band (FTTB) in a two-dimensional photonic crystal has been proposed, through coupling the cascaded magneto-optical resonance cavities to waveguides. The coupled-mode theory is applied to investigate the coupled structure and analyze the condition to achieve FTTB. According to the theoretical analysis, the structure is further optimized to ensure that the condition for achieving FTTB can be satisfied for both cavity-cavity coupling and cavity-waveguide coupling. Through the finite-element method, it is demonstrated that the design can realize a high quality, nonreciprocal circulating propagation of waves with an insertion loss of 0.023 dB and an isolation of 23.3 dB, covering a wide range of operation frequency. Such a wideband circulator has potential applications in large-scale integrated photonic circuits for guiding or isolating harmful optical reflections from load elements.
High-Q silica zipper cavity for optical radiation pressure driven MOMS switch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tetsumoto, Tomohiro; Tanabe, Takasumi, E-mail: takasumi@elec.keio.ac.jp
2014-07-15
We design a silica zipper cavity that has high optical and mechanical Q (quality factor) values and demonstrate numerically the feasibility of a radiation pressure driven micro opto-mechanical system (MOMS) directional switch. The silica zipper cavity has an optical Q of 4.0 × 10{sup 4} and an effective mode volume V{sub mode} of 0.67λ{sup 3} when the gap between two cavities is 34 nm. The mechanical Q (Q{sub m}) is determined by thermo-elastic damping and is 2.0 × 10{sup 6} in a vacuum at room temperature. The opto-mechanical coupling rate g{sub OM} is as high as 100 GHz/nm, which allowsmore » us to move the directional cavity-waveguide system and switch 1550-nm light with 770-nm light by controlling the radiation pressure.« less
Design of a high-power Nd:YAG Q-switched laser cavity
NASA Astrophysics Data System (ADS)
Singh, Ikbal; Kumar, Avinash; Nijhawan, O. P.
1995-06-01
An electro-optically Q-switched Nd:YAG laser resonator that uses two end prisms placed orthogonally perpendicular to each other has been designed. This configuration improves the stability of the resonator and does not alter the characteristics of the electro-optical Q switch. The outcoupling ratio of the cavity is optimized by a change in the azimuthal angle of a phase-matched Porro prism placed at one end of the cavity. The prism placed at the other end of the cavity is designed so that it introduces a phase change of Pi , regardless of its orientation and index of refraction, resulting in a more efficient and stable cavity.
Knabe, Kevin; Williams, Paul A; Giorgetta, Fabrizio R; Armacost, Chris M; Crivello, Sam; Radunsky, Michael B; Newbury, Nathan R
2012-05-21
The instantaneous optical frequency of an external-cavity quantum cascade laser (QCL) is characterized by comparison to a near-infrared frequency comb. Fluctuations in the instantaneous optical frequency are analyzed to determine the frequency-noise power spectral density for the external-cavity QCL both during fixed-wavelength and swept-wavelength operation. The noise performance of a near-infrared external-cavity diode laser is measured for comparison. In addition to providing basic frequency metrology of external-cavity QCLs, this comb-calibrated swept QCL system can be applied to rapid, precise broadband spectroscopy in the mid-infrared spectral region.
Adams, Bernhard W.; Kim, Kwang -Je
2016-08-09
Here, x-ray free-electron-laser oscillators with nuclear-resonant cavity stabilization (NRS-XFELO) hold the promise for providing x-rays with unprecedented coherence properties that will enable interesting quantum-optical and metrological applications. Among these are atom optics with x-ray-based optical elements providing high momentum transfer, or a frequency standard far surpassing the best state-of the-art atomic clocks.
Coupling Photonics and Coherent Spintronics for Low-Loss Flexible Optical Logic
2015-12-02
AFRL-AFOSR-VA-TR-2016-0055 Coupling photonics and coherent spintronics for low-loss flexible optical logic Jesse Berezovsky CASE WESTERN RESERVE UNIV...2012 - 14/06/2015 4. TITLE AND SUBTITLE Coupling photonics and coherent spintronics for low-loss flexible optical logic 5a. CONTRACT NUMBER 5b...into devices, ranging from macroscopic optical cavities, to arrays of microlens cavities, to quantum dot-impregnated integrated polymer waveguides
Evanescent-wave and ambient chiral sensing by signal-reversing cavity ringdown polarimetry.
Sofikitis, Dimitris; Bougas, Lykourgos; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Loppinet, Benoit; Rakitzis, T Peter
2014-10-02
Detecting and quantifying chirality is important in fields ranging from analytical and biological chemistry to pharmacology and fundamental physics: it can aid drug design and synthesis, contribute to protein structure determination, and help detect parity violation of the weak force. Recent developments employ microwaves, femtosecond pulses, superchiral light or photoionization to determine chirality, yet the most widely used methods remain the traditional methods of measuring circular dichroism and optical rotation. However, these signals are typically very weak against larger time-dependent backgrounds. Cavity-enhanced optical methods can be used to amplify weak signals by passing them repeatedly through an optical cavity, and two-mirror cavities achieving up to 10(5) cavity passes have enabled absorption and birefringence measurements with record sensitivities. But chiral signals cancel when passing back and forth through a cavity, while the ubiquitous spurious linear birefringence background is enhanced. Even when intracavity optics overcome these problems, absolute chirality measurements remain difficult and sometimes impossible. Here we use a pulsed-laser bowtie cavity ringdown polarimeter with counter-propagating beams to enhance chiral signals by a factor equal to the number of cavity passes (typically >10(3)); to suppress the effects of linear birefringence by means of a large induced intracavity Faraday rotation; and to effect rapid signal reversals by reversing the Faraday rotation and subtracting signals from the counter-propagating beams. These features allow absolute chiral signal measurements in environments where background subtraction is not feasible: we determine optical rotation from α-pinene vapour in open air, and from maltodextrin and fructose solutions in the evanescent wave produced by total internal reflection at a prism surface. The limits of the present polarimeter, when using a continuous-wave laser locked to a stable, high-finesse cavity, should match the sensitivity of linear birefringence measurements (3 × 10(-13) radians), which is several orders of magnitude more sensitive than current chiral detection limits and is expected to transform chiral sensing in many fields.
NASA Astrophysics Data System (ADS)
Liu, Xuesong; Shi, Zhaohui; Huang, Yutao; Fan, Zhongwei; Yu, Jin; Zhang, Jing; Hou, Liqun
2015-02-01
In this paper, a very high repetition-rate, short-pulse, electro-optical cavity-dumped Nd: YVO4 laser is experimentally and theoretically investigated. The laser performance is optimized from two aspects. Firstly, the laser resonator is designed for a good thermal stability under large pump power fluctuation through optics methods. Secondly, dynamics simulation as well as experiments verifies that cavity dumping at very high repetition rate has better stability than medium/high repetition rate. At 30 W, 880 nm pump power, up to 500 kHz, constant 5 ns, stable 1064 nm fundamental-mode laser pulses can be obtained with 10 W average output power.
Electro-optical resonance modulation of vertical-cavity surface-emitting lasers.
Germann, Tim David; Hofmann, Werner; Nadtochiy, Alexey M; Schulze, Jan-Hindrik; Mutig, Alex; Strittmatter, André; Bimberg, Dieter
2012-02-27
Optical and electrical investigations of vertical-cavity surface-emitting lasers (VCSEL) with a monolithically integrated electro-optical modulator (EOM) allow for a detailed physical understanding of this complex compound cavity laser system. The EOM VCSEL light output is investigated to identify optimal working points. An electro-optic resonance feature triggered by the quantum confined Stark effect is used to modulate individual VCSEL modes by more than 20 dB with an extremely small EOM voltage change of less than 100 mV. Spectral mode analysis reveals modulation of higher order modes and very low wavelength chirp of < 0.5 nm. Dynamic experiments and simulation predict an intrinsic bandwidth of the EOM VCSEL exceeding 50 GHz.
Whispering gallery mode resonators for frequency metrology applications
NASA Astrophysics Data System (ADS)
Baumgartel, Lukas
This dissertation describes an investigation into the use of whispering gallery mode (WGM) resonators for applications towards frequency reference and metrology. Laser stabilization and the measurement of optical frequencies have enabled myriad technologies of both academic and commercial interest. A technology which seems to span both motivations is optical atomic clocks. These devices are virtually unimaginable without the ultra stable lasers plus frequency measurement and down-conversion afforded by Fabry Perot (FP) cavities and model-locked laser combs, respectively. However, WGM resonators can potentially perform both of these tasks while having the distinct advantages of compactness and simplicity. This work represents progress towards understanding and mitigating the performance limitations of WGM cavities for such applications. A system for laser frequency stabilization to a the cavity via the Pound-Drever-Hall (PDH) method is described. While the laser lock itself is found to perform at the level of several parts in 1015, a variety of fundamental and technical mechanisms destabilize the WGM frequency itself. Owing to the relatively large thermal expansion coefficients in optical crystals, environmental temperature drifts set the stability limit at time scales greater than the thermal relaxation time of the crystal. Uncompensated, these drifts pull WGM frequencies about 3 orders of magnitude more than they would in an FP cavity. Thus, two temperature compensation schemes are developed. An active scheme measures and stabilizes the mode volume temperature to the level of several nK, reducing the effective temperature coefficient of the resonator to 1.7x10-7 K-1; simulations suggest that the value could eventually be as low as 3.5x10-8 K-1, on par with the aforementioned FP cavities. A second, passive scheme is also described, which employs a heterogeneous resonator structure that capitalizes on the thermo-mechanical properties of one material and the optical properties of another. Calculations show that a temperature coefficient zero-crossing can be achieved, and encouraging initial experimental results are presented. At shorter time scales, fundamental thermal and technical noise sources define stability limits. The relative strengths of thermorefractive, thermoelastic, and Brownian motion are outlined, along with the level at which they can expect to be observed and some approaches to minimize them. It is shown that variations in the coupling gap pull the frequency at about 10 Hz/nm. A method for calculating frequency noise density caused by laser amplitude fluctuations is presented. Frequency comb generation in WGM resonators is also discussed. It is shown that cavity dispersion can be engineered through geometric parameters, yielding a microcomb with initial sidebands at 1 FSR from the pump. Such combs are thought to be coherent. Also described is a microcomb generated by a PDH locked pump laser. The resulting microwave beatnote can be changed from noisy to quiet by changing the offset of this lock. An investigation of optical to microwave down-conversion is conducted.
Adiabatic transfer of energy fluctuations between membranes inside an optical cavity
NASA Astrophysics Data System (ADS)
Garg, Devender; Chauhan, Anil K.; Biswas, Asoka
2017-08-01
A scheme is presented for the adiabatic transfer of average fluctuations in the phonon number between two membranes in an optical cavity. We show that by driving the cavity modes with external time-delayed pulses, one can obtain an effect analogous to stimulated Raman adiabatic passage in the atomic systems. The adiabatic transfer of fluctuations from one membrane to the other is attained through a "dark" mode, which is robust against decay of the mediating cavity mode. The results are supported with analytical and numerical calculations with experimentally feasible parameters.
Hong-Ou-Mandel interferometer with cavities: Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olindo, C.; Sagioro, M. A.; Monken, C. H.
2006-04-15
We study the number of coincidences in a Hong-Ou-Mandel interferometer exit whose arms have been supplemented with the addition of one or two optical cavities. The fourth-order correlation function at the beam splitter exit is calculated. In the regime where the cavities lengths are larger than the one-photon coherence length, photon coalescence and anticoalescence interference is observed. Feynman's path diagrams for the indistinguishable processes that lead to quantum interference are presented. The construction of an optical XOR gate is discussed as an application for the Hong-Ou-Mandel interferometer with two cavities.
Thermo-optical dynamics in an optically pumped Photonic Crystal nano-cavity.
Brunstein, M; Braive, R; Hostein, R; Beveratos, A; Rober-Philip, I; Sagnes, I; Karle, T J; Yacomotti, A M; Levenson, J A; Moreau, V; Tessier, G; De Wilde, Y
2009-09-14
Linear and non-linear thermo-optical dynamical regimes were investigated in a photonic crystal cavity. First, we have measured the thermal relaxation time in an InP-based nano-cavity with quantum dots in the presence of optical pumping. The experimental method presented here allows one to obtain the dynamics of temperature in a nanocavity based on reflectivity measurements of a cw probe beam coupled through an adiabatically tapered fiber. Characteristic times of 1.0+/-0.2 micros and 0.9+/-0.2 micros for the heating and the cooling processes were obtained. Finally, thermal dynamics were also investigated in a thermo-optical bistable regime. Switch-on/off times of 2 micros and 4 micros respectively were measured, which could be explained in terms of a simple non-linear dynamical representation.
An auto-locked diode laser system for precision metrology
NASA Astrophysics Data System (ADS)
Beica, H. C.; Carew, A.; Vorozcovs, A.; Dowling, P.; Pouliot, A.; Barron, B.; Kumarakrishnan, A.
2017-05-01
We present a unique external cavity diode laser system that can be auto-locked with reference to atomic and molecular spectra. The vacuum-sealed laser head design uses an interchangeable base-plate comprised of a laser diode and optical elements that can be selected for desired wavelength ranges. The feedback light to the laser diode is provided by a narrow-band interference filter, which can be tuned from outside the laser cavity to fineadjust the output wavelength in vacuum. To stabilize the laser frequency, the digital laser controller relies either on a pattern-matching algorithm stored in memory, or on first or third derivative feedback. We have used the laser systems to perform spectroscopic studies in rubidium at 780 nm, and in iodine at 633 nm. The linewidth of the 780-nm laser system was measured to be ˜500 kHz, and we present Allan deviation measurements of the beat note and the lock stability. Furthermore, we show that the laser system can be the basis for a new class of lidar transmitters in which a temperature-stabilized fiber-Bragg grating is used to generate frequency references for on-line points of the transmitter. We show that the fiber-Bragg grating spectra can be calibrated with reference to atomic transitions.
Frequency stabilization of multiple lasers on a single medium-finesse cavity
NASA Astrophysics Data System (ADS)
Han, Chengyin; Zhou, Min; Gao, Qi; Li, Shangyan; Zhang, Shuang; Qiao, Hao; Ai, Di; Zhang, Mengya; Lou, Ge; Luo, Limeng; Xu, Xinye
2018-04-01
We present a simple, compact, and robust frequency stabilization system of three lasers operating at 649, 759, and 770 nm, respectively. These lasers are applied in experiments on ytterbium optical lattice clocks, for which each laser needs to have a linewidth of a few hundred or tens of kilohertz while maintaining a favorable long-term stability. Here, a single medium-finesse cavity is adopted as the frequency reference and the standard Pound-Drever-Hall technique is used to stabilize the laser frequencies. Based on the independent phase modulation, multiple-laser locking is demonstrated without mutual intervention. The locked lasers are measured to have a linewidth of 100 kHz and the residual frequency drift is about 78.5 Hz s-1. This kind of setup provides a construction that is much simpler than that in previous work.
NASA Astrophysics Data System (ADS)
Lee, June Kyoo; Choi, Ju Chan; Jang, Won Ick; Kim, Hak-Rin; Kong, Seong Ho
2012-06-01
We demonstrate the design of an electrowetting lens employing a high-aspect-ratio hemispherical lens cavity and its micro-electro-mechanical-system (MEMS) fabrication process in this study. Our preliminary simulation results showed that the physical and electrical durability of the lens can be improved by the mitigation of stresses on the insulator at the hemispherical cavity. High-aspect-ratio hemispherical cavities with various diameters and very smooth sidewall surfaces were uniformly fabricated on a silicon wafer by a sophisticated isotropic wet etching technique. Moreover, we experimentally investigated the optical properties of the MEMS-based electrowetting lens with the proposed cavity. Two immiscible liquids in the proposed lens cavity were electrostatically controlled with negligible optical distortion and low focal-length hysteresis due to the fully axis-symmetrical geometry and smooth sidewall of the cavity.
NASA Astrophysics Data System (ADS)
Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.
2016-01-01
Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non-absolute detection methods. In addition to trace gases, this approach will be appropriate for measurements of aerosol extinction in ambient air, and this spectral region is important for characterizing the strong ultraviolet absorption by brown carbon aerosol.
Hollow waveguide cavity ringdown spectroscopy
NASA Technical Reports Server (NTRS)
Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)
2012-01-01
Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.
Trapping of thulium atoms in a cavity-enhanced optical lattice near a magic wavelength of 814.5 nm
NASA Astrophysics Data System (ADS)
Kalganova, E. S.; Golovizin, A. A.; Shevnin, D. O.; Tregubov, D. O.; Khabarova, K. Yu; Sorokin, V. N.; Kolachevsky, N. N.
2018-05-01
A cavity-enhanced optical lattice at a wavelength of 814.5 nm for thulium atoms is designed and its characteristics are investigated. The parametric resonances at the vibrational frequencies of the trap are measured. The enhancement cavity will be applied to search for the magic wavelength of the clock transition at 1.14 μm in thulium atoms.
NASA Astrophysics Data System (ADS)
Domingues, M. Fátima; Rodriguez, Camilo A.; Martins, Joana; Tavares, Cátia; Marques, Carlos; Alberto, Nélia; André, Paulo; Antunes, Paulo
2018-05-01
In this work, a cost-effective procedure to manufacture optical fiber pressure sensors is presented. This has a high relevance for integration in robotic exoskeletons or for gait plantar pressure monitoring within the physical rehabilitation scenarios, among other applications. The sensing elements are based on Fabry-Perot interferometric (FPI) micro-cavities, created from the recycling of optical fibers previously destroyed by the catastrophic fuse effect. To produce the pressure sensors, the fiber containing the FPI micro-cavities was embedded in an epoxy resin cylinder used as pressure transducer and responsible to transfer the pressure applied on its surface to the optical fiber containing the FPI micro-cavity. Before the embedding process, some FPI sensors were also characterized to strain variations. After that, the effect of the encapsulation of the FPI structure into the resin was assessed, from which a slight decrease on the FPI interferogram fringes visibility was verified, indicating a small increase in the micro-cavity length. Up on the sensors characterization, a linear dependence of the wavelength shift with the induced pressure was obtained, which leads to a maximum sensitivity of 59.39 ± 1.7 pm/kPa. Moreover, direct dependence of the pressure sensitivity with the micro-cavity volume and length was found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madani, A.; Schmidt, O. G.; Material Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainer Str. 70, 09107 Chemnitz
2016-04-25
Spatially and temporally overlapping double potential wells are realized in a hybrid optical microtube cavity due to the coexistence of an aggregate of luminescent quantum dots embedded in the tube wall and the cone-shaped tube's geometry. The double potential wells produce two independent sets of optical modes with different sets of mode numbers, indicating phase velocity separation for the modes overlapping at the same frequency. The overlapping mode position can be tuned by modifying the tube cavity, where these mode sets shift with different magnitudes, allowing for a vernier-scale-like tuning effect.
Magneto-optical rotation in cavity QED with Zeeman coherence
NASA Astrophysics Data System (ADS)
Sun, Hui; Jia, Xiaohua; Fan, Shuangli; Zhang, Hongjun; Guo, Hong
2018-06-01
We investigate theoretically the magneto-optical rotation in cavity QED system with atomic Zeeman coherence, which is established via coherent population trapping. Owing to Zeeman coherence, the ultranarrow transmission spectrum less than 1 MHz with gain can be achieved with a flat-top Faraday rotation angle. By controlling the parameters appropriately, the input probe components within the flat-top regime rotate with almost the same angle, and transmit through the cavity perpendicularly to the other components outside the flat-top regime. The concepts discussed here provide an important tool for perfect ultranarrow Faraday optical filter and quantum information processing.
All-dielectric resonant cavity-enabled metals with broadband optical transparency
NASA Astrophysics Data System (ADS)
Liu, Zhengqi; Zhang, Houjiao; Liu, Xiaoshan; Pan, Pingping; Liu, Yi; Tang, Li; Liu, Guiqiang
2017-06-01
Metal films with broadband optical transparency are desirable in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and infrared detectors. As bare metal is opaque to light, this issue of transparency attracts great scientific interest. In this work, we proposed and demonstrated a feasible and universal approach for achieving broadband optical transparent (BOT) metals by utilizing all-dielectric resonant cavities. Resonant dielectrics provide optical cavity modes and couple strongly with the surface plasmons of the metal film, and therefore produce a broadband near-unity optical transparent window. The relative enhancement factor (EF) of light transmission exceeds 3400% in comparison with that of pure metal film. Moreover, the transparent metal motif can be realized by other common metals including gold (Au), silver (Ag) and copper (Cu). These optical features together with the fully retained electric and mechanical properties of a natural metal suggest that it will have wide applications in optoelectronic devices.
NASA Astrophysics Data System (ADS)
Adib, George A.; Sabry, Yasser M.; Khalil, Diaa
2016-03-01
The characterization of long fiber cavities is essential for many systems to predict the system practical performance. The conventional techniques for optical cavity characterization are not suitable for long fiber cavities due to the cavities' small free spectral ranges and due to the length variations caused by the environmental effects. In this work, we present a novel technique to characterize long fiber cavities using multi-longitudinal mode fiber laser source and RF spectrum analyzer. The fiber laser source is formed in a ring configuration, where the fiber laser cavity length is chosen to be 15 km to ensure that the free spectral range is much smaller than the free spectral range of the characterized passive fiber cavities. The method has been applied experimentally to characterize ring cavities with lengths of 6.2 m and 2.4 km. The results are compared to theoretical predictions with very good agreement.
Fundamental limitations of cavity-assisted atom interferometry
NASA Astrophysics Data System (ADS)
Dovale-Álvarez, M.; Brown, D. D.; Jones, A. W.; Mow-Lowry, C. M.; Miao, H.; Freise, A.
2017-11-01
Atom interferometers employing optical cavities to enhance the beam splitter pulses promise significant advances in science and technology, notably for future gravitational wave detectors. Long cavities, on the scale of hundreds of meters, have been proposed in experiments aiming to observe gravitational waves with frequencies below 1 Hz, where laser interferometers, such as LIGO, have poor sensitivity. Alternatively, short cavities have also been proposed for enhancing the sensitivity of more portable atom interferometers. We explore the fundamental limitations of two-mirror cavities for atomic beam splitting, and establish upper bounds on the temperature of the atomic ensemble as a function of cavity length and three design parameters: the cavity g factor, the bandwidth, and the optical suppression factor of the first and second order spatial modes. A lower bound to the cavity bandwidth is found which avoids elongation of the interaction time and maximizes power enhancement. An upper limit to cavity length is found for symmetric two-mirror cavities, restricting the practicality of long baseline detectors. For shorter cavities, an upper limit on the beam size was derived from the geometrical stability of the cavity. These findings aim to aid the design of current and future cavity-assisted atom interferometers.
NASA Astrophysics Data System (ADS)
Bersanetti, Diego
2018-02-01
The recent upgrades of the Advanced Virgo experiment required an update of the locking strategy for the long, high-finesse arm cavities of the detector. In this work we will present a full description of the requirements and the constraints of such system in relation to the lock acquisition of the cavities; the focus of this work is the strategy used to accomplish this goal, which is the adaptation and use of the guided lock technique, which dynamically slows down a suspended optical cavity in order to make the lock possible. This work describes the first application of such locking technique to 3km long optical cavities, which are affected by stringent constraints as the low force available on the actuators, the high finesse and the maximum sustainable speed of the cavities, which is quite low due to a number of technical reasons that will be explained. A full set of optical time domain simulations has been developed in order to study the feasibility and the performance of this algorithm and will be throughout discussed, while finally the application on the real Advanced Virgo's arm cavities will be reported.
Resonant-cavity apparatus for cytometry or particle analysis
Gourley, P.L.
1998-08-11
A resonant-cavity apparatus for cytometry or particle analysis is described. The apparatus comprises a resonant optical cavity having an analysis region within the cavity for containing one or more biological cells or dielectric particles to be analyzed. In the presence of a cell or particle, a light beam in the form of spontaneous emission or lasing is generated within the resonant optical cavity and is encoded with information about the cell or particle. An analysis means including a spectrometer and/or a pulse-height analyzer is provided within the apparatus for recovery of the information from the light beam to determine a size, shape, identification or other characteristics about the cells or particles being analyzed. The recovered information can be grouped in a multi-dimensional coordinate space for identification of particular types of cells or particles. In some embodiments of the apparatus, the resonant optical cavity can be formed, at least in part, from a vertical-cavity surface-emitting laser. The apparatus and method are particularly suited to the analysis of biological cells, including blood cells, and can further include processing means for manipulating, sorting, or eradicating cells after analysis. 35 figs.
Communication: Saturated CO2 absorption near 1.6 μm for kilohertz-accuracy transition frequencies
NASA Astrophysics Data System (ADS)
Burkart, Johannes; Sala, Tommaso; Romanini, Daniele; Marangoni, Marco; Campargue, Alain; Kassi, Samir
2015-05-01
Doppler-free saturated-absorption Lamb dips were measured on weak rovibrational lines of 12C16O2 between 6189 and 6215 cm-1 at sub-Pa pressures using optical feedback frequency stabilized cavity ring-down spectroscopy. By referencing the laser source to an optical frequency comb, transition frequencies for ten lines of the 30013←00001 band P-branch and two lines of the 31113←01101 hot band R-branch were determined with an accuracy of a few parts in 1011. Involving rotational quantum numbers up to 42, the data were used for improving the upper level spectroscopic constants. These results provide a highly accurate reference frequency grid over the spectral interval from 1599 to 1616 nm.
An experimental study of pain upon stimulation of the nasal and sinus cavities.
Clerico, Dean M
2014-01-01
To map different areas of pain sensitivity and to determine the existence and/or pattern of referred pain from upon stimulating the sinonasal cavity. Experimental human study. Mechanical and electrical stimulations to various anatomical structures and areas of the nasal and sinus cavities were conducted on nine volunteers. Intensity, location and character of pain were recorded in all subjects. The postero-superior (cephalic) aspect of the nasal cavity, primarily the anterior face of the sphenoid sinus and the superior turbinate, were the most sensitive sites, and the antero-inferior (caudal) region was the least sensitive. Referred pain to the head and face was reported by several subjects. Topographical differences in pain sensitivity exist in the sinonasal cavity. The phenomenon of referred pain from the nasal cavity was demonstrated. Copyright © 2014 Elsevier Inc. All rights reserved.
Suppression of extraneous thermal noise in cavity optomechanics.
Zhao, Yi; Wilson, Dalziel J; Ni, K-K; Kimble, H J
2012-02-13
Extraneous thermal motion can limit displacement sensitivity and radiation pressure effects, such as optical cooling, in a cavity-optomechanical system. Here we present an active noise suppression scheme and its experimental implementation. The main challenge is to selectively sense and suppress extraneous thermal noise without affecting motion of the oscillator. Our solution is to monitor two modes of the optical cavity, each with different sensitivity to the oscillator's motion but similar sensitivity to the extraneous thermal motion. This information is used to imprint "anti-noise" onto the frequency of the incident laser field. In our system, based on a nano-mechanical membrane coupled to a Fabry-Pérot cavity, simulation and experiment demonstrate that extraneous thermal noise can be selectively suppressed and that the associated limit on optical cooling can be reduced.
Extrinsic fiber optic displacement sensors and displacement sensing systems
Murphy, K.A.; Gunther, M.F.; Vengsarkar, A.M.; Claus, R.O.
1994-04-05
An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer. 14 figures.
Extrinsic fiber optic displacement sensors and displacement sensing systems
Murphy, Kent A.; Gunther, Michael F.; Vengsarkar, Ashish M.; Claus, Richard O.
1994-01-01
An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer.
Dielectric resonator: cavity-enhanced optical manipulation in the near field
NASA Astrophysics Data System (ADS)
Reece, Peter J.; Wright, Ewan; Garcés-Chávez, Veneranda; Dholakia, Kishan
2006-08-01
In the following paper we explore the dynamics of single colloidal particles and particle aggregates in a counterpropagating cavity-enhanced evanescent wave optical trap. For this study we make use of Fabry-Perot like cavity modes generated in a prism-coupled resonant dielectric waveguide. The advantage of using this type of optical structure is that there is an enhancement in the electric field of the evanescent at the sample surface that may be used to achieve greater coupling to colloidal particles for the purposes of optical micromanipulation. We demonstrate an order of magnitude increase in the optical forces acting on micrometer sized colloidal particles using cavity enhanced evanescent waves, compared with evanescent wave produced by conventional prism-coupling techniques. The combination of the enhanced optical interaction and the wide area illumination provided by the prism coupler makes it an ideal geometry for studying the collective dynamics of many particles over a large area. We study the different type of ordering observed when particles of different sizes are accumulated at the centre of this novel optical trap. We find that for large particles sizes (greater than 2μm), colloid dynamics are primarily driven by thermodynamics, whilst for smaller particles, in the range of 200-600nm, particles ordering is dictated by optical-matter interactions. We suggest a qualitative model for the observed optically induced ordering occurs and discuss how these results tie in with existing demonstrations of twodimensional optical binding.
Self-cavity lasing in optically pumped single crystals of p-sexiphenyl
NASA Astrophysics Data System (ADS)
Yanagi, Hisao; Tamura, Kenji; Sasaki, Fumio
2016-08-01
Organic single-crystal self-cavities are prepared by solution growth of p-sexiphenyl (p-6P). Based on Fabry-Pérot feedback inside a quasi-lozenge-shaped platelet crystal, edge-emitting laser is obtained under optical pumping. The multimode lasing band appears at the 0-1 or 0-2 vibronic progressions depending on the excitation conditions which affect the self-absorption effect. Cavity-size dependence of amplified spontaneous emission (ASE) is investigated with laser-etched single crystals of p-6P. As the cavity length of square-shaped crystal is reduced from 100 to 10 μm, ASE threshold fluence is decreased probably due to size-dependent light confinement in the crystal cavity.
Cavity cooling a single charged levitated nanosphere.
Millen, J; Fonseca, P Z G; Mavrogordatos, T; Monteiro, T S; Barker, P F
2015-03-27
Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres.
Cavity Cooling a Single Charged Levitated Nanosphere
NASA Astrophysics Data System (ADS)
Millen, J.; Fonseca, P. Z. G.; Mavrogordatos, T.; Monteiro, T. S.; Barker, P. F.
2015-03-01
Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres.
NASA Astrophysics Data System (ADS)
Nozaka, Takahiro; Mukai, Kohki
2016-04-01
A tunable microcavity device composed of optical polymer and Si with a colloidal quantum dot (QD) is proposed as a single-photon source for planar optical circuit. Cavity size is controlled by electrostatic micromachine behavior with the air bridge structure to tune timing of photon injection into optical waveguide from QD. Three-dimensional positioning of a QD in the cavity structure is available using a nanohole on Si processed by scanning probe microscope lithography. We fabricated the prototype microcavity with PbS-QD-mixed polymenthyl methacrylate on a SOI (semiconductor-on-insulator) substrate to show the tunability of cavity size as the shift of emission peak wavelength of QD ensemble.
NASA Astrophysics Data System (ADS)
Belkin, M. E.
2018-01-01
The results of an experimental study for a long wavelength vertical cavity surface-emitting laser of a wafer-fused construction as an effective resonant cavity enhanced photodetector of analog optical signals are described. The device is of interest for a number of promising microwave photonics applications and for creation of a low-cost photoreceiver in a high-speed fiber optics telecommunication system with dense wavelength division multiplexing. The schematic of the testbed, the original technique allowing to calculate the passband of the built-in optical cavity, and the results of measuring dark current, current responsivity, amplitude- and phase-frequency characteristics during the process of photo-detection are demonstrated.
Deng, Tao; Wu, Zheng-Mao; Xie, Yi-Yuan; Wu, Jia-Gui; Tang, Xi; Fan, Li; Panajotov, Krassimir; Xia, Guang-Qiong
2013-06-01
Polarization switching (PS) between two orthogonal linearly polarized fundamental modes is experimentally observed in commercial free-running 1550 nm vertical-cavity surface-emitting lasers (VCSELs) (Raycan). The characteristics of this PS are strongly modified after introducing a polarization-preserved (PP) or polarization-orthogonal (PO) optical feedback. Under the case that the external cavity is approximately 30 cm, the PP optical feedback results in the PS point shifting toward a lower injection current, and the region within which the two polarization modes coexist is enlarged with the increase of the PP feedback strength. Under too-strong PP feedback levels, the PS disappears. The impact of PO optical feedback on VCSEL polarization behavior is quite similar to that of PP optical feedback, but larger feedback strength is needed to obtain similar results.
Ma, Shen; Ye, Han; Yu, Zhong-Yuan; Zhang, Wen; Peng, Yi-Wei; Cheng, Xiang; Liu, Yu-Min
2016-01-11
We propose a new scheme based on quantum dot-bimodal cavity coupling system to realize all-optical switch and logic gates in low-photon-number regime. Suppression of mode transmission due to the destructive interference effect is theoretically demonstrated by driving the cavity with two orthogonally polarized pulsed lasers at certain pulse delay. The transmitted mode can be selected by designing laser pulse sequence. The optical switch with high on-off ratio emerges when considering one driving laser as the control. Moreover, the AND/OR logic gates based on photon polarization are achieved by cascading the coupling system. Both proposed optical switch and logic gates work well in ultra-low energy magnitude. Our work may enable various applications of all-optical computing and quantum information processing.
Ma, Shen; Ye, Han; Yu, Zhong-Yuan; Zhang, Wen; Peng, Yi-Wei; Cheng, Xiang; Liu, Yu-Min
2016-01-01
We propose a new scheme based on quantum dot-bimodal cavity coupling system to realize all-optical switch and logic gates in low-photon-number regime. Suppression of mode transmission due to the destructive interference effect is theoretically demonstrated by driving the cavity with two orthogonally polarized pulsed lasers at certain pulse delay. The transmitted mode can be selected by designing laser pulse sequence. The optical switch with high on-off ratio emerges when considering one driving laser as the control. Moreover, the AND/OR logic gates based on photon polarization are achieved by cascading the coupling system. Both proposed optical switch and logic gates work well in ultra-low energy magnitude. Our work may enable various applications of all-optical computing and quantum information processing. PMID:26750557
Tapered optical fiber tip probes based on focused ion beam-milled Fabry-Perot microcavities
NASA Astrophysics Data System (ADS)
André, Ricardo M.; Warren-Smith, Stephen C.; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M. I.; Latifi, H.; Marques, Manuel B.; Bartelt, Hartmut; Frazão, Orlando
2016-09-01
Focused ion beam technology is combined with dynamic chemical etching to create microcavities in tapered optical fiber tips, resulting in fiber probes for temperature and refractive index sensing. Dynamic chemical etching uses hydrofluoric acid and a syringe pump to etch standard optical fibers into cone structures called tapered fiber tips where the length, shape, and cone angle can be precisely controlled. On these tips, focused ion beam is used to mill several different types of Fabry-Perot microcavities. Two main cavity types are initially compared and then combined to form a third, complex cavity structure. In the first case, a gap is milled on the tapered fiber tip which allows the external medium to penetrate the light guiding region and thus presents sensitivity to external refractive index changes. In the second, two slots that function as mirrors are milled on the tip creating a silica cavity that is only sensitive to temperature changes. Finally, both cavities are combined on a single tapered fiber tip, resulting in a multi-cavity structure capable of discriminating between temperature and refractive index variations. This dual characterization is performed with the aid of a fast Fourier transform method to separate the contributions of each cavity and thus of temperature and refractive index. Ultimately, a tapered optical fiber tip probe with sub-standard dimensions containing a multi-cavity structure is projected, fabricated, characterized and applied as a sensing element for simultaneous temperature and refractive index discrimination.
