Science.gov

Sample records for optical reference cavity

  1. Mounting system for optical frequency reference cavities

    NASA Technical Reports Server (NTRS)

    Notcutt, Mark (Inventor); Hall, John L. (Inventor); Ma, Long-Sheng (Inventor)

    2008-01-01

    A technique for reducing the vibration sensitivity of laser-stabilizing optical reference cavities is based upon an improved design and mounting method for the cavity, wherein the cavity is mounted vertically. It is suspended at one plane, around the spacer cylinder, equidistant from the mirror ends of the cavity. The suspension element is a collar of an extremely low thermal expansion coefficient material, which surrounds the spacer cylinder and contacts it uniformly. Once the collar has been properly located, it is cemented in place so that the spacer cylinder is uniformly supported and does not have to be squeezed at all. The collar also includes a number of cavities partially bored into its lower flat surface, around the axial bore. These cavities are support points, into which mounting base pins will be inserted. Hence the collar is supported at a minimum of three points.

  2. Thermal analysis of optical reference cavities for low sensitivity to environmental temperature fluctuations.

    PubMed

    Dai, Xiaojiao; Jiang, Yanyi; Hang, Chao; Bi, Zhiyi; Ma, Longsheng

    2015-02-23

    The temperature stability of optical reference cavities is significant in state-of-the-art ultra-stable narrow-linewidth laser systems. In this paper, the thermal time constant and thermal sensitivity of reference cavities are analyzed when reference cavities respond to environmental perturbations via heat transfer of thermal conduction and thermal radiation separately. The analysis as well as simulation results indicate that a reference cavity enclosed in multiple layers of thermal shields with larger mass, higher thermal capacity and lower emissivity is found to have a larger thermal time constant and thus a smaller sensitivity to environmental temperature perturbations. The design of thermal shields for reference cavities may vary according to experimentally achievable temperature stability and the coefficient of thermal expansion of reference cavities. A temperature fluctuation-induced length instability of reference cavities as low as 6 × 10(-16) on a day timescale can be achieved if a two-layer thermal shield is inserted between a cavity with the coefficient of thermal expansion of 1 × 10(-10) /K and an outer vacuum chamber with temperature fluctuation amplitude of 1 mK and period of 24 hours.

  3. Flight-Like Optical Reference Cavity for GRACE Follow-On Laser Frequency Stabilization

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; deVine, G.; Klipstein, W. M.; McKenzie, K.; Spero, R.; Thompson, R.; Yu, N.; Stephens, M.; Leitch, J.; Pierce, R.; Shaddock, D.; Lam, T.

    2011-01-01

    We describe a prototype optical cavity and associated optics that has been developed to provide a stable frequency reference for a future space-based laser ranging system. This instrument is being considered for inclusion as a technology demonstration on the recently announced GRACE follow-on mission, which will monitor variations in the Earth's gravity field.

  4. Design verification of large time constant thermal shields for optical reference cavities

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Wu, W.; Shi, X. H.; Zeng, X. Y.; Deng, K.; Lu, Z. H.

    2016-02-01

    In order to achieve high frequency stability in ultra-stable lasers, the Fabry-Pérot reference cavities shall be put inside vacuum chambers with large thermal time constants to reduce the sensitivity to external temperature fluctuations. Currently, the determination of thermal time constants of vacuum chambers is based either on theoretical calculation or time-consuming experiments. The first method can only apply to simple system, while the second method will take a lot of time to try out different designs. To overcome these limitations, we present thermal time constant simulation using finite element analysis (FEA) based on complete vacuum chamber models and verify the results with measured time constants. We measure the thermal time constants using ultrastable laser systems and a frequency comb. The thermal expansion coefficients of optical reference cavities are precisely measured to reduce the measurement error of time constants. The simulation results and the experimental results agree very well. With this knowledge, we simulate several simplified design models using FEA to obtain larger vacuum thermal time constants at room temperature, taking into account vacuum pressure, shielding layers, and support structure. We adopt the Taguchi method for shielding layer optimization and demonstrate that layer material and layer number dominate the contributions to the thermal time constant, compared with layer thickness and layer spacing.

  5. Design verification of large time constant thermal shields for optical reference cavities.

    PubMed

    Zhang, J; Wu, W; Shi, X H; Zeng, X Y; Deng, K; Lu, Z H

    2016-02-01

    In order to achieve high frequency stability in ultra-stable lasers, the Fabry-Pérot reference cavities shall be put inside vacuum chambers with large thermal time constants to reduce the sensitivity to external temperature fluctuations. Currently, the determination of thermal time constants of vacuum chambers is based either on theoretical calculation or time-consuming experiments. The first method can only apply to simple system, while the second method will take a lot of time to try out different designs. To overcome these limitations, we present thermal time constant simulation using finite element analysis (FEA) based on complete vacuum chamber models and verify the results with measured time constants. We measure the thermal time constants using ultrastable laser systems and a frequency comb. The thermal expansion coefficients of optical reference cavities are precisely measured to reduce the measurement error of time constants. The simulation results and the experimental results agree very well. With this knowledge, we simulate several simplified design models using FEA to obtain larger vacuum thermal time constants at room temperature, taking into account vacuum pressure, shielding layers, and support structure. We adopt the Taguchi method for shielding layer optimization and demonstrate that layer material and layer number dominate the contributions to the thermal time constant, compared with layer thickness and layer spacing.

  6. Dual frequency optical cavity

    DOEpatents

    George, E.V.; Schipper, J.F.

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a T configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  7. Dual frequency optical cavity

    DOEpatents

    George, E. Victor; Schipper, John F.

    1985-01-01

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a "T" configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  8. Optically measuring interior cavities

    SciTech Connect

    Stone, Gary Franklin

    2008-12-21

    A method of measuring the three-dimensional volume or perimeter shape of an interior cavity includes the steps of collecting a first optical slice of data that represents a partial volume or perimeter shape of the interior cavity, collecting additional optical slices of data that represents a partial volume or perimeter shape of the interior cavity, and combining the first optical slice of data and the additional optical slices of data to calculate of the three-dimensional volume or perimeter shape of the interior cavity.

  9. Tuned optical cavity magnetometer

    DOEpatents

    Okandan, Murat; Schwindt, Peter

    2010-11-02

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  10. Optical cavity furnace for semiconductor wafer processing

    DOEpatents

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  11. Photonic crystal cavities and integrated optical devices

    NASA Astrophysics Data System (ADS)

    Gan, Lin; Li, ZhiYuan

    2015-11-01

    This paper gives a brief introduction to our recent works on photonic crystal (PhC) cavities and related integrated optical structures and devices. Theoretical background and numerical methods for simulation of PhC cavities are first presented. Based on the theoretical basis, two relevant quantities, the cavity mode volume and the quality factor are discussed. Then the methods of fabrication and characterization of silicon PhC slab cavities are introduced. Several types of PhC cavities are presented, such as the usual L3 missing-hole cavity, the new concept waveguide-like parallel-hetero cavity, and the low-index nanobeam cavity. The advantages and disadvantages of each type of cavity are discussed. This will help the readers to decide which type of PhC cavities to use in particular applications. Furthermore, several integrated optical devices based on PhC cavities, such as optical filters, channel-drop filters, optical switches, and optical logic gates are described in both the working principle and operation characteristics. These devices designed and realized in our group demonstrate the wide range of applications of PhC cavities and offer possible solutions to some integrated optical problems.

  12. Cavity-enhanced spectroscopy in optical fibers.

    PubMed

    Gupta, Manish; Jiao, Hong; O'Keefe, Anthony

    2002-11-01

    Cavity-enhanced methods have been extended to fiber optics by use of fiber Bragg gratings (FBGs) as reflectors. High-finesse fiber cavities were fabricated from FBGs made in both germanium/boron-co-doped photosensitive fiber and hydrogen-loaded Corning SMF-28 fiber. Optical losses in these cavities were determined from the measured Fabry-Perot transmission spectra and cavity ring-down spectroscopy. For a 10-m-long single-mode fiber cavity, ring-down times in excess of 2 ms were observed at 1563.6 nm, and individual laser pulses were resolved. An evanescent-wave access block was produced within a fiber cavity, and an enhanced sensitivity to optical loss was observed as the external medium's refractive index was altered.

  13. Precision optical reference frequencies

    NASA Astrophysics Data System (ADS)

    Riehle, Fritz; Schnatz, Harald; Zinner, G.; Trebst, Tilmann; Helmcke, Juergen

    1999-05-01

    Optical reference frequencies are provided by lasers of which the frequencies are stabilized to suitable absorption lines. Presently, twelve reference frequencies/wavelengths within the wavelengths range from 243 nm to 10.3 micrometers are recommended by the International Committee of Weights and Measures as references for the realization of the meter and scientific applications. As typical examples, we describe a diode-pumped, frequency doubled YAG-laser stabilized to an absorption line of molecular iodine and a Ca-stabilized laser. The latter one has been developed in two versions, a transportable system utilizing a small beam of thermal Ca atoms and a stationary standard based on laser cooled and trapped Ca atoms. The frequency of the Ca standard based on cold Ca atoms has been measured by a frequency chain allowing a phase-coherent comparison against the primary standard of time and frequency, the caesium clock. Its value is vCa equals 455 986 240 494.13 kHz with a relative standard uncertainty of 2.5 (DOT) 10-13.

  14. Optical Resonant Cavity in a Nanotaper

    SciTech Connect

    Lee, Sang Hyun; Goto, Takenari; Miyazaki, Hiroshi; Chang, Jiho; Yao, Takafumi

    2010-01-01

    The present study describes an optical resonant cavity in a nanotaper with scale reduction from micro to several nanometers. Both experimental results and a finite-difference time-domain (FDTD)-based simulation suggested that the nanometer-scale taper with a diameter similar to the wavelength of light acted as a mirror, which facilitated the formation of a laser cavity and caused lasing in ZnO nanotapers. As the light inside the nanotaper propagated toward the apex, the lateral mode was reduced and reflection occurred. This report suggests that use of the resonant optical cavities in nanotapers might result in novel active and passive optical components, which will broaden the horizons of photonic technology.

  15. Optical cavity resonator in an expanding universe

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei M.

    2015-02-01

    We study the cosmological evolution of frequency of a standing electromagnetic wave in a resonant optical cavity placed to the expanding manifold described by the Robertson-Walker metric. Because of the Einstein principle of equivalence (EEP), one can find a local coordinate system (a local freely falling frame), in which spacetime is locally Minkowskian. However, due to the conformal nature of the Robertson-Walker metric the conventional transformation to the local inertial coordinates introduces ambiguity in the physical interpretation of the local time coordinate, . Therefore, contrary to a common-sense expectation, a straightforward implementation of EEP alone does not allow us to unambiguously decide whether atomic clocks based on quantum transitions of atoms, ticks at the same rate as the clocks based on electromagnetic modes of a cavity. To resolve this ambiguity we have to analyse the cavity rigidity and the oscillation of its electromagnetic modes in an expanding universe by employing the full machinery of the Maxwell equations irrespectively of the underlying theory of gravity. We proceed in this way and found out that the size of the cavity and the electromagnetic frequency experience an adiabatic drift in conformal (unphysical) coordinates as the universe expands in accordance with the Hubble law. We set up the oscillation equation for the resonant electromagnetic modes, solve it by the WKB approximation, and reduce the coordinate-dependent quantities to their counterparts measured by a local observer who counts time with atomic clock. The solution shows that there is a perfect mutual cancellation of the adiabatic drift of cavity's frequency by space transformation to local coordinates and the time counted by the clocks based on electromagnetic modes of cavity has the same rate as that of atomic clocks. We conclude that if general relativity is correct and the local expansion of space is isotropic there should be no cosmological drift of frequency of a

  16. Hybrid ion chains inside an optical cavity

    NASA Astrophysics Data System (ADS)

    Zhou, Zichao; Siverns, James; Quraishi, Qudsia

    2016-05-01

    Trapped ions remain a leading candidate for the implementation of large-scale quantum networks. These networks require nodes that can store and process quantum information as well as communicate with each other though photonic flying qubits. We propose to use hybrid ion chains of barium, for communication, and ytterbium, for quantum information processing. We report on progress in setting up a hybrid ion chain in a versatile four-blade trap using high numerical aperture collection optics. Although the visible photons produced from barium ions are more favorable as they are not suitable for long distance fiber communication. With this in mind, we intend to implement frequency conversion to overcome this issue. Also, with the view toward increasing the flying-qubit production rate, we propose a cavity-based system to enhance interactions between the ions and photons. The cavity axis is to be placed along the axial direction of the trap allowing a chain of multiple ions to interact with the cavity at the same time. With this configuration the atom-photon coupling strength can be improved by sqrt(N), where N is the number of ions. Experiments will focus on exploring the dynamics of hybrid ion chain, dual species quantum information processing, two-colour entanglement and phase gates assisted by the ion-cavity coupling are to be explored.

  17. Specimen illumination apparatus with optical cavity for dark field illumination

    DOEpatents

    Pinkel, Daniel; Sudar, Damir; Albertson, Donna

    1999-01-01

    An illumination apparatus with a specimen slide holder, an illumination source, an optical cavity producing multiple reflection of illumination light to a specimen comprising a first and a second reflective surface arranged to achieve multiple reflections of light to a specimen is provided. The apparatus can further include additional reflective surfaces to achieve the optical cavity, a slide for mounting the specimen, a coverslip which is a reflective component of the optical cavity, one or more prisms for directing light within the optical cavity, antifading solutions for improving the viewing properties of the specimen, an array of materials for analysis, fluorescent components, curved reflective surfaces as components of the optical cavity, specimen detection apparatus, optical detection equipment, computers for analysis of optical images, a plane polarizer, fiberoptics, light transmission apertures, microscopic components, lenses for viewing the specimen, and upper and lower mirrors above and below the specimen slide as components of the optical cavity. Methods of using the apparatus are also provided.

  18. Optical scatter of quantum noise filter cavity optics

    NASA Astrophysics Data System (ADS)

    Vander-Hyde, Daniel; Amra, Claude; Lequime, Michel; Magaña-Sandoval, Fabian; Smith, Joshua R.; Zerrad, Myriam

    2015-07-01

    Optical cavities to filter squeezed light for quantum noise reduction require optics with very low scattering losses. We report on measured light scattering from two super-polished fused silica optics before and after applying highly-reflective ion-beam sputtered dielectric coatings. We used an imaging scatterometer that illuminates the sample with a linearly polarized 1064 nm wavelength laser at a fixed angle of incidence and records images of back scatter for azimuthal angles in the plane of the laser beam. We extract from these images the bidirectional reflectance distribution function (BRDF) of the optics with and without coating and estimate their integrated scatter. We find that application of these coatings led to a more than 50% increase of the integrated wide-angle scatter, to 5.00+/- 0.30 and 3.38+/- 0.20 ppm for the two coated samples. In addition, the BRDF function of the coated optics takes on a pattern of maxima versus azimuthal angle. We compare with a scattering model to show that this is qualitatively consistent with roughness scattering from the coating layer interfaces. These results are part of a broader study to understand and minimize optical loss in quantum noise filter cavities for interferometric gravitational-wave detectors. The scattering measured for these samples is acceptable for the 16 m long filter cavities envisioned for the Laser Interferometer Gravitational-wave Observatory (LIGO), though reducing the loss further would improve LIGO’s quantum-noise limited performance.

  19. Optical Material Characterization Using Microdisk Cavities

    NASA Astrophysics Data System (ADS)

    Michael, Christopher P.

    Since Jack Kilby recorded his "Monolithic Idea" for integrated circuits in 1958, microelectronics companies have invested billions of dollars in developing the silicon material system to increase performance and reduce cost. For decades, the industry has made Moore's Law, concerning cost and transistor density, a self-fulfilling prophecy by integrating technical and material requirements vertically down their supply chains and horizontally across competitors in the market. At recent technology nodes, the unacceptable scaling behavior of copper interconnects has become a major design constraint by increasing latency and power consumption---more than 50% of the power consumed by high speed processors is dissipated by intrachip communications. Optical networks at the chip scale are a potential low-power high-bandwidth replacement for conventional global interconnects, but the lack of efficient on-chip optical sources has remained an outstanding problem despite significant advances in silicon optoelectronics. Many material systems are being researched, but there is no ideal candidate even though the established infrastructure strongly favors a CMOS-compatible solution. This thesis focuses on assessing the optical properties of materials using microdisk cavities with the intention to advance processing techniques and materials relevant to silicon photonics. Low-loss microdisk resonators are chosen because of their simplicity and long optical path lengths. A localized photonic probe is developed and characterized that employs a tapered optical-fiber waveguide, and it is utilized in practical demonstrations to test tightly arranged devices and to help prototype new fabrication methods. A case study in AlxGa1-xAs illustrates how the optical scattering and absorption losses can be obtained from the cavity-waveguide transmission. Finally, single-crystal Er2O3 epitaxially grown on silicon is analyzed in detail as a potential CMOS-compatable gain medium due to its high Er3

  20. Optical fiber tips functionalized with semiconductor photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Shambat, Gary; Provine, J.; Rivoire, Kelley; Sarmiento, Tomas; Harris, James; Vučković, Jelena

    2011-11-01

    We demonstrate a simple and rapid epoxy-based method for transferring photonic crystal (PC) cavities to the facets of optical fibers. Passive Si cavities were measured via fiber taper coupling as well as direct transmission from the fiber facet. Active quantum dot containing GaAs cavities showed photoluminescence that was collected both in free space and back through the original fiber. Cavities maintain a high quality factor (2000-4000) in both material systems. This design architecture provides a practical mechanically stable platform for the integration of photonic crystal cavities with macroscale optics and opens the door for innovative research on fiber-coupled cavity devices.

  1. Diffraction-limited high-finesse optical cavities

    SciTech Connect

    Kleckner, Dustin; Irvine, William T. M.; Oemrawsingh, Sumant S. R.; Bouwmeester, Dirk

    2010-04-15

    High-quality optical cavities with wavelength-sized end mirrors are important to the growing field of micro-optomechanical systems. We present a versatile method for calculating the modes of diffraction limited optical cavities and show that it can be used to determine the effect of a wide variety of cavity geometries and imperfections. Additionally, we show these calculations agree remarkably well with FDTD simulations for wavelength-sized optical modes, even though our method is based on the paraxial approximation.

  2. Temporal laser pulse manipulation using multiple optical ring-cavities

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor)

    2010-01-01

    An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.

  3. Cavity solitons and localized patterns in a finite-size optical cavity

    NASA Astrophysics Data System (ADS)

    Kozyreff, G.; Gelens, L.

    2011-08-01

    In appropriate ranges of parameters, laser-driven nonlinear optical cavities can support a wide variety of optical patterns, which could be used to carry information. The intensity peaks appearing in these patterns are called cavity solitons and are individually addressable. Using the Lugiato-Lefever equation to model a perfectly homogeneous cavity, we show that cavity solitons can only be located at discrete points and at a minimal distance from the edges. Other localized states which are attached to the edges are identified. By interpreting these patterns in an information coding frame, the information capacity of this dynamical system is evaluated. The results are explained analytically in terms of the the tail characteristics of the cavity solitons. Finally, the influence of boundaries and of cavity imperfections on cavity solitons are compared.

  4. Localized Turing patterns in nonlinear optical cavities

    NASA Astrophysics Data System (ADS)

    Kozyreff, G.

    2012-05-01

    The subcritical Turing instability is studied in two classes of models for laser-driven nonlinear optical cavities. In the first class of models, the nonlinearity is purely absorptive, with arbitrary intensity-dependent losses. In the second class, the refractive index is real and is an arbitrary function of the intracavity intensity. Through a weakly nonlinear analysis, a Ginzburg-Landau equation with quintic nonlinearity is derived. Thus, the Maxwell curve, which marks the existence of localized patterns in parameter space, is determined. In the particular case of the Lugiato-Lefever model, the analysis is continued to seventh order, yielding a refined formula for the Maxwell curve and the theoretical curve is compared with recent numerical simulation by Gomila et al. [D. Gomila, A. Scroggie, W. Firth, Bifurcation structure of dissipative solitons, Physica D 227 (2007) 70-77.

  5. Long distance measurement using optical sampling by cavity tuning.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Balling, Petr; Li, Jianshuang; Qu, Xinghua

    2016-05-15

    We experimentally demonstrate a method enabling absolute distance measurement based on optical sampling by cavity tuning. The cross-correlation patterns can be obtained by sweeping the repetition frequency of the frequency comb. The 114 m long fiber delay line, working as the reference arm, is actively stabilized by using a feedback servo loop with 10-10 level stability. The unknown distance can be measured via the instantaneous repetition frequency corresponding to the peak of the fringe packet. We compare the present technique with the reference incremental interferometer, and the experimental results show an agreement within 3 μm over 60 m distance, corresponding to 10-8 level in relative.

  6. Optically thin hybrid cavity for terahertz photo-conductive detectors

    NASA Astrophysics Data System (ADS)

    Thompson, R. J.; Siday, T.; Glass, S.; Luk, T. S.; Reno, J. L.; Brener, I.; Mitrofanov, O.

    2017-01-01

    The efficiency of photoconductive (PC) devices, including terahertz detectors, is constrained by the bulk optical constants of PC materials. Here, we show that optical absorption in a PC layer can be modified substantially within a hybrid cavity containing nanoantennas and a Distributed Bragg Reflector. We find that a hybrid cavity, consisting of a GaAs PC layer of just 50 nm, can be used to absorb >75% of incident photons by trapping the light within the cavity. We provide an intuitive model, which describes the dependence of the optimum operation wavelength on the cavity thickness. We also find that the nanoantenna size is a critical parameter, small variations of which lead to both wavelength shifting and reduced absorption in the cavity, suggesting that impedance matching is key for achieving efficient absorption in the optically thin hybrid cavities.

  7. A master equation for a two-sided optical cavity

    PubMed Central

    Barlow, Thomas M.; Bennett, Robert; Beige, Almut

    2015-01-01

    Quantum optical systems, like trapped ions, are routinely described by master equations. The purpose of this paper is to introduce a master equation for two-sided optical cavities with spontaneous photon emission. To do so, we use the same notion of photons as in linear optics scattering theory and consider a continuum of travelling-wave cavity photon modes. Our model predicts the same stationary state photon emission rates for the different sides of a laser-driven optical cavity as classical theories. Moreover, it predicts the same time evolution of the total cavity photon number as the standard standing-wave description in experiments with resonant and near-resonant laser driving. The proposed resonator Hamiltonian can be used, for example, to analyse coherent cavity-fiber networks [E. Kyoseva et al., New J. Phys. 14, 023023 (2012)].

  8. Quantum optics, cavity QED, and quantum optomechanics

    NASA Astrophysics Data System (ADS)

    Meystre, Pierre

    2013-05-01

    Quantum optomechanics provides a universal tool to achieve the quantum control of mechanical motion. It does that in devices spanning a vast range of parameters, with mechanical frequencies from a few Hertz to GHz, and with masses from 10-20 g to several kilos. Its underlying ideas can be traced back to the study of gravitational wave antennas, quantum optics, cavity QED and laser cooling which, when combined with the recent availability of advanced micromechanical and nanomechanical devices, opens a path to the realization of macroscopic mechanical systems that operate deep in the quantum regime. At the fundamental level this development paves the way to experiments that will lead to a more profound understanding of quantum mechanics; and from the point of view of applications, quantum optomechanical techniques will provide motion and force sensing near the fundamental limit imposed by quantum mechanics (quantum metrology) and significantly expand the toolbox of quantum information science. After a brief summary of key historical developments, the talk will give a broad overview of the current state of the art of quantum optomechanics, and comment on future prospects both in applied and in fundamental science. Work supported by NSF, ARO and the DARPA QuASAR and ORCHID programs.

  9. Single ion coupled to an optical fiber cavity.

    PubMed

    Steiner, Matthias; Meyer, Hendrik M; Deutsch, Christian; Reichel, Jakob; Köhl, Michael

    2013-01-25

    We present the realization of a combined trapped-ion and optical cavity system, in which a single Yb(+) ion is confined by a micron-scale ion trap inside a 230 μm-long optical fiber cavity. We characterize the spatial ion-cavity coupling and measure the ion-cavity coupling strength using a cavity-stimulated Λ transition. Owing to the small mode volume of the fiber resonator, the coherent coupling strength between the ion and a single photon exceeds the natural decay rate of the dipole moment. This system can be integrated into ion-photon quantum networks and is a step towards cavity quantum electrodynamics based quantum information processing with trapped ions.

  10. Lattice-cavity solitons in a degenerate optical parametric oscillator

    SciTech Connect

    Egorov, O. A.; Lederer, F.

    2007-11-15

    We predict the existence of lattice-cavity solitons for a quadratic nonlinear cavity, where the linear losses are compensated for by the optical pump at second harmonic (degenerate optical parametric oscillator), and which is endowed with a one-dimensional photonic lattice. In the limit of strong discreteness (weak coupling) this kind of soliton solution contains as the subclass the quadratic discrete cavity solitons. The nonlinear coupling between the Bloch waves of different photonics bands allows for the formation of a reach variety of localized solutions. In particular, different types of multiband lattice-cavity solitons can be identified. Most types of lattice-cavity solitons do not have counterparts, neither in conventional planar microresonators nor in genuine discrete systems as an array of weakly coupled cavities. We show that these solitons may destabilize as a consequence of the competition between Bloch waves of different photonic bands.

  11. Length measurement in absolute scale via low-dispersion optical cavity

    NASA Astrophysics Data System (ADS)

    Pravdova, Lenka; Lesundak, Adam; Smid, Radek; Hrabina, Jan; Rerucha, Simon; Cip, Ondrej

    2016-12-01

    We report on the length measuring instrument with the absolute scale that was based on the combination of an optical frequency comb and a passive optical cavity. The time spacing of short femtosecond pulses, generated by the optical frequency comb, is optically phase locked onto the cavity free spectral range with a derivative spectroscopy technique so that the value of the repetition frequency of the femtosecond laser is tied to and determines the measured displacement. The instantaneous value of the femtosecond pulse train frequency is counted by a frequency counter. This counted value corresponds to the length given by the spacing between the two mirrors of the passive cavity. The phase lock between the femtosecond pulsed beam and the passive cavity is possible due to the low-dispersion of the cavity mirrors, where the silver coating on the mirrors was used to provide the low dispersion for the broadband radiation of the comb. Every reflection on the output mirror feeds a portion of the beam back to the cavity so that the output beam is a result of multiple interfering components. The parameters of the output beam are given not only by the parameters of the mirrors but mainly by the absolute distance between the mirror surfaces. Thus, one cavity mirror can be considered as the reference starting point of the distance to be measured and the other mirror is the measuring probe surveying the unknown distance. The measuring mirror of the experimental setup of the low-dispersion cavity is mounted on a piezoelectric actuator which provides small changes in the cavity length we used to test the length measurement method. For the verification of the measurement accuracy a reference incremental interferometer was integrated into our system so that the displacement of the piezoelectric actuator could be obtained with both measuring methods simultaneously.

  12. Different optical properties in different periodic slot cavity geometrical morphologies

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Shen, Meng; Du, Lan; Deng, Caisong; Ni, Haibin; Wang, Ming

    2016-09-01

    In this paper, optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain (FDTD) simulation method. By simulating reflectance spectra, electric field distribution, and charge distribution, we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light, in which the four reflectance dips are attributed to Fabry-Perot cavity resonances in the coaxial cavity. A coaxial waveguide mode TE11 will exist in these annular cavities, and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities. These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss. The formation of an absorption peak can be explained from the aspect of phase matching conditions. We observed that the proposed structure can be tuned over the broad spectral range of 600-4000 nm by changing the outer and inner radii of the annular gaps, gap surface topography. Meanwhile, different lengths of the cavity may cause the shift of resonance dips. Also, we study the field enhancement at different vertical locations of the slit. In addition, dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths, which make the annular cavities good candidates for refractive index sensors. The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity. Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates, refractive index sensors, nano-lasers, and optical trappers. Project supported by the National Natural Science Foundation of China (Grant No. 61178044), the Natural Science Foundation

  13. Calculations of laser cavity dumping for optical communications

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.; Rayman, M. D.

    1988-01-01

    For deep-space pulse-position modulation (PPM) optical communication links using Nd:YAG lasers, two types of laser transmitter modulation techniques are available for efficiently producing laser pulses over a broad range of repetition rates: Q-switching and cavity dumping. The desired modulation scheme is dependent on the required pulse repetition frequency and link parameters. These two techniques are discussed, theoretical and numerical calculations of the internal energy of the laser cavity in cavity dumping are described, and an example of cavity dumping is applied to a link for a proposed experiment package on Cassini.

  14. Optical probe with reference fiber

    DOEpatents

    Da Silva, Luiz B.; Chase, Charles L.

    2006-03-14

    A system for characterizing tissue includes the steps of generating an emission signal, generating a reference signal, directing the emission signal to and from the tissue, directing the reference signal in a predetermined manner relative to the emission signal, and using the reference signal to compensate the emission signal. In one embodiment compensation is provided for fluctuations in light delivery to the tip of the probe due to cable motion.

  15. Optimal feedback in efficient single-cavity optical parametric oscillators

    SciTech Connect

    Petnikova, V M; Shuvalov, Vladimir V

    2010-09-10

    An approach based on the description of competition of quadratic processes of merging and decomposition of quanta resulting in the formation of cnoidal waves on an effective cascade cubic Kerr-type nonlinearity is used to optimise the scheme of a single-cavity optical parametric oscillator. It is shown that the use of a feedback circuit (cavity) decreases the period of cnoidal waves produced in a nonlinear crystal, while the optimisation procedure of the transfer constant of this circuit (reflectivity of the output mirror of the cavity) is reduced to matching this period with the nonlinear crystal length. (optical parametric oscillators)

  16. Polarization-controlled optical ring cavity (PORC) tunable pulse stretcher

    NASA Astrophysics Data System (ADS)

    Williamson, Andrew P.; Kiefer, Johannes

    2016-08-01

    A new concept and a theoretical approach for modeling a tunable polarization-controlled optical ring cavity pulse stretcher is demonstrated. The technique discussed herein permits highly simplified and flexible tuning of the temporal shape of nanosecond duration pulses. Using half-wave plates positioned extra- and intracavity, transmission to reflection ratios across both input faces of a polarization beam splitter can easily be controlled. The resulting models indicate a further reduction in peak intensity of 30%, with respect to conventional dielectric beam splitting optical ring cavities, when configured under equivalent and optimized cavity settings.

  17. Controllable optical switch using a Bose-Einstein condensate in an optical cavity

    SciTech Connect

    Yang Shuai; Zubairy, M. Suhail; Al-Amri, M.; Evers, Joerg

    2011-05-15

    The optical bistability of an ultracold atomic ensemble located in a small-volume ultrahigh-finesse optical cavity is investigated. We find that a transverse pumping field can be used to control the bistable behavior of the intracavity photons induced by the input pumping along the cavity axis. This phenomenon can be used as a controllable optical switch.

  18. Modeling of multi-cavity Fabry-Perot optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Wierzba, Paweł

    2015-12-01

    Reflectance characteristics of a two-cavity extrinsic Fabry-Perot optical fiber sensor were investigated using computer modeling. Calculations were performed using a plane wave-based approach, selected for clarity of results. Based on the modeling results, it can be concluded that the two-cavity Fabry-Perot interferometer can be used to measure two different quantities, such as refractive index and temperature, independently. It is also possible to use one of its cavities as a wavelength or optical path length reference, especially when a tunable laser is used as a light source. Spectral signal processing needed in such sensor is not substantially more complicated than that used in single cavity sensors.

  19. High finesse optical fiber cavities: optimal alignment and robust stabilization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ratschbacher, Lothar; Gallego, Jose; Ghosh, Sutapa; Alavi, Seyed; Alt, Wolfgang; Martinez-Dorantes, Miguel; Meschede, Dieter

    2016-04-01

    Fiber Fabry-Perot cavities, formed by micro-machined mirrors on the end-facets of optical fibers, are used in an increasing number of technical and scientific applications. Some of the most promising areas of application of these optical micro-resonators with high finesse and small mode volume are in the field of quantum communication and information. The resonator-enhanced light-matter interaction, for instance, provide basis for the realization of efficient optical interfaces between stationary matter-based quantum nodes and flying single-photon qubits. To date fiber Fabry-Perot cavities have been successfully applied in experiments interfacing single photons with a wide range of quantum systems, including cold atoms, ions and solid state emitters as well as quantum optomechanical experiments. Here we address some important practical questions that arise during the experimental implementation of high finesse fiber Fabry-Perot cavities: How can optimal fiber cavity alignment be achieved and how can the efficiency of coupling light from the optical fibers to the cavity mode and vice versa be characterized? How should optical fiber cavities be constructed and stabilized to fulfill their potential for miniaturization and integration into robust scientific and technological devices that can operate outside of dedicated laboratory environments in the future? The first two questions we answer with an analytic mode matching calculation that relates the alignment dependent fiber-to-cavity mode-matching efficiency to the easily measurable dip in the reflected light power at the cavity resonance. Our general analysis provides a simple recipe for the optimal alignment of fiber Fabry-Perot cavities and moreover for the first time explains the asymmetry in their reflective line shapes. The latter question we explore by investigating a novel, intrinsically rigid fiber cavity design that makes use of the high passive stability of a monolithic cavity spacer and employs thermal

  20. Design and optimization of microbolometer multilayer optical cavity

    NASA Astrophysics Data System (ADS)

    Awad, E.; Al-Khalli, N.; Abdel-Rahman, M.; Debbar, N.; Alduraibi, M.

    2015-03-01

    Microbolometers are the most widely used detectors in long-wave infrared uncooled thermal imagers. An optical cavity is required within a microbolometer structure to increase its optical absorption. In this work we present a detailed study on the design and optimization of a microbolometer optical cavity using Essential-Macleod package. In the simulations, the cavity is considered as thin film multi-layers that form cascaded Fabry-Perot optical cavities. In the design phase, the layers structures are selected including materials and initial thickness. The absorbing layers are chosen to be vanadium-pentoxide (V2O5) and titanium (Ti). In the optimization phase, the designed layer thicknesses are varied to maximize optical absorption within the absorbing layers. The simulations show that Ti layer absorption dominates over V2O5 layer. Also, the optimization proves that the air-gap cavity thickness is not simply quarter-wavelength because of the complex cascaded Fabry-Perot structure. The optimized air-gap thickness here is ≈3.5 µm at 10.6µm wavelength.

  1. Design and optimization of microbolometer multilayer optical cavity

    SciTech Connect

    Awad, E.; Al-Khalli, N.; Debbar, N.; Abdel-Rahman, M.; Alduraibi, M.

    2015-03-30

    Microbolometers are the most widely used detectors in long-wave infrared uncooled thermal imagers. An optical cavity is required within a microbolometer structure to increase its optical absorption. In this work we present a detailed study on the design and optimization of a microbolometer optical cavity using Essential-Macleod package. In the simulations, the cavity is considered as thin film multi-layers that form cascaded Fabry-Perot optical cavities. In the design phase, the layers structures are selected including materials and initial thickness. The absorbing layers are chosen to be vanadium-pentoxide (V{sub 2}O{sub 5}) and titanium (Ti). In the optimization phase, the designed layer thicknesses are varied to maximize optical absorption within the absorbing layers. The simulations show that Ti layer absorption dominates over V{sub 2}O{sub 5} layer. Also, the optimization proves that the air-gap cavity thickness is not simply quarter-wavelength because of the complex cascaded Fabry-Perot structure. The optimized air-gap thickness here is ≈3.5 µm at 10.6µm wavelength.

  2. Thermal design and test results for SUNLITE ultra-stable reference cavity

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.

    1991-01-01

    SUNLITE (Stanford University-NASA Laser In-Space Technology Experiment) is a space-based experiment which uses a reference cavity to provide a stable frequency reference for a terahertz laser oscillator. Thermal stability of the cavity is a key factor in attaining a stable narrow-linewidth laser beam. The mount which is used to support and align the cavity will provide thermal isolation from the environment. The baseline requirement for thermal stability of the cavity is 0.025 C/min, but the design is directed toward achieving stability well beyond this requirement to improve the science data gained. A prototype of the cavity mount was fabricated and tested to characterize the thermal performance. The thermal vacuum test involved stable high-resolution temperature measurements and stable baseplate temperature control over long durations. Based on test data, the cavity mount design satisfies the severe requirement for the cavity thermal stability.

  3. Dynamical entanglement purification using chains of atoms and optical cavities

    SciTech Connect

    Gonta, Denis; Loock, Peter van

    2011-10-15

    In the framework of cavity QED, we propose a practical scheme to purify dynamically a bipartite entangled state using short chains of atoms coupled to high-finesse optical cavities. In contrast to conventional entanglement purification protocols, we avoid controlled-not gates, thus reducing complicated pulse sequences and superfluous qubit operations. Our interaction scheme works in a deterministic way and, together with entanglement distribution and swapping, opens a route toward efficient quantum repeaters for long-distance quantum communication.

  4. Transmission spectrum of an optical cavity containing N atoms

    SciTech Connect

    Leslie, Sabrina; Shenvi, Neil; Brown, Kenneth R.; Whaley, K. Birgitta; Stamper-Kurn, Dan M.

    2004-04-01

    The transmission spectrum of a high-finesse optical cavity containing an arbitrary number of trapped atoms is presented in the zero-temperature, low saturation limit. We take spatial and motional effects into account and show that in the limit of strong coupling, the important spectral features can be determined for an arbitrary number of atoms, N. We also show that these results have important ramifications in limiting our ability to determine the number of atoms in the cavity.

  5. Optical trapping of dielectric nanoparticles in resonant cavities

    SciTech Connect

    Hu Juejun; Lin Shiyun; Crozier, Kenneth; Kimerling, Lionel C.

    2010-11-15

    We theoretically investigate the opto-mechanical interactions between a dielectric nanoparticle and the resonantly enhanced optical field inside a high Q, small-mode-volume optical cavity. We develop an analytical method based on open system analysis to account for the resonant perturbation due to particle introduction and predict trapping potential in good agreement with three-dimensional (3D) finite-difference time-domain (FDTD) numerical simulations. Strong size-dependent trapping dynamics distinctly different from free-space optical tweezers arise as a consequence of the finite cavity perturbation. We illustrate single nanoparticle trapping from an ensemble of monodispersed particles based on size-dependent trapping dynamics. We further discover that the failure of the conventional dipole approximation in the case of resonant cavity trapping originates from a new perturbation interaction mechanism between trapped particles and spatially localized photons.

  6. Scattering-free optical levitation of a cavity mirror.

    PubMed

    Guccione, G; Hosseini, M; Adlong, S; Johnsson, M T; Hope, J; Buchler, B C; Lam, P K

    2013-11-01

    We demonstrate the feasibility of levitating a small mirror using only radiation pressure. In our scheme, the mirror is supported by a tripod where each leg of the tripod is a Fabry-Perot cavity. The macroscopic state of the mirror is coherently coupled to the supporting cavity modes allowing coherent interrogation and manipulation of the mirror motion. The proposed scheme is an extreme example of the optical spring, where a mechanical oscillator is isolated from the environment and its mechanical frequency and macroscopic state can be manipulated solely through optical fields. We model the stability of the system and find a three-dimensional lattice of trapping points where cavity resonances allow for buildup of optical field sufficient to support the weight of the mirror. Our scheme offers a unique platform for studying quantum and classical optomechanics and can potentially be used for precision gravitational field sensing and quantum state generation.

  7. Optical re-injection in cavity-enhanced absorption spectroscopy

    PubMed Central

    Leen, J. Brian; O’Keefe, Anthony

    2014-01-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10−10 cm−1/\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\sqrt {{\\rm Hz;}}$\\end{document} Hz ; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features. PMID:25273701

  8. Optical re-injection in cavity-enhanced absorption spectroscopy

    SciTech Connect

    Leen, J. Brian O’Keefe, Anthony

    2014-09-15

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10{sup −10} cm{sup −1}/√(Hz;) an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  9. Optical re-injection in cavity-enhanced absorption spectroscopy.

    PubMed

    Leen, J Brian; O'Keefe, Anthony

    2014-09-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10(-10) cm(-1)/√Hz; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  10. Microgel photonics: a breathing cavity onto optical fiber tip

    NASA Astrophysics Data System (ADS)

    Ricciardi, A.; Aliberti, A.; Giaquinto, M.; Micco, A.; Cusano, A.

    2015-09-01

    We experimentally demonstrate a novel multifunctional optical fiber probe resulting from the integration between two rapidly emerging technologies such as Lab-on-Fiber and Microgel Photonics. The device consists of a microgel based cavity formed by metallic slabs supporting plasmonic resonances, directly integrated on the optical fiber tip. By exploiting the multiresponsivity of microgel systems, variations of temperature, PH, ionic strength, as well as molecular binding events, make the cavity to `breath', thus modulating the interference pattern in the reflection spectrum. The microgel layer can be synthetized in such a way to obtain different thicknesses, corresponding to different operating regimes, opening new avenues for the realization of advanced multifunctional nanoprobes.

  11. Design of an ultra-compact reference ULE cavity

    NASA Astrophysics Data System (ADS)

    Didier, Alexandre; Millo, Jacques; Lacroûte, Clément; Ouisse, Morvan; Delporte, Jérôme; Giordano, Vincent; Rubiola, Enrico; Kersalé, Yann

    2016-06-01

    This article presents the design and the conception of an ultra-compact Fabry-Pérot cavity which will be used to develop an ultra-stable laser. The proposed cavity is composed of a 25 mm long ULE spacer with fused silica mirrors. It leads to an expected fractional frequency stability of 1.5 x 10-15 limited by the thermal noise. The chosen geometry leads to an acceleration relative sensitivity below 10-12 /(m/s2) for all directions.

  12. Optical cavity integrated surface ion trap for enhanced light collection

    NASA Astrophysics Data System (ADS)

    Benito, Francisco M.

    Ion trap systems allow the faithful storage and manipulation of qubits encoded in the energy levels of the ions, and can be interfaced with photonic qubits that can be transmitted to connect remote quantum systems. Single photons transmitted from two remote sites, each entangled with one quantum memory, can be used to entangle distant quantum memories by interfering on a beam splitter. Efficient remote entanglement generation relies upon efficient light collection from single ions into a single mode fiber. This can be realized by integrating an ion trap with an optical cavity and employing the Purcell effect for enhancing the light collection. Remote entanglement can be used as a resource for a quantum repeater for provably secure long-distance communication or as a method for communicating within a distributed quantum information processor. We present the integration of a 1 mm optical cavity with a micro-fabricated surface ion trap. The plano-concave cavity is oriented normal to the chip surface where the planar mirror is attached underneath the trap chip. The cavity is locked using a 780 nm laser which is stabilized to Rubidium and shifted to match the 369 nm Doppler transition in Ytterbium. The linear ion trap allows ions to be shuttled in and out of the cavity mode. The Purcell enhancement of spontaneous emission into the cavity mode would then allow efficient collection of the emitted photons, enabling faster remote entanglement generation.

  13. Optothermal transport behavior in whispering gallery mode optical cavities

    SciTech Connect

    Soltani, Soheil; Armani, Andrea M.

    2014-08-04

    Over the past century, whispering gallery mode optical cavities have enabled numerous advances in science and engineering, such as discoveries in quantum mechanics and non-linear optics, as well as the development of optical gyroscopes and add drop filters. One reason for their widespread appeal is their ability to confine light for long periods of time, resulting in high circulating intensities. However, when sufficiently large amounts of optical power are coupled into these cavities, they begin to experience optothermal or photothermal behavior, in which the optical energy is converted into heat. Above the optothermal threshold, the resonance behavior is no longer solely defined by electromagnetics. Previous work has primarily focused on the role of the optothermal coefficient of the material in this instability. However, the physics of this optothermal behavior is significantly more complex. In the present work, we develop a predictive theory based on a generalizable analytical expression in combination with a geometry-specific COMSOL Multiphysics finite element method model. The simulation couples the optical and thermal physics components, accounting for geometry variations as well as the temporal and spatial profile of the optical field. To experimentally verify our theoretical model, the optothermal thresholds of a series of silica toroidal resonant cavities are characterized at different wavelengths (visible through near-infrared) and using different device geometries. The silica toroid offers a particularly rigorous case study for the developed optothermal model because of its complex geometrical structure which provides multiple thermal transport paths.

  14. Optical response of a misaligned and suspended Fabry-Perot cavity

    SciTech Connect

    Cella, G.; Di Virgilio, A.; La Penna, P.; D'Auria, V.; Porzio, A.; Ricciardi, I.; Solimeno, S.

    2006-07-15

    The response to a probe laser beam of a suspended, misaligned, and detuned optical cavity is examined. A five degree of freedom dynamical model of the fluctuations of the longitudinal and transverse mirror coordinates is presented. Classical and quantum mechanical effects of radiation pressure are studied with the help of the optical stiffness coefficients and the signals provided by an FM sideband technique and a quadrant detector, for generic values of the product {tau} of the fluctuation frequency times the cavity round trip. A simplified version is presented for the case of small misalignments. Mechanical stability, mirror position entanglement, and ponderomotive squeezing are accommodated in this model. Numerical plots refer to cavities under test at the so-called Pisa LF facility. The presented model can describe radiation pressure effects recently appeared in the VIRGO antenna and give a framework for designing the next generation of gravitational wave antennas where such effects would be of critical relevance.

  15. Augmentation of Cavity Optical Inspection by Replicas Without Performance Degradation

    SciTech Connect

    Ge, M.; Burk, D.; Hicks, D.; Wu, G.; Thompson, C.; Cooley, L.D.; /Fermilab

    2009-01-01

    Although cavity optical inspection systems provide a huge amount of qualitative information about surface features, the amount of quantitative topographic informa-tion is limited. Here, we report the use of silicone-based RTV for replicas and moldings that provide increased details of topographic data associated with the optical cavity images. Profilometry scans of the molds yield mi-crometer-scale details associated with equator weld struc-tures and weld pits. This confirms at least two different types of pits, one which is bowl-shaped, and one which has a small peak at the bottom. The contour information extracted from profilometry can be used to evaluate mechanisms by which pits and other features limit RF performance. We present calculations based on a con-formal transformation of the profiles above. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.

  16. Optical diagnostics in the oral cavity: an overview

    PubMed Central

    Wilder-Smith, P; Holtzman, J; Epstein, J; Le, A

    2014-01-01

    As the emphasis shifts from damage mitigation to disease prevention or reversal of early disease in the oral cavity, the need for sensitive and accurate detection and diagnostic tools become more important. Many novel and emergent optical diagnostic modalities for the oral cavity are becoming available to clinicians with a variety of desirable attributes including: (i) non-invasiveness, (ii) absence of ionizing radiation, (iii) patient-friendliness, (iv) real-time information (v) repeatability, and (vi) high-resolution surface and subsurface images. In this article, the principles behind optical diagnostic approaches, their feasibility and applicability for imaging soft and hard tissues, and their potential usefulness as a tool in the diagnosis of oral mucosal lesions, dental pathologies, and other dental applications will be reviewed. The clinical applications of light-based imaging technologies in the oral cavity and of their derivative devices will be discussed to provide the reader with a comprehensive understanding of emergent diagnostic modalities. PMID:20561224

  17. Laser Pulse-Stretching Using Multiple Optical Ring-Cavities

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet; Lee, Chi-Ming (Technical Monitor)

    2002-01-01

    We describe a simple and passive nanosecond-long (ns-long) laser 'pulse-stretcher' using multiple optical ring-cavities. We present a model of the pulse-stretching process for an arbitrary number of optical ring-cavities. Using the model, we optimize the design of a pulse-stretcher for use in a spontaneous Raman scattering excitation system that avoids laser-induced plasma spark problems. From the optimized design, we then experimentally demonstrate and verify the model with a 3-cavity pulse-stretcher system that converts a 1000 mJ, 8.4 ns-long input laser pulse into an approximately 75 ns-long (FWHM) output laser pulse with a peak power reduction of 0.10X, and an 83% efficiency.

  18. Transportable cavity-stabilized laser system for optical carrier frequency transmission experiments.

    PubMed

    Parker, B; Marra, G; Johnson, L A M; Margolis, H S; Webster, S A; Wright, L; Lea, S N; Gill, P; Bayvel, P

    2014-12-10

    We report the design and performance of a transportable laser system at 1543 nm, together with its application as the source for a demonstration of optical carrier frequency transmission over 118 km of an installed dark fiber network. The laser system is based around an optical reference cavity featuring an elastic mounting that bonds the cavity to its support, enabling the cavity to be transported without additional clamping. The cavity exhibits passive fractional frequency insensitivity to vibration along the optical axis of 2.0×10(-11)  m(-1) s(2). With active fiber noise cancellation, the optical carrier frequency transmission achieves a fractional frequency instability, measured at the user end, of 2.6×10(-16) at 1 s, averaging down to below 3×10(-18) after 20,000 s. The fractional frequency accuracy of the transfer is better than 3×10(-18). This level of performance is sufficient for comparison of state-of-the-art optical frequency standards and is achieved in an urban fiber environment.

  19. Reference frequency transmission over optical fiber

    NASA Technical Reports Server (NTRS)

    Lutes, G.; Kirk, A.

    1986-01-01

    A 100-MHz reference frequency from a hydrogen maser frequency standard has been transmitted via optical fiber over a 14-km distance with a measured stability of 1.5 X 10 to the-15 power for 1000 seconds averaging time. This capability was demonstrated in a frequency distribution experiment performed in April, 1986. The reference frequency was transmitted over a single-mode fiber-optic link from Deep Space Station (DSS) 13 to DSS 12 and back. The background leading up to the experiment and the significance of stable reference frequency distribution in the Deep Space Network (DSN) is discussed. Also described are the experiment, including the fiber-optic link, the measurement method and equipment, and finally the results of the experiment.

  20. Measurement of aerosol optical properties by cw cavity enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Jie, Guo; Ye, Shan-Shan; Yang, Xiao; Han, Ye-Xing; Tang, Huai-Wu; Yu, Zhi-Wei

    2016-10-01

    The CAPS (Cavity Attenuated Phase shift Spectroscopy) system, which detects the extinction coefficients within a 10 nm bandpass centered at 532 nm, comprises a green LED with center wavelength in 532nm, a resonant optical cavity (36 cm length), a Photo Multiplier Tube detector, and a lock in amplifier. The square wave modulated light from the LED passes through the optical cavity and is detected as a distorted waveform which is characterized by a phase shift with respect to the initial modulation. Extinction coefficients are determined from changes in the phase shift of the distorted waveform of the square wave modulated LED light that is transmitted through the optical cavity. The performance of the CAPS system was evaluated by using measurements of the stability and response of the system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. In the paper, it illustrates that extinction coefficient was correlated with PM2.5 mass (0.91). These figures indicate that this method has the potential to become one of the most sensitive on-line analytical techniques for extinction coefficient detection. This work aims to provide an initial validation of the CAPS extinction monitor in laboratory and field environments. Our initial results presented in this paper show that the CAPS extinction monitor is capable of providing state-of-the-art performance while dramatically reducing the complexity of optical instrumentation for directly measuring the extinction coefficients.

  1. Superradiant Topological Peierls Insulator inside an Optical Cavity

    NASA Astrophysics Data System (ADS)

    Mivehvar, Farokh; Ritsch, Helmut; Piazza, Francesco

    2017-02-01

    We consider a spinless ultracold Fermi gas tightly trapped along the axis of an optical resonator and transversely illuminated by a laser closely tuned to a resonator mode. At a certain threshold pump intensity, the homogeneous gas density breaks a Z2 symmetry towards a spatially periodic order, which collectively scatters pump photons into the cavity. We show that this known self-ordering transition also occurs for low field seeking fermionic particles when the laser light is blue detuned to an atomic transition. The emergent superradiant optical lattice in this case is homopolar and possesses two distinct dimerizations. Depending on the spontaneously chosen dimerization, the resulting Bloch bands can have a nontrivial topological structure characterized by a nonvanishing Zak phase. In the case where the Fermi momentum is close to half of the cavity-mode wave number, a Peierls-like instability here creates a topological insulator with a gap at the Fermi surface, which hosts a pair of edge states. The topological features of the system can be nondestructively observed via the cavity output: the Zak phase of the bulk coincides with the relative phase between laser and cavity field, while the fingerprint of edge states can be observed as additional broadening in a well-defined frequency window of the cavity spectrum.

  2. Superradiant Topological Peierls Insulator inside an Optical Cavity.

    PubMed

    Mivehvar, Farokh; Ritsch, Helmut; Piazza, Francesco

    2017-02-17

    We consider a spinless ultracold Fermi gas tightly trapped along the axis of an optical resonator and transversely illuminated by a laser closely tuned to a resonator mode. At a certain threshold pump intensity, the homogeneous gas density breaks a Z_{2} symmetry towards a spatially periodic order, which collectively scatters pump photons into the cavity. We show that this known self-ordering transition also occurs for low field seeking fermionic particles when the laser light is blue detuned to an atomic transition. The emergent superradiant optical lattice in this case is homopolar and possesses two distinct dimerizations. Depending on the spontaneously chosen dimerization, the resulting Bloch bands can have a nontrivial topological structure characterized by a nonvanishing Zak phase. In the case where the Fermi momentum is close to half of the cavity-mode wave number, a Peierls-like instability here creates a topological insulator with a gap at the Fermi surface, which hosts a pair of edge states. The topological features of the system can be nondestructively observed via the cavity output: the Zak phase of the bulk coincides with the relative phase between laser and cavity field, while the fingerprint of edge states can be observed as additional broadening in a well-defined frequency window of the cavity spectrum.

  3. Optical complexity in external cavity semiconductor laser

    NASA Astrophysics Data System (ADS)

    Rondoni, Lamberto; Ariffin, M. R. K.; Varatharajoo, Renuganth; Mukherjee, Sayan; Palit, Sanjay K.; Banerjee, Santo

    2017-03-01

    In this article, the window based complexity and output modulation of a time delayed chaotic semiconductor laser (SL) model has been investigated. The window based optical complexity (OC), is measured by introducing the recurrence sample entropy (SampEn). The analysis has been done without and in the presence of external noise. The significant changes in the dynamics can be observed under induced noise with weak strength. It has also been found that there is a strong positive correlation between the output power and the complexity of the system with various sets of parameters. The laser intensity, as well as the OC can be increased with the incremental noise strength and the associated system parameters. Thus, optical complexity quantifies the system dynamics and its instabilities, since is strongly correlated with the laser outputs. This analysis can be applied to measure the laser instabilities and modulation of output power.

  4. Noise-Immune Cavity-Enhanced Optical Frequency Comb Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rutkowski, Lucile; Khodabakhsh, Amir; Johanssson, Alexandra C.; Foltynowicz, Aleksandra

    2015-06-01

    We present noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS), a recently developed technique for sensitive, broadband, and high resolution spectroscopy. In NICE-OFCS an optical frequency comb (OFC) is locked to a high finesse cavity and phase-modulated at a frequency precisely equal to (a multiple of) the cavity free spectral range. Since each comb line and sideband is transmitted through a separate cavity mode in exactly the same way, any residual frequency noise on the OFC relative to the cavity affects each component in an identical manner. The transmitted intensity contains a beat signal at the modulation frequency that is immune to frequency-to-amplitude noise conversion by the cavity, in a way similar to continuous wave noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS). The light transmitted through the cavity is detected with a fast-scanning Fourier-transform spectrometer (FTS) and the NICE-OFCS signal is obtained by fast Fourier transform of the synchronously demodulated interferogram. Our NICE-OFCS system is based on an Er:fiber femtosecond laser locked to a cavity with a finesse of ˜9000 and a fast-scanning FTS equipped with a high-bandwidth commercial detector. We measured NICE-OFCS signals from the 3νb{1}+νb{3} overtone band of CO_2 around 1.57 μm and achieved absorption sensitivity 6.4×10-11cm-1 Hz-1/2 per spectral element, corresponding to a minimum detectable CO_2 concentration of 25 ppb after 330 s integration time. We will describe the principles of the technique and its technical implementation, and discuss the spectral lineshapes of the NICE-OFCS signals. A. Khodabakhsh, C. Abd Alrahman, and A. Foltynowicz, Opt. Lett. 39, 5034-5037 (2014). J. Ye, L. S. Ma, and J. L. Hall, J. Opt. Soc. Am. B 15, 6-15 (1998). A. Khodabakhsh, A. C. Johansson, and A. Foltynowicz, Appl. Phys. B (2015) doi:10.1007/s00340-015-6010-7.

  5. Modes of a twisted optical cavity

    SciTech Connect

    Habraken, Steven J. M.; Nienhuis, Gerard

    2007-03-15

    An astigmatic optical resonator consists of two astigmatic mirrors facing each other. The resonator is twisted when the symmetry axes of the mirrors are nonparallel. We present an algebraic method to obtain the complete set of the paraxial eigenmodes of such a resonator. Basic ingredients are the complex eigenvectors of the four-dimensional transfer matrix that describes the transformation of a ray of light over a roundtrip of the resonator. The relation between the fundamental mode and the higher-order modes is expressed in terms of raising operators in the spirit of the ladder operators of the quantum harmonic oscillator.

  6. Digitally enhanced optical fiber frequency reference.

    PubMed

    McRae, Terry G; Ngo, Silvie; Shaddock, Daniel A; Hsu, Magnus T L; Gray, Malcolm B

    2014-04-01

    We use digitally enhanced heterodyne interferometry to measure the stability of optical fiber laser frequency references. Suppression of laser frequency noise by over four orders of magnitude is achieved using post processing time delay interferometry, allowing us to measure the mechanical stability for frequencies as low as 100 μHz. The performance of the digitally enhanced heterodyne interferometer platform used here is not practically limited by the dynamic range or bandwidth issues that can occur in feedback stabilization systems. This allows longer measurement times, better frequency discrimination, a reduction in spatially uncorrelated noise sources and an increase in interferometer sensitivity. An optical fiber frequency reference with the stability reported here, over a signal band of 20 mHz-1 Hz, has potential for use in demanding environments, such as space-based interferometry missions and optical flywheel applications.