Optically pumped isotopic ammonia laser system
Buchwald, Melvin I.; Jones, Claude R.; Nelson, Leonard Y.
1982-01-01
An optically pumped isotopic ammonia laser system which is capable of producing a plurality of frequencies in the middle infrared spectral region. Two optical pumping mechanisms are disclosed, i.e., pumping on R(J) and lasing on P(J) in response to enhancement of rotational cascade lasing including stimulated Raman effects, and, pumping on R(J) and lasing on P(J+2). The disclosed apparatus for optical pumping include a hole coupled cavity and a grating coupled cavity.
Tunable graded rod laser assembly
NASA Technical Reports Server (NTRS)
AuYeung, John C. (Inventor)
1985-01-01
A tunable laser assembly including a pair of radially graded indexed optical segments aligned to focus the laser to form an external resonant cavity with an optical axis, the respective optical segments are retativity moveable along the optical axis and provide a variable et aion gap sufficient to permit variable tuning of the laser wavelength without altering the effective length of the resonant cavity. The gap also include a saturable absorbing material providing a passive mode-locking of the laser.
RF kicker cavity to increase control in common transport lines
Douglas, David R.; Ament, Lucas J. P.
2017-04-18
A method of controlling e-beam transport where electron bunches with different characteristics travel through the same beam pipe. An RF kicker cavity is added at the beginning of the common transport pipe or at various locations along the common transport path to achieve independent control of different bunch types. RF energy is applied by the kicker cavity kicks some portion of the electron bunches, separating the bunches in phase space to allow independent control via optics, or separating bunches into different beam pipes. The RF kicker cavity is operated at a specific frequency to enable kicking of different types of bunches in different directions. The phase of the cavity is set such that the selected type of bunch passes through the cavity when the RF field is at a node, leaving that type of bunch unaffected. Beam optics may be added downstream of the kicker cavity to cause a further separation in phase space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durand, Mathieu; Morville, Jerome; Romanini, Daniele
2010-09-15
We report on a promising approach to high-sensitivity anisotropy measurements using a high-finesse cavity locked by optical feedback to a diode laser. We provide a simple and effective way to decouple the weak anisotropy of interest from the inherent mirror's birefringence whose drift may be identified as the key limiting parameter in cavity-based techniques. We demonstrate a shot-noise-limited phase shift resolution previously inaccessible in an optical cavity, readily achieving the state-of-the-art level of 3x10{sup -13} rad.
Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy
NASA Astrophysics Data System (ADS)
Terabayashi, Ryohei; Sonnenschein, Volker; Tomita, Hideki; Hayashi, Noriyoshi; Kato, Shusuke; Jin, Lei; Yamanaka, Masahito; Nishizawa, Norihiko; Sato, Atsushi; Nozawa, Kohei; Hashizume, Kenta; Oh-hara, Toshinari; Iguchi, Tetsuo
2017-11-01
A simple external optical feedback system has been applied to a distributed feedback quantum cascade laser (DFB QCL) for cavity ring-down spectroscopy (CRDS) and a clear effect of feedback was observed. A long external feedback path length of up to 4m can decrease the QCL linewidth to around 50kHz, which is of the order of the transmission linewidth of our high finesse ring-down cavity. The power spectral density of the transmission signal from high finesse cavity reveals that the noise at frequencies above 20kHz is reduced dramatically.
NASA Astrophysics Data System (ADS)
Yang, Weijian; Adair Gerke, Stephen; Wei Ng, Kar; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J.
2015-09-01
Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors.
Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 μm interband cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manfred, K. M.; Ritchie, G. A. D.; Lang, N.
2015-06-01
The development of interband cascade lasers (ICLs) has made the strong C-H transitions in the 3 μm spectral region increasingly accessible. We present the demonstration of a single mode distributed feedback ICL coupled to a V-shaped optical cavity in an optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS) experiment. We achieved a minimum detectable absorption coefficient, α{sub min}, of (7.1±0.2)×10{sup −8} cm{sup −1} for a spectrum of CH{sub 4} at 3.24 μm with a two second acquisition time (100 scans averaged). This corresponds to a detection limit of 3 ppb CH{sub 4} at atmospheric pressure, which is comparable to previously reported OF-CEAS instruments with diodemore » lasers or quantum cascade lasers. The ability to frequency lock an ICL source in the important 3 μm region to an optical cavity holds great promise for future spectroscopic applications.« less
Noise-Immune Cavity-Enhanced Optical Frequency Comb Spectroscopy
NASA Astrophysics Data System (ADS)
Rutkowski, Lucile; Khodabakhsh, Amir; Johanssson, Alexandra C.; Foltynowicz, Aleksandra
2015-06-01
We present noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS), a recently developed technique for sensitive, broadband, and high resolution spectroscopy. In NICE-OFCS an optical frequency comb (OFC) is locked to a high finesse cavity and phase-modulated at a frequency precisely equal to (a multiple of) the cavity free spectral range. Since each comb line and sideband is transmitted through a separate cavity mode in exactly the same way, any residual frequency noise on the OFC relative to the cavity affects each component in an identical manner. The transmitted intensity contains a beat signal at the modulation frequency that is immune to frequency-to-amplitude noise conversion by the cavity, in a way similar to continuous wave noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS). The light transmitted through the cavity is detected with a fast-scanning Fourier-transform spectrometer (FTS) and the NICE-OFCS signal is obtained by fast Fourier transform of the synchronously demodulated interferogram. Our NICE-OFCS system is based on an Er:fiber femtosecond laser locked to a cavity with a finesse of ˜9000 and a fast-scanning FTS equipped with a high-bandwidth commercial detector. We measured NICE-OFCS signals from the 3νb{1}+νb{3} overtone band of CO_2 around 1.57 μm and achieved absorption sensitivity 6.4×10-11cm-1 Hz-1/2 per spectral element, corresponding to a minimum detectable CO_2 concentration of 25 ppb after 330 s integration time. We will describe the principles of the technique and its technical implementation, and discuss the spectral lineshapes of the NICE-OFCS signals. A. Khodabakhsh, C. Abd Alrahman, and A. Foltynowicz, Opt. Lett. 39, 5034-5037 (2014). J. Ye, L. S. Ma, and J. L. Hall, J. Opt. Soc. Am. B 15, 6-15 (1998). A. Khodabakhsh, A. C. Johansson, and A. Foltynowicz, Appl. Phys. B (2015) doi:10.1007/s00340-015-6010-7.
Frequency stability measurement of pulsed superradiance from strontium
NASA Astrophysics Data System (ADS)
Norcia, Matthew; Cline, Julia; Robinson, John; Ye, Jun; Thompson, James
2017-04-01
Superradiant laser light from an ultra-narrow optical transition holds promise as a next-generation of active frequency references. We have recently demonstrated pulsed lasing on the milliHertz linewidth clock transition in strontium. Here, we present the first frequency comparisons between such a superradiant source and a state of the art stable laser system. We characterize the stability of the superradiant system, and demonstrate a reduction in sensitivity to cavity frequency fluctuations of nearly five orders of magnitude compared to a conventional laser. DARPA QUASAR, NIST, NSF PFC.
Multipass laser amplification with near-field far-field optical separation
Hagen, Wilhelm F.
1979-01-01
This invention discloses two classes of optical configurations for high power laser amplification, one allowing near-field and the other allowing far-field optical separation, for the multiple passage of laser pulses through one or more amplifiers over an open optical path. These configurations may reimage the amplifier or any other part of the cavity on itself so as to suppress laser beam intensity ripples that arise from diffraction and/or non-linear effects. The optical cavities combine the features of multiple passes, spatial filtering and optical reimaging and allow sufficient time for laser gain recovery.
An ultra-stable optical frequency reference for space
NASA Astrophysics Data System (ADS)
Schuldt, T.; Döringshoff, K.; Kovalchuk, E.; Pahl, J.; Gohlke, M.; Weise, D.; Johann, U.; Peters, A.; Braxmaier, C.
2017-11-01
We realized ultra-stable optical frequency references on elegant breadboard (EBB) and engineering model (EM) level utilizing Doppler-free spectroscopy of molecular iodine near 532nm. A frequency stability of about 1•10-14 at an integration time of 1 s and below 5•10-15 at integration times between 10 s and 100 s was achieved. These values are comparable to the currently best laboratory setups. Both setups use a baseplate made of glass material where the optical components are joint using a specific assembly-integration technology. Compared to the EBB setup, the EM setup is further developed with respect to compactness and mechanical and thermal stability. The EM setup uses a baseplate made of fused silica with dimensions of 380 x 180 x 40 mm3 and a specifically designed 100 x 100 x 30 mm3 rectangular iodine cell in nine-pass configuration with a specific robust cold finger design. The EM setup was subjected to thermal cycling and vibrational testing. Applications of such an optical frequency reference in space can be found in fundamental physics, geoscience, Earth observation, and navigation & ranging. One example is the proposed mSTAR (mini SpaceTime Asymmetry Research) mission, dedicated to perform a Kennedy-Thorndike experiment on a satellite in a sunsynchronous low-Earth orbit. By comparing an iodine standard to a cavity-based frequency reference and integration over 2 year mission lifetime, the Kennedy-Thorndike coefficient will be determined with up to two orders of magnitude higher accuracy than the current best ground experiment. In a current study, the compatibility of the payload with the SaudiSat-4 host vehicle is investigated.
NASA Astrophysics Data System (ADS)
Pham, Tuan M.; Čížek, Martin; Hucl, Václav; Lazar, Josef; Hrabina, Jan; Řeřucha, Šimon; Lešundák, Adam; Obšil, Petr; Filip, Radim; Slodička, Lukáš; Číp, Ondřej
2016-12-01
We report on the frequency noise investigation of a linewidth-suppressed Extended Cavity Diode Laser (ECDL), working at 729 nm. Since the ECDL is intended as an excitation laser for the forbidden transition in a trapped and laser cooled 40Ca+ ion, an Hz-level linewidth is required. We present the experimental design that comprises a two-stage linewidth narrowing and a facility for frequency and noise analysis. The linewidth is first narrowed with a phase lock loop of the ECDL onto a selected component of an optical frequency comb where the frequency noise was suppressed with a fast electronic servo-loop controller that drives the laser injection current with a high bandwidth. The second stage comprises locking the laser onto a selected mode of a high-finesse passive optical cavity. The frequency analysis used an unbalanced Mach-Zehnder interferometer with a fiber spool inserted in the reference arm in order to give a general insight into the signal properties by mixing two separated beams, one of them delayed by the spool, and processing it with a spectral analyzer. Such a frequency noise analysis reveals what are the most significant noises contributions to the laser linewidth, which is a crucial information in field of ion trapping and cooling. The presented experimental results show the effect of the linewidth narrowing with the first stage, where the linewidth of ECDL was narrowed down to a kHz level.
Optical surface properties and their RF limitations of European XFEL cavities
NASA Astrophysics Data System (ADS)
Wenskat, Marc
2017-10-01
The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. The industrial fabrication of cavities for the European X-ray Free Electron Laser and the International Linear Collider HiGrade Research Project allowed for an investigation of this interplay. For the serial inspection of the inner surface, the optical inspection robot ’optical bench for automated cavity inspection with high resolution on short timescales’ OBACHT was constructed and to analyze the large amount of data, represented in the images of the inner surface, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. This quantitative analysis identified vendor-specific surface properties which allow the performance of quality control and assurance during production. In addition, a strong negative correlation of ρ =-0.93 with a significance of 6 σ of the integrated grain boundary area \\sum {A} versus the maximal achievable accelerating field {{E}}{acc,\\max } has been found.
Loading a single photon into an optical cavity
NASA Astrophysics Data System (ADS)
Du, Shengwang; Liu, Chang; Sun, Yuan; Zhao, Luwei; Zhang, Shanchao; Loy, M. M. T.
2015-05-01
Confining and manipulating single photons inside a reflective optical cavity is an essential task of cavity quantum electrodynamics (CQED) for probing the quantum nature of light quanta. Such systems are also elementary building blocks for many protocols of quantum network, where remote cavity quantum nodes are coupled through flying photons. The connectivity and scalability of such a quantum network strongly depends on the efficiency of loading a single photon into cavity. In this work we demonstrate that a single photon with an optimal temporal waveform can be efficiently loaded into a cavity. Using heralded narrow-band single photons with exponential growth wave packet whose time constant matches the photon lifetime in the cavity, we demonstrate a loading efficiency of more than 87 percent from free space to a single-sided Fabry-Perot cavity. Our result and approach may enable promising applications in realizing large-scale CQED-based quantum networks. The work was supported by the Hong Kong RGC (Project No. 601411).
Zhang, Haijiang; Wen, Pengyue; Esener, Sadik
2007-07-01
We report, for the first time to our knowledge, the operation of a cascadable, low-optical-switching-power(~10 microW) small-area (~100 microm(2)) high-speed (80 ps fall time) all-optical inverter. This inverter employs cross-gain modulation, polarization gain anisotropy, and highly nonlinear gain characteristics of an electrically pumped vertical-cavity semiconductor optical amplifier (VCSOA). The measured transfer characteristics of such an optical inverter resemble those of standard electronic metal-oxide semiconductor field-effect transistor-based inverters exhibiting high noise margin and high extinction ratio (~9.3 dB), making VCSOAs an ideal building block for all-optical logic and memory.
Remnants of semiclassical bistability in the few-photon regime of cavity QED.
Kerckhoff, Joseph; Armen, Michael A; Mabuchi, Hideo
2011-11-21
Broadband homodyne detection of the light transmitted by a Fabry-Perot cavity containing a strongly-coupled (133)Cs atom is used to probe the dynamic optical response in a regime where semiclassical theory predicts bistability but strong quantum corrections should apply. While quantum fluctuations destabilize true equilibrium bistability, our observations confirm the existence of metastable states with finite lifetimes and a hysteretic response is apparent when the optical drive is modulated on comparable timescales. Our experiment elucidates remnant semiclassical behavior in the attojoule (~10 photon) regime of single-atom cavity QED, of potential significance for ultra-low power photonic signal processing. © 2011 Optical Society of America
Cavity enhanced atomic magnetometry
Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer
2015-01-01
Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations. PMID:26481853
High-temperature, high-pressure optical cell
NASA Technical Reports Server (NTRS)
Harris, R. P. (Inventor); Holland, L. R. (Inventor); Smith, R. E. (Inventor)
1986-01-01
The invention is an optical cell for containment of chemicals under conditions of high temperature and high pressure. The cell is formed of a vitreous silica tube, two optical windows comprising a vitreous silica rod inserted into the ends of a tube, and fused into position in the tube ends. Windows are spaced apart to form a cavity enclosed by the tube and the windows. A hole is drilled radially through the tube and into the cavity. Another vitreous silica tube is fused to the silica tube around the hole to form the stem, which is perpendicular to the long axis of the tube. The open end of the stem is used to load chemicals into the cavity. Then the stem may be sealed, and if desired, it may be shortened in order to reduce the volume of the cavity, which extends into the stem.
Integration of photoactive and electroactive components with vertical cavity surface emitting lasers
Bryan, R.P.; Esherick, P.; Jewell, J.L.; Lear, K.L.; Olbright, G.R.
1997-04-29
A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications. 9 figs.
Integration of photoactive and electroactive components with vertical cavity surface emitting lasers
Bryan, Robert P.; Esherick, Peter; Jewell, Jack L.; Lear, Kevin L.; Olbright, Gregory R.
1997-01-01
A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications.
Plant-Mimetic Heat Pipes for Operation with Large Inertial and Gravitation Stresses
2012-08-16
tensiometer based on the integration of the membrane with a MEMS-based pressure sen heat transfer, biomimicry , microfluidics, plant science U U U U...stable at each tension. Inset shows an optical micrograph of 25 cavities; dark cavities are filled and bright cavities are empty (cavitated). (C... Optical micrograph of a silicon membrane that has been anodically etched from the top to form nano- porous silicon and wet etched from the bottom to
Heralded entanglement of two ions in an optical cavity.
Casabone, B; Stute, A; Friebe, K; Brandstätter, B; Schüppert, K; Blatt, R; Northup, T E
2013-09-06
We demonstrate precise control of the coupling of each of two trapped ions to the mode of an optical resonator. When both ions are coupled with near-maximum strength, we generate ion-ion entanglement heralded by the detection of two orthogonally polarized cavity photons. The entanglement fidelity with respect to the Bell state Ψ+ reaches F≥(91.9±2.5)%. This result represents an important step toward distributed quantum computing with cavities linking remote atom-based registers.
Dual-wavelength dual-cavity spectrometer for NO2 detection in the presence of aerosol interference
NASA Astrophysics Data System (ADS)
Chandran, Satheesh; Puthukkudy, Anin; Varma, Ravi
2017-07-01
Precise determination of concentration of gases, such as NO2, in urban atmosphere is crucial in studying chemical reactions leading to secondary pollutants. In this study, a novel and sensitive yet simple and cost effective spectrometer was developed where two laser wavelengths and two parallel identical optical cavities were used. Monitoring of NO2 even in the presence of aerosol spectral interference was demonstrated. The intensity transmitted through one cavity, evacuated to 0.1 mbar, was designated as the reference signal ( I 0) while that through the other cavity, sampling air at atmospheric pressure, was designated as sample signal ( I). Quasi-simultaneous measurements of these I 0 and I were done for both laser wavelengths sequentially: one at 406.4 nm near the peak of the largest electronic transition of NO2 and the other at 446.9 nm, away from the peak yet exhibiting significant absorption. The addition of the second wavelength where NO2 has absorption was to ascertain the presence of aerosol scattering and compensate for it. Aerosol extinctions at both operating wavelengths were assumed to be the same, their ratio taken as unity for simplicity, and aerosol light extinction was retrieved. The spectrometer with average sampling interval of 5 s exhibited detection sensitivity of low parts per billion concentrations.
Santos, J L; Jackson, D A
1991-08-01
A passive demodulation technique suitable for interferometric interrogation of short optical cavities is described. It is based on time multiplexing of two low-finesse Fabry-Perot interferometers subject to the same measurand and with a differential optical phase of pi/2 (modulo 2pi). Independently of the cavity length, two optical outputs in quadrature are generated, which permits signal reading free of fading. The concept is demonstrated for the measurement of vibration using a simple processing scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazono, Evan; Zhong, Tian; Craiciu, Ioana
Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here, we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories.
NASA Astrophysics Data System (ADS)
Kaspar, Sebastian; Rattunde, Marcel; Töpper, Tino; Schwarz, Ulrich T.; Manz, Christian; Köhler, Klaus; Wagner, Joachim
2012-10-01
A 2 μm electro-optically cavity-dumped semiconductor disk laser (SDL) with a pulse full width at half maximum of 3 ns, a pulse peak power of 30 W, and repetition rates adjustable between 87 kHz and 1 MHz is reported. For ns-pulse cavity dumping the SDL was set up with a 35-cm long cavity into which an intra-cavity Brewster-angled polarizer prism and a Pockels cell for rotation of the linear polarization were inserted. By means of internal total reflection in the birefringent polarizer, pulses are coupled out of the cavity sideways. This variant of ns-pulse 2-μm SDL is well suited for applications such as high-precision light detection and ranging or ns-pulse laser materials processing after further power amplification.
Barclay, Paul; Srinivasan, Kartik; Painter, Oskar
2005-02-07
A technique is demonstrated which efficiently transfers light between a tapered standard single-mode optical fiber and a high-Q, ultra-small mode volume, silicon photonic crystal resonant cavity. Cavity mode quality factors of 4.7x10(4) are measured, and a total fiber-to-cavity coupling efficiency of 44% is demonstrated. Using this efficient cavity input and output channel, the steady-state nonlinear absorption and dispersion of the photonic crystal cavity is studied. Optical bistability is observed for fiber input powers as low as 250 microW, corresponding to a dropped power of 100 microW and 3 fJ of stored cavity energy. A high-density effective free-carrier lifetime for these silicon photonic crystal resonators of ~ 0.5 ns is also estimated from power dependent loss and dispersion measurements.
Switching of Photonic Crystal Lasers by Graphene.
Hwang, Min-Soo; Kim, Ha-Reem; Kim, Kyoung-Ho; Jeong, Kwang-Yong; Park, Jin-Sung; Choi, Jae-Hyuck; Kang, Ju-Hyung; Lee, Jung Min; Park, Won Il; Song, Jung-Hwan; Seo, Min-Kyo; Park, Hong-Gyu
2017-03-08
Unique features of graphene have motivated the development of graphene-integrated photonic devices. In particular, the electrical tunability of graphene loss enables high-speed modulation of light and tuning of cavity resonances in graphene-integrated waveguides and cavities. However, efficient control of light emission such as lasing, using graphene, remains a challenge. In this work, we demonstrate on/off switching of single- and double-cavity photonic crystal lasers by electrical gating of a monolayer graphene sheet on top of photonic crystal cavities. The optical loss of graphene was controlled by varying the gate voltage V g , with the ion gel atop the graphene sheet. First, the fundamental properties of graphene were investigated through the transmittance measurement and numerical simulations. Next, optically pumped lasing was demonstrated for a graphene-integrated single photonic crystal cavity at V g below -0.6 V, exhibiting a low lasing threshold of ∼480 μW, whereas lasing was not observed at V g above -0.6 V owing to the intrinsic optical loss of graphene. Changing quality factor of the graphene-integrated photonic crystal cavity enables or disables the lasing operation. Moreover, in the double-cavity photonic crystal lasers with graphene, switching of individual cavities with separate graphene sheets was achieved, and these two lasing actions were controlled independently despite the close distance of ∼2.2 μm between adjacent cavities. We believe that our simple and practical approach for switching in graphene-integrated active photonic devices will pave the way toward designing high-contrast and ultracompact photonic integrated circuits.
Hippler, Michael; Mohr, Christian; Keen, Katherine A; McNaghten, Edward D
2010-07-28
Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f=1.35 kHz and Q approximately 10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as alpha approximately 4.4x10(-9) cm(-1) s(1/2) (1 s integration time) and 2.6x10(-11) cm(-1) s(1/2) W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.
NASA Astrophysics Data System (ADS)
Ebraert, Evert; Van Erps, Jürgen; Beri, Stefano; Watté, Jan; Thienpont, Hugo
2014-10-01
To boost the deployment of fiber-to-the-home networks in order to meet the ever-increasing demand for bandwidth, there is a strong need for single-mode fiber (SMF) connectors which combine low insertion loss with field installability. Shifting from ferrule-based to ferruleless connectors can reduce average insertion losses appreciably and minimize modal noise interference. We propose a ferruleless connector and adaptor in which physical contact between two inline fibers is ensured by at least one fiber being in a buckled state. To this end, we design a buckling cavity in which the SMF can buckle in a controlled way to ensure good optical performance as well as mechanical stability. This design is based on both mechanical and optical considerations. Finite element analysis suggests that mechanically a minimal buckling cavity length of 17 mm is required, while the height of the cavity should be chosen such that the buckled SMF is not mechanically confined to ensure buckling in a first-order mode. The optical bending loss in the buckled SMF is calculated using a fully vectorial mode solver, showing that a minimal buckling cavity length of 20 mm is necessary to keep the excess optical loss from bending below 0.1 dB. Both our optical and mechanical simulation results are experimentally verified.
Superradiant phase transition with graphene embedded in one dimensional optical cavity
NASA Astrophysics Data System (ADS)
Li, Benliang; Liu, Tao; Hewak, Daniel W.; Wang, Qi Jie
2018-01-01
We theoretically investigate the cavity QED of graphene embedded in an optical cavity under perpendicular magnetic field. We consider the coupling of cyclotron transition and a multimode cavity described by a multimode Dicke model. This model exhibits a superradiant quantum phase transition, which we describe exactly in an effective Hamiltonian approach. The complete excitation spectrum in both the normal phase and superradiant phase regimes is given. In contrast to the single mode case, multimode coupling of cavity photon and cyclotron transition can greatly reduce the critical vacuum Rabi frequency required for quantum phase transition, and dramatically enhance the superradiant emission by fast modulating the Hamiltonian. Our work paves a way to experimental explorations of quantum phase transitions in solid state systems.
Analysis of the tunable asymmetric fiber F-P cavity for fiber strain sensor edge-filter demodulation
NASA Astrophysics Data System (ADS)
Chen, Haotao; Liang, Youcheng
2014-12-01
An asymmetric fiber (Fabry-Pérot, F-P) interferometric cavity with the good linearity and wide dynamic range was successfully designed based on the optical thin film characteristic matrix theory; by adjusting the material of two different thin metallic layers, the asymmetric fiber F-P interferometric cavity was fabricated by depositing the multi-layer thin films on the optical fiber's end face. The asymmetric F-P cavity has the extensive potential application. In this paper, the demodulation method for the wavelength shift of the fiber Bragg grating (FBG) sensor based on the F-P cavity is demonstrated, and a theoretical formula is obtained. And the experimental results coincide well with the computational results obtained from the theoretical model.
Nonlinear dynamics and cavity cooling of levitated nanoparticles
NASA Astrophysics Data System (ADS)
Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.
2016-09-01
We investigate a dynamic nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. An optical cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, whilst simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. Through the rich sideband structure displayed by the cavity output we can observe cooling of the linear and non-linear particle's motion. Here we present an experimental setup which allows full control over the cavity resonant frequencies, and shows cooling of the particle's motion as a function of the detuning. This work paves the way to strong-coupled quantum dynamics between a cavity and a mesoscopic object largely decoupled from its environment.
Haji, Mohsin; Hou, Lianping; Kelly, Anthony E; Akbar, Jehan; Marsh, John H; Arnold, John M; Ironside, Charles N
2012-01-30
Optical self seeding feedback techniques can be used to improve the noise characteristics of passively mode-locked laser diodes. External cavities such as fiber optic cables can increase the memory of the phase and subsequently improve the timing jitter. In this work, an improved optical feedback architecture is proposed using an optical fiber loop delay as a cavity extension of the mode-locked laser. We investigate the effect of the noise reduction as a function of the loop length and feedback power. The well known composite cavity technique is also implemented for suppressing supermode noise artifacts presented due to harmonic mode locking effects. Using this method, we achieve a record low radio frequency linewidth of 192 Hz for any high frequency (>1 GHz) passively mode-locked laser to date (to the best of the authors' knowledge), making it promising for the development of high frequency optoelectronic oscillators.
Novel design of electrical sensing interface for prosthetic limbs using optical micro cavities
NASA Astrophysics Data System (ADS)
Ali, Amir R.; Kamel, Mohamed A.
2018-04-01
This paper uses optical whispering galley modes (WGM) cavities to construct a new electrical sensing interface between prosthetic limb and the brain. The sensing element will detect the action potential signal in the neural membrane and the prosthetic limb will be actuated accordingly. The element is a WGM dielectric polymeric cavity. WGM based optical cavities can achieve very high values of sensitivity and quality factor; thus, any minute perturbations in the morphology of the cavity can be captured and measured. The action potential signal will produce an applied external electric field on the dielectric cavity causing it to deform due to the electrostriction effect. The resulting deformation will cause WGM shifts in the transmission spectrum of the cavity. Thus, the action potential or the applied electric field can be measured using these shifts. In this paper the action potential signal will be simulated through the use of a function generator and two metal electrodes. The sensing element will be situated between these electrodes to detect the electrical signal passing through. The achieved sensitivity is 27.5 pm/V in measuring the simulated action potential signal; and 0.32 pm/V.m-1 in measuring the applied electric field due to the passage of the simulated signal.
NASA Astrophysics Data System (ADS)
Li, Jiahua; Qu, Ye; Yu, Rong; Wu, Ying
2018-02-01
We explore theoretically the generation and all-optical control of optical frequency combs (OFCs) in photon transmission based on a combination of single-atom-cavity quantum electrodynamics (CQED) and electromagnetically induced transparency (EIT). Here an external control field is used to form the cavity dark mode of the CQED system. When the strengths of the applied EIT control field are appropriately tuned, enhanced comb generation can be achieved. We discuss the properties of the dark mode and clearly show that the formation of the dark mode enables the efficient generation of OFCs. In our approach, the comb spacing is determined by the beating frequency between the driving pump and seed lasers. Our demonstrated theory may pave the way towards all-optical coherent control of OFCs using a CQED architecture.
NASA Astrophysics Data System (ADS)
Thapa, Rajesh
We have made significant accomplishments in the development of portable frequency standard inside hollow optical fibers. Such standards will improve portable optical frequency references available to the telecommunications industry. Our approach relies on the development of a stabilized Cr:forsterite laser to generate the frequency comb in the near-IR region. This laser is self referenced and locked to a CW laser which in turn is stabilized to a sub-Doppler feature of a molecular transition. The molecular transition is realized using a hollow core fiber filled with acetylene gas. We finally measured the absolute frequency of these molecular transitions to characterize the references. In this thesis, the major ideas, techniques and experimental results for the development and absolute frequency measurement of the portable frequency references are presented. A prism-based Cr:forsterite frequency comb is stabilized. We have effectively used the prism modulation along with power modulation inside the cavity in order to actively stabilize the frequency comb. We have also studied the carrier-envelope-offset frequency (f0) dynamics of the laser and its effect on laser stabilization. A reduction of f0 linewidth from ˜2 MHz to ˜20 kHz has also been observed. Both our in-loop and out-of-loop measurements of the comb stability showed that the comb is stable within a part in 1011 at 1-s gate time and is currently limited by our reference signal. In order to develop this portable frequency standard, saturated absorption spectroscopy is performed on the acetylene v1 + v3 band near 1532 nm inside different kinds of hollow optical fibers. The observed linewidths are a factor 2 narrower in the 20 mum fiber as compared to 10 mum fiber, and vary from 20-40 MHz depending on pressure and power. The 70 mum kagome fiber shows a further reduction in linewidth to less than 10 MHz. In order to seal the gas inside the hollow optical fiber, we have also developed a technique of splicing the hollow fiber to solid fiber in a standard commercial arc splicer, rather than the more expensive filament splicer, and achieved comparable splice loss. We locked a CW laser to the saturated absorption feature using a Frequency Modulation technique and then compared to an optical frequency comb. The stabilized frequency comb, providing a dense grid of reference frequencies in near-infrared region is used to characterize and measure the absolute frequency reference based on these hollow optical fibers.
Cross-talk free, low-noise optical amplifier
Dijaili, Sol P.; Patterson, Frank G.; Deri, Robert J.
1995-01-01
A low-noise optical amplifier solves crosstalk problems in optical amplifiers by using an optical cavity oriented off-axis (e.g. perpendicular) to the direction of a signal amplified by the gain medium of the optical amplifier. Several devices are used to suppress parasitic lasing of these types of structures. The parasitic lasing causes the gain of these structures to be practically unusable. The lasing cavity is operated above threshold and the gain of the laser is clamped to overcome the losses of the cavity. Any increase in pumping causes the lasing power to increase. The clamping action of the gain greatly reduces crosstalk due to gain saturation for the amplified signal beam. It also reduces other nonlinearities associated with the gain medium such as four-wave mixing induced crosstalk. This clamping action can occur for a bandwidth defined by the speed of the laser cavity. The lasing field also reduces the response time of the gain medium. By having the lasing field off-axis, no special coatings are needed. Other advantages are that the lasing field is easily separated from the amplified signal and the carrier grating fluctuations induced by four-wave mixing are decreased. Two related methods reduce the amplified spontaneous emission power without sacrificing the gain of the optical amplifier.
Cross-talk free, low-noise optical amplifier
Dijaili, S.P.; Patterson, F.G.; Deri, R.J.
1995-07-25
A low-noise optical amplifier solves crosstalk problems in optical amplifiers by using an optical cavity oriented off-axis (e.g. perpendicular) to the direction of a signal amplified by the gain medium of the optical amplifier. Several devices are used to suppress parasitic lasing of these types of structures. The parasitic lasing causes the gain of these structures to be practically unusable. The lasing cavity is operated above threshold and the gain of the laser is clamped to overcome the losses of the cavity. Any increase in pumping causes the lasing power to increase. The clamping action of the gain greatly reduces crosstalk due to gain saturation for the amplified signal beam. It also reduces other nonlinearities associated with the gain medium such as four-wave mixing induced crosstalk. This clamping action can occur for a bandwidth defined by the speed of the laser cavity. The lasing field also reduces the response time of the gain medium. By having the lasing field off-axis, no special coatings are needed. Other advantages are that the lasing field is easily separated from the amplified signal and the carrier grating fluctuations induced by four-wave mixing are decreased. Two related methods reduce the amplified spontaneous emission power without sacrificing the gain of the optical amplifier. 11 figs.
Aerodynamic properties of a flat plate with cavity for optical-propagation studies
NASA Technical Reports Server (NTRS)
Buell, D. A.
1979-01-01
Transonic wind-tunnel tests were performed on a flat plate with and without a cube-shaped cavity and antiresonance devices. Measurements were made of the optical propagation and aerodynamic properties of the boundary and shear layers. The model and its velocity profiles and pressures are described.
Electro-thermo-optical simulation of vertical-cavity surface-emitting lasers
NASA Astrophysics Data System (ADS)
Smagley, Vladimir Anatolievich
Three-dimensional electro-thermal simulator based on the double-layer approximation for the active region was coupled to optical gain and optical field numerical simulators to provide a self-consistent steady-state solution of VCSEL current-voltage and current-output power characteristics. Methodology of VCSEL modeling had been established and applied to model a standard 850-nm VCSEL based on GaAs-active region and a novel intracavity-contacted 400-nm GaN-based VCSEL. Results of GaAs VCSEL simulation were in a good agreement with experiment. Correlations between current injection and radiative mode profiles have been observed. Physical sub-models of transport, optical gain and cavity optical field were developed. Carrier transport through DBRs was studied. Problem of optical fields in VCSEL cavity was treated numerically by the effective frequency method. All the sub-models were connected through spatially inhomogeneous rate equation system. It was shown that the conventional uncoupled analysis of every separate physical phenomenon would be insufficient to describe VCSEL operation.