  7. Fiber Optic Based Thermometry System for Superconducting RF Cavities

    SciTech Connect

    Kochergin, Vladimir

    2013-05-06

    Thermometry is recognized as the best technique to identify and characterize losses in SRF cavities. The most widely used and reliable apparatus for temperature mapping at cryogenic temperatures is based on carbon resistors (RTDs). The use of this technology on multi-cell cavities is inconvenient due to the very large number of sensors required to obtain sufficient spatial resolution. Recent developments make feasible the use of multiplexible fiber optic sensors for highly distributed temperature measurements. However, sensitivity of multiplexible cryogenic temperature sensors was found extending only to 12K at best and thus was not sufficient for SRF cavity thermometry. During the course of the project the team of MicroXact, JLab and Virginia Tech developed and demonstrated the multiplexible fiber optic sensor with adequate response below 20K. The demonstrated temperature resolution is by at least a factor of 60 better than that of the best multiplexible fiber optic temperature sensors reported to date. The clear path toward at least 10times better temperature resolution is shown. The first to date temperature distribution measurements with ~2.5mm spatial resolution was done with fiber optic sensors at 2K to4K temperatures. The repeatability and accuracy of the sensors were verified only at 183K, but at this temperature both parameters significantly exceeded the state of the art. The results of this work are expected to find a wide range of applications, since the results are enabling the whole new testing capabilities, not accessible before.

  8. Microfabricated Optical Cavities and Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Lončar, Marko; Scherer, Axel

    Microfabricated periodic structures with a high refractive index contrast have recently become very interesting geometries for the manipulation of light. The existence of a photonic bandgap, a frequency range within which propagation of light is prevented in all directions, is very useful where spatial localization of light is required. Ideally, by constructing three-dimensional confinement geometries, light propagation can be controlled in all three dimensions. However, since the fabrication of 3D photonic crystals is difficult, a more manufacturable approach is based on the use of one- or two-dimensional geometries. Here we describe the evolution of microcavities from 1D Bragg reflectors to 2D photonic crystals. The 1D microcavity laser (VCSEL) has already found widespread commercial use in data communications, and the equivalent 2D geometry has recently attracted a lot of research attention. 2D photonic crystal lasers, fabricated within a thin dielectric membrane and perforated with a two-dimensional lattice of holes, are very appealing for dense integration of photonic devices in telecommunications and optical sensing systems. In this chapter, we describe theory and experiments of planar photonic crystals as well as their applications towards lasers and super-dispersive elements. Low-threshold 2D photonic crystal lasers were recently demonstrated both in air and in different chemical solutions and can now be used to perform spectroscopic tests on ultra-small volumes of analyte.

  9. Biosensors based on GaN nanoring optical cavities

    NASA Astrophysics Data System (ADS)

    Kouno, Tetsuya; Takeshima, Hoshi; Kishino, Katsumi; Sakai, Masaru; Hara, Kazuhiko

    2016-05-01

    Biosensors based on GaN nanoring optical cavities were demonstrated using room-temperature photoluminescence measurements. The outer diameter, height, and thickness of the GaN nanorings were approximately 750-800, 900, and 130-180 nm, respectively. The nanorings functioned as whispering-gallery-mode (WGM)-type optical cavities and exhibited sharp resonant peaks like lasing actions. The evanescent component of the WGM was strongly affected by the refractive index of the ambient environment, the type of liquid, and the sucrose concentration of the analyzed solution, resulting in shifts of the resonant wavelengths. The results indicate that the GaN nanorings can potentially be used in sugar sensors of the biosensors.

  10. Nonperturbative atom-photon interactions in an optical cavity

    SciTech Connect

    Carmichael, H.J.; Tian, L.; Ren, W.

    1994-12-31

    One of the principal developments in cavity quantum electrodynamics in the last few years has been the extension of the ideas originally applied to systems of Rydberg atoms in microwave cavities to optical frequencies. As a corollary of this, more attention is being paid to quantum fluctuations and photon statistics. Another development, still in its infancy, is a move toward experiments using slowed or trapped atoms, or velocity selected beams; these methods are needed to enter the nonperturbative (strong dipole coupling) regime for one atom where there are experiments on subtle quantum-statistical effects go carry out. In this chapter we solve a number of theoretical problems related to these themes. Although the focus of the work is on optical systems, most of what we do is also relevant at microwave frequencies. We emphasize quantum fluctuations and photon statistics, and we try always to separate the quantum physics from those aspects of the physics that are understandable in classical terms. On the whole we only pay attention to the nonperturbative regime of cavity quantum electrodynamics where the dipole coupling strength is larger than the dissipation rates. 59 refs., 14 figs.

  11. Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields

    NASA Astrophysics Data System (ADS)

    Tsang, Mankei

    2011-10-01

    In a previous paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.81.063837 81, 063837 (2010)], I proposed a quantum model of the cavity electro-optic modulator, which can coherently couple an optical cavity mode to a microwave resonator mode and enable quantum operations on the two modes, including laser cooling of the microwave resonator, electro-optic entanglement, and backaction-evading optical measurement of a microwave quadrature. In this sequel, I focus on the quantum input-output relations between traveling optical and microwave fields coupled to the cavity electro-optic modulator. With red-sideband optical pumping, the relations are shown to resemble those of a beam splitter for the traveling fields, so that in the ideal case of zero parasitic loss and critical coupling, microwave photons can be coherently up converted to “flying” optical photons with unit efficiency, and vice versa. With blue-sideband pumping, the modulator acts as a nondegenerate parametric amplifier, which can generate two-mode squeezing and hybrid entangled photon pairs at optical and microwave frequencies. These fundamental operations provide a potential bridge between circuit quantum electrodynamics and quantum optics.

  12. Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields

    SciTech Connect

    Tsang, Mankei

    2011-10-15

    In a previous paper [Phys. Rev. A 81, 063837 (2010)], I proposed a quantum model of the cavity electro-optic modulator, which can coherently couple an optical cavity mode to a microwave resonator mode and enable quantum operations on the two modes, including laser cooling of the microwave resonator, electro-optic entanglement, and backaction-evading optical measurement of a microwave quadrature. In this sequel, I focus on the quantum input-output relations between traveling optical and microwave fields coupled to the cavity electro-optic modulator. With red-sideband optical pumping, the relations are shown to resemble those of a beam splitter for the traveling fields, so that in the ideal case of zero parasitic loss and critical coupling, microwave photons can be coherently up converted to ''flying'' optical photons with unit efficiency, and vice versa. With blue-sideband pumping, the modulator acts as a nondegenerate parametric amplifier, which can generate two-mode squeezing and hybrid entangled photon pairs at optical and microwave frequencies. These fundamental operations provide a potential bridge between circuit quantum electrodynamics and quantum optics.

  13. Coupling a single trapped atom to a nanoscale optical cavity.

    PubMed

    Thompson, J D; Tiecke, T G; de Leon, N P; Feist, J; Akimov, A V; Gullans, M; Zibrov, A S; Vuletić, V; Lukin, M D

    2013-06-07

    Hybrid quantum devices, in which dissimilar quantum systems are combined in order to attain qualities not available with either system alone, may enable far-reaching control in quantum measurement, sensing, and information processing. A paradigmatic example is trapped ultracold atoms, which offer excellent quantum coherent properties, coupled to nanoscale solid-state systems, which allow for strong interactions. We demonstrate a deterministic interface between a single trapped rubidium atom and a nanoscale photonic crystal cavity. Precise control over the atom's position allows us to probe the cavity near-field with a resolution below the diffraction limit and to observe large atom-photon coupling. This approach may enable the realization of integrated, strongly coupled quantum nano-optical circuits.

  14. Optical and electrical mappings of surface plasmon cavity modes

    NASA Astrophysics Data System (ADS)

    Ye, Fan; Merlo, Juan M.; Burns, Michael J.; Naughton, Michael J.

    2014-04-01

    Plasmonics is a rapidly expanding field, founded in physics but now with a growing number of applications in biology (biosensing), nanophotonics, photovoltaics, optical engineering and advanced information technology. Appearing as charge density oscillations along a metal surface, excited by electromagnetic radiation (e.g., light), plasmons can propagate as surface plasmon polaritons, or can be confined as standing waves along an appropriately-prepared surface. Here, we review the latter manifestation, both their origins and the manners in which they are detected, the latter dominated by near field scanning optical microscopy (NSOM/SNOM). We include discussion of the "plasmonic halo" effect recently observed by the authors, wherein cavity-confined plasmons are able to modulate optical transmission through step-gap nanostructures, yielding a novel form of color (wavelength) selection.

  15. Three-dimensional nanometer-scale optical cavities of indefinite medium

    PubMed Central

    Yao, Jie; Yang, Xiaodong; Yin, Xiaobo; Bartal, Guy; Zhang, Xiang

    2011-01-01

    Miniaturization of optical cavities has numerous advantages for enhancing light–matter interaction in quantum optical devices, low-threshold lasers with minimal power consumption, and efficient integration of optoelectronic devices at large scale. However, the realization of a truly nanometer-scale optical cavity is hindered by the diffraction limit of the nature materials. In addition, the scaling of the photon life time with the cavity size significantly reduces the quality factor of small cavities. Here we theoretically present an approach to achieve ultrasmall optical cavities using indefinite medium with hyperbolic dispersion, which allows propagation of electromagnetic waves with wave vectors much larger than those in vacuum enabling extremely small 3D cavity down to (λ/20)3. These cavities exhibit size-independent resonance frequencies and anomalous scaling of quality factors in contrast to the conventional cavities, resulting in nanocavities with both high Q/Vm ratio and broad bandwidth. PMID:21709266

  16. Sub-kilohertz linewidth narrowing of a mid-infrared optical parametric oscillator idler frequency by direct cavity stabilization.

    PubMed

    Ricciardi, I; Mosca, S; Parisi, M; Maddaloni, P; Santamaria, L; De Natale, P; De Rosa, M

    2015-10-15

    We stabilize the idler frequency of a singly resonant optical parametric oscillator directly to the resonance of a mid-infrared Fabry-Perot reference cavity. This is accomplished by the Pound-Drever-Hall locking scheme, controlling either the pump laser or the resonant signal frequency. A residual relative frequency noise power spectral density below 10(3)  Hz(2)/Hz is reached on average, with a Gaussian linewidth of 920 Hz over 100 ms, which reveals the potential for reaching spectral purity down to the hertz level by locking the optical parametric oscillator against a mid-infrared cavity with state-of-the-art superior performance.

  17. Compact carbon monoxide sensor utilizing a confocal optical cavity.

    NASA Technical Reports Server (NTRS)

    Scott, B.; Magyar, J.; Weyant, R.; Hall, J.

    1973-01-01

    The carbon monoxide sensor discussed in this paper utilizes a unique confocal cavity which allows the complete system to be packaged in a small volume suitable for hand-held use. The optical system is the heart of the instrument with equal emphasis placed on the electronics support circuitry, consisting essentially of a thermal infrared pyroelectric detector and lock-in amplifier. The pyroelectric detector offers a major advantage over other thermal detectors, providing a signal-to-noise ratio and detectivity that remain nearly constant over the frequency range from dc to 2000 Hz. Since bias voltage is not required, low frequency noise is not generated in the detector.

  18. Bloch FDTD simulation of slow optical wave resonance cavity in optical storage technology

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Lin, Zhaohua; Cai, Lihua

    2013-08-01

    Long chain series resonance cavity is suitable for transferring slow optical wave, which can be served as the basic device for optical storage technology. Micro-ring resonator is one kind of such a long chain structure, which is considered to be the basic component of optical integrated circuit and optical computer in the future. The discrete energy level has the potential to distinguish digital optical data. The optical delay characteristics make such a device possible to store the information for some time. The advantage of this device is that it has the potential to construct an optical storage device in small geometrical dimension and could use mature semiconductor manufacture capability to lower the design and manufacturing expenses. Many experimental results have proved a lot of material and geometrical coefficients are very important for such an optical delay device. New theory method is needed to calculate the periodical energy transfer and time delay characteristics, which can be compared with experimental result. The Bloch FDTD is presented for analysis of such a new optical device, based on the optical Bloch energy band theory. The energy band characteristics of micro-ring periodical optical waveguide device is discussed used that analytical method. This precise calculated method could be served as a useful tool for design the structure of such resonance cavity to achieve desired slow optical wave transfer performance.

  19. Optical heterodyne detection for cavity ring-down spectroscopy

    DOEpatents

    Levenson, Marc D.; Paldus, Barbara A.; Zare, Richard N.

    2000-07-25

    A cavity ring-down system for performing cavity ring-down spectroscopy (CRDS) using optical heterodyne detection of a ring-down wave E.sub.RD during a ring-down phase or a ring-up wave E.sub.RU during a ring up phase. The system sends a local oscillator wave E.sub.LO and a signal wave E.sub.SIGNAL to the cavity, preferably a ring resonator, and derives an interference signal from the combined local oscillator wave E.sub.LO and the ring-down wave E.sub.RD (or ring-up wave E.sub.RU). The local oscillator wave E.sub.LO has a first polarization and the ring-down wave E.sub.RD has a second polarization different from the first polarization. The system has a combining arrangement for combining or overlapping local oscillator wave E.sub.LO and the ring-down wave E.sub.RD at a photodetector, which receives the interference signal and generates a heterodyne current I.sub.H therefrom. Frequency and phase differences between the waves are adjustable.

  20. Cavity opto-mechanics using an optically levitated nanosphere

    PubMed Central

    Chang, D. E.; Regal, C. A.; Papp, S. B.; Wilson, D. J.; Ye, J.; Painter, O.; Kimble, H. J.; Zoller, P.

    2010-01-01

    Recently, remarkable advances have been made in coupling a number of high-Q modes of nano-mechanical systems to high-finesse optical cavities, with the goal of reaching regimes in which quantum behavior can be observed and leveraged toward new applications. To reach this regime, the coupling between these systems and their thermal environments must be minimized. Here we propose a novel approach to this problem, in which optically levitating a nano-mechanical system can greatly reduce its thermal contact, while simultaneously eliminating dissipation arising from clamping. Through the long coherence times allowed, this approach potentially opens the door to ground-state cooling and coherent manipulation of a single mesoscopic mechanical system or entanglement generation between spatially separate systems, even in room-temperature environments. As an example, we show that these goals should be achievable when the mechanical mode consists of the center-of-mass motion of a levitated nanosphere. PMID:20080573

  1. Optical cavity temperature measurement based on the first overtones spontaneous emission spectra for HF chemical laser

    NASA Astrophysics Data System (ADS)

    Tang, Shukai; Li, Liucheng; Duo, Liping; Wang, Yuanhu; Yu, Haijun; Jin, Yuqi; Sang, Fengting

    2015-02-01

    An optical cavity temperature test method has been established for the HF chemical laser. This method assumes that in HF optical cavity the rotational distribution of vibrationally excited HF molecules meets the statistical thermodynamic distribution, the first overtones (v = 3-1 and 2-0) spontaneous emission spectral intensity distribution is obtained by using OMA V, the optical cavity temperature is calculated by linear fitting the rotational thermal equilibrium distribution formula for each HF vibrationally excited state. This method is simple, reliable, and repeatable. This method can be used to test the optical cavity temperature not only without lasing, but also with lasing.

  2. Measurement of epithelial thickness within the oral cavity using optical coherence tomography (OCT)

    NASA Astrophysics Data System (ADS)

    Prestin, S.; Betz, C.; Kraft, M.

    2010-02-01

    Optical coherence tomography (OCT) is a promising method in the early diagnosis of oral cavity cancer. The objective of the present study is to determine normal values of epithelial thickness in the oral cavity, as no such data are to be found in the literature. In healthy test persons, epithelial thickness of the oral mucosa was determined with the help of OCT separately for each side at nine different locations. Special attention was directed to those sites having the highest incidence for the development of dysplasias and carcinomas. Depending on the location within the oral cavity, the epithelium demonstrated a varying thickness. The highest values were found in the region of the tongue and the cheek, whereas the floor of the mouth showed the thinnest epithelium. Our data serve as reference values for detecting oral malignancy and determining the approximate grade of dysplasia. In this circumstance, a differentiated view of the different regions is important due to the variation in thickness of the epithelium within the normal oral cavity.

  3. T-shaped cavity dual-frequency Nd:YAG laser with electro-optical modulation

    NASA Astrophysics Data System (ADS)

    Xing, Junhong; Jiao, Mingxing; Liu, Yun

    2016-05-01

    A T-shaped cavity dual-frequency Nd:YAG laser with electro-optical modulation is proposed, which consists of both p- and s-cavities sharing the same gain medium of Nd:YAG. Each cavity was not only able to select longitudinal mode but also tune frequency using an electro-optic birefringent filter polarization beam splitter + lithium niobate. The frequency difference of dual frequency was tuned through the whole gain bandwidth of Nd:YAG, which is far above the usually accepted free spectral range value in the case of a single-axis laser. As a result, the simultaneous operation of orthogonally and linearly polarized dual-frequency laser was obtained, which coincides with the theoretical analysis based on Jones matrices. The obtained frequency difference ranges from 0 to 132 GHz. This offers a simple and widely tunable source with potential for portable frequency reference applications in terahertz-wave generation and absolute-distance interferometry measurement areas.

  4. Genetics Home Reference: Leber hereditary optic neuropathy

    MedlinePlus

    ... Health Conditions Leber hereditary optic neuropathy Leber hereditary optic neuropathy Enable Javascript to view the expand/collapse ... PDF Open All Close All Description Leber hereditary optic neuropathy (LHON) is an inherited form of vision ...

  5. Logically combined photonic crystal - A Fabry Perot optical cavity

    NASA Astrophysics Data System (ADS)

    Alagappan, G.; Png, C. E.

    2016-11-01

    We address the logical combination, as opposed to the linear superposition, of two one - dimensional photonic crystals of slightly different periodicities. The original short range translational symmetry is destroyed in these quasi - periodic system. This induces a strong coupling between Bloch modes of different translational wavevectors, and results in a large number of slow modes in such logically combined photonic crystal. In this article, we show by exploiting the beating feature characteristics of the topology of our system, that these slow modes can be effectively described as modes of a Fabry Perot optical cavity made of a homogenous metamaterial with a dispersive refractive index. The homogenized refractive index of the equivalent metamaterial can be obtained from the band structure calculations, using an extended zone scheme. The density of the slow modes in the logically combined photonic crystal is inversely proportional to the group index of the equivalent metamaterial.

  6. A 100 Mbps resonant cavity phase modulator for coherent optical communications

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Robinson, Deborah L.; Hemmati, Hamid

    1992-01-01

    A resonant cavity electro-optic phase modulator has been designed and implemented to operate at a data rate of 100 Mbps. The modulator consists of an electro-optic crystal located in a highly resonant cavity. The cavity is electro-optically tuned on and off resonance, and the phase dispersion near the cavity resonance provides the output phase modulation. The performance of the modulator was measured by first heterodyne detecting the signal to an intermediate frequency and then measuring the spectral characteristics using an RF spectrum analyzer. The measured phase shift is shown to be in good agreement with the theoretical predictions.

  7. Measurements of optical loss in transparent solids using a novel spectrometer based on optical cavity decay

    SciTech Connect

    Milanovich, F.P.; Hunt, J.T.; Roe, J.N.

    1988-12-14

    Recent advances in High Average Power (HAP) solid state lasers and the development of new concept lasers with the potential of ultra- high average power output have put increasing demands on the transparency of optical window materials. To gain a better understanding of the current status of window materials and to direct research toward more nearly transparent materials, we have constructed an optical characterization facility with the purpose of making quantitative optical loss measurements in the sensitivity range of 10/sup /minus/3/ to 10/sup /minus/6/ cm/sup /minus/1/. The cornerstone of this facility is a scanning optical lossmeter in which loss is determined by comparing the decay time of an optical cavity with and without a transparent solid present. The lossmeter has been successfully applied to measurements of the optical loss of witness samples of highly transparent fused silica. A description of the lossmeter and a compilation of preliminary loss measurements are presented here. 3 refs.

  8. Planar surface-micromachined pressure sensor with a sub-surface, embedded reference pressure cavity

    SciTech Connect

    Eaton, W.P.; Smith, J.H.

    1996-09-01

    Planar, surface micromachined pressure sensors have been fabricated by an extension of the chemical-mechanical polishing (CMP) process. CMP eliminates many of the fabrication problems associated with the photolithography, dry etch, and metallization of non-planar devices. Furthermore, CMP adds additional design flexibility. The sensors are based upon deformable, silicon nitride diaphragms with polysilicon piezoresistors. Absolute pressure is detected by virtue of reference pressure cavities underneath the diaphragms. Process details are discussed and characteristics from many devices are presented.

  9. Open Quantum System Studies of Optical Lattices and Nonlinear Optical Cavities: A Comprehensive Development of Atomtronics

    NASA Astrophysics Data System (ADS)

    Pepino, Ronald A.

    2011-12-01

    A generalized open quantum theory that models the transport properties of bosonic systems is derived from first principles. This theory is shown to correctly describe the long-time behavior of a specific class of non-Markovian system-reservoir interactions. Starting with strongly-interacting bosons in optical lattices, we use this theory to construct a novel, one-to-one analogy with electronic systems, components, and devices. Beginning with the concept of a wire, we demonstrate theoretically the ultracold boson analog of a semiconductor diode, a field-effect transistor, and a bipolar junction transistor. In a manner directly analogous to electronics, we show that it is possible to construct combinatorial logic structures from the fundamental electronic-emulating devices just described. In this sense, our proposal for atomtronic devices is a useful starting point for arrangements with more complex functionality. In addition we show that the behavior of the proposed diode should also be possible utilizing a weakly-interacting, coherent bosonic drive. After demonstrating the formal equivalence between systems comprised of bosons in optical lattices and photons in nonlinear cavity networks, we use the formalism to extend the ideas and concepts developed earlier in ultracold boson systems to nonlinear optical systems. We adapt the open quantum system theory to this new physical environment, and demonstrate theoretically how a few-photon optical diode can be realized in a coupled nonlinear cavity system. An analysis of different practical cavity quantum electrodynamics systems is presented and experimentally-viable candidates are evaluated.

  10. Lasing optical cavities based on macroscopic scattering elements

    NASA Astrophysics Data System (ADS)

    Consoli, Antonio; López, Cefe

    2017-01-01

    Two major elements are required in a laser device: light confinement and light amplification. Light confinement is obtained in optical cavities by employing a pair of mirrors or by periodic spatial modulation of the refractive index as in photonic crystals and Bragg gratings. In random lasers, randomly placed nanoparticles embedded in the active material provide distributed optical feedback for lasing action. Recently, we demonstrated a novel architecture in which scattering nanoparticles and active element are spatially separated and random lasing is observed. Here we show that this approach can be extended to scattering media with macroscopic size, namely, a pair of sand grains, which act as feedback elements and output couplers, resulting in lasing emission. We demonstrate that the number of lasing modes depends on the surface roughness of the sand grains in use which affect the coherent feedback and thus the emission spectrum. Our findings offer a new perspective of material science and photonic structures, facilitating a novel and simple approach for the realization of new photonics devices based on natural scattering materials.

  11. Lasing optical cavities based on macroscopic scattering elements.

    PubMed

    Consoli, Antonio; López, Cefe

    2017-01-10

    Two major elements are required in a laser device: light confinement and light amplification. Light confinement is obtained in optical cavities by employing a pair of mirrors or by periodic spatial modulation of the refractive index as in photonic crystals and Bragg gratings. In random lasers, randomly placed nanoparticles embedded in the active material provide distributed optical feedback for lasing action. Recently, we demonstrated a novel architecture in which scattering nanoparticles and active element are spatially separated and random lasing is observed. Here we show that this approach can be extended to scattering media with macroscopic size, namely, a pair of sand grains, which act as feedback elements and output couplers, resulting in lasing emission. We demonstrate that the number of lasing modes depends on the surface roughness of the sand grains in use which affect the coherent feedback and thus the emission spectrum. Our findings offer a new perspective of material science and photonic structures, facilitating a novel and simple approach for the realization of new photonics devices based on natural scattering materials.

  12. Lasing optical cavities based on macroscopic scattering elements

    PubMed Central

    Consoli, Antonio; López, Cefe

    2017-01-01

    Two major elements are required in a laser device: light confinement and light amplification. Light confinement is obtained in optical cavities by employing a pair of mirrors or by periodic spatial modulation of the refractive index as in photonic crystals and Bragg gratings. In random lasers, randomly placed nanoparticles embedded in the active material provide distributed optical feedback for lasing action. Recently, we demonstrated a novel architecture in which scattering nanoparticles and active element are spatially separated and random lasing is observed. Here we show that this approach can be extended to scattering media with macroscopic size, namely, a pair of sand grains, which act as feedback elements and output couplers, resulting in lasing emission. We demonstrate that the number of lasing modes depends on the surface roughness of the sand grains in use which affect the coherent feedback and thus the emission spectrum. Our findings offer a new perspective of material science and photonic structures, facilitating a novel and simple approach for the realization of new photonics devices based on natural scattering materials. PMID:28071675

  13. All-optical flip-flop based on vertical cavity semiconductor optical amplifiers.

    PubMed

    Song, Deqiang; Gauss, Veronica; Zhang, Haijiang; Gross, Matthias; Wen, Pengyue; Esener, Sadik

    2007-10-15

    We report the operation of an all-optical set-reset (SR) flip-flop based on vertical cavity semiconductor optical amplifiers (VCSOAs). This flip-flop is cascadable, has low optical switching power (~10 microW), and has the potential to be integrated on a small footprint (~100 microm(2)). The flip-flop is composed of two cross-coupled electrically pumped VCSOA inverters and uses the principles of cross-gain modulation, polarization gain anisotropy, and highly nonlinear gain characteristics to achieve flip-flop functionality. We believe that, when integrated on chip, this type of all-optical flip-flop opens new prospects for implementing all-optical fast memories and timing regeneration circuits.

  14. Cascadable all-optical inverter based on a nonlinear vertical-cavity semiconductor optical amplifier.

    PubMed

    Zhang, Haijiang; Wen, Pengyue; Esener, Sadik

    2007-07-01

    We report, for the first time to our knowledge, the operation of a cascadable, low-optical-switching-power(~10 microW) small-area (~100 microm(2)) high-speed (80 ps fall time) all-optical inverter. This inverter employs cross-gain modulation, polarization gain anisotropy, and highly nonlinear gain characteristics of an electrically pumped vertical-cavity semiconductor optical amplifier (VCSOA). The measured transfer characteristics of such an optical inverter resemble those of standard electronic metal-oxide semiconductor field-effect transistor-based inverters exhibiting high noise margin and high extinction ratio (~9.3 dB), making VCSOAs an ideal building block for all-optical logic and memory.

  15. Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties

    DOEpatents

    Pipino, Andrew Charles Rule

    1999-11-16

    An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.

  16. Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties

    DOEpatents

    Pipino, Andrew C. R.; Hudgens, Jeffrey W.

    1999-08-24

    An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.

  17. Optical extinction monitor using cw cavity enhanced detection.

    PubMed

    Kebabian, Paul L; Robinson, Wade A; Freedman, Andrew

    2007-06-01

    We present details of an apparatus capable of measuring optical extinction (i.e., scattering and/or absorption) with high precision and sensitivity. The apparatus employs one variant of cavity enhanced detection, specifically cavity attenuated phase shift spectroscopy, using a near-confocal arrangement of two high reflectivity (R approximately 0.9999) mirrors in tandem with an enclosed cell 26 cm in length, a light emitting diode (LED), and a vacuum photodiode detector. The square wave modulated light from the LED passes through the absorption cell and is detected as a distorted wave form which is characterized by a phase shift with respect to the initial modulation. The amount of that phase shift is a function of fixed instrument properties-cell length, mirror reflectivity, and modulation frequency-and of the presence of a scatterer or absorber (air, particles, trace gases, etc.) within the cell. The specific implementation reported here employs a blue LED; the wavelength and spectral bandpass of the measurement are defined by the use of an interference filter centered at 440 nm with a 20 nm wide bandpass. The monitor is enclosed within a standard 19 in. rack-mounted instrumentation box, weighs 10 kg, and uses 70 W of electrical power including a vacuum pump. Measurements of the phase shift induced by Rayleigh scattering from several gases (which range in extinction coefficient from 0.4-32 Mm(-1)) exhibit a highly linear dependence (r(2)=0.999 97) when plotted as the co-tangent of the phase shift versus the expected extinction. Using heterodyne demodulation techniques, we demonstrate a detection limit of 0.04 Mm(-1) (4 x 10(-10) cm(-1)) (2sigma) in 10 s integration time and a base line drift of less than +/-0.1 Mm(-1) over a 24 h period. Detection limits decrease as the square root of integration time out to approximately 150 s.

  18. Duality relation between nonspherical mirror optical cavities and its application to gravitational-wave detectors.

    PubMed

    Agresti, Juri; Chen, Yanbei; D'Ambrosio, Erika; Savov, Pavlin

    2012-09-01

    In this paper, we analytically prove a unique duality relation between the eigenspectra of paraxial optical cavities with nonspherical mirrors: a one-to-one mapping between eigenmodes and eigenvalues of cavities deviating from flat mirrors by h(r) and cavities deviating from concentric mirrors by -h(r), where h need not be a small perturbation. We then illustrate its application to optical cavities, proposed for advanced interferometric gravitational-wave detectors, where the mirrors are designed to support beams with rather flat intensity profiles over the mirror surfaces. This unique mapping might be very useful in future studies of alternative optical designs for advanced gravitational wave interferometers or experiments employing optical cavities with nonstandard mirrors.

  19. Proposal of using slot-waveguide cavity to reduce noises in resonant integrated optical gyroscopes

    NASA Astrophysics Data System (ADS)

    Jiang, Yi; Kong, Mei; Xu, Yameng

    2016-10-01

    Resonant optical gyroscopes suffer serious performance degradation induced by noises. We propose using an air-gap silicon-on-silica slot waveguide ring resonator as the resonant cavity of a resonant integrated optical gyroscope. We estimate possible backscattering, Kerr effect, polarization fluctuation, and thermal drift in the air-gap slot waveguide. It is shown that the backscattering, Kerr nonlinearity, and thermal instabilities can decrease significantly compared to those in a common solid-core silicon waveguide cavity, and perturbations of the polarization fluctuation may be eliminated. In addition, a slot-waveguide cavity is more beneficial for integration than a photonic bandgap fiber cavity.

  20. Deterministic Loading of Individual Atoms to a High-Finesse Optical Cavity

    SciTech Connect

    Fortier, Kevin M.; Kim, Soo Y.; Gibbons, Michael J.; Ahmadi, Peyman; Chapman, Michael S.

    2007-06-08

    Individual laser-cooled atoms are delivered on demand from a single atom magneto-optic trap to a high-finesse optical cavity using an atom conveyor. Strong coupling of the atom with the cavity field allows simultaneous cooling and detection of individual atoms for time scales exceeding 15 s. The single atom scatter rate is studied as a function of probe-cavity detuning and probe Rabi frequency, and the experimental results are in qualitative agreement with theoretical predictions. We demonstrate the ability to manipulate the position of a single atom relative to the cavity mode with excellent control and reproducibility.

  1. Optical cavity-assisted broadband optical transparency of a plasmonic metal film.

    PubMed

    Liu, Zhengqi; Nie, Yiyou; Yuan, Wen; Liu, Xiaoshan; Huang, Shan; Chen, Jing; Gao, Huogui; Gu, Gang; Liu, Guiqiang

    2015-05-08

    We theoretically present a powerful method to achieve a continuous metal film structure with broadband optical transparency via introducing a dielectric Fabry-Pérot (FP) cavity. An incident optical field could be efficiently coupled and confined with the strong localized plasmons by the non-close-packed plasmonic crystal at the input part and could then become re-radiated output via the transmission channel supported by the dielectric cavity. The formed photonic-plasmonic system could therefore make the seamless metal film structure have a superior near-unity transparency (up to 97%) response and a broadband transparent spectrum with bandwidth >245 nm (with transmittance >90%) in the optical regime. The observed optical properties of the proposed structure can be highly tuned via varying the structural parameters. Based on the colloidal assembly method, the proposed plasmonic crystal can be fabricated in a large area. In addition, the achieved optical transparency can be retained in the extremely roughed metal film structure. Thereby, the findings could offer a feasible way to achieve a broadband transparent metal film structure and hold potential applications in transparent electrodes, touch screens and interactive electronics.

  2. Optical cavity-assisted broadband optical transparency of a plasmonic metal film

    NASA Astrophysics Data System (ADS)

    Liu, Zhengqi; Nie, Yiyou; Yuan, Wen; Liu, Xiaoshan; Huang, Shan; Chen, Jing; Gao, Huogui; Gu, Gang; Liu, Guiqiang

    2015-05-01

    We theoretically present a powerful method to achieve a continuous metal film structure with broadband optical transparency via introducing a dielectric Fabry-Pérot (FP) cavity. An incident optical field could be efficiently coupled and confined with the strong localized plasmons by the non-close-packed plasmonic crystal at the input part and could then become re-radiated output via the transmission channel supported by the dielectric cavity. The formed photonic-plasmonic system could therefore make the seamless metal film structure have a superior near-unity transparency (up to 97%) response and a broadband transparent spectrum with bandwidth >245 nm (with transmittance >90%) in the optical regime. The observed optical properties of the proposed structure can be highly tuned via varying the structural parameters. Based on the colloidal assembly method, the proposed plasmonic crystal can be fabricated in a large area. In addition, the achieved optical transparency can be retained in the extremely roughed metal film structure. Thereby, the findings could offer a feasible way to achieve a broadband transparent metal film structure and hold potential applications in transparent electrodes, touch screens and interactive electronics.

  3. Optical detection of disordered water within a protein cavity.

    PubMed

    Goldbeck, Robert A; Pillsbury, Marlisa L; Jensen, Russell A; Mendoza, Juan L; Nguyen, Rosa L; Olson, John S; Soman, Jayashree; Kliger, David S; Esquerra, Raymond M

    2009-09-02

    Internal water molecules are important to protein structure and function, but positional disorder and low occupancies can obscure their detection by X-ray crystallography. Here, we show that water can be detected within the distal cavities of myoglobin mutants by subtle changes in the absorbance spectrum of pentacoordinate heme, even when the presence of solvent is not readily observed in the corresponding crystal structures. A well-defined, noncoordinated water molecule hydrogen bonded to the distal histidine (His64) is seen within the distal heme pocket in the crystal structure of wild type (wt) deoxymyoglobin. Displacement of this water decreases the rate of ligand entry into wt Mb, and we have shown previously that the entry of this water is readily detected optically after laser photolysis of MbCO complexes. However, for L29F and V68L Mb no discrete positions for solvent molecules are seen in the electron density maps of the crystal structures even though His64 is still present and slow rates of ligand binding indicative of internal water are observed. In contrast, time-resolved perturbations of the visible absorption bands of L29F and V68L deoxyMb generated after laser photolysis detect the entry and significant occupancy of water within the distal pockets of these variants. Thus, the spectral perturbation of pentacoordinate heme offers a potentially robust system for measuring nonspecific hydration of the active sites of heme proteins.

  4. Cavity Optical Pulse Extraction: ultra-short pulse generation as seeded Hawking radiation.

    PubMed

    Eilenberger, Falk; Kabakova, Irina V; de Sterke, C Martijn; Eggleton, Benjamin J; Pertsch, Thomas

    2013-01-01

    We show that light trapped in an optical cavity can be extracted from that cavity in an ultrashort burst by means of a trigger pulse. We find a simple analytic description of this process and show that while the extracted pulse inherits its pulse length from that of the trigger pulse, its wavelength can be completely different. Cavity Optical Pulse Extraction is thus well suited for the development of ultrashort laser sources in new wavelength ranges. We discuss similarities between this process and the generation of Hawking radiation at the optical analogue of an event horizon with extremely high Hawking temperature. Our analytic predictions are confirmed by thorough numerical simulations.

  5. A photonic crystal cavity-optical fiber tip nanoparticle sensor for biomedical applications

    NASA Astrophysics Data System (ADS)

    Shambat, Gary; Rajasekhar Kothapalli, Sri; Khurana, Aman; Provine, J.; Sarmiento, Tomas; Cheng, Kai; Cheng, Zhen; Harris, James; Daldrup-Link, Heike; Sam Gambhir, Sanjiv; Vučković, Jelena

    2012-05-01

    We present a sensor capable of detecting solution-based nanoparticles using an optical fiber tip functionalized with a photonic crystal cavity. When sensor tips are retracted from a nanoparticle solution after being submerged, we find that a combination of convective fluid forces and optically induced trapping cause an aggregation of nanoparticles to form directly on cavity surfaces. A simple readout of quantum dot photoluminescence coupled to the optical fiber shows that nanoparticle presence and concentration can be detected through modified cavity properties. Our sensor can detect both gold and iron oxide nanoparticles and can be utilized for molecular sensing applications in biomedicine.

  6. Bose-Einstein condensates in an optical cavity with sub-recoil bandwidth

    NASA Astrophysics Data System (ADS)

    Klinder, J.; Keßler, H.; Georges, Ch.; Vargas, J.; Hemmerich, A.

    2016-12-01

    This article provides a brief synopsis of our recent work on the interaction of Bose-Einstein condensates with the light field inside an optical cavity exhibiting a bandwidth on the order of the recoil frequency. Three different coupling scenarios are discussed giving rise to different physical phenomena at the borderline between the fields of quantum optics and many-body physics. This includes sub-recoil opto-mechanical cooling, cavity-controlled matter wave superradiance and the emergence of a superradiant superfluid or a superradiant Mott insulating many-body phase in a self-organized intra-cavity optical lattice with retarded infinite range interactions.

  7. Genetics Home Reference: optic atrophy type 1

    MedlinePlus

    ... pale appearance (pallor) of the nerve that relays visual information from the eye to the brain ( optic ... leading to the breakdown of structures that transmit visual information from the eyes to the brain. Affected ...

  8. NO_2 Trace Measurements by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ventrillard-Courtillot, I.; Desbois, Th.; Foldes, T.; Romanini, D.

    2009-06-01

    In order to reach the sub-ppb NO_2 detection level required for environmental applications in remote areas, we develop a spectrometer based on a technique introduced a few years ago, named Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) [1]. It allows very sensitive and selective measurements, together with the realization of compact and robust set-ups as was subsequently demonstrated during measurements campaigns in harsh environments [2]. OF-CEAS benefits from the optical feedback to efficiently inject a cw-laser in a V-shaped high finesse cavity (typically 10 000). Cavity-enhanced absorption spectra are acquired on a small spectral region (˜1 cm^{-1}) that enables selective and quantitative measurements at a fast acquisition rate with a detection limit of several 10^{-10} cm^{-1} as reported in this work. Spectra are obtained with high spectral definition (150 MHz highly precisely spaced data points) and are self calibrated by cavity rind-down measurements regularly performed (typically every second). NO_2 measurements are performed with a commercial extended cavity diode laser around 411 nm, spectral region where intense electronic transitions occur. We will describe the set-up developed for in-situ measurements allowing real time concentration measurements at typically 5 Hz; and then report on the measurements performed with calibrated NO_2 reference samples to evaluate the linearity of the apparatus. The minimum detectable absorption loss is estimated by considering the standard deviation of the residual of one spectrum. We achieved 2x10^{-10} cm^{-1} for a single spectrum recorded in less than 100 ms at 100 mbar. It leads to a potential detection limit of 3x10^8 molecules/cm^3, corresponding to about 150 pptv at this pressure. [1] J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B, 80, 1027 (2005). [2] D. Romanini, M. Chenevrier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B, 83, 659

  9. Excess Noise Depletion of a Bose-Einstein Condensate in an Optical Cavity

    NASA Astrophysics Data System (ADS)

    Szirmai, G.; Nagy, D.; Domokos, P.

    2009-02-01

    Quantum fluctuations of a cavity field coupled into the motion of ultracold bosons can be strongly amplified by a mechanism analogous to the Petermann excess noise factor in lasers with unstable cavities. For a Bose-Einstein condensate in a stable optical resonator, the excess noise effect amounts to a significant depletion on long time scales.

  10. Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities

    NASA Astrophysics Data System (ADS)

    Li, Tao; Long, Gui-Lu

    2016-08-01

    We propose an effective, scalable, hyperparallel photonic quantum computation scheme in which photonic qubits are hyperencoded both in the spatial degrees of freedom (DOF) and the polarization DOF of each photon. The deterministic hyper-controlled-not (hyper-cnot) gate on a two-photon system is attainable with our interesting interface between the polarized photon and the collective spin wave (magnon) of an atomic ensemble embedded in a double-sided optical cavity, and it doubles the operations in the conventional quantum cnot gate. Moreover, we present a compact hyper-cnotN gate on N +1 hyperencoded photons with only two auxiliary cavity-magnon systems, not more, and it can be faithfully constituted with current experimental techniques. Our proposal enables various applications with the hyperencoded photons in quantum computing and quantum networks.

  11. Laser Frequency Stabilization and Control through Offset Sideband Locking to Optical Cavities

    NASA Technical Reports Server (NTRS)

    Thorpe, James I.; Livas, J.; Numata, K.

    2008-01-01

    We describe a class of techniques whereby a laser frequency can be stabilized to a fixed optical cavity resonance with an adjustable offset, providing a wide tuning range for the central frequency. These techniques require only minor modifications to the standard Pound-Drever-Hall locking techniques and have the advantage of not altering the intrinsic stability of the frequency reference. In a laboratory investigation the sideband techniques were found to perform equally well as the standard, non-tunable Pound-Drever-Hall technique, each providing more than four decades of frequency noise suppression over the free-running noise. An application of a tunable system as a pre-stabilization stage in a phase-lock loop is also presented with the combined system achieving a frequency noise suppression of nearly twelve orders of magnitude.

  12. Normal Mode Splitting and Mechanical Effects of an Optical Lattice in a Ring Cavity

    NASA Astrophysics Data System (ADS)

    Klinner, Julian; Lindholdt, Malik; Nagorny, Boris; Hemmerich, Andreas

    2006-01-01

    A novel regime of atom-cavity physics is explored, arising when large atom samples dispersively interact with high-finesse optical cavities. A stable far-detuned optical lattice of several million rubidium atoms is formed inside an optical ring resonator by coupling equal amounts of laser light to each propagation direction of a longitudinal cavity mode. An adjacent longitudinal mode, detuned by about 3 GHz, is used to perform probe transmission spectroscopy of the system. The atom-cavity coupling for the lattice beams and the probe is dispersive and dissipation results only from the finite photon-storage time. The observation of two well-resolved normal modes demonstrates the regime of strong cooperative coupling. The details of the normal mode spectrum reveal mechanical effects associated with the retroaction of the probe upon the optical lattice.

  13. Normal mode splitting and mechanical effects of an optical lattice in a ring cavity.

    PubMed

    Klinner, Julian; Lindholdt, Malik; Nagorny, Boris; Hemmerich, Andreas

    2006-01-20

    A novel regime of atom-cavity physics is explored, arising when large atom samples dispersively interact with high-finesse optical cavities. A stable far-detuned optical lattice of several million rubidium atoms is formed inside an optical ring resonator by coupling equal amounts of laser light to each propagation direction of a longitudinal cavity mode. An adjacent longitudinal mode, detuned by about 3 GHz, is used to perform probe transmission spectroscopy of the system. The atom-cavity coupling for the lattice beams and the probe is dispersive and dissipation results only from the finite photon-storage time. The observation of two well-resolved normal modes demonstrates the regime of strong cooperative coupling. The details of the normal mode spectrum reveal mechanical effects associated with the retroaction of the probe upon the optical lattice.

  14. All-optical switching in a continuously operated and strongly coupled atom-cavity system

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Rangwala, S. A.

    2017-03-01

    We experimentally demonstrate collective strong coupling, optical bi-stability (OB), and all-optical switching in a system consisting of ultracold 85Rb atoms, trapped in a dark magneto-optical trap (DMOT), and coupled to an optical Fabry-Perot cavity. The strong coupling is established by measuring the vacuum Rabi splitting (VRS) of a weak on-axis probe beam. The dependence of VRS on the probe beam power is measured, and bi-stability in the cavity transmission is observed. We demonstrate control over the transmission of the probe beam through the atom-cavity system using a free-space off-axis control beam and show that the cavity transmission can be switched on and off in micro-second timescales using micro-Watt control powers. The utility of the system as a tool for sensitive, in-situ and rapid measurements is envisaged.

  15. Normal Mode Splitting and Mechanical Effects of an Optical Lattice in a Ring Cavity

    SciTech Connect

    Klinner, Julian; Lindholdt, Malik; Nagorny, Boris; Hemmerich, Andreas

    2006-01-20

    A novel regime of atom-cavity physics is explored, arising when large atom samples dispersively interact with high-finesse optical cavities. A stable far-detuned optical lattice of several million rubidium atoms is formed inside an optical ring resonator by coupling equal amounts of laser light to each propagation direction of a longitudinal cavity mode. An adjacent longitudinal mode, detuned by about 3 GHz, is used to perform probe transmission spectroscopy of the system. The atom-cavity coupling for the lattice beams and the probe is dispersive and dissipation results only from the finite photon-storage time. The observation of two well-resolved normal modes demonstrates the regime of strong cooperative coupling. The details of the normal mode spectrum reveal mechanical effects associated with the retroaction of the probe upon the optical lattice.

  16. Electronic sideband locking of a broadly tunable 318.6 nm ultraviolet laser to an ultra-stable optical cavity

    NASA Astrophysics Data System (ADS)

    Bai, Jiandong; Wang, Jieying; He, Jun; Wang, Junmin

    2017-04-01

    We demonstrate frequency stabilization of a tunable 318.6 nm ultraviolet (UV) laser system using electronic sideband locking. By indirectly changing the frequency of a broadband electro-optic phase modulator, the laser can be continuously tuned over 4 GHz, while a 637.2 nm laser is directly stabilized to a high-finesse ultra-stable optical cavity. The doubling cavity also remains locked to the 637.2 nm light. We show that the tuning range depends mainly on the gain-flattening region of the modulator and the piezo-tunable range of the seed laser. The frequency-stabilized tunable UV laser system is able to compensate for the offset between reference and target frequencies, and has potential applications in precision spectroscopy of cold atoms.

  17. Cooperative effects of two optical dipole antennas coupled to plasmonic Fabry-Pérot cavity.

    PubMed

    Yang, Zhong-Jian; Wang, Qu-Quan; Lin, Hai-Qing

    2012-09-07

    We investigate the cooperative effects of two optical dipole antennas that are coupled to a finite Au nanowire acting as plasmonic Fabry-Pérot (F-P) cavity. The coherent coupling between one single antenna and the F-P cavity can result in Fano resonance, and the coupling strength is antenna position dependent. For two antennas coupled to the F-P cavity, constructive or destructive interference between antennas could be achieved by adjusting their positions along the F-P cavity. Consequently, the Fano resonance will become stronger or weaker correspondingly.

  18. Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.

    PubMed

    Shambat, Gary; Ellis, Bryan; Mayer, Marie A; Majumdar, Arka; Haller, Eugene E; Vučković, Jelena

    2011-04-11

    We demonstrate a gallium arsenide photonic crystal cavity injection-based electro-optic modulator coupled to a fiber taper waveguide. The fiber taper serves as a convenient and tunable waveguide for cavity coupling with minimal loss. Localized electrical injection of carriers into the cavity region via a laterally doped p-i-n diode combined with the small mode volume of the cavity enable ultra-low energy modulation at sub-fJ/bit levels. Speeds of up to 1 GHz are demonstrated with photoluminescence lifetime measurements revealing that the ultimate limit goes well into the tens of GHz.

  19. Quantum dynamics of an optical cavity coupled to a thin semitransparent membrane: Effect of membrane absorption

    SciTech Connect

    Biancofiore, C.; Karuza, M.; Galassi, M.; Natali, R.; Vitali, D.; Tombesi, P.; Di Giuseppe, G.

    2011-09-15

    We study the quantum dynamics of the cavity optomechanical system formed by a Fabry-Perot cavity with a thin vibrating membrane at its center. We determine in particular to what extent optical absorption by the membrane hinders reaching a quantum regime for the cavity-membrane system. We show that even though membrane absorption may significantly lower the cavity finesse and also heat the membrane, one can still simultaneously achieve ground state cooling of a vibrational mode of the membrane and stationary optomechanical entanglement with state-of-the-art apparatuses.

  20. Intra-cavity cryogenic optical refrigeration using high power vertical external-cavity surface-emitting lasers (VECSELs).

    PubMed

    Ghasemkhani, Mohammadreza; Albrecht, Alexander R; Melgaard, Seth D; Seletskiy, Denis V; Cederberg, Jeffrey G; Sheik-Bahae, Mansoor

    2014-06-30

    A 7% Yb:YLF crystal is laser cooled to 131 ± 1 K from room temperature by placing it inside the external cavity of a high power InGaAs/GaAs VECSEL operating at 1020 nm with 0.15 nm linewidth. This is the lowest temperature achieved in the intracavity geometry to date and presents major progress towards realizing an all-solid-state compact optical cryocooler.

  1. Tuning the Sensitivity of an Optical Cavity with Slow and Fast Light

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Myneni, Krishna; Chang, H.; Toftul, A.; Schambeau, C.; Odutola, J. A.; Diels, J. C.

    2012-01-01

    We have measured mode pushing by the dispersion of a rubidium vapor in a Fabry-Perot cavity and have shown that the scale factor and sensitivity of a passive cavity can be strongly enhanced by the presence of such an anomalous dispersion medium. The enhancement is the result of the atom-cavity coupling, which provides a positive feedback to the cavity response. The cavity sensitivity can also be controlled and tuned through a pole by a second, optical pumping, beam applied transverse to the cavity. Alternatively, the sensitivity can be controlled by the introduction of a second counter-propagating input beam that interferes with the first beam, coherently increasing the cavity absorptance. We show that the pole in the sensitivity occurs when the sum of the effective group index and an additional cavity delay factor that accounts for mode reshaping goes to zero, and is an example of an exceptional point, commonly associated with coupled non-Hermitian Hamiltonian systems. Additionally we show that a normal dispersion feature can decrease the cavity scale factor and can be generated through velocity selective optical pumping

  2. Power enhancement of burst-mode ultraviolet pulses using a doubly resonant optical cavity.

    PubMed

    Rakhman, Abdurahim; Notcutt, Mark; Liu, Yun

    2015-12-01

    We report a doubly resonant enhancement cavity (DREC) that can realize a simultaneous enhancement of two incoming laser beams at different wavelengths and different temporal structures. The double-resonance condition is theoretically analyzed, and different DREC locking methods are experimentally investigated. Simultaneous locking of a Fabry-Perot cavity to both an infrared (1064 nm) and its frequency-tripled ultraviolet (355 nm) pulses has been demonstrated by controlling the frequency difference between the two beams with a fiber-optic frequency shifter. The DREC technique enables novel applications of optical cavities to power enhancement of burst-mode lasers with arbitrary macropulse width and repetition rate.

  3. Power enhancement of burst-mode UV pulses using a doubly-resonant optical cavity

    SciTech Connect

    Rahkman, Abdurahim; Notcutt, Mark; Liu, Yun

    2015-11-24

    We report a doubly-resonant enhancement cavity (DREC) that can realize a simultaneous enhancement of two incoming laser beams at different wavelengths and different temporal structures. The double-resonance condition is theoretically analyzed and different DREC locking methods are experimentally investigated. Simultaneous locking of a Fabry-Perot cavity to both an infrared (IR, 1064 nm) and its frequency tripled ultraviolet (UV, 355 nm) pulses has been demonstrated by controlling the frequency difference between the two beams with a fiber optic frequency shifter. The DREC technique opens a new paradigm in the applications of optical cavities to power enhancement of burst-mode lasers with arbitrary macropulse width and repetition rate.

  4. Measurement-based generation of shaped single photons and coherent state superpositions in optical cavities

    NASA Astrophysics Data System (ADS)

    Lecamwasam, Ruvindha L.; Hush, Michael R.; James, Matthew R.; Carvalho, André R. R.

    2017-01-01

    We propose related schemes to generate arbitrarily shaped single photons, i.e., photons with an arbitrary temporal profile, and coherent state superpositions using simple optical elements. The first system consists of two coupled cavities, a memory cavity and a shutter cavity, containing a second-order optical nonlinearity and electro-optic modulator (EOM), respectively. Photodetection events of the shutter cavity output herald preparation of a single photon in the memory cavity, which may be stored by immediately changing the optical length of the shutter cavity with the EOM after detection. On-demand readout of the photon, with arbitrary shaping, can be achieved through modulation of the EOM. The second scheme consists of a memory cavity with two outputs, which are interfered, phase shifted, and measured. States that closely approximate a coherent state superposition can be produced through postselection for sequences of detection events, with more photon detection events leading to a larger superposition. We furthermore demonstrate that no-knowledge feedback can be easily implemented in this system and used to preserve the superposition state, as well as provide an extra control mechanism for state generation.

  5. Coupled-Cavity Interferometer for the Optics Laboratory

    ERIC Educational Resources Information Center

    Peterson, R. W.

    1975-01-01

    Describes the construction of a flexible coupled-cavity interferometer for student use. A helium-neon laser and phonograph turntable are the main components. Lists activities which may be performed with the apparatus. (Author/CP)

  6. Feasibility of a feedback control of atomic self-organization in an optical cavity

    SciTech Connect

    Ivanov, D. A. Ivanova, T. Yu.

    2015-08-15

    Many interesting nonlinear effects are based on the strong interaction of motional degrees of freedom of atoms with an optical cavity field. Among them is the spatial self-organization of atoms in a pattern where the atoms group in either odd or even sites of the cavity-induced optical potential. An experimental observation of this effect can be simplified by using, along with the original cavity-induced feedback, an additional electronic feedback based on the detection of light leaking the cavity and the control of the optical potential for the atoms. Following our previous study, we show that this approach is more efficient from the laser power perspective than the original scheme without the electronic feedback.

  7. A method for cleaning optical precision surface of laser gyro cavity

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Jiao, Ling Yan; Lin, Na Na; Zhang, Dong

    2016-10-01

    Laser gyro is the only one non-electromechanical high-precision inertial sensitive instruments in aircraft inertial guidance systems. Ultra high vacuum acquisition is a key segment during the manufacturing process of laser gyro. The surface cleanliness and integrity have decisive influence on the sealing performance of ultra-high vacuum. A cleaning technology for the optical surface of laser gyro cavity was found by experiment. Meanwhile, the analysis of the adsorption mechanism of contaminant on the laser gyro cavity surface and overview of common optical element cleaning technology were given. The result showed that the new cleaning technology improved the cleanliness of the cavity optical surface without any damage and provided a reliable solution for chronic leak of high precision laser gyro cavity.

  8. Cavity modes with optical orbital angular momentum in a metamaterial ring based on transformation optics.

    PubMed

    Wu, H W; Wang, F; Dong, Y Q; Shu, F Z; Zhang, K; Peng, R W; Xiong, X; Wang, Mu

    2015-12-14

    In this work, we theoretically study the cavity modes with transverse orbital angular momentum in metamaterial ring based on transformation optics. The metamaterial ring is designed to transform the straight trajectory of light into the circulating one by enlarging the azimuthal angle, effectively presenting the modes with transverse orbital angular momentum. The simulation results confirm the theoretical predictions, which state that the transverse orbital angular momentum of the mode not only depends on the frequency of the incident light, but also depends on the transformation scale of the azimuthal angle. Because energy dissipation inevitably reduces the field amplitude of the modes, the confined electromagnetic energy and the quality factor of the modes inside the ring are also studied in order to evaluate the stability of those cavity modes. The results show that the metamaterial ring can effectively confine light with a high quality factor and maintain steady modes with the orbital angular momentum, even if the dimension of the ring is much smaller than the wavelength of the incident light. This technique for exploiting the modes with optical transverse orbital angular momentum may provides a unique platform for applications related to micromanipulation.

  9. Fluorescence of semiconductor nanocrystals coupled to optical Tamm cavities

    NASA Astrophysics Data System (ADS)

    Feng, Fu; Pascale Senellart Team; Benoit Dubertret Team; Agnes Maitre Team

    We describe here the photoluminescence properties of a layer of colloidal CdSe/CdS fluorescent nanocrystals embedded in such a Tamm cavity. Spectral and angular analysis of fluorescence shows that the nanocrystals emission is into the Tamm states ; the emission dispersion relation for disks of various diameters shows the effect of the Tamm states lateral confinement. We also combined spatial and angular emission analysis and showed that the direction of emission is not the same for different points on a disk: emission from the left (resp. right) portion of the cavity is directed mostly in the left (resp. right) direction, in agreement with our numerical simulations. Our measurement scheme constitutes a probe of the Tamm state electric field phase gradient inside the cavity. Spatial and K space resolved spectroscopy.

  10. Active disturbance rejection control of temperature for ultrastable optical cavities.

    PubMed

    Pizzocaro, Marco; Calonico, Davide; Calosso, Claudio; Clivati, Cecilia; Costanzo, Giovanni A; Levi, Filippo; Mura, Alberto

    2013-02-01

    This paper describes the application of a novel active disturbance rejection control (ADRC) to the stabilization of the temperature of two ultra-stable Fabry-Perot cavities. The cavities are 10 cm long and entirely made of ultralow- expansion glass. The control is based on a linear extended state observer that estimates and compensates the disturbance in the system in real time. The resulting control is inherently robust and easy to tune. A digital implementation of ADRC gives a temperature instability of 200 μK at one day of integration time.

  11. Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Du, Han; Zhang, Xingwang; Deng, Jie; Zhao, Yunshan; Chau, Fook Siong; Zhou, Guangya

    2016-04-01

    We report the experimental observation of lateral shearing optical gradient forces in nanoelectromechanical systems (NEMS) controlled dual-coupled photonic crystal (PhC) nanobeam cavities. With an on-chip integrated NEMS actuator, the coupled cavities can be mechanically reconfigured in the lateral direction while maintaining a constant coupling gap. Shearing optical gradient forces are generated when the two cavity centers are laterally displaced. In our experiments, positive and negative lateral shearing optical forces of 0.42 nN and 0.29 nN are observed with different pumping modes. This study may broaden the potential applications of the optical gradient force in nanophotonic devices and benefit the future nanooptoelectromechanical systems.

  12. Fiber optic reference frequency distribution to remote beam waveguide antennas

    NASA Technical Reports Server (NTRS)

    Calhoun, Malcolm; Kuhnle, Paul; Law, Julius

    1995-01-01

    In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.

  13. High-Q silica zipper cavity for optical radiation pressure driven MOMS switch

    SciTech Connect

    Tetsumoto, Tomohiro; Tanabe, Takasumi

    2014-07-15

    We design a silica zipper cavity that has high optical and mechanical Q (quality factor) values and demonstrate numerically the feasibility of a radiation pressure driven micro opto-mechanical system (MOMS) directional switch. The silica zipper cavity has an optical Q of 4.0 × 10{sup 4} and an effective mode volume V{sub mode} of 0.67λ{sup 3} when the gap between two cavities is 34 nm. The mechanical Q (Q{sub m}) is determined by thermo-elastic damping and is 2.0 × 10{sup 6} in a vacuum at room temperature. The opto-mechanical coupling rate g{sub OM} is as high as 100 GHz/nm, which allows us to move the directional cavity-waveguide system and switch 1550-nm light with 770-nm light by controlling the radiation pressure.

  14. Demonstration of the stabilization technique for nonplanar optical resonant cavities utilizing polarization

    SciTech Connect

    Akagi, T.; Araki, S.; Funahashi, Y.; Honda, Y.; Okugi, T.; Omori, T.; Shimizu, H.; Terunuma, N.; Urakawa, J.; Miyoshi, S.; Takahashi, T. Tanaka, R.; Uesugi, Y.; Yoshitama, H.; Sakaue, K.; Washio, M.

    2015-04-15

    Based on our previously developed scheme to stabilize nonplanar optical resonant cavities utilizing polarization caused by a geometric phase in electromagnetic waves traveling along a twisted path, we report an application of the technique for a cavity installed in the Accelerator Test Facility, a 1.3-GeV electron beam accelerator at KEK, in which photons are generated by laser-Compton scattering. We successfully achieved a power enhancement of 1200 with 1.4% fluctuation, which means that the optical path length of the cavity has been controlled with a precision of 14 pm under an accelerator environment. In addition, polarization switching utilizing a geometric phase of the nonplanar cavity was demonstrated.

  15. In situ characterization of an optically thick atom-filled cavity

    NASA Astrophysics Data System (ADS)

    Munns, J. H. D.; Qiu, C.; Ledingham, P. M.; Walmsley, I. A.; Nunn, J.; Saunders, D. J.

    2016-01-01

    A means for precise experimental characterization of the dielectric susceptibility of an atomic gas inside an optical cavity is important for the design and operation of quantum light-matter interfaces, particularly in the context of quantum information processing. Here we present a numerically optimized theoretical model to predict the spectral response of an atom-filled cavity, accounting for both homogeneous and inhomogeneous broadening at high optical densities. We investigate the regime where the two broadening mechanisms are of similar magnitude, which makes the use of common approximations invalid. Our model agrees with an experimental implementation with warm caesium vapor in a ring cavity. From the cavity response, we are able to extract important experimental parameters, for instance the ground-state populations, total number density, and the magnitudes of both homogeneous and inhomogeneous broadening.

  16. Generation and purification of maximally entangled atomic states in optical cavities

    SciTech Connect

    Lougovski, P.; Walther, H.; Solano, E.

    2005-01-01

    We present a probabilistic scheme for generating and purifying maximally entangled states of two atoms inside an optical cavity via no-photon detection at the cavity output, where ideal detectors are not required. The intermediate mixed states can be continuously purified so as to violate Bell inequalities in a parametrized manner. The scheme relies on an additional strong-driving field that realizes, atypically, simultaneous Jaynes-Cummings and anti-Jaynes-Cummings interactions.

  17. In situ observation of optomechanical Bloch oscillations in an optical cavity

    NASA Astrophysics Data System (ADS)

    Keßler, H.; Klinder, J.; Prasanna Venkatesh, B.; Georges, Ch; Hemmerich, A.

    2016-10-01

    It is shown experimentally that a Bose-Einstein condensate inside an optical cavity, operating in the regime of strong cooperative coupling, responds to an external force by an optomechanical Bloch oscillation, which can be directly observed in the light leaking out of the cavity. Previous theoretical work predicts that the frequency of this oscillation matches with that of conventional Bloch oscillations such that its in situ monitoring may help to increase the data acquisition speed in precision force measurements.

  18. XTREME OPTICS: the behavior of cavity optics for the Jefferson Lab free-electron laser

    SciTech Connect

    Michelle D. Shinn; Christopher Behre; Stephen Benson; David Douglas; Fred Dylla; Christopher Gould; Joseph Gubeli; David Hardy; Kevin Jordan; George Neil; and Shukui Zhanga

    2006-09-25

    The cavity optics within high power free-electron lasers based on energy-recovering accelerators are subjected to extreme conditions associated with illumination from a broad spectrum of radiation, often at high irradiances. This is especially true for the output coupler, where absorption of radiation by both the mirror substrate and coating places significant design restrictions to properly manage heat load and prevent mirror distortion. Besides the fundamental lasing wavelength, the mirrors are irradiated with light at harmonics of the fundamental, THz radiation generated by the bending magnets downstream of the wiggler, and x-rays produced when the electron beam strikes accelerator diagnostic components (e.g., wire scanners and view screens) or from inadvertent beam loss. The optics must reside within high vacuum at ~ 10-8 Torr and this requirement introduces its own set of complications. This talk discusses the performance of numerous high reflector and output coupler optics assemblies and provides a detailed list of lessons learned gleaned from years of experience operating the Upgrade IR FEL, a 10 kW-class, sub-ps laser with output wavelength from 1 to 6 microns.

  19. LES/RANS Modeling of Aero-Optical Effects in a Supersonic Cavity Flow

    DTIC Science & Technology

    2016-06-13

    which focused on simulations of the effects of heat release due to lasing chemistry on shock-train formation within chemical oxygen iodine lasers...complete some of the work proposed under the original statement of work. 2.0 INTRODUCTION Externally-mounted optical systems (e.g. an aircraft... systems , it is important to be able to predict and model these aero-optical effects. Figure 1. Schematic of cavity flow with optical reflector at

  20. Dynamically Manipulating Topological Physics and Edge Modes in a Single Degenerate Optical Cavity

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang-Fa; Luo, Xi-Wang; Wang, Su; Guo, Guang-Can; Zhou, Xingxiang; Pu, Han; Zhou, Zheng-Wei

    2017-02-01

    We propose a scheme to simulate topological physics within a single degenerate cavity, whose modes are mapped to lattice sites. A crucial ingredient of the scheme is to construct a sharp boundary so that the open boundary condition can be implemented for this effective lattice system. In doing so, the topological properties of the system can manifest themselves on the edge states, which can be probed from the spectrum of an output cavity field. We demonstrate this with two examples: a static Su-Schrieffer-Heeger chain and a periodically driven Floquet topological insulator. Our work opens up new avenues to explore exotic photonic topological phases inside a single optical cavity.

  1. Polymer-based Photonic Crystal Cavity Sensor for Optical Detection in the Visible Wavelength Region.

    PubMed

    Maeno, Kenichi; Aki, Shoma; Sueyoshi, Kenji; Hisamoto, Hideaki; Endo, Tatsuro

    2016-01-01

    In this study, a polymer-based two-dimensional photonic crystal (PhC) cavity for visible-light-based optical-sensing applications was designed and fabricated for the first time. The PhC cavity configuration was designed to operate at 650 nm, and fabricated with a polymer (resist) on a silicon substrate using electron-beam lithography. For investigating sensing applications based on shifting of condition exhibiting a photonic bandgap (PBG), the polymer monolayer deposition (layer-by-layer method) was monitored as the light-intensity change at the cavity position. Consequently, the monolayer-level detection of polyions was achieved.

  2. Modeling of optically controlled reflective bistability in a vertical cavity semiconductor saturable absorber

    NASA Astrophysics Data System (ADS)

    Mishra, L.

    2015-05-01

    Bistability switching between two optical signals has been studied theoretically utilizing the concept of cross absorption modulation in a vertical cavity semiconductor saturable absorber (VCSSA). The probe beam is fixed at a wavelength other than the low power cavity resonance wavelength, which exhibits bistable characteristic by controlling the power of a pump beam (λpump≠λprobe). The cavity nonlinear effects that arises simultaneously from the excitonic absorption bleaching, and the carrier induced nonlinear index change has been considered in the model. The high power absorption in the active region introduces thermal effects within the nonlinear cavity due to which the effective cavity length changes. This leads to a red-shift of the cavity resonance wavelength, which results a change in phase of the optical fields within the cavity. In the simulation, the phase-change due to this resonance shifting is considered to be constant over time, and it assumes the value corresponding to the maximum input power. Further, an initial phase detuning of the probe beam has been considered to investigate its effect on switching. It is observed from the simulated results that, the output of the probe beam exhibits either clockwise or counter-clockwise bistability, depending on its initial phase detuning.

  3. Design Reference Missions for Deep-Space Optical Communication

    NASA Astrophysics Data System (ADS)

    Breidenthal, J.; Abraham, D.

    2016-05-01

    We examined the potential, but uncertain, NASA mission portfolio out to a time horizon of 20 years, to identify mission concepts that potentially could benefit from optical communication, considering their communications needs, the environments in which they would operate, and their notional size, weight, and power constraints. A set of 12 design reference missions was selected to represent the full range of potential missions. These design reference missions span the space of potential customer requirements, and encompass the wide range of applications that an optical ground segment might eventually be called upon to serve. The design reference missions encompass a range of orbit types, terminal sizes, and positions in the solar system that reveal the chief system performance variables of an optical ground segment, and may be used to enable assessments of the ability of alternative systems to meet various types of customer needs.

  4. Non-adiabatic dynamics of molecules in optical cavities

    NASA Astrophysics Data System (ADS)

    Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul

    2016-02-01

    Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.

  5. Non-adiabatic dynamics of molecules in optical cavities

    SciTech Connect

    Kowalewski, Markus Bennett, Kochise; Mukamel, Shaul

    2016-02-07

    Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.

  6. Two-Photon Cavity Solitons in Active Optical Media

    SciTech Connect

    Vilaseca, R.; Torrent, M. C.; Garcia-Ojalvo, J.; Brambilla, M.; San Miguel, M.

    2001-08-20

    We show that broad-area cascade lasers with no absorbing intracavity elements support the spontaneous formation of two-dimensional bright localized structures in a dark background. These cavity solitons consist of islands of two-photon emission embedded in a background of single-photon emission. We discuss the mechanisms through which these structures are formed and interact, along with their properties and stability.

  7. Novel laser machining of optical fibers for long cavities with low birefringence.

    PubMed

    Takahashi, Hiroki; Morphew, Jack; Oručević, Fedja; Noguchi, Atsushi; Kassa, Ezra; Keller, Matthias

    2014-12-15

    We present a novel method of machining optical fiber surfaces with a CO₂ laser for use in Fiber-based Fabry-Perot Cavities (FFPCs). Previously FFPCs were prone to large birefringence and limited to relatively short cavity lengths (≤ 200 μm). These characteristics hinder their use in some applications such as cavity quantum electrodynamics with trapped ions. We optimized the laser machining process to produce large, uniform surface structures. This enables the cavities to achieve high finesse even for long cavity lengths. By rotating the fibers around their axis during the laser machining process the asymmetry resulting from the laser's transverse mode profile is eliminated. Consequently we are able to fabricate fiber mirrors with a high degree of rotational symmetry, leading to remarkably low birefringence. Through measurements of the cavity finesse over a range of cavity lengths and the polarization dependence of the cavity linewidth, we confirmed the quality of the produced fiber mirrors for use in low-birefringence FFPCs.

  8. High contrast all-optical diode based on direction-dependent optical bistability within asymmetric ring cavity

    NASA Astrophysics Data System (ADS)

    Xia, Xiu-Wen; Zhang, Xin-Qin; Xu, Jing-Ping; Yang, Ya-Ping

    2016-08-01

    We propose a simple all-optical diode which is comprised of an asymmetric ring cavity containing a two-level atomic ensemble. Attributed to spatial symmetry breaking of the ring cavity, direction-dependent optical bistability is obtained in a classical bistable system. Therefore, a giant optical non-reciprocity is generated, which guarantees an all-optical diode with a high contrast up to 22 dB. Furthermore, its application as an all-optical logic AND gate is also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274242, 11474221, and 11574229), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1330203), and the National Key Basic Research Special Foundation of China (Grant Nos. 2011CB922203 and 2013CB632701).

  9. Optical glucose monitoring using vertical cavity surface emitting lasers (VCSELs)

    NASA Astrophysics Data System (ADS)

    Talebi Fard, Sahba; Hofmann, Werner; Talebi Fard, Pouria; Kwok, Ezra; Amann, Markus-Christian; Chrostowski, Lukas

    2009-08-01

    Diabetes Mellitus is a common chronic disease that has become a public health issue. Continuous glucose monitoring improves patient health by stabilizing the glucose levels. Optical methods are one of the painless and promising methods that can be used for blood glucose predictions. However, having accuracies lower than what is acceptable clinically has been a major concern. Using lasers along with multivariate techniques such as Partial Least Square (PLS) can improve glucose predictions. This research involves investigations for developing a novel optical system for accurate glucose predictions, which leads to the development of a small, low power, implantable optical sensor for diabetes patients.

  10. Quantum memory and phase gate in Optical cavities based on EIT

    NASA Astrophysics Data System (ADS)

    Borges, Halyne; Villas-Bôas, Celso

    In this work we investigate theoretically the implementation of an optical quantum memory in a system composed by a single atom, trapped in a high finesse optical cavity. In order to analyse the feasibility of implementing a quantum memory in the atom-cavity system based on the EIT phenomenon, we investigated in detail which parameter configuration the memory efficiency is optimized considering the two different setups. Our results shows that for a asymmetric one-sided cavity, which is the experimental setup commonly used to observe the EIT effect, the memory efficiency value saturates at about 8 . 5 % . Meanwhile, for an one-sided cavity, we observe for a sufficiently high value of the coupling constant g, the efficiency has its maximum value increased considerably, close to 100 % . However, this experimental setup is not suitable to observe cavity-EIT in the transmission spectrum, being necessary another kind of experiment, such as measurements phase difference field that leaves the cavity induced by the control field. Considering this configuration we also showed the implementation of a quantum phase gate based on the same nonlinear effect, where the pulse probe can experience a phase shift on the order of π, due to the presence or absence of a control pulse. Supported by FAPESP (Proc. 2014/12740-1) and INCT-IQ.

  11. Magnetic microtraps for cavity QED, Bose-Einstein condensates, and atom optics

    NASA Astrophysics Data System (ADS)

    Lev, Benjamin L.

    The system comprised of an atom strongly coupled to photons, known as cavity quantum electrodynamics (QED), provides a rich experimental setting for quantum information processing, both in the implementation of quantum logic gates and in the development of quantum networks. Moreover, studies of cavity QED will help elucidate the dynamics of continuously observed open quantum systems with quantum-limited feedback. To achieve these goals in cavity QED, a neutral atom must be tightly confined inside a high-finesse cavity with small mode volume for long periods of time. Microfabricated wires on a substrate---known as an atom chip---can create a sufficiently high-curvature magnetic potential to trap atoms in the Lamb-Dicke regime. We have recently integrated an optical fiber Fabry-Perot cavity with such a device. The microwires allow the on-chip collection and laser cooling of neutral atoms, and allow the magnetic waveguiding of these atoms to an Ioffe trap inside the cavity mode. Magnetically trapped intracavity atoms have been detected with this cavity QED system. A similar experiment employing microdisks and photonic bandgap cavities is nearing completion. With these more exotic cavities, a robust and scalable atom-cavity chip system will deeply probe the strong coupling regime of cavity QED with magnetically trapped atoms. Atom chips have found great success in producing and manipulating Bose-Einstein condensates and in creating novel atom optical elements. An on-chip BEC has been attained in a miniaturized system incorporating an atom chip designed for atom interferometry and for studies of Josephson effects of a BEC in a double-well potential. Using similar microfabrication techniques, we created and demonstrated a specular magnetic atom mirror formed from a standard computer hard drive. This device, in conjunction with micron-sized charged circular pads, can produce a 1-D ring trap which may prove useful for studying Tonks gases in a ring geometry and for

  12. An integrated quantum repeater at telecom wavelength with single atoms in optical fiber cavities

    NASA Astrophysics Data System (ADS)

    Uphoff, Manuel; Brekenfeld, Manuel; Rempe, Gerhard; Ritter, Stephan

    2016-03-01

    Quantum repeaters promise to enable quantum networks over global distances by circumventing the exponential decrease in success probability inherent in direct photon transmission. We propose a realistic, functionally integrated quantum-repeater implementation based on single atoms in optical cavities. Entanglement is directly generated between the single-atom quantum memory and a photon at telecom wavelength. The latter is collected with high efficiency and adjustable temporal and spectral properties into a spatially well-defined cavity mode. It is heralded by a near-infrared photon emitted from a second, orthogonal cavity. Entanglement between two remote quantum memories can be generated via an optical Bell-state measurement, while we propose entanglement swapping based on a highly efficient, cavity-assisted atom-atom gate. Our quantum-repeater scheme eliminates any requirement for wavelength conversion such that only a single system is needed at each node. We investigate a particular implementation with rubidium and realistic parameters for Fabry-Perot cavities based on hbox {CO}_2 laser-machined optical fibers. We show that the scheme enables the implementation of a rather simple quantum repeater that outperforms direct entanglement generation over large distances and does not require any improvements in technology beyond the state of the art.

  13. Design and test of the microwave cavity in an optically-pumped Rubidium beam frequency standard

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Wang, Yan-Hui

    2015-01-01

    We are developing a compact rubidium atomic beam frequency standard with optical pumping and detection. The cavity for microwave interrogation is an important part of the clock. The cavity in our design is a Ramsey-type, E-bend one, which is the same as the conventional method in most cesium beam clocks. Requirements for the design are proposed based on the frequency shift associated with the cavity. The basic structure of the cavity is given by theoretical analysis and detailed dimensions are determined by means of electromagnetic field simulation with the help of commercial software. The cavity is manufactured and fabricated successfully. The preliminary test result of the cavity is given, which is in good agreement with the simulation. The resonant frequency is 6.835 GHz, equal to the clock transition frequency of 87Rb, and the loaded quality factor is 500. These values are adjustable with posts outside the cavity. Estimations on the Ramsey line width and several frequency shifts are made. Project supported by the National Natural Science Foundation of China (Grant No. 11174015).

  14. Off-Axis Cavity Ring Down Spectroscopy Based on a Continuous-Wave Optical Parametric Oscillator

    NASA Astrophysics Data System (ADS)

    Peltola, Jari; Siltanen, Mikael; Halonen, Lauri; Vainio, Markku

    2011-06-01

    Continuous-wave cavity ring down spectroscopy (cw-CRDS) is a sensitive absorption technique for trace gas analysis. Although it is highly sensitivity and relatively fast, ring down repetition rate and spectral resolution are limited by the cavity free spectral range (FSR). Normally, the injected beam is mode matched to the lowest transverse electro-magnetic mode (TEM00) of the cavity. Light is coupled into the cavity only when standing wave condition is fulfilled. Scanning of the laser without variation of the cavity length leads to transmission comb where recorded ring down times are separated in frequency by the FSR. Recently Romanini et. al. reported an off-axis (OA) CRDS spectrometer operating in the 766 nm region where the FSR of the cavity was reduced by N = 4 times from the original. In this re-entrant condition the cavity length is chosen to provide degeneracy of transverse modes. If the injection is adequately off-axis the beam returns to the starting point after N round trips. This divides the FSR to N group of degenerated modes which are equally frequency-spaced. We present an OA-CRDS spectrometer (N = 4) based on a continuous-wave optical parametric oscillator (cw-OPO) operating in the mid-infrared region (2.75 - 3.45 μm). The measurement of formaldehyde (H_2CO) using an OA-CRDS spectrometer will be presented. J. Courtois, A. K. Mohamed and D. Romanini Opt. Express 18, (5), 1 March 2010.

  15. Entanglement of movable mirror and cavity field enhanced by an optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    Cai-yun, Zhang; Hu, Li; Gui-xia, Pan; Zong-qiang, Sheng

    2016-07-01

    A scheme to generate entanglement in a cavity optomechanical system filled with an optical parametric amplifier is proposed. With the help of the optical parametric amplifier, the stationary macroscopic entanglement between the movable mirror and the cavity field can be notably enhanced, and the entanglement increases when the parametric gain increases. Moreover, for a given parametric gain, the degree of entanglement of the cavity optomechanical system increases with increasing input laser power. Project supported by the National Natural Science Foundation of China (Grant No. 11247001), the Scientific Research Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. KJ2012A083), and the Doctor (Master) Fund of Anhui University of Science and Technology, China.

  16. Power enhancement of burst-mode UV pulses using a doubly-resonant optical cavity

    DOE PAGES

    Rahkman, Abdurahim; Notcutt, Mark; Liu, Yun

    2015-11-24

    We report a doubly-resonant enhancement cavity (DREC) that can realize a simultaneous enhancement of two incoming laser beams at different wavelengths and different temporal structures. The double-resonance condition is theoretically analyzed and different DREC locking methods are experimentally investigated. Simultaneous locking of a Fabry-Perot cavity to both an infrared (IR, 1064 nm) and its frequency tripled ultraviolet (UV, 355 nm) pulses has been demonstrated by controlling the frequency difference between the two beams with a fiber optic frequency shifter. The DREC technique opens a new paradigm in the applications of optical cavities to power enhancement of burst-mode lasers with arbitrarymore » macropulse width and repetition rate.« less

  17. Detecting quantum coherence of Bose gases in optical lattices by scattering light intensity in cavity.

    PubMed

    Zhou, Xiaoji; Xu, Xu; Yin, Lan; Liu, W M; Chen, Xuzong

    2010-07-19

    We propose a new method of detecting quantum coherence of a Bose gas trapped in a one-dimensional optical lattice by measuring the light intensity from Raman scattering in cavity. After pump and displacement process, the intensity or amplitude of scattering light is different for different quantum states of a Bose gas, such as superfluid and Mott-Insulator states. This method can also be useful to detect quantum states of atoms with two components in an optical lattice.

  18. Photonic crystal cavity on optical fiber facet for refractive index sensing.

    PubMed

    Wang, Bowen; Siahaan, Timothy; Dündar, Mehmet A; Nötzel, Richard; van der Hoek, Marinus J; He, Sailing; van der Heijden, Rob W

    2012-03-01

    Using a micromanipulation technique, a planar photonic crystal nanocavity made from a thin semiconductor membrane is released from the host semiconductor and attached to the end facet of a standard single-mode optical fiber. The cavity spectrum can be read out through the fiber by detecting the photoluminescence of embedded quantum dots. The modified fiber end serves as a fiber-optic refractive index sensor.

  19. Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity.

    PubMed

    Westergaard, Philip G; Christensen, Bjarke T R; Tieri, David; Matin, Rastin; Cooper, John; Holland, Murray; Ye, Jun; Thomsen, Jan W

    2015-03-06

    As an alternative to state-of-the-art laser frequency stabilization using ultrastable cavities, it has been proposed to exploit the nonlinear effects from coupling of atoms with a narrow transition to an optical cavity. Here, we have constructed such a system and observed nonlinear phase shifts of a narrow optical line by a strong coupling of a sample of strontium-88 atoms to an optical cavity. The sample temperature of a few mK provides a domain where the Doppler energy scale is several orders of magnitude larger than the narrow linewidth of the optical transition. This makes the system sensitive to velocity dependent multiphoton scattering events (Dopplerons) that affect the cavity field transmission and phase. By varying the number of atoms and the intracavity power, we systematically study this nonlinear phase signature which displays roughly the same features as for much lower temperature samples. This demonstration in a relatively simple system opens new possibilities for alternative routes to laser stabilization at the sub-100 mHz level and superradiant laser sources involving narrow-line atoms. The understanding of relevant motional effects obtained here has direct implications for other atomic clocks when used in relation to ultranarrow clock transitions.

  20. Development of a 4-mirror optical cavity for an inverse Compton scattering experiment in the STF

    NASA Astrophysics Data System (ADS)

    Shimizu, Hirotaka; Aryshev, Alexander; Higashi, Yasuo; Honda, Yosuke; Urakawa, Junji

    2014-05-01

    To obtain high-brightness quasi-monochromatic X-rays via inverse Compton scattering (ICS), an optical cavity for intensifying laser beams was designed and implemented in a new beam line at the KEK Superconducting RF Test Facility (STF) accelerator. The optical cavity adopts a planar configuration consisting of 4 mirrors. This confocal type resonator provides stable laser storage even with a long mirror distance, enabling head-on collision with the electron beams. To overcome the well-known astigmatism problems of the planar-type optical cavity, two forcibly bendable cylindrical mirrors were introduced instead of flat mirrors. With this new function for laser profile adjustment, an almost round laser profile at the waist point in the accelerator environment was successfully achieved. Estimated waist sizes were 43.7 μm for the horizontal and 50.8 μm for the vertical dimensions. The feedback control of this 4-mirror optical cavity worked with a stiff plate supporting all 4 mirrors. 1.7×103 finesse and 2.8-kW stored power for a 1-ms duration with 5 Hz were achieved.

  1. Homoclinic orbits and chaos in a second-harmonic generating optical cavity

    SciTech Connect

    Holm, D.; Kovacic, G., Timofeyev, I.

    1997-04-01

    We present two large families of Silnikov-type homoclinic orbits in a two mode-model that describes second-harmonic generation in a passive optical cavity. These families of homoclinic orbits give rise to chaotic dynamics in the model. 4 refs., 1 fig.

  2. Quantum phase gate based on electromagnetically induced transparency in optical cavities

    NASA Astrophysics Data System (ADS)

    Borges, Halyne S.; Villas-Bôas, Celso J.

    2016-11-01

    We theoretically investigate the implementation of a quantum controlled-phase gate in a system constituted by a single atom inside an optical cavity, based on the electromagnetically induced transparency effect. First we show that a probe pulse can experience a π phase shift due to the presence or absence of a classical control field. Considering the interplay of the cavity-EIT effect and the quantum memory process, we demonstrated a controlled-phase gate between two single photons. To this end, first one needs to store a (control) photon in the ground atomic states. In the following, a second (target) photon must impinge on the atom-cavity system. Depending on the atomic state, this second photon will be either transmitted or reflected, acquiring different phase shifts. This protocol can then be easily extended to multiphoton systems, i.e., keeping the control photon stored, it may induce phase shifts in several single photons, thus enabling the generation of multipartite entangled states. We explore the relevant parameter space in the atom-cavity system that allows the implementation of quantum controlled-phase gates using the recent technologies. In particular, we have found a lower bound for the cooperativity of the atom-cavity system which enables the implementation of phase shift on single photons. The induced shift on the phase of a photonic qubit and the controlled-phase gate between single photons, combined with optical devices, enable one to perform universal quantum computation.

  3. Water-walled microfluidics for high-optical finesse cavities

    NASA Astrophysics Data System (ADS)

    Maayani, Shai; Martin, Leopoldo L.; Carmon, Tal

    2016-01-01

    In submerged microcavities there is a tradeoff between resonant enhancement for spatial water and light overlap. Why not transform the continuously resonating optical mode to be fully contained in a water microdroplet per se? Here we demonstrate a sustainable 30-μm-pure water device, bounded almost completely by free surfaces, enabling >1,000,000 re-circulations of light. The droplets survive for >16 h using a technique that is based on a nano-water bridge from the droplet to a distant reservoir to compensate for evaporation. More than enabling a nearly-perfect optical overlap with water, atomic-level surface smoothness that minimizes scattering loss, and ~99% coupling efficiency from a standard fibre. Surface tension in our droplet is 8,000 times stronger than gravity, suggesting a new class of devices with water-made walls, for new fields of study including opto-capillaries.

  4. Water-walled microfluidics for high-optical finesse cavities

    PubMed Central

    Maayani, Shai; Martin, Leopoldo L.; Carmon, Tal

    2016-01-01

    In submerged microcavities there is a tradeoff between resonant enhancement for spatial water and light overlap. Why not transform the continuously resonating optical mode to be fully contained in a water microdroplet per se? Here we demonstrate a sustainable 30-μm-pure water device, bounded almost completely by free surfaces, enabling >1,000,000 re-circulations of light. The droplets survive for >16 h using a technique that is based on a nano-water bridge from the droplet to a distant reservoir to compensate for evaporation. More than enabling a nearly-perfect optical overlap with water, atomic-level surface smoothness that minimizes scattering loss, and ∼99% coupling efficiency from a standard fibre. Surface tension in our droplet is 8,000 times stronger than gravity, suggesting a new class of devices with water-made walls, for new fields of study including opto-capillaries. PMID:26794271

  5. Cavity Opto-Mechanics using an Optically Levitated Nanosphere

    DTIC Science & Technology

    2010-01-19

    Phys Rev Lett, 100:033602. 21. Yonezawa H, Braunstein SL, Furusawa A (2007) Experimental demonstration of quantum teleportation of broadband squeezing...Kimbleb,1, and P. Zollerb,e aInstitute for Quantum Information and Center for the Physics of Information, California Institute of Technology, Pasadena...Pasadena, CA 91125; and eInstitute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria

  6. Fabrication of optical cavities with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lin, Jintian; Song, Jiangxin; Tang, Jialei; Fang, Wei; Sugioka, Koji; Cheng, Ya

    2014-03-01

    We report on fabrication of three-dimensional (3D) high-quality (Q) whispering-gallery-mode microcavities by femtosecond laser micromachining. The main fabrication procedures include the formation of on-chip freestanding microdisk through selective material removal by femtosecond laser pulses, followed by surface smoothing processes (CO2 laser reflow for amorphous glass and focused ion beam (FIB) sidewall milling for crystalline materials) to improve the Q factors. Fused silica microcavities with 3D geometries are demonstrated with Q factors exceeding 106. A microcavity laser based on Nd:glass has been fabricated, showing a threshold as low as 69μW via free space continuous-wave optical excitation at the room temperature. CaF2 crystalline microcavities with Q factor of ~4.2×104 have also been demonstrated. This technique allows us to fabricate 3D high-Q microcavities in various transparent materials such as glass and crystals, which will benefit a broad spectrum of applications such as nonlinear optics, quantum optics, and bio-sensing.

  7. Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding.

    PubMed

    van Vugt, Lambert K; Zhang, Bin; Piccione, Brian; Spector, Arthur A; Agarwal, Ritesh

    2009-04-01

    Fundamental understanding of the size dependence of nanoscale optical confinement in semiconductor nanowire waveguides, as expressed by changes in the dispersion of light, is crucial for the optimal design of nanophotonic devices. Measurements of the dispersion are particularly challenging for nanoscale cavities due to difficulties associated with the in- and out-coupling of light resulting from diffraction effects. We report the strong size dependence of optical dispersion and associated group velocities in subwavelength width ZnSe nanowire waveguide cavities, using a technique based on Fabry-Perot resonator modes as probes over a wide energy range. Furthermore, we observed subwavelength (lambda/9) dispersionless waveguiding and significant slowing of the propagating light by 90% (c/8). These results, in addition to providing insights into nanoscale optical transport, will facilitate the rational design of nanowire photonic devices with tailored dispersion and group velocities.

  8. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing

    NASA Astrophysics Data System (ADS)

    Wang, Weiqiang; Chu, Sai T.; Little, Brent E.; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-06-01

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness.

  9. Ultra-small Fabry-Perot cavities in tapered optical fibers

    NASA Astrophysics Data System (ADS)

    Warren-Smith, Stephen C.; André, Ricardo M.; Dellith, Jan; Bartelt, Hartmut

    2016-11-01

    The small dimensions of optical fiber sensors are of interest to biological applications, given the ability to penetrate relatively inaccessible regions. However, conventional optical fibers are larger than biological material such as cells, and thus there is a need for further miniaturization. Here we present the fabrication of ultra-small Fabry-Perot cavities written into optical micro-fibers using focused ion beam (FIB) milling. We have fabricated cavities as small as 2.8 μm and demonstrated their use for measuring refractive index. In order to achieve sensitive measurements we interrogate at visible wavelengths, thereby reducing the free spectral range of the interferometer (relative to infra-red interrogation), increasing the number of interference fringes, and allowing for the implementation of the Fourier shift method.

  10. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing.

    PubMed

    Wang, Weiqiang; Chu, Sai T; Little, Brent E; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-06-24

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness.

  11. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing

    PubMed Central

    Wang, Weiqiang; Chu, Sai T.; Little, Brent E.; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-01-01

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness. PMID:27338250

  12. Realizing mode conversion and optical diode effect by coupling photonic crystal waveguides with cavity

    NASA Astrophysics Data System (ADS)

    Ye, Han; Zhang, Jin-Qian-Nan; Yu, Zhong-Yuan; Wang, Dong-Lin; Chen, Zhi-Hui

    2015-09-01

    We propose a novel two-dimensional photonic crystal structure consisting of two line defect waveguides and a cavity to realize mode conversion based on the coupling effect. The W1/cavity/W2 structure breaks the spatial symmetry and successfully converts the even (odd) mode to the odd (even) mode in the W2 waveguide during the forward (backward) transmission. When considering the incidence of only the even mode, the optical diode effect emerges and achieves approximate 35 dB unidirectionality at the resonant frequency. Moreover, owing to the narrow bandpass feature and the flexibility of the tuning cavity, utilization of the proposed structure as a wavelength filter is demonstrated in a device with a Y-branch splitter. Here, we provide a heuristic design for a mode converter, optical diode, and wavelength filter derived from the coupling effect between a cavity and adjacent waveguides, and expect that the proposed structure can be applied as a building block in future all-optical integrated circuits. Project supported by the National Natural Science Foundation of China (Grant Nos. 61372037 and 61307069), Beijing Excellent Ph. D. Thesis Guidance Foundation, China (Grant No. 20131001301), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2013021017-3).

  13. Optical modes within III-nitride multiple quantum well microdisk cavities

    NASA Astrophysics Data System (ADS)

    Mair, R. A.; Zeng, K. C.; Lin, J. Y.; Jiang, H. X.; Zhang, B.; Dai, L.; Botchkarev, A.; Kim, W.; Morkoç, H.; Khan, M. A.

    1998-03-01

    Optical resonance modes have been observed in optically pumped microdisk cavities fabricated from 50 Å/50 Å GaN/AlxGa1-xN(x˜0.07) and 45 Å/45 Å InxGa1-xN/GaN(x˜0.15) multiple quantum well structures. Microdisks, approximately 9 μm in diameter and regularly spaced every 50 μm, were formed by an ion beam etch process. Individual disks were pumped at 300 and 10 K with 290 nm laser pulses focused to a spot size much smaller than the disk diameter. Optical modes corresponding to (i) the radial mode type with a spacing of 49-51 meV (both TE and TM) and (ii) the Whispering Gallery mode with a spacing of 15-16 meV were observed in the GaN microdisk cavities. The spacings of these modes are consistent with those expected for modes within a resonant cavity of cylindrical symmetry, refractive index, and dimensions of the microdisks under investigation. The GaN-based microdisk cavity is compared with its GaAs counterpart and implications regarding future GaN-based microdisk lasers are discussed.

  14. Electro-optic harmonic conversion to switch a laser beam out of a cavity

    DOEpatents

    Haas, Roger A.; Henesian, Mark A.

    1987-01-01

    The invention is a switch to permit a laser beam to escape a laser cavity through the use of an externally applied electric field across a harmonic conversion crystal. Amplification takes place in the laser cavity, and then the laser beam is switched out by the laser light being harmonically converted with dichroic or polarization sensitive elements present to alter the optical path of the harmonically converted laser light. Modulation of the laser beam can also be accomplished by varying the external electric field.

  15. Large ion Coulomb crystals: A near-ideal medium for coupling optical cavity modes to matter

    SciTech Connect

    Dantan, A.; Albert, M.; Marler, J. P.; Herskind, P. F.; Drewsen, M.

    2009-10-15

    We present an investigation of the coherent coupling of various transverse field modes of an optical cavity to ion Coulomb crystals. The obtained experimental results, which include the demonstration of identical collective coupling rates for different transverse modes of a cavity field to ions in the same large Coulomb crystal, are in excellent agreement with theoretical predictions. The results furthermore suggest that Coulomb crystals in the future may serve as near-ideal media for high-fidelity multimode quantum information processing and communication purposes, including the generation and storage of single-photon qubits encoded in different transverse modes.

  16. Time delay signature concealment of optical feedback induced chaos in an external cavity semiconductor laser.

    PubMed

    Wu, Jia-Gui; Xia, Guang-Qiong; Tang, Xi; Lin, Xiao-Dong; Deng, Tao; Fan, Li; Wu, Zheng-Mao

    2010-03-29

    The time delay (TD) signature concealment of optical feedback induced chaos in an external cavity semiconductor laser is experimentally demonstrated. Both the evolution curve and the distribution map of TD signature are obtained in the parameter space of external feedback strength and injection current. The optimum parameter scope of the TD signature concealment is also specified. Furthermore, the approximately periodic evolution relation between TD signature and external cavity length is observed and indicates that the intrinsic relaxation oscillation of semiconductor laser may play an important role during the process of TD signature suppression.

  17. Intermodal beat length measurement with Fabry-Perot optical fiber cavities.

    PubMed

    Vaziri, M; Chen, C L

    1997-05-20

    We present a new technique for measuring the intermodal beat length of a two-mode optical fiber. We formed a Fabry-Perot fiber cavity by depositing reflective mirrors on the fiber tips. As the fiber is stretched, two series of resonance peaks are observed. One series is due to the resonance of LP(01 q) modes and the other is due to the LP(11 q) modes. From the separation of resonance peaks as a function of cavity length, we deduce the intermodal beat length of the fiber. The measurement principle and the experimental confirmation are discussed.

  18. Organic Fabry-Perot micro-cavity for electro-optic sampling by amplitude modulation

    NASA Astrophysics Data System (ADS)

    Gaborit, G.; Martin, G.; Duvillaret, L.; Coutaz, J.-L.; Nguyen, C.; Hierle, R.; Zyss, J.

    2006-02-01

    We present herein a original concept of electro-optic (EO) probe for high frequency electric field measurements. This sensors is based on a thin organic layer of DR1-PMMA embedded in a high finesse Fabry-Perot cavity. The optimal orientation of DRl molecules, parallel to the face of the micro-cavity, has been obtained thanks to a lateral poling method. A r 33 of 2.5 pm/V has been reached for a 16 μm thick polymer layer. The final probe exhibits high sensitivity of 2V.cm -1.Hz -1/2.

  19. Nanofiber Fabry-Perot microresonator for nonlinear optics and cavity quantum electrodynamics.

    PubMed

    Wuttke, C; Becker, M; Brückner, S; Rothhardt, M; Rauschenbeutel, A

    2012-06-01

    We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings that enclose a subwavelength diameter waist. Owing to the very low taper losses, the finesse of the resonator reaches F=86 while the on-resonance transmission is T=11%. The characteristics of our resonator fulfill the requirements of nonlinear optics and cavity quantum electrodynamics in the strong coupling regime. These characteristics, combined with the demonstrated ease of use and advantageous mode geometry, open a realm of applications.

  20. 1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser

    NASA Astrophysics Data System (ADS)

    Alharthi, S. S.; Orchard, J.; Clarke, E.; Henning, I. D.; Adams, M. J.

    2015-10-01

    We report a room temperature optically pumped Quantum Dot-based Spin-Vertical-External-Cavity Surface-Emitting laser (QD Spin-VECSEL) operating at the telecom wavelength of 1.3 μm. The active medium was composed of 5 × 3 QD layers; each threefold group was positioned at an antinode of the standing wave of the optical field. Circularly polarized lasing in the QD-VECSEL under Continuous-Wave optical pumping has been realized with a threshold pump power of 11 mW. We further demonstrate at room temperature control of the QD-VECSEL output polarization ellipticity via the pump polarization.

  1. Stabilized Fiber-Optic Distribution of Reference Frequency

    NASA Technical Reports Server (NTRS)

    Calhoun, Malcolm; Tjoelker, Robert; Diener, William; Dick, G. John; Wang, Rabi; Kirk, Albert

    2003-01-01

    An optoelectronic system distributes a reference signal of low noise and highly stabilized phase and frequency (100 MHz) from an atomic frequency standard to a remote facility at a distance up to tens of kilometers. The reference signal is transmitted to the remote station as amplitude modulation of an optical carrier signal propagating in an optical fiber. The stabilization scheme implemented in this system is intended particularly to suppress phase and frequency fluctuations caused by vibrations and by expansion and contraction of the optical fiber and other components in diurnal and seasonal heating and cooling cycles. The system (see figure) comprises several subsystems, the main one being (1) a hydrogen-maser or linear-ion-trap frequency standard in an environmentally controlled room in a signal-processing center (SPC), (2) a stabilized fiber-optic distribution assembly (SFODA), (3) a compensated sapphire oscillator (CSO) in an environmentally controlled room in the remote facility, (4) thermally stabilized distribution amplifiers and cabling from the environmentally controlled room to end users, and (5) performance- measuring equipment.

  2. Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control.

    PubMed

    Iwakuni, Kana; Inaba, Hajime; Nakajima, Yoshiaki; Kobayashi, Takumi; Hosaka, Kazumoto; Onae, Atsushi; Hong, Feng-Lei

    2012-06-18

    We have developed an optical frequency comb using a mode-locked fiber ring laser with an intra-cavity waveguide electro-optic modulator controlling the optical length in the laser cavity. The mode-locking is achieved with a simple ring configuration and a nonlinear polarization rotation mechanism. The beat note between the laser and a reference laser and the carrier envelope offset frequency of the comb were simultaneously phase locked with servo bandwidths of 1.3 MHz and 900 kHz, respectively. We observed an out-of-loop beat between two identical combs, and obtained a coherent δ-function peak with a signal to noise ratio of 70 dB/Hz.

  3. Energy-efficient utilization of bipolar optical forces in nano-optomechanical cavities.

    PubMed

    Tian, Feng; Zhou, Guangya; Du, Yu; Chau, Fook Siong; Deng, Jie; Tang, Xiaosong; Akkipeddi, Ramam

    2013-07-29

    Nanoscale all-optical circuits driven by optical forces have broad applications in future communication, computation, and sensing systems. Because human society faces huge challenges of energy saving and emission reduction, it is very important to develop energy-efficient nano-optomechanical devices. Due to their high quality (Q) factors, resonance modes of cavities are capable of generating much larger forces than waveguide modes. Here we experimentally demonstrate the use of resonance modes of double-coupled one-dimensional photonic crystal cavities to generate bipolar optical forces. Attractive and repulsive forces of -6.2 nN and 1.9 nN were obtained with respective launching powers of 0.81 mW and 0.87 mW in the waveguide just before cavities. Supported by flexible nanosprings (spring constant 0.166 N/m), one cavity is pulled to (pushed away from) the other cavity by 37.1 nm (11.4 nm). The shifts of the selected resonance modes of the device are mechanically and thermally calibrated with an integrated nanoelectromechanical system actuator and a temperature-controlled testing platform respectively. Based on these experimentally-obtained relations, probe mode shifts due to the optomechanical effect are decoupled from those due to the thermo-optic effect. Actuated by the third-order even pump mode, the optomechanical shift of the second-order even probe mode is found to be about 2.5 times its thermal shift, indicating a highly efficient conversion of light energy to mechanical energy.

  4. Temporal characterization of FEL micropulses as function of cavity length detuning using frequency-resolved optical gating

    SciTech Connect

    Richman, B.A.; DeLong, K.W.; Trebino, R.

    1995-12-31

    Results of frequency resolved optical gating (FROG) measurements on the Stanford mid-IR FEL system show the effect of FEL cavity length detuning on the micropulse temporal structure. The FROG technique enables the acquisition of complete and uniquely invertible amplitude and phase temporal dependence of optical pulses. Unambiguous phase and amplitude profiles are recovered from the data. The optical pulses are nearly transform limited, and the pulse length increases with cavity length detuning.

  5. Cavity Quantum Electrodynamics: A Universal Quantum Optics Toolbox

    NASA Astrophysics Data System (ADS)

    Rempe, Gerhard

    2016-05-01

    Electromagnetic resonators provide unparalleled capabilities in controlling the interaction between light and matter. The recently developed techniques for trapping and cooling atoms between closely spaced mirrors now open up new experimental avenues for genuine quantum-mechanical experiments. Particularly exciting possibilities concern long-distance quantum networking and scalable quantum computation. Recent achievements like the nondestructive detection of an optical photon, the realization of a quantum gate between a single atom and a single photon, and the heralded and efficient conversion of a flying qubit into a stationary qubit are past highlights. The longstanding dream of a quantum gate between individually addressable photonic qubits might become reality in the future. The talk will summarize recent experiments and give an outlook onto future directions.

  6. Low noise planar external cavity laser for interferometric fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Alalusi, Mazin; Brasil, Paul; Lee, Sanggeon; Mols, Peter; Stolpner, Lew; Mehnert, Axel; Li, Steve

    2009-05-01

    A 1550 nm DWDM planar external cavity laser (ECL) is demonstrated to provide low phase/frequency noise, narrow linewidth, and low RIN. The cavity includes a semiconductor gain chip and a planar lightwave circuit waveguide with Bragg grating, packaged in a 14-pin butterfly package. This planar ECL laser is designed to operate under vibration and in harsh environmental conditions. The laser shows linewidth <= 2.6 kHz, phase/frequency noise comparable with that of long cavity fiber lasers, RIN <= -147dB/Hz at 1kHz, and power >= 10mW. Performance is suitable for various high performance fiber optic sensing systems, including interferometric sensing in Oil and Gas, military/security and other applications, currently served mostly by costly and less reliable laser sources.

  7. Nonequilibrium phase transition of interacting bosons in an intra-cavity optical lattice.

    PubMed

    Bakhtiari, M Reza; Hemmerich, A; Ritsch, H; Thorwart, M

    2015-03-27

    We investigate the nonlinear light-matter interaction of a Bose-Einstein condensate trapped in an external periodic potential inside an optical cavity which is weakly coupled to vacuum radiation modes and driven by a transverse pump field. Based on a generalized Bose-Hubbard model which incorporates a single cavity mode, we include the collective backaction of the atoms on the cavity light field and determine the nonequilibrium quantum phases within the nonperturbative bosonic dynamical mean-field theory. With the system parameters adapted to recent experiments, we find a quantum phase transition from a normal phase to a self-organized superfluid phase, which is related to the Hepp-Lieb-Dicke superradiance phase transition. For even stronger pumping, a self-organized Mott insulator phase arises.

  8. A crossed optical cavities apparatus for a precision test of the isotropy of light propagation

    NASA Astrophysics Data System (ADS)

    Eisele, Ch.; Okhapkin, M.; Nevsky, A. Yu.; Schiller, S.

    2008-03-01

    A novel apparatus for a sensitive test of the independence of the speed of optical waves from the propagation direction has been developed. It employs a monolithic ULE glass structure containing two orthogonal, crossing Fabry-Perot cavities which enable common mode rejection of certain disturbances. Highly accurate locking and cavity frequency read-out are achieved using laser frequency modulation at audio frequencies. Several systematic effects were characterized. Without rotation the root Allan variance (RAV) of the beat frequency reaches a minimum of 0.5 Hz (2 × 10-15) close to the thermal noise floor of the cavities. The performance of the apparatus under rotation is demonstrated by determining with improved accuracy one parameter of the standard model extension test theory, (κ˜e-)ZZ = (-1.0 ± 2.3) × 10-15, under simplifying assumptions.

  9. Impurity-free quantum well intermixing for large optical cavity high-power laser diode structures

    NASA Astrophysics Data System (ADS)

    Kahraman, Abdullah; Gür, Emre; Aydınlı, Atilla

    2016-08-01

    We report on the correlation of atomic concentration profiles of diffusing species with the blueshift of the quantum well luminescence from both as-grown and impurity free quantum wells intermixed on actual large optical cavity high power laser diode structures. Because it is critical to suppress catastrophic optical mirror damage, sputtered SiO2 and thermally evaporated SrF2 were used both to enhance and suppress quantum well intermixing, respectively, in these (Al)GaAs large optical cavity structures. A luminescence blueshift of 55 nm (130 meV) was obtained for samples with 400 nm thick sputtered SiO2. These layers were used to generate point defects by annealing the samples at 950 °C for 3 min. The ensuing Ga diffusion observed as a shifting front towards the surface at the interface of the GaAs cap and AlGaAs cladding, as well as Al diffusion into the GaAs cap layer, correlates well with the observed luminescence blue shift, as determined by x-ray photoelectron spectroscopy. Although this technique is well-known, the correlation between the photoluminescence peak blue shift and diffusion of Ga and Al during impurity free quantum well intermixing on actual large optical cavity laser diode structures was demonstrated with both x ray photoelectron and photoluminescence spectroscopy, for the first time.

  10. Monitoring the Evaporation of Fluids from Fiber-Optic Micro-Cell Cavities

    PubMed Central

    Preter, Eyal; Preloznik, Borut; Artel, Vlada; Sukenik, Chaim N.; Donlagic, Denis; Zadok, Avi

    2013-01-01

    Fiber-optic sensors provide remote access, are readily embedded within structures, and can operate in harsh environments. Nevertheless, fiber-optic sensing of liquids has been largely restricted to measurements of refractive index and absorption spectroscopy. The temporal dynamics of fluid evaporation have potential applications in monitoring the quality of water, identification of fuel dilutions, mobile point-of-care diagnostics, climatography and more. In this work, the fiber-optic monitoring of fluids evaporation is proposed and demonstrated. Sub-nano-liter volumes of a liquid are applied to inline fiber-optic micro-cavities. As the liquid evaporates, light is refracted out of the cavity at the receding index boundary between the fluid and the ambient surroundings. A sharp transient attenuation in the transmission of light through the cavity, by as much as 50 dB and on a sub-second time scale, is observed. Numerical models for the transmission dynamics in terms of ray-tracing and wavefront propagation are provided. Experiments show that the temporal transmission profile can distinguish between different liquids. PMID:24212122

  11. Cavity Self-Stabilization and Enhancement of Laser Gyroscopes by (Coupled) Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2006-01-01

    We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the modulation to determine the conditions for cavity self-stabilization and enhanced gyroscopic sensitivity. Hence, we model cavity rotation or instability by an arbitrary AM/FM modulation, and the dispersive element as a phase and amplitude filter. We find that anomalous dispersion may be used to self-stabilize a laser cavity, provided the magnitude of the group index of refraction is smaller than the phase index of refraction in the cavity. The optimal stabilization is found to occur when the group index is zero. Group indices with magnitudes larger than the phase index (both normal and anomalous dispersion) are found to enhance the sensitivity of a laser gyroscope to rotation. Furthermore, our results indicate that atomic media, even coherent superpositions in multilevel atoms, are not useful for these applications, because the amplitude and phase filters work against one another, i.e., decreasing the modulation frequency increases its amplitude and vice versa, with one exception: negative group indices whose magnitudes are larger than the phase index result in negative, but enhanced, beat frequencies. On the other hand, for optical resonators the dispersion reversal associated with critical coupling enables the amplitude and phase filters to work together under a greater variety of circumstances than for atomic media. We find that for single over-coupled resonators, or in the case of under-coupled coupled-resonator-induced absorption, the absorption and normal dispersion on-resonance increase the contrast and frequency of the beat-note, respectively, resulting in a substantial enhancement of the gyroscopic response. Moreover, for cavity self-stabilization, we propose the use of a variety of coupled-resonator induced transparency that is accompanied by anomalous dispersion.

  12. Concentrating partially entangled W-class states on nonlocal atoms using low- Q optical cavity and linear optical elements

    NASA Astrophysics Data System (ADS)

    Cao, Cong; Chen, Xi; Duan, YuWen; Fan, Ling; Zhang, Ru; Wang, TieJun; Wang, Chuan

    2016-10-01

    Entanglement plays an important role in quantum information science, especially in quantum communications. Here we present an efficient entanglement concentration protocol (ECP) for nonlocal atom systems in the partially entangled W-class states, using the single-photon input-output process regarding low- Q cavity and linear optical elements. Compared with previously published ECPs for the concentration of non-maximally entangled atomic states, our protocol is much simpler and more efficient as it employs the Faraday rotation in cavity quantum electrodynamics (QED) and the parameter-splitting method. The Faraday rotation requires the cavity with low- Q factor and weak coupling to the atom, which makes the requirement for entanglement concentration much less stringent than the previous methods, and achievable with current cavity QED techniques. The parameter-splitting method resorts to linear-optical elements only. This ECP has high efficiency and fidelity in realistic experiments, and some imperfections during the experiment can be avoided efficiently with currently available techniques.

  13. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer

    PubMed Central

    Sturm, C.; Tanese, D.; Nguyen, H.S.; Flayac, H.; Galopin, E.; Lemaître, A.; Sagnes, I.; Solnyshkov, D.; Amo, A.; Malpuech, G.; Bloch, J.

    2014-01-01

    Quantum fluids based on light is a highly developing research field, since they provide a nonlinear platform for developing optical functionalities and quantum simulators. An important issue in this context is the ability to coherently control the properties of the fluid. Here we propose an all-optical approach for controlling the phase of a flow of cavity-polaritons, making use of their strong interactions with localized excitons. Here we illustrate the potential of this method by implementing a compact exciton–polariton interferometer, which output intensity and polarization can be optically controlled. This interferometer is cascadable with already reported polariton devices and is promising for future polaritonic quantum optic experiments. Complex phase patterns could be also engineered using this optical method, providing a key tool to build photonic artificial gauge fields. PMID:24513781

  14. Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers

    SciTech Connect

    Wang, Dong-Yang; Wen, Jing-Ji; Bai, Cheng-Hua; Hu, Shi; Cui, Wen-Xue; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2015-09-15

    An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.

  15. Model reduction of cavity nonlinear optics for photonic logic: a quasi-principal components approach

    NASA Astrophysics Data System (ADS)

    Shi, Zhan; Nurdin, Hendra I.

    2016-11-01

    Kerr nonlinear cavities displaying optical thresholding have been proposed for the realization of ultra-low power photonic logic gates. In the ultra-low photon number regime, corresponding to energy levels in the attojoule scale, quantum input-output models become important to study the effect of unavoidable quantum fluctuations on the performance of such logic gates. However, being a quantum anharmonic oscillator, a Kerr-cavity has an infinite dimensional Hilbert space spanned by the Fock states of the oscillator. This poses a challenge to simulate and analyze photonic logic gates and circuits composed of multiple Kerr nonlinearities. For simulation, the Hilbert of the oscillator is typically truncated to the span of only a finite number of Fock states. This paper develops a quasi-principal components approach to identify important subspaces of a Kerr-cavity Hilbert space and exploits it to construct an approximate reduced model of the Kerr-cavity on a smaller Hilbert space. Using this approach, we find a reduced dimension model with a Hilbert space dimension of 15 that can closely match the magnitudes of the mean transmitted and reflected output fields of a conventional truncated Fock state model of dimension 75, when driven by an input coherent field that switches between two levels. For the same input, the reduced model also closely matches the magnitudes of the mean output fields of Kerr-cavity-based AND and NOT gates and a NAND latch obtained from simulation of the full 75 dimension model.

  16. Quantum theory of spontaneous emission in a one-dimensional optical cavity with two-side output coupling

    NASA Astrophysics Data System (ADS)

    Feng, Xiao-Ping; Ujihara, Kikuo

    1990-03-01

    A quantum theory of spontaneous emission from an initially excited two-level atom in a one-dimensional optical cavity with output coupling from both sides is developed. Orthonormal mode functions with a continuous spectrum are employed, which are derived by imposing a periodic boundary condition on the whole space with a period much larger than the cavity length. The delay differential equation of the atomic state of Cook and Milonni [Phys. Rev. A 35, 5081 (1987)] is re-derived in a strict manner, where the reflectivity of the cavity mirrors is included naturally in the mode functions. An approximate solution at a single-resonant-mode limit shows the results of ``vacuum'' Rabi oscillation in an underdamped cavity and enhanced spontaneous emission rate in an overdamped cavity. For the latter case, it is found that in the optical range the spontaneous emission rate is enhanced by a factor F (finesse of the cavity).

  17. Microstructured optical fiber-based micro-cavity sensor for chemical detection

    NASA Astrophysics Data System (ADS)

    Kim, Bongkyun; Ahn, Jin-Chul; Chung, Phil-Sang; Chung, Youngjoo

    2014-02-01

    The studies on microstructured optical fibers (MOF) have drawn considerable interest and played an important role in many applications. MOFs provide unique optical properties and controllable modal properties because of their flexibilities on manipulation of the transmission spectrum and the waveguide dispersion properties. MOFs are especially useful for optical sensing applications because the micro-structured air channels in MOF can host various types of analytes such as liquids, gases, and chemical molecules. Recently, many studies have focused on the development of MOF-based optical sensors for various gases and chemical molecules. We propose a compact, and highly sensitive optical micro-cavity chemical sensor using microstructured fiber. The sensor probe is composed of a hollow optical fiber and end cleaved microstructured fiber with a solid core. The interference spectrum resulting from the reflected light at the silica and air interfaces changes when the micro-cavity is infiltrated with external chemical molecules. This structure enables the direct detection of chemical molecules such as volatile organic compounds (VOCs) without the introduction of any permeable material.