Optical coherence domain reflectometry guidewire
Colston, Billy W.; Everett, Matthew; Da Silva, Luiz B.; Matthews, Dennis
2001-01-01
A guidewire with optical sensing capabilities is based on a multiplexed optical coherence domain reflectometer (OCDR), which allows it to sense location, thickness, and structure of the arterial walls or other intra-cavity regions as it travels through the body during minimally invasive medical procedures. This information will be used both to direct the guidewire through the body by detecting vascular junctions and to evaluate the nearby tissue. The guidewire contains multiple optical fibers which couple light from the proximal to distal end. Light from the fibers at the distal end of the guidewire is directed onto interior cavity walls via small diameter optics such as gradient index lenses and mirrored corner cubes. Both forward viewing and side viewing fibers can be included. The light reflected or scattered from the cavity walls is then collected by the fibers, which are multiplexed at the proximal end to the sample arm of an optical low coherence reflectometer. The guidewire can also be used in nonmedical applications.
Cleaved-coupled nanowire lasers
Gao, Hanwei; Fu, Anthony; Andrews, Sean C.; Yang, Peidong
2013-01-01
The miniaturization of optoelectronic devices is essential for the continued success of photonic technologies. Nanowires have been identified as potential building blocks that mimic conventional photonic components such as interconnects, waveguides, and optical cavities at the nanoscale. Semiconductor nanowires with high optical gain offer promising solutions for lasers with small footprints and low power consumption. Although much effort has been directed toward controlling their size, shape, and composition, most nanowire lasers currently suffer from emitting at multiple frequencies simultaneously, arising from the longitudinal modes native to simple Fabry–Pérot cavities. Cleaved-coupled cavities, two Fabry–Pérot cavities that are axially coupled through an air gap, are a promising architecture to produce single-frequency emission. The miniaturization of this concept, however, imposes a restriction on the dimensions of the intercavity gaps because severe optical losses are incurred when the cross-sectional dimensions of cavities become comparable to the lasing wavelength. Here we theoretically investigate and experimentally demonstrate spectral manipulation of lasing modes by creating cleaved-coupled cavities in gallium nitride (GaN) nanowires. Lasing operation at a single UV wavelength at room temperature was achieved using nanoscale gaps to create the smallest cleaved-coupled cavities to date. Besides the reduced number of lasing modes, the cleaved-coupled nanowires also operate with a lower threshold gain than that of the individual component nanowires. Good agreement was found between the measured lasing spectra and the predicted spectral modes obtained by simulating optical coupling properties. This agreement between theory and experiment presents design principles to rationally control the lasing modes in cleaved-coupled nanowire lasers. PMID:23284173
Micro-combs: A novel generation of optical sources
NASA Astrophysics Data System (ADS)
Pasquazi, Alessia; Peccianti, Marco; Razzari, Luca; Moss, David J.; Coen, Stéphane; Erkintalo, Miro; Chembo, Yanne K.; Hansson, Tobias; Wabnitz, Stefan; Del'Haye, Pascal; Xue, Xiaoxiao; Weiner, Andrew M.; Morandotti, Roberto
2018-01-01
The quest towards the integration of ultra-fast, high-precision optical clocks is reflected in the large number of high-impact papers on the topic published in the last few years. This interest has been catalysed by the impact that high-precision optical frequency combs (OFCs) have had on metrology and spectroscopy in the last decade [1-5]. OFCs are often referred to as optical rulers: their spectra consist of a precise sequence of discrete and equally-spaced spectral lines that represent precise marks in frequency. Their importance was recognised worldwide with the 2005 Nobel Prize being awarded to T.W. Hänsch and J. Hall for their breakthrough in OFC science [5]. They demonstrated that a coherent OFC source with a large spectrum - covering at least one octave - can be stabilised with a self-referenced approach, where the frequency and the phase do not vary and are completely determined by the source physical parameters. These fully stabilised OFCs solved the challenge of directly measuring optical frequencies and are now exploited as the most accurate time references available, ready to replace the current standard for time. Very recent advancements in the fabrication technology of optical micro-cavities [6] are contributing to the development of OFC sources. These efforts may open up the way to realise ultra-fast and stable optical clocks and pulsed sources with extremely high repetition-rates, in the form of compact and integrated devices. Indeed, the fabrication of high-quality factor (high-Q) micro-resonators, capable of dramatically amplifying the optical field, can be considered a photonics breakthrough that has boosted not only the scientific investigation of OFC sources [7-13] but also of optical sensors and compact light modulators [6,14]. In this framework, the demonstration of planar high-Q resonators, compatible with silicon technology [10-14], has opened up a unique opportunity for these devices to provide entirely new capabilities for photonic-integrated technologies. Indeed, it is well acknowledged by the electronics industry that future generations of computer processing chips will inevitably require an extremely high density of copper-based interconnections, significantly increasing the chip power dissipation to beyond practical levels [15-17]; hence, conventional approaches to chip design must undergo radical changes. On-chip optical networks, or optical interconnects, can offer high speed and low energy per-transferred-bit, and micro-resonators are widely seen as a key component to interface the electronic world with photonics. Many information technology industries have recently focused on the development of integrated ring resonators to be employed for electrically-controlled light modulators [14-17], greatly advancing the maturity of micro-resonator technology as a whole. Recently [11-13], the demonstration of OFC sources in micro-resonators fabricated in electronic (i.e. in complementary metal oxide semiconductor (CMOS)) compatible platforms has given micro-cavities an additional appeal, with the possibility of exploiting them as light sources in microchips. This scenario is creating fierce competition in developing highly efficient OFC generators based on micro-cavities which can radically change the nature of information transport and processing. Even in telecommunications, perhaps a more conventional environment for optical technologies, novel time-division multiplexed optical systems will require extremely stable optical clocks at ultra-high pulse repetition-rates towards the THz scale. Furthermore, arbitrary pulse generators based on OFC [18,19] are seen as one of the most promising solutions for this next generation of high-capacity optical coherent communication systems. This review will summarise the recent exciting achievements in the field of micro-combs, namely optical frequency combs based on high-Q micro-resonators, with a perspective on both the potential of this technology, as well as the open questions and challenges that remain.
Analysis of the tunable asymmetric fiber F-P cavity for fiber sensor edge-filter demodulation
NASA Astrophysics Data System (ADS)
Chen, Haitao; Liang, Youcheng
2014-12-01
An asymmetric fiber (Fabry-Pérot,F-P) interferometric cavity with good linearity and wide dynamic range is successfully designed basing on optical thin film characteristic matrix theory; by choosing the material of two different thin metallic layers, the asymmetric fiber F-P interferometric cavity is fabricated by depositing the multi-layer thin films on the optical fiber's end face. The demodulation method for the wavelength shift of fiber Bragg grating (FBG) sensor basing on the F-P cavity is demonstrated and a theoretical formula is obtained. And the experimental results coincide well with computational results obtained from the theoretical model.
Dissipative preparation of entanglement in optical cavities.
Kastoryano, M J; Reiter, F; Sørensen, A S
2011-03-04
We propose a novel scheme for the preparation of a maximally entangled state of two atoms in an optical cavity. Starting from an arbitrary initial state, a singlet state is prepared as the unique fixed point of a dissipative quantum dynamical process. In our scheme, cavity decay is no longer undesirable, but plays an integral part in the dynamics. As a result, we get a qualitative improvement in the scaling of the fidelity with the cavity parameters. Our analysis indicates that dissipative state preparation is more than just a new conceptual approach, but can allow for significant improvement as compared to preparation protocols based on coherent unitary dynamics.
An Optically Pumped Far-Infrared Folded Mirror-Less Cavity
NASA Astrophysics Data System (ADS)
Liu, Chuang; Wang, Dashuai; Zhang, Peng; Qu, Yanchen
2017-12-01
A compact and efficient mirror-less cavity is presented for an optically pumped 192-μm far-infrared laser. With a gold-coated mirror and 30°-inclined anti-reflection coated Ge plate serving as highly reflective mirrors, a folded mirror-less CH3F cavity is achieved. Maximum energy of 0.72 mJ is obtained with the pump energy of 600 mJ, which gives an energy increment of 75% in comparison with the previous 1.85-m mirror-less system. The beam divergence angle of the FIR radiation from this folded mirror-less cavity is measured to be 14.2 mrad.
Comparison on different repetition rate locking methods in Er-doped fiber laser
NASA Astrophysics Data System (ADS)
Yang, Kangwen; Zhao, Peng; Luo, Jiang; Huang, Kun; Hao, Qiang; Zeng, Heping
2018-05-01
We demonstrate a systematic comparative research on the all-optical, mechanical and opto-mechanical repetition rate control methods in an Er-doped fiber laser. A piece of Yb-doped fiber, a piezoelectric transducer and an electronic polarization controller are simultaneously added in the laser cavity as different cavity length modulators. By measuring the cavity length tuning ranges, the output power fluctuations, the temporal and frequency repetition rate stability, we show that all-optical method introduces the minimal disturbances under current experimental condition.
2007-12-30
111111 (2006). 2. S.P. Ashili , V.N. Astratov, and E.C.H. Sykes, “The effects of inter-cavity separation on optical coupling in dielectric bispheres...chains of coupled spherical cavities,” Opt. Lett. 32, 409-411 (2007). 4. V.N. Astratov, and S.P. Ashili , “Percolation of light through whispering...Propagation via Whispering Gallery Modes in 3-D Networks of Coupled Spherical Cavities (Talk), V.N. Astratov, S.P. Ashili , and A.M. Kapitonov, in Frontiers in
Electro-optically tunable microwave source based on composite-cavity microchip laser.
Qiao, Yunfei; Zheng, Shilie; Chi, Hao; Jin, Xiaofeng; Zhang, Xianmin
2012-12-17
A compact and electric tuning microwave source based on a diode-pumped composite Nd:YAG-LiNbO(3) cavity microchip laser is demonstrated. The electro-optical element introduces an electric tuning intra-cavity birefringence which causes a tunable frequency difference between two spilt orthogonal polarization states of a longitude mode. Thus a continuously tunable microwave signal with frequency up to 14.12 GHz can be easily generated by beating the two polarization modes on a high speed photodetector.
Solvable multistate model of Landau-Zener transitions in cavity QED
Sinitsyn, Nikolai; Li, Fuxiang
2016-06-29
We consider the model of a single optical cavity mode interacting with two-level systems (spins) driven by a linearly time-dependent field. When this field passes through values at which spin energy level splittings become comparable to spin coupling to the optical mode, a cascade of Landau-Zener (LZ) transitions leads to co-flips of spins in exchange for photons of the cavity. We derive exact transition probabilities between different diabatic states induced by such a sweep of the field.
1995-12-01
of a Molecular Beam Epitaxy (MBE) system prior to growing a Vertical Cavity Surface Emitting Laser ( VCSEL ). VCSEL bistability is discussed later in...addition, optical bistability 1 in the reflectivity of a DBR, as well as in the lasing power, wavelength, and beam divergence of a lasing VCSEL are...Spectral Reflectivity of AlGaAs/AlAs VCSEL Top DBR Mirror Cavity Bottom DBR Mirror Substrate Output Beam Resonance Pump Minimum Stop Band Figure 2. VCSEL
Optothermal transport behavior in whispering gallery mode optical cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltani, Soheil; Armani, Andrea M., E-mail: armani@usc.edu; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089
Over the past century, whispering gallery mode optical cavities have enabled numerous advances in science and engineering, such as discoveries in quantum mechanics and non-linear optics, as well as the development of optical gyroscopes and add drop filters. One reason for their widespread appeal is their ability to confine light for long periods of time, resulting in high circulating intensities. However, when sufficiently large amounts of optical power are coupled into these cavities, they begin to experience optothermal or photothermal behavior, in which the optical energy is converted into heat. Above the optothermal threshold, the resonance behavior is no longermore » solely defined by electromagnetics. Previous work has primarily focused on the role of the optothermal coefficient of the material in this instability. However, the physics of this optothermal behavior is significantly more complex. In the present work, we develop a predictive theory based on a generalizable analytical expression in combination with a geometry-specific COMSOL Multiphysics finite element method model. The simulation couples the optical and thermal physics components, accounting for geometry variations as well as the temporal and spatial profile of the optical field. To experimentally verify our theoretical model, the optothermal thresholds of a series of silica toroidal resonant cavities are characterized at different wavelengths (visible through near-infrared) and using different device geometries. The silica toroid offers a particularly rigorous case study for the developed optothermal model because of its complex geometrical structure which provides multiple thermal transport paths.« less
Trapping of a microsphere pendulum resonator in an optical potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, J. M.; Photonics Centre, Tyndall National Institute, Prospect Row, Cork; Wu, Y.
We propose a method to spatially confine or corral the movements of a micropendulum via the optical forces produced by two simultaneously excited optical modes of a photonic molecule comprising two microspherical cavities. We discuss how the cavity-enhanced optical force generated in the photonic molecule can create an optomechanical potential of about 10 eV deep and 30 pm wide, which can be used to trap the pendulum at any given equilibrium position by a simple choice of laser frequencies. This result presents opportunities for very precise all-optical self-alignment of microsystems.
NASA Astrophysics Data System (ADS)
Engfer, Christian; Pfüller, Enrico; Wiedemann, Manuel; Wolf, Jürgen; Lutz, Thorsten; Krämer, Ewald; Röser, Hans-Peter
2012-09-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5 m reflecting telescope housed in an open cavity on board of a Boeing 747SP. During observations, the cavity is exposed to transonic flow conditions. The oncoming boundary layer evolves into a free shear layer being responsible for optical aberrations and for aerodynamic and aeroacoustic disturbances within the cavity. While the aero-acoustical excitation of an airborne telescope can be minimized by using passive flow control devices, the aero-optical properties of the flow are difficult to improve. Hence it is important to know how much the image seen through the SOFIA telescope is perturbed by so called seeing effects. Prior to the SOFIA science fights Computational Fluid Dynamics (CFD) simulations using URANS and DES methods were carried out to determine the flow field within and above the cavity and hence in the optical path in order to provide an assessment of the aero-optical properties under baseline conditions. In addition and for validation purposes, out of focus images have been taken during flight with a Super Fast Diagnostic Camera (SFDC). Depending on the binning factor and the sub-array size, the SFDC is able to take and to read out images at very high frame rates. The paper explains the numerical approach based on CFD to evaluate the aero-optical properties of SOFIA. The CFD data is then compared to the high speed images taken by the SFDC during flight.
Associative Memory In A Phase Conjugate Resonator Cavity Utilizing A Hologram
NASA Astrophysics Data System (ADS)
Owechko, Y.; Marom, E.; Soffer, B. H.; Dunning, G.
1987-01-01
The principle of information retrieval by association has been suggested as a basis for parallel computing and as the process by which human memory functions.1 Various associative processors have been proposed that use electronic or optical means. Optical schemes,2-7 in particular, those based on holographic principles,3,6,7 are well suited to associative processing because of their high parallelism and information throughput. Previous workers8 demonstrated that holographically stored images can be recalled by using relatively complicated reference images but did not utilize nonlinear feedback to reduce the large cross talk that results when multiple objects are stored and a partial or distorted input is used for retrieval. These earlier approaches were limited in their ability to reconstruct the output object faithfully from a partial input.
Low frequency noise fiber delay stabilized laser with reduced sensitivity to acceleration
NASA Astrophysics Data System (ADS)
Argence, B.; Clivati, C.; Dournaux, J.-L.; Holleville, D.; Faure, B.; Lemonde, P.; Santarelli, G.
2017-11-01
Lasers with sub-hertz line-width and fractional frequency instability around 1×10-15 for 0.1 s to 10 s averaging time are currently realized by locking onto an ultra-stable Fabry-Perot cavity using the Pound-Drever-Hall method. This powerful method requires tight alignment of free space optical components, precise polarization adjustment and spatial mode matching. To circumvent these issues, we use an all-fiber Michelson interferometer with a long fiber spool as a frequency reference and a heterodyne detection technique with a fibered acousto optical modulator (AOM)1. At low Fourier frequencies, the frequency noise of our system is mainly limited by mechanical vibrations, an issue that has already been explored in the field of optoelectronic oscillators.2,3,4
698-nm diode laser with 1-Hz linewidth
NASA Astrophysics Data System (ADS)
Chen, Long; Zhang, Linbo; Xu, Guanjun; Liu, Jun; Dong, Ruifang; Liu, Tao
2017-01-01
Two diode lasers at 698 nm are separately locked to two independent optical reference cavities with a finesse of about 128,000 by the Pound-Drever-Hall method. The more accurate coefficient between voltage and frequency of the error signal is measured, with which quantitative evaluation of the effect of many noises on the frequency stability can be made much more conveniently. A temperature-insensitive method is taken to reduce the effect of residual amplitude modulation on laser frequency stability. With an active fiber noise cancellation, the optical heterodyne beat between two independent lasers shows that the linewidth of one diode laser reaches 1 Hz. The fractional Allan deviation removed linear frequency shift less than 30 mHz/s is below 2.6×10-15 with 1- to 100-s average time.
Transient dynamics in cavity electromagnetically induced transparency with ion Coulomb crystals
NASA Astrophysics Data System (ADS)
Albert, Magnus; Dantan, Aurélien; Drewsen, Michael
2018-03-01
We experimentally investigate the transient dynamics of an optical cavity field interacting with large ion Coulomb crystals in a situation of electromagnetically induced transparency (EIT). EIT is achieved by injecting a probe field at the single photon level and a more intense control field with opposite circular polarization into the same mode of an optical cavity to couple Zeeman substates of a metastable level in ? ions. The EIT interaction dynamics are investigated both in the frequency-domain - by measuring the probe field steady state reflectivity spectrum - and in the time-domain - by measuring the progressive buildup of transparency. The experimental results are observed to be in excellent agreement with theoretical predictions taking into account the inhomogeneity of the control field in the interaction volume, and confirm the high degree of control on light-matter interaction that can be achieved with ion Coulomb crystals in optical cavities.
Magneto-optical microcavity with Au plasmonic layer
NASA Astrophysics Data System (ADS)
Mikhailova, T. V.; Lyashko, S. D.; Tomilin, S. V.; Karavainikov, A. V.; Prokopov, A. R.; Shaposhnikov, A. N.; Berzhansky, V. N.
2017-11-01
Optical and Faraday rotation spectra of magneto-optical microcavity coated with Au plasmonic layer of gradient thickness were investigated theoretically and experimentally. It was shown that the Tamm plasmon-polaritons mode forms near the long-wavelength edge of photonic band gap. The presence of Au coating of thickness of 90.4 nm increase the Faraday rotation at Tamm plasmon-polaritons and cavity resonances in 1.3 and 7 times, respectively. By transfer matrix method it were found that the incorporation of SiO2 buffer layer with a thickness in the range from 155 to 180 nm between microcavity and Au coating leads to the strong coupling between cavity mode and Tamm plasmon-polaritons. In this case, one or two resonances arise in the vicinity of the cavity mode depending on the thickness of plasmonic layer. The Faraday rotation for coupled mode in twice less than the value of rotation for single cavity mode.
Thermal Noise Limit in Frequency Stabilization of Lasers with Rigid Cavities
NASA Technical Reports Server (NTRS)
Numata, Kenji; Kemery, Amy; Camp, Jordan
2005-01-01
We evaluated thermal noise (Brownian motion) in a rigid reference cavity Used for frequency stabilization of lasers, based on the mechanical loss of cavity materials and the numerical analysis of the mirror-spacer mechanics with the direct application of the fluctuation dissipation theorem. This noise sets a fundamental limit for the frequency stability achieved with a rigid frequency-reference cavity of order 1 Hz/rtHz at 10mHz at room temperature. This level coincides with the world-highest level stabilization results.
Broadband midinfrared frequency comb with tooth scanning
NASA Astrophysics Data System (ADS)
Lee, Kevin F.; Masłowski, P.; Mills, A.; Mohr, C.; Jiang, Jie; Schunemann, Peter G.; Fermann, M. E.
2015-03-01
Frequency combs are a massively parallel source of extremely accurate optical frequencies. Frequency combs generally operate at the visible or near-infrared wavelengths, but fundamental molecular vibrations occur at midinfrared wavelengths. We demonstrate an optically-referenced, broadband midinfrared frequency comb based on a doublyresonant optical parametric oscillator (OPO). By tuning the wavelength of the reference laser, the comb line frequencies are tuned as well. By scanning the reference wavelength, any frequency can be accessed, not just the frequencies of the base comb. Combined with our comb-resolving Fourier transform spectrometer, we can measure 200 wavenumber wide broadband absorption spectra with 200 kHz linewidth comb teeth. Our OPO is pumped by an amplified Tm fiber frequency comb, with phase-locked carrier envelope offset frequency, and repetition rate fixed by phase-locking a frequency comb line to a narrow linewidth diode laser at a telecom channel. The frequency comb is referenced to GPS by long-term stabilization of the repetition rate to a selected value using the temperature of the reference laser as the control. The resulting pump comb is about 3W of 100 fs pulses at 418 MHz repetition rate at 1950 nm. Part of the comb is used for supercontinuum generation for frequency stabilization, and the rest pumps an orientation-patterned gallium arsenide (OP-GaAs) crystal in a doubly-resonant optical parametric oscillator cavity, yielding collinear signal and idler beams from about 3 to 5.5 μm. We verify comb scanning by resolving the 200 MHz wide absorption lines of the entire fundamental CO vibrational manifold at 11 Torr pressure.
Method of increasing power within an optical cavity with long path lengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leen, John Brian; Bramall, Nathan E.
A cavity-enhanced absorption spectroscopy instrument has an optical cavity with two or more cavity mirrors, one mirror of which having a hole or other aperture for injecting a light beam, and the same or another mirror of which being partially transmissive to allow exit of light to a detector. A spherical-spherical configuration with at least one astigmatic mirror or a spherical-cylindrical configuration where the spherical mirror could also be astigmatic prevents a reentrant condition wherein the injected beam would prematurely exit the cavity through the aperture. This combination substantially increases the number of passes of the injected beam through amore » sample volume for sensitive detection of chemical species even in less than ideal conditions including low power laser or LED sources, poor mirror reflectivity or detector noise at the wavelengths of interest, or cavity alignment issues such as vibration or temperature and pressure changes.« less
NASA Astrophysics Data System (ADS)
Sheng, Jiteng; Chao, Yuanxi; Kumar, Santosh; Fan, Haoquan; Sedlacek, Jonathon; Shaffer, James P.
2017-09-01
We present an experimental study of cavity-assisted Rydberg-atom electromagnetically induced transparency (EIT) using a high-finesse optical cavity (F ˜28 000 ). Rydberg atoms are excited via a two-photon transition in a ladder-type EIT configuration. A three-peak structure of the cavity transmission spectrum is observed when Rydberg EIT is generated inside the cavity. The two symmetrically spaced side peaks are caused by bright-state polaritons, while the central peak corresponds to a dark-state polariton. Anticrossing phenomena and the effects of mirror adsorbate electric fields are studied under different experimental conditions. We determine a lower bound on the coherence time for the system of 7.26 ±0.06 μ s , most likely limited by laser dephasing. The cavity-Rydberg EIT system can be useful for single-photon generation using the Rydberg blockade effect, studying many-body physics, and generating novel quantum states among many other applications.
On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information.
Bitarafan, Mohammad H; DeCorby, Ray G
2017-07-31
For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities-with an air or vacuum gap between a pair of high reflectance mirrors-offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.
Taubman, Matthew S; Phillips, Mark C
2015-04-07
A method is disclosed for power normalization of spectroscopic signatures obtained from laser based chemical sensors that employs the compliance voltage across a quantum cascade laser device within an external cavity laser. The method obviates the need for a dedicated optical detector used specifically for power normalization purposes. A method is also disclosed that employs the compliance voltage developed across the laser device within an external cavity semiconductor laser to power-stabilize the laser mode of the semiconductor laser by adjusting drive current to the laser such that the output optical power from the external cavity semiconductor laser remains constant.
All-optical switching in silicon-on-insulator photonic wire nano-cavities.
Belotti, Michele; Galli, Matteo; Gerace, Dario; Andreani, Lucio Claudio; Guizzetti, Giorgio; Md Zain, Ahmad R; Johnson, Nigel P; Sorel, Marc; De La Rue, Richard M
2010-01-18
We report on experimental demonstration of all-optical switching in a silicon-on-insulator photonic wire nanocavity operating at telecom wavelengths. The switching is performed with a control pulse energy as low as approximately 0.1 pJ on a cavity device that presents very high signal transmission, an ultra-high quality-factor, almost diffraction-limited modal volume and a footprint of only 5 microm(2). High-speed modulation of the cavity mode is achieved by means of optical injection of free carriers using a nanosecond pulsed laser. Experimental results are interpreted by means of finite-difference time-domain simulations. The possibility of using this device as a logic gate is also demonstrated.
Deflecting light into resonant cavities for spectroscopy
Zare, R.N.; Martin, J.; Paldus, B.A.
1998-09-29
Light is coupled into a cavity ring down spectroscopy (CRDS) resonant cavity using an acousto-optic modulator. The AOM allows in-coupling efficiencies in excess of 40%, which is two to three orders of magnitude higher than in conventional systems using a cavity mirror for in-coupling. The AOM shutoff time is shorter than the roundtrip time of the cavity. The higher light intensities lead to a reduction in shot noise, and allow the use of relatively insensitive but fast-responding detectors such as photovoltaic detectors. Other deflection devices such as electro-optic modulators or elements used in conventional Q-switching may be used instead of the AOM. The method is particularly useful in the mid-infrared, far-infrared, and ultraviolet wavelength ranges, for which moderately reflecting input mirrors are not widely available. 5 figs.
Deflecting light into resonant cavities for spectroscopy
Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.
1998-01-01
Light is coupled into a cavity ring down spectroscopy (CRDS) resonant cavity using an acousto-optic modulator. The AOM allows in-coupling efficiencies in excess of 40%, which is two to three orders of magnitude higher than in conventional systems using a cavity mirror for in-coupling. The AOM shutoff time is shorter than the roundtrip time of the cavity. The higher light intensities lead to a reduction in shot noise, and allow the use of relatively insensitive but fast-responding detectors such as photovoltaic detectors. Other deflection devices such as electro-optic modulators or elements used in conventional Q-switching may be used instead of the AOM. The method is particularly useful in the mid-infrared, far-infrared, and ultraviolet wavelength ranges, for which moderately reflecting input mirrors are not widely available.
Interferometer design and controls for pulse stacking in high power fiber lasers
NASA Astrophysics Data System (ADS)
Wilcox, Russell; Yang, Yawei; Dahlen, Dar; Xu, Yilun; Huang, Gang; Qiang, Du; Doolittle, Lawrence; Byrd, John; Leemans, Wim; Ruppe, John; Zhou, Tong; Sheikhsofla, Morteza; Nees, John; Galvanauskas, Almantas; Dawson, Jay; Chen, Diana; Pax, Paul
2017-03-01
In order to develop a design for a laser-plasma accelerator (LPA) driver, we demonstrate key technologies that enable fiber lasers to produce high energy, ultrafast pulses. These technologies must be scalable, and operate in the presence of thermal drift, acoustic noise, and other perturbations typical of an operating system. We show that coherent pulse stacking (CPS), which requires optical interferometers, can be made robust by image-relaying, multipass optical cavities, and by optical phase control schemes that sense pulse train amplitudes from each cavity. A four-stage pulse stacking system using image-relaying cavities is controlled for 14 hours using a pulse-pattern sensing algorithm. For coherent addition of simultaneous ultrafast pulses, we introduce a new scheme using diffractive optics, and show experimentally that four pulses can be added while a preserving pulse width of 128 fs.
Near-field levitated quantum optomechanics with nanodiamonds
NASA Astrophysics Data System (ADS)
Juan, M. L.; Molina-Terriza, G.; Volz, T.; Romero-Isart, O.
2016-08-01
We theoretically show that the dipole force of an ensemble of quantum emitters embedded in a dielectric nanosphere can be exploited to achieve near-field optical levitation. The key ingredient is that the polarizability from the ensemble of embedded quantum emitters can be larger than the bulk polarizability of the sphere, thereby enabling the use of repulsive optical potentials and consequently the levitation using optical near fields. In levitated cavity quantum optomechanics, this could be used to boost the single-photon coupling by combining larger polarizability to mass ratio, larger field gradients, and smaller cavity volumes while remaining in the resolved sideband regime and at room temperature. A case study is done with a nanodiamond containing a high density of silicon-vacancy color centers that is optically levitated in the evanescent field of a tapered nanofiber and coupled to a high-finesse microsphere cavity.
Designing new classes of high-power, high-brightness VECSELs
NASA Astrophysics Data System (ADS)
Moloney, J. V.; Zakharian, A. R.; Hader, J.; Koch, Stephan W.
2005-10-01
Optically-pumped vertical external cavity semiconductor lasers offer the exciting possibility of designing kW-class solid state lasers that provide significant advantages over their doped YAG, thin-disk YAG and fiber counterparts. The basic VECSEL/OPSL (optically-pumped semiconductor laser) structure consists of a very thin (approximately 6 micron thick) active mirror consisting of a DBR high-reflectivity stack followed by a multiple quantum well resonant periodic (RPG) structure. An external mirror (reflectivity typically between 94%-98%) provides conventional optical feedback to the active semiconductor mirror chip. The "cold" cavity needs to be designed to take into account the semiconductor sub-cavity resonance shift with temperature and, importantly, the more rapid shift of the semiconductor material gain peak with temperature. Thermal management proves critical in optimizing the device for serious power scaling. We will describe a closed-loop procedure that begins with a design of the semiconductor active epi structure. This feeds into the sub-cavity optimization, optical and thermal transport within the active structure and thermal transport though the various heat sinking elements. Novel schemes for power scaling beyond current record performances will be discussed.
Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM
Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I. I.; Chan, C. T.; Chan, H. B.; Tong, Penger
2015-01-01
Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures. PMID:26586455
Optical re-injection in cavity-enhanced absorption spectroscopy
Leen, J. Brian; O’Keefe, Anthony
2014-01-01
Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10−10 cm−1/\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\sqrt {{\\rm Hz;}}$\\end{document} Hz ; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features. PMID:25273701
Self-seeding ring optical parametric oscillator
Smith, Arlee V [Albuquerque, NM; Armstrong, Darrell J [Albuquerque, NM
2005-12-27
An optical parametric oscillator apparatus utilizing self-seeding with an external nanosecond-duration pump source to generate a seed pulse resulting in increased conversion efficiency. An optical parametric oscillator with a ring configuration are combined with a pump that injection seeds the optical parametric oscillator with a nanosecond duration, mJ pulse in the reverse direction as the main pulse. A retroreflecting means outside the cavity injects the seed pulse back into the cavity in the direction of the main pulse to seed the main pulse, resulting in higher conversion efficiency.
Microcavity morphology optimization
NASA Astrophysics Data System (ADS)
Ferdous, Fahmida; Demchenko, Alena A.; Vyatchanin, Sergey P.; Matsko, Andrey B.; Maleki, Lute
2014-09-01
High spectral mode density of conventional optical cavities is detrimental to the generation of broad optical frequency combs and to other linear and nonlinear applications. In this work we optimize the morphology of high-Q whispering gallery (WG) and Fabry-Perot (FP) cavities and find a set of parameters that allows treating them, essentially, as single-mode structures, thus removing limitations associated with a high density of cavity mode spectra. We show that both single-mode WGs and single-mode FP cavities have similar physical properties, in spite of their different loss mechanisms. The morphology optimization does not lead to a reduction of quality factors of modes belonging to the basic family. We study the parameter space numerically and find the region where the highest possible Q factor of the cavity modes can be realized while just having a single bound state in the cavity. The value of the Q factor is comparable with that achieved in conventional cavities. The proposed cavity structures will be beneficial for generation of octave spanning coherent frequency combs and will prevent undesirable effects of parametric instability in laser gravitational wave detectors.
High reflected cubic cavity as long path absorption cell for infrared gas sensing
NASA Astrophysics Data System (ADS)
Yu, Jia; Gao, Qiang; Zhang, Zhiguo
2014-10-01
One direct and efficient method to improve the sensitivity of infrared gas sensors is to increase the optical path length of gas cells according to Beer-Lambert Law. In this paper, cubic shaped cavities with high reflected inner coating as novel long path absorption cells for infrared gas sensing were developed. The effective optical path length (EOPL) for a single cubic cavity and tandem cubic cavities were investigated based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) measuring oxygen P11 line at 763 nm. The law of EOPL of a diffuse cubic cavity in relation with the reflectivity of the coating, the port fraction and side length of the cavity was obtained. Experimental results manifested an increase of EOPL for tandem diffuse cubic cavities as the decrease of port fraction of the connecting aperture f', and the EOPL equaled to the sum of that of two single cubic cavities at f'<0.01. The EOPL spectra at infrared wavelength range for different inner coatings including high diffuse coatings and high reflected metallic thin film coatings were deduced.
Characterization of wafer-level bonded hermetic packages using optical leak detection
NASA Astrophysics Data System (ADS)
Duan, Ani; Wang, Kaiying; Aasmundtveit, Knut; Hoivik, Nils
2009-07-01
For MEMS devices required to be operated in a hermetic environment, one of the main reliability issues is related to the packaging methods applied. In this paper, an optical method for testing low volume hermetic cavities formed by anodic bonding between glass and SOI (silicon on insulator) wafer is presented. Several different cavity-geometry structures have been designed, fabricated and applied to monitor the hermeticity of wafer level anodic bonding. SOI wafer was used as the cap wafer on which the different-geometry structures were fabricated using standard MEMS technology. The test cavities were bonded using SOI wafers to glass wafers at 400C and 1000mbar pressure inside a vacuum bonding chamber. The bonding voltage varies from 200V to 600V. The bonding strength between glass and SOI wafer was mechanically tested using shear tester. The deformation amplitudes of the cavity cap surface were monitored by using an optical interferometer. The hermeticity of the glass-to-SOI wafer level bonding was characterized through observing the surface deformation in a 6 months period in atmospheric environment. We have observed a relatively stable micro vacuum-cavity.
Cavity contour segmentation in chest radiographs using supervised learning and dynamic programming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maduskar, Pragnya, E-mail: pragnya.maduskar@radboudumc.nl; Hogeweg, Laurens; Sánchez, Clara I.