  18. All-optical switching in silicon-on-insulator photonic wire nano-cavities.

    PubMed

    Belotti, Michele; Galli, Matteo; Gerace, Dario; Andreani, Lucio Claudio; Guizzetti, Giorgio; Md Zain, Ahmad R; Johnson, Nigel P; Sorel, Marc; De La Rue, Richard M

    2010-01-18

    We report on experimental demonstration of all-optical switching in a silicon-on-insulator photonic wire nanocavity operating at telecom wavelengths. The switching is performed with a control pulse energy as low as approximately 0.1 pJ on a cavity device that presents very high signal transmission, an ultra-high quality-factor, almost diffraction-limited modal volume and a footprint of only 5 microm(2). High-speed modulation of the cavity mode is achieved by means of optical injection of free carriers using a nanosecond pulsed laser. Experimental results are interpreted by means of finite-difference time-domain simulations. The possibility of using this device as a logic gate is also demonstrated.

  19. Optical cavity characterization of the Tor Vergata Fabry-Pérot interferometer

    NASA Astrophysics Data System (ADS)

    Giovannelli, Luca; Berrilli, Francesco; Del Moro, Dario; Greco, Vincenzo; Piazzesi, Roberto; Sordini, Andrea; Stangalini, Marco

    2014-08-01

    We report the first optical and control performances of the Tor Vergata Fabry-Ṕerot interferometer prototype designed and realized in the framework of the ADvanced Astronomy for HELIophysics (ADAHELI) solar mission project. The characterization of the the coated surfaces of the two plates defining the optical cavity has been carried out with a Zygo interferometer able to measure the microroughness and global curvature of the cavity. The peak-to-valley errors are compliant with the manufacturer specifications and correspond to λ/70 and λ/80 @632.8 nm respectively. In addition, we present a first estimate of the interferometer spectral stability in stable open-air condition. A spectral uncertainty equal to 0.95 pm is found as the typical RMS over one hour of the passband central wavelength position.

  20. Feedback control of thermal lensing in a high optical power cavity.

    PubMed

    Fan, Y; Zhao, C; Degallaix, J; Ju, L; Blair, D G; Slagmolen, B J J; Hosken, D J; Brooks, A F; Veitch, P J; Munch, J

    2008-10-01

    This paper reports automatic compensation of strong thermal lensing in a suspended 80 m optical cavity with sapphire test mass mirrors. Variation of the transmitted beam spot size is used to obtain an error signal to control the heating power applied to the cylindrical surface of an intracavity compensation plate. The negative thermal lens created in the compensation plate compensates the positive thermal lens in the sapphire test mass, which was caused by the absorption of the high intracavity optical power. The results show that feedback control is feasible to compensate the strong thermal lensing expected to occur in advanced laser interferometric gravitational wave detectors. Compensation allows the cavity resonance to be maintained at the fundamental mode, but the long thermal time constant for thermal lensing control in fused silica could cause difficulties with the control of parametric instabilities.

  1. Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal.

    PubMed

    van Leest, Thijs; Caro, Jacob

    2013-11-21

    On-chip optical trapping and manipulation of cells based on the evanescent field of photonic structures is emerging as a promising technique, both in research and for applications in broader context. Relying on mass fabrication techniques, the involved integration of photonics and microfluidics allows control of both the flow of light and water on the scale of interest in single cell microbiology. In this paper, we demonstrate for the first time optical trapping of single bacteria (B. subtilis and E. coli) using photonic crystal cavities for local enhancement of the evanescent field, as opposed to the synthetic particles used so far. Three types of cavities (H0, H1 and L3) are studied, embedded in a planar photonic crystal and optimized for coupling to two collinear photonic crystal waveguides. The photonic crystals are fabricated on a silicon-on-insulator chip, onto which a fluidic channel is created as well. For each of the cavities, when pumped at the resonance wavelength (around 1550 nm), we clearly demonstrate optical trapping of bacteria, in spite of their low index contrast w.r.t. water. By tracking the confined Brownian motion of B. subtilis spores in the traps using recorded microscope observations, we derive strong in-plane trap stiffnesses of about 7.6 pN nm(-1) W(-1). The values found agree very well with calculations based on the Maxwell stress tensor for the force and finite-difference time-domain simulations of the fields for the fabricated cavity geometries. We envision that our lab-on-a-chip with photonic crystal traps opens up new application directions, e.g. immobilization of single bio-objects such as mammalian cells and bacteria under controlled conditions for optical microscopy studies.

  2. Compact efficient eye-safe intracavity optical parametric oscillator with a shared cavity configuration

    SciTech Connect

    Chen, Y. F.; Su, K. W.; Chang, Y. T.; Yen, W. C

    2007-06-10

    We present a compact efficient eye-safe intracavity optical parametric oscillator pumpedby a passively Q-switched Nd:YAG laser in a shared cavity configuration. A signal pulse of 3.3 mJ energy at a 1573 nm wavelength with a peak power of150 kW was achieved. The effective conversion efficiency with respective to the optimized 1064 nm Q-switched pulse energy was as high as 51%.

  3. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    PubMed

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  4. Semiconductor Reference Oscillator Development for Coherent Detection Optical Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Mansour, Kamjou; Menzies, Robert T.; Qiu, Yueming; Forouhar, Siamak; Maker, Paul D.; Muller, Richard E.

    2001-01-01

    The NASA Earth Science Enterprise Advanced Technology Initiatives Program is supporting a program for the development of semiconductor laser reference oscillators for application to coherent optical remote sensing from Earth orbit. Local oscillators provide the frequency reference required for active spaceborne optical remote sensing concepts that involve heterodyne (coherent) detection. Two recent examples of such schemes are Doppler wind lidar and tropospheric carbon dioxide measurement by laser absorption spectrometry, both of which are being proposed at a wavelength of 2.05 microns. Frequency-agile local oscillator technology is important to such applications because of the need to compensate for large platform-induced Doppler components that would otherwise interfere with data interpretation. Development of frequency-agile local oscillator approaches has heretofore utilized the same laser material as the transmitter laser (Tm,Ho:YLF in the case of the 2.05-micron wavelength mentioned above). However, a semiconductor laser-based frequency-agile local oscillator offers considerable scope for reduced mechanical complexity and improved frequency agility over equivalent crystal laser devices, while their potentially faster tuning capability suggest the potential for greater scanning versatility. The program we report on here is specifically tasked with the development of prototype novel architecture semiconductor lasers with the power, tunability, and spectral characteristics required for coherent Doppler lidar. The baseline approach for this work is the distributed feedback (DFB) laser, in which gratings are etched into the semiconductor waveguide structures along the entire length of the laser cavity. However, typical DFB lasers at the wavelength of interest have linewidths that exhibit unacceptable growth when driven at the high currents and powers that are required for the Doppler lidar application. Suppression of this behavior by means of corrugation pitch

  5. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM

    PubMed Central

    Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I. I.; Chan, C. T.; Chan, H. B.; Tong, Penger

    2015-01-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures. PMID:26586455

  6. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    DOE PAGES

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; ...

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength goldmore » disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.« less

  7. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    SciTech Connect

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; Liu, Hui; Kravchenko, Ivan I.; Chan, Ho Bun; Chan, C. T.; Tong, Penger

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.

  8. Temperature Sensitivity of an Atomic Vapor Cell-Based Dispersion-Enhanced Optical Cavity

    NASA Technical Reports Server (NTRS)

    Myneni, K.; Smith, D. D.; Chang, H.; Luckay, H. A.

    2015-01-01

    Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S(sub o), due to the thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the Rb-87 D(sub 2) transition. A semi-empirical model of the temperature-dependence of the absorption profile, characterized by two parameters, a(sub o)(T) and gamma(sub a)(T) allows the temperature-dependence of the cavity response, S(sub o)(T) and dS(sub o)/dT to be predicted over a range of temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S(sub o), given the practical constraints on temperature stability for an atomic vapor cell.

  9. Mesoscale cavities in hollow-core waveguides for quantum optics with atomic ensembles

    NASA Astrophysics Data System (ADS)

    Haapamaki, C. M.; Flannery, J.; Bappi, G.; Al Maruf, R.; Bhaskara, S. V.; Alshehri, O.; Yoon, T.; Bajcsy, M.

    2016-08-01

    Single-mode hollow-core waveguides loaded with atomic ensembles offer an excellent platform for light-matter interactions and nonlinear optics at low photon levels. We review and discuss possible approaches for incorporating mirrors, cavities, and Bragg gratings into these waveguides without obstructing their hollow cores. With these additional features controlling the light propagation in the hollow-core waveguides, one could potentially achieve optical nonlinearities controllable by single photons in systems with small footprints that can be integrated on a chip. We propose possible applications such as single-photon transistors and superradiant lasers that could be implemented in these enhanced hollow-core waveguides.

  10. Stacked optical antennas for plasmon propagation in a 5 nm-confined cavity

    PubMed Central

    Saeed, A.; Panaro, S.; Zaccaria, R. Proietti; Raja, W.; Liberale, C.; Dipalo, M.; Messina, G. C.; Wang, H.; De Angelis, F.; Toma, A.

    2015-01-01

    The sub-wavelength concentration and propagation of electromagnetic energy are two complementary aspects of plasmonics that are not necessarily co-present in a single nanosystem. Here we exploit the strong nanofocusing properties of stacked optical antennas in order to highly concentrate the electromagnetic energy into a 5 nm metal-insulator-metal (MIM) cavity and convert free radiation into guided modes. The proposed nano-architecture combines the concentration properties of optical nanoantennas with the propagation capability of MIM systems, paving the way to highly miniaturized on-chip plasmonic waveguiding. PMID:26057661

  11. Stacked optical antennas for plasmon propagation in a 5 nm-confined cavity

    NASA Astrophysics Data System (ADS)

    Saeed, A.; Panaro, S.; Zaccaria, R. Proietti; Raja, W.; Liberale, C.; Dipalo, M.; Messina, G. C.; Wang, H.; de Angelis, F.; Toma, A.

    2015-06-01

    The sub-wavelength concentration and propagation of electromagnetic energy are two complementary aspects of plasmonics that are not necessarily co-present in a single nanosystem. Here we exploit the strong nanofocusing properties of stacked optical antennas in order to highly concentrate the electromagnetic energy into a 5 nm metal-insulator-metal (MIM) cavity and convert free radiation into guided modes. The proposed nano-architecture combines the concentration properties of optical nanoantennas with the propagation capability of MIM systems, paving the way to highly miniaturized on-chip plasmonic waveguiding.

  12. Single-pixel optical imaging with compressed reference intensity patterns

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Chen, Xudong

    2015-03-01

    Ghost imaging with single-pixel bucket detector has attracted more and more current attention due to its marked physical characteristics. However, in ghost imaging, a large number of reference intensity patterns are usually required for object reconstruction, hence many applications based on ghost imaging (such as tomography and optical security) may be tedious since heavy storage or transmission is requested. In this paper, we report that the compressed reference intensity patterns can be used for object recovery in computational ghost imaging (with single-pixel bucket detector), and object verification can be further conducted. Only a small portion (such as 2.0% pixels) of each reference intensity pattern is used for object reconstruction, and the recovered object is verified by using nonlinear correlation algorithm. Since statistical characteristic and speckle averaging property are inherent in ghost imaging, sidelobes or multiple peaks can be effectively suppressed or eliminated in the nonlinear correlation outputs when random pixel positions are selected from each reference intensity pattern. Since pixel positions can be randomly selected from each 2D reference intensity pattern (such as total measurements of 20000), a large key space and high flexibility can be generated when the proposed method is applied for authenticationbased cryptography. When compressive sensing is used to recover the object with a small number of measurements, the proposed strategy could still be feasible through further compressing the recorded data (i.e., reference intensity patterns) followed by object verification. It is expected that the proposed method not only compresses the recorded data and facilitates the storage or transmission, but also can build up novel capability (i.e., classical or quantum information verification) for ghost imaging.

  13. Electro-thermo-optical simulation of vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Smagley, Vladimir Anatolievich

    Three-dimensional electro-thermal simulator based on the double-layer approximation for the active region was coupled to optical gain and optical field numerical simulators to provide a self-consistent steady-state solution of VCSEL current-voltage and current-output power characteristics. Methodology of VCSEL modeling had been established and applied to model a standard 850-nm VCSEL based on GaAs-active region and a novel intracavity-contacted 400-nm GaN-based VCSEL. Results of GaAs VCSEL simulation were in a good agreement with experiment. Correlations between current injection and radiative mode profiles have been observed. Physical sub-models of transport, optical gain and cavity optical field were developed. Carrier transport through DBRs was studied. Problem of optical fields in VCSEL cavity was treated numerically by the effective frequency method. All the sub-models were connected through spatially inhomogeneous rate equation system. It was shown that the conventional uncoupled analysis of every separate physical phenomenon would be insufficient to describe VCSEL operation.

  14. Bridging the Gap between RF and Optical Patch Antenna Analysis via the Cavity Model

    PubMed Central

    Unal, G. S.; Aksun, M. I.

    2015-01-01

    Although optical antennas with a variety of shapes and for a variety of applications have been proposed and studied, they are still in their infancy compared to their radio frequency (rf) counterparts. Optical antennas have mainly utilized the geometrical attributes of rf antennas rather than the analysis tools that have been the source of intuition for antenna engineers in rf. This study intends to narrow the gap of experience and intuition in the design of optical patch antennas by introducing an easy-to-understand and easy-to-implement analysis tool in rf, namely, the cavity model, into the optical regime. The importance of this approach is not only its simplicity in understanding and implementation but also its applicability to a broad class of patch antennas and, more importantly, its ability to provide the intuition needed to predict the outcome without going through the trial-and-error simulations with no or little intuitive guidance by the user. PMID:26522889

  15. Bridging the Gap between RF and Optical Patch Antenna Analysis via the Cavity Model

    NASA Astrophysics Data System (ADS)

    Unal, G. S.; Aksun, M. I.

    2015-11-01

    Although optical antennas with a variety of shapes and for a variety of applications have been proposed and studied, they are still in their infancy compared to their radio frequency (rf) counterparts. Optical antennas have mainly utilized the geometrical attributes of rf antennas rather than the analysis tools that have been the source of intuition for antenna engineers in rf. This study intends to narrow the gap of experience and intuition in the design of optical patch antennas by introducing an easy-to-understand and easy-to-implement analysis tool in rf, namely, the cavity model, into the optical regime. The importance of this approach is not only its simplicity in understanding and implementation but also its applicability to a broad class of patch antennas and, more importantly, its ability to provide the intuition needed to predict the outcome without going through the trial-and-error simulations with no or little intuitive guidance by the user.

  16. Bridging the Gap between RF and Optical Patch Antenna Analysis via the Cavity Model.

    PubMed

    Unal, G S; Aksun, M I

    2015-11-02

    Although optical antennas with a variety of shapes and for a variety of applications have been proposed and studied, they are still in their infancy compared to their radio frequency (rf) counterparts. Optical antennas have mainly utilized the geometrical attributes of rf antennas rather than the analysis tools that have been the source of intuition for antenna engineers in rf. This study intends to narrow the gap of experience and intuition in the design of optical patch antennas by introducing an easy-to-understand and easy-to-implement analysis tool in rf, namely, the cavity model, into the optical regime. The importance of this approach is not only its simplicity in understanding and implementation but also its applicability to a broad class of patch antennas and, more importantly, its ability to provide the intuition needed to predict the outcome without going through the trial-and-error simulations with no or little intuitive guidance by the user.

  17. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    PubMed

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  18. Aerosol optical properties measurement by recently developed cavity-enhanced aerosol single scattering albedometer

    NASA Astrophysics Data System (ADS)

    Zhao, Weixiong; Xu, Xuezhe; Zhang, Qilei; Fang, Bo; Qian, Xiaodong; Chen, Weidong; Gao, Xiaoming; Zhang, Weijun

    2015-04-01

    Development of appropriate and well-adapted measurement technologies for real-time in-situ measurement of aerosol optical properties is an important step towards a more accurate and quantitative understanding of aerosol impacts on climate and the environment. Aerosol single scattering albedo (SSA, ω), the ratio between the scattering (αscat) and extinction (αext) coefficients, is an important optical parameter that governs the relative strength of the aerosol scattering and absorption capacity. Since the aerosol extinction coefficient is the sum of the absorption and scattering coefficients, a commonly used method for the determination of SSA is to separately measure two of the three optical parameters - absorption, scattering and extinction coefficients - with different instruments. However, as this method involves still different instruments for separate measurements of extinction and absorption coefficients under different sampling conditions, it might cause potential errors in the determination of SSA value, because aerosol optical properties are very sensitive to the sampling conditions such as temperature and relative humidity (RH). In this paper, we report on the development of a cavity-enhanced aerosol single scattering albedometer incorporating incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) and an integrating sphere (IS) for direct in-situ measurement of aerosol scattering and extinction coefficients on the exact same sample volume. The cavity-enhanced albedometer holds great promise for high-sensitivity and high-precision measurement of ambient aerosol scattering and extinction coefficients (hence absorption coefficient and SSA determination) and for absorbing trace gas concentration. In addition, simultaneous measurements of aerosol scattering and extinction coefficients enable a potential application for the retrieval of particle number size distribution and for faster retrieval of aerosols' complex RI. The albedometer was deployed to

  19. Phase-sensitive multiple reference optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dsouza, Roshan I.; Subhash, Hrebesh; Neuhaus, Kai; Hogan, Josh; Wilson, Carol; Leahy, Martin

    2016-03-01

    Multiple reference OCT (MR-OCT) is a recently developed novel time-domain OCT platform based on a miniature reference arm optical delay, which utilizes a single miniature actuator and a partial mirror to generate recirculating optical delay for extended axial-scan range. MR-OCT technology promises to fit into a robust and cost-effective design, compatible with integration into consumer-level devices for addressing wide applications in mobile healthcare and biometry applications. Using conventional intensity based OCT processing techniques, the high-resolution structural imaging capability of MR-OCT has been recently demonstrated for various applications including in vivo human samples. In this study, we demonstrate the feasibility of implementing phase based processing with MR-OCT for various functional applications such as Doppler imaging and sensing of blood vessels, and for tissue vibrography applications. The MR-OCT system operates at 1310nm with a spatial resolution of ~26 µm and an axial scan rate of 600Hz. Initial studies show a displacement-sensitivity of ~20 nm to ~120 nm for the first 1 to 9 orders of reflections, respectively with a mirror as test-sample. The corresponding minimum resolvable velocity for these orders are ~2.3 µm/sec and ~15 µm/sec respectively. Data from a chick chorioallantoic membrane (CAM) model will be shown to demonstrate the feasibility of MR-OCT for imaging in-vivo blood flow.

  20. Method of varying a characteristic of an optical vertical cavity structure formed by metalorganic vapor phase epitaxy

    SciTech Connect

    Hou, Hong Q.; Coltrin, Michael E.; Choquette, Kent D.

    2001-01-01

    A process for forming an array of vertical cavity optical resonant structures wherein the structures in the array have different detection or emission wavelengths. The process uses selective area growth (SAG) in conjunction with annular masks of differing dimensions to control the thickness and chemical composition of the materials in the optical cavities in conjunction with a metalorganic vapor phase epitaxy (MOVPE) process to build these arrays.

  1. Thermal radiation from optically driven Kerr (χ{sup (3)}) photonic cavities

    SciTech Connect

    Khandekar, Chinmay; Rodriguez, Alejandro W.; Lin, Zin

    2015-04-13

    We describe thermal radiation from nonlinear (χ{sup (3)}) photonic cavities coupled to external channels and subject to incident monochromatic light. Our work extends related work on nonlinear mechanical oscillators to the problem of thermal radiation, demonstrating that bistability can enhance thermal radiation by orders of magnitude and result in strong lineshape alternations, including “super-narrow spectral peaks” occurring at the onset of kinetic phase transitions. We show that when the cavities are designed to exhibit perfect linear emissivity (rate matching), such thermally activated transitions can be exploited to dramatically tune the output power and radiative properties of the cavity, leading to a kind of Kerr-mediated thermo-optic effect. Finally, we demonstrate that in certain parameter regimes, the output radiation exhibits Stokes and anti-Stokes side peaks whose relative magnitudes can be altered by tuning the internal temperature of the cavity relative to its surroundings, a consequence of strong correlations and interference between the emitted and reflected radiation.

  2. Photon bunching and anti-bunching with two dipole-coupled atoms in an optical cavity

    NASA Astrophysics Data System (ADS)

    Zheng, Ya-Mei; Hu, Chang-Sheng; Yang, Zhen-Biao; Wu, Huai-Zhi

    2016-10-01

    We investigate the effect of the dipole-dipole interaction (DDI) on the photon statistics with two atoms trapped in an optical cavity driven by a laser field and subjected to cooperative emission. By means of the quantum trajectory analysis and the second-order correlation functions, we show that the photon statistics of the cavity transmission can be flexibly modulated by the DDI while the incoming coherent laser selectively excites the atom-cavity system’s nonlinear Jaynes-Cummings ladder of excited states. Finally, we find that the effect of the cooperatively atomic emission can also be revealed by the numerical simulations and can be explained with a simplified picture. The DDI induced nonlinearity gives rise to highly nonclassical photon emission from the cavity that is significant for quantum information processing and quantum communication. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305037, 11347114, and 11374054) and the Natural Science Foundation of Fujian Province, China (Grant No. 2013J01012).

  3. Feasibility of fiber optic displacement sensor scanning system for imaging of dental cavity

    NASA Astrophysics Data System (ADS)

    Rahman, Husna Abdul; Che Ani, Adi Izhar; Harun, Sulaiman Wadi; Yasin, Moh.; Apsari, Retna; Ahmad, Harith

    2012-07-01

    The purpose of this study is to investigate the potential of intensity modulated fiber optic displacement sensor scanning system for the imaging of dental cavity. Here, we discuss our preliminary results in the imaging of cavities on various teeth surfaces, as well as measurement of the diameter of the cavities which are represented by drilled holes on the teeth surfaces. Based on the analysis of displacement measurement, the sensitivities and linear range for the molar, canine, hybrid composite resin, and acrylic surfaces are obtained at 0.09667 mV/mm and 0.45 mm 0.775 mV/mm and 0.4 mm 0.5109 mV/mm and 0.5 mm and 0.25 mV/mm and 0.5 mm, respectively, with a good linearity of more than 99%. The results also show a clear distinction between the cavity and surrounding tooth region. The stability, simplicity of design, and low cost of fabrication make it suitable for restorative dentistry.

  4. Bose–Einstein condensation versus Dicke–Hepp–Lieb transition in an optical cavity

    SciTech Connect

    Piazza, Francesco; Strack, Philipp; Zwerger, Wilhelm

    2013-12-15

    We provide an exact solution for the interplay between Bose–Einstein condensation and the Dicke–Hepp–Lieb self-organization transition of an ideal Bose gas trapped inside a single-mode optical cavity and subject to a transverse laser drive. Based on an effective action approach, we determine the full phase diagram at arbitrary temperature, which features a bi-critical point where the transitions cross. We calculate the dynamically generated band structure of the atoms and the associated suppression of the critical temperature for Bose–Einstein condensation in the phase with a spontaneous periodic density modulation. Moreover, we determine the evolution of the polariton spectrum due to the coupling of the cavity photons and the atomic field near the self-organization transition, which is quite different above or below the Bose–Einstein condensation temperature. At low temperatures, the critical value of the Dicke–Hepp–Lieb transition decreases with temperature and thus thermal fluctuations can enhance the tendency to a periodic arrangement of the atoms. -- Highlights: •Atoms inside a driven cavity can undergo two transitions: self-organization and BEC. •The phase diagram has four phases which coexist at a bi-critical point. •Atom–cavity coupling creates a dynamical lattice for the atoms. •Finite temperature can enhance the tendency towards self-organization. •We calculate the detailed spectrum of the polaritonic excitations.

  5. Ocular fundus reference images from optical coherence tomography.

    PubMed

    Guimarães, Pedro; Rodrigues, Pedro; Lobo, Conceição; Leal, Sérgio; Figueira, João; Serranho, Pedro; Bernardes, Rui

    2014-07-01

    Two-dimensional images computed from three-dimensional optical coherence tomography (OCT) data are intrinsically aligned with it, allowing to accurately position a retinal OCT scan within the ocular fundus. In this work, we aim to compute an OCT fundus reference image with improved retinal vasculature extension and contrast over traditional approaches. Based on the shadow casted by hemoglobin on the outer layers of the retina, we compute three independent images from the OCT volumetric data (including the traditional fundus reference image). Combining these images, a fourth one is created that is able to outperform the other three, both quantitatively and qualitatively (as evaluated by retina specialists). The vascular network extension provided by this method was also compared with widely used fundus imaging modalities, showing that it is similar to that achieved with color fundus photography. In this way, the proposed method is an important starting point to the segmentation of the vascular tree and provides users with a detailed fundus reference image.

  6. Optical feedback cavity enhanced absorption spectroscopy: effective adjustment of the feedback-phase

    NASA Astrophysics Data System (ADS)

    Habig, J. C.; Nadolny, J.; Meinen, J.; Saathoff, H.; Leisner, T.

    2012-02-01

    Optical-feedback cavity enhanced absorption spectroscopy (OF-CEAS) is a very sensitive technique for the detection of trace amounts of gaseous absorbers. The most crucial parameter in an OF-CEAS setup is the optical phase of the light fed back into the laser source, which is usually controlled by the position of a piezo driven mirror. Various approaches for the analysis of the cavity transmitted light with respect to feedback-phase are presented, and tested on simulated phase and frequency dependent cavity transmission. Finally, we present the performance of a digital signal processor based regulator—employing one of these approaches—in a real OF-CEAS experiment. The results of the simulation show that several algorithms are well suited for the task of control signal generation. They confirm also that with the presented approach, a mode by mode correction of the feedback-phase is possible. Consequently, a regulatory bandwidth of 37 Hz was achieved. This maximum control frequency was limited by the piezo system.

  7. Cavity-Enhanced Raman Spectroscopy of Natural Gas with Optical Feedback cw-Diode Lasers.

    PubMed

    Hippler, Michael

    2015-08-04

    We report on improvements made on our previously introduced technique of cavity-enhanced Raman spectroscopy (CERS) with optical feedback cw-diode lasers in the gas phase, including a new mode-matching procedure which keeps the laser in resonance with the optical cavity without inducing long-term frequency shifts of the laser, and using a new CCD camera with improved noise performance. With 10 mW of 636.2 nm diode laser excitation and 30 s integration time, cavity enhancement achieves noise-equivalent detection limits below 1 mbar at 1 bar total pressure, depending on Raman cross sections. Detection limits can be easily improved using higher power diodes. We further demonstrate a relevant analytical application of CERS, the multicomponent analysis of natural gas samples. Several spectroscopic features have been identified and characterized. CERS with low power diode lasers is suitable for online monitoring of natural gas mixtures with sensitivity and spectroscopic selectivity, including monitoring H2, H2S, N2, CO2, and alkanes.

  8. Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps

    NASA Astrophysics Data System (ADS)

    Tserkezis, C.; Esteban, R.; Sigle, D. O.; Mertens, J.; Herrmann, L. O.; Baumberg, J. J.; Aizpurua, J.

    2015-11-01

    The precise structural details of metallic nanogaps within optical antennae are found to dramatically modify the plasmonic response, producing a complex pattern of electromagnetic modes that can be directly observed in scattering experiments. We analyze this situation theoretically in the nanoparticle-on-mirror construct, which forms a plasmonic nanogap sensitive to even atomic-scale restructuring of nanoparticle morphology. We focus on the effect of nanoparticle faceting, which allows the formation of ultrathin cavities between the particle and the underlying metallic film in the nanoparticle-on-mirror geometry. Two different sets of modes are identified: longitudinal antenna modes, which are strongly radiative and excited for all facet width ranges, and transverse cavity modes produced at large facets and exhibiting extreme confinement. The interaction and hybridization of antenna and cavity modes is determined by their symmetry and the precise morphology of the nanogap edges. Understanding such complex optics from nanoparticle-on-mirror structures is important to elucidate a wide variety of emerging photochemical and optoelectronic processes.

  9. Nonlinear optical effects and Hong-Ou-Mandel interference in cavity quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Mirza, Imran M.; van Enk, Steven J.

    Pure quantum interference among single photons is one of the key ingredients to perform linear optics quantum computation (LOQC). The Hong-Ou-Mandel interference (HOMI) [C. K. Hong, Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 59, (18), 2044-2046 (1987)] i.e. complete destructive interference between two identical and indistinguishable photons simultaneously entering input ports of a 50/50 beam splitter, is a well-known example in this context. In this talk, I'll present our theoretical study of HOMI in a coupled Jaynes-Cummings array. In particular and by applying quantum jump/trajectory formalism, I'll focus on how partial quantum interference between two photons survive both non-linearities produced by two-level emitter and spectral filtering due to optical cavities in our coupled cavity array setup [Imran M. Mirza and Steven J. van Enk, Opt. Comm. 343, 172-177 (2015)]. Along with LOQC, this work is crucial from the perspective of exploiting coupled cavity arrays to store single photons reliably (without altering their temporal and spectral traits) [Imran M. Mirza, Steven J. van Enk and Jeff Kimble, JOSA B, 10, 2640-2649, (2013)].

  10. Cavity-enhanced optical Hall effect in two-dimensional free charge carrier gases detected at terahertz frequencies.

    PubMed

    Knight, S; Schöche, S; Darakchieva, V; Kühne, P; Carlin, J-F; Grandjean, N; Herzinger, C M; Schubert, M; Hofmann, T

    2015-06-15

    The effect of a tunable, externally coupled Fabry-Perot cavity to resonantly enhance the optical Hall effect signatures at terahertz frequencies produced by a traditional Drude-like two-dimensional electron gas is shown and discussed in this Letter. As a result, the detection of optical Hall effect signatures at conveniently obtainable magnetic fields, for example, by neodymium permanent magnets, is demonstrated. An AlInN/GaN-based high-electron mobility transistor structure grown on a sapphire substrate is used for the experiment. The optical Hall effect signatures and their dispersions, which are governed by the frequency and the reflectance minima and maxima of the externally coupled Fabry-Perot cavity, are presented and discussed. Tuning the externally coupled Fabry-Perot cavity strongly modifies the optical Hall effect signatures, which provides a new degree of freedom for optical Hall effect experiments in addition to frequency, angle of incidence, and magnetic field direction and strength.

  11. Tunable Optical Performances on a Periodic Array of Plasmonic Bowtie Nanoantennas with Hollow Cavities

    NASA Astrophysics Data System (ADS)

    Chou Chau, Yuan-Fong; Chou Chao, Chung-Ting; Rao, Jhin-Yu; Chiang, Hai-Pang; Lim, Chee Ming; Lim, Ren Chong; Voo, Nyuk Yoong

    2016-09-01

    We propose a design method to tune the near-field intensities and absorption spectra of a periodic array of plasmonic bowtie nanoantennas (PBNAs) by introducing the hollow cavities inside the metal nanostructures. The numerical method is performed by finite element method that demonstrates the engineered hollow PBNAs can tune the optical spectrum in the range of 400-3000 nm. Simulation results show the hollow number is a key factor for enhancing the cavity plasmon resonance with respect to the hotspot region in PBNAs. The design efforts primarily concentrate on shifting the operation wavelength and enhancing the local fields by manipulating the filling dielectric medium, outline film thickness, and hollow number in PBNAs. Such characteristics indicate that the proposed hollow PBNAs can be a potential candidate for plasmonic enhancers and absorbers in multifunctional opto-electronic biosensors.

  12. Tuning all-Optical Analog to Electromagnetically Induced Transparency in nanobeam cavities using nanoelectromechanical system

    PubMed Central

    Shi, Peng; Zhou, Guangya; deng, Jie; Tian, Feng; Chau, Fook Siong

    2015-01-01

    We report the observations of all-optical electromagnetically induced transparency in nanostructures using waveguide side-coupled with photonic crystal nanobeam cavities, which has measured linewidths much narrower than individual resonances. The quality factor of transparency resonance can be 30 times larger than those of measured individual resonances. When the gap between cavity and waveguide is reduced to 10 nm, the bandwidth of destructive interference region can reach 10 nm while the width of transparency resonance is 0.3 nm. Subsequently, a comb-drive actuator is introduced to tune the line shape of the transparency resonance. The width of the peak is reduced to 15 pm and the resulting quality factor exceeds 105. PMID:26415907

  13. High-Q silicon photonic crystal cavity for enhanced optical nonlinearities

    SciTech Connect

    Dharanipathy, Ulagalandha Perumal; Tonin, Mario; Houdré, Romuald; Minkov, Momchil Savona, Vincenzo

    2014-09-08

    We fabricate and experimentally characterize an H0 photonic crystal slab nanocavity with a design optimized for maximal quality factor, Q = 1.7 × 10{sup 6}. The cavity, fabricated from a silicon slab, has a resonant mode at λ = 1.59 μm and a measured Q-factor of 400 000. It displays nonlinear effects, including high-contrast optical bistability, at a threshold power among the lowest ever reported for a silicon device. With a theoretical modal volume as small as V = 0.34(λ/n){sup 3}, this cavity ranks among those with the highest Q/V ratios ever demonstrated, while having a small footprint suited for integration in photonic circuits.

  14. Quantum simulation of 2D topological physics in a 1D array of optical cavities.

    PubMed

    Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei

    2015-07-06

    Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration.

  15. Strong coupling between chlorosomes of photosynthetic bacteria and a confined optical cavity mode.

    PubMed

    Coles, David M; Yang, Yanshen; Wang, Yaya; Grant, Richard T; Taylor, Robert A; Saikin, Semion K; Aspuru-Guzik, Alán; Lidzey, David G; Tang, Joseph Kuo-Hsiang; Smith, Jason M

    2014-11-28

    Strong exciton-photon coupling is the result of a reversible exchange of energy between an excited state and a confined optical field. This results in the formation of polariton states that have energies different from the exciton and photon. We demonstrate strong exciton-photon coupling between light-harvesting complexes and a confined optical mode within a metallic optical microcavity. The energetic anti-crossing between the exciton and photon dispersions characteristic of strong coupling is observed in reflectivity and transmission with a Rabi splitting energy on the order of 150 meV, which corresponds to about 1,000 chlorosomes coherently coupled to the cavity mode. We believe that the strong coupling regime presents an opportunity to modify the energy transfer pathways within photosynthetic organisms without modification of the molecular structure.

  16. Optical Oscillation Established Using Acousto-Optic Bragg Angle Defraction In Conjunction With Closed Cavity Feedback

    NASA Astrophysics Data System (ADS)

    Vezzoli, G. C.; Cadwallender, W.; Megargel, L. R.; Mentzer, M. A.; Craley, D. E.

    1987-03-01

    An optical oscillator has been designed, constructed, and operated by using a HeNe laser and acousto-optic modulator in conjunction with two opposed fiber optic feedback circuits. Depending on round-trip feedback time, a low frequency ( 1Hz) sinusoidal oscillator or a high frequency (100KHz) square wave (,..%,1 us rise time) is obtained.

  17. Optical Phased Array Antennas using Coupled Vertical Cavity Surface Emitting Lasers

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; Rojas, Roberto A.; Nessel, James A.; Miranda, Felix A.

    2007-01-01

    High data rate communication links are needed to meet the needs of NASA as well as other organizations to develop space-based optical communication systems. These systems must be robust to high radiation environments, reliable, and operate over a wide temperature range. Highly desirable features include beam steering capability, reconfigurability, low power consumption, and small aperture size. Optical communication links, using coupled vertical cavity surface emitting laser radiating elements are promising candidates for the transmit portion of these communication links. In this talk we describe a mission scenario, and how the antenna requirements are derived from the mission needs. We describe a potential architecture for this type of antenna, and outline the advantages and drawbacks of this approach relative to competing technologies. The technology we are proposing used coupled arrays of 1550 nm vertical cavity surface emitting lasers for transmission. The feasibility of coupling these arrays together, to form coherent high-power beams that can be modulated at data rates exceeding 1 Gbps, will be explored. We will propose an architecture that enables electronic beam steering, thus mitigating the need for ancillary acquisition, tracking and beam pointing equipment such as needed for current optical communicatin systems. The beam-steering capability we are proposing also opens the possibility of using this technology for inter-satellite communicatin links, and satellite-to-surface links.

  18. Short cavity active mode locking fiber laser for optical sensing and imaging

    NASA Astrophysics Data System (ADS)

    Lee, Hwi Don; Han, Ga Hee; Jeong, Syung Won; Jeong, Myung Yung; Kim, Chang-Seok; Shin, Jun Geun; Lee, Byeong Ha; Eom, Tae Joong

    2014-05-01

    We demonstrate a highly linear wavenumber- swept active mode locking (AML) fiber laser for optical sensing and imaging without any wavenumber-space resampling process. In this all-electric AML wavenumber-swept mechanism, a conventional wavelength selection filter is eliminated and, instead, the suitable programmed electric modulation signal is directly applied to the gain medium. Various types of wavenumber (or wavelength) tunings can be implemented because of the filter-less cavity configuration. Therefore, we successfully demonstrate a linearly wavenumber-swept AML fiber laser with 26.5 mW of output power to obtain an in-vivo OCT image at the 100 kHz swept rate.

  19. Study of the interference effects in an optical cavity for organic light-emitting diode applications.

    PubMed

    Villani, Fulvia; Grimaldi, Immacolata Angelica; Nenna, Giuseppe; Del Mauro, Anna De Girolamo; Loffredo, Fausta; Minarini, Carla

    2010-10-15

    The interference effects generated in a bottom-emitting electroluminescent device fabricated on a polymer underlayer introduced with the aim of improving the anode roughness have been studied. The analysis of the interference fringes at different detection angles and the spatial coherence demonstrates that this phenomenon is due to multiple internal reflections that propagate in the polymer layer. This effect can be eliminated by modifying the polymer thickness and the incidence angle of the electromagnetic radiation at the anode-polymer interface. Inkjet etching technology is adopted for microcavities-shaped polymer structuring to destroy the resonator effect of the optical cavity.

  20. Optical switching of cross intensity correlation in cavity electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Rao, Shi; Hu, Xiangming; Xu, Jun; Li, Lingchao

    2017-03-01

    We present optical switching of cross intensity correlation in the context of cavity electromagnetically induced transparency configuration. For symmetrical parameters, the cross intensity correlation switches from negative to positive as the atom–pump detunings change symmetrically from one case to the other. In terms of the dressed atomic states and the Bogoliubov modes we analyze the atom–photon interaction mechanism for the switching behavior, and present a numerical verification. As a by-product, we show noise squeezing of the sum or difference intensity in a limited region of parameters.

  1. Spectral engineering by flexible tunings of optical Tamm states and Fabry-Perot cavity resonance.

    PubMed

    Zhang, Xu-Lin; Song, Jun-Feng; Feng, Jing; Sun, Hong-Bo

    2013-11-01

    We present a design for spectral engineering in a metal dual distributed Bragg reflector (DBR)-based structure. Optical Tamm states and Fabry-Perot cavity mode, dual windows for light-matter interaction enhancement, can be excited simultaneously and tuned flexibly, including their respective bandwidth and resonant wavelength, due to the variable reflection phase from the outer DBR's internal surface. The design can find applications in solar cells for light trappings. Via calculations of overall absorptivity, the proposed simpler dual-states-based scheme is demonstrated to be almost as effective as the coherent-light-trapping scheme, owing to the dual-states-induced broader-band absorption enhancement.

  2. Half-period Aharonov-Bohm oscillations in disordered rotating optical ring cavities

    NASA Astrophysics Data System (ADS)

    Li, Huanan; Kottos, Tsampikos; Shapiro, Boris

    2016-09-01

    There exists an analogy between Maxwell equations in a rotating frame and the Schrödinger equation for a charged particle in the presence of a magnetic field. We exploit this analogy to point out that electromagnetic phenomena in the rotating frame, under appropriate conditions, can exhibit periodicity with respect to the angular velocity of rotation. In particular, in disordered ring cavities one finds the optical analog of the Al'tshuler-Aronov-Spivak effect well known in mesoscopic physics of disordered metals.

  3. Computerized literature reference system: use of an optical scanner and optical character recognition software.

    PubMed

    Lossef, S V; Schwartz, L H

    1990-09-01

    A computerized reference system for radiology journal articles was developed by using an IBM-compatible personal computer with a hand-held optical scanner and optical character recognition software. This allows direct entry of scanned text from printed material into word processing or data-base files. Additionally, line diagrams and photographs of radiographs can be incorporated into these files. A text search and retrieval software program enables rapid searching for keywords in scanned documents. The hand scanner and software programs are commercially available, relatively inexpensive, and easily used. This permits construction of a personalized radiology literature file of readily accessible text and images requiring minimal typing or keystroke entry.

  4. Numerical studies of the fluid and optical fields associated with complex cavity flows

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1992-01-01

    Numerical solutions for the flowfield about several cavity configurations have been computed using the Reynolds averaged Navier-Stokes equations. Comparisons between numerical and experimental results are made in two dimensions for free shear layers and a rectangular cavity, and in three dimensions for the transonic aero-window problem of the Stratospheric Observatory for Infrared Astronomy (SOFIA). Results show that dominant acoustic frequencies and magnitudes of the self excited resonant cavity flows compare well with the experiment. In addition, solution sensitivity to artificial dissipation and grid resolution levels are determined. Optical path distortion due to the flow field is modelled geometrically and is found to match the experiment. The fluid field was computed using a diagonalized scheme within an overset mesh framework. An existing code, OVERFLOW, was utilized with the additions of characteristic boundary condition and output routines required for reduction of the unsteady data. The newly developed code is directly applicable to a generalized three dimensional structured grid zone. Details are provided in a paper included in Appendix A.

  5. Dynamic optical sampling by cavity tuning and its application in lidar.

    PubMed

    Yang, Lin; Nie, Jinsong; Duan, Lingze

    2013-02-11

    Optical sampling by cavity tuning (OSCAT) enables cost-effective realization of fast tunable optical delay using a single femtosecond laser. We report here a dynamic model of OSCAT, taking into account the continuous modulation of laser repetition rates. This allows us to evaluate the delay scan depth under high interferometer imbalance and high scan rates, which cannot be described by the previous static model. We also report the demonstration of remote motion tracking based on fast OSCAT. Target vibration as small as 15 µm peak to peak and as fast as 50 Hz along line-of-sight has been successfully detected at an equivalent free-space distance of more than 2 km.

  6. Plasmonic crystal cavity on single-mode optical fiber end facet for label-free biosensing

    NASA Astrophysics Data System (ADS)

    He, Xiaolong; Yi, Hui; Long, Jing; Zhou, Xin; Yang, Jie; Yang, Tian

    2016-06-01

    Surface plasmon resonance (SPR) devices on single-mode optical fiber (SMF) end facets are desired for label-free biosensing, due to flexible light delivery, in vivo inspection capability, and seamless integration with fiber-optic communication techniques. We report a plasmonic crystal cavity structure that has a steep resonance near the plasmonic bandedge, a fabrication process to efficiently transfer and align the structure onto a bare SMF end facet, and characterization of its sensing performance. With a sensitivity of 571 nm RIU-1, a figure of merit of 68 RIU-1 and a real-time refractive index detection limit of 3.5 × 10-6 RIU, our sensors can be readily applied in common SPR biosensing experiments. They are over an order of magnitude more sensitive than reported modified-end multimode fiber SPR devices, while there are no reports on previous SMF end facet devices' detection limits which have very low figures of merit.

  7. Observation of Noise-Assisted Transport in an All-Optical Cavity-Based Network

    NASA Astrophysics Data System (ADS)

    Viciani, Silvia; Lima, Manuela; Bellini, Marco; Caruso, Filippo

    2015-08-01

    Recent theoretical and experimental efforts have shown the remarkable and counterintuitive role of noise in enhancing the transport efficiency of complex systems. Here, we realize simple, scalable, and controllable optical fiber cavity networks that allow us to analyze the performance of transport networks for different conditions of interference, dephasing, and disorder. In particular, we experimentally demonstrate that the transport efficiency reaches a maximum when varying the external dephasing noise, i.e., a bell-like shape behavior that had been predicted only theoretically. These optical platforms are very promising simulators of quantum transport phenomena and could be used, in particular, to design and test optimal topologies of artificial light-harvesting structures for future solar energy technologies.

  8. Optimal feedback in efficient ring double-cavity optical parametric oscillators

    SciTech Connect

    Petnikova, V M; Shuvalov, Vladimir V

    2010-09-10

    It is shown that the use of two feedback circuits with matched transfer constants and optimal phase incursions in a nondegenerate optical parametric oscillator (OPO) makes it possible to localise the extremes of intensity distributions of interacting waves on the output face of a nonlinear crystal, which provides maximum possible conversion efficiency of pump energy. The optimisation procedure in this case is rather flexible because it is reduced to ambiguous matching of the period and shift of the extremes of exact analytic solutions of the corresponding problem in the form of cnoidal waves with respect to the nonlinear crystal position. Unlike the single-cavity OPO scheme, both these parameters can substantially exceed the nonlinear crystal length and even tend to infinity, which corresponds to solitary soliton-like solutions. (optical parametric oscillators)

  9. Disorder and dephasing as control knobs for light transport in optical fiber cavity networks

    NASA Astrophysics Data System (ADS)

    Viciani, Silvia; Gherardini, Stefano; Lima, Manuela; Bellini, Marco; Caruso, Filippo

    2016-11-01

    Transport phenomena represent a very interdisciplinary topic with applications in many fields of science, such as physics, chemistry, and biology. In this context, the possibility to design a perfectly controllable experimental setup, where to tune and optimize its dynamics parameters, is a challenging but very relevant task to emulate, for instance, the transmission of energy in light harvesting processes. Here, we experimentally build a scalable and controllable transport emulator based on optical fiber cavity networks where the system noise parameters can be finely tuned while maximizing the transfer efficiency. In particular, we demonstrate that disorder and dephasing noise are two control knobs allowing one to play with constructive and destructive interference to optimize the transport paths towards an exit site. These optical setups, on one side, mimic the transport dynamics in natural photosynthetic organisms and, on the other, are very promising platforms to artificially design optimal nanoscale structures for novel, more efficient, clean energy technologies.

  10. Disorder and dephasing as control knobs for light transport in optical fiber cavity networks

    PubMed Central

    Viciani, Silvia; Gherardini, Stefano; Lima, Manuela; Bellini, Marco; Caruso, Filippo

    2016-01-01

    Transport phenomena represent a very interdisciplinary topic with applications in many fields of science, such as physics, chemistry, and biology. In this context, the possibility to design a perfectly controllable experimental setup, where to tune and optimize its dynamics parameters, is a challenging but very relevant task to emulate, for instance, the transmission of energy in light harvesting processes. Here, we experimentally build a scalable and controllable transport emulator based on optical fiber cavity networks where the system noise parameters can be finely tuned while maximizing the transfer efficiency. In particular, we demonstrate that disorder and dephasing noise are two control knobs allowing one to play with constructive and destructive interference to optimize the transport paths towards an exit site. These optical setups, on one side, mimic the transport dynamics in natural photosynthetic organisms and, on the other, are very promising platforms to artificially design optimal nanoscale structures for novel, more efficient, clean energy technologies. PMID:27886246

  11. Numerical analysis of an optical nanoscale particles trapping device based on a slotted nanobeam cavity

    NASA Astrophysics Data System (ADS)

    Zhang, Senlin; Yong, Zhengdong; Shi, Yaocheng; He, Sailing

    2016-10-01

    A slotted nanobeam cavity (SNC) is utilized to trap a polystyrene (PS) particle with a radius of only 2 nm. The carefully designed SNC shows an ultrahigh Q factor of 4.5 × 107 while maintaining a small mode volume of 0.067(λ/nwater)3. Strongly enhanced optical trapping force is numerically demonstrated when the 2 nm PS particle is introduced into the central, slotted part of the SNC. In the vertical direction, the numerical calculation results show that a trapping stiffness of 0.4 pN/(nm · mW) around the equilibrium position and a trapping potential barrier of ~2000 kBT/mW can be reached. To our best knowledge, the trapping capability (trapping stiffness and trapping potential barrier) of the proposed structure significantly outperforms the theoretical results of those in previously reported work. In addition, the SNC system does not suffer from the metal induced heat issue that restricts the performance of state-of-the-art optical trapping systems involving plasmonic enhancement. Based on the proposed cavity, applications such as lab-on-a-chip platforms for nanoscale particle trapping and analysis can be expected in future.

  12. Numerical analysis of an optical nanoscale particles trapping device based on a slotted nanobeam cavity

    PubMed Central

    Zhang, Senlin; Yong, Zhengdong; Shi, Yaocheng; He, Sailing

    2016-01-01

    A slotted nanobeam cavity (SNC) is utilized to trap a polystyrene (PS) particle with a radius of only 2 nm. The carefully designed SNC shows an ultrahigh Q factor of 4.5 × 107 while maintaining a small mode volume of 0.067(λ/nwater)3. Strongly enhanced optical trapping force is numerically demonstrated when the 2 nm PS particle is introduced into the central, slotted part of the SNC. In the vertical direction, the numerical calculation results show that a trapping stiffness of 0.4 pN/(nm · mW) around the equilibrium position and a trapping potential barrier of ~2000 kBT/mW can be reached. To our best knowledge, the trapping capability (trapping stiffness and trapping potential barrier) of the proposed structure significantly outperforms the theoretical results of those in previously reported work. In addition, the SNC system does not suffer from the metal induced heat issue that restricts the performance of state-of-the-art optical trapping systems involving plasmonic enhancement. Based on the proposed cavity, applications such as lab-on-a-chip platforms for nanoscale particle trapping and analysis can be expected in future. PMID:27786248

  13. Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories

    SciTech Connect

    Miyazono, Evan; Zhong, Tian; Craiciu, Ioana; Kindem, Jonathan M.; Faraon, Andrei

    2016-01-04

    Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here, we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories.

  14. Synthesis of Optical Frequencies and Ultrastable Femtosecond Pulse Trains from an Optical Reference Oscillator

    NASA Astrophysics Data System (ADS)

    Bartels, A.; Ramond, T. M.; Diddams, S. A.; Hollberg, L.

    Recently, atomic clocks based on optical frequency standards have been demonstrated [1,2]. A key element in these clocks is a femtosecond laser that downconverts the petahertz oscillation rate into countable ticks at 1 GHz. When compared to current microwave standards, these new optical clocks are expected to yield an improvement in stability and accuracy by roughly a factor of 1000. Furthermore, it is possible that the lowest noise microwave sources will soon be based on atomically-stabilized optical oscillators that have their frequency converted to the microwave domain via a femtosecond laser. Here, we present tests of the ability of femtosecond lasers to transfer stability from an optical oscillator to their repetition rates as well as to the associated broadband frequency comb. In a first experiment, we phase-lock two lasers to a stabilized laser diode and find that the relative timing jitter in their pulse trains can be on the order of 1 femtosecond in a 100 kHz bandwidth. It is important to distinguish this technique from previous work where a femtosecond laser has been stabilized to a microwave standard [3,4] or another femtosecond laser [5]. Furthermore, we extract highly stable microwave signals with a fractional frequency instability of 2×10-14 in 1 s by photodetection of the laser pulse trains. In a second experiment, we similarly phase-lock the femtosecond laser to an optical oscillator with linewidth less than 1 Hz [6]. The precision with which we can make the femtosecond frequency comb track this reference oscillator is then tested by a heterodyne measurement between a second stable optical oscillator and a mode of the frequency comb that is displaced 76 THz from the 1 Hz-wide reference. From this heterodyne signal we place an upper limit of 150 Hz on the linewidth of the elements of the frequency comb, limited by the noise in the measurement itself.

  15. CFD-based aero-optical analysis of flow fields over two-dimensional cavities with active flow control

    NASA Astrophysics Data System (ADS)

    Tan, Yan

    Prediction and control of optical wave front distortions and aberrations in a high energy laser beam due to interaction with an unsteady highly non-uniform flow field is of great importance in the development of directed energy weapon systems for Unmanned Air Vehicles (UAV). The unsteady shear layer over the weapons bay cavity is the primary cause of this distortion of the optical wave front. The large scale vortical structure of the shear layer over the cavity can be significantly reduced by employing an active flow control technique combined with passive flow control. This dissertation explores various active and passive control methods to suppress the cavity oscillations and thereby improve the aero-optics of cavity flow. In active flow control technique, a steady or a pulsed jet is applied at the sharp leading edge of cavities of different aspect ratios L/D (=2, 4, 15), where L and D are the width and the depth of a cavity respectively. In the passive flow control approach, the sharp leading or trailing edge of the cavity is modified into a round edge of different radii. Both of these active and passive flow control approaches are studied independently and in combination. Numerical simulations are performed, with and without active flow control for subsonic free stream flow past two-dimensional sharp and round leading or trailing edge cavities using Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a two-equation Shear Stress Transport (SST) turbulence model or a hybrid SST/Large Eddy Simulation (LES) model. Aero-optical analysis is developed and applied to all the simulation cases. Index of refraction and Optical Path Difference (OPD) are compared for flow fields without and with active flow control. Root-Mean-Square (RMS) value of OPD is calculated and compared with the experimental data, where available. The effect of steady and pulsed blowing on buffet loading on the downstream face of the cavity is also computed. Using the numerical

  16. Nanoradian ground-based astrometry, optical navigation, and artificial reference stars

    NASA Astrophysics Data System (ADS)

    Zhai, Chengxing; Shao, Michael; Biswas, Abhijit; Ely, Todd; Jacobs, Christopher; Lazio, Joseph; Martin-Mur, Tomas; Owen, William; Rud, Mike; Saini, Navtej; Sandhu, Jagmit; Turyshev, Slava; Werne, Thomas

    2016-08-01

    Spacecraft carrying optical communication lasers can be treated as artificial stars, whose relative astrometry to Gaia reference stars provides spacecraft positions in the plane-of-sky for optical navigation. To be comparable to current Deep Space Network delta-Differential One-way Ranging measurements, thus sufficient for navigation, nanoradian optical astrometry is required. Here we describe our error budget, techniques for achieving nanoradian level ground-base astrometry, and preliminary results from a 1 m telescope. We discuss also how these spacecraft may serve as artificial reference stars for adaptive optics, high precision astrometry to detect exoplanets, and tying reference frames defined by radio and optical measurements.

  17. Optical Injection Locking of Vertical Cavity Surface-Emitting Lasers: Digital and Analog Applications

    NASA Astrophysics Data System (ADS)

    Parekh, Devang

    With the rise of mobile (cellphones, tablets, notebooks, etc.) and broadband wireline communications (Fiber to the Home), there are increasing demands being placed on transmitters for moving data from device to device and around the world. Digital and analog fiber-optic communications have been the key technology to meet this challenge, ushering in ubiquitous Internet and cable TV over the past 20 years. At the physical layer, high-volume low-cost manufacturing of semiconductor optoelectronic devices has played an integral role in allowing for deployment of high-speed communication links. In particular, vertical cavity surface emitting lasers (VCSEL) have revolutionized short reach communications and are poised to enter more markets due to their low cost, small size, and performance. However, VCSELs have disadvantages such as limited modulation performance and large frequency chirp which limits fiber transmission speed and distance, key parameters for many fiber-optic communication systems. Optical injection locking is one method to overcome these limitations without re-engineering the VCSEL at the device level. By locking the frequency and phase of the VCSEL by the direct injection of light from another laser oscillator, improved device performance is achieved in a post-fabrication method. In this dissertation, optical injection locking of VCSELs is investigated from an applications perspective. Optical injection locking of VCSELs can be used as a pathway to reduce complexity, cost, and size of both digital and analog fiber-optic communications. On the digital front, reduction of frequency chirp via bit pattern inversion for large-signal modulation is experimentally demonstrated showing up to 10 times reduction in frequency chirp and over 90 times increase in fiber transmission distance. Based on these results, a new reflection-based interferometric model for optical injection locking was established to explain this phenomenon. On the analog side, the resonance

  18. Optical filter finesses enhancement based on nested coupled cavities and active medium

    NASA Astrophysics Data System (ADS)

    Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2016-04-01

    Optical filters with relatively large FSR and narrow linewidth are simultaneously needed for different applications. The ratio between the FSR and the 3-dB linewidth is given by finesse of the filter, which is solely determined by the different energy loss mechanisms limited by the technology advancement. In this work, we present a novel coupled-cavity configuration embedding an optical filter and a gain medium; allowing an overall finesse enhancement and simultaneous FSR and 3-dB linewidth engineering beyond the technological limits of the filter fabrication method. The configuration consists of two resonators. An active ring resonator comprises an optical gain medium and a passive resonator. In one configuration, the optical filter is the passive resonator itself. In a second configuration, the passive resonator is another ring resonator that embeds the optical filter. The presented configurations using a semiconductor optical amplifier are applied one time to a mechanically Fabry-Perot filter in the first presented configuration; and a second time to a fiber ring filter in the second presented configuration. The mechanical filter has an original 3-dB linewidth of 1nm and an FSR that is larger than 100nm while the enhanced linewidth is about 0.3nm. The fiber ring filter length is 4 m and directional coupler ratios of 90/10corresponding to a 3-dBlinewidth of about 4MHz and an FSR of 47 MHz. The enhanced 3- dBlinewidth of the overall filter configuration is 200kHz, demonstrating finesse enhancement up to20 times the original finesse of the filter.

  19. Planar-waveguide external cavity laser stabilization for an optical link with 10(-19) frequency stability.

    PubMed

    Clivati, Cecilia; Mura, Alberto; Calonico, Davide; Levi, Filippo; Costanzo, Giovanni A; Calosso, Claudio E; Godone, Aldo

    2011-12-01

    We stabilized the frequency of a compact planar-waveguide external cavity laser (ECL) on a Fabry-Perot cavity (FPC) through a Pound-Drever-Hall scheme. The residual frequency stability of the ECL is 10(-14), comparable to the stability achievable with a fiber laser (FL) locked to an FPC through the same scheme. We set up an optical link of 100 km, based on fiber spools, that reaches 10(-19) relative stability, and we show that its performances using the ECL or FL are comparable. Thus ECLs could serve as an excellent replacement for FLs in optical links where cost-effectiveness and robustness are important considerations.