Purpose: Efficacy of tuberculosis (TB) treatment is often monitored using chest radiography. Monitoring size of cavities in pulmonary tuberculosis is important as the size predicts severity of the disease and its persistence under therapy predicts relapse. The authors present a method for automatic cavity segmentation in chest radiographs. Methods: A two stage method is proposed to segment the cavity borders, given a user defined seed point close to the center of the cavity. First, a supervised learning approach is employed to train a pixel classifier using texture and radial features to identify the border pixels of the cavity. A likelihoodmore » value of belonging to the cavity border is assigned to each pixel by the classifier. The authors experimented with four different classifiers:k-nearest neighbor (kNN), linear discriminant analysis (LDA), GentleBoost (GB), and random forest (RF). Next, the constructed likelihood map was used as an input cost image in the polar transformed image space for dynamic programming to trace the optimal maximum cost path. This constructed path corresponds to the segmented cavity contour in image space. Results: The method was evaluated on 100 chest radiographs (CXRs) containing 126 cavities. The reference segmentation was manually delineated by an experienced chest radiologist. An independent observer (a chest radiologist) also delineated all cavities to estimate interobserver variability. Jaccard overlap measure Ω was computed between the reference segmentation and the automatic segmentation; and between the reference segmentation and the independent observer's segmentation for all cavities. A median overlap Ω of 0.81 (0.76 ± 0.16), and 0.85 (0.82 ± 0.11) was achieved between the reference segmentation and the automatic segmentation, and between the segmentations by the two radiologists, respectively. The best reported mean contour distance and Hausdorff distance between the reference and the automatic segmentation were, respectively, 2.48 ± 2.19 and 8.32 ± 5.66 mm, whereas these distances were 1.66 ± 1.29 and 5.75 ± 4.88 mm between the segmentations by the reference reader and the independent observer, respectively. The automatic segmentations were also visually assessed by two trained CXR readers as “excellent,” “adequate,” or “insufficient.” The readers had good agreement in assessing the cavity outlines and 84% of the segmentations were rated as “excellent” or “adequate” by both readers. Conclusions: The proposed cavity segmentation technique produced results with a good degree of overlap with manual expert segmentations. The evaluation measures demonstrated that the results approached the results of the experienced chest radiologists, in terms of overlap measure and contour distance measures. Automatic cavity segmentation can be employed in TB clinics for treatment monitoring, especially in resource limited settings where radiologists are not available.« less
Measurement of aerosol optical properties by cw cavity enhanced spectroscopy
NASA Astrophysics Data System (ADS)
Jie, Guo; Ye, Shan-Shan; Yang, Xiao; Han, Ye-Xing; Tang, Huai-Wu; Yu, Zhi-Wei
2016-10-01
The CAPS (Cavity Attenuated Phase shift Spectroscopy) system, which detects the extinction coefficients within a 10 nm bandpass centered at 532 nm, comprises a green LED with center wavelength in 532nm, a resonant optical cavity (36 cm length), a Photo Multiplier Tube detector, and a lock in amplifier. The square wave modulated light from the LED passes through the optical cavity and is detected as a distorted waveform which is characterized by a phase shift with respect to the initial modulation. Extinction coefficients are determined from changes in the phase shift of the distorted waveform of the square wave modulated LED light that is transmitted through the optical cavity. The performance of the CAPS system was evaluated by using measurements of the stability and response of the system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. In the paper, it illustrates that extinction coefficient was correlated with PM2.5 mass (0.91). These figures indicate that this method has the potential to become one of the most sensitive on-line analytical techniques for extinction coefficient detection. This work aims to provide an initial validation of the CAPS extinction monitor in laboratory and field environments. Our initial results presented in this paper show that the CAPS extinction monitor is capable of providing state-of-the-art performance while dramatically reducing the complexity of optical instrumentation for directly measuring the extinction coefficients.
Development of ultra-precision micro-cavity measurement technique in HIT-UOI
NASA Astrophysics Data System (ADS)
Cui, Jiwen; Li, Lei; Tan, Jiubin
2010-08-01
Micro cavities with high aspect ratio are widely used in different fields including aerospace and defense industries with the development of manufacturing technology. So how to measure the dimension of these cavities has become one of the major research subjects in the field of measurement and instrument. This paper describes some activities of the precision micro cavity measurement technique in Center of Ultra-precision Optoelectronic Instrument (UOI), Harbin Institute of Technology (HIT). The key issue of micro cavity measurement in UOI is called touch-trigger measurement method. The first scheme is double optical fiber coupling, in which light coming from the incident optical fiber is transmitted in the reversal direction via the optical fiber coupling into the effluent optical fiber, the lateral displacement of the touch-trigger sensor is transformed into the deflexion of light coming out from the effluent optical fiber, and the deflexion is transformed into an image signal by the object lens and CCD capturing system. And the second scheme is micro focal-length collimation, in which a fiber stem with a ball mounted on its end is used as a probe and a small segment of it is used as a cylindrical lens to collimate a point light source and image it to a camera, the deflection of the fiber stem can be inferred from the change in image acquired by the camera with ultrahigh displacement sensitivity. Experiments for these activities will be given with a focus on the measurement results and repeatability uncertainty.
Design and analysis of photonic crystal coupled cavity arrays for quantum simulation
NASA Astrophysics Data System (ADS)
Majumdar, Arka; Rundquist, Armand; Bajcsy, Michal; Dasika, Vaishno D.; Bank, Seth R.; Vučković, Jelena
2012-11-01
We performed an experimental study of coupled optical cavity arrays in a photonic crystal platform. We find that the coupling between the cavities is significantly larger than the fabrication-induced disorder in the cavity frequencies. Satisfying this condition is necessary for using such cavity arrays to generate strongly correlated photons, which has potential application in the quantum simulation of many-body systems.
Frequency-Agile Differential Cavity Ring-Down Spectroscopy
NASA Astrophysics Data System (ADS)
Reed, Zachary; Hodges, Joseph
2015-06-01
The ultimate precision of highly sensitive cavity-enhanced spectroscopic measurements is often limited by interferences (etalons) caused by weak coupled-cavity effects. Differential measurements of ring-down decay constants have previously been demonstrated to largely cancel these effects, but the measurement acquisition rates were relatively low [1,2]. We have previously demonstrated the use of frequency agile rapid scanning cavity ring-down spectroscopy (FARS-CRDS) for acquisition of absorption spectra [3]. Here, the method of rapidly scanned, frequency-agile differential cavity ring-down spectroscopy (FADS-CRDS) is presented for reducing the effect of these interferences and other shot-to-shot statistical variations in measured decay times. To this end, an electro-optic phase modulator (EOM) with a bandwidth of 20 GHz is driven by a microwave source, generating pairs of sidebands on the probe laser. The optical resonator acts as a highly selective optical filter to all laser frequencies except for one tunable sideband. This sideband may be stepped arbitrarily from mode-to-mode of the ring-down cavity, at a rate limited only by the cavity buildup/decay time. The ability to probe any cavity mode across the EOM bandwidth enables a variety of methods for generating differential spectra. The differential mode spacing may be changed, and the effect of this method on suppressing the various coupled-cavity interactions present in the system is discussed. Alternatively, each mode may also be differentially referenced to a single point, providing immunity to temporal variations in the base losses of the cavity while allowing for conventional spectral fitting approaches. Differential measurements of absorption are acquired at 3.3 kHz and a minimum detectable absorption coefficient of 5 x10-12 cm-1 in 1 s averaging time is achieved. 1. J. Courtois, K. Bielska, and J.T Hodges J. Opt. Soc. Am. B, 30, 1486-1495, 2013 2. H.F. Huang and K.K. Lehmann App. Optics 49, 1378-1387, 2010 3. G.-W. Truong, K.O. Douglass, S.E. Maxwell, R.D. van Zee, D.F. Plusquellic, J.T. Hodges, and D.A. Long Nature Photonics, 7, 532-534, 2013
Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers
NASA Astrophysics Data System (ADS)
Cartar, William; Mørk, Jesper; Hughes, Stephen
2017-08-01
We present a powerful computational approach to simulate the threshold behavior of photonic-crystal quantum-dot (QD) lasers. Using a finite-difference time-domain (FDTD) technique, Maxwell-Bloch equations representing a system of thousands of statistically independent and randomly positioned two-level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within the model. These Maxwell-Bloch equations are implemented by using Lumerical's flexible material plug-in tool, which allows a user to define additional equations of motion for the nonlinear polarization. We implement the gain ensemble within triangular-lattice photonic-crystal cavities of various length N (where N refers to the number of missing holes), and investigate the cavity mode characteristics and the threshold regime as a function of cavity length. We develop effective two-dimensional model simulations which are derived after studying the full three-dimensional passive material structures by matching the cavity quality factors and resonance properties. We also demonstrate how to obtain the correct point-dipole radiative decay rate from Fermi's golden rule, which is captured naturally by the FDTD method. Our numerical simulations predict that the pump threshold plateaus around cavity lengths greater than N =9 , which we identify as a consequence of the complex spatial dynamics and gain coupling from the inhomogeneous QD ensemble. This behavior is not expected from simple rate-equation analysis commonly adopted in the literature, but is in qualitative agreement with recent experiments. Single-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also show how the average radiative decay rate decreases as a function of cavity size. In addition, we investigate the role of structural disorder on both the passive cavity and active lasers, where the latter show a general increase in the pump threshold for cavity lengths greater than N =7 , and a reduction in the nominal cavity mode volume for increasing amounts of disorder.
Experimental and numerical study of shock-driven collapse of multiple cavity arrays
NASA Astrophysics Data System (ADS)
Betney, Matthew; Anderson, Phillip; Tully, Brett; Doyle, Hugo; Hawker, Nicholas; Ventikos, Yiannis
2014-10-01
This study presents a numerical and experimental investigation of the interaction of a single shock wave with multiple air-filled spherical cavities. The 5 mm diameter cavities are cast in a hydrogel, and collapsed by a shock wave generated by the impact of a projectile fired from a single-stage light-gas gun. Incident shock pressures of up to 1 GPa have been measured, and the results compared to simulations conducted using a front-tracking approach. The authors have previously studied the collapse dynamics of a single cavity. An important process is the formation of a high-speed transverse jet, which impacts the leeward cavity wall and produces a shockwave. The speed of this shock has been measured using schlieren imaging, and the density has been measured with a fibre optic probe. This confirmed the computational prediction that the produced shock is of a higher pressure than the original incident shock. When employing multiple cavity arrays, the strong shock produced by the collapse of one cavity can substantially affect the collapse of further cavities. With control over cavity placement, these effects may be utilised to intensify collapse. This intensification is experimentally measured via analysis of the optical emission.
Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement.
Liu, Ye; Wang, D N; Chen, W P
2016-12-02
Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.
Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement
NASA Astrophysics Data System (ADS)
Liu, Ye; Wang, D. N.; Chen, W. P.
2016-12-01
Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.
Continuous wave room temperature external ring cavity quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.
2015-06-29
An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.
Synchronization of an optomechanical system to an external drive
NASA Astrophysics Data System (ADS)
Amitai, Ehud; Lörch, Niels; Nunnenkamp, Andreas; Walter, Stefan; Bruder, Christoph
2017-05-01
Optomechanical systems driven by an effective blue-detuned laser can exhibit self-sustained oscillations of the mechanical oscillator. These self-oscillations are a prerequisite for the observation of synchronization. Here, we study the synchronization of the mechanical oscillations to an external reference drive. We study two cases of reference drives: (1) an additional laser applied to the optical cavity; (2) a mechanical drive applied directly to the mechanical oscillator. Starting from a master equation description, we derive a microscopic Adler equation for both cases, valid in the classical regime in which the quantum shot noise of the mechanical self-oscillator does not play a role. Furthermore, we numerically show that, in both cases, synchronization arises also in the quantum regime. The optomechanical system is therefore a good candidate for the study of quantum synchronization.
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Moreno Zarate, Pedro; Pons Aglio, Alicia
2011-02-01
An advanced qualitative characterization of simultaneously existing various low-power trains of ultra-short optical pulses with an internal frequency modulation in a distributed laser system based on semiconductor heterostructure is presented. The scheme represents a hybrid cavity consisting of a single-mode heterolaser operating in the active mode-locking regime and an external long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. In fact, we consider the trains of optical dissipative solitons, which appear within double balance between the second-order dispersion and cubic-law nonlinearity as well as between the active-medium gain and linear optical losses in a hybrid cavity. Moreover, we operate on specially designed modulating signals providing non-conventional composite regimes of simultaneous multi-pulse active mode-locking. As a result, the mode-locking process allows shaping regular trains of picosecond optical pulses excited by multi-pulse independent on each other sequences of periodic modulations. In so doing, we consider the arranged hybrid cavity as a combination of a quasi-linear part responsible for the active mode-locking by itself and a nonlinear part determining the regime of dissipative soliton propagation. Initially, these parts are analyzed individually, and then the primarily obtained data are coordinated with each other. Within this approach, a contribution of the appeared cubically nonlinear Ginzburg-Landau operator is analyzed via exploiting an approximate variational procedure involving the technique of trial functions.
Electro-optic harmonic conversion to switch a laser beam out of a cavity
Haas, Roger A.; Henesian, Mark A.
1987-01-01
The invention is a switch to permit a laser beam to escape a laser cavity through the use of an externally applied electric field across a harmonic conversion crystal. Amplification takes place in the laser cavity, and then the laser beam is switched out by the laser light being harmonically converted with dichroic or polarization sensitive elements present to alter the optical path of the harmonically converted laser light. Modulation of the laser beam can also be accomplished by varying the external electric field.
A simple method for characterizing and engineering thermal relaxation of an optical microcavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Weijian; Zhu, Jiangang; Özdemir, Şahin Kaya
2016-08-08
Thermal properties of a photonic resonator are determined not only by intrinsic properties of materials, such as thermo-optic coefficient, but also by the geometry and structure of the resonator. Techniques for characterization and measurement of thermal properties of individual photonic resonator will benefit numerous applications. In this work, we demonstrate a method to optically measure the thermal relaxation time and effective thermal conductance of a whispering gallery mode microcavity using optothermal effect. Two nearby optical modes within the cavity are optically probed, which allows us to quantify the thermal relaxation process of the cavity by analyzing changes in the transmissionmore » spectra induced by optothermal effect. We show that the effective thermal conductance can be experimentally deduced from the thermal relaxation measurement, and it can be tailored by changing the geometric parameters of the cavity. The experimental observations are in good agreement with the proposed analytical modeling. This method can be applied to various resonators in different forms.« less
Catheter guided by optical coherence domain reflectometry
Everett, Matthew; Colston, Billy W.; Da Silva, Luiz B.; Matthews, Dennis
2002-01-01
A guidance and viewing system based on multiplexed optical coherence domain reflectometry is incorporated into a catheter, endoscope, or other medical device to measure the location, thickness, and structure of the arterial walls or other intra-cavity regions at discrete points on the medical device during minimally invasive medical procedures. The information will be used both to guide the device through the body and to evaluate the tissue through which the device is being passed. Multiple optical fibers are situated along the circumference of the device. Light from the distal end of each fiber is directed onto the interior cavity walls via small diameter optics (such as gradient index lenses and mirrored corner cubes). Both forward viewing and side viewing fibers can be included. The light reflected or scattered from the cavity walls is then collected by the fibers and multiplexed at the proximal end to the sample arm of an optical low coherence reflectometer. The system may also be implemented in a nonmedical inspection device.
Fabrication of Silica Ultra High Quality Factor Microresonators
Maker, Ashley J.; Armani, Andrea M.
2012-01-01
Whispering gallery resonant cavities confine light in circular orbits at their periphery.1-2 The photon storage lifetime in the cavity, quantified by the quality factor (Q) of the cavity, can be in excess of 500ns for cavities with Q factors above 100 million. As a result of their low material losses, silica microcavities have demonstrated some of the longest photon lifetimes to date1-2. Since a portion of the circulating light extends outside the resonator, these devices can also be used to probe the surroundings. This interaction has enabled numerous experiments in biology, such as single molecule biodetection and antibody-antigen kinetics, as well as discoveries in other fields, such as development of ultra-low-threshold microlasers, characterization of thin films, and cavity quantum electrodynamics studies.3-7 The two primary silica resonant cavity geometries are the microsphere and the microtoroid. Both devices rely on a carbon dioxide laser reflow step to achieve their ultra-high-Q factors (Q>100 million).1-2,8-9 However, there are several notable differences between the two structures. Silica microspheres are free-standing, supported by a single optical fiber, whereas silica microtoroids can be fabricated on a silicon wafer in large arrays using a combination of lithography and etching steps. These differences influence which device is optimal for a given experiment. Here, we present detailed fabrication protocols for both types of resonant cavities. While the fabrication of microsphere resonant cavities is fairly straightforward, the fabrication of microtoroid resonant cavities requires additional specialized equipment and facilities (cleanroom). Therefore, this additional requirement may also influence which device is selected for a given experiment. Introduction An optical resonator efficiently confines light at specific wavelengths, known as the resonant wavelengths of the device. 1-2 The common figure of merit for these optical resonators is the quality factor or Q. This term describes the photon lifetime (τo) within the resonator, which is directly related to the resonator's optical losses. Therefore, an optical resonator with a high Q factor has low optical losses, long photon lifetimes, and very low photon decay rates (1/τo). As a result of the long photon lifetimes, it is possible to build-up extremely large circulating optical field intensities in these devices. This very unique property has allowed these devices to be used as laser sources and integrated biosensors.10 A unique sub-class of resonators is the whispering gallery mode optical microcavity. In these devices, the light is confined in circular orbits at the periphery. Therefore, the field is not completely confined within the device, but evanesces into the environment. Whispering gallery mode optical cavities have demonstrated some of the highest quality factors of any optical resonant cavity to date.9,11 Therefore, these devices are used throughout science and engineering, including in fundamental physics studies and in telecommunications as well as in biodetection experiments. 3-7,12 Optical microcavities can be fabricated from a wide range of materials and in a wide variety of geometries. A few examples include silica and silicon microtoroids, silicon, silicon nitride, and silica microdisks, micropillars, and silica and polymer microrings.13-17 The range in quality factor (Q) varies as dramatically as the geometry. Although both geometry and high Q are important considerations in any field, in many applications, there is far greater leverage in boosting device performance through Q enhancement. Among the numerous options detailed previously, the silica microsphere and the silica microtoroid resonator have achieved some of the highest Q factors to date.1,9 Additionally, as a result of the extremely low optical loss of silica from the visible through the near-IR, both microspheres and microtoroids are able to maintain their Q factors over a wide range of testing wavelengths.18 Finally, because silica is inherently biocompatible, it is routinely used in biodetection experiments. In addition to high material absorption, there are several other potential loss mechanisms, including surface roughness, radiation loss, and contamination loss.2 Through an optimization of the device size, it is possible to eliminate radiation losses, which arise from poor optical field confinement within the device. Similarly, by storing a device in an appropriately clean environment, contamination of the surface can be minimized. Therefore, in addition to material loss, surface scattering is the primary loss mechanism of concern.2,8 In silica devices, surface scattering is minimized by using a laser reflow technique, which melts the silica through surface tension induced reflow. While spherical optical resonators have been studied for many years, it is only with recent advances in fabrication technologies that researchers been able to fabricate high quality silica optical toroidal microresonators (Q>100 million) on a silicon substrate, thus paving the way for integration with microfluidics.1 The present series of protocols details how to fabricate both silica microsphere and microtoroid resonant cavities. While silica microsphere resonant cavities are well-established, microtoroid resonant cavities were only recently invented.1 As many of the fundamental methods used to fabricate the microsphere are also used in the more complex microtoroid fabrication procedure, by including both in a single protocol it will enable researchers to more easily trouble-shoot their experiments. PMID:22805153
Whispering gallery mode lithium niobate microresonators for photonics applications
NASA Astrophysics Data System (ADS)
Maleki, Lute; Savchenkov, Anatoliy A.; Ilchenko, Vladimir S.; Matsko, Andrey B.
2003-07-01
We review various photonics applications of whispering gallery mode (WGM) dielectric resonators and focus on the capability of generating trains of short optical pulses using WGM lithium niobate cavities. We introduce schemes of optical frequency comb generators, actively mode-locked lasers, and coupled opto-electronic oscillators where WGM cavities are utilized for the light amplification and modulation.
Preliminary design study of astronomical detector cooling system
NASA Technical Reports Server (NTRS)
Norman, R. H.
1976-01-01
The preliminary design of an astronomical detector cooling system for possible use in the NASA C-141 Airborne Infrared Observatory is presented. The system consists of the following elements: supercritical helium tank, Joule-Thomson supply gas conditioner, Joule-Thomson expander (JTX), optical cavity dewar, optical cavity temperature controller, adjustable J-T discharge gas pressure controller, and vacuum pump.
Image quality on the Kuiper Airborne Observatory. I - Results of the first flight series
NASA Technical Reports Server (NTRS)
Elliot, J. L.; Dunham, E. W.; Baron, R. L.; Watts, A. W.; Kruse, S. E.; Rose, W. C.; Gillespie, C. M., Jr.
1989-01-01
The NASA Kuiper Airborne Observatory (KAO) was flown three times during June and July, 1984 in order to study the causes of the poor seeing obtained with the 0.9-m telescope. High-speed pressure and temperature sensors were placed in the telescope cavity. Several thousand stellar images were recorded under various flight and optical configurations. It is found that the long-exposure image size is affected by telescope tracking errors, imperfect optics, poor optical alignment, telescope and instrument vibration, thermal fluctuations in the telescope cavity, and density fluctuations in the shear layer that forms the boundary between the cavity air and outside air. Possible ways to improve the quality of the images are discussed.
NASA Astrophysics Data System (ADS)
Tlidi, M.; Averlant, E.; Vladimirov, A.; Panajotov, K.
2012-09-01
We consider a broad area vertical-cavity surface-emitting laser (VCSEL) operating below the lasing threshold and subject to optical injection and time-delayed feedback. We derive a generalized delayed Swift-Hohenberg equation for the VCSEL system, which is valid close to the nascent optical bistability. We first characterize the stationary-cavity solitons by constructing their snaking bifurcation diagram and by showing clustering behavior within the pinning region of parameters. Then, we show that the delayed feedback induces a spontaneous motion of two-dimensional (2D) cavity solitons in an arbitrary direction in the transverse plane. We characterize moving cavity solitons by estimating their threshold and calculating their velocity. Numerical 2D solutions of the governing semiconductor laser equations are in close agreement with those obtained from the delayed generalized Swift-Hohenberg equation.
Fiber cavity ring-down using an optical time-domain reflectometer
NASA Astrophysics Data System (ADS)
Passos, D. J.; Silva, S. O.; Fernandes, J. R. A.; Marques, M. B.; Frazão, O.
2014-12-01
This work presented a demonstration of the potential for a fiber based cavity ring-down (CRD) using an optical time-domain reflectometer (OTDR). The OTDR was used to send the impulses down into about 20 km of a standard single optical fiber, at the end of which the fiber cavity ring-down was placed. The OTDR measured no appreciable losses, so other CRDs multiplexed could be spliced in parallel along the same optical fiber. To demonstrate the behavior and sensitivity of the proposed configuration, a displacement sensor based on a fiber taper with a diameter of 50 μm was placed inside the fiber loop, and the induced losses were measured on the CRD signal — a sensitivity of 11.8 ± 0.5 μs/mm was achieved. The dynamic range of the sensing head used in this configuration was about 2 mm. Finally, this work was also compared with different works published in the literature.
Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing
Wang, Weiqiang; Chu, Sai T.; Little, Brent E.; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei
2016-01-01
In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness. PMID:27338250
Optical bistability in a single-sided cavity coupled to a quantum channel
NASA Astrophysics Data System (ADS)
Payravi, M.; Solookinejad, Gh; Jabbari, M.; Nafar, M.; Ahmadi Sangachin, E.
2018-06-01
In this paper, we discuss the long wavelength optical reflection and bistable behavior of an InGaN/GaN quantum dot nanostructure coupled to a single-sided cavity. It is found that due to the presence of a strong coupling field, the reflection coefficient can be controlled at long wavelength, which is essential for adjusting the threshold of reflected optical bistability. Moreover, the phase shift features of the reflection pulse inside an electromagnetically induced transparency window are also discussed.
Microcontroller-based locking in optics experiments.
Huang, K; Le Jeannic, H; Ruaudel, J; Morin, O; Laurat, J
2014-12-01
Optics experiments critically require the stable and accurate locking of relative phases between light beams or the stabilization of Fabry-Perot cavity lengths. Here, we present a simple and inexpensive technique based on a stand-alone microcontroller unit to perform such tasks. Easily programmed in C language, this reconfigurable digital locking system also enables automatic relocking and sequential functioning. Different algorithms are detailed and applied to fringe locking and to low- and high-finesse optical cavity stabilization, without the need of external modulations or error signals. This technique can readily replace a number of analog locking systems advantageously in a variety of optical experiments.
NASA Astrophysics Data System (ADS)
Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.
2016-09-01
Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.
Laser-induced micro-plasmas in air for incoherent broadband cavity-enhanced absorption spectroscopy
NASA Astrophysics Data System (ADS)
Ruth, Albert; Dixneuf, Sophie; Orphal, Johannes
2016-04-01
Incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) is an experimentally straightforward absorption method where the intensity of light transmitted by an optically stable (high finesse) cavity is measured. The technique is realized using broadband incoherent sources of radiation and therefore the amount of light transmitted by a cavity consisting of high reflectance mirrors (typically R > 99.9%) can be low. In order to find an alternative to having an incoherent light source outside the cavity, an experiment was devised, where a laser-induced plasma in ambient air was generated inside a quasi-confocal cavity by a high-power femtosecond laser. The emission from the laser-induced plasma was utilized as pulsed broadband light source. The time-dependent spectra of the light leaking from the cavity were compared with those of the laser-induced plasma emission without the cavity. It was found that the light emission was sustained by the cavity despite the initially large optical losses caused by the laser-induced plasma in the cavity. The light sustained by the cavity was used to measure part of the S1 ← S0 absorption spectrum of gaseous azulene at its vapour pressure at room temperature in ambient air, as well as the strongly forbidden γ-band in molecular oxygen (b1Σ(2,0) ← X3Σ(0,0)).
Measurement of Glyoxal Using an Incoherent Broadband Cavity Enhanced Absorption Spectrometer
NASA Astrophysics Data System (ADS)
Washenfelder, R. A.; Langford, A. O.; Fuchs, H.; Brown, S. S.
2008-12-01
Glyoxal (CHOCHO) is the simplest alpha-dicarbonyl and one of the most prevalent dicarbonyls in the atmosphere. It is formed from the photooxidation of anthropogenic hydrocarbons (e.g. aromatics and acetylene), and is a minor oxidation product of isoprene and other biogenic species. Photolysis of glyoxal is a significant source of HOx (OH + HO2), and there is growing evidence that heterogeneous reactions of glyoxal play an important role in the formation of secondary organic aerosol. We present a novel technique for measurement of glyoxal using cavity enhanced absorption spectroscopy with a broadband light source (IBBCEAS). The output of a Xenon arc lamp is coupled into a 1 m optical cavity, and the spectrum of light exiting the cavity is recorded by a grating spectrometer with a charge- coupled device (CCD) array detector. The mirror reflectivity and effective path lengths are determined from the known Rayleigh scattering of He and dry zero air (N2 + O2). We use least-squares fitting with published reference spectra to simultaneous retrieve glyoxal, nitrogen dioxide (NO2), oxygen dimer (O4) and water (H2O) in the 441 to 469 nm spectral range. For a 1-min sampling time, the precision (±1σ) on signal for measurements of CHOCHO and NO2 is 29 pptv and 20 pptv respectively. We directly compare the incoherent broadband cavity enhanced absorption spectrometer to 404 and 532 nm cavity ringdown instruments for CHOCHO and NO2 detection, and find linear agreement over a wide range of concentrations. We present laboratory measurements of synthetic and real air samples containing CHOCHO and NO2, and discuss the potential for field measurements.
Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons
Dunkelberger, A. D.; Spann, B. T.; Fears, K. P.; Simpkins, B. S.; Owrutsky, J. C.
2016-01-01
Coupling vibrational transitions to resonant optical modes creates vibrational polaritons shifted from the uncoupled molecular resonances and provides a convenient way to modify the energetics of molecular vibrations. This approach is a viable method to explore controlling chemical reactivity. In this work, we report pump–probe infrared spectroscopy of the cavity-coupled C–O stretching band of W(CO)6 and the direct measurement of the lifetime of a vibration-cavity polariton. The upper polariton relaxes 10 times more quickly than the uncoupled vibrational mode. Tuning the polariton energy changes the polariton transient spectra and relaxation times. We also observe quantum beats, so-called vacuum Rabi oscillations, between the upper and lower vibration-cavity polaritons. In addition to establishing that coupling to an optical cavity modifies the energy-transfer dynamics of the coupled molecules, this work points out the possibility of systematic and predictive modification of the excited-state kinetics of vibration-cavity polariton systems. PMID:27874010
NASA Astrophysics Data System (ADS)
Shi, Tiantian; Pan, Duo; Chang, Pengyuan; Shang, Haosen; Chen, Jingbiao
2018-04-01
Without exploiting any frequency selective elements, we have realized a highly integrated, single-mode, narrow-linewidth Nd:YAG 1064 nm laser, which is end-pumped by the 808.6 nm diode laser in an integrated invar cavity. It turns out that each 1064 nm laser achieves a most probable linewidth of 8.5 kHz by beating between two identical laser systems. The output power of the 1064 nm laser increases steadily as the 808.6 nm pump power is raised, which can be up to 350 mW. Moreover, the resonant wavelength of cavity grows continuously in a certain crystal temperature range. Such a 1064 nm laser will be frequency stabilized to an ultrastable cavity by using the Pound-Drever-Hall technique and used as the good cavity laser to lock the main cavity length of 1064/1470 nm good-bad cavity dual-wavelength active optical clock.
Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators
NASA Astrophysics Data System (ADS)
Javerzac-Galy, Clément; Kumar, Anshuman; Schilling, Ryan D.; Piro, Nicolas; Khorasani, Sina; Barbone, Matteo; Goykhman, Ilya; Khurgin, Jacob B.; Ferrari, Andrea C.; Kippenberg, Tobias J.
2018-05-01
We present quantum yield measurements of single layer $\\textrm{WSe}_2$ (1L-$\\textrm{WSe}_2$) integrated with high-Q ($Q>10^6$) optical microdisk cavities, using an efficient ($\\eta>$90%) near-field coupling scheme based on a tapered optical fiber. Coupling of the excitonic emission is achieved by placing 1L-WSe$_2$ to the evanescent cavity field. This preserves the microresonator high intrinsic quality factor ($Q>10^6$) below the bandgap of 1L-WSe$_2$. The nonlinear excitation power dependence of the cavity quantum yield is in agreement with an exciton-exciton annihilation model. The cavity quantum yield is $\\textrm{QY}_\\textrm{c}\\sim10^{-3}$, consistent with operation in the \\textit{broad emitter} regime (i.e. the emission lifetime of 1L-WSe$_2$ is significantly shorter than the bare cavity decay time). This scheme can serve as a precise measurement tool for the excitonic emission of layered materials into cavity modes, for both in plane and out of plane excitation.
Optical diagnostics in the oral cavity: an overview.
Wilder-Smith, P; Holtzman, J; Epstein, J; Le, A
2010-11-01
As the emphasis shifts from damage mitigation to disease prevention or reversal of early disease in the oral cavity, the need for sensitive and accurate detection and diagnostic tools become more important. Many novel and emergent optical diagnostic modalities for the oral cavity are becoming available to clinicians with a variety of desirable attributes including: (i) non-invasiveness, (ii) absence of ionizing radiation, (iii) patient-friendliness, (iv) real-time information (v) repeatability, and (vi) high-resolution surface and subsurface images. In this article, the principles behind optical diagnostic approaches, their feasibility and applicability for imaging soft and hard tissues, and their potential usefulness as a tool in the diagnosis of oral mucosal lesions, dental pathologies, and other dental applications will be reviewed. The clinical applications of light-based imaging technologies in the oral cavity and of their derivative devices will be discussed to provide the reader with a comprehensive understanding of emergent diagnostic modalities. © 2010 John Wiley & Sons A/S.
Cavity-Enhanced Raman Spectroscopy of Natural Gas with Optical Feedback cw-Diode Lasers.
Hippler, Michael
2015-08-04
We report on improvements made on our previously introduced technique of cavity-enhanced Raman spectroscopy (CERS) with optical feedback cw-diode lasers in the gas phase, including a new mode-matching procedure which keeps the laser in resonance with the optical cavity without inducing long-term frequency shifts of the laser, and using a new CCD camera with improved noise performance. With 10 mW of 636.2 nm diode laser excitation and 30 s integration time, cavity enhancement achieves noise-equivalent detection limits below 1 mbar at 1 bar total pressure, depending on Raman cross sections. Detection limits can be easily improved using higher power diodes. We further demonstrate a relevant analytical application of CERS, the multicomponent analysis of natural gas samples. Several spectroscopic features have been identified and characterized. CERS with low power diode lasers is suitable for online monitoring of natural gas mixtures with sensitivity and spectroscopic selectivity, including monitoring H2, H2S, N2, CO2, and alkanes.
Brillouin Optomechanics in Coupled Silicon Microcavities
NASA Astrophysics Data System (ADS)
Espinel, Y. A. V.; Santos, F. G. S.; Luiz, G. O.; Alegre, T. P. Mayer; Wiederhecker, G. S.
2017-03-01
The simultaneous control of optical and mechanical waves has enabled a range of fundamental and technological breakthroughs, from the demonstration of ultra-stable frequency reference devices, to the exploration of the quantum-classical boundaries in optomechanical laser-cooling experiments. More recently, such an optomechanical interaction has been observed in integrated nano-waveguides and microcavities in the Brillouin regime, where short-wavelength mechanical modes scatter light at several GHz. Here we engineer coupled optical microcavities to enable a low threshold excitation of mechanical travelling-wave modes through backward stimulated Brillouin scattering. Exploring the backward scattering we propose silicon microcavity designs based on laterally coupled single and double-layer cavities, the proposed structures enable optomechanical coupling with very high frequency modes (11 to 25 GHz) and large optomechanical coupling rates (g0/2π) from 50 kHz to 90 kHz.
Saturated CO{sub 2} absorption near 1.6 μm for kilohertz-accuracy transition frequencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkart, Johannes, E-mail: johannes.burkart@ujf-grenoble.fr; Romanini, Daniele; Campargue, Alain
2015-05-21
Doppler-free saturated-absorption Lamb dips were measured on weak rovibrational lines of {sup 12}C{sup 16}O{sub 2} between 6189 and 6215 cm{sup −1} at sub-Pa pressures using optical feedback frequency stabilized cavity ring-down spectroscopy. By referencing the laser source to an optical frequency comb, transition frequencies for ten lines of the 30013←00001 band P-branch and two lines of the 31113←01101 hot band R-branch were determined with an accuracy of a few parts in 10{sup 11}. Involving rotational quantum numbers up to 42, the data were used for improving the upper level spectroscopic constants. These results provide a highly accurate reference frequency gridmore » over the spectral interval from 1599 to 1616 nm.« less
NASA Astrophysics Data System (ADS)
Tlidi, Mustapha; Panajotov, Krassimir; Ferré, Michel; Clerc, Marcel G.
2017-11-01
Time-delayed feedback plays an important role in the dynamics of spatially extended systems. In this contribution, we consider the generic Lugiato-Lefever model with delay feedback that describes Kerr optical frequency comb in all fiber cavities. We show that the delay feedback strongly impacts the spatiotemporal dynamical behavior resulting from modulational instability by (i) reducing the threshold associated with modulational instability and by (ii) decreasing the critical frequency at the onset of this instability. We show that for moderate input intensities it is possible to generate drifting cavity solitons with an asymmetric radiation emitted from the soliton tails. Finally, we characterize the formation of rogue waves induced by the delay feedback.