  20. Overlapping double potential wells in a single optical microtube cavity with vernier-scale-like tuning effect

    NASA Astrophysics Data System (ADS)

    Madani, A.; Bolaños Quiñones, V. A.; Ma, L. B.; Miao, S. D.; Jorgensen, M. R.; Schmidt, O. G.

    2016-04-01

    Spatially and temporally overlapping double potential wells are realized in a hybrid optical microtube cavity due to the coexistence of an aggregate of luminescent quantum dots embedded in the tube wall and the cone-shaped tube's geometry. The double potential wells produce two independent sets of optical modes with different sets of mode numbers, indicating phase velocity separation for the modes overlapping at the same frequency. The overlapping mode position can be tuned by modifying the tube cavity, where these mode sets shift with different magnitudes, allowing for a vernier-scale-like tuning effect.

  1. Flouescence reference materials used for optical and biophotonic applications

    NASA Astrophysics Data System (ADS)

    Engel, A.; Otterman, C.; Klahn, J.; Enseling, D.; Korb, T.; Resch-Genger, U.; Hoffmann, K.; Schweizer, S.; Selling, J.; Kynast, U.; Koberling, F.; Rupertus, V.

    2007-07-01

    Fluorescence techniques are known for their high sensitivity and are widely used as analytical tools and detection methods for product and process control, material sciences, environmental and bio-technical analysis, molecular genetics, cell biology, medical diagnostics, and drug screening. According to DIN/ISO 17025 certified standards are used for fluorescence diagnostics having the drawback of giving relative values for fluorescence intensities only. Therefore reference materials for a quantitative characterization have to be related directly to the materials under investigation. In order to evaluate these figures it is necessary to calculate absolute numbers like absorption/excitation cross sections and quantum yield. This can be done for different types of dopands in different materials like glass, glass ceramics, crystals or nano crystalline material embedded in polymer matrices. Based on the optical spectroscopy data we will discuss options for characteristic doped glasses and glass ceramics with respect to scattering and absorption regime. It has shown recently for YAG:Ce glass ceramics that for a proper determination of the quantum efficiency in these highly scattering media a reference material with similar scattering and fluorescent properties is required. This may be performed using the emission decay measurement diagnostics, where the decay time is below 100 ns. In this paper we present first results of these aspects using well performing LUMOGEN RED organic pigments for a comparison of mainly transparent glass with glass ceramics doped with various amounts of dopands e.g. ions of raw earth elements and transition metals. The LUMOGEN red is embedded in silica and polyurethane matrices. Characterisations on wavelength accuracy and lifetime for different environmental conditions (temperature, UV irradiation) have been performed. Moreover intensity patterns and results for homogeneity, isotropy, photo and thermal stability will be discussed. In a next

  2. Accurate measurement method of Fabry-Perot cavity parameters via optical transfer function

    SciTech Connect

    Bondu, Francois; Debieu, Olivier

    2007-05-10

    It is shown how the transfer function from frequency noise to a Pound-Drever-Hall signal for a Fabry-Perot cavity can be used to accurately measure cavity length, cavity linewidth, mirror curvature, misalignments, laser beam shape mismatching with resonant beam shape, and cavity impedance mismatching with respect to vacuum.

  3. Broadband optical ultrasound sensor with a unique open-cavity structure.

    PubMed

    Chow, Colin M; Zhou, Yun; Guo, Yunbo; Norris, Theodore B; Wang, Xueding; Deng, Cheri X; Ye, Jing Yong

    2011-01-01

    High-resolution ultrasound imaging requires quality sensors with wide bandwidth and high sensitivity, as shown in a wide range of applications, including intravascular imaging of cardiovascular diseases. However, piezoelectric technology, the current dominant approach for hydrophone fabrication, has encountered many technical limitations in the high-frequency range. Using optical techniques for the detection of high-frequency ultrasound signals has attracted much recent attention. One of the most studied approaches is based on a Fabry-Pérot interferometer, consisting of an optical cavity sandwiched between two mirrors. This technique offers promising sensitivity and bandwidth, and a potential alternative to piezoelectric polyvinylidene fluoride (PVDF) hydrophones. We propose an innovative optical ultrasound sensor using only a single mirror in a total-internal-reflection configuration. Besides retaining the advantages of Fabry-Pérot interferometer-based ultrasound sensors, this unique design provides a bandwidth of at least 160 MHz, a potential decrease in fabrication cost, and an increase in signal fidelity.

  4. Energy Deposition into a Collisional Gas from Optical Lattices Formed in an Optical Cavity (PREPRINT)

    DTIC Science & Technology

    2008-07-02

    pp. 1344-1347 2 Kuga et al., “Novel Optical Trap of Atoms with a Doughnut Beam,” Physical Review Letters 78, (1997), pp. 4713-4716 3 Dotsenko et...other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a ...Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Energy Deposition into a Collisional Gas from

  5. Aersol Optical Property Measurements During TEXAQS II Using Cavity Ring-Down Transmissometer.

    NASA Astrophysics Data System (ADS)

    Wright, M. E.; Parra, J.; Linda, G.; Dean, A.

    2006-12-01

    Measurements of aerosol extinction and scattering were made using a tandem cavity ring-down transmissometer/nephelometer instrument during the TEXAQS II measurement campaign August 14 to September 29, 2006. The visible (532 nm) particle absorption and single scattering albedo are also derived from the measured extinction and scattering coefficients. The instrument was part of a suite of measurements conducted at the Moody Tower on the University of Houston campus as part of the Texas Radical and Aerosol Measurement Program. Comparison between various aerosol measurement techniques deployed at the Moody Tower site and by the other measurement platforms will be possible given the wide range of aerosol conditions encountered. A preliminary analysis of our aerosol optical property data and possible consequences for radiative forcing and air quality will be presented.

  6. External cavity quantum cascade lasers with ultra rapid acousto-optic tuning

    SciTech Connect

    Lyakh, A. Barron-Jimenez, R.; Dunayevskiy, I.; Go, R.; Patel, C. Kumar N.

    2015-04-06

    We report operation of tunable external cavity quantum cascade lasers with emission wavelength controlled by an acousto-optic modulator (AOM). A long-wave infrared quantum cascade laser wavelength tuned from ∼8.5 μm to ∼9.8 μm when the AOM frequency was changed from ∼41MHz to ∼49 MHz. The laser delivered over 350 mW of average power at the center of the tuning curve in a linewidth of ∼4.7 cm{sup −1}. Measured wavelength switching time between any two wavelengths within the tuning range of the QCL was less than 1 μs. Spectral measurements of infrared absorption features of Freon demonstrated a capability of obtaining complete spectral data in less than 20 μs.

  7. Characterization of spatiotemporal chaos in a Kerr optical frequency comb and in all fiber cavities

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Ouali, M.; Coulibaly, S.; Clerc, M. G.; Taki, M.; Tlidi, M.

    2017-03-01

    Complex spatiotemporal dynamics have been a subject of recent experimental investigations in optical frequency comb microresonators and in driven fiber cavities with a Kerr-type media. We show that this complex behavior has a spatiotemporal chaotic nature. We determine numerically the Lyapunov spectra, allowing to characterize different dynamical behavior occurring in these simple devices. The Yorke-Kaplan dimension is used as an order parameter to characterize the bifurcation diagram. We identify a wide regime of parameters where the system exhibits a coexistence between the spatiotemporal chaos, the oscillatory localized structure, and the homogeneous steady state. The destabilization of an oscillatory localized state through radiation of counter propagative fronts between the homogeneous and the spatiotemporal chaotic states is analyzed. To characterize better the spatiotemporal chaos, we estimate the front speed as a function of the pump intensity.

  8. One by N wavelength-selected optical switch based on tunable Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Li, Xinwan; Chen, Jian-Ping; Lu, Jialin; Ye, Ailun

    2005-02-01

    In this paper, a kind of tunable wavelength selective optical switch was proposed with two-input/two-output fiber ports. It is based on tunable Fabry-Perot cavity by a pair of multi-layered piezoelectric ceramics. Each fiber carries N wavelengths, one of which can be selected. The tunable span can reach 5.43 nm under 10 V DC voltages. The relation of wavelength tuning ability and driving voltage is linear. The maximum of difference between theoretical and experimental results is less than 0.08nm. The quantities of maximum insertion loss, switching time and on/off ratio are about 3 dB, 1 ms and 28 dB

  9. GaAs micro-pyramids serving as optical micro-cavities

    SciTech Connect

    Karl, M.; Beck, T.; Li, S.; Hu, D. Z.; Schaadt, D. M.; Kalt, H.; Hetterich, M.

    2010-01-04

    An efficient light-matter coupling requires high-quality (Q) micro-cavities with small mode volume. We suggest GaAs micro-pyramids placed on top of AlAs/GaAs distributed Bragg reflectors to be promising candidates. The pyramids were fabricated by molecular-beam epitaxy, electron-beam lithography and a subsequent wet-chemical etching process using a sacrificial AlAs layer. Measured Q-factors of optical modes in single pyramids reach values up to 650. A finite-difference time-domain simulation assuming a simplified cone-shaped geometry suggests possible Q-factors up to 3600. To enhance the light confinement in the micro-pyramids we intend to overgrow the pyramidal facets with a Bragg mirror--results of preliminary tests are given.

  10. Simultaneous strain and temperature sensing using a slightly tapered optical fiber with an inner cavity.

    PubMed

    Chen, H F; Wang, D N; Wang, Y

    2015-03-21

    An ultracompact optical fiber mode interferometer capable of performing simultaneous strain and temperature sensing is demonstrated. The device is fabricated by using femtosecond laser micromachining together with fusion splicing techniques and followed by a tapering process. The transmission spectrum of the device exhibits a number of resonance wavelength dips, corresponding to different orders of cladding mode, which allow simultaneous strain and temperature sensing by monitoring the variation of selected two wavelength dips. The sensitivity achieved is -16.12 pm με(-1) and 85.95 pm °C(-1) for strain and temperature, respectively. The device has a spatially precise sensing capability owing to the small size of the inner air-cavity.

  11. Probing dark energy with an atom interferometer in an optical cavity

    NASA Astrophysics Data System (ADS)

    Jaffe, Matthew; Haslinger, Philipp; Hamilton, Paul; Mueller, Holger; Khoury, Justin; Elder, Benjamin

    2016-05-01

    If dark energy -- which drives the accelerated expansion of the universe -- consists of a light scalar field, it might be detectable as a ``fifth force'' between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms can evade such tests by suppressing this force in regions of high density, such as the laboratory. Our experiments constrain these dark energy models using atoms in an ultrahigh-vacuum chamber as probes to expose the screened fields. Using a cesium matter wave interferometer in an optical cavity, we set stringent bounds on coupling screened theories to matter. A further 4 to 5 orders of magnitude would completely rule out chameleon and f(R) theories. I will describe this first tabletop dark energy search, and present the hundredfold boost in sensitivity we have since achieved.

  12. Application of Optical Flow Sensors for Dead Reckoning, Heading Reference, Obstacle Detection, and Obstacle Avoidance

    DTIC Science & Technology

    2015-09-01

    OPTICAL FLOW SENSORS FOR DEAD RECKONING, HEADING REFERENCE, OBSTACLE DETECTION, AND OBSTACLE AVOIDANCE by Tarek M. Nejah September 2015... SENSORS FOR DEAD RECKONING, HEADING REFERENCE, OBSTACLE DETECTION, AND OBSTACLE AVOIDANCE 5. FUNDING NUMBERS 6. AUTHOR(S) Nejah, Tarek M. 7...avoidance using only one optical mouse sensor was presented in this thesis. Odometry, position tracking, and obstacle avoidance are important issues in

  13. Cavity Ring Down Absorption of O2 in Air as a Temperature Sensor for an Open and a Cryogenic Optical Cavity.

    PubMed

    Nyaupane, Parashu R; Perez-Delgado, Yasnahir; Camejo, David; Wright, Lesley M; Manzanares, Carlos E

    2016-06-30

    The A-band of oxygen has been measured at low resolution at temperatures between 90 K and 373 K using the phase shift cavity ring down (PS-CRD) technique. For temperatures between 90 K and 295 K, the PS-CRD technique presented here involves an optical cavity attached to a cryostat. The static cell and mirrors of the optical cavity are all inside a vacuum chamber at the same temperature of the cryostat. The temperature of the cell can be changed between 77 K and 295 K. For temperatures above 295 K, a hollow glass cylindrical tube without windows has been inserted inside an optical cavity to measure the temperature of air flowing through the tube. The cavity consists of two highly reflective mirrors which are mounted parallel to each other and separated by a distance of 93 cm. In this experiment, air is passed through a heated tube. The temperature of the air flowing through the tube is determined by measuring the intensity of the oxygen absorption as a function of the wavenumber. The A-band of oxygen is measured between 298 K and 373 K, with several air flow rates. To obtain the temperature, the energy of the lower rotational state for seven selected rotational transitions is linearly fitted to a logarithmic function that contains the relative intensity of the rotational transition, the initial and final rotational quantum numbers, and the energy of the transition. Accuracy of the temperature measurement is determined by comparing the calculated temperature from the spectra with the temperature obtained from a calibrated thermocouple inserted at the center of the tube. This flowing air temperature sensor will be used to measure the temperatures of cooling air at the input (cold air) and output (hot air) after cooling the blades of a laboratory gas turbine. The results could contribute to improvements in turbine blade cooling design.

  14. [Measurement of Trace C2H6 Based on Optical-Feedback Cavity-Enhanced Absorption Spectroscopy].

    PubMed

    Wan, Fu; Chen, Wei-gen; Gu, Zhao-liang; Zou, Jing-xin; DU, Ling-Ling; Qi, Wei; Zhou, Qu

    2015-10-01

    Ethane is one of major fault characteristic gases dissolved in power transformer, the detection of Ethane with high accuracy and sensitivity is the key of dissolved gas analysis. In this paper, based on optical feedback theory and cavity-enhanced absorption spectroscopy, combined with quantum cascade laser, a detection system for dissolved gas C2 H6 in transformer oil was built up. Based on the symmetry of the individual cavity modes, the phase matching of returning light in resonance with the cavity was achieved through LabVIEW codes. The optical feedback effect that the emitted light return to the laser cavity after a small delay time and lock to the resonance frequency of cavity, even and odd modes effect that the higher modes and lower modes structure will build up alternatively, and threshold current lowering effect of about 1.2 mA were studied and achieved. By cavity ring-down spectroscopy, the effective reflectivity of 99.978% and cavity finesse of 7 138.4 is obtained respectively. The frequency selectivity is 0.005 2 cm(-1). With an acquisition time of 1s, this optical system allows detection for the PQ3 band of C2 H6 with high accuracy of 95.72% ± 0.17% and detection limit of (1.97 ± 0.06) x 10(-3) μL x L(-1) at atmospheric pressure and temperature of 20 degrees C, which lays a foundation for fault diagnose from dissolved gas analysis.

  15. A theoretical study on using a fictional mirror to simplify the behavior of a volume Bragg grating in an optical cavity

    NASA Astrophysics Data System (ADS)

    Hsieh, Yu-Hua; Huang, Ching-Hsun; Chung, Te-yuan; Shy, Jow-Tsong

    2016-11-01

    A fictional mirror was proposed to describe the reflective behaviors of a volume Bragg grating (VBG) in an optical cavity. When a finite beam interacts with a VBG, the analytical forms of the location and the radius of curvature of the fictional mirror are derived. In addition, the longitudinal mode spacing of an optical cavity using a VBG as the cavity mirror is investigated theoretically and experimentally.

  16. An ultra-narrow-band optical filter based on whispering-gallery-mode hybrid-microsphere-cavity

    NASA Astrophysics Data System (ADS)

    Wan, Hongdan; Zhu, Haohan; Liu, Linqian; Xu, Ji; Wang, Jin

    2016-10-01

    We demonstrate an ultra-narrow-band mode-selection method based on a hybrid-microsphere-cavity which consists of a coated silica microsphere. Optical field distribution and narrow-band transmission spectrum of the whispering gallery modes (WGM) are investigated by finite-difference time-domain method. WGM transmission spectra are measured for microsphere and tapered fibers with different diameters. A high refractive index layer coated on the microsphere-cavity make the Q factor increased, the transmission spectrum bandwidth compressed and the side-mode suppression ratio increased. Parameters of the hybrid-microsphere-cavity, namely, the coated shell thickness and its refractive index are optimized under different excitation light source as to investigate the whispering-gallery-modes' transmission spectrum. The 3dB bandwidth of the proposed filter can be less than MHz which will have great potential for applications in all-optical sensing and communication systems.

  17. Controlled mode tuning in 1-D 'RIM' plasmonic crystal trench cavities probed with coupled optical emitters.

    PubMed

    Liu, Tsung-li; Russell, Kasey J; Cui, Shanying; Hu, Evelyn L

    2013-12-02

    We present a design of plasmonic cavities that consists of two sets of 1-D plasmonic crystal reflectors on a plasmonic trench waveguide. A 'reverse image mold' (RIM) technique was developed to pattern high-resolution silver trenches and to embed emitters at the cavity field maximum, and FDTD simulations were performed to analyze the frequency response of the fabricated devices. Distinct cavity modes were observed from the photoluminescence spectra of the organic dye embedded within these cavities. The cavity geometry facilitates tuning of the modes through a change in cavity dimensions. Both the design and the fabrication technique presented could be extended to making trench waveguide-based plasmonic devices and circuits.

  18. Thin cylindrical slot in an optical microdisk cavity for sensing biomaterials

    NASA Astrophysics Data System (ADS)

    Daraei, Ahmadreza; Daraei, Mohammad Esmaeil

    2017-04-01

    In this paper, we propose and investigate a thin cylindrical slot etched into a disk shape optical microcavity (MC) aiming for sensing biomaterials in a label-free style. Supporting whispering gallery modes (WGMs), with remarkably large quality factor to modal volume ratio (Q/Vm) of the optical MC structures that penetrate in the slot region, enables us to perform sensing. Three different geometries for the side walls of host microdisk cavities, including vertical, 60° wedged, and half-circular cross section, are selected for investigations. In each individual case, the radial position, width, and height of the thin cylindrical slot are varied. The electromagnetic (EM) field intensity distributions (mode mapping profiles) of the WGMs show funneling of the intensified fields into the slot area that possessing nearly the same high Q values. Tuning the slot position, width, and depth for a suitably chosen WGM, sensing could be optimized for different biomaterials. Sensitivity value as high as 75 nm/RIU is calculated for the half-circular side wall microdisk. The proposed WGM-based slotted microdisk, as a state-of-the-art device which can operate, such as lab-on-chip structure, would function as a sensitive biosensor, even down to the single biomolecule levels.

  19. Cavity-based quantum networks with single atoms and optical photons

    NASA Astrophysics Data System (ADS)

    Reiserer, Andreas; Rempe, Gerhard

    2015-10-01

    Distributed quantum networks will allow users to perform tasks and to interact in ways which are not possible with present-day technology. Their implementation is a key challenge for quantum science and requires the development of stationary quantum nodes that can send and receive as well as store and process quantum information locally. The nodes are connected by quantum channels for flying information carriers, i.e., photons. These channels serve both to directly exchange quantum information between nodes and to distribute entanglement over the whole network. In order to scale such networks to many particles and long distances, an efficient interface between the nodes and the channels is required. This article describes the cavity-based approach to this goal, with an emphasis on experimental systems in which single atoms are trapped in and coupled to optical resonators. Besides being conceptually appealing, this approach is promising for quantum networks on larger scales, as it gives access to long qubit coherence times and high light-matter coupling efficiencies. Thus, it allows one to generate entangled photons on the push of a button, to reversibly map the quantum state of a photon onto an atom, to transfer and teleport quantum states between remote atoms, to entangle distant atoms, to detect optical photons nondestructively, to perform entangling quantum gates between an atom and one or several photons, and even provides a route toward efficient heralded quantum memories for future repeaters. The presented general protocols and the identification of key parameters are applicable to other experimental systems.

  20. Selection of Optical Cavity Surface Coatings for 1micron Laser Based Missions

    NASA Technical Reports Server (NTRS)

    Hedgeland, Randy J.; Straka, Sharon; Matsumura, Mark; Hammerbacher, Joseph

    2004-01-01

    The particulate surface cleanliness level on several coatings for aluminum and beryllium substrates were examined for use in the optical cavities of high pulse energy Nd:YAG Q-switched, diode-pumped lasers for space flight applications. Because of the high intensity of the lasers, any contaminants in the laser beam path could damage optical coatings and limit the instrument mission objectives at the operating wavelength of 1 micron (micrometer). Our goal was to achieve an EST-STD-CC1246D Level 100 particulate distribution or better to ensure particulate redistribution during launch would not adversely affect the performance objectives. Tapelifts were performed to quantify the amount of particles using in-house developed procedures. The primary candidate coatings included chromate conversion coating aluminum (Al), uncoated Al electroless Nickel (Ni) on Al, Ni-gold (Au) on Al, anodized Al, and gold (Au)/Ni on Beryllium (Be). The results indicate that there were advantages in Ni and Au coating applications for the two major substrates, Al and Be, when considering applications that need to meet launch environments.

  1. Clinical measurements of tissue optical properties in the esophagus and in the oral cavity

    NASA Astrophysics Data System (ADS)

    Bays, Roland; Wagnieres, Georges A.; Robert, D.; Mizeret, Jerome C.; Braichotte, Daniel; Savary, Jean-Francois; Monnier, Philippe; van den Bergh, Hubert

    1995-03-01

    A non-invasive probe has been devised and clinically used to perform in vivo measurements of the optical properties of the esophageal wall and oral cavity. The absorption and reduced scattering coefficients are determined from the observation of the spatial distribution of the diffuse reflectance at the tissue surface under a narrow beam illumination of the tissue. The determination of these two coefficients enables us to evaluate the value of the effective attenuation coefficient which is of major interest in the field of light dosimetry for photodynamic therapy (PDT). An invasive isotropic micro-probe has also been designed and clinically used to directly measure in vivo the value of the fluence rate in tissues. The principle of this probe is based on the fluorescence generated in a ruby sphere by the light which propagates in the tissue. This fluorescence which can be excited between 350 and 680 nm is isotropically emitted and in part collected by an optical fiber glued against the ruby sphere. Results, obtained with both probes at 514 and 630 nm, i.e., wavelengths of interest in photodynamic therapy, with actual clinically used photosensitizers are summarized and compared. The agreement obtained between these two techniques validates the principle of these measurements.

  2. Schemes generating entangled states and entanglement swapping between photons and three-level atoms inside optical cavities for quantum communication

    NASA Astrophysics Data System (ADS)

    Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon

    2017-01-01

    We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.

  3. Real-time detection of lipid bilayer assembly and detergent-initiated solubilization using optical cavities

    NASA Astrophysics Data System (ADS)

    Sun, V.; Armani, A. M.

    2015-02-01

    The cellular membrane governs numerous fundamental biological processes. Therefore, developing a comprehensive understanding of its structure and function is critical. However, its inherent biological complexity gives rise to numerous inter-dependent physical phenomena. In an attempt to develop a model, two different experimental approaches are being pursued in parallel: performing single cell experiments (top down) and using biomimetic structures (bottom up), such as lipid bilayers. One challenge in many of these experiments is the reliance on fluorescent probes for detection which can create confounds in this already complex system. In the present work, a label-free detection method based on an optical resonant cavity is used to detect one of the fundamental physical phenomena in the system: assembly and solubilization of the lipid bilayer. The evanescent field of the cavity strongly interacts with the lipid bilayer, enabling the detection of the bilayer behavior in real-time. Two independent detection mechanisms confirm the formation and detergent-assisted solubilization of the lipid bilayers: (1) a refractive index change and (2) a material loss change. Both mechanisms can be monitored in parallel, on the same device, thus allowing for cross-confirmation of the results. To verify the proposed method, we have detected the formation of self-assembled phosphatidylcholine lipid bilayers from small unilamellar vesicles on the device surface in real-time. Subsequently, we exposed the bilayers to two different detergents (non-ionic Triton X-100 and anionic sodium dodecyl sulfate) to initiate solubilization, and this process was also detected in real-time. After the bilayer solubilization, the device returned to its initial state, exhibiting minimal hysteresis. The experimental wash-off was also collected and analyzed using dynamic light scattering.

  4. Spectroscopic study of optical confinement and transport effects in coupled microspheres and pillar cavities

    NASA Astrophysics Data System (ADS)

    Yang, Seungmoo

    In this thesis we investigated the spatial and spectral mode profiles, and the optical transport properties of single and multiple coupled cavities. We performed numerical modeling of whispering gallery modes (WGMs) in such cavities in order to explain recent experiments on semiconductor micropillars. High quality (Q up to 20 000) WGMs with small mode volumes V ˜0.3 mum 3 in 4-5 mum micropillars were reproduced. The WGM spectra were found to be in a good agreement with the experimental data. The coupling between size-matched spheres from 2.9 to 6.0 mum in diameter was characterized using spectroscopy. We observed peculiar kites in the spectral images of such coherently coupled bispheres. The origin of these kites was explained due to the coupling of multiple pairs of azimuthal modes. We quantified the coupling constant for WGMs located in the equatorial plane of spheres parallel to the substrate which plays the most important role in the transport of WGMs in such structures. It was shown that in long (>10 spheres) chains of size-disordered polystyrene microspheres the transmission properties are dominated by photonic nanojet-induced modes (NIMs) leading to periodic focusing of light along the chain. In the transmission spectra of such chains we observed Fabry-Perot fringes with propagation losses of only 0.08 dB per sphere at the maxima of the transmission peaks. The fringes of NIMs are found to be in a good agreement with the results of numerical modeling. These modes can be used in various biomedical applications requiring tight focusing of the beams.

  5. Phase dynamics in vertical-cavity surface-emitting lasers with delayed optical feedback and cross-polarized reinjection

    NASA Astrophysics Data System (ADS)

    Javaloyes, J.; Marconi, M.; Giudici, M.

    2014-08-01

    We study theoretically the nonlinear polarization dynamics of vertical-cavity surface-emitting lasers in the presence of an external cavity providing delayed optical feedback and cross-polarized reinjection. We show that, far from the laser threshold, the dynamics remains confined close to the equatorial plane of a Poincaré sphere with a fixed radius. It entails that the evolution of the system is described by two phase variables: the orientation phase of the quasilinear polarization and the optical phase of the field. We explore the complex modal structure given by the double reinjection configuration and how it evolves between the cases of single cross-polarized reinjection and single optical feedback, hence disclosing the relationship with the Lang-Kobayashi model. We also reinterpret the square-wave switching observed by J. Mulet et al. [Phys. Rev. A 76, 043801 (2007), 10.1103/PhysRevA.76.043801] in terms of phase kinks.

  6. Optical Reference Stars for Space Surveillance: Future Plans: Latest Developments

    DTIC Science & Technology

    2010-01-01

    respect to each other. Thus, the relationship between GAST and UT1 includes terms due to precession and nutation . The Earth Rotation Angle, and its...epoch. The International Celestial Reference Frame (ICRF) is the reference frame implementing the ICRS. However, we observe from the Earth , which has...replace the equinox. A new precession- nutation model has been developed with considerably improved accuracies. The Celestial Intermediate Pole (CIP

  7. Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips.

    PubMed

    André, Ricardo M; Warren-Smith, Stephen C; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M I; Latifi, H; Marques, Manuel B; Bartelt, Hartmut; Frazão, Orlando

    2016-06-27

    Optical fiber micro-tips are promising devices for sensing applications in small volume and difficult to access locations, such as biological and biomedical settings. The tapered fiber tips are prepared by dynamic chemical etching, reducing the size from 125 μm to just a few μm. Focused ion beam milling is then used to create cavity structures on the tapered fiber tips. Two different Fabry-Perot micro-cavities have been prepared and characterized: a solid silica cavity created by milling two thin slots and a gap cavity. A third multi-cavity structure is fabricated by combining the concepts of solid silica cavity and gap cavity. This micro-tip structure is analyzed using a fast Fourier transform method to demultiplex the signals of each cavity. Simultaneous measurement of temperature and external refractive index is then demonstrated, presenting sensitivities of - 15.8 pm/K and -1316 nm/RIU, respectively.

  8. Quantum-Noise-Limited Sensitivity-Enhancement of a Passive Optical Cavity by a Fast-Light Medium

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Luckay, H. A.; Chang, Hongrok; Myneni, Krishna

    2016-01-01

    We demonstrate for a passive optical cavity containing an intracavity dispersive atomic medium, the increase in scale factor near the critical anomalous dispersion is not cancelled by mode broadening or attenuation, resulting in an overall increase in the predicted quantum-noiselimited sensitivity. Enhancements of over two orders of magnitude are measured in the scale factor, which translates to greater than an order-of-magnitude enhancement in the predicted quantumnoise- limited measurement precision, by temperature tuning a low-pressure vapor of noninteracting atoms in a low-finesse cavity close to the critical anomalous dispersion condition. The predicted enhancement in sensitivity is confirmed through Monte-Carlo numerical simulations.

  9. 1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser

    SciTech Connect

    Alharthi, S. S. Henning, I. D.; Adams, M. J.; Orchard, J.; Clarke, E.

    2015-10-12

    We report a room temperature optically pumped Quantum Dot-based Spin-Vertical-External-Cavity Surface-Emitting laser (QD Spin-VECSEL) operating at the telecom wavelength of 1.3 μm. The active medium was composed of 5 × 3 QD layers; each threefold group was positioned at an antinode of the standing wave of the optical field. Circularly polarized lasing in the QD-VECSEL under Continuous-Wave optical pumping has been realized with a threshold pump power of 11 mW. We further demonstrate at room temperature control of the QD-VECSEL output polarization ellipticity via the pump polarization.

  10. Effect of laser frequency noise on fiber-optic frequency reference distribution

    NASA Technical Reports Server (NTRS)

    Logan, R. T., Jr.; Lutes, G. F.; Maleki, L.

    1989-01-01

    The effect of the linewidth of a single longitude-mode laser on the frequency stability of a frequency reference transmitted over a single-mode optical fiber is analyzed. The interaction of the random laser frequency deviations with the dispersion of the optical fiber is considered to determine theoretically the effect on the Allan deviation (square root of the Allan variance) of the transmitted frequency reference. It is shown that the magnitude of this effect may determine the limit of the ultimate stability possible for frequency reference transmission on optical fiber, but is not a serious limitation to present system performance.

  11. A review on self-reference wavefront methods in optical testing

    NASA Astrophysics Data System (ADS)

    Cornejo-Rodríguez, Alejandro; Granados-Agustín, Fermín. S.

    2013-11-01

    For the testing of components and optical systems, there are diverse methods with different characteristics each one; in the presentation will be done a review of some of them, that can be classified as optical testing techniques, using a self-reference wavefront. Some examples are the lateral shearing interferometers (Bates, Ronchi, Murty), point diffraction interferometer (Linnik), Burch's scattering interferometer, and the knife edge interferometer. Some advantages of such self-reference methods is the fact that are not necessary optical reference surfaces; and usually the light interfering beams have common paths, that implies that the set up is not affected by environment vibrations and other effects.

  12. Fiber-laser-pumped, high-energy, mid-IR, picosecond optical parametric oscillator with a high-harmonic cavity.

    PubMed

    Xu, L; Chan, H-Y; Alam, S-U; Richardson, D J; Shepherd, D P

    2015-07-15

    We demonstrate the generation of high-energy, mid-IR, picosecond pulses in a high-harmonic-cavity optical parametric oscillator (OPO) that has a relatively compact cavity with a length that is a small fraction of that required to match the pump repetition rate. The OPO, based on an MgO-doped periodically poled LiNbO3 crystal, is pumped by a fiber master-oscillator-power-amplifier system employing direct amplification and delivering 11-μJ, 150-ps pulses at 1035 nm. For a 1.554-m-long OPO cavity, resonating near-infrared signal pulses with a repetition rate that is the 193rd harmonic of the 1-MHz pump are demonstrated. The mid-infrared idler output pulses, tunable from 2300 nm to 3500 nm, are generated at a 1-MHz repetition rate and have energies as high as 1.5 μJ.

  13. Two-dimensional pseudo-random optical phased array based on tandem optical injection locking of vertical cavity surface emitting lasers.

    PubMed

    Sayyah, Keyvan; Efimov, Oleg; Patterson, Pamela; Schaffner, James; White, Carson; Seurin, Jean-Francois; Xu, Guoyang; Miglo, Alexander

    2015-07-27

    We demonstrate, both theoretically and experimentally, a pseudo-random, two-dimensional optical phased array (OPA) concept based on tandem injection locking of 64-element vertical cavity surface emitting laser (VCSEL) arrays. A low cavity-Q VCSEL design resulted in an injection locking optical power of less than 1 μW per VCSEL, providing large OPA scaling potential. Tandem injection locking of two VCSEL arrays resulted in measured controllable optical phase change of 0-1.6π. A high quality beam formed with suppressed grating lobes due to the pseudo-random array design was demonstrated with performance close to simulated results. A preliminary 2.2° x 1.2° beam steering example using the tandem arrays was also demonstrated.

  14. Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics.

    PubMed

    Kempa, Thomas J; Cahoon, James F; Kim, Sun-Kyung; Day, Robert W; Bell, David C; Park, Hong-Gyu; Lieber, Charles M

    2012-01-31

    Silicon nanowires (NWs) could enable low-cost and efficient photovoltaics, though their performance has been limited by nonideal electrical characteristics and an inability to tune absorption properties. We overcome these limitations through controlled synthesis of a series of polymorphic core/multishell NWs with highly crystalline, hexagonally-faceted shells, and well-defined coaxial (p/n) and p/intrinsic/n (p/i/n) diode junctions. Designed 200-300 nm diameter p/i/n NW diodes exhibit ultralow leakage currents of approximately 1 fA, and open-circuit voltages and fill-factors up to 0.5 V and 73%, respectively, under one-sun illumination. Single-NW wavelength-dependent photocurrent measurements reveal size-tunable optical resonances, external quantum efficiencies greater than unity, and current densities double those for silicon films of comparable thickness. In addition, finite-difference-time-domain simulations for the measured NW structures agree quantitatively with the photocurrent measurements, and demonstrate that the optical resonances are due to Fabry-Perot and whispering-gallery cavity modes supported in the high-quality faceted nanostructures. Synthetically optimized NW devices achieve current densities of 17 mA/cm(2) and power-conversion efficiencies of 6%. Horizontal integration of multiple NWs demonstrates linear scaling of the absolute photocurrent with number of NWs, as well as retention of the high open-circuit voltages and short-circuit current densities measured for single NW devices. Notably, assembly of 2 NW elements into vertical stacks yields short-circuit current densities of 25 mA/cm(2) with a backside reflector, and simulations further show that such stacking represents an attractive approach for further enhancing performance with projected efficiencies of > 15% for 1.2 μm thick 5 NW stacks.

  15. Evaluation of thermal expansion coefficient of Fabry-Perot cavity using an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Oulehla, Jindřich; Šmíd, Radek; Buchta, Zdeněk; Čížek, Martin; Mikel, Břetislav; Jedlička, Petr; Lazar, Josef; Číp, Ondřej

    2011-05-01

    In construction of highly mechanically stable measuring devices like AFM microscopes or nano-comparators the use of low expansion materials is very necessary. We can find Zerodur ceramics or ULE glasses used as a frame or basement of these devices. The expansion coefficient of such low-expansion materials is lower than 0.01 x 10-6 m•K-1. For example in case of a frame or basement 20 cm long it leads to a dilatation approximately 4 nm per 1 K. For calculation of the total uncertainty of the mentioned measuring devices the knowledge of the thermal expansion coefficient of the frame or basement is necessary. In this work we present a method, where small distance changes are transformed into rf-frequency signal. The frequency of this signal is detected by a counter which measures the value of the frequency with respect to an ultra-stable time-base. This method uses a Fabry-Perot cavity as a distance measuring tool. The spacer of the optical resonator is made from the investigated low-expansion material. It is placed into a vacuum chamber where the inside temperature is controlled. A selected mode of the femtosecond frequency of the femtosecond comb which represent the distance changes of the optical resonator. The frequency is measured by the rf-counter which is synchronized by a time-base signal from an atomic clock. The first results show the resolution of the method in the 0.1 nm order. Therefore the method has a potential in characterisation of materials in the nanoworld.

  16. A selective optical sensor based on [9]mercuracarborand-3, a new type of ionophore with a chloride complexing cavity

    NASA Technical Reports Server (NTRS)

    Badr, I. H.; Johnson, R. D.; Diaz, M.; Hawthorne, M. F.; Bachas, L. G.; Daunert, S. (Principal Investigator)

    2000-01-01

    A highly selective optical sensor for chloride, based on the multidentate Lewis acid ionophore [9]mercuracarborand-3, is described herein. This sensor is constructed by embedding the mercuracarborand ionophore, a suitable pH-sensitive lipophilic dye, and lipophilic cationic sites in a plasticized polymeric membrane. The multiple complementary interactions offered by the preorganized complexing cavity of [9]mercuracarborand-3 is shown to control the anion selectivity pattern of the optical film. The film exhibits a significantly enhanced selectivity for chloride over a variety of lipophilic anions such as perchlorate, nitrate, salicylate, and thiocyanate. Furthermore, the optical selectivity coefficients obtained for chloride over other biologically relevant anions are shown to meet the selectivity requirements for the determination of chloride in physiological fluids, unlike previously reported chloride optical sensors. In addition, the optical film responds to chloride reversibly over a wide dynamic range (16 microM-136 mM) with fast response and recovery times.

  17. Spurious electro-optic coefficients inferred from modulation ellipsometry measurements in the presence of an air cavity

    NASA Astrophysics Data System (ADS)

    Quilty, J. W.

    2017-04-01

    This paper describes how thin air gaps in multilayer polymer thin film structures can lead to unexpectedly large signals in modulation ellipsometry experiments, which can then be misinterpreted as the electro-optic effect. The contributions from the electro-optic effect and polarisation on reflection from the air cavity are indistinguishable and the reflection contribution can be on the order of 100 times that of the electro-optic effect. Caution must thus be exercised in any attempt to measure electro-optic coefficients with modulation ellipsometry in the presence of air gaps, to avoid spuriously high results. Thin film multilayer structures containing air gaps may be suitable for some of the same applications as electro-optic reflectance modulators.

  18. High-resolution, large dynamic range fiber-optic thermometer with cascaded Fabry-Perot cavities.

    PubMed

    Liu, Guigen; Sheng, Qiwen; Hou, Weilin; Han, Ming

    2016-11-01

    The paradox between a large dynamic range and a high resolution commonly exists in nearly all kinds of sensors. Here, we propose a fiber-optic thermometer based on dual Fabry-Perot interferometers (FPIs) made from the same material (silicon), but with different cavity lengths, which enables unambiguous recognition of the dense fringes associated with the thick FPI over the free-spectral range determined by the thin FPI. Therefore, the sensor combines the large dynamic range of the thin FPI and the high resolution of the thick FPI. To verify this new concept, a sensor with one 200 μm thick silicon FPI cascaded by another 10 μm thick silicon FPI was fabricated. A temperature range of -50°C to 130°C and a resolution of 6.8×10-3°C were demonstrated using a simple average wavelength tracking demodulation. Compared to a sensor with only the thick silicon FPI, the dynamic range of the hybrid sensor was more than 10 times larger. Compared to a sensor with only the thin silicon FPI, the resolution of the hybrid sensor was more than 18 times higher.

  19. Composite cavity based fiber optic Fabry Perot strain sensors demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Yang, Jun; Sun, Weimin; Jin, Wencai; Yuan, Libo; Peng, G. D.

    2008-08-01

    A composite cavity based fiber optic Fabry-Perot strain sensor system, interrogated by a white light source and demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror, is proposed and demonstrated. Comparing with the traditional extrinsic fiber optic Fabry-Perot strain sensor, the potential multiplexing capability and the dynamic measurement range are improved simultaneously. At the same time, the measurement stability of the electrical scanning mirror system is improved by the self-referenced signal of the sensor structure.

  20. Electric dipole coupling in optical cavities and its implications for energy transfer, up-conversion, and pooling

    NASA Astrophysics Data System (ADS)

    LaCount, Michael D.; Lusk, Mark T.

    2016-06-01

    Resonant energy transfer, energy transfer up-conversion, and energy pooling are considered within optical cavities to elucidate the relationship between exciton dynamics and donor-acceptor separation distance. This is accomplished by using perturbation theory to derive analytic expressions for the electric dipole coupling tensors of perfect planar and rectangular channel reflectors—directly related to a number of important energy-transfer processes. In the near field, the separation dependence along the cavity axis is not influenced by the cavity and is essentially the same as for three-dimensional free space. This is in sharp contrast with the reduced sensitivity to separation found in idealized low-dimensional settings. The cavity dynamics only correspond to their reduced-dimensional counterparts in the far field where such excitonic processes are not typically of interest. There is an intermediate regime, though, where sufficiently small cavities cause a substantial decrease in separation sensitivity that results in one component of the dipole-dipole coupling tensor being much larger than those of free space.

  1. Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Foltynowicz, A.; Masłowski, P.; Fleisher, A. J.; Bjork, B. J.; Ye, J.

    2013-02-01

    We demonstrate the first cavity-enhanced optical frequency comb spectroscopy in the mid-infrared wavelength region and report the sensitive real-time trace detection of hydrogen peroxide in the presence of a large amount of water. The experimental apparatus is based on a mid-infrared optical parametric oscillator synchronously pumped by a high-power Yb:fiber laser, a high-finesse broadband cavity, and a fast-scanning Fourier transform spectrometer with autobalancing detection. The comb spectrum with a bandwidth of 200 nm centered around 3.76 μm is simultaneously coupled to the cavity and both degrees of freedom of the comb, i.e. the repetition rate and carrier envelope offset frequency, are locked to the cavity to ensure stable transmission. The autobalancing detection scheme reduces the intensity noise by a factor of 300, and a sensitivity of 5.4×10-9 cm-1 Hz-1/2 with a resolution of 800 MHz is achieved (corresponding to 6.9×10-11 cm-1 Hz-1/2 per spectral element for 6000 resolved elements). This yields a noise equivalent detection limit for hydrogen peroxide of 8 parts-per-billion (ppb); in the presence of 2.8 % of water the detection limit is 130 ppb. Spectra of acetylene, methane, and nitrous oxide at atmospheric pressure are also presented, and a line-shape model is developed to simulate the experimental data.

  2. Space-time reference with an optical link

    NASA Astrophysics Data System (ADS)

    Berceau, P.; Taylor, M.; Kahn, J.; Hollberg, L.

    2016-07-01

    We describe a concept for realizing a high performance space-time reference using a stable atomic clock in a precisely defined orbit and synchronizing the orbiting clock to high-accuracy atomic clocks on the ground. The synchronization would be accomplished using a two-way lasercom link between ground and space. The basic approach is to take advantage of the highest-performance cold-atom atomic clocks at national standards laboratories on the ground and to transfer that performance to an orbiting clock that has good stability and that serves as a ‘frequency-flywheel’ over time-scales of a few hours. The two-way lasercom link would also provide precise range information and thus precise orbit determination. With a well-defined orbit and a synchronized clock, the satellite could serve as a high-accuracy space-time reference, providing precise time worldwide, a valuable reference frame for geodesy, and independent high-accuracy measurements of GNSS clocks. Under reasonable assumptions, a practical system would be able to deliver picosecond timing worldwide and millimeter orbit determination, and could serve as an enabling subsystem for other proposed space-gravity missions, which are briefly reviewed.

  3. Simultaneous measurement of refractive index and temperature with micro silica sphere cavity hybrid Fabry Perot optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Ranjbar Naeini, O. R.; Latifi, H.; Zibaii, M. I.

    2015-09-01

    In this article, a novel Micro Silica Sphere Cavity Hybrid Fabry Perot optical fiber sensor is reported where refractive index (RI) and temperature can be simultaneously measured. The sensor is based on Micro Silica Sphere that was fabricated using a capillary tube. The micro silica sphere and optical fiber form a Hybrid Fabry Perot cavity. The temperature cross sensitivity of this sensor is small enough to be used for accurate RI measurement. The temperature sensitivity and RI sensitivity are -0.0028 dBm/ºC, -0.0044 dBm/ºC , -24.09 dBm/RIU and -20.6 dBm/RIU respectively, using two selected resonances.

  4. A novel approach to a PPM-modulated frequency-doubled electro-optic cavity-dumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.

    1989-01-01

    A technique which can provide frequency doubling, with high efficiency, while cavity dumping a laser for pulse position M-ary modulation while being used for an optical communication link is discussed. This approach uses a secondary cavity that provides feedback of the undoubled fundamental light, which is normally lost, into the primary cavity to be recirculated and frequency doubled. Specific operations of the electrooptic modulator and frequency-doubling crystal are described along with the overall modulation scheme and experimental setup.

  5. Coexisting oscillation modes and optical chaos in a hybrid ring cavity containing an induced absorber (CdS)

    SciTech Connect

    Wegener, M.; Klingshirn, C.

    1987-05-15

    We investigate the self-oscillations of an induced absorber (CdS, photothermal effects) in a hybrid ring cavity. If the induced absorber is intrinsically bistable, we show that for a given set of system parameters different oscillation modes may exist depending on the initial conditions. In contrast to the behavior of an intrinsically bistable absorber, we find a bifurcation route to optical chaos if the induced absorber is not intrinsically bistable.

  6. Spectral properties and phase diagram of correlated lattice bosons in an optical cavity within bosonic dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Panas, Jaromir; Kauch, Anna; Byczuk, Krzysztof

    2017-03-01

    We use the Bose-Hubbard model with an effective infinite-range interaction to describe the correlated lattice bosons in an optical cavity. We study both static and spectral properties of such system within the bosonic dynamical mean-field theory, which is the state-of-the-art method for strongly correlated bosonic systems. Both similarities and differences are found and discussed between our results and those obtained within different theoretical methods and experiment.

  7. Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 μm interband cascade laser

    SciTech Connect

    Manfred, K. M.; Ritchie, G. A. D.; Lang, N.; Röpcke, J.; Helden, J. H. van

    2015-06-01

    The development of interband cascade lasers (ICLs) has made the strong C-H transitions in the 3 μm spectral region increasingly accessible. We present the demonstration of a single mode distributed feedback ICL coupled to a V-shaped optical cavity in an optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS) experiment. We achieved a minimum detectable absorption coefficient, α{sub min}, of (7.1±0.2)×10{sup −8} cm{sup −1} for a spectrum of CH{sub 4} at 3.24 μm with a two second acquisition time (100 scans averaged). This corresponds to a detection limit of 3 ppb CH{sub 4} at atmospheric pressure, which is comparable to previously reported OF-CEAS instruments with diode lasers or quantum cascade lasers. The ability to frequency lock an ICL source in the important 3 μm region to an optical cavity holds great promise for future spectroscopic applications.

  8. Optimizing the external optical cavity parameters for performance improvement of a fiber grating Fabry-Perot laser

    NASA Astrophysics Data System (ADS)

    Hisham, Hisham Kadhum; Abas, Ahmad Fauzi; Amouzad Mahdiraji, Ghafour; Mahdi, Mohd Adzir; Mahamd Adikan, Faisal Rafiq

    2015-04-01

    The effects of the external optical cavity parameters (external optical cavity length ( L ext), amplitude coupling ( C o) and anti-reflection coating (ARC) reflectivity coefficients) on the noise and modulation spectra of a fiber grating Fabry-Perot laser are numerically analyzed for designing a laser that operates in strong feedback regime (Regime V). Fiber Bragg grating (FBG) is used as a wavelength selective element to control the properties of the laser output by controlling the external optical feedback (OFB) level. The study is performed by modifying a set of rate equations that are solved by considering the effects of external OFB and ambient temperature ( T) variations. We proposed a model to calculate the temperature dependence (TD) of laser characteristics according to the TD of laser parameters. An accurate analytical expression for the TD of threshold carrier density ( N th,fe) has been derived. The TD of N th,fe was calculated according to the TD of laser cavity parameters instead of using well-known empirical Pankove relationship via the use of characteristics temperature ( T o) and current ( I o). Results show that the optimum external fiber length ( L ext) is 3.1 cm. Also, it is shown that ARC with reflectivity value of 1 × 10-2 is sufficient for the laser to operate at low noise, good modulation response, and low fabrication complexity.

  9. Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics.

    PubMed

    Lubeigt, Walter; Griffith, Mike; Laycock, Leslie; Burns, David

    2009-07-06

    Several adaptive-optics techniques, based on the active modification of the optical properties of the laser cavity, were used to significantly reduce the time-to-full-brightness of solid-state lasers. Resonator re-configuration was achieved using a mechanical translation stage and both multi- and single-element deformable bimorph mirrors. Using these techniques the effects of thermally induced distortion in Nd:YLF and Nd:YAG lasers can be minimized and the warm-up time reduced by a factor of 3-6.

  10. Multimode nanobeam cavities for nonlinear optics: high quality resonances separated by an octave.

    PubMed

    Buckley, Sonia; Radulaski, Marina; Zhang, Jingyuan Linda; Petykiewicz, Jan; Biermann, Klaus; Vučković, Jelena

    2014-11-03

    We demonstrate the design, fabrication and characterization of nanobeam cavities with multiple higher order modes. Designs with two high Q modes with frequency separations of an octave are introduced, and we fabricate such cavities exhibiting resonances with wavelength separations of up to 740 nm.

  11. Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 μm: new sensitivity limits for absorption measurements in passive optical cavities

    NASA Astrophysics Data System (ADS)

    Engel, Gregory S.; Drisdell, Walter S.; Keutsch, Frank N.; Moyer, Elisabeth J.; Anderson, James G.

    2006-12-01

    A robust absorption spectrometer using the off-axis integrated cavity output spectroscopy (ICOS) technique in a passive cavity is presented. The observed sensitivity, conceptually the detection threshold for the absorption cross section (cm2) multiplied by the concentration (cm-3) and normalized by the averaging time, is measured to be 1.9×10-12 (1/cm√Hz). This high sensitivity arises from using the optical cavity to amplify the observed path length in the spectrometer while avoiding cavity resonances by careful design of the spot pattern within the cavity. The instrument is ideally suited for routine monitoring of trace gases in the near-infrared region. A spectrum showing ambient carbon monoxide at 1.57 μm is presented.

  12. Properties of optical breakdown in BK7 glass induced by an extended-cavity femtosecond laser oscillator.

    PubMed

    Do, Binh T; Phillips, Mark C; Miller, Paul A; Kimmel, Mark W; Britsch, Justin; Cho, Seong-Ho

    2009-02-16

    Using an extended-cavity femtosecond oscillator, we investigated optical breakdown in BK7 glass caused by the accumulated action of many laser pulses. By using a pump-probe experiment and collecting the transmitted pump along with the reflected pump and the broadband light generated by the optical breakdown, we measured the build-up time to optical breakdown as a function of the pulse energy, and we also observed the instability of the plasma due to the effect of defocusing and shielding created by the electron gas. The spectrum of the broadband light emitted by the optical breakdown and the origin of the material modification in BK7 glass was studied. We developed a simple model of electromagnetic wave propagation in plasma that is consistent with the observed behavior of the reflection, absorption, and transmission of the laser light.

  13. Adiabatic transfer of light in a double cavity and the optical Landau-Zener problem

    SciTech Connect

    Miladinovic, N.; Hasan, F.; Linnington, I. E.; O'Dell, D. H. J.; Chisholm, N.; Hinds, E. A.

    2011-10-15

    We analyze the evolution of an electromagnetic field inside a double cavity when the difference in length between the two cavities is changed, e.g., by translating the common mirror. We find that this allows photons to be moved deterministically from one cavity to the other. We are able to obtain the conditions for adiabatic transfer by first mapping the Maxwell wave equation for the electric field onto a Schroedinger-like wave equation and then using the Landau-Zener result for the transition probability at an avoided crossing. Our analysis reveals that this mapping only rigorously holds when the two cavities are weakly coupled (i.e., in the regime of a highly reflective common mirror) and that, generally speaking, care is required when attempting a Hamiltonian description of cavity electrodynamics with time-dependent boundary conditions.

  14. Locking the frequency of lasers to an optical cavity at the 1.6×10-17 relative instability level

    NASA Astrophysics Data System (ADS)

    Chen, Q.-F.; Nevsky, A.; Schiller, S.

    2012-06-01

    We stabilized the frequencies of two independent Nd:YAG lasers to two adjacent longitudinal modes of a high-finesse Fabry-Pérot resonator and obtained a beat frequency instability of 6.3 mHz at an integration time of 40 s. Referred to a single laser, this is 1.6×10-17 relative to the laser frequency, and 1.3×10-6 relative to the full width at half maximum of the cavity resonance. The amplitude spectrum of the beat signal had a FWHM of 7.8 mHz. This stable frequency locking is of importance for next-generation optical clock interrogation lasers and fundamental physics tests.

  15. The Measurement of Aerosol Optical Properties using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, Rene; Owano, Thomas; Baer, Douglas S.; Paldus, Barbara A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in situ measurements of extinction coefficient and single-scattering albedo. This paper describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5 M/m). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  16. The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  17. Optical properties of organic-silicon photonic crystal nanoslot cavity light source

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Jay; Lin, Chun-Chi; Wu, Yu-Shu; Wang, Likarn; Na, Neil

    2017-03-01

    We theoretically study a dielectric photonic crystal nanoslot cavity immersed in an organic fluid containing near-infrared dyes by means of a full rate equation model including the complete cavity QED effects. Based on the modeling results, we numerically design an organic-silicon cavity light source in which its mode volume, quality factor, and far-field emission pattern are optimized for energy-efficient, high-speed applications. Dye quantum efficiency improved by two orders of magnitude and 3dB modulation bandwidth of a few hundred GHz can be obtained.

  18. UV laser with an acousto-optic intra-cavity control for GaN-sapphire cut

    NASA Astrophysics Data System (ADS)

    Gradoboev, Yury G.; Kazaryan, Mishik A.; Mokrushin, Yury M.; Shakin, Oleg V.

    2012-09-01

    A copper vapor laser is proposed as the basic component of the installation for processing of sapphire substrates with a GaN-coating. Laser radiation is transformed to UV range by optical frequency doubling. Powerful UV lasers are prospective tools for crystal cutting, photolithography and recording of the fiber Bragg gratings. The proposed approach is more promising in comparison with the use of excimer radiation because of instabilities of excimer laser generation and low coherence of its radiation, which makes difficult precise focusing and using interference pattern of UV radiation for exposing materials. UV laser based on second harmonic radiation of copper vapors laser has been designed. The UV laser system of high operation stability has been developed with output power 1 W at wavelengths 255.5 nm, 271.1 nm, 289.1 nm and coherence length radiation about 4 cm. The original intra-cavity acousto-optic control of output radiation is developed. It is allows adjusting frequency and on-off time ratio of output laser pulses with high accuracy. The stable heat regime was achieved for an active element of copper vapor laser̤ The laser system allows to select an optimum mode of ultra-violet radiation exposition for production of different optical elements. Intra-cavity acousto-optic cell was used for controlling of single pulse amplitude and number of pulses without any power supply tuning providing the stable operation of the laser system.

  19. Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Long; Wu, Rebing; Zhang, Jing; Özdemir, Şahin Kaya; Yang, Lan; Nori, Franco; Liu, Yu-xi

    2017-01-01

    We theoretically study a strongly driven optomechanical system which consists of a passive optical cavity and an active mechanical resonator. When the optomechanical coupling strength is varied, phase transitions, which are similar to those observed in PT -symmetric systems, are observed. We show that the optical transmission can be controlled by changing the gain of the mechanical resonator and loss of the optical cavity mode. Especially, we find that (i) for balanced gain and loss, optical amplification and absorption can be tuned by changing the optomechanical coupling strength through a control field; (ii) for unbalanced gain and loss, even with a tiny mechanical gain, both optomechanically induced transparency and anomalous dispersion can be observed around a critical point, which exhibits an ultralong group delay. The time delay τ can be optimized by regulating the optomechanical coupling strength through the control field, and it can be improved up to several orders of magnitude (τ ˜2 ms ) compared to that of conventional optomechanical systems (τ ˜1 μ s ). The presence of mechanical gain makes the group delay more robust to environmental perturbations. Our proposal provides a powerful platform to control light transport using a PT -symmetric-like optomechanical system.

  20. Cavity light bullets: three-dimensional localized structures in a nonlinear optical resonator.

    PubMed

    Brambilla, Massimo; Maggipinto, Tommaso; Patera, Giuseppe; Columbo, Lorenzo

    2004-11-12

    We consider the paraxial model for a nonlinear resonator with a saturable absorber beyond the mean-field limit. For accessible parametric domains we observe total radiation confinement and the formation of 3D localized bright structures. Different from freely propagating light bullets, here the self-organization proceeds from the resonator feedback, combined with diffraction and nonlinearity. Such "cavity" light bullets can be independently excited and erased by appropriate pulses, and once created, they endlessly travel the cavity round-trip.

  1. Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects for Optical Amplification

    DTIC Science & Technology

    2016-01-26

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0003 TR-2016-0003 EXPERIMENTAL STUDY OF ELECTRONIC QUANTUM INTERFERENCE, PHOTONIC CRYSTAL CAVITY, PHOTONIC BAND...2014 – 11 Jan 2016 4. TITLE AND SUBTITLE Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects...tailoring of dispersion and the photonic band gap. The band gap frequency can be matched to tailor the emission from active medium such as quantum

  2. Efficient continuous-wave eye-safe region signal output from intra-cavity singly resonant optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Li, Bin; Ding, Xin; Sheng, Quan; Yin, Su-Jia; Shi, Chun-Peng; Li, Xue; Yu, Xuan-Yi; Wen, Wu-Qi; Yao, Jian-Quan

    2012-01-01

    We report an efficient continuous-wave (CW) tunable intra-cavity singly resonant optical parametric oscillator based on the multi-period periodically poled lithium niobate and using a laser diode (LD) end-pumped CW 1064 nm Nd:YVO4 laser as the pump source. A highly efficiency CW operation is realized through a careful cavity design for mode matching and thermal stability. The signal tuning range is 1401-1500 nm obtained by varying the domain period. The maximum output power of 2.2 W at 1500 nm is obtained with a 17.1 W 808 nm LD power and the corresponding conversion efficiency is 12.9%.

  3. Controllable vacuum-induced diffraction of matter-wave superradiance using an all-optical dispersive cavity

    PubMed Central

    Su, Shih-Wei; Lu, Zhen-Kai; Gou, Shih-Chuan; Liao, Wen-Te

    2016-01-01

    Cavity quantum electrodynamics (CQED) has played a central role in demonstrating the fundamental principles of the quantum world, and in particular those of atom-light interactions. Developing fast, dynamical and non-mechanical control over a CQED system is particularly desirable for controlling atomic dynamics and building future quantum networks at high speed. However conventional mirrors do not allow for such flexible and fast controls over their coupling to intracavity atoms mediated by photons. Here we theoretically investigate a novel all-optical CQED system composed of a binary Bose-Einstein condensate (BEC) sandwiched by two atomic ensembles. The highly tunable atomic dispersion of the CQED system enables the medium to act as a versatile, all-optically controlled atomic mirror that can be employed to manipulate the vacuum-induced diffraction of matter-wave superradiance. Our study illustrates a innovative all-optical element of atomtroics and sheds new light on controlling light-matter interactions. PMID:27748413

  4. Controllable vacuum-induced diffraction of matter-wave superradiance using an all-optical dispersive cavity

    NASA Astrophysics Data System (ADS)

    Su, Shih-Wei; Lu, Zhen-Kai; Gou, Shih-Chuan; Liao, Wen-Te

    2016-10-01

    Cavity quantum electrodynamics (CQED) has played a central role in demonstrating the fundamental principles of the quantum world, and in particular those of atom-light interactions. Developing fast, dynamical and non-mechanical control over a CQED system is particularly desirable for controlling atomic dynamics and building future quantum networks at high speed. However conventional mirrors do not allow for such flexible and fast controls over their coupling to intracavity atoms mediated by photons. Here we theoretically investigate a novel all-optical CQED system composed of a binary Bose-Einstein condensate (BEC) sandwiched by two atomic ensembles. The highly tunable atomic dispersion of the CQED system enables the medium to act as a versatile, all-optically controlled atomic mirror that can be employed to manipulate the vacuum-induced diffraction of matter-wave superradiance. Our study illustrates a innovative all-optical element of atomtroics and sheds new light on controlling light-matter interactions.

  5. Cavity enhanced terahertz modulation

    SciTech Connect

    Born, N.; Scheller, M.; Moloney, J. V.; Koch, M.

    2014-03-10

    We present a versatile concept for all optical terahertz (THz) amplitude modulators based on a Fabry-Pérot semiconductor cavity design. Employing the high reflectivity of two parallel meta-surfaces allows for trapping selected THz photons within the cavity and thus only a weak optical modulation of the semiconductor absorbance is required to significantly damp the field within the cavity. The optical switching yields to modulation depths of more than 90% with insertion efficiencies of 80%.

  6. The Large Quasar Reference Frame (LQRF). An Optical Representation of the ICRS

    DTIC Science & Technology

    2009-10-01

    A&A 505, 385–404 (2009) DOI: 10.1051/0004-6361/200912041 c© ESO 2009 Astronomy & Astrophysics The large quasar reference frame (LQRF) An optical...RJ, Brasil Received 12 March 2009 / Accepted 20 May 2009 ABSTRACT Context. The large number and all-sky distribution of quasars from different...surveys, along with their presence in large , deep astro- metric catalogs, enables us to build of an optical materialization of the International Celestial

  7. All-optical control of three-photon spectra and time asymmetry in a strongly coupled cavity polariton system

    PubMed Central

    Zhang, X.; Li, R.; Wu, Haibin

    2016-01-01

    Manipulating the nature of photons emission is one of the basic tasks in quantum optics and photonics. The ever growing list of quantum applications requires a robust means of controlling the strongly coupled coherent interaction of photons and matter. Here, we investigate three-photon transmission spectra in a strongly coupled cavity polariton system and show that the correlation functions and transmitted photon stream can be optically manipulated. The dynamics of single photons and photon pairs at the polariton resonances can be changed by light from a single external coupling laser. At the “dark-state polariton,” three-photon transmission is a perfectly coherent field in contrast to the strong photon-bunching behavior of a typical cavity quantum electrodynamics system. When the detuned probe light is tuned to the “bright polariton,” the light exhibits a dramatic photon antibunching effect. Remarkably, the Fano-resonant asymmetric three-photon transmission caused by the interference between the dressed states leads to a new quantum feature that is strongly nonclassical (the third-order correlation function g(3)(0, 0) ≪ 1) and has a wide and tunable bandwidth. The dependence of the intrinsic third-order correlation and time symmetry of the photon stream on the controlled parameters is also examined. Strongly nonclassical, all-optically controllable multi-photon dynamics are very important for future quantum devices and metrology. PMID:26936334

  8. Optical-Fiber Thermal-Wave-Cavity Technique to Study Thermal Properties of Silver/Clay Nanofliuds

    NASA Astrophysics Data System (ADS)

    Noroozi, M.; Radiman, S.; Zakaria, A.; Shameli, K.; Deraman, M.; Soltaninejad, S.; Abedini, A.

    2014-10-01

    Thermal properties enhancement of nanofluids have varied strongly with synthesis technique, particle size and type, concentration and agglomeration with time. This study explores the possibility of changing the thermal wave signal of Ag/clay nanofluids into a thermal diffusivity measurement at well dispersion or aggregation of nanoparticles in the base fluid. Optical-Fiber Thermal-Wave-Cavity (OF-TWC) technique was achieved by using a small amount of nanofluid (only 0.2 mL) between fiber optic tip and the Pyroelectric detector and the cavity-length scan was performed. We established the accuracy and precision of this technique by comparing the thermal diffusivity of distilled water to values reported in the literature. Assuming a linear Pyroelectric signal response, the results show that adding clay reduced the thermal diffusivity of water, while increasing the Ag concentration from 1 to 5 wt.% increased the thermal diffusivity of the Ag nanofluid from 1.524×10-3 to 1.789×10-3 cm2/s. However, in particular, nanoparticles show the tendency to form aggregates over time that correlated with the performance change of thermal properties of nanofluid. Our results confirm the high sensitivity of OF-TWC technique raises the potential to be applied to measuring the optical and thermal properties of nanofluids. Furthermore, this technique allows the extraction of information not obtained using other traditional techniques.

  9. Adaptive optimization of reference intensity for optical coherence imaging using galvanometric mirror tilting method

    NASA Astrophysics Data System (ADS)

    Kim, Ji-hyun; Han, Jae-Ho; Jeong, Jichai

    2015-09-01

    Integration time and reference intensity are important factors for achieving high signal-to-noise ratio (SNR) and sensitivity in optical coherence tomography (OCT). In this context, we present an adaptive optimization method of reference intensity for OCT setup. The reference intensity is automatically controlled by tilting a beam position using a Galvanometric scanning mirror system. Before sample scanning, the OCT system acquires two dimensional intensity map with normalized intensity and variables in color spaces using false-color mapping. Then, the system increases or decreases reference intensity following the map data for optimization with a given algorithm. In our experiments, the proposed method successfully corrected the reference intensity with maintaining spectral shape, enabled to change integration time without manual calibration of the reference intensity, and prevented image degradation due to over-saturation and insufficient reference intensity. Also, SNR and sensitivity could be improved by increasing integration time with automatic adjustment of the reference intensity. We believe that our findings can significantly aid in the optimization of SNR and sensitivity for optical coherence tomography systems.

  10. Quantum Computation by Optically Coupled Steady Atoms/Quantum-Dots Inside a Quantum Cavity

    NASA Technical Reports Server (NTRS)

    Pradhan, P.; Wang, K. L.; Roychowdhury, V. P.; Anantram, M. P.; Mor, T.; Saini, Subhash (Technical Monitor)

    1999-01-01

    We present a model for quantum computation using $n$ steady 3-level atoms kept inside a quantum cavity, or using $n$ quantum-dots (QDs) kept inside a quantum cavity. In this model one external laser is pointed towards all the atoms/QDs, and $n$ pairs of electrodes are addressing the atoms/QDs, so that each atom is addressed by one pair. The energy levels of each atom/QD are controlled by an external Stark field given to the atom/QD by its external pair of electrodes. Transition between two energy levels of an individual atom/ QD are controlled by the voltage on its electrodes, and by the external laser. Interactions between two atoms/ QDs are performed with the additional help of the cavity mode (using on-resonance condition). Laser frequency, cavity frequency, and energy levels are far off-resonance most of the time, and they are brought to the resonance (using the Stark effect) only at the time of operations. Steps for a controlled-NOT gate between any two atoms/QDs have been described for this model. Our model demands some challenging technological efforts, such as manufacturing single-electron QDs inside a cavity. However, it promises big advantages over other existing models which are currently implemented, and might enable a much easier scale-up, to compute with many more qubits.

  11. Noninvasive Vibrational Mode Spectroscopy of Ion Coulomb Crystals through Resonant Collective Coupling to an Optical Cavity Field

    SciTech Connect

    Dantan, A.; Marler, J. P.; Albert, M.; Guenot, D.; Drewsen, M.

    2010-09-03

    We report on a novel noninvasive method to determine the normal mode frequencies of ion Coulomb crystals in traps based on the resonance enhanced collective coupling between the electronic states of the ions and an optical cavity field at the single photon level. Excitations of the normal modes are observed through a Doppler broadening of the resonance. An excellent agreement with the predictions of a zero-temperature uniformly charged liquid plasma model is found. The technique opens up for investigations of the heating and damping of cold plasma modes, as well as the coupling between them.

  12. All-optical diode actions through a coupled system of Tamm plasmon-polariton and nonlinear cavity mode

    NASA Astrophysics Data System (ADS)

    Fang, Yun-Tuan; Zheng, Jing; Yang, Li-Xia; Zhou, Xiang

    2013-08-01

    Light propagation in a coupled system of Tamm plasmon-polariton and nonlinear cavity mode is theoretically investigated through the nonlinear transfer matrix method. It is found that the asymmetric layered structure exhibits both pronounced unidirectionality and high transmission. This leads to all-optical diode actions. Compared with other similar studies, the designed structure is much simple only with seven periods. The unique feature is that the direction of on-off can be reversed depending on the working frequencies. The effect of metal loss is also considered in this study.

  13. Electro-optic harmonic conversion to switch a laser beam out of a cavity

    DOEpatents

    Haas, R.A.; Henesian, M.A.

    1984-10-19

    The present invention relates to switching laser beams out of laser cavities, and more particularly, it relates to the use of generating harmonics of the laser beam to accomplish the switching. When laser light is generatd in a laser cavity the problem arises of how to switch the laser light out of the cavity in order to make use of the resulting laser beam in a well known multitude of ways. These uses include range finding, communication, remote sensing, medical surgery, laser fusion applications and many more. The switch-out problem becomes more difficult as the size of the laser aperture grows such as in laser fusion applications. The final amplifier stages of the Nova and Novette lasers at Lawrence Livermore National Laboratory are 46 centimeters with the laser beam expanded to 74 centimeters thereafter. Larger aperture lasers are planned.

  14. Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities

    NASA Astrophysics Data System (ADS)

    Avino, S.; Giorgini, A.; Salza, M.; Fabian, M.; Gagliardi, G.; De Natale, P.

    2013-05-01

    We demonstrate evanescent-wave fiber cavity-enhanced spectroscopy in the liquid phase using a near-infrared frequency comb. Exploiting strong fiber-dispersion effects, we show that liquid absorption spectra can be recorded without any external dispersive element. The fiber cavity is used both as sensor and spectrometer. The resonance modes are frequency locked to the comb teeth while the cavity photon lifetime is measured over 155 nm, from 1515 nm to 1670 nm, where absorption bands of liquid polyamines are detected as a proof of concept. Our fiber spectrometer lends itself to in situ, real-time chemical analysis in environmental monitoring, biomedical assays, and micro-opto-fluidic systems.

  15. An Optical Offgas Sensor Network Incorporating a HG Cavity Ringdown Spectrometer and IR Diode Lasers

    SciTech Connect

    George P. Miller

    2007-12-30

    A multi-element cavity ringdown system was evaluated with the objective of developing an intelligent sensor network to be incorporated into the control systems for advanced coal combustion facilities. Using a combination of a YAG-pumped dye laser and a tunable NIR/IR laser a dual cavity was constructed and a labview program was developed to provide multi-channel, real-time data to permit the real-time monitoring of typical exhaust emission gases, (for example: CO{sub 2}, SO{sub 2}, and mercury) of concern to the next generation of coal-powered facilities.

  16. Fragmented Superradiance of a Bose-Einstein Condensate in an Optical Cavity

    NASA Astrophysics Data System (ADS)

    Lode, Axel U. J.; Bruder, Christoph

    2017-01-01

    The Dicke model and the superradiance of two-level systems in a radiation field have many applications. Recently, a Dicke quantum phase transition has been realized with a Bose-Einstein condensate in a cavity. We numerically solve the many-body Schrödinger equation and study correlations in the ground state of interacting bosons in a cavity as a function of the strength of a driving laser. Beyond a critical strength, the bosons occupy multiple modes macroscopically while remaining superradiant. This fragmented superradiance can be detected by analyzing the variance of single-shot measurements.

  17. High-efficiency acousto-optic coupling in phoxonic resonator based on silicon fishbone nanobeam cavity.

    PubMed

    Chiu, Chien-Chang; Chen, Wei-Min; Sung, Kuen-Wei; Hsiao, Fu-Li

    2017-03-20

    We investigate the acousto-optic coupling rates between different acoustic resonance modes and a specified optical resonance mode in a one-dimensional phoxonic crystal fishbone nanobeam formed by periodically arranging semi-cylinders of air on both sides of a suspended silicon waveguide. The gradually tapered unit cells form optical and acoustic resonators. In acousto-optic coupling rate calculation, the acoustic fields and optical fields are obtained by steady state monochromatic analysis and eigen-mode computation, respectively. Results showed that the acoustic polarizations and symmetries of the acoustic resonance modes are dominant factors in the acousto-optic coupling efficiency, and appropriate selection of these parameters can prevent cancellation of acousto-optic interactions, thereby enhancing acousto-optic coupling rates. This study provides important insights that can be applied to acousto-optic device designs.

  18. High-efficiency intra-cavity sum-frequency-generation in a self-seeded image-rotating nanosecond optical parametric oscillator.

    SciTech Connect

    Armstrong, Darrell Jewell; Smith, Arlee Virgil

    2005-02-01

    We have built and tested a highly efficient source of pulsed 320 nm light based on intra-cavity sum-frequency-generation in a self-injection-seeded image-rotating nanosecond optical parametric oscillator. The four-mirror nonplanar ring optical cavity uses the RISTRA geometry, denoting rotated-image singly-resonant twisted rectangle. The cavity contains a type-II xz-cut KTP crystal pumped by the 532 nm second harmonic of Nd:YAG to generate an 803{approx}nm signal and 1576 nm idler, and a type-II BBO crystal to sum-frequency mix the 532 nm pump and cavity-resonant 803 nm signal to generate 320 nm light. The cavity is configured so pump light passes first through the BBO crystal and then through the KTP crystal with the 320 nm light exiting through the output coupler following the BBO sum-frequency crystal. The cavity output coupler is designed to be a high reflector at 532 nm, have high transmission at 320 nm, and reflect approximately 85% at 803 nm. With this configuration we've obtained 1064 nm to 320 nm optical-to-optical conversion efficiency of 24% and generated single-frequency {lambda} = 320 nm pulses with energies up to 140 mJ.

  19. High efficiency intra-cavity sum-frequency-generation in a self-seeded image-rotating nanosecond optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Armstrong, Darrell J.; Smith, Arlee V.

    2005-03-01

    We have built and tested a highly efficient source of pulsed 320 nm light based on intra-cavity sum-frequency-generation in a self-injection-seeded image-rotating nanosecond optical parametric oscillator. The four-mirror nonplanar ring optical cavity uses the RISTRA geometry, denoting rotated-image singly-resonant twisted rectangle. The cavity contains a type-II xz-cut KTP crystal pumped by the 532 nm second harmonic of Nd:YAG to generate an 803~nm signal and 1576 nm idler, and a type-II BBO crystal to sum-frequency mix the 532 nm pump and cavity-resonant 803 nm signal to generate 320 nm light. The cavity is configured so pump light passes first through the BBO crystal and then through the KTP crystal with the 320 nm light exiting through the output coupler following the BBO sum-frequency crystal. The cavity output coupler is designed to be a high reflector at 532 nm, have high transmission at 320 nm, and reflect approximately 85% at 803 nm. With this configuration we've obtained 1064 nm to 320 nm optical-to-optical conversion efficiency of 24% and generated single-frequency λ = 320 nm pulses with energies up to 140 mJ.

  20. High flux circularly polarized gamma beam factory: coupling a Fabry-Perot optical cavity with an electron storage ring

    NASA Astrophysics Data System (ADS)

    Chaikovska, I.; Cassou, K.; Chiche, R.; Cizeron, R.; Cornebise, P.; Delerue, N.; Jehanno, D.; Labaye, F.; Marie, R.; Martens, A.; Peinaud, Y.; Soskov, V.; Variola, A.; Zomer, F.; Cormier, E.; Lhermite, J.; Dolique, V.; Flaminio, R.; Michel, C.; Pinard, L.; Sassolas, B.; Akagi, T.; Araki, S.; Honda, Y.; Omori, T.; Terunuma, N.; Urakawa, J.; Miyoshi, S.; Takahashi, T.; Yoshitama, H.

    2016-11-01

    We report and discuss high-flux generation of circularly polarized γ-rays by means of Compton scattering. The γ-ray beam results from the collision of an external-cavity-enhanced infrared laser beam and a low emittance relativistic electron beam. By operating a non-planar bow-tie high-finesse optical Fabry-Perot cavity coupled to a storage ring, we have recorded a flux of up to (3.5 ± 0.3) × 108 photons per second with a mean measured energy of 24 MeV. The γ-ray flux has been sustained for several hours. In particular, we were able to measure a record value of up to 400 γ-rays per collision in a full bandwidth. Moreover, the impact of Compton scattering on the electron beam dynamics could be observed resulting in a reduction of the electron beam lifetime correlated to the laser power stored in the Fabry-Perot cavity. We demonstrate that the electron beam lifetime provides an independent and consistent determination of the γ-ray flux. Furthermore, a reduction of the γ-ray flux due to intrabeam scattering has clearly been identified. These results, obtained on an accelerator test facility, warrant potential scaling and revealed both expected and yet unobserved effects. They set the baseline for further scaling of the future Compton sources under development around the world.

  1. Optical coherence tomography based imaging of dental demineralisation and cavity restoration in 840 nm and 1310 nm wavelength regions

    NASA Astrophysics Data System (ADS)

    Damodaran, Vani; Rao, Suresh Ranga; Vasa, Nilesh J.

    2016-08-01

    In this paper, a study of in-house built optical coherence tomography (OCT) system with a wavelength of 840 nm for imaging of dental caries, progress in demineralisation and cavity restoration is presented. The caries when imaged with the 840 nm OCT system showed minute demineralisation in the order of 5 μm. The OCT system was also proposed to study the growth of lesion and this was demonstrated by artificially inducing caries with a demineralisation solution of pH 4.8. The progress of carious lesion to a depth of about 50-60 μm after 60 hours of demineralisation was clearly observed with the 840 nm OCT system. The tooth samples were subjected to accelerated demineralisation condition at pH of approximately 2.3 to study the adverse effects and the onset of cavity formation was clearly observed. The restoration of cavity was also studied by employing different restorative materials (filled and unfilled). In the case of restoration without filler material (unfilled), the restoration boundaries were clearly observed. Overall, results were comparable with that of the widely used 1310 nm OCT system. In the case of restoration with filler material, the 1310 nm OCT imaging displayed better imaging capacity due to lower scattering than 840 nm imaging.

  2. High flux circularly polarized gamma beam factory: coupling a Fabry-Perot optical cavity with an electron storage ring

    PubMed Central

    Chaikovska, I.; Cassou, K.; Chiche, R.; Cizeron, R.; Cornebise, P.; Delerue, N.; Jehanno, D.; Labaye, F.; Marie, R.; Martens, A.; Peinaud, Y.; Soskov, V.; Variola, A.; Zomer, F.; Cormier, E.; Lhermite, J.; Dolique, V.; Flaminio, R.; Michel, C.; Pinard, L.; Sassolas, B.; Akagi, T.; Araki, S.; Honda, Y.; Omori, T.; Terunuma, N.; Urakawa, J.; Miyoshi, S.; Takahashi, T.; Yoshitama, H.

    2016-01-01

    We report and discuss high-flux generation of circularly polarized γ-rays by means of Compton scattering. The γ-ray beam results from the collision of an external-cavity-enhanced infrared laser beam and a low emittance relativistic electron beam. By operating a non-planar bow-tie high-finesse optical Fabry-Perot cavity coupled to a storage ring, we have recorded a flux of up to (3.5 ± 0.3) × 108 photons per second with a mean measured energy of 24 MeV. The γ-ray flux has been sustained for several hours. In particular, we were able to measure a record value of up to 400 γ-rays per collision in a full bandwidth. Moreover, the impact of Compton scattering on the electron beam dynamics could be observed resulting in a reduction of the electron beam lifetime correlated to the laser power stored in the Fabry-Perot cavity. We demonstrate that the electron beam lifetime provides an independent and consistent determination of the γ-ray flux. Furthermore, a reduction of the γ-ray flux due to intrabeam scattering has clearly been identified. These results, obtained on an accelerator test facility, warrant potential scaling and revealed both expected and yet unobserved effects. They set the baseline for further scaling of the future Compton sources under development around the world. PMID:27857146

  3. Hollow-core photonic-crystal-fiber-based optical frequency references

    NASA Astrophysics Data System (ADS)

    Holá, Miroslava; Hrabina, Jan; Mikel, Břetislav; Lazar, Josef; Číp, Ondřej

    2016-12-01

    This research deals with preparation of an optical frequency references based on hollow-core photonic crystal fibers (HC-PCF). This fiber-based type of absorption cells represents a effiecient way how to replace classic bulky and fragile glass made tubes references with low-weight and low-volume optical fibers. This approach allows not only to increase possible interaction length between incident light and absorption media but it also carries a possibility of manufacturing of easy-operable reference which is set up just by plugging-in of optical connectors into the optical setup. We present the results of preparation, manufacturing and filling of a set of fiber-based cells intended for lasers frequency stabilization. The work deals with setting and optimalization of HC-PCF splicing processes, minimalization of optical losses between HC-PCF and SMF fiber transitions and finishing of HC-PCF spliced ends with special care for optimal closing of hollow-core structure needed for avoiding of absorption media leakage.

  4. Effects of parasitic Fabry-Perot cavities in fiber-optic interferometric sensors.

    PubMed

    Dagenais, D M; Koo, K P; Bucholtz, F

    1993-03-01

    We show theoretical and experimental evidence for increased quadrature point fluctuations and amplitude and phase noise in interferometric fiber sensors owing to the presence of parasitic Fabry-Perot cavities. We demonstrate greater than 2 orders of magnitude reduction of such effects.

  5. Dissemination of optical-comb-based ultra-broadband frequency reference through a fiber network.

    PubMed

    Nagano, Shigeo; Kumagai, Motohiro; Li, Ying; Ido, Tetsuya; Ishii, Shoken; Mizutani, Kohei; Aoki, Makoto; Otsuka, Ryohei; Hanado, Yuko

    2016-08-22

    We disseminated an ultra-broadband optical frequency reference based on a femtosecond (fs)-laser optical comb through a kilometer-scale fiber link. Its spectrum ranged from 1160 nm to 2180 nm without additional fs-laser combs at the end of the link. By employing a fiber-induced phase noise cancellation technique, the linewidth and fractional frequency instability attained for all disseminated comb modes were of order 1 Hz and 10-18 in a 5000 s averaging time. The ultra-broad optical frequency reference, for which absolute frequency is traceable to Japan Standard Time, was applied in the frequency stabilization of an injection-seeded Q-switched 2051 nm pulse laser for a coherent light detection and ranging LIDAR system.

  6. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser

    SciTech Connect

    Alharthi, S. S. Henning, I. D.; Adams, M. J.; Hurtado, A.; Korpijarvi, V.-M.; Guina, M.

    2015-01-12

    We report the experimental observation of circular polarization switching (PS) and polarization bistability (PB) in a 1300 nm dilute nitride spin-vertical cavity surface emitting laser (VCSEL). We demonstrate that the circularly polarized optical signal at 1300 nm can gradually or abruptly switch the polarization ellipticity of the spin-VCSEL from right-to-left circular polarization and vice versa. Moreover, different forms of PS and PB between right- and left-circular polarizations are observed by controlling the injection strength and the initial wavelength detuning. These results obtained at the telecom wavelength of 1300 nm open the door for novel uses of spin-VCSELs in polarization sensitive applications in future optical systems.

  7. Single-mode, narrow-linewidth external cavity quantum cascade laser through optical feedback from a partial-reflector

    SciTech Connect

    Cendejas, Richard A.; Phillips, Mark C.; Myers, Tanya L.; Taubman, Matthew S.

    2010-11-30

    An external-cavity (EC) quantum cascade (QC) laser using optical feedback from a partial-reflector is reported. With this configuration, the otherwise multi-mode emission of a Fabry-Perot QC laser was made single-mode with optical output powers exceeding 40 mW. A mode-hop free tuning range of 2.46 cm-1 was achieved by synchronously tuning the EC length and QC laser current. The linewidth of the partial-reflector EC-QC laser was measured for integration times from 100 μs to 4 s, and compared to a distributed feedback QC laser. Linewidths as small as 480 kHz were recorded for the EC-QC laser

  8. Eavesdropping in chaotic optical communication using the feedback length of an external-cavity laser as a key.

    PubMed

    Zhao, Qingchun; Wang, Yuncai; Wang, Anbang

    2009-06-20

    An external-cavity laser (ECL) operating in a chaotic state is usually used in a chaotic optical secure communication system and its feedback length (FL) is often regarded as an additional key. Our analyses show that an eavesdropper's (Eve) laser can synchronize with a transmitter (Alice) without any knowledge of the FL by simply increasing the injection strength. A sequence of a 1 Gbit/s nonreturn-to-zero message encoded by the FL as the key is successfully eavesdropped. The reason for the synchronization deviation between Alice's and Eve's lasers is given. Our results indicate that the FL as a key cannot enhance the security of chaotic optical communication using long-ECLs.

  9. Optimal design of optical reference signals by use of a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Saez-Landete, José; Salcedo-Sanz, Sancho; Rosa-Zurera, Manuel; Alonso, José; Bernabeu, Eusebio

    2005-10-01

    A new technique for the generation of optical reference signals with optimal properties is presented. In grating measurement systems a reference signal is needed to achieve an absolute measurement of the position. The optical signal is the autocorrelation of two codes with binary transmittance. For a long time, the design of this type of code has required great computational effort, which limits the size of the code to ˜30 elements. Recently, the application of the dividing rectangles (DIRECT) algorithm has allowed the automatic design of codes up to 100 elements. Because of the binary nature of the problem and the parallel processing of the genetic algorithms, these algorithms are efficient tools for obtaining codes with particular autocorrelation properties. We design optimum zero reference codes with arbitrary length by means of a genetic algorithm enhanced with a restricted search operator.

  10. Fiber-optic holography employing multiple beam fringe stabilization and object/reference beam intensity variability.

    PubMed

    Muhs, J D; Leilabady, P A; Corke, M

    1988-09-01

    The use of fiber optics in the field of optical holography is discussed with emphasis on the design of systems used to overcome several inherent shortcomings associated with fiber-optic holographic systems. Specifically, random environmentally induced optical phase changes within the fiber are minimized by employing a Michelson interferometer in conjunction with a closed loop feedback system. Furthermore, by using several passive single-mode couplers, complete object illumination via several illumination fibers is observed. Finally, by implementing a Mach-Zehnder interferometric technique, control of the object and reference beam intensity ratios in a fiber-optic holographic system can be accomplished. The resulting schemes are very stable and highly versatile systems suitable for remote holographic interferometric sensing and other applications where conventional holography techniques are impractical. Experimental results on fringe visibility, fringe stability, and the stabilization of object/reference beam intensity ratios are also given along with a composite summary of the overall system constraints associated with fiber-optic holographic systems.

  11. Theoretical modeling of optical properties of Ag8 and Ag14 silver clusters embedded in an LTA sodalite zeolite cavity.

    PubMed

    Cuong, Ngo Tuan; Nguyen, Hue Minh Thi; Nguyen, Minh Tho

    2013-10-07

    Optical properties of silver Ag(n) nanoclusters are demonstrated to be dependent on their size, structure and charge state. It is found that when being contained in the sodalite cavity of LTA zeolite the tetradecanuclear hexacation silver cluster Ag14(6+) is stable. Its lower-lying states and optical spectrum are theoretically determined using the quantum chemical TD-DFT method. Its ground state possesses an outer-shell electron configuration of A1g(2)T2g(6) mimicking the s(2)p(6) valence of noble gas atoms. These frontier orbitals are constructed from 5s,5p(Ag)-AOs with contributions from framework oxygen atoms. Light absorption of Ag14(6+) embedded in the sodalite cage which is characterized by strong peaks centered at 331 and 476 nm (transitions 5s,p(Ag) → 5s,p(Ag)) leads to much longer wavelength emission. The sodalite cage, as a container, stabilizes the central Ag14(6+) cluster by electrostatic attraction. The absorption spectrum of the isovalent neutral Ag8 cluster embedded inside the same sodalite cavity is also simulated using TD-DFT and CASPT2 methods. This absorption spectrum which is similar to that of the Ag14(6+) cluster has two absorption bands in the near UV and visible regions.

  12. Analysis of Fabry-Perot optical micro-cavities based on coating-free all-silicon cylindrical Bragg reflectors.

    PubMed

    Malak, Maurine; Gaber, Noha; Marty, Frédéric; Pavy, Nicolas; Richalot, Elodie; Bourouina, Tarik

    2013-01-28

    We study the behavior of Fabry-Perot micro-optical resonators based on cylindrical reflectors, optionally combined with cylindrical lenses. The core of the resonator architecture incorporates coating-free, all-silicon, Bragg reflectors of cylindrical shape. The combined effect of high reflectance and light confinement produced by the reflectors curvature allows substantial reduction of the energy loss. The proposed resonator uses curved Bragg reflectors consisting of a stack of silicon-air wall pairs constructed by micromachining. Quality factor Q ~1000 was achieved on rather large cavity length L = 210 microns, which is mainly intended to lab-on-chip analytical experiments, where enough space is required to introduce the analyte inside the resonator. We report on the behavioral analysis of such resonators through analytical modeling along with numerical simulations supported by experimental results. We demonstrate selective excitation of pure longitudinal modes, taking advantage of a proper control of mode matching involved in the process of coupling light from an optical fiber to the resonator. For the sake of comparison, insight on the behavior of Fabry-Perot cavity incorporating a Fiber-Rod-Lens is confirmed by similar numerical simulations.

  13. Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy.

    PubMed

    Salter, Robert; Chu, Johnny; Hippler, Michael

    2012-10-21

    A variant of cavity-enhanced Raman spectroscopy (CERS) is introduced, in which diode laser radiation at 635 nm is coupled into an external linear optical cavity composed of two highly reflective mirrors. Using optical feedback stabilisation, build-up of circulating laser power by 3 orders of magnitude occurs. Strong Raman signals are collected in forward scattering geometry. Gas phase CERS spectra of H(2), air, CH(4) and benzene are recorded to demonstrate the potential for analytical applications and fundamental molecular studies. Noise equivalent limits of detection in the ppm by volume range (1 bar sample) can be achieved with excellent linearity with a 10 mW excitation laser, with sensitivity increasing with laser power and integration time. The apparatus can be operated with battery powered components and can thus be very compact and portable. Possible applications include safety monitoring of hydrogen gas levels, isotope tracer studies (e.g., (14)N/(15)N ratios), observing isotopomers of hydrogen (e.g., radioactive tritium), and simultaneous multi-component gas analysis. CERS has the potential to become a standard method for sensitive gas phase Raman spectroscopy.

  14. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy.

    PubMed

    Hippler, Michael; Mohr, Christian; Keen, Katherine A; McNaghten, Edward D

    2010-07-28

    Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f=1.35 kHz and Q approximately 10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as alpha approximately 4.4x10(-9) cm(-1) s(1/2) (1 s integration time) and 2.6x10(-11) cm(-1) s(1/2) W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.

  15. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Hippler, Michael; Mohr, Christian; Keen, Katherine A.; McNaghten, Edward D.

    2010-07-01

    Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f =1.35 kHz and Q ≈10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as α ≈4.4×10-9 cm-1 s1/2 (1 s integration time) and 2.6×10-11 cm-1 s1/2 W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.

  16. Ring resonant cavities for spectroscopy

    DOEpatents

    Zare, R.N.; Martin, J.; Paldus, B.A.; Xie, J.

    1999-06-15

    Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS). 6 figs.

  17. Ring resonant cavities for spectroscopy

    DOEpatents

    Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.; Xie, Jinchun

    1999-01-01

    Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS).

  18. The effect and correction of reference heterogeneity in diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Vavadi, Hamed; Xu, Chen; Zhu, Quing

    2015-03-01

    Near infrared (NIR) diffuse optical tomography has demonstrated great potential in the initial diagnosis of tumor and in the assessment of tumor vasculature response to neoadjuvant chemotherapy. To reconstruct the absorption map of a breast lesion, perturbation is needed which is the normalized difference between the measurements of lesion-side breast and contralateral reference breast. However, the heterogeneity in the reference breast can produce unwanted perturbation which will result in distortion of the reconstructed target absorption map. This report introduces a filtering method to overcome the reference heterogeneity. This method corrects affected source-detector measurements obtained from the reference side by using averages of unaffected measurements. As a result, the filtered perturbation has decreased the effect of heterogeneity on the reconstructed absorption maps. To evaluate the performance of this filtering method, we have compared the reconstructed results with and without the filtering algorithm using simulated heterogeneous reference with heterogeneous absorbers ranging from 0.05 to 0.20 cm-1 and heterogeneous scatters ranging from 10 to 20cm-1. The results show that the algorithm can improve the maximum reconstructed target value up to 99% of the value with homogeneous reference. In the worst case of high absorption heterogeneity in reference breast, the maximum reconstructed value was around 30.85% of the true absorption without filtering correction and was improved to 60.4% of the true absorption value, which is 95% of the reconstructed value when using the homogeneous reference.

  19. Cavity-enhanced room-temperature high sensitivity optical Faraday magnetometry

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Lei, Yaohua; Fan, Shuangli; Zhang, Qiaolin; Guo, Hong

    2017-01-01

    We propose a cavity QED system with two-photon Doppler-free configuration for weak magnetic field detection with high sensitivity at room temperature based on cavity electromagnetically induced transparency. Owing to the destructive interference induced by the control and driving fields, two transparency channels are opened. The Faraday rotation within two transparency channels can be used to detect weak magnetic field with high sensitivity at room temperature. The sensitivity with single photon and multiphoton probe inputs is analyzed. With single photon measurement, our numerical calculations demonstrate that the sensitivity with 3.8nT/√{Hz} and 6.4nT/√{Hz} could be achieved. When we measure the magnetic field with multiphoton input, the sensitivity can be improved to 7.7fT/√{Hz} and 25.6fT/√{Hz} under the realistic experimental conditions.

  20. Experimental Demonstration of Frequency Autolocking an Optical Cavity Using a Time-Varying Kalman Filter

    NASA Astrophysics Data System (ADS)

    Schütte, Dirk; Hassen, S. Z. Sayed; Karvinen, Kai S.; Boyson, Toby K.; Kallapur, Abhijit G.; Song, Hongbin; Petersen, Ian R.; Huntington, Elanor H.; Heurs, Michèle

    2016-01-01

    We propose and demonstrate a new autolocking scheme using a three-mirror ring cavity consisting of a linear quadratic regulator and a time-varying Kalman filter. Our technique does not require a frequency scan to acquire resonance. We utilize the singular perturbation method to simplify our system dynamics and to permit the application of linear control techniques. The error signal combined with the transmitted power is used to estimate the cavity detuning. This estimate is used by a linear time-varying Kalman filter which enables the implementation of an optimal controller. The experimental results validate the controller design, and we demonstrate improved robustness to disturbances and a faster locking time than a traditional proportional-integral controller. More important, the time-varying Kalman filtering approach automatically reacquires lock for large detunings, where the error signal leaves its linear capture range, a feat which linear time-invariant controllers cannot achieve.

  1. Optical cavity for enhanced parametric four-wave mixing in rubidium

    NASA Astrophysics Data System (ADS)

    Brekke, E.; Potier, S.

    2017-01-01

    We demonstrate the implementation of a ring cavity to enhance the efficiency of parametric four-wave mixing in rubidium. Using an input coupler with 95% reflectance, a finesse of 19.6$\\pm$0.5 is achieved with a rubidium cell inside. This increases the circulating intensity by a factor of 5.6$\\pm$0.5, and through two-photon excitation on the $5s_{1/2}\\rightarrow5d_{5/2}$ transition with a single excitation laser, up to 1.9$\\pm$0.3 mW of power at 420 nm is generated, 50 times what was previously generated with this scheme. The dependence of the output on Rb density and input power has been explored, suggesting the process may be approaching saturation. The blue output of the cavity also shows greatly improved spatial quality, combining to make this a promising source of 420 nm light for future experiments.

  2. Continuous Vernier filtering of an optical frequency comb for broadband cavity-enhanced molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Rutkowski, Lucile; Morville, Jérôme

    2017-01-01

    We have recently introduced the Vernier-based Direct Frequency Comb Cavity-Enhanced Spectroscopy technique which allows us to record broadband spectra at high sensitivity and GHz resolution (Rutkowski and Morville, 2014) [1]. We discuss here the effect of Vernier filtering on the observed lineshapes in the 3 ν + δ band of water vapor and the entire A-band of oxygen around 800 nm in ambient air. We derive expressions for the absorption profiles resulting from the continuous Vernier filtering method, testing them on spectra covering more than 2000 cm-1 around 12,500 cm-1. With 31,300 independent spectral elements acquired at the second time scale, an absorption baseline noise of 2 ×10-8cm-1 is obtained, providing a figure of merit of 1.1×10-10 cm-1/√{ Hz } per spectral element with a cavity finesse of 3000 and a cavity round-trip length around 3.3 m.

  3. Giant enhancement of optical high-order sideband generation and their control in a dimer of two cavities with gain and loss

    NASA Astrophysics Data System (ADS)

    Li, Jiahui; Li, Jiahua; Xiao, Qian; Wu, Ying

    2016-06-01

    Parity-time (PT ) symmetric systems, which rely on the balanced gain-loss condition and render the Hamiltonian non-Hermitian, have provided a new platform to engineer effective light-matter interactions in recent years. Here we explore the high-order sideband features of the output fields obtained from a PT -symmetric optical system consisting of a passive nonlinear cavity coupled to an active linear cavity. By employing a perturbation technique, we derive analytic formulas used to determine the nonlinear transmission coefficient of optical second-order sideband in this structure. Using experimentally achievable parameters, it is clearly shown that the efficiency of the second-order sideband generation can be greatly enhanced in the PT -symmetric dimer, extremely in the vicinity of the transition point from unbroken- to broken-PT regimes. Moreover, we further analyzed the influences of the system parameters, including the photon-tunneling rate between two cavities, Kerr nonlinearity strength, and optical detuning, on the second-order sideband generation. Subsequently we investigate the higher-order sideband output spectrum by numerical simulations, where the sideband amplitude also is largely enhanced in the PT -symmetric arrangement, compared with the passive-passive double-cavity system. Our obtained results provide a new avenue for acquiring optical high-order sidebands and operating light, which may inspire further applications in chip-scale optical communications and optical frequency combs.

  4. Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink.

    PubMed

    Spinelli, L; Botwicz, M; Zolek, N; Kacprzak, M; Milej, D; Sawosz, P; Liebert, A; Weigel, U; Durduran, T; Foschum, F; Kienle, A; Baribeau, F; Leclair, S; Bouchard, J-P; Noiseux, I; Gallant, P; Mermut, O; Farina, A; Pifferi, A; Torricelli, A; Cubeddu, R; Ho, H-C; Mazurenka, M; Wabnitz, H; Klauenberg, K; Bodnar, O; Elster, C; Bénazech-Lavoué, M; Bérubé-Lauzière, Y; Lesage, F; Khoptyar, D; Subash, A A; Andersson-Engels, S; Di Ninni, P; Martelli, F; Zaccanti, G

    2014-07-01

    A multi-center study has been set up to accurately characterize the optical properties of diffusive liquid phantoms based on Intralipid and India ink at near-infrared (NIR) wavelengths. Nine research laboratories from six countries adopting different measurement techniques, instrumental set-ups, and data analysis methods determined at their best the optical properties and relative uncertainties of diffusive dilutions prepared with common samples of the two compounds. By exploiting a suitable statistical model, comprehensive reference values at three NIR wavelengths for the intrinsic absorption coefficient of India ink and the intrinsic reduced scattering coefficient of Intralipid-20% were determined with an uncertainty of about 2% or better, depending on the wavelength considered, and 1%, respectively. Even if in this study we focused on particular batches of India ink and Intralipid, the reference values determined here represent a solid and useful starting point for preparing diffusive liquid phantoms with accurately defined optical properties. Furthermore, due to the ready availability, low cost, long-term stability and batch-to-batch reproducibility of these compounds, they provide a unique fundamental tool for the calibration and performance assessment of diffuse optical spectroscopy instrumentation intended to be used in laboratory or clinical environment. Finally, the collaborative work presented here demonstrates that the accuracy level attained in this work for optical properties of diffusive phantoms is reliable.

  5. Doppler-broadened mid-infrared noise-immune cavity-enhanced optical heterodyne molecular spectrometry based on an optical parametric oscillator for trace gas detection.

    PubMed

    Silander, Isak; Hausmaninger, Thomas; Ma, Weiguang; Harren, Frans J M; Axner, Ove

    2015-02-15

    An optical parametric oscillator based Doppler-broadened (Db) noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) system suitable for addressing fundamental vibrational transitions in the 3.2-3.9 μm mid-infrared (MIR) region has been realized. An Allan-Werle analysis provides a detection sensitivity of methane of 1.5×10(-9)  cm(-1) with a 20 s integration time, which corresponds to 90 ppt of CH4 if detected at the strongest transition addressed at 40 Torr. This supersedes that of previous Db MIR NICE-OHMS demonstrations and suggests that the technique can be suitable for detection of both the environmentally important (13)CH(4) and CH3D isotopologues. It also opens up for detection of many other molecular species at ppt and sub-ppt concentration levels.

  6. Optical Bragg, atomic Bragg and cavity QED detections of quantum phases and excitation spectra of ultracold atoms in bipartite and frustrated optical lattices

    SciTech Connect

    Ye, Jinwu; Zhang, K.Y.; Li, Yan; Chen, Yan; Zhang, W.P.

    2013-01-15

    Ultracold atoms loaded on optical lattices can provide unprecedented experimental systems for the quantum simulations and manipulations of many quantum phases and quantum phase transitions between these phases. However, so far, how to detect these quantum phases and phase transitions effectively remains an outstanding challenge. In this paper, we will develop a systematic and unified theory of using the optical Bragg scattering, atomic Bragg scattering or cavity QED to detect the ground state and the excitation spectrum of many quantum phases of interacting bosons loaded in bipartite and frustrated optical lattices. The physically measurable quantities of the three experiments are the light scattering cross sections, the atom scattered clouds and the cavity leaking photons respectively. We show that the two photon Raman transition processes in the three detection methods not only couple to the density order parameter, but also the valence bond order parameter due to the hopping of the bosons on the lattice. This valence bond order coupling is very sensitive to any superfluid order or any valence bond (VB) order in the quantum phases to be probed. These quantum phases include not only the well-known superfluid and Mott insulating phases, but also other important phases such as various kinds of charge density waves (CDW), valence bond solids (VBS), and CDW-VBS phases with both CDW and VBS orders unique to frustrated lattices, and also various kinds of supersolids. We analyze respectively the experimental conditions of the three detection methods to probe these various quantum phases and their corresponding excitation spectra. We also address the effects of a finite temperature and a harmonic trap. We contrast the three scattering methods with recent in situ measurements inside a harmonic trap and argue that the two kinds of measurements are complementary to each other. The combination of both kinds of detection methods could be used to match the combination of

  7. Fiber optic inclination detector system having a weighted sphere with reference points

    DOEpatents

    Cwalinski, Jeffrey P.

    1995-01-01

    A fiber optic inclination detector system for determining the angular displacement of an object from a reference surface includes a simple mechanical transducer which requires a minimum number of parts and no electrical components. The system employs a single light beam which is split into two light beams and provided to the transducer. Each light beam is amplitude modulated upon reflecting off the transducer to detect inclination. The power values associated with each of the reflected light beams are converted by a pair of photodetectors into voltage signals, and a microprocessor manipulates the voltage signals to provide a measure of the angular displacement between the object and the reference surface.

  8. Fibre Fabry - Perot cavity-based aperture probe for near-field optical microscopy systems

    SciTech Connect

    Kulchin, Yurii N; Vitrik, O B; Bezverbnyi, A V; Pustovalov, E V; Kuchmizhak, A A; Nepomnyashchii, A V

    2011-03-31

    We report a theoretical analysis and experimental study of the possibility of producing a novel type of interferometric near-field aperture probe for near-field optical microscopy systems using a fibre Fabry - Perot microcavity with a nanometre-scale aperture made in one of its output mirrors. The probe ensures a spatial resolution no worse than {lambda}/14. (fibre optics)

  9. Frequency-feedback cavity enhanced spectrometer

    DOEpatents

    Hovde, David Christian; Gomez, Anthony

    2015-08-18

    A spectrometer comprising an optical cavity, a light source capable of producing light at one or more wavelengths transmitted by the cavity and with the light directed at the cavity, a detector and optics positioned to collect light transmitted by the cavity, feedback electronics causing oscillation of amplitude of the optical signal on the detector at a frequency that depends on cavity losses, and a sensor measuring the oscillation frequency to determine the cavity losses.

  10. Triple-Resonant Brillouin Light Scattering in Magneto-Optical Cavities

    NASA Astrophysics Data System (ADS)

    Haigh, J. A.; Nunnenkamp, A.; Ramsay, A. J.; Ferguson, A. J.

    2016-09-01

    An enhancement in Brillouin light scattering of optical photons with magnons is demonstrated in magneto-optical whispering gallery mode resonators tuned to a triple-resonance point. This occurs when both the input and output optical modes are resonant with those of the whispering gallery resonator, with a separation given by the ferromagnetic resonance frequency. The identification and excitation of specific optical modes allows us to gain a clear understanding of the mode-matching conditions. A selection rule due to wave vector matching leads to an intrinsic single-sideband excitation. Strong suppression of one sideband is essential for one-to-one frequency mapping in coherent optical-to-microwave conversion.

  11. Characterizing piezoscanner hysteresis and creep using optical levers and a reference nanopositioning stage

    SciTech Connect

    Xie, H.; Regnier, S.

    2009-04-15

    A method using atomic force microscope (AFM) optical levers and a reference nanopositioning stage has been developed to characterize piezoscanner hysteresis and creep. The piezoscanner is fixed on a closed-loop nanopositioning stage, both of which have the same arrangement on each axis of the three spatial directions inside the AFM-based nanomanipulation system. In order to achieve characterization, the optical lever is used as a displacement sensor to measure the relative movement between the nanopositioning stage and the piezoscanner by lateral tracking a well-defined slope with the tapping mode of the AFM cantilever. This setup can be used to estimate a piezoscanner's voltage input with a reference displacement from the nanopositioning stage. The hysteresis and creep were accurately calibrated by the method presented, which use the current setup of the AFM-based nanomanipulation system without any modification or additional devices.

  12. Design and Characterization of Optically Pumped Vertical Cavity Surface Emitting Lasers

    DTIC Science & Technology

    1992-12-01

    3-7 3.4. Bottom Mirror Reflectivity as seen in GaAs Spacer ...... ........... 3-8 3.5. Top Mirror (22 layers) Reflectivity as...seen from GaAs Cavity Spacer 3-10 3.6. Fabry-Perot Effect in Designed 950 nm VCSEL .................... 3-11 3.7. Gain Guiding and Index Guiding in VCSEL...affected by the desired gain for the region, the absorption of the spacer and the active regions, the lasing wavelength, and lattice matching

  13. Enhanced fluorescence emission using a photonic crystal coupled to an optical cavity

    PubMed Central

    Pokhriyal, Anusha; Lu, Meng; Chaudhery, Vikram; George, Sherine; Cunningham, Brian T.

    2013-01-01

    All fluorescent assays would benefit from greater signal-to-noise ratios (SNRs), which enable detection of disease biomarkers at lower concentrations for earlier disease diagnosis and detection of genes that are expressed at the lowest levels. Here, we report an approach to enhance fluorescence in which surface adsorbed fluorophore-tagged biomolecules are excited on a photonic crystal surface that is coupled to an underlying Fabry-Perot type cavity through a gold mirror reflector beneath the photonic crystal. This approach leads to 6× increase in signal-to-noise ratio of a dye labeled polypeptide compared to ordinary photonic crystal enhanced fluorescence. PMID:23825806

  14. Enhanced fluorescence emission using a photonic crystal coupled to an optical cavity

    NASA Astrophysics Data System (ADS)

    Pokhriyal, Anusha; Lu, Meng; Chaudhery, Vikram; George, Sherine; Cunningham, Brian T.

    2013-06-01

    All fluorescent assays would benefit from greater signal-to-noise ratios (SNRs), which enable detection of disease biomarkers at lower concentrations for earlier disease diagnosis and detection of genes that are expressed at the lowest levels. Here, we report an approach to enhance fluorescence in which surface adsorbed fluorophore-tagged biomolecules are excited on a photonic crystal surface that is coupled to an underlying Fabry-Perot type cavity through a gold mirror reflector beneath the photonic crystal. This approach leads to 6× increase in signal-to-noise ratio of a dye labeled polypeptide compared to ordinary photonic crystal enhanced fluorescence.

  15. Evaluation of the aero-optical properties of the SOFIA cavity by means of computional fluid dynamics and a super fast diagnostic camera

    NASA Astrophysics Data System (ADS)

    Engfer, Christian; Pfüller, Enrico; Wiedemann, Manuel; Wolf, Jürgen; Lutz, Thorsten; Krämer, Ewald; Röser, Hans-Peter

    2012-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5 m reflecting telescope housed in an open cavity on board of a Boeing 747SP. During observations, the cavity is exposed to transonic flow conditions. The oncoming boundary layer evolves into a free shear layer being responsible for optical aberrations and for aerodynamic and aeroacoustic disturbances within the cavity. While the aero-acoustical excitation of an airborne telescope can be minimized by using passive flow control devices, the aero-optical properties of the flow are difficult to improve. Hence it is important to know how much the image seen through the SOFIA telescope is perturbed by so called seeing effects. Prior to the SOFIA science fights Computational Fluid Dynamics (CFD) simulations using URANS and DES methods were carried out to determine the flow field within and above the cavity and hence in the optical path in order to provide an assessment of the aero-optical properties under baseline conditions. In addition and for validation purposes, out of focus images have been taken during flight with a Super Fast Diagnostic Camera (SFDC). Depending on the binning factor and the sub-array size, the SFDC is able to take and to read out images at very high frame rates. The paper explains the numerical approach based on CFD to evaluate the aero-optical properties of SOFIA. The CFD data is then compared to the high speed images taken by the SFDC during flight.

  16. DWDM channel spacing tunable optical TDM carrier from a mode-locked weak-resonant-cavity Fabry-Perot laser diode based fiber ring.

    PubMed

    Peng, Guo-Hsuan; Chi, Yu-Chieh; Lin, Gong-Ru

    2008-08-18

    A novel optical TDM pulsed carrier with tunable mode spacing matching the ITU-T defined DWDM channels is demonstrated, which is generated from an optically injection-mode-locked weak-resonant-cavity Fabry-Perot laser diode (FPLD) with 10%-end-facet reflectivity. The FPLD exhibits relatively weak cavity modes and a gain spectral linewidth covering >33.5 nm. The least common multiple of the mode spacing determined by both the weak-resonant-cavity FPLD and the fiber-ring cavity can be tunable by adjusting length of the fiber ring cavity or the FPLD temperature to approach the desired 200GHz DWDM channel spacing of 1.6 nm. At a specific fiber-ring cavity length, such a least-common- multiple selection rule results in 12 lasing modes between 1532 and 1545 nm naturally and a mode-locking pulsewidth of 19 ps broadened by group velocity dispersion among different modes. With an additional intracavity bandpass filter, the operating wavelength can further extend from 1520 to 1553.5 nm. After channel filtering, each selected longitudinal mode gives rise to a shortened pulsewidth of 12 ps due to the reduced group velocity dispersion. By linear dispersion compensating with a 55-m long dispersion compensation fiber (DCF), the pulsewidth can be further compressed to 8 ps with its corresponding peak-to-peak chirp reducing from 9.7 to 4.3 GHz.

  17. Signal simulation and signal processing for multiple reference optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Neuhaus, Kai; Subhash, Hrebesh; Dsouza, Roshan; Hogan, Josh; Wilson, Carol; Leahy, Martin

    2015-03-01

    The generation of a synthetic MR-OCT signal is presented and compared to a real acquired signal. Multiple reference optical coherence tomography (MR-OCT) is a novel time-domain interferometric system. The MR-OCT principle is adding a partial mirror to extend the axial scan range, which effectively extends the scan depth for imaging. The actuation of the scan mirror required for time-domain OCT, was demonstrated to operate with a low cost miniature voice coil, such as a speaker extracted from a smartphone or CD/DVD pick-up system. Building a compact and cost-effective optical imaging system will enable affordable medical diagnosis at low-resource setting applications. The partial mirror recirculates multiple reflections (orders) into the interferometric system and the increase of optical path delay does increase the beat frequency of the interference signal. The synthesis of such an interference signal using a numerical method is described in this manuscript.

  18. External cavity based single mode Fabry-Pérot laser diode and its application towards all-optical digital circuits

    NASA Astrophysics Data System (ADS)

    Nakarmi, Bikash; Zhang, Xuping; Won, Yong Hyub

    2012-11-01

    We have proposed a novel approach of realizing all-optical logic gates and combinational circuit using external cavity based single mode Fabry-Pérot laser diodes (SMFP-LDs). Different techniques and critical parameters for injection locking the any one of the modes of SMFP-LDs are discussed. Taking consideration of wavelength detuning and input injected power, we have proposed and demonstrated multi-input injection locking, supporting beam injection locking with the conventional injection locking which are used for demonstrating different logic gates (NAND, AND, XNOR, XOR, NOT, NOR) and digital circuits (Half adder and Comparator). Since we have used SMFP-LDs, there is no requirement of additional probe beam and associated components as required by other optical technologies making the realization simple in configuration, cost effective and power efficient. Clear output waveforms, eye diagrams, risingfalling times and BER are presented to verify the proposed method. All-optical logic units and digital circuit are demonstrated at the data rate of 10 Gbps with the waveform of NRZ signal waveform and measured eye diagram and BER of the PRBS of 231-1 signal. The maximum power penalty among all demonstrated units is below 1.4 dB at the BER of 10-9.

  19. Measuring Optical Properties of SOOT from Biomass Burning Using Cavity RING-DOWN Spectroscopy and Integrating Nephelometry

    NASA Astrophysics Data System (ADS)

    Bililign, S.; Smith, D. M.; Fiddler, M. N.; Singh, S.; Colon-Bernal, I. D.

    2014-12-01

    Since black carbon and brown carbon are among the greatest contributors to radiative forcing (black carbon being second only to carbon dioxide), this work focuses on the laboratory measurement of their optical properties using cavity ring-down spectroscopy (CRDS) and integrating nephelometry. Water soluble soot is collected using an impinger by burning different fuel types to mimic ambient aerosols dominant in regions where biomass burning is the main source of aerosols. Using an optical parametric oscillator (OPO) as a light source, we are able to measure extinction and scattering over a wide range of wavelengths. The extinction-minus-scattering method is then used to determine particle absorption and single scattering albedo for soot collected from different fuel sources at different stages of burning. Purely scattering polystyrene latex (PSL) spheres of known sizes (100 - 700 nm) are used in the lab to calibrate the system for this study. Our preliminary measurements of optical properties of soot samples collected by burning different wood samples will be reported. A correction method that properly accounts for and reduces systematic extinction uncertainties, random scattering and extinction errors, and reconciles nephelometer with CRDS measurements is used.

  20. Chaos synchronization in vertical-cavity surface-emitting laser based on rotated polarization-preserved optical feedback

    SciTech Connect

    Nazhan, Salam; Ghassemlooy, Zabih; Busawon, Krishna

    2016-01-15

    In this paper, the influence of the rotating polarization-preserved optical feedback on the chaos synchronization of a vertical-cavity surface-emitting laser (VCSEL) is investigated experimentally. Two VCSELs' polarization modes (XP) and (YP) are gradually rotated and re-injected back into the VCSEL. The anti-phase dynamics synchronization of the two polarization modes is evaluated using the cross-correlation function. For a fixed optical feedback, a clear relationship is found between the cross-correlation coefficient and the polarization angle θ{sub p}. It is shown that high-quality anti-phase polarization-resolved chaos synchronization is achieved at higher values of θ{sub p}. The maximum value of the cross-correlation coefficient achieved is −0.99 with a zero time delay over a wide range of θ{sub p} beyond 65° with a poor synchronization dynamic at θ{sub p} less than 65°. Furthermore, it is observed that the antiphase irregular oscillation of the XP and YP modes changes with θ{sub p}. VCSEL under the rotating polarization optical feedback can be a good candidate as a chaotic synchronization source for a secure communication system.