Numerical demonstration of neuromorphic computing with photonic crystal cavities.
Laporte, Floris; Katumba, Andrew; Dambre, Joni; Bienstman, Peter
2018-04-02
We propose a new design for a passive photonic reservoir computer on a silicon photonics chip which can be used in the context of optical communication applications, and study it through detailed numerical simulations. The design consists of a photonic crystal cavity with a quarter-stadium shape, which is known to foster interesting mixing dynamics. These mixing properties turn out to be very useful for memory-dependent optical signal processing tasks, such as header recognition. The proposed, ultra-compact photonic crystal cavity exhibits a memory of up to 6 bits, while simultaneously accepting bitrates in a wide region of operation. Moreover, because of the inherent low losses in a high-Q photonic crystal cavity, the proposed design is very power efficient.
Use of a fiberscope for examining cavity nests
Kathryn L. Purcell
1997-01-01
A system is described that uses a fiberscope to view nests in cavities to provide detailed information on eggs and nestlings. The flexible probe can be inserted around bends, and the tip articulates to allow viewing of the entire cavity and nest. A light guide bundle furnishes light to enable viewing of dark cavities and optical fibers transmit the impage from the lens...
2002-06-03
Molecular beam epitaxy ; Planar microcavities; Vertical cavity surface emitting lasers 1... Vertical Cavity Surface Emitting Lasers Grown by MBE DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the...S-581 83 Linkiping, Sweden Abstract The design of the vertical cavity surface emitting lasers ( VCSELs ) needs proper tuning of many
Cavity ring-down spectroscopy in the liquid phase
NASA Astrophysics Data System (ADS)
Xu, Shucheng; Sha, Guohe; Xie, Jinchun
2002-02-01
A new application for cavity ring-down spectroscopic (CRDS) technique using a pulsed polarized light source has been developed in the absorption measurement of liquids for "colorless" organic compounds using both a single sample cell and double sample cells inserted in an optical cavity at Brewster angle. At present an experimental capability of measuring absorption coefficients as small as 2-5×10-7 cm-1 has been demonstrated by measurement of the absorption baselines. The first spectra for CRDS in the liquid phase, the C-H stretching fifth vibrational overtones of benzene in the pure liquid and hexane solution are obtained. The optical absorption length for liquids in both a single sample cell and double sample cells of 1 cm length is up to 900 cm due to multipass of light within an optical cavity. Compared to the thermal lens and optoacoustic spectroscopic techniques, the sensitivity for CRDS mainly depends on the optical absorption path of the sample (single passing path of the sample times multipass times), is not determined by the laser power and the length of the sample cell. The absolute absorption coefficient and band intensity for the sample are determined directly by the spectroscopy.
Temperature Sensitivity of an Atomic Vapor Cell-Based Dispersion-Enhanced Optical Cavity
NASA Technical Reports Server (NTRS)
Myneni, K.; Smith, D. D.; Chang, H.; Luckay, H. A.
2015-01-01
Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S(sub o), due to the thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the Rb-87 D(sub 2) transition. A semi-empirical model of the temperature-dependence of the absorption profile, characterized by two parameters, a(sub o)(T) and gamma(sub a)(T) allows the temperature-dependence of the cavity response, S(sub o)(T) and dS(sub o)/dT to be predicted over a range of temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S(sub o), given the practical constraints on temperature stability for an atomic vapor cell.
Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM
Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; ...
2015-11-20
Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength goldmore » disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.« less
Transformation optics beyond the manipulation of light trajectories.
Ginis, Vincent; Tassin, Philippe
2015-08-28
Since its inception in 2006, transformation optics has become an established tool to understand and design electromagnetic systems. It provides a geometrical perspective into the properties of light waves without the need for a ray approximation. Most studies have focused on modifying the trajectories of light rays, e.g. beam benders, lenses, invisibility cloaks, etc. In this contribution, we explore transformation optics beyond the manipulation of light trajectories. With a few well-chosen examples, we demonstrate that transformation optics can be used to manipulate electromagnetic fields up to an unprecedented level. In the first example, we introduce an electromagnetic cavity that allows for deep subwavelength confinement of light. The cavity is designed with transformation optics even though the concept of trajectory ceases to have any meaning in a structure as small as this cavity. In the second example, we show that the properties of Cherenkov light emitted in a transformation-optical material can be understood and modified from simple geometric considerations. Finally, we show that optical forces--a quadratic function of the fields--follow the rules of transformation optics too. By applying a folded coordinate transformation to a pair of waveguides, optical forces can be enhanced just as if the waveguides were closer together. With these examples, we open up an entirely new spectrum of devices that can be conceived using transformation optics. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Transformation optics beyond the manipulation of light trajectories
Ginis, Vincent; Tassin, Philippe
2015-01-01
Since its inception in 2006, transformation optics has become an established tool to understand and design electromagnetic systems. It provides a geometrical perspective into the properties of light waves without the need for a ray approximation. Most studies have focused on modifying the trajectories of light rays, e.g. beam benders, lenses, invisibility cloaks, etc. In this contribution, we explore transformation optics beyond the manipulation of light trajectories. With a few well-chosen examples, we demonstrate that transformation optics can be used to manipulate electromagnetic fields up to an unprecedented level. In the first example, we introduce an electromagnetic cavity that allows for deep subwavelength confinement of light. The cavity is designed with transformation optics even though the concept of trajectory ceases to have any meaning in a structure as small as this cavity. In the second example, we show that the properties of Cherenkov light emitted in a transformation-optical material can be understood and modified from simple geometric considerations. Finally, we show that optical forces—a quadratic function of the fields—follow the rules of transformation optics too. By applying a folded coordinate transformation to a pair of waveguides, optical forces can be enhanced just as if the waveguides were closer together. With these examples, we open up an entirely new spectrum of devices that can be conceived using transformation optics. PMID:26217057
Transmission-enabled fiber Fabry-Perot cavity based on a deeply etched slotted micromirror.
Othman, Muhammad A; Sabry, Yasser M; Sadek, Mohamed; Nassar, Ismail M; Khalil, Diaa A
2018-06-01
In this work, we report the analysis, fabrication, and characterization of an optical cavity built using a Bragg-coated fiber (BCF) mirror and a metal-coated microelectromechanical systems (MEMS) slotted micromirror, where the latter allows transmission output from the cavity. Theoretical modeling, using Fourier optics analysis for the cavity response based on tracing the propagation of light back and forth between the mirrors, is presented. Detailed simulation analysis is carried out for the spectral response of the cavity under different design conditions. MEMS chips of the slotted micromirror are fabricated using deep reactive ion etching of a silicon-on-insulator substrate with different device-etching depths of 150 μm and 80 μm with aluminum and gold metal coating, respectively. The cavity is characterized as an optical filter using a BCF with reflectivity that is larger than 95% in a 300 nm range across the E-band and the L-band. Versatile filter characteristics were obtained for different values of the MEMS micromirror slit width and cavity length. A free spectral range (FSR) of about 33 nm and a quality factor of about 196 were obtained for a 5.5 μm width aluminum slit, while an FSR of about 148 nm and a quality factor of about 148 were obtained for a 1.5 μm width gold slit. The presented structure opens the door for wide spectral response transmission-type MEMS filters.
Transmission Nonreciprocity in a Mutually Coupled Circulating Structure
NASA Astrophysics Data System (ADS)
He, Bing; Yang, Liu; Jiang, Xiaoshun; Xiao, Min
2018-05-01
Breaking Lorentz reciprocity was believed to be a prerequisite for nonreciprocal transmissions of light fields, so the possibility of nonreciprocity by linear optical systems was mostly ignored. We put forward a structure of three mutually coupled microcavities or optical fiber rings to realize optical nonreciprocity. Although its couplings with the fields from two different input ports are constantly equal, such system transmits them nonreciprocally either under the saturation of an optical gain in one of the cavities or with the asymmetric couplings of the circulating fields in different cavities. The structure made up of optical fiber rings can perform nonreciprocal transmissions as a time-independent linear system without breaking Lorentz reciprocity. Optical isolation for inputs simultaneously from two different ports and even approximate optical isolator operations are implementable with the structure.
Measurement of laser quantum frequency fluctuations using a Pound-Drever stabilization system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Y.J.; Mussche, P.L.; Siegman, A.E.
1994-06-01
The authors describe a method for measuring the frequency fluctuation spectrum of a laser oscillator, especially the weak noise contributions in the wings of the spectrum, and apply this method to confirm the existence of large excess quantum frequency fluctuations in a laser oscillator using an unstable optical resonator. The measurement apparatus uses the Pound-Drever technique, which employs an RF phase modulator and a Fabry-Perot cavity to produce a sensitive high-speed frequency discrimination signal. The authors show that this signal can also be used to measure the quantum noise contributions to the frequency spectrum of a laser oscillator. Experimental measurementsmore » on a miniature diode-pumped Nd:YAG laser using a stable optical cavity closely match the predictions of the usual Schawlow-Townes theory, while the frequency fluctuations in a nearly identical laser employing an unstable optical resonator are approximately 1,300 times larger. These much larger fluctuations arise in part from the larger output coupling and cavity bandwidth of the unstable cavity, but they also appear to confirm a predicted excess spontaneous emission factor (Petermann excess noise factor) of [approx]180 times arising from the nonorthogonal transverse mode properties of the unstable cavity.« less
Baldacci, Lorenzo; Pitanti, Alessandro; Masini, Luca; Arcangeli, Andrea; Colangelo, Francesco; Navarro-Urrios, Daniel; Tredicucci, Alessandro
2016-08-19
We demonstrate the use of a compound optical cavity as linear displacement detector, by measuring the thermal motion of a silicon nitride suspended membrane acting as the external mirror of a near-infrared Littrow laser diode. Fluctuations in the laser optical power induced by the membrane vibrations are collected by a photodiode integrated within the laser, and then measured with a spectrum analyzer. The dynamics of the membrane driven by a piezoelectric actuator is investigated as a function of air pressure and actuator displacement in a homodyne configuration. The high Q-factor (~3.4 · 10(4) at 8.3 · 10(-3) mbar) of the fundamental mechanical mode at ~73 kHz guarantees a detection sensitivity high enough for direct measurement of thermal motion at room temperature (~87 pm RMS). The compound cavity system here introduced can be employed as a table-top, cost-effective linear displacement detector for cavity optomechanics. Furthermore, thanks to the strong optical nonlinearities of the laser compound cavity, these systems open new perspectives in the study of non-Markovian quantum properties at the mesoscale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuruma, K.; Takamiya, D.; Ota, Y.
We demonstrate precise and quick detection of the positions of quantum dots (QDs) embedded in two-dimensional photonic crystal nanocavities. We apply this technique to investigate the QD position dependence of the optical coupling between the QD and the nanocavity. We use a scanning electron microscope (SEM) operating at a low acceleration voltage to detect surface bumps induced by the QDs buried underneath. This enables QD detection with a sub-10 nm precision. We then experimentally measure the vacuum Rabi spectra to extract the optical coupling strengths (gs) between single QDs and cavities, and compare them to the values estimated by a combinationmore » of the SEM-measured QD positions and electromagnetic cavity field simulations. We found a highly linear relationship between the local cavity field intensities and the QD-cavity gs, suggesting the validity of the point dipole approximation used in the estimation of the gs. The estimation using SEM has a small standard deviation of ±6.2%, which potentially enables the high accuracy prediction of g prior to optical measurements. Our technique will play a key role for deeply understanding the interaction between QDs and photonic nanostructures and for advancing QD-based cavity quantum electrodynamics.« less
Baldacci, Lorenzo; Pitanti, Alessandro; Masini, Luca; Arcangeli, Andrea; Colangelo, Francesco; Navarro-Urrios, Daniel; Tredicucci, Alessandro
2016-01-01
We demonstrate the use of a compound optical cavity as linear displacement detector, by measuring the thermal motion of a silicon nitride suspended membrane acting as the external mirror of a near-infrared Littrow laser diode. Fluctuations in the laser optical power induced by the membrane vibrations are collected by a photodiode integrated within the laser, and then measured with a spectrum analyzer. The dynamics of the membrane driven by a piezoelectric actuator is investigated as a function of air pressure and actuator displacement in a homodyne configuration. The high Q-factor (~3.4 · 104 at 8.3 · 10−3 mbar) of the fundamental mechanical mode at ~73 kHz guarantees a detection sensitivity high enough for direct measurement of thermal motion at room temperature (~87 pm RMS). The compound cavity system here introduced can be employed as a table-top, cost-effective linear displacement detector for cavity optomechanics. Furthermore, thanks to the strong optical nonlinearities of the laser compound cavity, these systems open new perspectives in the study of non-Markovian quantum properties at the mesoscale. PMID:27538586
NASA Astrophysics Data System (ADS)
Voigt, Kristen; Hertzberg, Jared; Dutta, Sudeep; Budoyo, Rangga; Ballard, Cody; Lobb, Chris; Wellstood, Frederick
As part of an experiment to optically trap 87Rb atoms near a superconducting device, we have coupled an optical fiber to a translatable thin-film lumped-element superconducting Al microwave resonator that is cooled to 15 mK in a dilution refrigerator. The lumped-element resonator has a resonance frequency of 6.15 GHz, a quality factor of 8 x 105 at high powers, and is mounted inside a superconducting aluminum 3D cavity. The 60-µm-diameter optical fiber passes through small openings in the cavity and close to the lumped-element resonator. The 3D cavity is mounted on an x-z Attocube-translation stage that allows the lumped-element resonator and optical fiber to be moved relative to each other. When the resonator is brought near to the fiber, we observe a shift in resonance frequency, of up to 8 MHz, due to the presence of the fiber dielectric. When optical power is sent through the fiber, Rayleigh scattering in the fiber causes a position-dependent weak illumination of the thin-film resonator affecting its resonance frequency and Q. We model the optical response of the resonator by taking into account optical production, recombination, and diffusion of quasiparticles as well as the non-uniform position-dependent illumination of the resonator.
Visible light surface emitting semiconductor laser
Olbright, Gregory R.; Jewell, Jack L.
1993-01-01
A vertical-cavity surface-emitting laser is disclosed comprising a laser cavity sandwiched between two distributed Bragg reflectors. The laser cavity comprises a pair of spacer layers surrounding one or more active, optically emitting quantum-well layers having a bandgap in the visible which serve as the active optically emitting material of the device. The thickness of the laser cavity is m .lambda./2n.sub.eff where m is an integer, .lambda. is the free-space wavelength of the laser radiation and n.sub.eff is the effective index of refraction of the cavity. Electrical pumping of the laser is achieved by heavily doping the bottom mirror and substrate to one conductivity-type and heavily doping regions of the upper mirror with the opposite conductivity type to form a diode structure and applying a suitable voltage to the diode structure. Specific embodiments of the invention for generating red, green, and blue radiation are described.
Asymmetric light transmission based on coupling between photonic crystal waveguides and L1/L3 cavity
NASA Astrophysics Data System (ADS)
Zhang, Jinqiannan; Chai, Hongyu; Yu, Zhongyuan; Cheng, Xiang; Ye, Han; Liu, Yumin
2017-09-01
A compact design of all-optical diode with mode conversion function based on a two-dimensional photonic crystal waveguide and an L1 or L3 cavity is theoretically investigated. The proposed photonic crystal structures comprise a triangular arrangement of air holes embedded in a silicon substrate. Asymmetric light propagation is achieved via the spatial mode match/mismatch in the coupling region. The simulations show that at each cavity's resonance frequency, the transmission efficiency of the structure with the L1 and L3 cavities reach 79% and 73%, while the corresponding unidirectionalities are 46 and 37 dB, respectively. The functional frequency can be controlled by simply adjusting the radii of specific air holes in the L1 and L3 cavities. The proposed structure can be used as a frequency filter, a beam splitter and has potential applications in all-optical integrated circuits.
Mid-Ir Cavity Ring-Down Spectrometer for Biological Trace Nitric Oxide Detection
NASA Astrophysics Data System (ADS)
Kan, Vincent; Ragab, Ahemd; Stsiapura, Vitali; Lehmann, Kevin K.; Gaston, Benjamin M.
2011-06-01
S-nitrosothiols have received much attention in biochemistry and medicine as donors of nitrosonium ion (NO^+) and nitric oxide (NO) - physiologically active molecules involved in vasodilation and signal transduction. Determination of S-nitrosothiols content in cells and tissues is of great importance for fundamental research and medical applications. We will report on our ongoing development of a instrument to measure trace levels of nitric oxide gas (NO), released from S-nitrosothiols after exposure to UV light (340 nm) or reaction with L-Cysteine+CuCl mixture. The instrument uses the method of cavity ring-down spectroscopy, probing rotationally resolved lines in the vibrational fundamental transition near 5.2 μm. The laser source is a continuous-wave, room temperature external cavity quantum cascade laser. An acousto-optic modulator is used to abruptly turn off the optical power incident on the cavity when the laser and cavity pass through resonance.
Design of a terahertz parametric oscillator based on a resonant cavity in a terahertz waveguide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, K., E-mail: k-saito@material.tohoku.ac.jp; Oyama, Y.; Tanabe, T.
We demonstrate ns-pulsed pumping of terahertz (THz) parametric oscillations in a quasi-triply resonant cavity in a THz waveguide. The THz waves, down converted through parametric interactions between the pump and signal waves at telecom frequencies, are confined to a GaP single mode ridge waveguide. By combining the THz waveguide with a quasi-triply resonant cavity, the nonlinear interactions can be enhanced. A low threshold pump intensity for parametric oscillations can be achieved in the cavity waveguide. The THz output power can be maximized by optimizing the quality factors of the cavity so that an optical to THz photon conversion efficiency, η{submore » p}, of 0.35, which is near the quantum-limit level, can be attained. The proposed THz optical parametric oscillator can be utilized as an efficient and monochromatic THz source.« less
On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information
Bitarafan, Mohammad H.; DeCorby, Ray G.
2017-01-01
For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities—with an air or vacuum gap between a pair of high reflectance mirrors—offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics. PMID:28758967
Robust nano-fabrication of an integrated platform for spin control in a tunable microcavity
NASA Astrophysics Data System (ADS)
Bogdanović, Stefan; Liddy, Madelaine S. Z.; van Dam, Suzanne B.; Coenen, Lisanne C.; Fink, Thomas; Lončar, Marko; Hanson, Ronald
2017-12-01
Coupling nitrogen-vacancy (NV) centers in diamonds to optical cavities is a promising way to enhance the efficiency of diamond-based quantum networks. An essential aspect of the full toolbox required for the operation of these networks is the ability to achieve the microwave control of the electron spin associated with this defect within the cavity framework. Here, we report on the fabrication of an integrated platform for the microwave control of an NV center electron spin in an open, tunable Fabry-Pérot microcavity. A critical aspect of the measurements of the cavity's finesse reveals that the presented fabrication process does not compromise its optical properties. We provide a method to incorporate a thin diamond slab into the cavity architecture and demonstrate the control of the NV center spin. These results show the promise of this design for future cavity-enhanced NV center spin-photon entanglement experiments.
Optical-bistability-enabled control of resonant light transmission for an atom-cavity system
NASA Astrophysics Data System (ADS)
Sawant, Rahul; Rangwala, S. A.
2016-02-01
The control of light transmission through a standing-wave Fabry-Pérot cavity containing atoms is theoretically and numerically investigated, when the cavity mode beam and an intersecting control beam are both close to specific atomic resonances. A four-level atomic system is considered and its interaction with the cavity mode is studied by solving for the cavity field and atomic state populations. The conditions for optical bistability of the atom-cavity system are obtained. The response of the intracavity intensity to an intersecting beam on atomic resonance is understood in the presence of stationary atoms (closed system) and nonstatic atoms (open system) in the cavity. The nonstatic system of atoms is modelled by adjusting the atomic state populations to represent the exchange of atoms in the cavity mode, which corresponds to a thermal environment where atoms are moving in and out of the cavity mode volume. The control behavior with three- and two-level atomic systems is also studied, and the rich physics arising out of these systems for closed and open atomic systems is discussed. The solutions to the models are used to interpret the steady-state and transient behavior observed by Sharma et al. [Phys. Rev. A 91, 043824 (2015)], 10.1103/PhysRevA.91.043824.
NASA Astrophysics Data System (ADS)
Lu, En; Ran, Zengling; Peng, Fei; Liu, Zhiwei; Xu, Fuguo
2012-03-01
Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic Fabry-Perot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.
NASA Astrophysics Data System (ADS)
Ran, Zengling; Rao, Yunjiang; Liu, Zhiwei; Xu, Fuguo
2011-05-01
Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic fabry-periot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.
Carr, Dustin W [Albuquerque, NM
2008-04-08
An optical displacement sensor is disclosed which uses a vertical-cavity surface-emitting laser (VCSEL) coupled to an optical cavity formed by a moveable membrane and an output mirror of the VCSEL. This arrangement renders the lasing characteristics of the VCSEL sensitive to any movement of the membrane produced by sound, vibrations, pressure changes, acceleration, etc. Some embodiments of the optical displacement sensor can further include a light-reflective diffractive lens located on the membrane or adjacent to the VCSEL to control the amount of lasing light coupled back into the VCSEL. A photodetector detects a portion of the lasing light from the VCSEL to provide an electrical output signal for the optical displacement sensor which varies with the movement of the membrane.
Thermal Noise Limit in Frequency Stabilization of Lasers with Rigid Cavities
NASA Technical Reports Server (NTRS)
Numata, Kenji; Kemery, Amy; Camp, Jordan
2004-01-01
We evaluated thermal noise (Brownian motion) in a rigid reference cavity used for frequency stabilization of lasers, based on the mechanical loss of cavity materials and the numerical analysis of the mirror-spacer mechanics with t.he direct application of the fluctuation dissipation theorem. This noise sets a fundamental limit for the frequency stability achieved with a rigid frequency- reference cavity of order 1 Hz/square root Hz(0.01 Hz/square root Hz) at 10 mHz (100 Hz) at room temperature. This level coincides with the world-highest level stabilization results.
Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals.
Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Tzallas, Paraskevas; Loppinet, Benoit; Rakitzis, T Peter
2015-09-14
We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces.
Study of phase-locked diode laser array and DFB/DBR surface emitting laser diode
NASA Astrophysics Data System (ADS)
Hsin, Wei
New types of phased-array and surface-emitting lasers are designed. The importance and approaches (or structures) of different phased array and surface emitting laser diodes are reviewed. The following are described: (1) a large optical cavity channel substrate planar laser array with layer thickness chirping; (2) a vertical cavity surface emitter with distributed feedback (DFB) optical cavity and a transverse junction buried heterostructure; (3) a microcavity distributed Bragg reflector (DBR) surface emitter; and (4) two surface emitting laser structures which utilized lateral current injection schemes to overcome the problems occurring in the vertical injection scheme.
Short-cavity squeezing in barium
NASA Technical Reports Server (NTRS)
Hope, D. M.; Bachor, H-A.; Manson, P. J.; Mcclelland, D. E.
1992-01-01
Broadband phase sensitive noise and squeezing were experimentally observed in a system of barium atoms interacting with a single mode of a short optical cavity. Squeezing of 13 +/- 3 percent was observed. A maximum possible squeezing of 45 +/- 8 percent could be inferred for out experimental conditions, after correction for measured loss factors. Noise reductions below the quantum limit were found over a range of detection frequencies 60-170 MHz and were best for high cavity transmission and large optical depths. The amount of squeezing observed is consistent with theoretical predictions from a full quantum statistical model of the system.
Photoacoustic Studies on Iodine.
NASA Astrophysics Data System (ADS)
Bhan, Avtar N.
A photoacoustic cavity was constructed which employs a temperature-controlled cylindrical cavity with optical windows at either end. It was operated in the lowest longitudinal mode using a small electret microphone for detecting the acoustic signal and a photomultiplier tube for detecting the optical signal. Molecular Iodine was used as the specimen gas and argon as the buffer gas. The photoacoustic characteristics of the system were studied. Iodine molecules, excited periodically by intensity modulated optical radiation (xenon discharge), de-excited by non-radiative processes which result in pressure waves having the same modulation frequency as that of the light. These pressure waves are detected as acoustical pulses by the microphone situated in the wall of the cavity. Studies were conducted for different pressures of buffer gas (100 torr to 800 torr) at several different Iodine pressures in the range between 0.3 and 1 torr. The longitudinal mode of excitation provides an opportunity to compare the response of the cavity under acoustical excitation with that under optical excitation. The relevant parameters in the investigation were: Q, the quality factor of the cavity; the resonant frequency, partial pressures of argon and Iodine; temperature; and the signal amplitude. It was found that the Q of the cavity was well -behaved following the theoretically predicted dependence on SQRT.(P and on T('- 3/4). The absorption coefficient of Iodine determined photometrically, increased with increasing argon pressure up to a limiting value of pressure that depended on Iodine concentration. The photoacoustic signal showed a similar increase with increasing argon pressure. This signal reached a limiting value at a pressure which corresponded closely with that found optically. This is taken to indicate that the extinction coefficient of Iodine in argon, at the level of dilution used in these studies, depends on the argon pressure. A method was developed for measuring the concentration of Iodine at low levels through application of the shift in the frequency of the longitudinal mode resonance of the cavity. Also, resonance technique was employed for determining the velocity of sound in argon. A value of 307.7 M/sec was established as compared with the value of 319 M/sec as reported in various standard handbooks.
Quantum Control of a Spin Qubit Coupled to a Photonic Crystal Cavity
2012-12-01
Cavities in Monocrystalline Diamond. Physical Review Letters 109, 033604 (2012). 14. Kroutvar, M. et al. Optically programmable electron spin...temperatures, varying the detuning of X− from the cavity. The dashed blue lines in panel a are fits to the reflectivity. The spectra are vertically
Towards thermal noise free optomechanics
NASA Astrophysics Data System (ADS)
Page, Michael A.; Zhao, Chunnong; Blair, David G.; Ju, Li; Ma, Yiqiu; Pan, Huang-Wei; Chao, Shiuh; Mitrofanov, Valery P.; Sadeghian, Hamed
2016-11-01
Thermal noise generally greatly exceeds quantum noise in optomechanical devices unless the mechanical frequency is very high or the thermodynamic temperature is very low. This paper addresses the design concept for a novel optomechanical device capable of ultrahigh quality factors in the audio frequency band with negligible thermal noise. The proposed system consists of a minimally supported millimeter scale pendulum mounted in a double end-mirror sloshing cavity that is topologically equivalent to a membrane-in-the-middle cavity. The radiation pressure inside the high-finesse cavity allows for high optical stiffness, cancellation of terms which lead to unwanted negative damping and suppression of quantum radiation pressure noise. We solve the optical spring dynamics of the system using the Hamiltonian, find the noise spectral density and show that stable optical trapping is possible. We also assess various loss mechanisms, one of the most important being the acceleration loss due to the optical spring. We show that practical devices, starting from a centre-of-mass pendulum frequency of 0.1 Hz, could achieve a maximum quality factor of (1014) with optical spring stiffened frequency 1-10 kHz. Small resonators of mass 1 ≤ft(μ \\right) g or less could achieve a Q-factor of (1011) at a frequency of 100 kHz. Applications for such devices include white light cavities for improvement of gravitational wave detectors, or sensors able to operate near the quantum limit.
S-band optical amplification by an internally generated pump in thulium ytterbium codoped fiber.
Chang, Jun; Wang, Qing-Pu; Zhang, Xingyu; Liu, Zhejin; Liu, Zhaojun; Peng, Gang-Ding
2005-05-30
We propose a novel scheme in which Yb3+ codoping and a laser cavity are introduced in Tm3+ doped fiber to achieve efficient S-band optical amplification with a 980 nm pump source. This scheme makes it possible for conventional 980 nm pump sources for Er3+ doped fiber amplifiers to be used for S-band Tm3+ doped fiber amplifiers (TDFAs). By introducing a laser cavity into an amplifier, an internally generated pump from Yb3+ at a desirable wavelength for pumping Tm3+ could be produced. We establish and analyze, for the first time to our knowledge, a new theoretical model that takes into consideration both the internal lasing operation inside the optical amplification process and the energy transfer between the Tm3+ and the Yb3+ ions in TDFAs. Various situations such as Tm3+ doping concentration and cavity reflectivity have been investigated. The results show that high optical gain and high pump efficiency can be achieved by use of 980 nm sources. With a laser cavity of 1050 nm in Tm3+ and Yb3+ codoped fiber, for example, it is possible to achieve high optical gain of greater than 20 dB, a noise figure of approximately 5 dB in the wavelength range from 1450 to 1480 nm with a 0.3 W power at 980 nm pump source.
Non-GPS full position and angular orientation onboard sensors for moving and stationary platforms
NASA Astrophysics Data System (ADS)
Dhadwal, Harbans S.; Rastegar, Jahangir; Feng, Dake; Kwok, Philip; Pereira, Carlos M.
2016-05-01
Angular orientation of both mobile and stationary objects continues to be an ongoing topic of interest for guidance and control as well as for non-GPS based solutions for geolocations of assets in any environment. Currently available sensors, which include inertia devices such as accelerometers and gyros; magnetometers; surface mounted antennas; radars; GPS; and optical line of sight devices, do not provide an acceptable solution for many applications, particularly for gun-fired munitions and for all-weather and all environment scenarios. A robust onboard full angular orientation sensor solution, based on a scanning polarized reference source and a polarized geometrical cavity orientation sensor, is presented. The full position of the object, in the reference source coordinate system, is determined by combining range data obtained using established time-of-flight techniques, with the angular orientation information.
Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance
NASA Astrophysics Data System (ADS)
Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.
2017-10-01
Electro-optic modulation is a key function in optical data communication and possible future optical compute engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While a variety of high-performance modulators have been demonstrated, no comprehensive picture of what factors are most responsible for high performance has emerged so far. Here we report the first systematic and comprehensive analytical and computational investigation for high-performance compact on-chip electro-optic modulators by considering emerging active materials, model considerations and cavity feedback at the nanoscale. We discover that the delicate interplay between the material characteristics and the optical mode properties plays a key role in defining the modulator performance. Based on physical tradeoffs between index modulation, loss, optical confinement factors and slow-light effects, we find that there exist combinations of bias, material and optical mode that yield efficient phase or amplitude modulation with acceptable insertion loss. Furthermore, we show how material properties in the epsilon near zero regime enable reduction of length by as much as by 15 times. Lastly, we introduce and apply a cavity-based electro-optic modulator figure of merit, Δλ/Δα, relating obtainable resonance tuning via phase shifting relative to the incurred losses due to the fundamental Kramers-Kronig relations suggesting optimized device operating regions with optimized modulation-to-loss tradeoffs. This work paves the way for a holistic design rule of electro-optic modulators for high-density on-chip integration.
Mode stabilization in quantum cascade lasers via an intra-cavity cascaded nonlinearity.
St-Jean, M Renaudat; Amanti, M I; Bismuto, A; Beck, M; Faist, J; Sirtori, C
2017-02-06
We present self-stabilization of the inter-mode separation of a quantum cascade laser (QCL) emitting at 9 μm via cascaded second order nonlinearity. This effect has been observed in lasers that have the optical cavity embedded into a microwave strip-line. The intermodal beat note spectra narrow with increasing laser output power, up to less than 100 kHz. A flat frequency response to direct modulation up to 14 GHz is reported for these microstrip QCLs. The laser inter-mode spacing can be locked to an external RF signal and tuned by more than 1 MHz from the free-running spacing. A parallel study on the same laser material in a non-microstrip line waveguide shows superior performances of the microstrip QCL in terms of the intermodal spectral locking and stability. Finally by analyzing our results with the theory of the injection locking of coupled oscillators, we deduce that the microwave power injected in the microstrip QCL is 2 orders of magnitude higher than in the reference laser.
Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range
NASA Astrophysics Data System (ADS)
Dolgovskiy, Vladimir; Schilt, Stéphane; Bucalovic, Nikola; Di Domenico, Gianni; Grop, Serge; Dubois, Benoît; Giordano, Vincent; Südmeyer, Thomas
2014-09-01
We demonstrate the first ultra-stable microwave generation based on a 1.5-μm diode-pumped solid-state laser (DPSSL) frequency comb. Our system relies on optical-to-microwave frequency division from a planar-waveguide external cavity laser referenced to an ultra-stable Fabry-Perot cavity. The evaluation of the microwave signal at ~10 GHz uses the transportable ultra-low-instability signal source ULISS®, which employs a cryo-cooled sapphire oscillator. With the DPSSL comb, we measured -125 dBc/Hz phase noise at 1 kHz offset frequency, likely limited by the photo-detection shot-noise or by the noise floor of the reference cryo-cooled sapphire oscillator. For comparison, we also generated low-noise microwave using a commercial Er:fiber comb stabilized in similar conditions and observed >20 dB lower phase noise in the microwave generated from the DPSSL comb. Our results confirm the high potential of the DPSSL technology for low-noise comb applications.
NASA Astrophysics Data System (ADS)
Hunter, Craig R.; Jones, Brynmor E.; Schlosser, Peter; Sørensen, Simon Toft; Strain, Michael J.; McKnight, Loyd J.
2018-02-01
This paper will present developments in narrow-linewidth semiconductor-disk-laser systems using novel frequencystabilisation schemes for reduced sensitivity to mechanical vibrations, a critical requirement for mobile applications. Narrow-linewidth single-frequency lasers are required for a range of applications including metrology and highresolution spectroscopy. Stabilisation of the laser was achieved using a monolithic fibre-optic ring resonator with free spectral range of 181 MHz and finesse of 52 to act as passive reference cavity for the laser. Such a cavity can operate over a broad wavelength range and is immune to a wide band of vibrational frequency noise due to its monolithic implementation. The frequency noise of the locked system has been measured and compared to typical Fabry-Perotlocked lasers using vibration equipment to simulate harsh environments, and analysed here. Locked linewidths of < 40 kHz have been achieved. These developments offer a portable, narrow-linewidth laser system for harsh environments that can be flexibly designed for a range of applications.
Jacquin, Olivier; Lacot, Eric; Glastre, Wilfried; Hugon, Olivier; Guillet de Chatellus, Hugues
2011-08-01
Using an Nd:YVO₄ microchip laser with a relaxation frequency in the megahertz range, we have experimentally compared a heterodyne interferometer based on a Michelson configuration with an autodyne interferometer based on the laser optical feedback imaging (LOFI) method regarding their signal-to-noise ratios. In the heterodyne configuration, the beating between the reference beam and the signal beam is realized outside the laser cavity, while in the autodyne configuration, the wave beating takes place inside the laser cavity, and the relaxation oscillations of the laser intensity then play an important part. For a given laser output power, object under investigation, and detection noise level, we have determined the amplification gain of the LOFI interferometer compared to the heterodyne interferometer. LOFI interferometry is demonstrated to show higher performance than heterodyne interferometry for a wide range of laser powers and detection levels of noise. The experimental results are in good agreement with the theoretical predictions.