  1. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs

    PubMed Central

    Kwon, Dohyeon; Jeon, Chan-Gi; Shin, Junho; Heo, Myoung-Sun; Park, Sang Eon; Song, Youjian; Kim, Jungwon

    2017-01-01

    Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10−9 fs2/Hz (equivalent to −174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources. PMID:28102352

  2. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs

    NASA Astrophysics Data System (ADS)

    Kwon, Dohyeon; Jeon, Chan-Gi; Shin, Junho; Heo, Myoung-Sun; Park, Sang Eon; Song, Youjian; Kim, Jungwon

    2017-01-01

    Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10‑9 fs2/Hz (equivalent to ‑174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources.

  3. Mean-field theory of atomic self-organization in optical cavities

    NASA Astrophysics Data System (ADS)

    Jäger, Simon B.; Schütz, Stefan; Morigi, Giovanna

    2016-08-01

    Photons mediate long-range optomechanical forces between atoms in high-finesse resonators, which can induce the formation of ordered spatial patterns. When a transverse laser drives the atoms, the system undergoes a second-order phase transition that separates a uniform spatial density from a Bragg grating maximizing scattering into the cavity and is controlled by the laser intensity. Starting from a Fokker-Planck equation describing the semiclassical dynamics of the N -atom distribution function, we systematically develop a mean-field model and analyze its predictions for the equilibrium and out-of-equilibrium dynamics. The validity of the mean-field model is tested by comparison with the numerical simulations of the N -body Fokker-Planck equation and by means of a Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. The mean-field theory predictions well reproduce several results of the N -body Fokker-Planck equation for sufficiently short times and are in good agreement with existing theoretical approaches based on field-theoretical models. The mean field, on the other hand, predicts thermalization time scales which are at least one order of magnitude shorter than the ones predicted by the N -body dynamics. We attribute this discrepancy to the fact that the mean-field ansatz discards the effects of the long-range incoherent forces due to cavity losses.

  4. Prototype of an ultra-stable optical cavity for space applications.

    PubMed

    Argence, B; Prevost, E; Lévèque, T; Le Goff, R; Bize, S; Lemonde, P; Santarelli, G

    2012-11-05

    We report the main features and performances of a prototype of an ultra-stable cavity designed and realized by industry for space applications with the aim of space missions. The cavity is a 100 mm long cylinder rigidly held at its midplane by a engineered mechanical interface providing an efficient decoupling from thermal and vibration perturbations. Intensive finite element modeling was performed in order to optimize thermal and vibration sensitivities while getting a high fundamental resonance frequency. The system was designed to be transportable, acceleration tolerant (up to several g) and temperature range compliant [-33°C ; 73°C]. Thermal isolation is ensured by gold coated Aluminum shields inside a stainless steel enclosure for vacuum. The axial vibration sensitivity was evaluated at (4 ± 0.5) × 10(-11)/(m.s(-2)), while the transverse one is < 1 × 10(-11)/(m.s(-2)). The fractional frequency instability is

  5. Effect of Pure Dephasing and Phonon Scattering on the Coupling of Semiconductor Quantum Dots to Optical Cavities

    NASA Astrophysics Data System (ADS)

    Jarlov, C.; Wodey, É.; Lyasota, A.; Calic, M.; Gallo, P.; Dwir, B.; Rudra, A.; Kapon, E.

    2016-08-01

    Using site-controlled semiconductor quantum dots (QDs) free of multiexcitonic continuum states, integrated with photonic crystal membrane cavities, we clarify the effects of pure dephasing and phonon scattering on exciton-cavity coupling in the weak-coupling regime. In particular, the observed QD-cavity copolarization and cavity mode feeding versus QD-cavity detuning are explained quantitatively by a model of a two-level system embedded in a solid-state environment.

  6. Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space

    NASA Astrophysics Data System (ADS)

    Luvsandamdin, E.; Spießberger, S.; Schiemangk, M.; Sahm, A.; Mura, G.; Wicht, A.; Peters, A.; Erbert, G.; Tränkle, G.

    2013-05-01

    We present a micro-integrated extended cavity diode laser module for experiments on rubidium Bose-Einstein condensates and atom interferometry at 780.24 nm onboard a sounding rocket. The micro-integration concept is optimized for space application. The laser chip, micro-lenses, a volume holographic Bragg grating, micro-temperature sensors and a micro-thermoelectric cooler are integrated on an aluminium nitride ceramic micro-optical bench with a foot print of only 50 × 10 mm2. Moveable parts are omitted to allow for a very compact and robust design. The laser module provides an output power of more than 120 mW at a short term (170 μs) linewidth of 54 kHz, both full-width-at-half-maximum. The laser can be coarsely tuned by 44 GHz with a continuous tuning range of 31 GHz. The micro-integration technology presented here can be transferred to other wavelengths.

  7. Detection of HO2 in an atmospheric pressure plasma jet using optical feedback cavity-enhanced absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Gianella, Michele; Reuter, Stephan; Lawry Aguila, Ana; Ritchie, Grant A. D.; van Helden, Jean-Pierre H.

    2016-11-01

    Cold non-equilibrium atmospheric pressure plasma jets are increasingly applied in material processing and plasma medicine. However, their small dimensions make diagnosing the fluxes of generated species a challenge. Here we report on the detection of the hydroperoxyl radical, HO2, in the effluent of a plasma jet by the use of optical feedback cavity-enhanced absorption spectroscopy. The spectrometer has a minimum detectable absorption coefficient {α }\\min of 2.25× {10}-10 cm-1 with a 100 second acquisition, equivalent to 5.5× {10}12 {{cm}}-3 of HO2 (under ideal conditions). Concentrations in the range of (3.1-7.8) × 1013 cm-3 were inferred in the 4 mm wide effluent of the plasma jet.

  8. Energy transfer of non-equidistant radiators via the nonlinear excitation mechanism inside of an optical cavity

    NASA Astrophysics Data System (ADS)

    Pislari, Tatiana; Enaki, Nicolae

    2016-12-01

    The energy transferring between three q-bits system flying simultaneously through an optical cavity, is discussed. It is observed the migration of energy from one excited radiator with dipole forbidden transitions relatively to another two- radiators with half excitation energy of first atom. Photon entangled state between distinct atoms and their transfer is studied. These atoms in our interpretations are named, D - dipole forbidden atom, S1 and S2 - two dipole active atoms with summer energy ћɷ1 + ћɷ2 = ћɷn, ɷ1 observe the periodical transfer of energy from D- atom to ensemble of two S- atoms. This effect may be used for quantum gates processing in which the energy transfer depends on the input information. The quantum discord and entanglement for this system of q-bits was explored.

  9. Nonclassical Correlation Dynamics in a System of Mesoscopic Josephson Junction Coupled to Single-mode Optical Cavity

    NASA Astrophysics Data System (ADS)

    Xiang, Shao-Hua; Zhao, Yu-Jing; Zhu, Xi-Xiang; Song, Ke-Hui

    2015-08-01

    We investigate the time evolutions of the continuous-variable entanglement and Gaussian quantum discord in a system consisting of a mesoscopic Josephson junction coupled to a single-mode optical cavity field. We can obtain the time-dependent covariance matrix using known symplectic operation and local canonical transformations. We compare the dynamics of Gaussian quantum discord with that of entanglement. It is shown that the entanglement dynamics of two-mode squeezed thermal state is richer and undergoes three different features: periodical oscillation, sudden death and revival, and no-creation of entanglement, conditioned on the average number of thermal photons in each mode, whereas the Gaussian quantum discord can only exhibit a periodical oscillation behavior during the evolution.

  10. Recent issues on development of reference materials and standardized tests of optical methods of strain measurement

    NASA Astrophysics Data System (ADS)

    Burguete, Richard; Hack, Erwin; Kujawinska, Malgorzata; Patterson, Eann; Salbut, Leszek; Saleem, Quasim; Siebert, Thorsten; Whelan, Maurice

    2005-06-01

    The need for standards in optical methods of strain measurement has been discussed previously and attention has switched to the creation of reference materials and standardised tests. Reference materials provide a means of calibrating a measurement system by comparison to a standard that is traceable to an international standard. In this way an unbroken chain of comparisons between the measurement system and the international standard with defined uncertainties in each comparison is created. A standardised test allows the performance of the measurement system to be assessed against a number of known quantities and such tests should be as challenging as the applications for which the measurement system has been designed. The preliminary design of a reference material for optical techniques of strain measurement are presented. Results obtained from the tests of these physical reference materials using digital image correlation, ESPI, grating (moire) interferometry, photoelasticity, strain gauges and thermoelasticity support the design hypothesis and have aided the refinement of the design. The first set of results produced with the new design showed remarkable correlation despite being obtained independently in four different laboratories in four different countries using six different techniques. Initial designs for a set of standard tests have also been created and some preliminary results will be presented. The concept of virtual standardised test materials has been introduced to allow the performance of the algorithms within a measurement system to be assessed so that a standard and comprehensive diagnostic and evaluation framework will be available to system designers, manufacturers and end-users.

  11. Gaia Data Release 1. Reference frame and optical properties of ICRF sources

    NASA Astrophysics Data System (ADS)

    Mignard, F.; Klioner, S.; Lindegren, L.; Bastian, U.; Bombrun, A.; Hernández, J.; Hobbs, D.; Lammers, U.; Michalik, D.; Ramos-Lerate, M.; Biermann, M.; Butkevich, A.; Comoretto, G.; Joliet, E.; Holl, B.; Hutton, A.; Parsons, P.; Steidelmüller, H.; Andrei, A.; Bourda, G.; Charlot, P.

    2016-11-01

    Context. As part of the data processing for Gaia Data Release 1 (Gaia DR1) a special astrometric solution was computed, the so-called auxiliary quasar solution. This gives positions for selected extragalactic objects, including radio sources in the second realisation of the International Celestial Reference Frame (ICRF2) that have optical counterparts bright enough to be observed with Gaia. A subset of these positions was used to align the positional reference frame of Gaia DR1 with the ICRF2. Although the auxiliary quasar solution was important for internal validation and calibration purposes, the resulting positions are in general not published in Gaia DR1. Aims: We describe the properties of the Gaia auxiliary quasar solution for a subset of sources matched to ICRF2, and compare their optical and radio positions at the sub-mas level. Methods: Descriptive statistics are used to characterise the optical data for the ICRF sources and the optical-radio differences. The most discrepant cases are examined using online resources to find possible alternative explanations than a physical optical-radio offset of the quasars. Results: In the auxiliary quasar solution 2191 sources have good optical positions matched to ICRF2 sources with high probability. Their formal standard errors are better than 0.76 milliarcsec (mas) for 50% of the sources and better than 3.35 mas for 90%. Optical magnitudes are obtained in Gaia's unfiltered photometric G band. The Gaia results for these sources are given as a separate table in Gaia DR1. The comparison with the radio positions of the defining sources shows no systematic differences larger than a few tenths of a mas. The fraction of questionable solutions, not readily accounted for by the statistics, is less than 6%. Normalised differences have extended tails requiring case-by-case investigations for around 100 sources, but we have not seen any difference indisputably linked to an optical-radio offset in the sources. Conclusions: With

  12. Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.

    PubMed

    Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei

    2013-12-03

    We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in

  13. Terahertz free electron superradiation from mimicking surface plasmons-two electron beams interaction within a 3-mirror quasi-optical cavity

    SciTech Connect

    Zhang, Ya-Xin; Zhou, Y.; Dong, L.; Liu, Sheng-Gang

    2013-05-27

    Interaction between mimicking surface plasmons and electron beams provides a good opportunity to develop terahertz (THz) radiation sources. In this paper, such an interaction in a special 3-mirror quasi-optical cavity is presented and explored. The 3-mirror quasi-optical cavity acts as a resonant tunable system, the resonance frequency of which can be tuned by adjusting the distance between mirrors. The study demonstrated THz free electron superradiation from the interaction of mimicking surface plasmons and two electron beams that formed a resonance within the structure, with the 3-mirror cavity enhancing the intensity of superradiation. Moreover, this system can work in the high-harmonic superradiation region with relatively high efficiency and low current density. This concept thus shows the application potential for electron-beam-driven terahertz sources.

  14. An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy

    PubMed Central

    Salmon, Alexander E.; Cooper, Robert F.; Langlo, Christopher S.; Baghaie, Ahmadreza; Dubra, Alfredo; Carroll, Joseph

    2017-01-01

    Purpose To develop an automated reference frame selection (ARFS) algorithm to replace the subjective approach of manually selecting reference frames for processing adaptive optics scanning light ophthalmoscope (AOSLO) videos of cone photoreceptors. Methods Relative distortion was measured within individual frames before conducting image-based motion tracking and sorting of frames into distinct spatial clusters. AOSLO images from nine healthy subjects were processed using ARFS and human-derived reference frames, then aligned to undistorted AO-flood images by nonlinear registration and the registration transformations were compared. The frequency at which humans selected reference frames that were rejected by ARFS was calculated in 35 datasets from healthy subjects, and subjects with achromatopsia, albinism, or retinitis pigmentosa. The level of distortion in this set of human-derived reference frames was assessed. Results The average transformation vector magnitude required for registration of AOSLO images to AO-flood images was significantly reduced from 3.33 ± 1.61 pixels when using manual reference frame selection to 2.75 ± 1.60 pixels (mean ± SD) when using ARFS (P = 0.0016). Between 5.16% and 39.22% of human-derived frames were rejected by ARFS. Only 2.71% to 7.73% of human-derived frames were ranked in the top 5% of least distorted frames. Conclusion ARFS outperforms expert observers in selecting minimally distorted reference frames in AOSLO image sequences. The low success rate in human frame choice illustrates the difficulty in subjectively assessing image distortion. Translational Relevance Manual reference frame selection represented a significant barrier to a fully automated image-processing pipeline (including montaging, cone identification, and metric extraction). The approach presented here will aid in the clinical translation of AOSLO imaging. PMID:28392976

  15. Optical design and optimization of parabolic dish solar concentrator with a cavity hybrid receiver

    NASA Astrophysics Data System (ADS)

    Blázquez, R.; Carballo, J.; Silva, M.

    2016-05-01

    One of the main goals of the BIOSTIRLING-4SKA project, funded by the European Commission, is the development of a hybrid Dish-Stirling system based on a hybrid solar-gas receiver, which has been designed by the Swedish company Cleanergy. A ray tracing study, which is part of the design of this parabolic dish system, is presented in this paper. The study pursues the optimization of the concentrator and receiver cavity geometry according to the requirements of flux distribution on the receiver walls set by the designer of the hybrid receiver. The ray-tracing analysis has been performed with the open source software Tonatiuh, a ray-tracing tool specifically oriented to the modeling of solar concentrators.

  16. Beyond mean-field effects in Bloch Oscillations of cold atoms in an optical cavity

    NASA Astrophysics Data System (ADS)

    Venkatesh Balasubramanian, Prasanna; O'Dell, Duncan

    2012-06-01

    In our earlier publication [1] we proposed using Bloch oscillations of cold atoms inside an Fabry-Perot resonator for sensitive measurements of force. The analysis in [1] was performed using a coherent mean-field description for the atoms and the light. In the current work we extend this description substantially by including the effects of fluctuations in both the atomic and light fields. This analysis is used to set realistic limits on the precision to which the force can be measured. We also make contact with the optomechanical description of the combined atom-cavity system which has proved so successful for describing recent pioneering experiments [2].[4pt] [1] B. Prasanna Venkatesh et al, Phys. Rev. A 80, 063834 (2009).[0pt] [2] S. Gupta et al, Phys. Rev. Lett. 99, 213601 (2007); F.Brennecke et al, Science 322, 235 (2008).

  17. Measurement of Aerosol Optical Properties by Integrating Cavity Ring-Down Spectroscopy and Nephelometry

    DTIC Science & Technology

    2013-01-01

    and agricultural burning. Mineral dust is formed from storms over arid areas such as the Sahara desert. Dust particles can be transported several...CLASSIFICATION OF: We measure scattering coefficient , extinction coefficient , scattering cross-section and single scattering albedo of 102, 203 and 296...We compared experimental optical property measurements with Mie theory predicted values. The scattering coefficient and scattering cross-section

  18. Interference and dynamics of light from a distance-controlled atom pair in an optical cavity

    NASA Astrophysics Data System (ADS)

    Neuzner, A.; Körber, M.; Morin, O.; Ritter, S.; Rempe, G.

    2016-05-01

    Interference is central to quantum physics and occurs when indistinguishable paths exist, as in a double-slit experiment. Replacing the two slits with single atoms introduces optical nonlinearities for which non-trivial interference phenomena are predicted. Their observation, however, has been hampered by difficulties in preparing the required atomic distribution, controlling the optical phases and detecting the faint light. Here we overcome all of these experimental challenges by combining an optical lattice for atom localization, an imaging system with single-site resolution and an optical resonator for light steering. We observe resonator-induced saturation of resonance fluorescence for constructive interference and non-zero emission with huge photon bunching for destructive interference. The latter is explained by atomic saturation and photon-pair generation, similar to predictions for free-space atoms. Our experimental setting allows realization of the Tavis-Cummings model for any number of atoms and photons, exploration of fundamental aspects of light-matter interaction and implementation of new quantum information processing protocols.

  19. A novel down-hole fiber optic sensor based on Fabry-Perot cavity and fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Chen, Shao-hua; Zhang, Peng; Tao, Guo; Zhao, Kun

    2010-11-01

    With the rapid development of fiber optic sensing technology, more and more related monitoring programs begin to play an important role in oil and gas exploration. In the past, down-hole monitoring of temperature and pressure was dependent on pump partner, electronic pressure gauge and the capillary pressure gauge. However, such devices show many disadvantages in stability, reliability, accuracy and so on. In the interest of special anti-corrosion, seals, high temperature, high pressure treatment, and long life, the fiber optic sensor is critically investigated and a new design approach of fiber temperature and pressure sensor based on Fiber Bragg Gratings and Fabry-Perot Cavity is presented, respectively. The temperature and pressure resolution of this sensor can be as high as 0.3°C and 3psi. Meanwhile, the sensor can work under the condition from 0 to 15000psi and from -25 to 300 °C. This paper describes the technical principles, characteristics and field application of the sensor in detail.

  20. Gas cell based on optical contacting for fundamental spectroscopy studies with initial reference absorption spectrum of H2O vapor at 1723 K and 0.0235 bar

    NASA Astrophysics Data System (ADS)

    Melin, Scott T.; Sanders, Scott T.

    2016-09-01

    A gas cell, using optically contacted sapphire windows to form a hot vapor seal, has been created for high temperature fundamental spectroscopy studies. It is designed to operate at temperatures from 280-2273 K and pressures from vacuum to 1.3 bar. Using the cell in conjunction with an external cavity diode laser spectrometer, a reference H2O vapor absorption spectrum at P=0.0235±0.0036 bar and T=1723±6 K was measured with 0.0001 cm-1 resolution over the 7326-7598 cm-1 range. Comparison of the measured spectrum to simulations reveals errors in both the HITEMP and BT2 databases. This work establishes heated static cell capabilities at temperatures well above the typical limit of approximately 1300 K set by quartz material properties. This paper addresses the design of the cell as well as the cell's limitations.

  1. Efficient all-optical switch using a {Lambda} atom in a cavity QED system

    SciTech Connect

    Nielsen, Anne E. B.; Kerckhoff, Joseph

    2011-10-15

    We propose an all-optical switch constructed from a two-mode optical resonator containing a strongly coupled, three-state system. The coupling allows a weak, continuous wave laser drive to incoherently control the transmission of a much stronger, continuous wave signal laser into (and through) the resonator. We demonstrate that in this simple setup the presence of a control drive with 1/10th the power of the signal drive can induce near complete reflection of the signal, while its absence allows for near complete transmission. The switch can also be operated as a set-reset relay with two control inputs that efficiently drive the switch into either the reflecting or the transmitting state.

  2. An optical beam frequency reference with 10{sup -14} range frequency instability

    SciTech Connect

    McFerran, J. J.; Hartnett, J. G.; Luiten, A. N.

    2009-07-20

    The authors report on a thermal beam optical frequency reference with a fractional frequency instability of 9.2x10{sup -14} at 1 s reducing to 2.0x10{sup -14} at 64 s before slowly rising. The {sup 1}S{sub 0}{r_reversible}{sup 3}P{sub 1} intercombination line in neutral {sup 40}Ca is used as a frequency discriminator. A diode laser at 423 nm probes the ground state population after a Ramsey-Borde sequence of 657 nm light-field interactions on the atoms. The measured fractional frequency instability is an order of magnitude improvement on previously reported thermal beam optical clocks. The photon shot-noise of the read-out produces a limiting square root {lambda}-variance of 7x10{sup -14}/{radical}({tau})

  3. OPTICAL SPECTRA OF CANDIDATE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) FLAT-SPECTRUM RADIO SOURCES

    SciTech Connect

    Titov, O.; Stanford, Laura M.; Johnston, Helen M.; Hunstead, Richard W.; Pursimo, T.; Jauncey, David L.; Maslennikov, K.

    2013-07-01

    Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame. We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.

  4. OPTICAL SPECTRA OF CANDIDATE SOUTHERN HEMISPHERE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) RADIO SOURCES

    SciTech Connect

    Titov, O.; Jauncey, D. L.; Johnston, H. M.; Hunstead, R. W.; Christensen, L.

    2011-11-15

    We present the results of spectroscopic observations of the optical counterparts of 47 southern radio sources from the candidate International Celestial Reference Catalogue as part of a very long baseline interferometry (VLBI) program to strengthen the celestial reference frame, especially in the south. We made the observations with the 3.58 m European Southern Observatory New Technology Telescope. We obtained redshifts for 30 quasars and one radio galaxy, with a further seven objects being probable BL Lac objects with featureless spectra. Of the remainder, four were clear misidentifications with Galactic stars and five had low signal-to-noise spectra and could not be classified. These results, in combination with new VLBI data of the radio sources with redshifts more than 2, add significantly to the existing data needed to refine the distribution of source proper motions over the celestial sphere.

  5. Phase shift multiplication effect of all-optical analog to electromagnetically induced transparency in two micro-cavities side coupled to a waveguide system

    SciTech Connect

    Wang, Boyun; Wang, Tao Tang, Jian; Li, Xiaoming; Dong, Chuanbo

    2014-01-14

    We propose phase shift multiplication effect of all-optical analog to electromagnetically induced transparency in two photonic crystal micro-cavities side coupled to a waveguide system through external optical pump beams. With dynamically tuning the propagation phase of the line waveguide, the phase shift of the transmission spectrum in two micro-cavities side coupled to a waveguide system is doubled along with the phase shift of the line waveguide. π-phase shift and 2π-phase shift of the transmission spectrum are obtained when the propagation phase of the line waveguide is tuned to 0.5π-phase shift and π-phase shift, respectively. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and the coupled-mode formalism. These results show a new direction to the miniaturization and the low power consumption of microstructure integration photonic devices in optical communication and quantum information processing.

  6. Possible influence of surface oxides on the optical response of high-purity niobium material used in the fabrication of superconducting radio frequency cavity

    NASA Astrophysics Data System (ADS)

    Singh, Nageshwar; Deo, M. N.; Roy, S. B.

    2016-09-01

    We have investigated the possible influence of surface oxides on the optical properties of a high-purity niobium (Nb) material for fabrication of superconducting radio frequency (SCRF) cavities. Various peaks in the infrared region were identified using Fourier transform infrared and Raman spectroscopy. Optical response functions such as complex refractive index, dielectric and conductivity of niobium were compared with the existing results on oxides free Nb and Cu. It was observed that the presence of a mixture of niobium-oxides, and probably near other surface impurities, appreciably influence the conducting properties of the material causing deviation from the typical metallic characteristics. In this way, the key result of this work is the observation, identification of vibrational modes of some of surface complexes and study of its influences on the optical responses of materials. This method of spectroscopic investigation will help in understanding the origin of degradation of performance of SCRF cavities.

  7. Generation of squeezed light with a monolithic optical parametric oscillator: simultaneous achievement of phase matching and cavity resonance by temperature control.

    PubMed

    Yonezawa, Hidehiro; Nagashima, Koyo; Furusawa, Akira

    2010-09-13

    We generate squeezed state of light at 860 nm with a monolithic optical parametric oscillator. The optical parametric oscillator consists of a periodically poled KTiOPO(4) crystal, both ends of which are spherically polished and mirror-coated. We achieve both phase matching and cavity resonance by controlling only the temperature of the crystal. We observe up to -8.0±0.2 dB of squeezing with the bandwidth of 142 MHz. Our technique makes it possible to drive many monolithic cavities simultaneously by a single laser. Hence our monolithic optical parametric oscillator is quite suitable to continuous-variable quantum information experiments where we need a large number of highly squeezed light beams.

  8. A hybrid-structure of a cavity polariton system and an optical-ring

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Xie, Wei; Zhang, Long; Wang, Yinglei; Gu, Jie; Hu, Tao; Wu, Lin; Chen, Zhanghai

    2015-06-01

    We demonstrate a hybrid-structure of a ZnO polariton system and an optical-ring in this work. In this structure, we create room-temperature polariton condensate in the ZnO nanowire. The coherent light emission from the polariton condensate is coupled to the ring, and the coherence of the coupled light is examined by Young interference experiment using a photoluminescence mapping system. Finally, the efficiency of the waveguide of the coupled light in the ring has been carefully discussed.

  9. Circuit-tunable sub-wavelength THz resonators: hybridizing optical cavities and loop antennas.

    PubMed

    Paulillo, B; Manceau, J M; Degiron, A; Zerounian, N; Beaudoin, G; Sagnes, I; Colombelli, R

    2014-09-08

    We demonstrate subwavelength electromagnetic resonators operating in the THz spectral range, whose spectral properties and spatial/angular patterns can be engineered in a similar way to an electronic circuit. We discuss the device concept, and we experimentally study the tuning of the resonant frequency as a function of variable capacitances and inductances. We then elucidate the optical coupling properties. The radiation pattern, obtained by angle-resolved reflectance, reveals that the system mainly couples to the outside world via a magnetic dipolar interaction.

  10. Precise optical dosimetry in low-level laser therapy of soft tissues in oral cavity

    NASA Astrophysics Data System (ADS)

    Stoykova, Elena V.; Sabotinov, O.

    2004-06-01

    The new low level laser therapy (LLLT) is widely applied for treatment of diseases of the oral mucosa and parodont. Depending on indication, different optical tips and light-guides are used to create beams with a required shape. However, to the best of our knowledge, the developed irradiation geometries are usually proposed assuming validity of Bouger-Lambert law. This hardly corresponds to the real situation because of the dominating multiple scattering within 600-1200 nm range that destroys correlation between the emitted laser beam and the spatial distribution of the absorbed dose inside the tissue. The aim of this work is to base the dosimetry of the LLLT procedures of periodontal tissues on radiation transfer theory using a flexible Monte-Carlo code. We studied quantitatively the influence of tissue optical parameters (absorption and scattering coefficients, tissue refraction index, anisotropy factor) on decreasing of correlation between the emitted beam and the energy deposition for converging or diverging beams. We evaluated energy deposition for the developed by us LLLT system in a 3-D model of periodontal tissues created using a cross-sectional image of this region with internal structural information on the gingival and the tooth. The laser source is a CW diode laser emitting elliptical beam within 650-675 nm at output power 5-30 mW. To determine the geometry of the irradiating beam we used CCD camera Spiricon LBA 300.

  11. Selective Virus Detection in Complex Sample Matrices with Photonic Crystal Optical Cavities

    PubMed Central

    Pal, Sudeshna; Yadav, Amrita R.; Lifson, Mark A.; Baker, James E.; Fauchet, Philippe M.; Miller, Benjamin L.

    2013-01-01

    Rapid, sensitive, and selective detection of viruses is critical for applications in medical diagnostics, biosecurity, and environmental safety. In this article, we report the application of a point-defect-coupled W1 photonic crystal (PhC) waveguide biosensor to label-free optical detection of viruses. Fabricated on a silicon-on-insulator (SOI) substrate using electron-beam (e-beam) lithography and reactive-ion-etching, the PhC sensing platform allows optical detection based on resonant mode shifts in response to ambient refractive index changes produced by infiltration of target biomaterial within the holes of the PhC structure. Finite difference time domain (FDTD) calculations were performed to assist with design of the sensor, and to serve as a theoretical benchmark against which experimental results could be compared. Using Human Papillomavirus virus-like particles (VLPs) spiked in 10% fetal bovine serum as a model system, we observed a limit of detection of 1.4 nM in simple (buffer only) or complex (10% serum) sample matrices. The use of anti-VLP antibodies specific for intact VLPs with the PhC sensors provided highly selective VLP detection. PMID:23434758

  12. Selective virus detection in complex sample matrices with photonic crystal optical cavities.

    PubMed

    Pal, Sudeshna; Yadav, Amrita R; Lifson, Mark A; Baker, James E; Fauchet, Philippe M; Miller, Benjamin L

    2013-06-15

    Rapid, sensitive, and selective detection of viruses is critical for applications in medical diagnostics, biosecurity, and environmental safety. In this article, we report the application of a point-defect-coupled W1 photonic crystal (PhC) waveguide biosensor to label-free optical detection of viruses. Fabricated on a silicon-on-insulator (SOI) substrate using electron-beam (e-beam) lithography and reactive-ion-etching, the PhC sensing platform allows optical detection based on resonant mode shifts in response to ambient refractive index changes produced by infiltration of target biomaterial within the holes of the PhC structure. Finite difference time domain (FDTD) calculations were performed to assist with design of the sensor, and to serve as a theoretical benchmark against which experimental results could be compared. Using Human Papillomavirus virus-like particles (VLPs) spiked in 10% fetal bovine serum as a model system, we observed a limit of detection of 1.5 nM in simple (buffer only) or complex (10% serum) sample matrices. The use of anti-VLP antibodies specific for intact VLPs with the PhC sensors provided highly selective VLP detection.

  13. Development of a first-generation miniature multiple reference optical coherence tomography imaging device

    NASA Astrophysics Data System (ADS)

    McNamara, Paul M.; Dsouza, Roshan; O'Riordan, Colm; Collins, Seán; O'Brien, Peter; Wilson, Carol; Hogan, Josh; Leahy, Martin J.

    2016-12-01

    Multiple reference optical coherence tomography (MR-OCT) is a technology ideally suited to low-cost, compact OCT imaging. This modality is an extension of time-domain OCT with the addition of a partial mirror in front of the reference mirror. This enables extended, simultaneous depth scanning with the relatively short scan range of a miniature voice coil motor on which the scanning mirror is mounted. This work details early stage development of the first iteration of a miniature MR-OCT device. This iteration utilizes a fiber-coupled input from an off-board superluminescent diode. The dimensions of the module are 40×57 mm. Off-the-shelf miniature optical components, voice coil motors, and photodetectors are used, with the complexity of design depending on the specific application. The photonic module can be configured as either polarized or nonpolarized and can include balanced detection. The results shown in this work are from the nonpolarized device. The system was characterized through measurement of the input spectrum, axial resolution, and signal-to-noise ratio. Typical B-scans of static and in vivo samples are shown, which illustrate the potential applications for such a technology.

  14. Tracking Optical and Electronic Behaviour of Quantum Contacts in Sub-Nanometre Plasmonic Cavities

    PubMed Central

    Sanders, A.; Bowman, R. W.; Baumberg, J. J.

    2016-01-01

    Plasmonic interactions between two metallic tips are dynamically studied in a supercontinuum dark-field microscope and the transition between coupled and charge-transfer plasmons is directly observed in the sub-nm regime. Simultaneous measurement of the dc current, applied force, and optical scattering as the tips come together is used to determine the effects of conductive pathways within the plasmonic nano-gap. Critical conductances are experimentally identified for the first time, determining the points at which quantum tunnelling and conductive charge transport begin to influence plasmon coupling. These results advance our understanding of the relationship between conduction and plasmonics, and the fundamental quantum mechanical behaviours of plasmonic coupling. PMID:27608825

  15. Two-dimensional dissipative rogue waves due to time-delayed feedback in cavity nonlinear optics

    NASA Astrophysics Data System (ADS)

    Tlidi, Mustapha; Panajotov, Krassimir

    2017-01-01

    We demonstrate a way to generate two-dimensional rogue waves in two types of broad area nonlinear optical systems subject to time-delayed feedback: in the generic Lugiato-Lefever model and in the model of a broad-area surface-emitting laser with saturable absorber. The delayed feedback is found to induce a spontaneous formation of rogue waves. In the absence of delayed feedback, spatial pulses are stationary. The rogue waves are exited and controlled by the delay feedback. We characterize their formation by computing the probability distribution of the pulse height. The long-tailed statistical contribution, which is often considered as a signature of the presence of rogue waves, appears for sufficiently strong feedback. The generality of our analysis suggests that the feedback induced instability leading to the spontaneous formation of two-dimensional rogue waves is a universal phenomenon.

  16. Development of a miniature multiple reference optical coherence tomography imaging device

    NASA Astrophysics Data System (ADS)

    McNamara, Paul M.; O'Riordan, Colm; Collins, Seán.; O'Brien, Peter; Wilson, Carol; Hogan, Josh; Leahy, Martin J.

    2016-03-01

    Multiple reference optical coherence tomography (MR-OCT) is a new technology ideally suited to low-cost, compact OCT imaging. This modality is an extension of time-domain OCT with the addition of a partial mirror in front of the reference mirror. This enables extended, simultaneous depth scanning with the relatively short sweep of a miniature voice coil motor on which the scanning mirror is mounted. Applications of this technology include biometric security, ophthalmology, personal health monitoring and non-destructive testing. This work details early-stage development of the first iteration of a miniature MR-OCT device. This device utilizes a fiber-coupled input from an off-board superluminescent diode (SLD). Typical dimensions of the module are 40 × 57 mm, but future designs are expected to be more compact. Off-the-shelf miniature optical components, voice coil motors and photodetectors are used, with the complexity of design depending on specific applications. The photonic module can be configured as either polarized or non-polarized and can include balanced detection. The photodetectors are directly connected to a printed circuit board under the module containing a transimpedance amplifier with complimentary outputs. The results shown in this work are from the non-polarized device. Assembly of the photonic modules requires extensive planning. In choosing the optical components, Zemax simulations are performed to model the beam characteristics. The physical layout is modeled using Solidworks and each component is placed and aligned via a well-designed alignment procedure involving an active-alignment pick-and-place assembly system.

  17. Non-intrusive tunable resonant microwave cavity for optical detected magnetic resonance of NV centres in nanodiamonds

    NASA Astrophysics Data System (ADS)

    Le Floch, Jean-Michel; Bradac, Carlo; Volz, Thomas; Tobar, Michael E.; Castelletto, Stefania

    2013-12-01

    Optically detected magnetic resonance (ODMR) in nanodiamond nitrogen-vacancy (NV) centres is usually achieved by applying a microwave field delivered by micron-size wires, strips or antennas directly positioned in very close proximity (~ μm) of the nanodiamond crystals. The microwave field couples evanescently with the ground state spin transition of the NV centre (2.87 GHz at zero magnetic field), which results in a reduction of the centre photoluminescence. We propose an alternative approach based on the construction of a dielectric resonator. We show that such a resonator allows for the efficient detection of NV spins in nanodiamonds without the constraints associated to the laborious positioning of the microwave antenna next to the nanodiamonds, providing therefore improved flexibility. The resonator is based on a tunable Transverse Electric Mode in a dielectric-loaded cavity, and we demonstrate that the resonator can detect single NV centre spins in nanodiamonds using less microwave power than alternative techniques in a non-intrusive manner. This method can achieve higher precision measurement of ODMR of paramagnetic defects spin transition in the micro to millimetre-wave frequency domain. Our approach would permit the tracking of NV centres in biological solutions rather than simply on the surface, which is desirable in light of the recently proposed applications of using nanodiamonds containing NV centres for spin labelling in biological systems with single spin and single particle resolution.

  18. A simple fiber-optic humidity sensor based on extrinsic Fabry-Perot cavity constructed by cellulose acetate butyrate film

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Huang, Wo-Bin; Huang, Xu-Guang; Yu, Chang-yuan

    2013-12-01

    A fiber-optic relative humidity sensor with an extrinsic micro Fabry-Perot cavity constructed with a thin layer of cellulose acetate butyrate coated on a fiber end is presented. Its operational principle is based on the relative-humidity-dependent wavelength shift of the interference fringes formed by Fresnel reflections from both interfaces of the thin film. Both the experimental and theoretical analyses are investigated in detail. The experimental data for relative humidity ranging from 8.8% to 88.1% are measured in the both humidification and dehumidification processes, which fits the linear equation very well with a value of R2 = 0.9946. As observed, it shows a high sensitivity of 0.307 nm/%RH with a high resolution of 0.06%. The time-dependent response of the sensor is estimated. The long term stability of the sensor is also addressed with high precision of ±0.03% over 100 min. The proposed relative humidity sensor has a simple, solid, and compact structure.

  19. In vivo microvascular imaging of human oral and nasal cavities using swept-source optical coherence tomography with a single forward/side viewing probe

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Wang, Ruikang K.

    2015-03-01

    We report three-dimensional (3D) imaging of microcirculation within human cavity tissues in vivo using a high-speed swept-source optical coherence tomography (SS-OCT) at 1.3 μm with a modified probe interface. Volumetric structural OCT images of the inner tissues of oral and nasal cavities are acquired with a field of view of 2 mm x 2 mm. Two types of disposable and detachable probe attachments are devised and applied to the port of the imaging probe of OCT system, enabling forward and side imaging scans for selective and easy access to specific cavity tissue sites. Blood perfusion is mapped with OCT-based microangiography from 3D structural OCT images, in which a novel vessel extraction algorithm is used to decouple dynamic light scattering signals, due to moving blood cells, from the background scattering signals due to static tissue elements. Characteristic tissue anatomy and microvessel architectures of various cavity tissue regions of a healthy human volunteer are identified with the 3D OCT images and the corresponding 3D vascular perfusion maps at a level approaching capillary resolution. The initial finding suggests that the proposed method may be engineered into a promising tool for evaluating and monitoring tissue microcirculation and its alteration within a wide-range of cavity tissues in the patients with various pathological conditions.

  20. Development of traceable measurement of the diffuse optical properties of solid reference standards for biomedical optics at National Institute of Standards and Technology.

    PubMed

    Lemaillet, Paul; Bouchard, Jean-Pierre; Allen, David W

    2015-07-01

    The development of a national reference instrument dedicated to the measurement of the scattering and absorption properties of solid tissue-mimicking phantoms used as reference standards is presented. The optical properties of the phantoms are measured with a double-integrating sphere setup in the steady-state domain, coupled with an inversion routine of the adding-doubling procedure that allows for the computation of the uncertainty budget for the measurements. The results are compared to the phantom manufacturer's values obtained by a time-resolved approach. The results suggest that the agreement between these two independent methods is within the estimated uncertainties. This new reference instrument will provide optical biomedical research laboratories with reference values for absolute diffuse optical properties of phantom materials.

  1. HIgh-Q Optical Micro-cavity Resonators as High Sensitive Bio-chemical and Ultrasonic Sensors

    NASA Astrophysics Data System (ADS)

    Ling, Tao

    Optical micro-cavity resonators have quickly emerged in the past few years as a new sensing platform in a wide range of applications, such as bio-chemical molecular detection, environmental monitoring, acoustic and electromagnetic waves detection. In this thesis, we will mainly focus on developing high sensitivity silica micro-tube resonator bio-chemical sensors and high sensitivity polymer micro-ring resonator acoustic sensors. In high sensitivity silica micro-tube resonator bio-chemical sensors part: We first demonstrated a prism coupled silica micro-tube bio-chemical sensing platform to overcome the reliability problem in a fiber coupled thin wall silica micro-tube sensing platform. In refractive index sensing experiment, a unique resonance mode with sensitivity around 600nm/refractive index unit (RIU) has been observed. Surface sensing experiments also have been performed in this platform to detect lipid monolayer, lipid bilayer, electrostatic self assemble layer-by-layer as well as the interaction between the lipid bilayer and proteins. Then a theoretical study on various sensing properties on the silica micro-tube based sensing platform has been realized. Furthermore, we have proposed a coupled cavity system to further enhance the device's sensitivity above 1000nm/RIU. In high sensitivity polymer micro-ring resonator acoustic sensors part: We first presented a simplified fabrication process and realized a polymer microring with a Q factor around 6000. The fabricated device has been used to detect acoustic wave with noise equivalent pressure (NEP) around 230Pa over 1-75MHz frequency rang, which is comparable to state-of-art piezoelectric transducer and the device's frequency response also have been characterized to be up to 90MHz. A new fabrication process combined with resist reflow and thermal oxidation process has been used to improve the Q factor up to 10 5 and the device's NEP has been tested to be around 88Pa over 1-75MHz range. Further improving the

  2. Remote displacement measurement using a passive interferometer with a fiber-optic link

    NASA Technical Reports Server (NTRS)

    Beheim, G.

    1985-01-01

    Remote displacement measurement is demonstrated using a Fabry-Perot cavity with a multimode optical fiber link. The sensing cavity modulates, as a function of its length, the spectrum of a light-emitting diode (LED). The light returns via the fiber and is analyzed by a tunable reference cavity. A closed-loop control causes the reference cavity to track the sensing cavity length within 2 x 10 to the -12th m. Displacement range is 2 x 10 to the -6th m. The reference cavity length is measured interferometrically, using a laser, to obtain the sensing cavity length. Advantages of this sensing technique include compatibility with multimode fiber-optic components, high immunity to optical losses, and large dynamic range.

  3. Hollow waveguide cavity ringdown spectroscopy

    NASA Technical Reports Server (NTRS)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  4. Reference dataset of volcanic ash physicochemical and optical properties for atmospheric measurement retrievals and transport modelling

    NASA Astrophysics Data System (ADS)

    Vogel, Andreas; Durant, Adam; Sytchkova, Anna; Diplas, Spyros; Bonadonna, Costanza; Scarnato, Barbara; Krüger, Kirstin; Kylling, Arve; Kristiansen, Nina; Stohl, Andreas

    2016-04-01

    Explosive volcanic eruptions emit up to 50 wt.% (total erupted mass) of fine ash particles (<63 microns), which individually can have theoretical atmospheric lifetimes that span hours to days. Depending on the injection height, fine ash may be subsequently transported and dispersed by the atmosphere over 100s - 1000s km and can pose a major threat for aviation operations. Recent volcanic eruptions, such as the 2010 Icelandic Eyjafjallajökull event, illustrated how volcanic ash can severely impact commercial air traffic. In order to manage the threat, it is important to have accurate forecast information on the spatial extent and absolute quantity of airborne volcanic ash. Such forecasts are constrained by empirically-derived estimates of the volcanic source term and the nature of the constituent volcanic ash properties. Consequently, it is important to include a quantitative assessment of measurement uncertainties of ash properties to provide realistic ash forecast uncertainty. Currently, information on volcanic ash physicochemical and optical properties is derived from a small number of somewhat dated publications. In this study, we provide a reference dataset for physical (size distribution and shape), chemical (bulk vs. surface chemistry) and optical properties (complex refractive index in the UV-vis-NIR range) of a representative selection of volcanic ash samples from 10 different volcanic eruptions covering the full variability in silica content (40-75 wt.% SiO2). Through the combination of empirical analytical methods (e.g., image analysis, Energy Dispersive Spectroscopy, X-ray Photoelectron Spectroscopy, Transmission Electron Microscopy and UV/Vis/NIR/FTIR Spectroscopy) and theoretical models (e.g., Bruggeman effective medium approach), it was possible to fully capture the natural variability of ash physicochemical and optical characteristics. The dataset will be applied in atmospheric measurement retrievals and atmospheric transport modelling to determine

  5. The impact of relative intensity noise on the signal in multiple reference optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Neuhaus, Kai; Subhash, Hrebesh; Alexandrov, Sergey; Dsouza, Roshan; Hogan, Josh; Wilson, Carol; Leahy, Martin; Slepneva, Svetlana; Huyet, Guillaume

    2016-03-01

    Multiple reference optical coherence tomography (MR-OCT) applies a unique low-cost solution to enhance the scanning depth of standard time domain OCT by inserting an partial mirror into the reference arm of the interferometric system. This novel approach achieves multiple reflections for different layers and depths of an sample with minimal effort of engineering and provides an excellent platform for low-cost OCT systems based on well understood production methods for micro-mechanical systems such as CD/DVD pick-up systems. The direct integration of a superluminescent light-emitting diode (SLED) is a preferable solution to reduce the form- factor of an MR-OCT system. Such direct integration exposes the light source to environmental conditions that can increase fluctuations in heat dissipation and vibrations and affect the noise characteristics of the output spectrum. This work describes the impact of relative intensity noise (RIN) on the quality of the interference signal of MR-OCT related to a variety of environmental conditions, such as temperature.

  6. An Impedance-Based Mold Sensor with on-Chip Optical Reference.

    PubMed

    Papireddy Vinayaka, Poornachandra; van den Driesche, Sander; Blank, Roland; Tahir, Muhammad Waseem; Frodl, Mathias; Lang, Walter; Vellekoop, Michael J

    2016-09-28

    A new miniaturized sensor system with an internal optical reference for the detection of mold growth is presented. The sensor chip comprises a reaction chamber provided with a culture medium that promotes the growth of mold species from mold spores. The mold detection is performed by measuring impedance changes with integrated electrodes fabricated inside the reaction chamber. The impedance change in the culture medium is caused by shifts in the pH (i.e., from 5.5 to 8) as the mold grows. In order to determine the absolute pH value without the need for calibration, a methyl red indicator dye has been added to the culture medium. It changes the color of the medium as the pH passes specific values. This colorimetric principle now acts as a reference measurement. It also allows the sensitivity of the impedance sensor to be established in terms of impedance change per pH unit. Major mold species that are involved in the contamination of food, paper and indoor environments, like Fusarium oxysporum, Fusarium incarnatum, Eurotium amstelodami, Aspergillus penicillioides and Aspergillus restrictus, have been successfully analyzed on-chip.

  7. An Impedance-Based Mold Sensor with on-Chip Optical Reference

    PubMed Central

    Papireddy Vinayaka, Poornachandra; van den Driesche, Sander; Blank, Roland; Tahir, Muhammad Waseem; Frodl, Mathias; Lang, Walter; Vellekoop, Michael J.

    2016-01-01

    A new miniaturized sensor system with an internal optical reference for the detection of mold growth is presented. The sensor chip comprises a reaction chamber provided with a culture medium that promotes the growth of mold species from mold spores. The mold detection is performed by measuring impedance changes with integrated electrodes fabricated inside the reaction chamber. The impedance change in the culture medium is caused by shifts in the pH (i.e., from 5.5 to 8) as the mold grows. In order to determine the absolute pH value without the need for calibration, a methyl red indicator dye has been added to the culture medium. It changes the color of the medium as the pH passes specific values. This colorimetric principle now acts as a reference measurement. It also allows the sensitivity of the impedance sensor to be established in terms of impedance change per pH unit. Major mold species that are involved in the contamination of food, paper and indoor environments, like Fusarium oxysporum, Fusarium incarnatum, Eurotium amstelodami, Aspergillus penicillioides and Aspergillus restrictus, have been successfully analyzed on-chip. PMID:27690039

  8. Radio-optical reference frame link using the U.S. Naval observatory astrograph and deep CCD imaging

    SciTech Connect

    Zacharias, N.; Zacharias, M. I.

    2014-05-01

    Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reduced following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3σ level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.

  9. A radio/optical reference frame. 5: Additional source positions in the mid-latitude southern hemisphere

    NASA Technical Reports Server (NTRS)

    Russell, J. L.; Reynolds, J. E.; Jauncey, D. L.; De Vegt, C.; Zacharias, N.; Ma, C.; Fey, A. L.; Johnston, K. J.; Hindsley, R.; Hughes, J. A.

    1994-01-01

    We report new accurate radio position measurements for 30 sources, preliminary positions for two sources, improved radio postions for nine additional sources which had limited previous observations, and optical positions and optical-radio differences for six of the radio sources. The Very Long Baseline Interferometry (VLBI) observations are part of the continuing effort to establish a global radio reference frame of about 400 compact, flat spectrum sources, which are evenly distributed across the sky. The observations were made using Mark III data format in four separate sessions in 1988-89 with radio telescopes at Tidbinbilla, Australia, Kauai, USA, and Kashima, Japan. We observed a total of 54 sources, including ten calibrators and three which were undetected. The 32 new source positions bring the total number in the radio reference frame catalog to 319 (172 northern and 147 southern) and fill in the zone -25 deg greater than delta greater than -45 deg which, prior to this list, had the lowest source density. The VLBI positions have an average formal precision of less than 1 mas, although unknown radio structure effects of about 1-2 mas may be present. The six new optical postion measurements are part of the program to obtain positions of the optical counterparts of the radio reference frame source and to map accurately the optical on to the radio reference frames. The optical measurements were obtained from United States Naval Observatory (USNO) Black Birch astrograph plates and source plates from the AAT, and Kitt Peak National Observatory (KPNO) 4 m, and the European Southern Observatory (ESO) Schmidt. The optical positions have an average precision of 0.07 sec, mostly due to the zero point error when adjusted to the FK5 optical frame using the IRS catalog. To date we have measured optical positions for 46 sources.

  10. An instrument for measurements of BrO with LED-based Cavity-Enhanced Differential Optical Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoch, D. J.; Buxmann, J.; Sihler, H.; Pöhler, D.; Zetzsch, C.; Platt, U.

    2014-01-01

    The chemistry of the troposphere and specifically the global tropospheric ozone budget is affected by reactive halogen species such as bromine monoxide (BrO) or chlorine monoxide (ClO). Especially BrO plays an important role in the processes of ozone destruction, disturbance of NOx and HOx chemistry, oxidation of dimethyl sulfide (DMS), and the deposition of elementary mercury. In the troposphere BrO has been detected in polar regions, at salt lakes, in volcanic plumes, and in the marine boundary layer. For a better understanding of these processes, field measurements as well as reaction chamber studies are performed. In both cases instruments with high spatial resolution and high sensitivity are necessary. A Cavity-Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) instrument with an open path measurement cell was designed and applied. For the first time, a CE-DOAS instrument is presented using an UV LED in the 325-365 nm wavelength range. In laboratory studies, BrO as well as HONO, HCHO, O3, and O4 could be reliably determined at detection limits of 20 ppt for BrO, 9.1 ppb for HCHO, 970 ppt for HONO, and 91 ppb for O3, for five minutes integration time. The best detection limits were achieved for BrO (11 ppt), HCHO (5.1 ppb), HONO (490 ppt), and O3 (59 ppb) for integration times of 81 minutes or less. Comparison with established White system (WS) DOAS and O3 monitor measurements demonstrate the reliability of the instrument.

  11. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing.

    PubMed

    Liao, C R; Hu, T Y; Wang, D N

    2012-09-24

    We demonstrate a fiber in-line Fabry-Perot interferometer cavity sensor for refractive index measurement. The interferometer cavity is formed by drilling a micro-hole at the cleaved fiber end facet, followed by fusion splicing. A micro-channel is inscribed by femtosecond laser micromachining to vertically cross the cavity to allow liquid to flow in. The refractive index sensitivity obtained is ~994 nm/RIU (refractive index unit). Such a device is simple in configuration, easy for fabrication and reliable in operation due to extremely low temperature cross sensitivity of ~4.8 × 10(-6) RIU/°C.

  12. Highly stabilized optical frequency comb interferometer with a long fiber-based reference path towards arbitrary distance measurement.

    PubMed

    Nakajima, Yoshiaki; Minoshima, Kaoru

    2015-10-05

    An optical frequency comb interferometer with a 342-m-long fiber-based optical reference path was developed. The long fiber-based reference path was stabilized to 10(-12)-order stability by using a fiber noise cancellation technique, and small temperature changes on the millikelvin order were detected by measuring an interferometric phase signal. Pulse number differences of 30 and 61 between the measurement and reference paths were determined precisely, with slight tuning of the 53.4 MHz repetition frequency. Moreover, with pulse number difference of 61, a 6.4-m-wide scanning for the relative pulse position is possible only by 1 MHz repetition frequency tuning, which makes pulses overlapped for arbitrary distance. Such wide-range high-precision delay length scanning can be used to measure arbitrary distances by using a highly stabilized long fiber-based reference path.

  13. Optical properties and resonant modes in GaN/AlGaN and InGaN/GaN multiple quantum well microdisk cavities

    NASA Astrophysics Data System (ADS)

    Dai, Lun; Zhang, Bei; Mair, Robin A.; Zeng, Kecai; Lin, Jinyu; Jigang, Hongxing; Botchkarev, Andrei; Kim, W.; Morkoc, Hadis; Khan, Muhammad A.

    1998-08-01

    Optical resonance modes have been observed in optically pumped microdisk cavities fabricated from 50 angstroms/50 angstroms GaN/AlxGa1-xN (x approximately 0.07) and 45 angstroms/45 angstroms InxGa1-xN/GaN (x approximately 0.15) multiple quantum well structures. Microdisks, approximately 9 micrometers in diameter and regularly spaced every 50 micrometers , were formed by ion beam etch process. Individual disk was pumped from 10 K to 300 K with 290 nm laser pulses focused to a spot size much smaller than the disk diameter. Optical properties of these microdisks have been studied by picosecond time-resolved photoluminescence (PL) spectroscopy. From cw PL emission spectra, optical modes corresponding to (1) the radial mode type with a spacing of 49 - 51 meV (both TE and TM) and (2) the Whispering gallery mode with a spacing of 15 - 16 meV were observed in the GaN-based microdisk cavities. The spacings of these modes are consistent with theoretical calculation. The implications of our results to III-Nitride microdisk lasers are discussed.

  14. Widely tunable eye-safe laser by a passively Q-switched photonic crystal fiber laser and an external-cavity optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Chang, H. L.; Zhuang, W. Z.; Huang, W. C.; Huang, J. Y.; Huang, K. F.; Chen, Y. F.

    2011-09-01

    We report on a widely tunable passively Q-switched photonic crystal fiber (PCF) laser with wavelength tuning range up to 80 nm. The PCF laser utilizes an AlGaInAs quantum well/barrier structure as a saturable absorber and incorporates an external-cavity optical parametric oscillator (OPO) to achieve wavelength conversion. Under a pump power of 13.1 W at 976 nm, the PCF laser generated 1029-nm radiation with maximum output energy of 750 μJ and was incident into an external-cavity OPO. The output energy and peak power of signal wave was found to be 138 μJ and 19 kW, respectively. By tuning the temperature of nonlinear crystal, periodically poled lithium niobate (PPLN), in the OPO, the signal wavelength in eye-safe regime from 1513 to 1593 nm was obtained.

  15. Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection

    SciTech Connect

    Alharthi, S. S. Hurtado, A.; Al Seyab, R. K.; Henning, I. D.; Adams, M. J.; Korpijarvi, V.-M.; Guina, M.

    2014-11-03

    We experimentally demonstrate the control of the light polarization emitted by a 1310 nm dilute nitride spin-Vertical Cavity Surface Emitting Laser (VCSEL) at room temperature. This is achieved by means of a combination of polarized optical pumping and polarized optical injection. Without external injection, the polarization of the optical pump controls that of the spin-VCSEL. However, the addition of the externally injected signal polarized with either left- (LCP) or right-circular polarization (RCP) is able to control the polarization of the spin-VCSEL switching it at will to left- or right-circular polarization. A numerical model has been developed showing a very high degree of agreement with the experimental findings.

  16. Remote open-path cavity-ringdown spectroscopic sensing of trace gases in air, based on distributed passive sensors linked by km-long optical fibers.

    PubMed

    He, Yabai; Jin, Chunjiang; Kan, Ruifeng; Liu, Jianguo; Liu, Wenqing; Hill, Julian; Jamie, Ian M; Orr, Brian J

    2014-06-02

    A continuous-wave, rapidly swept cavity-ringdown spectroscopic technique has been developed for localized atmospheric sensing of trace gases at remote sites. It uses one or more passive open-path optical sensor units, coupled by optical fiber over distances of >1 km to a single transmitter/receiver console incorporating a photodetector and a swept-frequency diode laser tuned to molecule-specific near-infrared wavelengths. Ways to avoid interference from stimulated Brillouin scattering in long optical fibers have been devised. This rugged open-path system, deployable in agricultural, industrial, and natural atmospheric environments, is used to monitor ammonia in air. A noise-limited minimum detectable mixing ratio of ~11 ppbv is attained for ammonia in nitrogen at atmospheric pressure.

  17. Optimized SIFTFlow for registration of whole-mount histology to reference optical images.

    PubMed

    Shojaii, Rushin; Martel, Anne L

    2016-10-01

    The registration of two-dimensional histology images to reference images from other modalities is an important preprocessing step in the reconstruction of three-dimensional histology volumes. This is a challenging problem because of the differences in the appearances of histology images and other modalities, and the presence of large nonrigid deformations which occur during slide preparation. This paper shows the feasibility of using densely sampled scale-invariant feature transform (SIFT) features and a SIFTFlow deformable registration algorithm for coregistering whole-mount histology images with blockface optical images. We present a method for jointly optimizing the regularization parameters used by the SIFTFlow objective function and use it to determine the most appropriate values for the registration of breast lumpectomy specimens. We demonstrate that tuning the regularization parameters results in significant improvements in accuracy and we also show that SIFTFlow outperforms a previously described edge-based registration method. The accuracy of the histology images to blockface images registration using the optimized SIFTFlow method was assessed using an independent test set of images from five different lumpectomy specimens and the mean registration error was [Formula: see text].