NASA Astrophysics Data System (ADS)
Li, Z. P.; Duan, Y. M.; Wu, K. R.; Zhang, G.; Zhu, H. Y.; Wang, X. L.; Chen, Y. H.; Xue, Z. Q.; Lin, Q.; Song, G. C.; Su, H.
2013-05-01
We report a continuous-wave (CW), intra-cavity singly resonant optical parametric oscillator (OPO), based on periodically poled MgO:LiNbO3 pumped by a diode-end-pumped CW Nd:YVO4 laser, and calculate the gain of optical parametric amplification as a function of pump beam waist (at 1064 nm) in the singly resonant OPO (SRO) cavity, to balance the mode-matching and the intensity for the higher gain of a signal wave in the operation of the SRO. In order to achieve maximum gain, we use a convex lens to limit the 1064 nm beam waist. In the experiment, a tunable signal output from 1492 to 1614 nm and an idler output from 3122 to 3709 nm are obtained. For an 808 nm pump power of 11.5 W, a maximum signal output power of up to 2.48 W at 1586 nm and an idler output power of 1.1 W at 3232 nm are achieved with a total optical-to-optical conversion efficiency of 31%.
Statistical characterization of the optical interaction at a supercavitating interface
NASA Astrophysics Data System (ADS)
Walters, Gage; Kane, Tim; Jefferies, Rhett; Antonelli, Lynn
2016-05-01
The optical characteristics of an air/water interface have been widely studied for natural interface formations. However, the creation and management of artificial cavities creates a complicated interaction of gas and liquid that makes optical sensing and communication through the interface challenging. A ventilated cavity can reduce friction in underwater vehicles, but the resulting bubble drastically impedes optical and acoustic communication propagation. The complicated interaction at the air/water boundary yields surface waves and turbulence that make modeling and compensating of the optical properties difficult. Our experimental approach uses a narrow laser beam to probe the surface of the interface and measure the beam deflection and lensing effects. Using a vehicle model with a cavitator in a water tunnel, a laser beam is propagated outward from the model through the boundary and projected onto a target grid. The beam projection is captured using a high-speed camera, allowing us to measure and analyze beam shape and deflection. This approach has enabled us to quantify the temporal and spatial periodic variations in the beam propagation through the cavity boundary and fluid.
1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J.
We report a room temperature optically pumped Quantum Dot-based Spin-Vertical-External-Cavity Surface-Emitting laser (QD Spin-VECSEL) operating at the telecom wavelength of 1.3 μm. The active medium was composed of 5 × 3 QD layers; each threefold group was positioned at an antinode of the standing wave of the optical field. Circularly polarized lasing in the QD-VECSEL under Continuous-Wave optical pumping has been realized with a threshold pump power of 11 mW. We further demonstrate at room temperature control of the QD-VECSEL output polarization ellipticity via the pump polarization.
A chip-scale integrated cavity-electro-optomechanics platform.
Winger, M; Blasius, T D; Mayer Alegre, T P; Safavi-Naeini, A H; Meenehan, S; Cohen, J; Stobbe, S; Painter, O
2011-12-05
We present an integrated optomechanical and electromechanical nanocavity, in which a common mechanical degree of freedom is coupled to an ultrahigh-Q photonic crystal defect cavity and an electrical circuit. The system allows for wide-range, fast electrical tuning of the optical nanocavity resonances, and for electrical control of optical radiation pressure back-action effects such as mechanical amplification (phonon lasing), cooling, and stiffening. These sort of integrated devices offer a new means to efficiently interconvert weak microwave and optical signals, and are expected to pave the way for a new class of micro-sensors utilizing optomechanical back-action for thermal noise reduction and low-noise optical read-out.
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Chow, Chi-Wai; Lu, Shao-Sheng
2014-05-01
In this work, we propose and demonstrate a multi-wavelength laser source produced by utilizing a C-band reflective semiconductor optical amplifier (RSOA) with a dual-ring fiber cavity. Here, the laser cavity consists of an RSOA, a 1 × 2 optical coupler, a 2 × 2 optical coupler and a polarization controller. As a result, thirteen to eighteen wavelengths around the L band could be generated simultaneously when the bias current of the C-band RSOA was driven at 30-70 mA. In addition, the output stabilities of the power and wavelength are also discussed.
Non-classical light generated by quantum-noise-driven cavity optomechanics.
Brooks, Daniel W C; Botter, Thierry; Schreppler, Sydney; Purdy, Thomas P; Brahms, Nathan; Stamper-Kurn, Dan M
2012-08-23
Optomechanical systems, in which light drives and is affected by the motion of a massive object, will comprise a new framework for nonlinear quantum optics, with applications ranging from the storage and transduction of quantum information to enhanced detection sensitivity in gravitational wave detectors. However, quantum optical effects in optomechanical systems have remained obscure, because their detection requires the object’s motion to be dominated by vacuum fluctuations in the optical radiation pressure; so far, direct observations have been stymied by technical and thermal noise. Here we report an implementation of cavity optomechanics using ultracold atoms in which the collective atomic motion is dominantly driven by quantum fluctuations in radiation pressure. The back-action of this motion onto the cavity light field produces ponderomotive squeezing. We detect this quantum phenomenon by measuring sub-shot-noise optical squeezing. Furthermore, the system acts as a low-power, high-gain, nonlinear parametric amplifier for optical fluctuations, demonstrating a gain of 20 dB with a pump corresponding to an average of only seven intracavity photons. These findings may pave the way for low-power quantum optical devices, surpassing quantum limits on position and force sensing, and the control and measurement of motion in quantum gases.
Few-Photon Nonlinearity with an Atomic Ensemble in an Optical Cavity
NASA Astrophysics Data System (ADS)
Tanji, Haruka
2011-12-01
This thesis investigates the effect of the cavity vacuum field on the dispersive properties of an atomic ensemble in a strongly coupled high-finesse cavity. In particular, we demonstrate vacuum-induced transparency (VIT). The light absorption by the ensemble is suppressed by up to 40% in the presence of a cavity vacuum field. The sharp transparency peak is accompanied by the reduction in the group velocity of a light pulse, measured to be as low as 1800 m/s. This observation is a large step towards the realization of photon number-state filters, recently proposed by Nikoghosyan et al. Furthermore, we demonstrate few-photon optical nonlinearity, where the transparency is increased from 40% to 80% with ˜12 photons in the cavity mode. The result may be viewed as all-optical switching, where the transmission of photons in one mode may be controlled by 12 photons in another. These studies point to the possibility of nonlinear interaction between photons in different free-space modes, a scheme that circumvents cavity-coupling losses that plague cavity-based quantum information processing. Potential applications include advanced quantum devices such as photonic quantum gates, photon-number resolving detectors, and single-photon transistors. In the efforts leading up to these results, we investigate the collective enhancement of atomic coupling to a single mode of a low-finesse cavity. With the strong collective coupling, we obtain exquisite control of quantum states in the atom-photon coupled system. In this system, we demonstrate a heralded single-photon source with 84% conditional efficiency, a quantum bus for deterministic entanglement of two remote ensembles, and heralded polarization-state quantum memory with fidelity above 90%.
Gain-assisted broadband ring cavity enhanced spectroscopy
NASA Astrophysics Data System (ADS)
Selim, Mahmoud A.; Adib, George A.; Sabry, Yasser M.; Khalil, Diaa
2017-02-01
Incoherent broadband cavity enhanced spectroscopy can significantly increase the effective path length of light-matter interaction to detect weak absorption lines over broad spectral range, for instance to detect gases in confined environments. Broadband cavity enhancement can be based on the decay time or the intensity drop technique. Decay time measurement is based on using tunable laser source that is expensive and suffers from long scan time. Intensity dependent measurement is usually reported based on broadband source using Fabry-Perot cavity, enabling short measurement time but suffers from the alignment tolerance of the cavity and the cavity insertion loss. In this work we overcome these challenges by using an alignment-free ring cavity made of an optical fiber loop and a directional coupler, while having a gain medium pumped below the lasing threshold to improve the finesse and reduce the insertion loss. Acetylene (C2H2) gas absorption is measured around 1535 nm wavelength using a semiconductor optical amplifier (SOA) gain medium. The system is analyzed for different ring resonator forward coupling coefficient and loses, including the 3-cm long gas cell insertion loss and fiber connector losses used in the experimental verification. The experimental results are obtained for a coupler ratio of 90/10 and a fiber length of 4 m. The broadband source is the amplified spontaneous emission of another SOA and the output is measured using a 70pm-resolution optical spectrum analyzer. The absorption depth and the effective interaction length are improved about an order of magnitude compared to the direct absorption of the gas cell. The presented technique provides an engineering method to improve the finesse and, consequently the effective length, while relaxing the technological constraints on the high reflectivity mirrors and free-space cavity alignment.
Simple interrogator for optical fiber-based white light Fabry-Perot interferometers.
Yu, Zhihao; Tian, Zhipeng; Wang, Anbo
2017-02-15
In this Letter, we present the design of a simple signal interrogator for optical fiber-based white light Fabry-Perot (F-P) interferometers. With the hardware being composed of only a flat fused silica wafer and a CCD camera, this interrogator translates the spectral interference into a spatial interference pattern, and then demodulates the F-P cavity length with the use of a relatively simple demodulation algorithm. The concept is demonstrated experimentally in a fiber optic sensor with a sapphire wafer as the F-P cavity.
Photon-number-resolving SSPDs with system detection efficiency over 50% at telecom range
NASA Astrophysics Data System (ADS)
Zolotov, P.; Divochiy, A.; Vakhtomin, Yu.; Moshkova, M.; Morozov, P.; Seleznev, V.; Smirnov, K.
2018-02-01
We used technology of making high-efficiency superconducting single-photon detectors as a basis for improvement of photon-number-resolving devices. By adding optical cavity and using an improved NbN superconducting film, we enhanced previously reported system detection efficiency at telecom range for such detectors. Our results show that implementation of optical cavity helps to develop four-section device with quantum efficiency over 50% at 1.55 µm. Performed experimental studies of detecting multi-photon optical pulses showed irregularities over defining multi-photon through single-photon quantum efficiency.
Quantum noise of a Bose-Einstein condensate in an optical cavity, correlations, and entanglement
NASA Astrophysics Data System (ADS)
Szirmai, G.; Nagy, D.; Domokos, P.
2010-04-01
A Bose-Einstein condensate of ultracold atoms inside the field of a laser-driven optical cavity exhibits dispersive optical bistability. We describe this system by using mean-field approximation and by analyzing the correlation functions of the linearized quantum fluctuations around the mean-field solution. The entanglement and the statistics of the atom-field quadratures are given in the stationary state. It is shown that the mean-field solution, that is, the Bose-Einstein condensate, is robust against entanglement generation for most of the phase diagram.
Rapid and efficient formation of propagation invariant shaped laser beams.
Chriki, Ronen; Barach, Gilad; Tradosnky, Chene; Smartsev, Slava; Pal, Vishwa; Friesem, Asher A; Davidson, Nir
2018-02-19
A rapid and efficient all-optical method for forming propagation invariant shaped beams by exploiting the optical feedback of a laser cavity is presented. The method is based on the modified degenerate cavity laser (MDCL), which is a highly incoherent cavity laser. The MDCL has a very large number of degrees of freedom (320,000 modes in our system) that can be coupled and controlled, and allows direct access to both the real space and Fourier space of the laser beam. By inserting amplitude masks into the cavity, constraints can be imposed on the laser in order to obtain minimal loss solutions that would optimally lead to a superposition of Bessel-Gauss beams forming a desired shaped beam. The resulting beam maintains its transverse intensity distribution for relatively long propagation distances.
NASA Astrophysics Data System (ADS)
Kohler, Jonathan; Gerber, Justin A.; Dowd, Emma; Stamper-Kurn, Dan M.
2018-01-01
We realize a spin-orbit interaction between the collective spin precession and center-of-mass motion of a trapped ultracold atomic gas, mediated by spin- and position-dependent dispersive coupling to a driven optical cavity. The collective spin, precessing near its highest-energy state in an applied magnetic field, can be approximated as a negative-mass harmonic oscillator. When the Larmor precession and mechanical motion are nearly resonant, cavity mediated coupling leads to a negative-mass instability, driving exponential growth of a correlated mode of the hybrid system. We observe this growth imprinted on modulations of the cavity field and estimate the full covariance of the resulting two-mode state by observing its transient decay during subsequent free evolution.
NASA Astrophysics Data System (ADS)
Zou, Xiaotian; Wu, Nan; Tian, Ye; Zhang, Hongtao; Niezrecki, Christopher; Wang, Xingwei
2011-06-01
Traumatic brain injury (TBI, also called intracranial injury) is a high potential threat to our soldiers. A helmet structural health monitoring system can be effectively used to study the effects of ballistic/blast events on the helmet and human skull to prevent soldiers from TBI. However, one of the biggest challenges lies in that the pressure sensor installed inside the helmet system must be fast enough to capture the blast wave during the transient period. In this paper, an ultrafast optical fiber sensor is presented to measure the blast signal. The sensor is based on a Fabry-Pérot (FP) interferometeric principle. An FP cavity is built between the endface of an etched optical fiber tip and the silica thin diaphragm attached on the end of a multimode optical fiber. The sensor is small enough to be installed in different locations of a helmet to measure blast pressure simultaneously. Several groups of tests regarding multi-layer blast events were conducted to evaluate the sensors' performance. The sensors were mounted in different segments of a shock tube side by side with the reference sensors, to measure a rapidly increasing pressure. The segments of the shock tube were filled with different media. The results demonstrated that our sensors' responses agreed well with those from the electrical reference sensors. In addition, the home-made shock tube could provide a good resource to study the propagation of blast event in different media.
All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer
Sturm, C.; Tanese, D.; Nguyen, H.S.; Flayac, H.; Galopin, E.; Lemaître, A.; Sagnes, I.; Solnyshkov, D.; Amo, A.; Malpuech, G.; Bloch, J.
2014-01-01
Quantum fluids based on light is a highly developing research field, since they provide a nonlinear platform for developing optical functionalities and quantum simulators. An important issue in this context is the ability to coherently control the properties of the fluid. Here we propose an all-optical approach for controlling the phase of a flow of cavity-polaritons, making use of their strong interactions with localized excitons. Here we illustrate the potential of this method by implementing a compact exciton–polariton interferometer, which output intensity and polarization can be optically controlled. This interferometer is cascadable with already reported polariton devices and is promising for future polaritonic quantum optic experiments. Complex phase patterns could be also engineered using this optical method, providing a key tool to build photonic artificial gauge fields. PMID:24513781
Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal.
van Leest, Thijs; Caro, Jacob
2013-11-21
On-chip optical trapping and manipulation of cells based on the evanescent field of photonic structures is emerging as a promising technique, both in research and for applications in broader context. Relying on mass fabrication techniques, the involved integration of photonics and microfluidics allows control of both the flow of light and water on the scale of interest in single cell microbiology. In this paper, we demonstrate for the first time optical trapping of single bacteria (B. subtilis and E. coli) using photonic crystal cavities for local enhancement of the evanescent field, as opposed to the synthetic particles used so far. Three types of cavities (H0, H1 and L3) are studied, embedded in a planar photonic crystal and optimized for coupling to two collinear photonic crystal waveguides. The photonic crystals are fabricated on a silicon-on-insulator chip, onto which a fluidic channel is created as well. For each of the cavities, when pumped at the resonance wavelength (around 1550 nm), we clearly demonstrate optical trapping of bacteria, in spite of their low index contrast w.r.t. water. By tracking the confined Brownian motion of B. subtilis spores in the traps using recorded microscope observations, we derive strong in-plane trap stiffnesses of about 7.6 pN nm(-1) W(-1). The values found agree very well with calculations based on the Maxwell stress tensor for the force and finite-difference time-domain simulations of the fields for the fabricated cavity geometries. We envision that our lab-on-a-chip with photonic crystal traps opens up new application directions, e.g. immobilization of single bio-objects such as mammalian cells and bacteria under controlled conditions for optical microscopy studies.
Kile, D.E.; Foord, E.E.
1998-01-01
Optical properties are presented for 66 samples of mica covering the range from annite ??? biotite ??? zinnwaldite ??? ferroan lepidolite and ferroan muscovite from occurrences of granitic pegmatite (NYF type) throughout the Pikes Peak batholith (PPB) in Colorado. Chemical composition was determined for 34 of these samples. The optical data are correlated with composition, mode of occurrence, and relation to pegmatite paragenesis. Optical properties of the trioctahedral micas show a consistent trend of decreasing ?? index of refraction, from an average of 1.693 in annite of the host granite to 1.577 in zinnwaldite and ferroan lepidolite of the miarolitic cavities, which correlates with a progressively decreasing content of Fe. A comparison of optical and compositional data for micas from localities throughout the PPB indicates a variation in geochemical evolution among pegmatites of different districts, and between the Pikes Peak Granite and its late satellite plutons. Analyses of mica samples taken from cross-sections through individual pegmatites reveal a decrease in index of refraction and total iron that unambiguously document a progressive geochemical evolution within a given pegmatite. Such data, in addition to field evidence, indicate that micas enclosed within massive quartz are paragenetically older than those within miarolitic cavities; minerals within miarolitic cavities represent the final stages of primary crystallization. A general model of pegmatite paragenesis is proposed that hypothesizes formation of miarolitic cavities as a consequence of pegmatite configuration and inclination, as well as early crystallization of massive quartz that confines the silicate melt and volatile phase, resulting in closed-system crystallization with a concomitant increase in pressure, consequent episodic cavity-rupture events, and corresponding changes in mica composition.
Development of the 1.6μm OPG/OPA system wavelength-controlled precisely for CO2 DIAL
NASA Astrophysics Data System (ADS)
Abo, M.; Shibata, Y.; Nagasawa, C.
2010-12-01
We developed an optical parametric oscillator (OPO) laser system for 1.6μm CO2 DIAL1). In order to improve the measurement accuracy of CO2 profiles, development of high power and wavelength stabilized laser system has been conducted. We report a new high-power 1.6μm laser transmitter based on a parametric master oscillator-power amplifier (MOPA) system pumped by a LD-pumped Q-switched Nd:YAG laser which has the injection seed laser locked to the iodine absorption line. The master oscillator is an optical parametric generator (OPG), based on an MgO-doped periodically poled LiTaO3 (PPMgLT) crystal. The OPOs require either active control of the cavity length or slight misalignment of the cavity. On the other hand, the OPGs do not require a cavity and instead rely on sufficient conversion efficiency to be obtained with a single pass through the crystal. The single-frequency oscillation of the OPG was achieved by injection seeding. The 1.6μm emission of the OPG is amplified by two-stage optical parametric amplifiers (OPAs). The each PPMgLT crystal was mounted on the copper holder, and the temperature control of the each holder was carried out within 0.01 K. The wavelength feedback system of the Nd:YAG seed laser is performed with the side locking of the iodine absorption spectrum (line No.1107) and the frequency stability is realized within 10 MHz rms. Stabilization of the 1.6μm DFB seed laser is estimated to within 4 MHz rms at the CO2 absorption line center and within 1.8 MHz rms at the CO2 absorption line slope using the wavelength control unit. We demonstrated single-longitudinal-mode emission with the OPG and two OPAs. The beam quality was TEM00 mode, the pulse energy was 12 mJ at 500 Hz repetition rate and the frequency stability was less than 10MHz rms. The unique performances of this optical parametric system make a relevant transmitter for CO2 DIAL. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. Reference (1) D. Sakaisawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile, Applied Optics, Vol.48, No.4, pp.748-757, 2009.
Nyaupane, Parashu R; Perez-Delgado, Yasnahir; Camejo, David; Wright, Lesley M; Manzanares, Carlos E
2017-05-01
The A-band of oxygen has been measured at low resolution at temperatures between 90 K and 373 K using the phase shift cavity ring down (PS-CRD) technique. For temperatures between 90 K and 295 K, the PS-CRD technique presented here involves an optical cavity attached to a cryostat. The static cell and mirrors of the optical cavity are all inside a vacuum chamber at the same temperature of the cryostat. The temperature of the cell can be changed between 77 K and 295 K. For temperatures above 295 K, a hollow glass cylindrical tube without windows has been inserted inside an optical cavity to measure the temperature of air flowing through the tube. The cavity consists of two highly reflective mirrors which are mounted parallel to each other and separated by a distance of 93 cm. In this experiment, air is passed through a heated tube. The temperature of the air flowing through the tube is determined by measuring the intensity of the oxygen absorption as a function of the wavenumber. The A-band of oxygen is measured between 298 K and 373 K, with several air flow rates. To obtain the temperature, the energy of the lower rotational state for seven selected rotational transitions is linearly fitted to a logarithmic function that contains the relative intensity of the rotational transition, the initial and final rotational quantum numbers, and the energy of the transition. Accuracy of the temperature measurement is determined by comparing the calculated temperature from the spectra with the temperature obtained from a calibrated thermocouple inserted at the center of the tube. This flowing air temperature sensor will be used to measure the temperatures of cooling air at the input (cold air) and output (hot air) after cooling the blades of a laboratory gas turbine. The results could contribute to improvements in turbine blade cooling design.
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Pons Aglio, Alicia; Moreno Zarate, Pedro; Mansurova, Svetlana
2010-06-01
We present an advanced approach to describing low-power trains of bright picosecond optical dissipative solitary pulses with an internal frequency modulation in practically important case of exploiting semiconductor heterolaser operating in near-infrared range in the active mode-locking regime. In the chosen schematic arrangement, process of the active mode-locking is caused by a hybrid nonlinear cavity consisting of this heterolaser and an external rather long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and small linear optical losses. Our analysis of shaping dissipative solitary pulses includes three principal contributions associated with the modulated gain, total optical losses, as well as with linear and nonlinear phase shifts. In fact, various trains of the non-interacting to one another optical dissipative solitons appear within simultaneous balance between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in a hybrid cavity. Our specific approach makes possible taking the modulating signals providing non-conventional composite regimes of a multi-pulse active mode-locking. Within our model, a contribution of the appearing nonlinear Ginzburg-Landau operator to the parameters of dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions.
NASA Astrophysics Data System (ADS)
Hyvönen, Nuutti
2007-10-01
The aim of optical tomography is to reconstruct the optical properties inside a physical body, e.g. a neonatal head, by illuminating it with near-infrared light and measuring the outward flux of photons on the object boundary. Because a brain consists of strongly scattering tissue with imbedded cavities filled by weakly scattering cerebrospinal fluid, propagation of near-infrared photons in the human head can be treated by combining the diffusion approximation of the radiative transfer equation with geometrical optics to obtain the radiosity-diffusion forward model of optical tomography. At the moment, a disadvantage with the radiosity-diffusion model is that the locations of the transparent cavities must be known in advance in order to be able to reconstruct the physiologically interesting quantities, i.e., the absorption and the scatter in the strongly scattering brain tissue. In this work we show that the boundary measurement map of optical tomography is Fréchet differentiable with respect to the shape of a strongly convex nonscattering region. Using this result, we introduce a numerical algorithm for approximating an unknown nonscattering cavity by a ball if the background diffuse optical properties of the object are known. The functionality of the method is demonstrated through two-dimensional numerical experiments.
An optical biosensor using MEMS-based V-grooves
NASA Astrophysics Data System (ADS)
Tian, Ye; Ma, Xiaodong; Zou, Xiaotian; Wu, Nan; Wang, Xingwei
2011-05-01
An optical fiber biosensor featuring miniaturization, electromagnetic interference (EMI)-immunity, and flexibility is presented. The sensor was fabricated by aligning two gold-deposited optical single-mode fiber facets inside V-grooves on a silicon chip to form a Fabry-Perot (FP) cavity. The mirrors on the fiber facets were made of deposited gold (Au) films, which provided a high finesse to produce a highly sensitivity. Microelectromechanical systems (MEMS) fabrication techniques were used to precisely control the profile and angle of the V-grooves on the silicon. The biotin-terminated thiol molecule was firstly immobilized on the gold surface. Subsequently, the molecules of Neutravidin were specifically bound to the biotin-terminated self-assembled monolayers (SAMs). The induced changes of cavity length and refractive index (RI) upon the gold surface lead to an optical path difference (OPD) of the FP cavity, which was detected by demodulating the transmission spectrum phase shift. By taking advantage of MEMS techniques, multiple biosensors can be integrated into one small silicon chip for detecting various biomolecule targets simultaneously.
Dynamics of Superradiant Lasers
NASA Astrophysics Data System (ADS)
Thompson, James
2014-05-01
A superradiant laser has been shown to operate with less than one photon on average inside of the optical cavity. In this regime, almost all of the phase information of the laser is stored in the atoms rather than the cavity field. As a result, the laser's phase is highly insensitive to both technical and fundamental thermal cavity mirror vibrations. This vibration noise presently limits the coherence of the best lasers as well as the precision of the optical lattice clocks that these lasers interrogate. We have explored the physics of superradiant lasers utilizing Raman transitions between hyperfine states in rubidium to mimic narrow optical transitions. In this talk, we will discuss the amplitude stability of our superradiant Raman laser, and the dynamics of phase synchronization in our system. We will also consider the prospects for future superradiant lasers that would lase on the same highly-forbidden transitions used in optical lattice clocks. We acknowledge support from DARPA QUASAR, ARO, NIST, and the NSF PFC.
First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO
NASA Astrophysics Data System (ADS)
Blair, Carl; Gras, Slawek; Abbott, Richard; Aston, Stuart; Betzwieser, Joseph; Blair, David; DeRosa, Ryan; Evans, Matthew; Frolov, Valera; Fritschel, Peter; Grote, Hartmut; Hardwick, Terra; Liu, Jian; Lormand, Marc; Miller, John; Mullavey, Adam; O'Reilly, Brian; Zhao, Chunnong; Abbott, B. P.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Anderson, S. B.; Ananyeva, A.; Appert, S.; Arai, K.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bell, A. S.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Bork, R.; Brooks, A. F.; Ciani, G.; Clara, F.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Da Silva Costa, C. F.; Daw, E. J.; DeBra, D.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Dwyer, S. E.; Effler, A.; Etzel, T.; Evans, T. M.; Factourovich, M.; Fair, H.; Fernández Galiana, A.; Fisher, R. P.; Fulda, P.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Goetz, E.; Goetz, R.; Gray, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, E. D.; Hammond, G.; Hanks, J.; Hanson, J.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Izumi, K.; Jones, R.; Kandhasamy, S.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kijbunchoo, N.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Lockerbie, N. A.; Lundgren, A. P.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Matichard, F.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McIntyre, G.; McIver, J.; Mendell, G.; Merilh, E. L.; Meyers, P. M.; Mittleman, R.; Moreno, G.; Mueller, G.; Munch, J.; Nuttall, L. K.; Oberling, J.; Oppermann, P.; Oram, Richard J.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Paris, H. R.; Parker, W.; Pele, A.; Penn, S.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Raab, F. J.; Radkins, H.; Raffai, P.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Roma, V. J.; Romie, J. H.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sandberg, V.; Savage, R. L.; Schofield, R. M. S.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sigg, D.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Staley, A.; Strain, K. A.; Tanner, D. B.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Torrie, C. I.; Traylor, G.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Worden, J.; Wu, G.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors
2017-04-01
Interferometric gravitational wave detectors operate with high optical power in their arms in order to achieve high shot-noise limited strain sensitivity. A significant limitation to increasing the optical power is the phenomenon of three-mode parametric instabilities, in which the laser field in the arm cavities is scattered into higher-order optical modes by acoustic modes of the cavity mirrors. The optical modes can further drive the acoustic modes via radiation pressure, potentially producing an exponential buildup. One proposed technique to stabilize parametric instability is active damping of acoustic modes. We report here the first demonstration of damping a parametrically unstable mode using active feedback forces on the cavity mirror. A 15 538 Hz mode that grew exponentially with a time constant of 182 sec was damped using electrostatic actuation, with a resulting decay time constant of 23 sec. An average control force of 0.03 nN was required to maintain the acoustic mode at its minimum amplitude.
Nozaki, Kengo; Shinya, Akihiko; Matsuo, Shinji; Sato, Tomonari; Kuramochi, Eiichi; Notomi, Masaya
2013-05-20
We experimentally and theoretically clarified that a Fano resonant system based on a coupled optical cavity has better performance when used as an all-optical switch than a single cavity in terms of switching energy, contrast, and operation bandwidth. We successfully fabricated a Fano system consisting of doubly coupled photonic-crystal (PhC) nanocavities, and demonstrated all-optical switching for the first time. A steep asymmetric transmission spectrum was clearly observed, thereby enabling a low-energy and high-contrast switching operation. We achieved the switching with a pump energy of a few fJ, a contrast of more than 10 dB, and an 18 ps switching time window. These levels of performance are actually better than those for Lorentzian resonance in a single cavity. We also theoretically investigated the achievable performance in a well-designed Fano system, which suggested a high contrast for the switching of more than 20 dB in a fJ energy regime.
Magneto-photonic crystal microcavities based on magnetic nanoparticles embedded in Silica matrix
NASA Astrophysics Data System (ADS)
Hocini, Abdesselam; Moukhtari, Riad; Khedrouche, Djamel; Kahlouche, Ahmed; Zamani, Mehdi
2017-02-01
Using the three-dimensional finite difference time domain method (3D FDTD) with perfectly matched layers (PML), optical and magneto-optical properties of two-dimensional magneto-photonic crystals micro-cavity is studied. This micro-cavity is fabricated by SiO2/ZrO2 or SiO2/TiO2 matrix doped with magnetic nanoparticles, in which the refractive index varied in the range of 1.51-1.58. We demonstrate that the Q factor for the designed cavity increases as the refractive index increases, and we find that the Q factor decreases as the volume fraction VF% due to off-diagonal elements increases. These magnetic microcavities may serve as a fundamental structure in a variety of ultra compact magneto photonic devices such as optical isolators, circulators and modulators in the future.
Feedback control of thermal lensing in a high optical power cavity.
Fan, Y; Zhao, C; Degallaix, J; Ju, L; Blair, D G; Slagmolen, B J J; Hosken, D J; Brooks, A F; Veitch, P J; Munch, J
2008-10-01
This paper reports automatic compensation of strong thermal lensing in a suspended 80 m optical cavity with sapphire test mass mirrors. Variation of the transmitted beam spot size is used to obtain an error signal to control the heating power applied to the cylindrical surface of an intracavity compensation plate. The negative thermal lens created in the compensation plate compensates the positive thermal lens in the sapphire test mass, which was caused by the absorption of the high intracavity optical power. The results show that feedback control is feasible to compensate the strong thermal lensing expected to occur in advanced laser interferometric gravitational wave detectors. Compensation allows the cavity resonance to be maintained at the fundamental mode, but the long thermal time constant for thermal lensing control in fused silica could cause difficulties with the control of parametric instabilities.
Frequency-doubled vertical-external-cavity surface-emitting laser
Raymond, Thomas D.; Alford, William J.; Crawford, Mary H.; Allerman, Andrew A.
2002-01-01
A frequency-doubled semiconductor vertical-external-cavity surface-emitting laser (VECSEL) is disclosed for generating light at a wavelength in the range of 300-550 nanometers. The VECSEL includes a semiconductor multi-quantum-well active region that is electrically or optically pumped to generate lasing at a fundamental wavelength in the range of 600-1100 nanometers. An intracavity nonlinear frequency-doubling crystal then converts the fundamental lasing into a second-harmonic output beam. With optical pumping with 330 milliWatts from a semiconductor diode pump laser, about 5 milliWatts or more of blue light can be generated at 490 nm. The device has applications for high-density optical data storage and retrieval, laser printing, optical image projection, chemical-sensing, materials processing and optical metrology.
NASA Astrophysics Data System (ADS)
Long, D. A.; Truong, G.-W.; van Zee, R. D.; Plusquellic, D. F.; Hodges, J. T.
2014-03-01
We present ultrasensitive measurements of molecular absorption using frequency-agile rapid scanning, cavity ring-down spectroscopy with an external-cavity diode laser. A microwave source that drives an electro-optic phase modulator with a bandwidth of 20 GHz generates pairs of sidebands on the probe laser. The optical cavity provides for high sensitivity and filters the carrier and all but a single, selected sideband. Absorption spectra were acquired by stepping the tunable sideband from mode-to-mode of the ring-down cavity at a rate that was limited only by the cavity decay time. This approach allows for scanning rates of 8 kHz per cavity resonance, a minimum detectable absorption coefficient of 1.7 × 10-11 cm-1 after only 20 ms of averaging, and a noise-equivalent absorption coefficient of 1.7 × 10-12 cm-1 Hz-1/2. By comparison with cavity-enhanced laser absorption spectrometers reported in the literature, the present system is, to the best of our knowledge, among the most sensitive and has by far the highest spectrum scanning rate.
Türk, Ayşe Gözde; Sabuncu, Metin; Ünal, Sena; Önal, Banu; Ulusoy, Mübin
2016-01-01
The purpose of the study was to use the photonic imaging modality of optical coherence tomography (OCT) to compare the marginal adaptation of composite inlays fabricated by direct and indirect techniques. Class II cavities were prepared on 34 extracted human molar teeth. The cavities were randomly divided into two groups according to the inlay fabrication technique. The first group was directly restored on cavities with a composite (Esthet X HD, Dentsply, Germany) after isolating. The second group was indirectly restored with the same composite material. Marginal adaptations were scanned before cementation with an invisible infrared light beam of OCT (Thorlabs), allowing measurement in 200 µm intervals. Restorations were cemented with a self-adhesive cement resin (SmartCem2, Dentsply), and then marginal adaptations were again measured with OCT. Mean values were statistically compared by using independent-samples t-test and paired samples t-test (p<0.05), before and after cementation. Direct inlays presented statistically smaller marginal discrepancy values than indirect inlays, before (p=0.00001442) and after (p=0.00001466) cementation. Marginal discrepancy values were increased for all restorations after cementation (p=0.00008839, p=0.000000952 for direct and indirect inlays, respectively). The mean marginal discrepancy value of the direct group increased from 56.88±20.04 µm to 91.88±31.7 µm, whereas the indirect group increased from 107.54±35.63 µm to 170.29±54.83 µm. Different techniques are available to detect marginal adaptation of restorations, but the OCT system can give quantitative information about resin cement thickness and its interaction between tooth and restoration in a nondestructive manner. Direct inlays presented smaller marginal discrepancy than indirect inlays. The marginal discrepancy values were increased for all restorations that refer to cement thickness after cementation.
Auto-locking waveguide amplifier system for lidar and magnetometric applications
NASA Astrophysics Data System (ADS)
Pouliot, A.; Beica, H. C.; Carew, A.; Vorozcovs, A.; Carlse, G.; Kumarakrishnan, A.
2018-02-01
We describe a compact waveguide amplifier system that is suitable for optically pumping rubidium magnetometers. The system consists of an auto-locking vacuum-sealed external cavity diode laser, a semiconductor tapered amplifier and a pulsing unit based on an acousto-optic modulator. The diode laser utilises optical feedback from an interference filter to narrow the linewidth of an inexpensive laser diode to 500 kHz. This output is scannable over an 8 GHz range (at 780 nm) and can be locked without human intervention to any spectral marker in an expandable library of reference spectra, using the autolocking controller. The tapered amplifier amplifies the output from 50 mW up to 2 W with negligible distortions in the spectral quality. The system can operate at visible and near infrared wavelengths with MHz repetition rates. We demonstrate optical pumping of rubidium vapour with this system for magnetometric applications. The magnetometer detects the differential absorption of two orthogonally polarized components of a linearly polarized probe laser following optical pumping by a circularly polarized pump laser. The differential absorption signal is studied for a range of pulse lengths, pulse amplitudes and DC magnetic fields. Our results suggest that this laser system is suitable for optically pumping spin-exchange free magnetometers.
High-Energy Passive Mode-Locking of Fiber Lasers
Ding, Edwin; Renninger, William H.; Wise, Frank W.; Grelu, Philippe; Shlizerman, Eli; Kutz, J. Nathan
2012-01-01
Mode-locking refers to the generation of ultrashort optical pulses in laser systems. A comprehensive study of achieving high-energy pulses in a ring cavity fiber laser that is passively mode-locked by a series of waveplates and a polarizer is presented in this paper. Specifically, it is shown that the multipulsing instability can be circumvented in favor of bifurcating to higher-energy single pulses by appropriately adjusting the group velocity dispersion in the fiber and the waveplate/polarizer settings in the saturable absorber. The findings may be used as practical guidelines for designing high-power lasers since the theoretical model relates directly to the experimental settings. PMID:22866059
Optoelectronic Materials Center
1991-06-11
surface - emitting GaAs/AIGaAs vertical - cavity laser (TJ- VCSEL ) incorporating wavelength-resonant...multi-quantum well, vertical cavity surface - emitted laser . This structure consists entirely of undoped epilayers, thus simplifying the problems of... cavity surface - emitting lasers ( VCSELs ) for doubling and for parallel optical data processing. Progress - GaAIAs/GaAs and InGaAs/GaAs RPG- VCSEL
Polarized micro-cavity organic light-emitting devices.
Park, Byoungchoo; Kim, Mina; Park, Chan Hyuk
2009-04-27
We present the results of a study of light emissions from a polarized micro-cavity Organic Light-Emitting Device (OLED), which consisted of a flexible, anisotropic one-dimensional (1-D) photonic crystal (PC) film substrate. It is shown that luminous Electroluminescent (EL) emissions from the polarized micro-cavity OLED were produced at relatively low operating voltages. It was also found that the peak wavelengths of the emitted EL light corresponded to the two split eigen modes of the high-energy band edges of the anisotropic PC film, with a strong dependence on the polarization state of the emitting light. For polarization along the ordinary axis of the anisotropic PC film, the optical split micro-cavity modes occurred at the longer high-energy photonic band gap (PBG) edge, while for polarization along the extraordinary axis, the split micro-cavity modes occurred at the shorter high-energy PBG edge, with narrow bandwidths. We demonstrated that the polarization and emission mode of the micro-cavity OLED may be selected by choosing the appropriate optical axis of the anisotropic 1-D PC film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bin, E-mail: liubin-d@126.com; Liu, Yun-Feng; He, Xing-Dao
2016-06-15
A high efficiency all-optical diode based on photonic crystal (PC) waveguide has been proposed and numerically investigated by finite-difference time-domain (FDTD) method. The structure is asymmetrically coupled by a micro-cavity containing nonlinear Kerr medium and a FP cavity at sides of PC waveguide. Because of interference between two cavities, Fano peak and FP peak can both appear in transmission spectra and unidirectional transmission can be achieved. The working wavelength can set between two peaks and near to the Fano peak. For forward launch with suitable light intensity, nonlinear Kerr effect of micro-cavity can been excited. It will result in redmore » shift of Fano peak and achieving forward transmission. But for backward launch, a stronger incidence light is needed to the excite Kerr effect due to the design of asymmetric structure. This design has many advantages, including high maximum transmittance, high transmittance contrast ratio, low power threshold, short response time, and ease of integration.« less
Visible Vertical Cavity Surface Emitting Lasers
1993-01-01
circular output beams are easily coupled into optical fibers, or focused or collimated with microlenslets. The VCSELs can be tested individually at the wafer...semiconductor visible VCSEL . Also shown is the DBR reflectance and reflectivity phase , as seen from the optical cavity, and the electric field intensity ...76 xv Figure page 2.32 Calculated electric field intensity for the example IR and visible VCSELs shown in Fig. 2.31 ........................... 79
Investigations of a Coherently Driven Semiconductor Optical Cavity QED System
2008-09-30
A. Fiber taper waveguide coupling Two of the primary difficulties in performing resonant optical measurements on the microcavity-QD system are ef...with the predomi- nantly radially polarized cavity mode. As a result, we esti- mate that spatial misalignment is the primary cause for the reduced...Mode splitting circles and peak reflection value diamonds as a fuction of Pd and ncav. Theoretical predic- tions are shown as dashed lines
NASA Astrophysics Data System (ADS)
Zhang, Yu-Qing; Zhu, Zhong-Hua; Peng, Zhao-Hui; Jiang, Chun-Lei; Chai, Yi-Feng; Hai, Lian; Tan, Lei
2018-06-01
We theoretically study the single-photon transport along a one-dimensional optical waveguide coupled to an optomechanical cavity containing a Λ-type three-level atom. Our numerical results show that the transmission spectra of the incident photon can be well controlled by such a hybrid atom-optomechanical system. The effects of the optomechanical coupling strength, the classical laser beam applied to the atom, atom-cavity detuning, and atomic dissipation on the single-photon transport properties are analyzed. It is of particular interest that an analogous double electromagnetically induced transparency emerges in the single-photon transmission spectra.
Surface wave resonance and chirality in a tubular cavity with metasurface design
NASA Astrophysics Data System (ADS)
Qin, Yuzhou; Fang, Yangfu; Wang, Lu; Tang, Shiwei; Sun, Shulin; Liu, Zhaowei; Mei, Yongfeng
2018-06-01
Optical microcavities with whispering-gallery modes (WGMs) have been indispensable in both photonic researches and applications. Besides, metasurfaces, have attracted much attention recently due to their strong abilities to manipulate electromagnetic waves. Here, combining these two optical elements together, we show a tubular cavity can convert input propagating cylindrical waves into directed localized surface waves (SWs), enabling the circulating like WGMs along the wall surface of the designed tubular cavity. Finite element method (FEM) simulations demonstrate that such near-field WGM shows both large chirality and high local field. This work may stimulate interesting potential applications in e.g. directional emission, sensing, and lasing.
Design of a compact high-speed optical modulator based on a hybrid plasmonic nanobeam cavity
NASA Astrophysics Data System (ADS)
Javid, Mohammad Reza; Miri, Mehdi; Zarifkar, Abbas
2018-03-01
A hybrid plasmonic electro-optic modulator based on a polymer-filled one dimensional photonic crystal nanobeam (1D PhCNB) cavity is proposed here. In the proposed structure the optical intensity modulation is realized by shifting the resonant wavelength of the cavity through electrically tuning the refractive index of the electro-optic polymer in the hybrid plasmonic waveguide. As a result of the subwavelength light confinement in the hybrid plasmonic waveguide and the compact footprint of the 1D PhCNB cavity, the designed modulator has the small overall footprint of 3 . 6 μm2 and the required wavelength shift can be achieved by applying very small actuating power. Three dimensional finite-difference time-domain (3D-FDTD) simulations show that the modulation depth of 10.9 dB, and insertion loss of 1.14 dB, along with very high modulation speed of 224 GHz can be achieved in the proposed modulator with very low modulation energy of 0.75 fJ/bit. A comparison between the performance parameters of the proposed modulator and those of previously reported PhCNB based modulators reveals the superior performance of the proposed structure in terms of modulation speed, energy consumption and overall footprint.
Non-destructive monitoring of Bloch oscillations in an optical cavity
NASA Astrophysics Data System (ADS)
Klinder, Jens; Kessler, Hans; Venkatesh, B. Prasanna; Georges, Christoph; Vargas, Jose; Hemmerich, Andreas
2017-04-01
Bloch oscillations are a hallmark of coherent wave dynamics in periodic potentials. They occur as the response of quantum mechanical particles in a lattice if a weak force is applied. In optical lattices with their perfect periodic structure they can be readily observed and employed as a quantum mechanical force sensor, for example, for precise measurements of the gravitational acceleration. However, the destructive character of the measurement process in previous experimental implementations poses serious limitations for the precision of such measurements. We show that the use of an optical cavity operating in the regime of strong cooperative coupling allows one to directly monitor Bloch oscillations of a cloud of cold atoms in the light leaking out of the cavity. Hence, with a single atomic sample the Bloch oscillation dynamics can be mapped out, while in previous experiments, each data point required the preparation of a new atom cloud. The use of a cavity-based monitor should greatly improve the precision of Bloch oscillation measurements for metrological purposes. This work was partially supported by DFG-SFB925 and the Hamburg centre of ultrafast imaging (CUI).
NASA Astrophysics Data System (ADS)
Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J. M.; Rodríguez-Carreón, V. C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A. A.; Rojas-Laguna, R.
2018-03-01
A straightforward and versatile method for switching from single to different multiwavelength laser emission in ring cavity fiber lasers is proposed and demonstrated experimentally. The method is based on using the changeable interference pattern from an optical fiber modal Michelson interferometer as a wavelength selective filter into the ring cavity laser. The interferometer is constructed using a bi-conical tapered fiber and a single-mode fiber segment, with these being spliced together to form an optical fiber tip probe. When the length of the single-mode fiber piece is modified, the phase difference between the interfering modes of the interferometer causes a change in the interferometer free spectral range. As a consequence, the laser intra-cavity losses lead to gain competition, which allows us to adjust the number of simultaneously generated laser lines. A multiwavelength reconfiguration of the laser from one up to a maximum of eight emission lines was obtained, with a maximum SNR of around 47 dBm.
Modal Analysis of β -Ga2O3:Cr Widely Tunable Luminescent Optical Microcavities
NASA Astrophysics Data System (ADS)
Alonso-Orts, M.; Nogales, E.; San Juan, J. M.; Nó, M. L.; Piqueras, J.; Méndez, B.
2018-06-01
Optical microcavities are key elements in many photonic devices, and those based on distributed Bragg reflectors (DBRs) enhance dramatically the end reflectivity, allowing for higher quality factors and finesse values. Besides, they allow for wide wavelength tunability, needed for nano- and microscale light sources to be used as photonic building blocks in the micro- and nanoscale. Understanding the complete behavior of light within the cavity is essential to obtaining an optimized design of properties and optical tunability. In this work, focused ion-beam fabrication of high refractive-index contrast DBR-based optical cavities within Ga2O3:Cr microwires grown and doped by the vapor-solid mechanism is reported. Room-temperature microphotoluminescence spectra show strong modulations from about 650 nm up to beyond 800 nm due to the microcavity resonance modes. Selectivity of the peak wavelength is achieved for two different cavities, demonstrating the tunability of this kind of optical system. Analysis of the confined modes is carried out by an analytical approximation and by finite-difference-time-domain simulations. A good agreement is obtained between the reflectivity values of the DBRs calculated from the experimental resonance spectra, and those obtained by finite-difference-time-domain simulations. Experimental reflectivities up to 70% are observed in the studied wavelength range and cavities, and simulations demonstrate that reflectivities up to about 90% could be reached. Therefore, Ga2O3:Cr high-reflectivity optical microcavities are shown as good candidates for single-material-based, widely tunable light emitters for micro- and nanodevices.
NASA Astrophysics Data System (ADS)
Greensill, Colin V.; Walsh, Kerry B.
2000-12-01
Near infrared spectroscopy can be employed in the non-invasive assessment of intact fruit for eating quality attributes such as soluble solid content (SSC). Rapid sorting is dependent on a suitable non-contact geometry of fruit, light source and detector assembly, optimized for a given fruit commodity. An optical system was designed with reference to distribution of SSC and light penetration into rockmelon fruit. SSC of mesocarp tissue was not significantly different over the greater part of the proximal-distal axis of the fruit, particularly in the vicinity of the fruit equator. There was also no consistent variation in SSC of mesocarp tissue with respect to radial position of sampling. Mesocarp SSC was higher (~3% w/v) closer to the seed cavity. The optical sampling system was therefore designed to assess an equatorial position on the fruit. Light penetrating a rockmelon fruit was empirically assessed to be diffuse at a depth of <15 mm from the fruit surface. Signal decreased in an exponential proportionality with depth into the fruit, but was still detectable at depths in excess of the seed cavity of rockmelons. A partial transmittance optical design was employed, with a collimated light source interrupted by a central light stop, and a detector viewing the shadowed region of the sample. This system did not physically contact the sample. It was compared to a system with a light excluding `contacting' shroud between the detector and the fruit surface. The performance of calibrations generated using the non-contact configuration was not significantly different than for the configuration requiring contact.
Broad Band Intra-Cavity Total Reflection Chemical Sensor
Pipino, Andrew C. R.
1998-11-10
A broadband, ultrahigh-sensitivity chemical sensor is provided that allows etection through utilization of a small, extremely low-loss, monolithic optical cavity. The cavity is fabricated from highly transparent optical material in the shape of a regular polygon with one or more convex facets to form a stable resonator for ray trajectories sustained by total internal reflection. Optical radiation enters and exits the monolithic cavity by photon tunneling in which two totally reflecting surfaces are brought into close proximity. In the presence of absorbing material, the loss per pass is increased since the evanescent waves that exist exterior to the cavity at points where the circulating pulse is totally reflected, are absorbed. The decay rate of an injected pulse is determined by coupling out an infinitesimal fraction of the pulse to produce an intensity-versus-time decay curve. Since the change in the decay rate resulting from absorption is inversely proportional to the magnitude of absorption, a quantitative sensor of concentration or absorption cross-section with 1 part-per-million/pass or better sensitivity is obtained. The broadband nature of total internal reflection permits a single device to be used over a broad wavelength range. The absorption spectrum of the surrounding medium can thereby be obtained as a measurement of inverse decay time as a function of wavelength.
Optical filter including a sub-wavelength periodic structure and method of making
Kaushik, Sumanth; Stallard, Brian R.
1998-01-01
An optical filter includes a dielectric layer formed within a resonant optical cavity, with the dielectric layer having formed therein a sub-wavelength periodic structure to define, at least in part, a wavelength for transmission of light through the resonant optical cavity. The sub-wavelength periodic structure can be formed either by removing material from the dielectric layer (e.g. by etching through an electron-beam defined mask), or by altering the composition of the layer (e.g. by ion implantation). Different portions of the dielectric layer can be patterned to form one or more optical interference filter elements having different light transmission wavelengths so that the optical filter can filter incident light according to wavelength and/or polarization. For some embodiments, the optical filter can include a detector element in optical alignment with each optical interference filter element to quantify or measure the filtered light for analysis thereof. The optical filter has applications to spectrometry, colorimetry, and chemical sensing.
Optical filter including a sub-wavelength periodic structure and method of making
Kaushik, S.; Stallard, B.R.
1998-03-10
An optical filter includes a dielectric layer formed within a resonant optical cavity, with the dielectric layer having formed therein a sub-wavelength periodic structure to define, at least in part, a wavelength for transmission of light through the resonant optical cavity. The sub-wavelength periodic structure can be formed either by removing material from the dielectric layer (e.g. by etching through an electron-beam defined mask), or by altering the composition of the layer (e.g. by ion implantation). Different portions of the dielectric layer can be patterned to form one or more optical interference filter elements having different light transmission wavelengths so that the optical filter can filter incident light according to wavelength and/or polarization. For some embodiments, the optical filter can include a detector element in optical alignment with each optical interference filter element to quantify or measure the filtered light for analysis thereof. The optical filter has applications to spectrometry, colorimetry, and chemical sensing. 17 figs.
MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolch, Wesley
The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2’s Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2’s revision of the target tissues of relevance for radiogenicmore » bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-μm cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-μm layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public« less
NASA Astrophysics Data System (ADS)
Ryou, Albert
Synthetic materials made of engineered quasiparticles are a powerful platform for studying manybody physics and strongly correlated systems due to their bottom-up approach to Hamiltonian modeling. Photonic quasiparticles called polaritons are particularly appealing since they inherit fast dynamics from light and strong interaction from matter. This thesis describes the experimental demonstration of cavity Rydberg polaritons, which are composite particles arising from the hybridization of an optical cavity with Rydberg EIT, as well as the tools for probing and stabilizing the cavity. We first describe the design, construction, and testing of a four-mirror Fabry-Perot cavity, whose small waist size on the order of 10 microns is comparable to the Rydberg blockade radius. By achieving strong coupling between the cavity photon and an atomic ensemble undergoing electromagnetically induced transparency (EIT), we observe the emergence of the dark-state polariton and characterize its single-body properties as well as the single-quantum nonlinearity. We then describe the implementation of a holographic spatial light modulator for exciting different transverse modes of the cavity, an essential tool for studying polariton-polariton scattering. For compensating optical aberrations, we employ a digital micromirror device (DMD), combining beam shaping with adaptive optics to produce diffraction-limited light. We quantitatively measure the purity of the DMD-produced Hermite-Gauss modes and confirm up to 99.2% efficiency. One application of the technique is to create Laguerre-Gauss modes, which have been used to probe synthetic Landau levels for photons in a twisted, nonplanar cavity. Finally, we describe the implementation of an FPGA-based FIR filter for stabilizing the cavity. We digitally cancel the acoustical resonances of the feedback-controlled mechanical system, thereby demonstrating an order-of-magnitude enhancement in the feedback bandwidth from 200 Hz to more than 2 kHz. Harnessing the massive processing power of a state-of-the-art FPGA, we present a novel, low-latency digital architecture for loop-shaping, with applications in atomic physics and beyond.
Cavity optomechanical coupling assisted by an atomic gas
NASA Astrophysics Data System (ADS)
Ian, H.; Gong, Z. R.; Liu, Yu-Xi; Sun, C. P.; Nori, Franco
2008-07-01
We theoretically study a cavity filled with atoms, which provides the optical-mechanical interaction between the modified cavity photonic field and a oscillating mirror at one end. We show that the cavity field “dresses” these atoms, producing two types of polaritons, effectively enhancing the radiation pressure of the cavity field upon the oscillating mirror, as well as establishing an additional squeezing mode of the oscillating mirror. This squeezing produces an adiabatic entanglement, which is absent in usual vacuum cavities, between the oscillating mirror and the rest of the system. We analyze the entanglement and quantify it using the Loschmidt echo and fidelity.
Zhao, Xin; Ciovati, G.; Bieler, T. R.
2010-12-15
The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical microscopy. Pits with clearly discernible crystal facets were observed in both “hotspot” and “coldspot” specimens. The pits were found in-grain, at bicrystal boundaries, and on tricrystal junctions. They are interpreted as etch pits induced bymore » crystal defects (e.g. dislocations). All coldspots examined had a qualitatively lower density of etch pits or relatively smooth tricrystal boundary junctions. EBSD mapping revealed the crystal orientation surrounding the pits. Locations with high pit density are correlated with higher mean values of the local average misorientation angle distributions, indicating a higher geometrically necessary dislocation content. In addition, a survey of the samples by energy dispersive x-ray analysis did not show any significant contamination of the samples’ surface. In conclusion, the local magnetic field enhancement produced by the sharp-edge features observed on the samples is not sufficient to explain the observed degradation of the cavity quality factor, which starts at peak surface magnetic field as low as 20 mT.« less
NASA Astrophysics Data System (ADS)
Dal Forno, Massimo; Craievich, Paolo; Baruzzo, Roberto; De Monte, Raffaele; Ferianis, Mario; Lamanna, Giuseppe; Vescovo, Roberto
2012-01-01
The Cavity Beam Position Monitor (BPM) is a beam diagnostic instrument which, in a seeded Free Electron Laser (FEL), allows the measurement of the electron beam position in a non-destructive way and with sub-micron resolution. It is composed by two resonant cavities called reference and position cavity, respectively. The measurement exploits the dipole mode that arises when the electron bunch passes off axis. In this paper we describe the Cavity BPM that has been designed and realized in the context of the FERMI@Elettra project [1]. New strategies have been adopted for the microwave design, for both the reference and the position cavities. Both cavities have been simulated by means of Ansoft HFSS [2] and CST Particle Studio [3], and have been realized using high precision lathe and wire-EDM (Electro-Discharge) machine, with a new technique that avoids the use of the sinker-EDM machine. Tuners have been used to accurately adjust the working frequencies for both cavities. The RF parameters have been estimated, and the modifications of the resonant frequencies produced by brazing and tuning have been evaluated. Finally, the Cavity BPM has been installed and tested in the presence of the electron beam.
All optical reconfiguration of optomechanical filters.
Deotare, Parag B; Bulu, Irfan; Frank, Ian W; Quan, Qimin; Zhang, Yinan; Ilic, Rob; Loncar, Marko
2012-05-22
Reconfigurable optical filters are of great importance for applications in optical communication and information processing. Of particular interest are tuning techniques that take advantage of mechanical deformation of the devices, as they offer wider tuning range. Here we demonstrate reconfiguration of coupled photonic crystal nanobeam cavities by using optical gradient force induced mechanical actuation. Propagating waveguide modes that exist over a wide wavelength range are used to actuate the structures and control the resonance of localized cavity modes. Using this all-optical approach, more than 18 linewidths of tuning range is demonstrated. Using an on-chip temperature self-referencing method, we determine that 20% of the total tuning was due to optomechanical reconfiguration and the rest due to thermo-optic effects. By operating the device at frequencies higher than the thermal cutoff, we show high-speed operation dominated by just optomechanical effects. Independent control of mechanical and optical resonances of our structures is also demonstrated.
Bottom-up photonic crystal cavities formed by patterned III-V nanopillars.
Scofield, Adam C; Shapiro, Joshua N; Lin, Andrew; Williams, Alex D; Wong, Ping-Show; Liang, Baolai L; Huffaker, Diana L
2011-06-08
We report on the formation and optical properties of bottom-up photonic crystal (PC) cavities formed by III-V nanopillars (NPs) via catalyst-free selective-area metal-organic chemical vapor deposition on masked GaAs substrates. This method of NP synthesis allows for precise lithographic control of NP position and diameter enabling simultaneous formation of both the photonic band gap (PBG) region and active gain region. The PBG and cavity resonance are determined by independently tuning the NP radius r, pitch a, and height h in the respective masked areas. Near-infrared emission at 970 nm is achieved from axial GaAs/InGaAs heterostructures with in situ passivation by laterally grown InGaP shells. To achieve out-of-plane optical confinement, the PC cavities are embedded in polydimethylsiloxane (PDMS) and removed from the growth substrate. Spatially and spectrally resolved 77 K photoluminescence demonstrates a strong influence of the PBG resonance on device emission. Resonant peaks are observed in the emission spectra of PC cavities embedded in PDMS.
Investigation of short cavity CRDS noise terms by optical correlation
NASA Astrophysics Data System (ADS)
Griffin, Steven T.; Fathi, Jason
2013-05-01
Cavity Ring Down Spectroscopy (CRDS) has been identified as having significant potential for Department of Defense security and sensing applications. Significant factors in the development of new sensor architectures are portability, robustness and economy. A significant factor in new CRDS sensor architectures is cavity length. Prior publication has examined the role of cavity length in sensing modality both from the standpoint of the system's design and the identification of potential difficulties presented by novel approaches. Two of interest here are new noise terms that have been designated turbulence-like and speckle-like in prior publication. In the prior publication the theoretical and some empirical data was presented. This presentation addresses the automation of the experimental apparatus, new data analysis, and implications regarding the significance of the two noise terms. This is accomplished through an Analog-to- Digital Conversion (ADC) from the output of a custom designed optical correlator. Details of the unique application of the developed instrument and implications for short cavity (portable) CRDS applications are presented.
Thermal radiation from optically driven Kerr (χ{sup (3)}) photonic cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khandekar, Chinmay; Rodriguez, Alejandro W.; Lin, Zin
2015-04-13
We describe thermal radiation from nonlinear (χ{sup (3)}) photonic cavities coupled to external channels and subject to incident monochromatic light. Our work extends related work on nonlinear mechanical oscillators to the problem of thermal radiation, demonstrating that bistability can enhance thermal radiation by orders of magnitude and result in strong lineshape alternations, including “super-narrow spectral peaks” occurring at the onset of kinetic phase transitions. We show that when the cavities are designed to exhibit perfect linear emissivity (rate matching), such thermally activated transitions can be exploited to dramatically tune the output power and radiative properties of the cavity, leading tomore » a kind of Kerr-mediated thermo-optic effect. Finally, we demonstrate that in certain parameter regimes, the output radiation exhibits Stokes and anti-Stokes side peaks whose relative magnitudes can be altered by tuning the internal temperature of the cavity relative to its surroundings, a consequence of strong correlations and interference between the emitted and reflected radiation.« less
Cavity-induced artificial gauge field in a Bose-Hubbard ladder
NASA Astrophysics Data System (ADS)
Halati, Catalin-Mihai; Sheikhan, Ameneh; Kollath, Corinna
2017-12-01
We consider theoretically ultracold interacting bosonic atoms confined to quasi-one-dimensional ladder structures formed by optical lattices and coupled to the field of an optical cavity. The atoms can collect a spatial phase imprint during a cavity-assisted tunneling along a rung via Raman transitions employing a cavity mode and a transverse running wave pump beam. By adiabatic elimination of the cavity field we obtain an effective Hamiltonian for the bosonic atoms, with a self-consistency condition. Using the numerical density-matrix renormalization-group method, we obtain a rich steady-state diagram of self-organized steady states. Transitions between superfluid to Mott-insulating states occur, on top of which we can have Meissner, vortex liquid, and vortex lattice phases. Also a state that explicitly breaks the symmetry between the two legs of the ladder, namely, the biased-ladder phase, is dynamically stabilized. We investigate the influence that a trapping potential has on the stability of the self-organized phases.
Lens-and-Detector Array for Spectrometer
NASA Technical Reports Server (NTRS)
Oberheuser, J.
1985-01-01
Supporting structure alines lenses and serves as light baffle. Lenses and infrared detectors mounted together in cavities in electroformed plate. Plate and cavities maintain optical alinement while serving as light baffle and aperture stop.
Optical gyroscope with controllable dispersion in four wave mixing regime.
NASA Astrophysics Data System (ADS)
Mikhailov, Eugeniy; Wolfe, Owen; Du, Shuangli; Rochester, Simon; Budker, Dmitry; Novikova, Irina
2016-05-01
We present our work towards realization of the fast-light gyroscope prototype, in which the sensitivity enhancement (compared to a regular laser gyroscopes) is achieved by adjusting the intra-cavity dispersion. We discuss schematics and underlying nonlinear effects leading to the negative dispersion in Rb vapor: level structure, optically addressed transitions, and configuration of the resonant cavity. We investigate dependence of the pulling factor (i.e., the ratio of the lasing frequency shift with the change of the cavity length to the equivalent resonance frequency shift in the empty cavity) on pump lasers detunings, power, and density of the atomic vapor. The observation of the pulling factor exceeding unity implies the gyroscope sensitivity improvement over the regular system This work is supported by Naval Air Warfare Center STTR program N68335-11-C-0428.
Optofluidic lasers and their applications in bioanalysis (Conference Presentation)
NASA Astrophysics Data System (ADS)
Fan, Xudong
2016-03-01
The optofluidic laser is an emerging technology that integrates microfluidics, miniaturized laser cavity, and laser gain medium in liquid. It is unique due to its biocompatibility, thus can be used for unconventional bioanalysis, in which biointeraction or process takes place within the optical cavity mode volume. Rather than using fluorescence, the optofluidic laser based detection employs laser emission, i.e., stimulated emission, as the sensing signal, which takes advantage of optical amplification provided by the laser cavity to achieve much higher sensitivity. In this presentation, I will first introduce the concept of optofluidic laser based bioanalysis. Then I will discuss each of the three components (cavity, gain medium, and fluidics) of the optofluidic laser and describe how to use the optofluidic laser in bioanalysis at the molecular, cellular, and tissue level. Finally, I will discuss future research and application directions.
Defects and nanocluster engineering in MgO
NASA Astrophysics Data System (ADS)
Fedorov, A. V.; van Veen, A.; van Huis, M. A.; Schut, H.; Kooi, B. J.; De Hosson, J. Th.; Zimmerman, R. L.
2001-07-01
The optical properties of MgO crystals are known to change after introduction of nanosize metal precipitates. In this work the formation of metallic nanoclusters in the presence of nanosize rectangular shaped cavities was studied. The rectangular cavities were formed by 30 keV He+ implantation followed by 1273 K annealing. The formation of cavities and their location was established by Positron Beam Analysis (PBA). The rectangular shape and their alignment in (100) direction was observed by X-TEM. Subsequently, the samples were implanted with 600 keV Ag and 1000 keV Au in order to introduce the metal ions in the vicinity of the cavities. The samples were then annealed to provide the formation of nanoclusters. The evolution of the implantation induced defects was monitored by PBA. The optical properties were studied by light absorption measurements.
Li, Dong-Xiao; Shao, Xiao-Qiang; Wu, Jin-Hui; Yi, X X
2017-10-01
A new mechanism is proposed for dissipatively preparing maximal Bell entangled state of two atoms in an optical cavity. This scheme integrates the spontaneous emission, the light shift of atoms in the presence of dispersive microwave field, and the quantum Zeno dynamics induced by continuous coupling, to obtain a unique steady state irrespective of initial state. Even for a large cavity decay, a high-fidelity entangled state is achievable at a short convergence time, since the occupation of the cavity mode is inhibited by the Zeno requirement. Therefore, a low single-atom cooperativity C=g 2 /(κγ) is good enough for realizing a high fidelity of entanglement in a wide range of decoherence parameters. As a straightforward extension, the feasibility for preparation of two-atom Knill-Laflamme-Milburn state with the same mechanism is also discussed.
Waves and rays in plano-concave laser cavities: I. Geometric modes in the paraxial approximation
NASA Astrophysics Data System (ADS)
Barré, N.; Romanelli, M.; Lebental, M.; Brunel, M.
2017-05-01
Eigenmodes of laser cavities are studied theoretically and experimentally in two companion papers, with the aim of making connections between undulatory and geometric properties of light. In this first paper, we focus on macroscopic open-cavity lasers with localized gain. The model is based on the wave equation in the paraxial approximation; experiments are conducted with a simple diode-pumped Nd:YAG laser with a variable cavity length. After recalling fundamentals of laser beam optics, we consider plano-concave cavities with on-axis or off-axis pumping, with emphasis put on degenerate cavity lengths, where modes of different order resonate at the same frequency, and combine to form surprising transverse beam profiles. Degeneracy leads to the oscillation of so-called geometric modes whose properties can be understood, to a certain extent, also within a ray optics picture. We first provide a heuristic description of these modes, based on geometric reasoning, and then show more rigorously how to derive them analytically by building wave superpositions, within the framework of paraxial wave optics. The numerical methods, based on the Fox-Li approach, are described in detail. The experimental setup, including the imaging system, is also detailed and relatively simple to reproduce. The aim is to facilitate implementation of both the numerics and of the experiments, and to show that one can have access not only to the common higher-order modes but also to more exotic patterns.
Quantum phase gate based on electromagnetically induced transparency in optical cavities
NASA Astrophysics Data System (ADS)
Borges, Halyne S.; Villas-Bôas, Celso J.
2016-11-01
We theoretically investigate the implementation of a quantum controlled-phase gate in a system constituted by a single atom inside an optical cavity, based on the electromagnetically induced transparency effect. First we show that a probe pulse can experience a π phase shift due to the presence or absence of a classical control field. Considering the interplay of the cavity-EIT effect and the quantum memory process, we demonstrated a controlled-phase gate between two single photons. To this end, first one needs to store a (control) photon in the ground atomic states. In the following, a second (target) photon must impinge on the atom-cavity system. Depending on the atomic state, this second photon will be either transmitted or reflected, acquiring different phase shifts. This protocol can then be easily extended to multiphoton systems, i.e., keeping the control photon stored, it may induce phase shifts in several single photons, thus enabling the generation of multipartite entangled states. We explore the relevant parameter space in the atom-cavity system that allows the implementation of quantum controlled-phase gates using the recent technologies. In particular, we have found a lower bound for the cooperativity of the atom-cavity system which enables the implementation of phase shift on single photons. The induced shift on the phase of a photonic qubit and the controlled-phase gate between single photons, combined with optical devices, enable one to perform universal quantum computation.
Thermo-optically tunable thin film devices
NASA Astrophysics Data System (ADS)
Domash, Lawrence H.
2003-10-01
We report advances in tunable thin film technology and demonstration of multi-cavity tunable filters. Thin film interference coatings are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable components based on the properties of semiconductor thin films with large thermo-optic coefficients. The technology is based on amorphous silicon deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable thin films can be constructed in sophisticated multi-cavity, multi-layer optical designs.
Fiber optic, Fabry-Perot high temperature sensor
NASA Technical Reports Server (NTRS)
James, K.; Quick, B.
1984-01-01
A digital, fiber optic temperature sensor using a variable Fabry-Perot cavity as the sensor element was analyzed, designed, fabricated, and tested. The fiber transmitted cavity reflection spectra is dispersed then converted from an optical signal to electrical information by a charged coupled device (CCD). A microprocessor-based color demodulation system converts the wavelength information to temperature. This general sensor concept not only utilizes an all-optical means of parameter sensing and transmitting, but also exploits microprocessor technology for automated control, calibration, and enhanced performance. The complete temperature sensor system was evaluated in the laboratory. Results show that the Fabry-Perot temperature sensor has good resolution (0.5% of full seale), high accuracy, and potential high temperature ( 1000 C) applications.
Hermetic fiber optic-to-metal connection technique
Kramer, Daniel P.
1992-09-01
A glass-to-glass hermetic sealing technique is disclosed which can be used to splice lengths of glass fibers together. A solid glass preform is inserted into the cavity of a metal component which is then heated to melt the glass. An end of an optical fiber is then advanced into the molten glass and the entire structure cooled to solidify the glass in sealing engagement with the optical fiber end and the metal cavity. The surface of the re-solidified glass may be machined for mating engagement with another component to make a spliced fiber optic connection. The resultant structure has a helium leak rate of less than 1.times.10.sup.-8 cm.sup.3 /sec.