  18. Frequency dispersion of the first hyperpolarizabilities of reference molecules for nonlinear optics

    SciTech Connect

    Wergifosse, Marc de; Champagne, Benoît; Castet, Frédéric

    2015-05-21

    The frequency dispersion of the hyper-Rayleigh scattering first hyperpolarizabilities (β{sub HRS}) of five reference molecules for nonlinear optics, namely, carbon tetrachloride, chloroform, dichloromethane, acetonitrile, and trichloroacetonitrile, is described using the coupled-cluster singles and doubles quadratic response function (CCSD-QRF) as well as approximate schemes. Comparisons to approximate schemes in which the frequency dispersion is evaluated as either a multiplicative or an additive correction to the static hyperpolarizability yield the following observations: (i) errors of the order of 10% or less are usually encountered when using the multiplicative scheme for photon energies far from the lowest dipole-allowed excitation energies, (ii) spurious cases cannot be excluded as evidenced by carbon tetrachloride where the multiplicative scheme predicts a decrease of β{sub HRS} in contradiction to the increase obtained using the CCSD-QRF method, and (iii) the additive scheme is at best as reliable as the multiplicative approximation. The two-state approximation presents the advantage of correcting the wrong behavior of the additive and multiplicative schemes for carbon tetrachloride, but it is not an improved solution for the other compounds, while the question of selecting the appropriate dominant excited state remains unanswered. Finally, a new β{sub xyz} value of 18.9 a.u. is proposed for carbon tetrachloride in gas phase at λ = 1064 nm, to be compared with the measured 16.9 ± 1.4 a.u. value due to Shelton.

  19. Nine martian years of dust optical depth observations: A reference dataset

    NASA Astrophysics Data System (ADS)

    Montabone, Luca; Forget, Francois; Kleinboehl, Armin; Kass, David; Wilson, R. John; Millour, Ehouarn; Smith, Michael; Lewis, Stephen; Cantor, Bruce; Lemmon, Mark; Wolff, Michael

    2016-07-01

    We present a multi-annual reference dataset of the horizontal distribution of airborne dust from martian year 24 to 32 using observations of the martian atmosphere from April 1999 to June 2015 made by the Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey, and the Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). Our methodology to build the dataset works by gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. The resulting (irregularly) gridded maps (one per sol) were validated with independent observations of CDOD by PanCam cameras and Mini-TES spectrometers aboard the Mars Exploration Rovers "Spirit" and "Opportunity", by the Surface Stereo Imager aboard the Phoenix lander, and by the Compact Reconnaissance Imaging Spectrometer for Mars aboard MRO. Finally, regular maps of CDOD are produced by spatially interpolating the irregularly gridded maps using a kriging method. These latter maps are used as dust scenarios in the Mars Climate Database (MCD) version 5, and are useful in many modelling applications. The two datasets (daily irregularly gridded maps and regularly kriged maps) for the nine available martian years are publicly available as NetCDF files and can be downloaded from the MCD website at the URL: http://www-mars.lmd.jussieu.fr/mars/dust_climatology/index.html

  20. POINTS - A global reference frame opportunity. [Precision Optical Interferometer in Space

    NASA Technical Reports Server (NTRS)

    Chandler, J. F.; Reasenberg, R. D.

    1990-01-01

    POINTS is a space-based optical astrometric interferometer capable of measuring the angular separation of two stars about 90 degrees apart with 5-microarcsec nominal accuracy . During the intended ten-year mission, a repeated survey of a few hundred targets over the whole sky, including a few bright quasars, establish a 'rigid' reference grid with 0.5 microarcsec position uncertainties. At that level, the grid is free of regional biases and tied to the extra-Galactic frame that is the present best candidate for an inertial frame. POINTS will also determine parallaxes and annual proper motions at about the same level. Further, the planetary ephemeris frame is tied through stellar aberration to the grid at about 300 microarcsec. Additional targets of interest, to a limiting magnitude of greater than 20, are observed relative to the grid, yielding determinations with uncertainties depending on the observing schedule. Measurement at the microarcsec/year level of the apparent relative velocities of quasars that are widely separated on the sky severely test the assumption of cosmological quasar distances and may also constrain models of the early universe.

  1. Dermascope assisted interactive patient interface for multiple reference optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Dsouza, Roshan; Subhash, Hrebesh; Neuhaus, Kai; Hogan, Josh; Wilson, Carol; Leahy, Martin

    2014-02-01

    There has been a growing interest in the development of a low cost depth-resolved non-invasive dermis imaging tool for both clinical and fundamental investigations of skin diseases. Multiple reference optical coherence tomography (MR-OCT) is a recently developed miniature time-domain low coherence interferometeric imaging platform, which promises to fit into robust, cost-effective designs that are virtually solid state, typical of handheld devices. In this paper we demonstrate the feasibility of MR-OCT for dermis imaging applications by incorporating it in a dermascope, which provides simultaneous imaging of dermis and an interactive tool for beam steering and registration of the OCT imaging beam at the dermis area. This allows the user to interactively investigate the depth resolved information of any target position of interest on the dermis by pointing the mouse cursor within the dermis image or selecting the area on a touch screen. Image acquisition is controlled with software that displays both the dermis and MR-OCT axial-scan, and allows detailed information of the depth scan signal to screen for skin disease. We believe this approach will have a significant impact on medical care.

  2. QCL - Optical-Feedback Cavity Enhanced Absorption Spectroscopy For The Analysis Of Atmospheric 13CO2/12CO2 In Ice-Core Gas Bubbles

    NASA Astrophysics Data System (ADS)

    Gorrotxategi Carbajo, Paula; Romanini, Daniele; Maisons, Gregory; Carras, Mathieu; Chappellaz, Jerome; Kerstel, Erik

    2013-04-01

    In the context of a globally warming climate it is crucial to study the climate variability in the past and to understand the underlying mechanisms. The composition of gas stored in bubbles in polar ice presents a paleo-climate archive that provides a powerful means to study the exact mechanisms involved in the ~40% increase in the atmospheric CO2 concentration between glacial and interglacial climates. It is particularly important to understand such natural coupling between climate and the carbon cycle, as it will partly determine what natural feedback can be expected on the atmospheric CO2 concentration in a future warmer world. The source of the CO2 released into the atmosphere during previous deglaciations can be constrained from isotopic measurements by the fact that the different CO2 reservoirs (terrestrial biosphere, oceans) and associated mechanisms (biological or physical) have different isotopic signatures. Unfortunately, such isotope studies have been seriously hampered by the experimental difficulty of extracting the CO2 without contamination or fractionation, and measuring the isotope signal off-line on an isotope ratio mass spectrometer (IRMS). Here we present an alternative method that leverages the extreme sensitivity afforded by Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS) in the Mid-Infrared [1]. This region of the spectrum is accessed by a custom-developed Quantum Cascade Laser operating near 4.35 µm. The feedback to the laser of light that has been spectrally filtered by a high-finesse, V-shaped enhancement cavity has the effect of spectrally narrowing the laser emission and to auto-lock the laser frequency to one of the cavity's longitudinal modes, with clear advantages in terms of acquisition time and signal-to-noise ratio of the measurement. The line strengths in this region are about 5 orders of magnitude higher than in the more easily accessible NIR region near 1.6 µm and about 1000 times higher than at 2 µm. The

  3. A new calibration system for lightweight, compact and mobile Cavity-Enhanced Differential Optical Absorption Spectroscopy instruments

    NASA Astrophysics Data System (ADS)

    Zielcke, Johannes; Horbanski, Martin; Pöhler, Denis; Frieß, Udo; Platt, Ulrich

    2013-04-01

    Absorption Spectroscopy has been employed for several decades now to study the earth's atmosphere. While the focus has been on remote sensing for a long time, lately there has been a renewed interest in in-situ methods, as point measurements allow an easier interpretation for highly inhomogeneous distributions of gases of interest compared to the integration approach of most remote sensing methods. One comparatively new method offering both advantages of in-situ measurements as well as being contactless is open-path Cavity-Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS). Broadband open-path CE-DOAS instruments have been used for ten years now, and in the meantime allow the measurement of numerous atmospheric trace gases (e.g. NO2, NO3, IO, CHOCHO, HCHO). While those instruments were bulky and not very mobile at first, recent developments resulted in relatively lightweight (< 30 kg) instruments with a relatively low power consumption allowing mobile open-path measurements at remote field locations. An important operational issue has been the path length calibration in the field, necessary for the determination of the concentration of measured gases. Until now, often calibration gases were used with different scattering properties than air or known concentrations. However this methods has several major shortcomings, being rather inconvenient and cumbersome in the field with the need for compressed gas cylinders, as well as time consuming, preventing a quick check of the state of the instrument in the field after changing measurement locations. Here we present a new wavelength-resolved method for broadband CE-DOAS path length calibration. A small, custom made ring-down system is employed with a pulsed LED as light source. The wavelength is then resolved by tilting a narrow band interference filter. The system not only allows quick, automated path length calibrations without physical interaction on the instrument, but also saves weight, space and the

  4. Composite resonator vertical cavity laser diode

    SciTech Connect

    Choquette, K.D.; Hou, H.Q.; Chow, W.W.; Geib, K.M.; Hammons, B.E.

    1998-05-01

    The use of two coupled laser cavities has been employed in edge emitting semiconductor lasers for mode suppression and frequency stabilization. The incorporation of coupled resonators within a vertical cavity laser opens up new possibilities due to the unique ability to tailor the interaction between the cavities. Composite resonators can be utilized to control spectral and temporal properties within the laser; previous studies of coupled cavity vertical cavity lasers have employed photopumped structures. The authors report the first composite resonator vertical cavity laser diode consisting of two optical cavities and three monolithic distributed Bragg reflectors. Cavity coupling effects and two techniques for external modulation of the laser are described.

  5. Optical cavity and electron beam requirements for the operation of a 1.5 {angstrom} LCLS in a regenerative amplifier mode

    SciTech Connect

    Tatchyn, R.

    1995-12-31

    Current conceptual designs for Linac Coherent Light Sources (LCLSs) in the 100-1 {angstrom} wavelength range are based on Free Electron Lasers (FELs) that are designed to saturate in a single pass of the electron beam through the undulator. This, in practice, leads to insertion devices several tens of meters in length, which greatly dominates the component costs of the overall LCLS system. Although it is well known that amplification within a cavity would enable much shorter and more economical undulators to be employed, two major practical problems are currently adduced to discount the use of such configurations in the sub-100 {angstrom} wavelength regime: (1) the temporal jitter of the (sub-picosecond) electron bunches required for such FELs can be comparable to or larger that the durations of the bunches themselves, rendering reliable synchronization extremely difficult, and (2) the lack of optical elements of sufficient reflectivity and bandwidth out of which adequately efficient optical cavities can be constructed. In this paper we reasssess the requirements associated with these two aspects of x-ray optics as a possible approach to resolving or making more tractable the resolution of some of the basic problems involved.

  6. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser-induced water breakdown for refractive index sensing.

    PubMed

    Liu, Yi; Qu, Shiliang

    2014-01-20

    The Fabry-Perot interferometer (FPI) cavity in a single-mode fiber with two open faces was fabricated by using the method of femtosecond laser-induced water breakdown. Then the FPI cavity was annealed by the arc discharge to greatly smooth its internal surface. The whole fabrication process features simple operation and high efficiency. The fabricated FPI cavity exhibits a perfect interferometer spectrum with reflection loss of only -3 dB and fringe visibility of almost 30 dB. It can be used as a perfectly reliable liquid refractive index sensor, as it exhibits high sensitivity (1147.48 nm/RIU), good linearity (99.93%), good repeatability, high actual measurement accuracy (1.29×10(-4)RIU), large measurement range, and good temperature insensitive characteristic.

  7. Analysis of bistability conditions between lasing and nonlasing states for a vertical-cavity surface-emitting laser with frequency-selective optical feedback using an envelope approximation

    SciTech Connect

    Naumenko, A. V.; Loiko, N. A.; Ackemann, T.

    2007-08-15

    The emission characteristics of a vertical-cavity surface-emitting laser (VCSEL) coupled to an external cavity with a diffraction grating as a frequency-selective element are theoretically analyzed. We introduce envelope functions for the set of external-cavity modes based on the loci of modes with extremal gain or frequency in the proper parameter space. Replacing the set of discrete stationary solutions by these envelope functions, simple analytical expressions are derived for the existence of bistability between a lasing state strongly affected by the feedback and a state close to the solitary laser emission (in particular the nonlasing state) and for the frequency of the VCSEL in the grating-controlled regime. It is shown how the initial jump of the laser intensity during abrupt turn-on can be maximized. By a control of the feedback change, the width of the hysteresis loop can be increased significantly. The scheme under consideration can be useful in all-optical photonic switching applications.

  8. External cavity laser using a InAs quantum dot gain chip and an arrayed-waveguide grating for T-band optical communications

    NASA Astrophysics Data System (ADS)

    Shibutani, Hideki; Tomomatsu, Yasunori; Sawado, Yoshinori; Yoshizawa, Katsumi; Asakura, Hideaki; Idris, Nazirul Afham; Tsuda, Hiroyuki

    2015-02-01

    Utilizing T-band (1000 nm to 1260 nm) for optical communications is promising for short reach, and large capacity networks, such as data centers or access networks. It is feasible to use this with low-cost coarse wavelength division multiplexing (WDM). However, a tunable wavelength light source is necessary for such applications. In this paper, we propose a new configuration for an external cavity laser, which uses a silica-based arrayed waveguide grating (AWG) for the wavelength selecting element. The external cavity laser consists of a gain chip with high reflection (HR) and anti-reflection (AR) coated facets, coupling lenses, an AWG with AR/HR coatings, and an output fiber. The AWG has 17 connection ports, which correspond to 17 wavelengths with a channel spacing of 1.67 nm. The width of the connection port waveguides was optimized to achieve high coupling efficiency. The AWG chip size is 15 mm x 30 mm. The active layer in the gain chip has InAs quantum dots. The spontaneous emission 3-dB bandwidth was 48 nm (1108 nm to 1156 nm) when a current of 150 mA was injected into the gain chip. The lasing wavelength of the external cavity laser was successfully tuned from 1129.9 nm to 1154.4 nm by selecting the connection ports of the AWG. The typical threshold current was about 130 mA.

  9. Design of the master optical reference for the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Knight, J. S.; Gallagher, Ben; Frazier, Doug; Whitman, Tony L.; Feinberg, Lee D.; Jhabvala, Murzy; Hayden, Bill

    2014-08-01

    The James Webb Space Telescope (JWST) requires testing of the full optical system in a cryogenic vacuum environment before launch. Challenges with the telescope architecture and the test environment lead to placing removable optical test sources at the Cassegrain intermediate focus of the Telescope. The optical test sources are used to establish the system alignment and provide test illumination to the Science Instrument suite. The Aft Optics Subsystem (AOS) Source Plate Assembly (ASPA) comprises sources, control electronics, cryogenic optical fiber and a precision mechanical structure. The system provides point source illumination from visible to mid infrared, narrow and broadband, and with an optical power range of 10 orders of magnitude. The precision metering structure holding the sources is mounted temporarily to the flight hardware to be removed after the system test campaign.

  10. Fiber-coupled, Littrow-grating cavity displacement sensor.

    PubMed

    Allen, Graham; Sun, Ke-Xun; Byer, Robert

    2010-04-15

    We have demonstrated a compact, optical-fiber-fed, optical displacement sensor utilizing a Littrow-mounted diffraction grating to form a low-finesse Fabry-Perot cavity. Length changes of the cavity are read out via the Pound-Drever-Hall rf modulation technique at 925 MHz. The sensor has a nominal working distance of 2 cm and a total dynamic range of 160 nm. The displacement noise floor was less than 3x10(-10) m/sqrt[Hz] above 10(-2) Hz, limited by the frequency drift of the reference laser. A frequency-stabilized laser would reduce the noise floor to below 10(-12) m/sqrt[Hz]. The use of a 925 MHz modulation frequency demonstrates high-precision readout of a low-finesse compact resonant cavity.

  11. Tuneable dual-comb spectrometer based on commercial femtosecond lasers and reference cell for optical frequency calibration

    NASA Astrophysics Data System (ADS)

    Portuondo-Campa, E.; Bennès, J.; Balet, L.; Kundermann, S.; Merenda, F.; Boer, G.; Lecomte, S.

    2016-07-01

    Two commercial femtosecond laser sources have been used to implement a dual-comb spectrometer tuneable across a spectral range from 1.5 to 2.2 μm. The optical linewidth of the comb modes was characterized for different time scales in order to estimate the achievable spectral resolution for an optimal acquisition time. The transmission spectra of three different gas samples were recorded, demonstrating good agreement with reference data. Frequency axis calibration was provided via the parallel monitoring of a reference sample. This technique allows an accurate calibration of the frequency axis of the spectrometer, with no need for stabilization or optical referencing of the frequency combs. Our set-up represents a good compromise for a compact and versatile dual-comb spectrometer based on commercially available parts with possible applications in trace-gas monitoring, remote sensing and spectroscopy of short-lived processes.

  12. Many-atom-cavity QED system with homogeneous atom-cavity coupling.

    PubMed

    Lee, Jongmin; Vrijsen, Geert; Teper, Igor; Hosten, Onur; Kasevich, Mark A

    2014-07-01

    We demonstrate a many-atom-cavity system with a high-finesse dual-wavelength standing wave cavity in which all participating rubidium atoms are nearly identically coupled to a 780-nm cavity mode. This homogeneous coupling is enforced by a one-dimensional optical lattice formed by the field of a 1560-nm cavity mode.

  13. Effect of reference spectra in spectral fitting to discriminate enzyme-activatable photoacoustic probe from intrinsic optical absorbers

    NASA Astrophysics Data System (ADS)

    Hirasawa, Takeshi; Okawa, Shinpei; Iwatate, Ryu J.; Kamiya, Mako; Urano, Yasuteru; Ishihara, Miya

    2016-03-01

    Multispectral photoacoustic (MS-PA) imaging has been researched to image molecular probes in the presence of strong background signals produced from intrinsic optical absorbers. Spectral fitting method (SFM) discriminates probe signals from background signals by fitting the PA spectra that are calculated from MS-PA images to reference spectra of the probe and background, respectively. Because hemoglobin is a dominant optical absorber in visible to near-infrared wavelength range, absorption spectra of hemoglobin have been widely used as reference background spectra. However, the spectra of background signals produced from heterogeneous biological tissue differ from the reference background spectra due to presence of other intrinsic optical absorbers and effect of optical scattering. Due to the difference, the background signals partly remain in the probe images. To image the probe injected in subcutaneous tumors of mice clearly, we added the melanosome absorption spectrum to the reference background spectra because skin contains nonnegligible concentration of melanosome and the spectrum is very similar to the scattering spectrum of biological tissue. The probe injected in the subcutaneous tumor of mice was an enzyme-activatable probe which show their original colors only in the presence of γ-glutamyltranspeptidase, an enzyme associated with cancer. The probes have been successfully used for rapid fluorescence imaging of cancer. As a result of MS-PA imaging, by considering the melanosome absorption spectrum, the background signals were successfully suppressed and then clearer probe image was obtained. Our MS-PA imaging method afforded successful imaging of tumors in mice injected with activatable PA probes.

  14. (DARPA) Optical Radiation Cooling and Heating In Integrated Devices: Circuit cavity optomechanics for cooling and amplification on a silicon chip

    DTIC Science & Technology

    2015-07-16

    9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) DARPA ORCHID through AFOSR 10. SPONSOR/MONITOR’S ACRONYM(S) AFOSR 11. SPONSOR/MONITOR’S...REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT For public release 13. SUPPLEMENTARY NOTES 14. ABSTRACT In this DARPA’s ORCHID program, Yale...DISTRIBUTION A: Distribution approved for public release. 1 DARPA ORCHID Final Report “Circuit cavity optomechanics for cooling and amplification on a

  15. Performance of a dual Fabry-Perot cavity refractometer.

    PubMed

    Egan, Patrick F; Stone, Jack A; Hendricks, Jay H; Ricker, Jacob E; Scace, Gregory E; Strouse, Gregory F

    2015-09-01

    We have built and characterized a refractometer that utilizes two Fabry-Perot cavities formed on a dimensionally stable spacer. In the typical mode of operation, one cavity is held at vacuum, and the other cavity is filled with nitrogen gas. The differential change in length between the cavities is measured as the difference in frequency between two helium-neon lasers, one locked to the resonance of each cavity. This differential change in optical length is a measure of the gas refractivity. Using the known values for the molar refractivity and virial coefficients of nitrogen, and accounting for cavity length distortions, the device can be used as a high-resolution, multi-decade pressure sensor. We define a reference value for nitrogen refractivity as n-1=(26485.28±0.3)×10(-8) at p=100.0000  kPa, T=302.9190  K, and λ(vac)=632.9908  nm. We compare pressure determinations via the refractometer and the reference value to a mercury manometer.

  16. Light funneling from a photonic crystal laser cavity to a nano-antenna: overcoming the diffraction limit in optical energy transfer down to the nanoscale.

    PubMed

    Mivelle, Mathieu; Viktorovitch, Pierre; Baida, Fadi I; El Eter, Ali; Xie, Zhihua; Vo, Than-Phong; Atie, Elie; Burr, Geoffrey W; Nedeljkovic, Dusan; Rauch, Jean-Yves; Callard, Ségolène; Grosjean, Thierry

    2014-06-16

    We show that the near-field coupling between a photonic crystal microlaser and a nano-antenna can enable hybrid photonic systems that are both physically compact (free from bulky optics) and efficient at transferring optical energy into the nano-antenna. Up to 19% of the laser power from a micron-scale photonic crystal laser cavity is experimentally transferred to a bowtie aperture nano-antenna (BNA) whose area is 400-fold smaller than the overall emission area of the microlaser. Instead of a direct deposition of the nano-antenna onto the photonic crystal, it is fabricated at the apex of a fiber tip to be accurately placed in the microlaser near-field. Such light funneling within a hybrid structure provides a path for overcoming the diffraction limit in optical energy transfer to the nanoscale and should thus open promising avenues in the nanoscale enhancement and confinement of light in compact architectures, impacting applications such as biosensing, optical trapping, local heating, spectroscopy, and nanoimaging.

  17. Dual frequency optical carrier technique for transmission of reference frequencies in dispersive media

    NASA Technical Reports Server (NTRS)

    Maleki, Lutfollah (Inventor)

    1993-01-01

    Two different carrier frequencies modulated by a reference frequency are transmitted to each receiver to be synchronized therewith. Each receiver responds to local phase differences between the two received signals to correct the phase of one of them so as to maintain the corrected signal as a reliable synchronization reference.

  18. The short- and long-term frequency stabilization of an injection-locked Nd:YAG laser in reference to a Fabry-Perot cavity and an iodine saturated absorption line

    NASA Astrophysics Data System (ADS)

    Musha, Mitsuru; Kanaya, Takeshi; Nakagawa, Ken'ichi; Ueda, Ken-ichi

    2000-09-01

    We have developed a wideband frequency-stabilized injection-locked Nd:YAG laser as a light source for the laser interferometric gravitational wave detector, in which short-term frequency stability of the laser improves the sensitivity of the interferometer and the long-term frequency stability aims for the stable long-time operation of the interferometer. The frequency of a 2-W injection-locked laser is locked to both a rigid Fabry-Perot cavity with ULE spacer and saturated absorption line of 127I2 simultaneously with two nested servo loops, and the long-term as well as short-term frequency stability are obtained. The drift of the resonant frequency of the rigid Fabry-Perot cavity is measured and the stability of the Fabry-Perot cavity is estimated to be 20× f-1 [Hz/√Hz]. The predicted frequency stabilities of the present dual-reference-locked laser are numerically simulated. Our wideband frequency-stabilized laser is also available for the high-resolution spectroscopy.

  19. Compound parabolic concentrator with cavity for tubular absorbers

    DOEpatents

    Winston, Roland

    1983-01-01

    A compond parabolic concentrator with a V-shaped cavity is provided in which an optical receiver is emplaced. The cavity redirects all energy entering between the receiver and the cavity structure onto the receiver, if the optical receiver is emplaced a distance from the cavity not greater than 0.27 r (where r is the radius of the receiver).

  20. Quench studies of ILC cavities

    SciTech Connect

    Eremeev, Grigory; Geng, Rongli; Palczewski, Ari; Dai, Jin

    2011-07-01

    Quench limits accelerating gradient in SRF cavities to a gradient lower than theoretically expected for superconducting niobium. Identification of the quenching site with thermometry and OST, optical inspection, and replica of the culprit is an ongoing effort at Jefferson Lab aimed at better understanding of this limiting phenomenon. In this contribution we present our finding with several SRF cavities that were limited by quench.

  1. State-of-the-art fiber optics for short distance frequency reference distribution

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.; Primas, L. E.

    1989-01-01

    A number of recently developed fiber-optic components that hold the promise of unprecedented stability for passively stabilized frequency distribution links are characterized. These components include a fiber-optic transmitter, an optical isolator, and a new type of fiber-optic cable. A novel laser transmitter exhibits extremely low sensitivity to intensity and polarization changes of reflected light due to cable flexure. This virtually eliminates one of the shortcomings in previous laser transmitters. A high-isolation, low-loss optical isolator has been developed which also virtually eliminates laser sensitivity to changes in intensity and polarization of reflected light. A newly developed fiber has been tested. This fiber has a thermal coefficient of delay of less than 0.5 parts per million per deg C, nearly 20 times lower than the best coaxial hardline cable and 10 times lower than any previous fiber-optic cable. These components are highly suitable for distribution systems with short extent, such as within a Deep Space Communications Complex. Here, these new components are described and the test results presented.

  2. Optical coherence tomography imaging for evaluating the photo biomodulation effects on tissue regeneration in the oral cavity

    NASA Astrophysics Data System (ADS)

    Gimbel, Craig B.

    2008-03-01

    Optical Coherence Tomography (OCT) is a noninvasive method for imaging dental microstructure which has the potential of evaluating the health of periodontal tissue. OCT provides an "optical biopsy" of tissue 2-3 mm in depth. Optical biopsy is a measurement of the localized optical properties based on tissue type and pathology. This sixth modality of imaging was pioneered at Lawrence Livermore National Laboratory. OCT is based on the optical scattering signatures within tissue structure. With the use of a broad spectrum bandwidth light source, high resolution images, 10 times the resolution of radiographs, can detect important tissue interfaces within the periodontal sulcus and its' relationship to the attachment apparatus of the tooth. Multiple cross-sectional tomograms can be stacked to create two and three dimensional images providing information as to health of periodontal tissue important to both the clinician and researcher.

  3. Optical scanning extrinsic Fabry-Perot interferometer for absolute microdisplacement measurement.

    PubMed

    Li, T; May, R G; Wang, A; Claus, R O

    1997-12-01

    We report an optical-scanning, dual-fiber, extrinsic Fabry-Perot interferometer system for absolute measurement of microdisplacement. The system involves two air-gapped Fabry-Perot cavities, formed by fiber end faces, functioning as sensing and reference elements. Taking the scanning wavelength as an interconverter to compare the gap length of the sensing head with the reference-cavity length yields the absolute measurement of the sensing-cavity length. The measurement is independent of the wavelength-scanning accuracy, and the reference-cavity length can be self-calibrated simply by one's changing the sensing-head length by an accurate value.

  4. Optical four-wave mixing and generation of squeezed light in an optomechanical cavity driven by a bichromatic field

    NASA Astrophysics Data System (ADS)

    Garcés, Rafael; de Valcárcel, Germán. J.

    2014-05-01

    We show that an optomechanical cavity pumped by a bichromatic light beam can generate a signal whose frequency lies halfway between the two driving frequencies. This process can be understood as a degenerate four-wave mixing, in which two pump photons (one from each frequency) are combined to yield two identical signal photons. This process takes place between a lower and an upper threshold in terms of the pump intensity, which depend on the pump frequency difference. Close to the signal oscillation threshold a clear noise reduction in one of its quadratures is shown numerically.

  5. Improvement of stability and efficiency in diode-pumped passively Q-switched intracavity optical parametric oscillator with a monolithic cavity Improvement of stability and efficiency

    NASA Astrophysics Data System (ADS)

    Huang, J. Y.; Zhuang, W. Z.; Huang, Y. P.; Huang, Y. J.; Su, K. W.; Chen, Y. F.

    2012-07-01

    We improve the performance of intracavity optical parametric oscillator (IOPO) pumped by a diode-pumped Q-switched Nd:YVO4/Cr4+:YAG laser. The IOPO cavity is formed independently by a monolithic KTP crystal that the mirrors are directly deposited on top of the nonlinear crystal. We study the performances of this IOPO cavity with different reflectivity of the output coupler at 1.5 μm (Rs) of 80 and 50%. The average power of 1.5 μm is up to 3.3 W at the maximum pump power of 16.8 W for both cases. The diode-to-signal conversion efficiency is up to 20%, which is the highest one for IOPOs to our best knowledge. At the maximum pump power, the pulse energies are 41 μJ with the pulse width of 3 ns at a pulse repetition rate (PRR) of 80 kHz for Rs = 80% and 51 μJ with the pulse width of 1.2 ns at a PRR of 65 kHz for Rs = 50%, respectively. The pulse amplitude fluctuations in standard deviation are 2.6% for Rs = 80% and 4% for Rs = 50%, respectively.

  6. Phase noise analysis of a 10-GHz optical injection-locked vertical-cavity surface-emitting laser-based optoelectronic oscillator

    NASA Astrophysics Data System (ADS)

    Coronel, Juan; Varón, Margarita; Rissons, Angélique

    2016-09-01

    The optical injection locking (OIL) technique is proposed to reduce the phase noise of a carrier generated for a vertical-cavity surface-emitting laser (VCSEL)-based optoelectronic oscillator. The OIL technique permits the enhancement of the VCSEL direct modulation bandwidth as well as the stabilization of the optical noise of the laser. A 2-km delay line, 10-GHz optical injection-locked VCSEL-based optoelectronic oscillator (OILVBO) was implemented. The internal noise sources of the optoelectronic oscillator components were characterized and analyzed to understand the noise conversion of the system into phase noise in the oscillator carrier. The implemented OILVBO phase noise was -105.7 dBc/Hz at 10 kHz from the carrier; this value agrees well with the performed simulated analysis. From the computed and measured phase noise curves, it is possible to infer the noise processes that take place inside the OILVBO. As a second measurement of the oscillation quality, a time-domain analysis was done through the Allan's standard deviation measurement, reported for first time for an optoelectronic oscillator using the OIL technique.

  7. Comparison of cooperative and non-cooperative adaptive optics reference performance for propagation with thermal blooming effects

    NASA Astrophysics Data System (ADS)

    Edwards, Brian E.; Nitkowski, Arthur; Lawrence, Ryan; Horton, Kasey; Higgs, Charles

    2004-10-01

    Atmospheric turbulence and laser-induced thermal blooming effects can degrade the beam quality of a high-energy laser (HEL) weapon, and ultimately limit the amount of energy deliverable to a target. Lincoln Laboratory has built a thermal blooming laboratory capable of emulating atmospheric thermal blooming and turbulence effects for tactical HEL systems. The HEL weapon emulation hardware includes an adaptive optics beam delivery system, which utilizes a Shack-Hartman wavefront sensor and a 349 actuator deformable mirror. For this experiment, the laboratory was configured to emulate an engagement scenario consisting of sea skimming target approaching directly toward the HEL weapon at a range of 10km. The weapon utilizes a 1.5m aperture and radiates at a 1.62 micron wavelength. An adaptive optics reference beam was provided as either a point source located at the target (cooperative) or a projected point source reflected from the target (uncooperative). Performance of the adaptive optics system was then compared between reference sources. Results show that, for operating conditions with a thermal blooming distortion number of 75 and weak turbulence (Rytov of 0.02 and D/ro of 3), cooperative beacon AO correction experiences Phase Compensation Instability, resulting in lower performance than a simple, open-loop condition. The uncooperative beacon resulted in slightly better performance than the open-loop condition.

  8. Experimental Investigation and Computer Modeling of Optical Switching in Distributed Bragg Reflector and Vertical Cavity Surface Emitting Laser Structures.

    DTIC Science & Technology

    1995-12-01

    Panish. Heterostructure Lasers, Part A: Fundamental Principles. Quantum Electronics : Principles and Applications, Orlando: Academic Press, Inc., 1978...John Wiley & Sons, 1978. 15. Gibbs, H.M. Optical Bistability: Controlling Light with Light. Quantum Electronics - Principles and Applications, Orlando

  9. Some Progress In The Development Of An Optical Readout System For The LISA Gravitational Reference Sensor

    NASA Astrophysics Data System (ADS)

    Acernese, Fausto; De Rosa, Rosario; Di Fiore, Luciano; Garufi, Fabio; La Rana, Adele; Milano, Leopoldo

    2006-11-01

    In this paper, we report on the progress in the development of an optical read-out (ORO) system for the inertial sensor of the LISA gravitational wave antenna. The device is based on optical levers and position sensors and is intended to be integrated in the present baseline design for the LISA inertial sensor, which is based on capacitive readout of the test mass position. In particular, we report some improved measurement of the sensitivity of this device, performed with a bench-top rigid set-up and tests on a real scale prototype.

  10. High-resolution and Fast-response Fiber-optic Temperature Sensor Using Silicon Fabry-Perot Cavity

    DTIC Science & Technology

    2015-03-23

    address the needs for highly dynamic environmental variations such as those found in the ocean . Fiber optics sensors; Thermal effects; Interferometry...frequency of ~2 kHz can be reached, to address the needs for highly dynamic environmental variations such as those found in the ocean . ©2015 Optical...2678–2686 (2012). 15. W. Hou, Ocean Sensing and Monitoring (SPIE Press, 2013). 16. J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt

  11. Square-wave switching in vertical-cavity surface-emitting lasers with polarization-rotated optical feedback: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Sukow, David W.; Gilfillan, Taylor; Pope, Brenton; Torre, Maria S.; Gavrielides, Athanasios; Masoller, Cristina

    2012-09-01

    We study experimentally the dynamics of vertical-cavity surface-emitting lasers (VCSELs) with polarization-rotated (PR) optical feedback, such that the natural lasing polarization of a VCSEL is rotated by 90 deg and then is reinjected into the laser. We observe noisy, square-wave-like polarization switchings with periodicity slightly longer than twice the delay time, which degrade to (or alternate with) bursts of irregular oscillations. We present results of simulations that are in good agreement with the observations. The simulations demonstrate that close to threshold the regular switching is very sensitive to noise, while well above threshold is less affected by the noise strength. The frequency splitting between the two polarizations plays a key role in the switching regularity, and we identify wide parameter regions where deterministic and robust switching can be observed.

  12. 10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Liu, Ke; He, Li-jiao; Yang, Jing; Zong, Nan; Yang, Feng; Gao, Hong-wei; Liu, Zhao; Yuan, Lei; Lan, Ying-jie; Bo, Yong; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2017-01-01

    We have demonstrated an electro-optically cavity-dumped mode-locked (CDML) picosecond Nd:YVO4 laser at 1342 nm with 880 nm diode-laser direct pumping. At a repetition rate of 10 kHz, an average output power of 0.119 W was achieved, corresponding to a pulse energy of 11.9 μJ. Compared with the continuous wave mode-locking pulse energy of 17.5 nJ, the CDML pulse energy was 680 times higher. The pulse width was measured to be 33.4 ps, resulting in the peak power of 356 kW. Meanwhile, the beam quality was nearly diffraction limited with an average beam quality factor M2 of 1.29.

  13. Influence of the size of a micro-cavity fabricated in an optical fiber using the femtosecond laser in a form of in-line Mach-Zehnder interferometer on its refractive index sensitivity

    NASA Astrophysics Data System (ADS)

    Janik, Monika; Koba, Marcin; Bock, Wojtek J.; Śmietana, Mateusz

    2016-12-01

    This paper discusses refractive index (n) measurement capabilities of micro-cavity with various diameters (d = 40, 54 and 60μm) fabricated in optical fibers by a femtosecond laser. The bottom of the cavity intersected the fiber's core and the Mach-Zehnder interferometer effect was induced, allowing the measurement of the n of the liquid filling the cavity. After filling the cavity, a set of minima can be observed in fiber transmission spectrum which shift with change in n. Fabricated sensors exhibit high and linear sensitivity, which in the range of n=1.3333 to 1.3500 RIU barely depends on the cavity diameter in case of first observed minima. Next for different micro-cavity diameters the minima do not overlap in refractive index domain thus it is impossible to compare them in terms of the sensitivity. The highest sensitivity of up to more than 27 000 nm/RIU was obtained for the smallest cavity and the third observed minimum.

  14. Reference optical phantoms for diffuse optical spectroscopy. Part 1--Error analysis of a time resolved transmittance characterization method.

    PubMed

    Bouchard, Jean-Pierre; Veilleux, Israël; Jedidi, Rym; Noiseux, Isabelle; Fortin, Michel; Mermut, Ozzy

    2010-05-24

    Development, production quality control and calibration of optical tissue-mimicking phantoms require a convenient and robust characterization method with known absolute accuracy. We present a solid phantom characterization technique based on time resolved transmittance measurement of light through a relatively small phantom sample. The small size of the sample enables characterization of every material batch produced in a routine phantoms production. Time resolved transmittance data are pre-processed to correct for dark noise, sample thickness and instrument response function. Pre-processed data are then compared to a forward model based on the radiative transfer equation solved through Monte Carlo simulations accurately taking into account the finite geometry of the sample. The computational burden of the Monte-Carlo technique was alleviated by building a lookup table of pre-computed results and using interpolation to obtain modeled transmittance traces at intermediate values of the optical properties. Near perfect fit residuals are obtained with a fit window using all data above 1% of the maximum value of the time resolved transmittance trace. Absolute accuracy of the method is estimated through a thorough error analysis which takes into account the following contributions: measurement noise, system repeatability, instrument response function stability, sample thickness variation refractive index inaccuracy, time correlated single photon counting system time based inaccuracy and forward model inaccuracy. Two sigma absolute error estimates of 0.01 cm(-1) (11.3%) and 0.67 cm(-1) (6.8%) are obtained for the absorption coefficient and reduced scattering coefficient respectively.

  15. Optical properties of the hydrated charged silver tetramer and silver hexamer encapsulated inside the sodalite cavity of an LTA-type zeolite.

    PubMed

    Cuong, Ngo Tuan; Nguyen, Hue Minh Thi; Pham-Ho, My Phuong; Nguyen, Minh Tho

    2016-07-21

    The optical spectra in the UV-VIS region of the hydrated doubly charged tetramer Ag4(2+) and hydrated multiply charged hexamer Ag6(p+) silver clusters encapsulated inside the sodalite cavity of an LTA-type zeolite have been systematically predicted using DFT, TD-DFT and CASSCF/CASPT2 methods. The optical behaviour of the model hydrated clusters [Ag6(H2O)8(Si24H24O36)](p+) is very sensitive to their charge. Among the cations [Ag6(H2O)8(Si24H24O36)](p+), only the embedded hydrated quadruply charged silver hexamer [Ag6(H2O)8(Si24H24O36)](4+) shows a strong absorption band at ∼420 nm (blue light) and emits light in red color. The absorption spectrum of the hydrated doubly charged silver tetramer cluster [Ag4(H2O)m(Si24H24O36)](2+), which shifts slightly and steadily with the increasing amount of interacting water molecules to longer wavelengths, has a strong peak in the blue region. The water environment forces the silver tetramer to relocate into one side of the cavity instead of at its center as in the case of the non-hydrated [Ag4(Si24H24O36)](2+) cluster. Water molecules act as ligands significantly splitting the energy levels of excited states of the Ag4(2+) and Ag6(4+) clusters. This causes the absorption spectra of the clusters to broaden and the emission to shift to the green-yellow and red part of the visible region.

  16. Comparison of coherently coupled multi-cavity and quantum dot embedded single cavity systems.

    PubMed

    Kocaman, Serdar; Sayan, Gönül Turhan

    2016-12-12

    Temporal group delays originating from the optical analogue to electromagnetically induced transparency (EIT) are compared in two systems. Similar transmission characteristics are observed between a coherently coupled high-Q multi-cavity array and a single quantum dot (QD) embedded cavity in the weak coupling regime. However, theoretically generated group delay values for the multi-cavity case are around two times higher. Both configurations allow direct scalability for chip-scale optical pulse trapping and coupled-cavity quantum electrodynamics (QED).

  17. Cavity enhanced atomic magnetometry.

    PubMed

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-10-20

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  18. Cavity enhanced atomic magnetometry

    PubMed Central

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations. PMID:26481853

  19. Application of low-coherence optical fiber Doppler anemometry to fluid-flow measurement: optical system considerations

    NASA Astrophysics Data System (ADS)

    Boyle, William J. O.; Grattan, Kenneth T. V.; Palmer, Andrew W.; Meggitt, B. T.

    1991-08-01

    A fiber optic Doppler anemometric (FODA) sensor using an optical delay cavity technique and having the advantage of detecting velocity rather than simple speed is outlined. In this sensor the delay in a sensor cavity formed from light back-reflected from a fiber tip (Fresnel reflection) and light back-reflected from particles flowing in a fluid is balanced by the optical delay when light from this sensor cavity passes through a reference cavity formed by a combination of the zero and first diffraction orders produced by a Bragg cell inserted into the optical arrangement. The performance of an experimental sensor based on this scheme is investigated, and velocity measurements using the Doppler shift data from moving objects are presented. The sensitivity of the scheme is discussed, with reference to the other techniques of fluid flow measurement.

  20. Optical-electronic system controlling the position of a railway track with the help of reference marks

    NASA Astrophysics Data System (ADS)

    Shavrygina, Margarita A.; Konyakhin, Igor A.; Timofeev, Aleksandr N.; Verezhinskaia, Ekaterina A.

    2016-04-01

    Rail transport is the largest rail network worldwide. If you compare the number of passengers and of goods transported by different modes of transport, it appears that the share of rail transport represents a very tangible part of them. Ensuring a high level of rail safety is currently one of the primary tasks of States and organizations involved in rail. In order to contain a railway and to provide its performance, you must ensure a high quality of the Railway, so the establishment of systems to control the position of the path is relevant, especially in the field of optical-electronic instrument making. The purpose of work is development and research of optical-electronic system for controlling the position of a railway track with the help of reference marks.

  1. Optical coherence tomography as a reference method for the detection of nanoparticles in thin-film polymer matrices

    NASA Astrophysics Data System (ADS)

    Kirsten, Lars; Mehner, Mirko; Grombe, Ringo; Linsinger, Thomas; Emons, Hendrik; Koch, Edmund

    2013-06-01

    In food and feed production an emerging issue is the use of nanoparticles as additives to control specific properties of the products. In this context, one focus in food chemistry is the development and evaluation of measurement techniques, which could allow the detection and quantification of nanoparticles in food products. For this purpose, special noninvasive and non-destructive reference methods are required, which allow subsequent analysis with other measurement techniques. Additionally, non-invasive and fast imaging techniques are potentially appropriate for applications in the food production. Optical coherence tomography is sensitive to the backscattering of particles and is regarded as a promising technique due to its spatial resolution, the high sensitivity and the high-speed capability. In this study, the ability of OCT as a potential reference method for the detection of nanoparticles in thin-film polymer samples was investigated by determining the correlation between nanoparticle concentration and signal intensity.

  2. Controlled directional scattering cavity for tubular absorbers

    DOEpatents

    Winston, Roland

    1982-01-01

    A specular cavity is provided in which an optical receiver is emplaced. The cavity is provided with a series of V groove-like indentations (or pyramidal-type indentations) which redirect energy entering between the receiver and cavity structure onto the receiver. The aperture opening of each V groove is less than half the cavity opening and in most preferred embodiments, much less than half. This enables the optical receiver to be emplaced a distance g from the cavity wherein 0.414r

  3. Flying over uneven moving terrain based on optic-flow cues without any need for reference frames or accelerometers.

    PubMed

    Expert, Fabien; Ruffier, Franck

    2015-02-26

    Two bio-inspired guidance principles involving no reference frame are presented here and were implemented in a rotorcraft, which was equipped with panoramic optic flow (OF) sensors but (as in flying insects) no accelerometer. To test these two guidance principles, we built a tethered tandem rotorcraft called BeeRotor (80 grams), which was tested flying along a high-roofed tunnel. The aerial robot adjusts its pitch and hence its speed, hugs the ground and lands safely without any need for an inertial reference frame. The rotorcraft's altitude and forward speed are adjusted via two OF regulators piloting the lift and the pitch angle on the basis of the common-mode and differential rotor speeds, respectively. The robot equipped with two wide-field OF sensors was tested in order to assess the performances of the following two systems of guidance involving no inertial reference frame: (i) a system with a fixed eye orientation based on the curved artificial compound eye (CurvACE) sensor, and (ii) an active system of reorientation based on a quasi-panoramic eye which constantly realigns its gaze, keeping it parallel to the nearest surface followed. Safe automatic terrain following and landing were obtained with CurvACE under dim light to daylight conditions and the active eye-reorientation system over rugged, changing terrain, without any need for an inertial reference frame.

  4. Optical pulse generation in a transistor laser via intra-cavity photon-assisted tunneling and excess base carrier redistribution

    SciTech Connect

    Feng, M.; Iverson, E. W.; Wang, C. Y.; Holonyak, N.

    2015-11-02

    For a direct-gap semiconductor (e.g., a p-n junction), photon-assisted tunneling is known to exhibit a high nonlinear absorption. In a transistor laser, as discussed here, the coherent photons generated at the quantum well interact with the collector junction field and “assist” electron tunneling from base to collector, thus resulting in the nonlinear modulation of the laser and the realization of optical pulse generation. 1 and 2 GHz optical pulses are demonstrated in the transistor laser using collector voltage control.

  5. Coupled-cavity electro-optically {ital Q}-switched Nd:YVO{sub 4} microchip lasers

    SciTech Connect

    Zayhowski, J.J.; Dill, C. III

    1995-04-01

    Nd:YVO{sub 4} microchip lasers have been electro-optically {ital Q} switched to produce 12-{mu}J pulses of 115-ps duration at repetition rates of up to 1 kHz. At a repetition rate of 2.25 MHz, 0.16-{mu}J pulses with an 8.8-ns duration were obtained.

  6. Pupil Alignment Measuring Technique and Alignment Reference for Instruments or Optical Systems

    NASA Technical Reports Server (NTRS)

    Hagopian, John G.

    2010-01-01

    A technique was created to measure the pupil alignment of instruments in situ by measuring calibrated pupil alignment references (PARs) in instruments. The PAR can also be measured using an alignment telescope or an imaging system. PAR allows the verification of the science instrument (SI) pupil alignment at the integrated science instrument module (ISIM) level of assembly at ambient and cryogenic operating temperature. This will allow verification of the ISIM+SI alignment, and provide feedback to realign the SI if necessary.

  7. Cavity-enhanced eigenmode and angular hybrid multiplexing in holographic data storage systems.

    PubMed

    Miller, Bo E; Takashima, Yuzuru

    2016-12-26

    Resonant optical cavities have been demonstrated to improve energy efficiencies in Holographic Data Storage Systems (HDSS). The orthogonal reference beams supported as cavity eigenmodes can provide another multiplexing degree of freedom to push storage densities toward the limit of 3D optical data storage. While keeping the increased energy efficiency of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modification of current angular multiplexing HDSS.

  8. Correlation technique for the compensation of diffraction widening of optical reference signals.

    PubMed

    Sáez-Landete, José; Alonso, José; Sanchez-Brea, Luis Miguel; Morlanes, Tomás; Bernabeu, Eusebio

    2009-09-01

    Two-grating measurement systems are routinely employed for high-resolution measurements of angular and linear displacement. Usually, these systems incorporate zero reference codes (ZRCs) to obtain a zero reference signal (ZRS), which is used as a stage-homing signal. This signal provides absolute information of the position to the otherwise relative information provided by the two-grating incremental subsystems. A zero reference signal is commonly obtained illuminating the superposition of two identical pseudorandom codes and registering the transmitted light by means of a photodiode. To increase the resolution of the system, a reduction of the grating period and the ZRC widths is required. Due to this reduction, the diffractive effects produce a widening of the ZRS and, in turn, a loss of the measuring accuracy. In this work, we propose a method to narrow the distorted signal obtained with a Lau-based encoder, reinstating the accuracy of the ZRS. The method consists of the inclusion of a correlation mask on the detector. A theoretical model to design the mask has been developed, and experimental results have been obtained that validate the proposed technique.

  9. Cavity magnomechanics

    PubMed Central

    Zhang, Xufeng; Zou, Chang-Ling; Jiang, Liang; Tang, Hong X.

    2016-01-01

    A dielectric body couples with electromagnetic fields through radiation pressure and electrostrictive forces, which mediate phonon-photon coupling in cavity optomechanics. In a magnetic medium, according to the Korteweg-Helmholtz formula, which describes the electromagnetic force density acting on a medium, magneostrictive forces should arise and lead to phonon-magnon interaction. We report such a coupled phonon-magnon system based on ferrimagnetic spheres, which we term as cavity magnomechanics, by analogy to cavity optomechanics. Coherent phonon-magnon interactions, including electromagnetically induced transparency and absorption, are demonstrated. Because of the strong hybridization of magnon and microwave photon modes and their high tunability, our platform exhibits new features including parametric amplification of magnons and phonons, triple-resonant photon-magnon-phonon coupling, and phonon lasing. Our work demonstrates the fundamental principle of cavity magnomechanics and its application as a new information transduction platform based on coherent coupling between photons, phonons, and magnons. PMID:27034983

  10. Optical levitation and translation of a microscopic particle by use of multiple beams generated by vertical-cavity surface-emitting laser array sources.

    PubMed

    Ogura, Yusuke; Shirai, Nobuhiro; Tanida, Jun

    2002-09-20

    An optical levitation and translation method for a microscopic particle by use of the resultant force induced by multiple light beams is studied. We show dependence of the radiation pressure force on the illuminating distribution by numerical calculation, and we find that the strongest axial force is obtained by a specific spacing period of illuminating beams. Extending the optical manipulation technique by means of vertical-cavity surface-emitting laser (VCSEL) array sources [Appl. Opt. 40, 5430 (2001)], we are the first, to our knowledge, to demonstrate levitation of a particle and its translation while levitated by using a VCSEL array. The vertical position of the target particle can be controlled in a range of a few tens of micrometers with an accuracy of 2 microm or less. The analytical and experimental results suggest that use of multiple beams is an effective method to levitate a particle with low total illumination power. Some issues on the manipulation method that uses multiple beams are discussed.

  11. Improved fiber-optic link for the phase reference distribution system for the TESLA technology based projects

    NASA Astrophysics Data System (ADS)

    Czuba, Krzysztof; Felber, Matthias

    2005-09-01

    The UV Free-Electron Laser (UVFEL) [1], The X-Ray Free-Electron Laser (XFEL) [2] and The International Linear Accelerator (ILC) [9] projects will require phase synchronization of various RF frequency subsystems on kilometer distances with accuracy better than 1ps. To fulfill these requirements, a phase reference distribution system concept was proposed and a prototype was developed for tests in the TESLA Test Facility 2 (TTF2). An important part of the phase reference system is the fiber-optic phase stable, long distance link described in this paper. An interferometrical scheme with feedback on phase, suppressing long term phase drifts induced by temperature changes was developed and tested in laboratory and under accelerator conditions. A motorized optical delay line was used in the system to compensate for phase errors. Described are error considerations and most important project issues like the hardware development and the real time phase controller software. The presented measurement results satisfy the design requirements. Experience gained during the experiments yielded proposals for system improvements.

  12. Development of an Optical Read-Out System for the LISA/NGO Gravitational Reference Sensor: A Status Report

    NASA Astrophysics Data System (ADS)

    Di Fiore, L.; De Rosa, R.; Garufi, F.; Grado, A.; Milano, L.; Spagnuolo, V.; Russano, G.

    2013-01-01

    The LISA group in Napoli is working on the development of an Optical Read-Out (ORO) system, based on optical levers and position sensitive detectors, for the LISA gravitational reference sensor. ORO is not meant as an alternative, but as an addition, to capacitive readout, that is the reference solution for LISA/NGO and will be tested on flight by LISA-Pathfinder. The main goal is the introduction of some redundancy with consequent mission risk mitigation. Furthermore, the ORO system is more sensitive than the capacitive one and its usage would allow a significant relaxation of the specifications on cross-couplings in the drag free control loops. The reliability of the proposed ORO device and the fulfilment of the sensitivity requirements have been already demonstrated in bench-top measurements and tests with the four mass torsion pendulum developed in Trento as a ground testing facility for LISA-Pathfinder and LISA hardware. In this paper we report on the present status of this activity presenting the last results and perspectives on some relevant aspects. 1) System design, measured sensitivity and noise characterization. 2) Possible layouts for integration in LISA/NGO and bench-top tests on real scale prototypes. 3) Search for space compatible components and preliminary tests. We will also discuss next steps in view of a possible application in LISA/NGO.

  13. Narrowing of the linewidth of an optical parametric oscillator by an acousto-optic modulator for the realization of mid-IR noise-immune cavity-enhanced optical heterodyne molecular spectrometry down to 10⁻¹⁰ cm⁻¹ Hz⁻¹/².

    PubMed

    Hausmaninger, Thomas; Silander, Isak; Axner, Ove

    2015-12-28

    The linewidth of a singly resonant optical parametric oscillator (OPO) has been narrowed with respect to an external cavity by the use of an acousto-optic modulator (AOM). This made possible an improvement of the sensitivity of a previously realized OPO-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrument for the 3.2 - 3.9 µm mid-infrared region by one order of magnitude. The resulting system shows a detection sensitivity for methane of 2.4 × 10(-10) cm(-1) Hz(-1∕2) and 1.3 × 10(-10) cm(-1) at 20 s, which allows for detection of both the environmentally important (13)CH(4) and CH(3)D isotopologues in atmospheric samples.

  14. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III.

    NASA Astrophysics Data System (ADS)

    Titov, O.; Pursimo, T.; Johnston, Helen M.; Stanford, Laura M.; Hunstead, Richard W.; Jauncey, David L.; Zenere, Katrina A.

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  15. Effects of Electronic Quantum Interference, Photonic-Crystal Cavity, Longitudinal Field and Surface-Plasmon- Polariton for Optical Amplification

    DTIC Science & Technology

    2008-04-09

    coupling to surface -plasmon- polariton (SPP) modes in non-structured [24] or structured [25] metallic films . The observation of tunable localized...V. Zayats, “Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes,” Phys... Rough Surfaces and on Gratings, Springer-Verlag, Berlin, 1988. [35] A.D. Boardman, Electromagnetic Surface Modes, John Wiley & Sons, New York, 1982

  16. Progress in optical frequency standards: ultracold Thulium, ions, and passive resonators

    NASA Astrophysics Data System (ADS)

    Kolachevsky, N.; Khabarova, K.; Semerikov, I.; Zalivako, I.; Borisenko, A.

    2017-01-01

    We report on different types of optical clocks and passive frequency references which are under development in our laboratories: optical lattice clock based on the inner-shell transition in the Tm atom at λ = 1.14μm, optical ion clock on single 27Al+ ion, and a family of lasers referenced to ultra-stable ULE and cryogenic silicon cavities.

  17. The fields of reference stars for optical positional observations of astrometric extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Dement'eva, A. A.; Ryl'Kov, V. P.

    The Pulkovo programme (Pul ERS) and the techniques used to create a catalogue of coordinates and magnitudes for more than 7000 faint stars in 73 small fields around extragalactic radiosources (ERS) are described. Accurate positions of stars in the fields around ERS 2200+420 and ERS 2021+614 are given. The catalogue containing 223 stars is presented. The errors of coordinate reductions in the system of reference stars from the CMC catalogue are found to be 1.5-2.0 times smaller than for those in the system of the PPM catalogue. This programme (Pul ERS) is required for quick identification of the extragalactic radio sources and for obtaining their characteristics from observations with large telescopes and CCD detectors.

  18. Optomechanical photon shuttling between photonic cavities.

    PubMed

    Li, Huan; Li, Mo

    2014-11-01

    Mechanical motion of photonic devices driven by optical forces provides a profound means of coupling between optical fields. The current focus of these optomechanical effects has been on cavity optomechanics systems in which co-localized optical and mechanical modes interact strongly to enable wave mixing between photons and phonons, and backaction cooling of mechanical modes. Alternatively, extended mechanical modes can also induce strong non-local effects on propagating optical fields or multiple localized optical modes at distances. Here, we demonstrate a multicavity optomechanical device in which torsional optomechanical motion can shuttle photons between two photonic crystal nanocavities. The resonance frequencies of the two cavities, one on each side of this 'photon see-saw', are modulated antisymmetrically by the device's rotation. Pumping photons into one cavity excites optomechanical self-oscillation, which strongly modulates the inter-cavity coupling and shuttles photons to the other empty cavity during every oscillation cycle in a well-regulated fashion.

  19. Universal quantum gates for hybrid system assisted by atomic ensembles embedded in double-sided optical cavities

    PubMed Central

    Liu, A.-Peng; Cheng, Liu-Yong; Guo, Qi; Zhang, Shou; Zhao, Ming-Xia

    2017-01-01

    We propose deterministic schemes for controlled-NOT (CNOT), Toffoli, and Fredkin gates between flying photon qubits and the collective spin wave (magnon) of an atomic ensemble inside double-sided optical microcavities. All the gates can be accomplished with 100% success probability in principle and no additional qubit is required. Atomic ensemble is employed so that light-matter coupling is remarkably improved by collective enhancement. We qualified the performance of the gates and the results show that they can be faithfully constituted with current experimental techniques. PMID:28272548

  20. Universal quantum gates for hybrid system assisted by atomic ensembles embedded in double-sided optical cavities

    NASA Astrophysics Data System (ADS)

    Liu, A.-Peng; Cheng, Liu-Yong; Guo, Qi; Zhang, Shou; Zhao, Ming-Xia

    2017-03-01

    We propose deterministic schemes for controlled-NOT (CNOT), Toffoli, and Fredkin gates between flying photon qubits and the collective spin wave (magnon) of an atomic ensemble inside double-sided optical microcavities. All the gates can be accomplished with 100% success probability in principle and no additional qubit is required. Atomic ensemble is employed so that light-matter coupling is remarkably improved by collective enhancement. We qualified the performance of the gates and the results show that they can be faithfully constituted with current experimental techniques.