Cavity Optomechanics at Millikelvin Temperatures
NASA Astrophysics Data System (ADS)
Meenehan, Sean Michael
The field of cavity optomechanics, which concerns the coupling of a mechanical object's motion to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers. Moreover, it provides a potential means to control and engineer the state of a macroscopic mechanical object at the quantum level, provided one can realize sufficiently strong interaction strengths relative to the ambient thermal noise. Recent experiments utilizing the optomechanical interaction to cool mechanical resonators to their motional quantum ground state allow for a variety of quantum engineering applications, including preparation of non-classical mechanical states and coherent optical to microwave conversion. Optomechanical crystals (OMCs), in which bandgaps for both optical and mechanical waves can be introduced through patterning of a material, provide one particularly attractive means for realizing strong interactions between high-frequency mechanical resonators and near-infrared light. Beyond the usual paradigm of cavity optomechanics involving isolated single mechanical elements, OMCs can also be fashioned into planar circuits for photons and phonons, and arrays of optomechanical elements can be interconnected via optical and acoustic waveguides. Such coupled OMC arrays have been proposed as a way to realize quantum optomechanical memories, nanomechanical circuits for continuous variable quantum information processing and phononic quantum networks, and as a platform for engineering and studying quantum many-body physics of optomechanical meta-materials. However, while ground state occupancies (that is, average phonon occupancies less than one) have been achieved in OMC cavities utilizing laser cooling techniques, parasitic absorption and the concomitant degradation of the mechanical quality factor fundamentally limit this approach. On the other hand, the high mechanical frequency of these systems allows for the possibility of using a dilution refrigerator to simultaneously achieve low thermal occupancy and long mechanical coherence time by passively cooling the device to the millikelvin regime. This thesis describes efforts to realize the measurement of OMC cavities inside a dilution refrigerator, including the development of fridge-compatible optical coupling schemes and the characterization of the heating dynamics of the mechanical resonator at sub-kelvin temperatures. We will begin by summarizing the theoretical framework used to describe cavity optomechanical systems, as well as a handful of the quantum applications envisioned for such devices. Then, we will present background on the design of the nanobeam OMC cavities used for this work, along with details of the design and characterization of tapered fiber couplers for optical coupling inside the fridge. Finally, we will present measurements of the devices at fridge base temperatures of Tf = 10 mK, using both heterodyne spectroscopy and time-resolved sideband photon counting, as well as detailed analysis of the prospects for future quantum applications based on the observed optically-induced heating.
NASA Astrophysics Data System (ADS)
Feng, M.; Holonyak, N.; Wang, C. Y.
2017-09-01
Optical bistable devices are fundamental to digital photonics as building blocks of switches, logic gates, and memories in future computer systems. Here, we demonstrate both optical and electrical bistability and capability for switching in a single transistor operated at room temperature. The electro-optical hysteresis is explained by the interaction of electron-hole (e-h) generation and recombination dynamics with the cavity photon modulation in different switching paths. The switch-UP and switch-DOWN threshold voltages are determined by the rate difference of photon generation at the base quantum-well and the photon absorption via intra-cavity photon-assisted tunneling controlled by the collector voltage. Thus, the transistor laser electro-optical bistable switching is programmable with base current and collector voltage, and the basis for high speed optical logic processors.
Intracavity optical trapping with Ytterbium doped fiber ring laser
NASA Astrophysics Data System (ADS)
Sayed, Rania; Kalantarifard, Fatemeh; Elahi, Parviz; Ilday, F. Omer; Volpe, Giovanni; Maragò, Onofrio M.
2013-09-01
We propose a novel approach for trapping micron-sized particles and living cells based on optical feedback. This approach can be implemented at low numerical aperture (NA=0.5, 20X) and long working distance. In this configuration, an optical tweezers is constructed inside a ring cavity fiber laser and the optical feedback in the ring cavity is controlled by the light scattered from a trapped particle. In particular, once the particle is trapped, the laser operation, optical feedback and intracavity power are affected by the particle motion. We demonstrate that using this configuration is possible to stably hold micron-sized particles and single living cells in the focal spot of the laser beam. The calibration of the optical forces is achieved by tracking the Brownian motion of a trapped particle or cell and analysing its position distribution.
Spectral Engineering of Slow Light, Cavity Line Narrowing, and Pulse Compression
NASA Astrophysics Data System (ADS)
Sabooni, Mahmood; Li, Qian; Rippe, Lars; Mohan, R. Krishna; Kröll, Stefan
2013-11-01
More than 4 orders of magnitude of cavity-linewidth narrowing in a rare-earth-ion-doped crystal cavity, emanating from strong intracavity dispersion caused by off-resonant interaction with dopant ions, is demonstrated. The dispersion profiles are engineered using optical pumping techniques creating significant semipermanent but reprogrammable changes of the rare-earth absorption profiles. Several cavity modes are shown within the spectral transmission window. Several possible applications of this phenomenon are discussed.
Optical microfiber-based photonic crystal cavity
NASA Astrophysics Data System (ADS)
Yu, Yang; Sun, Yi-zhi; Andrews, Steve; Li, Zhi-yuan; Ding, Wei
2016-01-01
Using a focused ion beam milling technique, we fabricate broad stop band (∼10% wide) photonic crystal (PhC) cavities in adiabatically-tapered silica fibers. Abrupt structural design of PhC mirrors efficiently reduces radiation loss, increasing the cavity finesse to ∼7.5. Further experiments and simulations verify that the remaining loss is mainly due to Ga ion implantation. Such a microfiber PhC cavity probably has potentials in many light-matter interaction applications.
Bistable Vertical-Cavity Surface-Emitting Laser. Structures on GaAs and Si Substrates
1994-06-01
vertical - cavity surface - emitting lasers ( VCSELs ) [1,5,6 of publications below], fabrication processes to realize low...May 91 through 1 June 94 R&T Number: Contract / Grant Number: N00014-91-J-1952 Contract / Grant Title: Bistable Vertical - Cavity Surface - Emitting Laser ...T.J. Rogers, B.G. Streetman, S.C. Smith, and R.D. Burnham, "Cascadabity of an Optically Iathing Vertical - Cavity Surface - Emitting Laser
Suppression of thermal transients in advanced LIGO interferometers using CO2 laser preheating
NASA Astrophysics Data System (ADS)
Jaberian Hamedan, V.; Zhao, C.; Ju, L.; Blair, C.; Blair, D. G.
2018-06-01
In high optical power interferometric gravitational wave detectors, such as Advanced LIGO, the thermal effects due to optical absorption in the mirror coatings and the slow thermal response of fused silica substrate cause time dependent changes in the mirror profile. After locking, high optical power builds up in the arm cavities. Absorption induced heating causes optical cavity transverse mode frequencies to drift over a period of hours, relative to the fundamental mode. At high optical power this can cause time dependent transient parametric instability, which can lead to interferometer disfunction. In this paper, we model the use of CO2 laser heating designed to enable the interferometer to be maintained in a thermal condition such that transient changes in the mirrors are greatly reduced. This can minimize transient parametric instability and compensate dark port power fluctuations. Modeling results are presented for both single compensation where a CO2 laser acting on one test mass per cavity, and double compensation using one CO2 laser for each test mass. Using parameters of the LIGO Hanford Observatory X-arm as an example, single compensation allows the maximum mode frequency shift to be limited to 6% of its uncompensated value. However, single compensation causes transient degradation of the contrast defect. Double compensation minimise contrast defect degradation and reduces transients to less than 1% if the CO2 laser spot is positioned within 2 mm of the cavity beam position.
Resonant cavity enhanced photonic devices
NASA Astrophysics Data System (ADS)
Ünlü, M. Selim; Strite, Samuel
1995-07-01
We review the family of optoelectronic devices whose performance is enhanced by placing the active device structure inside a Fabry-Perot resonant microcavity. Such resonant cavity enhanced (RCE) devices benefit from the wavelength selectivity and the large increase of the resonant optical field introduced by the cavity. The increased optical field allows RCE photodetector structures to be thinner and therefore faster, while simultaneously increasing the quantum efficiency at the resonant wavelengths. Off-resonance wavelengths are rejected by the cavity making RCE photodetectors promising for low crosstalk wavelength division multiplexing (WDM) applications. RCE optical modulators require fewer quantum wells so are capable of reduced voltage operation. The spontaneous emission spectrum of RCE light emitting diodes (LED) is drastically altered, improving the spectral purity and directivity. RCE devices are also highly suitable for integrated detectors and emitters with applications as in optical logic and in communication networks. This review attempts an encyclopedic overview of RCE photonic devices and systems. Considerable attention is devoted to the theoretical formulation and calculation of important RCE device parameters. Materials criteria are outlined and the suitability of common heteroepitaxial systems for RCE devices is examined. Arguments for the improved bandwidth in RCE detectors are presented intuitively, and results from advanced numerical simulations confirming the simple model are provided. An overview of experimental results on discrete RCE photodiodes, phototransistors, modulators, and LEDs is given. Work aimed at integrated RCE devices, optical logic and WDM systems is also covered. We conclude by speculating what remains to be accomplished to implement a practical RCE WDM system.
Fiber Optic Based Thermometry System for Superconducting RF Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochergin, Vladimir
2013-05-06
Thermometry is recognized as the best technique to identify and characterize losses in SRF cavities. The most widely used and reliable apparatus for temperature mapping at cryogenic temperatures is based on carbon resistors (RTDs). The use of this technology on multi-cell cavities is inconvenient due to the very large number of sensors required to obtain sufficient spatial resolution. Recent developments make feasible the use of multiplexible fiber optic sensors for highly distributed temperature measurements. However, sensitivity of multiplexible cryogenic temperature sensors was found extending only to 12K at best and thus was not sufficient for SRF cavity thermometry. During themore » course of the project the team of MicroXact, JLab and Virginia Tech developed and demonstrated the multiplexible fiber optic sensor with adequate response below 20K. The demonstrated temperature resolution is by at least a factor of 60 better than that of the best multiplexible fiber optic temperature sensors reported to date. The clear path toward at least 10times better temperature resolution is shown. The first to date temperature distribution measurements with ~2.5mm spatial resolution was done with fiber optic sensors at 2K to4K temperatures. The repeatability and accuracy of the sensors were verified only at 183K, but at this temperature both parameters significantly exceeded the state of the art. The results of this work are expected to find a wide range of applications, since the results are enabling the whole new testing capabilities, not accessible before.« less
Method to improve optical parametric oscillator beam quality
Smith, Arlee V.; Alford, William J.; Bowers, Mark S.
2003-11-11
A method to improving optical parametric oscillator (OPO) beam quality having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.
Optical parametric osicllators with improved beam quality
Smith, Arlee V.; Alford, William J.
2003-11-11
An optical parametric oscillator (OPO) having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.
Optical levitation of a mirror for reaching the standard quantum limit.
Michimura, Yuta; Kuwahara, Yuya; Ushiba, Takafumi; Matsumoto, Nobuyuki; Ando, Masaki
2017-06-12
We propose a new method to optically levitate a macroscopic mirror with two vertical Fabry-Pérot cavities linearly aligned. This configuration gives the simplest possible optical levitation in which the number of laser beams used is the minimum of two. We demonstrate that reaching the standard quantum limit (SQL) of a displacement measurement with our system is feasible with current technology. The cavity geometry and the levitated mirror parameters are designed to ensure that the Brownian vibration of the mirror surface is smaller than the SQL. Our scheme provides a promising tool for testing macroscopic quantum mechanics.
Optical levitation of a mirror for reaching the standard quantum limit
NASA Astrophysics Data System (ADS)
Michimura, Yuta; Kuwahara, Yuya; Ushiba, Takafumi; Matsumoto, Nobuyuki; Ando, Masaki
2017-06-01
We propose a new method to optically levitate a macroscopic mirror with two vertical Fabry-P{\\'e}rot cavities linearly aligned. This configuration gives the simplest possible optical levitation in which the number of laser beams used is the minimum of two. We demonstrate that reaching the standard quantum limit (SQL) of a displacement measurement with our system is feasible with current technology. The cavity geometry and the levitated mirror parameters are designed to ensure that the Brownian vibration of the mirror surface is smaller than the SQL. Our scheme provides a promising tool for testing macroscopic quantum mechanics.
Composite material embedded fiber-optic Fabry-Perot strain rosette
NASA Astrophysics Data System (ADS)
Valis, Thomas; Hogg, Dayle; Measures, Raymond M.
1990-12-01
A fiber-optic strain rosette is embedded in Kevlar/epoxy. The individual arms of the rosette are fiber Fabry-Perot interferometers operated in reflection-mode with gauge (i.e., cavity) lengths of approximately 5 mm. Procedures for manufacturing the cavities, and bending the fibers, to form a strain rosette are described. Experimental results showing 2D interlaminar strain-tensor measurement are presented. The sensor is also tested as a surface adhered device.
The Design and Construction of a Long-Distance Atmospheric Propagation Test Chamber
2015-06-01
supply, a gain medium where the light is generated and amplified, and an optical cavity consisting of one partially reflecting mirror and one fully... reflecting mirror [6]. There is also a pump stored in the optical cavity that excites electrons in the gain medium, leading to spontaneous and...Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management
Low-Cost Fiber Optic Pressure Sensor
Sheem, Sang K.
2004-05-18
The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.
Low-Cost Fiber Optic Pressure Sensor
Sheem, Sang K.
2003-07-22
The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.
LES/RANS Modeling of Aero-Optical Effects in a Supersonic Cavity Flow
2016-06-13
the wind tunnel is not modeled in the cavity simulation, a separate turbulent boundary layer simulation with identical free-stream conditions was...the wind tunnel experiments were provided by Dr. Donald J. Wittich and the testbed geometries were modeled by Mr. Jeremy Stanford. Dr. Maziar Hemati...and an auxiliary flat plate simulation is performed to replicate the effects of the wind - tunnel boundary layer on the computed optical path
1990-12-01
since drift is common to both signal and local oscillator. However because of the Fabry - Perot cavity of the phase -6.9- Electrical delay 5.429077 ns___...Phase modulation gives intensity modulation of the guided light of .13dB max. This is due to formation of a Fabry - Perot cavity between the two fibre/chip...modulation sidebands using an optical spectrum analyser (scanning a Fabry - Perot interferometer), while monitoring the r.f. drive power incident on the
Intravital hybrid optical-optoacoustic microscopy based on fiber-Bragg interferometry
NASA Astrophysics Data System (ADS)
Shnaiderman, Rami; Wissmeyer, Georg; Seeger, Markus; Estrada, Hector; Ntziachristos, Vasilis
2018-02-01
Optoacoustic microscopy (OAM) has enabled high-resolution, label-free imaging of tissues at depths not achievable with purely optical microscopy. However, widespread implementation of OAM into existing epi-illumination microscopy setups is often constrained by the performance and size of the commonly used piezoelectric ultrasound detectors. In this work, we introduce a novel acoustic detector based on a π-phase-shifted fiber Bragg grating (π-FBG) interferometer embedded inside an ellipsoidal acoustic cavity. The cavity enables seamless integration of epi-illumination OAM into existing microscopy setups by decoupling the acoustic and optical paths between the microscope objective and the sample. The cavity also acts as an acoustic condenser, boosting the sensitivity of the π-FBG and enabling cost effective CW-laser interrogation technique. We characterize the sensor's sensitivity and bandwidth and demonstrate hybrid OAM and second-harmonic imaging of phantoms and mouse tissue in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shyu, Lih-Horng; Chang, Chung-Ping; Wang, Yung-Cheng
Fabry-Perot interferometer is often used for the micro-displacement, because of its common optical path structure being insensitive to the environmental disturbances. Recently, the folded Fabry-Perot interferometer has been investigated for displacement measurements in large ranges. The advantages of a folded Fabry-Perot interferometer are insensitive to the tilt angle and higher optical resolution. But the design of the optical cavity has become more and more complicated. For this reason, the intensity loss in the cavity will be an important parameter for the distribution of the interferometric intensity. To obtain a more accurate result of such interferometer utilized for displacement measurements, themore » intensity loss of the cavity in the fabricated folded Fabry-Perot interferometer and the modified equation of the folded Fabry-Perot interferometer will be described. According to the theoretical and experimental results, the presented model is available for the analysis of displacement measurements by a folded Fabry-Perot interferometer.« less
NASA Astrophysics Data System (ADS)
Sakata, T.; Suzuki, M.; Yamamoto, T.; Nakanishi, S.; Funahashi, M.; Tsurumachi, N.
2017-10-01
We investigated the optical transmission properties of one-dimensional photonic crystal (1D-PC) microcavity structures containing the liquid-crystalline (LC) perylene tetracarboxylic bisimide (PTCBI) derivative. We fabricated the microcavity structures for this study by two different methods and observed the cavity polaritons successfully in both samples. For one sample, since the PTCBI molecules were aligned in the cavity layer of the 1D-PC by utilizing a friction transfer method, vacuum Rabi splitting energy was strongly dependent on the polarization of the incident light produced by the peculiar optical features of the LC organic semiconductor. For the other sample, we did not utilize the friction transfer method and did not observe such polarization dependence. However, we did observe a relatively large Rabi splitting energy of 187 meV, probably due to the improvement of optical confinement effect.
NASA Astrophysics Data System (ADS)
Mizutani, Mitsuhiro; Teramae, Fumiharu; Takeuchi, Kazutaka; Murase, Tatsunori; Naritsuka, Shigeya; Maruyama, Takahiro
2006-04-01
A vertical-cavity surface-emitting laser (VCSEL) was fabricated using a in situ reflectance monitor by molecular beam epitaxy (MBE). Both the center wavelength of the stop band of the distributed Bragg reflector (DBR) and the resonant wavelength of the optical cavity were successfully controlled using the monitor. However, these wavelengths shifted with decreasing substrate temperature after the growth, which could be reasonably explained by the temperature dependence of refractive index. Therefore, it is necessary to set a target wavelength at a growth temperature, considering the change. The desirable laser performance of the VCSEL fabricated from the wafer indicates marked increases in the controllability and reproducibility of growth with the aid of the in situ reflectance monitor. Since it can directly measure the optical properties of the grown layers, the reflectance monitor greatly helps in the fabrication of a structure with the designed optical performance.
Lee, Jin-Hyuk; Kim, Dae-Hyun
2014-10-01
A sensor of a biomimetic robot has to measure very small environmental changes such as, nanometer scale strains or displacements. Fiber optic sensor can be also one of candidates for the biomimetic sensor because the sensor is like thread and the shape of the sensor is similar to muscle fiber. A fiber optic interferometer, which is an optical-based sensor, can measure displacement precisely, so such device has been widely studied for the measurement of displacement on a nanometer-scale. Especially, a Quadrature Phase-Shifted Fiber Fabry-Pérot interferometer (QPS-FFPI) uses phase-information for this measurement, allowing it to provide a precision result with high resolution. In theory, the QPS-FFPI generates two sinusoidal signals of which the phase difference should be 90 degrees for the exact measurement of the displacement. In order to guarantee the condition of the phase difference, the relative adjustment of the cavities of the optical fibers is required. However, with such precise adjustment it is very hard to fix the proper difference of the two cavities for quadrature-phase-shifting. In this paper, a dual-cavity FFPI is newly proposed to measure the displacement on a nanometer-scale with a specific type of signal processing. In the signal processing, a novel phase-compensation algorithm is applied to force the phase difference to be exactly 90 degrees without any physical adjustment. As a result, the paper shows that the phase-compensated dual-cavity FFPI can effectively measure nanometer-scale displacement with high resolution under dynamic conditions.
Investigation on a fiber optic accelerometer based on FBG-FP interferometer
NASA Astrophysics Data System (ADS)
Lin, Chongyu; Luo, Hong; Xiong, Shuidong; Li, Haitao
2014-12-01
A fiber optic accelerometer based on fiber Bragg grating Fabry-Perot (FBG-FP) interferometer is presented. The sensor is a FBG-FP cavity which is formed with two weak fiber Bragg gratings (FBGs) in a single-mode fiber. The reflectivity of the two FBGs is 9.42% and 7.74% respectively, and the fiber between them is 10 meters long. An optical demodulation system was set up to analyze the reflected light of FBG-FP cavity. Acceleration signals of different frequencies and intensities were demodulated correctly and stably by the system. Based on analyzing the optical spectrum of weak FBG based FBG-FP cavity, we got the equivalent length of FBG-FP cavity. We used a path-matching Michelson interferometer (MI) to demodulate the acceleration signal. The visibility of the interference fringe we got was 41%~42% while the theory limit was 50%. This indicated that the difference of interferometer's two arms and the equivalent length of FBG-FP cavity were matched well. Phase generated carrier (PGC) technology was used to eliminate phase fading caused by random phase shift and Faraday rotation mirrors (FRMs) were used to eliminate polarization-induced phase fading. The accelerometer used a compliant cylinder design and its' sensitivity and frequency response were analyzed and simulated based on elastic mechanics. Experiment result showed that the accelerometer had a flat frequency response over the frequency range of 31-630Hz. The sensitivity was about 31dB (0dB=1rad/g) with fluctuation less than 1.5dB.
Pang, Cheng; Bae, Hyungdae; Gupta, Ashwani; Bryden, Kenneth; Yu, Miao
2013-09-23
We present a micro-electro-mechanical systems (MEMS) based Fabry-Perot (FP) sensor along with an optical system-on-a-chip (SOC) interrogator for simultaneous pressure and temperature sensing. The sensor employs a simple structure with an air-backed silicon membrane cross-axially bonded to a 45° polished optical fiber. This structure renders two cascaded FP cavities, enabling simultaneous pressure and temperature sensing in close proximity along the optical axis. The optical SOC consists of a broadband source, a MEMS FP tunable filter, a photodetector, and the supporting circuitry, serving as a miniature spectrometer for retrieving the two FP cavity lengths. Within the measured pressure and temperature ranges, experimental results demonstrate that the sensor exhibits a good linear response to external pressure and temperature changes.
Fundamental Scaling Laws in Nanophotonics
Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.
2016-01-01
The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors. PMID:27869159
Fundamental Scaling Laws in Nanophotonics.
Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J
2016-11-21
The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of "smaller-is-better" has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.
Fundamental Scaling Laws in Nanophotonics
NASA Astrophysics Data System (ADS)
Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.
2016-11-01
The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.
Single laser beam of spatial coherence from an array of GaAs lasers - Free-running mode
NASA Technical Reports Server (NTRS)
Philipp-Rutz, E. M.
1975-01-01
Spatially coherent radiation from a monolithic array of three GaAs lasers in a free-running mode is reported. The lasers, with their mirror faces antireflection coated, are operated in an external optical cavity built of spherical lenses and plane mirrors. The spatially coherent-beam formation makes use of the Fourier-transformation property of the internal lenses. Transverse mode control is accomplished by a spatial filter. The optical cavity is similar to that used for the phase-controlled mode of spatially coherent-beam formation; only the spatial filters are different. In the far field (when restored by an external lens), the intensities of the lasers in the array are concentrated in a single laser beam of spatial coherence, without any grating lobes. The far-field distribution of the laser array in the free-running mode differs significantly from the interference pattern of the phase-controlled mode. The modulation characteristics of the optical waveforms of the two modes are also quite different because modulation is related to the interaction of the spatial filter with the longitudinal modes of the laser array within the optical cavity. The modulation of the optical waveform of the free-running mode is nonperiodic, confirming that the fluctuations of the optical fields of the lasers are random.
In vivo imaging in the oral cavity by endoscopic optical coherence tomography.
Walther, Julia; Schnabel, Christian; Tetschke, Florian; Rosenauer, Tobias; Golde, Jonas; Ebert, Nadja; Baumann, Michael; Hannig, Christian; Koch, Edmund
2018-03-01
The common way to diagnose hard and soft tissue irregularities in the oral cavity is initially the visual inspection by an experienced dentist followed by further medical examinations, such as radiological imaging and/or histopathological investigation. For the diagnosis of oral hard and soft tissues, the detection of early transformations is mostly hampered by poor visual access, low specificity of the diagnosis techniques, and/or limited feasibility of frequent screenings. Therefore, optical noninvasive diagnosis of oral tissue is promising to improve the accuracy of oral screening. Considering this demand, a rigid handheld endoscopic scanner was developed for optical coherence tomography (OCT). The novelty is the usage of a commercially near-infrared endoscope with fitting optics in combination with an established spectral-domain OCT system of our workgroup. By reaching a high spatial resolution, in vivo images of anterior and especially posterior dental and mucosal tissues were obtained from the oral cavity of two volunteers. The convincing image quality of the endoscopic OCT device is particularly obvious for the imaging of different regions of the human soft palate with highly scattering fibrous layer and capillary network within the lamina propria. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Silicon Integrated Cavity Optomechanical Transducer
NASA Astrophysics Data System (ADS)
Zou, Jie; Miao, Houxun; Michels, Thomas; Liu, Yuxiang; Srinivasan, Kartik; Aksyuk, Vladimir
2013-03-01
Cavity optomechanics enables measurements of mechanical motion at the fundamental limits of precision imposed by quantum mechanics. However, the need to align and couple devices to off-chip optical components hinders development, miniaturization and broader application of ultrahigh sensitivity chip-scale optomechanical transducers. Here we demonstrate a fully integrated and optical fiber pigtailed optomechanical transducer with a high Q silicon micro-disk cavity near-field coupled to a nanoscale cantilever. We detect the motion of the cantilever by measuring the resonant frequency shift of the whispering gallery mode of the micro-disk. The sensitivity near the standard quantum limit can be reached with sub-uW optical power. Our on-chip approach combines compactness and stability with great design flexibility: the geometry of the micro-disk and cantilever can be tailored to optimize the mechanical/optical Q factors and tune the mechanical frequency over two orders of magnitudes. Electrical transduction in addition to optical transduction was also demonstrated and both can be used to effectively cool the cantilever. Moreover, cantilevers with sharp tips overhanging the chip edge were fabricated to potentially allow the mechanical cantilever to be coupled to a wide range of off-chip systems, such as spins, DNA, nanostructures and atoms on clean surfaces.
Time Domain Simulations of Arm Locking in LISA
NASA Technical Reports Server (NTRS)
Thorpe, J. I.; Maghami, P.; Livas, Jeff
2011-01-01
Arm locking is a technique that has been proposed for reducing laser frequency fluctuations in the Laser Interferometer Space Antenna (LISA). a gravitational-wave observatory sensitive' in the milliHertz frequency band. Arm locking takes advantage of the geometric stability of the triangular constellation of three spacecraft that comprise LISA to provide a frequency reference with a stability in the LISA measurement band that exceeds that available from a standard reference such as an optical cavity or molecular absorption line. We have implemented a time-domain simulation of arm locking including the expected limiting noise sources (shot noise, clock noise. spacecraft jitter noise. and residual laser frequency noise). The effect of imperfect a priori knowledge of the LISA heterodyne frequencies and associated "pulling" of an arm locked laser is included. We find that our implementation meets requirements both on the noise and dynamic range of the laser frequency.
High stability lasers for lidar and remote sensing
NASA Astrophysics Data System (ADS)
Heine, Frank; Lange, Robert; Seel, Stefan; Smutny, Berry
2017-11-01
Tesat-Spacecom is currently building a set flight models of frequency stabilized lasers for the ESA Missions AEOLUS and LTP. Lasers with low intensity noise in the kHz region and analogue tuning capabilities for frequency and output power are developed for the on board metrology of the LTP project, the precursor mission for LISA. This type of laser is internally stabilized by precise temperature control, approaching an ALLAN variance of 10-9 for 100 sec. It can be easily locked to external frequency references with <50kHz bandwidth. The Seed laser for the AEOLUS mission (wind LIDAR) is used as the master frequency reference and is stabilized internally by a optical cavity. It shows a 3* 10-11 Allan variance from time intervals 1 sec - 1000 sec. Furthermore it is step-tunable for calibration of the receiver instrument with a speed of GHz / sec by a digital command interface. Performance and environmental test results will be presented.
Cavity Self-Stabilization and Enhancement of Laser Gyroscopes by (Coupled) Optical Resonators
NASA Technical Reports Server (NTRS)
Smith, David D.
2006-01-01
We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the modulation to determine the conditions for cavity self-stabilization and enhanced gyroscopic sensitivity. Hence, we model cavity rotation or instability by an arbitrary AM/FM modulation, and the dispersive element as a phase and amplitude filter. We find that anomalous dispersion may be used to self-stabilize a laser cavity, provided the magnitude of the group index of refraction is smaller than the phase index of refraction in the cavity. The optimal stabilization is found to occur when the group index is zero. Group indices with magnitudes larger than the phase index (both normal and anomalous dispersion) are found to enhance the sensitivity of a laser gyroscope to rotation. Furthermore, our results indicate that atomic media, even coherent superpositions in multilevel atoms, are not useful for these applications, because the amplitude and phase filters work against one another, i.e., decreasing the modulation frequency increases its amplitude and vice versa, with one exception: negative group indices whose magnitudes are larger than the phase index result in negative, but enhanced, beat frequencies. On the other hand, for optical resonators the dispersion reversal associated with critical coupling enables the amplitude and phase filters to work together under a greater variety of circumstances than for atomic media. We find that for single over-coupled resonators, or in the case of under-coupled coupled-resonator-induced absorption, the absorption and normal dispersion on-resonance increase the contrast and frequency of the beat-note, respectively, resulting in a substantial enhancement of the gyroscopic response. Moreover, for cavity self-stabilization, we propose the use of a variety of coupled-resonator induced transparency that is accompanied by anomalous dispersion.
Intertwined and vestigial order with ultracold atoms in multiple cavity modes
NASA Astrophysics Data System (ADS)
Gopalakrishnan, Sarang; Shchadilova, Yulia E.; Demler, Eugene
2017-12-01
Atoms in transversely pumped optical cavities "self-organize" by forming a density wave and emitting superradiantly into the cavity mode(s). For a single-mode cavity, the properties of this self-organization transition are well characterized both theoretically and experimentally. Here, we explore the self-organization of a Bose-Einstein condensate in the presence of two cavity modes—a system that recently was realized experimentally [Léonard et al., Nature (London) 543, 87 (2017), 10.1038/nature21067]. We argue that this system can exhibit a "vestigially ordered" phase in which neither cavity mode exhibits superradiance but the cavity modes are mutually phase locked by the atoms. We argue that this vestigially ordered phase should generically be present in multimode cavity geometries.
A Resonator for Low-Threshold Frequency Conversion
NASA Technical Reports Server (NTRS)
Iltchenko, Vladimir; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute
2004-01-01
A proposed toroidal or disklike dielectric optical resonator (dielectric optical cavity) would be made of an optically nonlinear material and would be optimized for use in parametric frequency conversion by imposition of a spatially periodic permanent electric polarization. The poling (see figure) would suppress dispersions caused by both the material and the geometry of the optical cavity, thereby effecting quasi-matching of the phases of high-resonance-quality (high-Q) whispering-gallery electromagnetic modes. The quasi-phase-matching of the modes would serve to maximize the interactions among them. Such a resonator might be a prototype of a family of compact, efficient nonlinear devices for operation over a broad range of optical wavelengths. A little background information is prerequisite to a meaningful description of this proposal: (1) Described in several prior NASA Tech Briefs articles, the whispering-gallery modes in a component of spheroidal, disklike, or toroidal shape are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. (2) For the sake of completeness, it must be stated that even though optical resonators of the type considered here are solid dielectric objects and light is confined within them by total internal reflection at dielectric interfaces without need for mirrors, such components are sometimes traditionally called cavities because their effects upon the light propagating within them are similar to those of true cavities bounded by mirrors. (3) For a given set of electromagnetic modes interacting with each other in an optically nonlinear material (e.g., modes associated with the frequencies involved in a frequency-conversion scheme), the threshold power for oscillation depends on the mode volumes and the mode-overlap integral. (4) Whispering-gallery modes are attractive in nonlinear optics because they maximize the effects of nonlinearities by occupying small volumes and affording high Q values
NO2 trace measurements by optical-feedback cavity-enhanced absorption spectroscopy
NASA Astrophysics Data System (ADS)
Ventrillard-Courtillot, I.; Foldes, T.; Romanini, D.
2009-04-01
In order to reach the sub-ppb NO2 detection level required for environmental applications in remote areas, we are developing a spectrometer that exploits a technique that we introduced several years ago, named Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) [1]. It allows very sensitive and selective measurements, together with the realization of compact and robust set-ups as was subsequently demonstrated during measurements campaigns in harsh environments [2,3]. OF-CEAS benefits from the optical feedback (OF) to efficiently inject a cw-laser in a high finesse cavity (typically F >10 000). Absorption spectra are acquired on a small spectral region (~1 cm-1) that enables selective and quantitative measurements at a fast acquisition rate (~10 Hz) with a detection limit of several 10-10 cm-1 as reported in this paper. Spectra are obtained with high spectral resolution (~150 MHz) and are self calibrated by cavity rind-down measurements regularly performed (typically every second). Therefore, OF-CEAS appears very attractive for NO2 trace detection. This work is performed in the blue spectral region where NO2 has intense electronic transitions. Our setup involves a commercial extended cavity diode laser (ECDL) working at room temperature around 411nm. A first setup was developed [4] to demonstrate that OF sensitivity of ECDL is fully consistent with this technique, initially introduced with distributed feedback diode lasers in the near infrared region. In this paper we will report on a new set-up developed for in-situ measurements with proper mechanical, acoustic and thermal insulation. Additionally, new data processing was implemented allowing real time concentration measurements. It is based on a reference spectra recorded under controlled conditions by OF-CEAS and used later to fit the observed spectra. We will present measurements performed with calibrated NO2 reference samples demonstrating a good linearity of the apparatus. The minimum detectable absorption loss is estimated by considering the standard deviation of the spectra. We achieved better than 2x10-10 cm-1 for a single spectrum recorded in less than 100ms at 100mbar. This limit constitutes an improved of more than one order of magnitude as compare to the previous measurements reported in [4]. It leads to a detection limit of 3x108 molecules/cm3, corresponding to about 150pptv at 100mbar. At atmospheric pressure the same measurement would yield a detection limit of 15pptv assuming we can maintain the same level of sensitivity. But currently, works are under development to transfer the low minimum detectable absorption limit, already obtained for one spectrum, to a set of real time measurements. These are now limited by amplitude fluctuations of a few ppb from one spectrum to another one. [1] J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B, 80, 1027 (2005). [2] D. Romanini, M. Chenevrier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B, 83, 659 (2006). [2] E.R.T. Kerstel, R.Q. Iannone, M. Chenevrier, S. Kassi, H.-J. Jost and D. Romanini, Appl. Phys. B, 84, 343 (2006). [4] I. Courtillot, J. Morville, V. Motto-Ros, and D. Romanini, Appl. Phys. B, 85, 407 (2006).
1994-03-01
Epitaxial structure of vertical cavity surface - emitting laser ( VCSEL ...diameter (75 tum < d< 150 prm) vertical - cavity surface - emitting lasers fabricated from an epitaxial structure containing a single In0 .2Ga 8.,As quantum...development of vertical - cavity surface - emitting lasers ( VCSELs ) [1] has enabled III-V semiconductor technology to be applied to cer- tain optical