Sample records for optical reference frame

  1. Connection Between the ICRF and the Dynamical Reference Frame for the Outer Planets

    NASA Astrophysics Data System (ADS)

    da Silva Neto, D. N.; Assafin, M.; Andrei, A. H.; Vieira Martins, R.

    2005-01-01

    This work brings an approach intending to improve the connection between the Dynamical Reference Frame and the Extragalactic Reference Frame. For that, close encounters of outer Solar System objects and quasars are used. With this goal, Uranus, Neptune and two quasars were observed at Laborat´orio Nacional de Astrof´ısica (LNA), Brazil. The optical reference frame is the HCRF, as given by the UCAC2 catalogue. The first results show an accuracy of 45 mas - 50 mas in the optical positions. The optical minus radio offsets give the local orientation between the catalogue and radio frame. From this, it is possible to place the optical planet coordinates on the extragalactic frame. A comparison between the new corrected optical coordinates and the respective DE ephemeris to these planets can give the instant orientations of the Dynamical Reference Frame with regard to the ICRS, for this zone of outer Solar System.

  2. Classical and quantum communication without a shared reference frame.

    PubMed

    Bartlett, Stephen D; Rudolph, Terry; Spekkens, Robert W

    2003-07-11

    We show that communication without a shared reference frame is possible using entangled states. Both classical and quantum information can be communicated with perfect fidelity without a shared reference frame at a rate that asymptotically approaches one classical bit or one encoded qubit per transmitted qubit. We present an optical scheme to communicate classical bits without a shared reference frame using entangled photon pairs and linear optical Bell state measurements.

  3. Optical seismic sensor systems and methods

    DOEpatents

    Beal, A. Craig; Cummings, Malcolm E.; Zavriyev, Anton; Christensen, Caleb A.; Lee, Keun

    2015-12-08

    Disclosed is an optical seismic sensor system for measuring seismic events in a geological formation, including a surface unit for generating and processing an optical signal, and a sensor device optically connected to the surface unit for receiving the optical signal over an optical conduit. The sensor device includes at least one sensor head for sensing a seismic disturbance from at least one direction during a deployment of the sensor device within a borehole of the geological formation. The sensor head includes a frame and a reference mass attached to the frame via at least one flexure, such that movement of the reference mass relative to the frame is constrained to a single predetermined path.

  4. Optical monitoring of QSO in the framework of the Gaia space mission

    NASA Astrophysics Data System (ADS)

    Taris, F.; Damljanovic, G.; Andrei, A.; Klotz, A.; Vachier, F.

    2015-08-01

    The Gaia astrometric mission of the European Space Agency has been launched the 19th December 2013. It will provide an astrometric catalogue of 500 000 extragalactic sources that could be the basis of a new optical reference frame. On the other hand, the current International Celestial Reference Frame (ICRF) is based on the observations of extragalactic sources at radio wavelength. The astrometric coordinates of sources in these two reference systems will have roughly the same uncertainty. It is then mandatory to observe a set of common targets at both optical and radio wavelength to link the ICRF with what could be called the GCRF (Gaia Celestial Reference Frame). We will show in this paper some results obtained with the TJO, Telescopi Juan Oro, from Observatori Astronomic del Montsec in Spain. It also presents some results obtained with the Lomb-Scargle and CLEAN algorithm methods applied to optical magnitude obtained with the TAROT telescopes.

  5. Radio stars - A possible link between the Hipparcos optical reference frame and an extra-galactic very long baseline interferometry reference frame

    NASA Technical Reports Server (NTRS)

    Lestrade, J.-F.; Preston, R. A.; Slade, M. A.

    1983-01-01

    The concept of typing the Hipparcos optical and the JPL VLBI frames of reference by means of VLBI measurements of the positions and proper motions of the radio components of some bright stars is considered. The properties of the thermal and non-thermal radio-stars are discussed and 22 candidate stars are selected to achieve this tie. A description is given of the first VLBI attempt to detect these stars on the intercontinental baselines of the Deep Space Network with the Mark II recording system.

  6. Celestial Reference Frames at Multiple Radio Wavelengths

    NASA Technical Reports Server (NTRS)

    Jacobs, Christopher S.

    2012-01-01

    In 1997 the IAU adopted the International Celestial Reference Frame (ICRF) built from S/X VLBI data. In response to IAU resolutions encouraging the extension of the ICRF to additional frequency bands, VLBI frames have been made at 24, 32, and 43 gigahertz. Meanwhile, the 8.4 gigahertz work has been greatly improved with the 2009 release of the ICRF-2. This paper discusses the motivations for extending the ICRF to these higher radio bands. Results to date will be summarized including evidence that the high frequency frames are rapidly approaching the accuracy of the 8.4 gigahertz ICRF-2. We discuss current limiting errors and prospects for the future accuracy of radio reference frames. We note that comparison of multiple radio frames is characterizing the frequency dependent systematic noise floor from extended source morphology and core shift. Finally, given Gaia's potential for high accuracy optical astrometry, we have simulated the precision of a radio-optical frame tie to be approximately10-15 microarcseconds ((1-sigma) (1-standard deviation), per component).

  7. Spatial reference frames of visual, vestibular, and multimodal heading signals in the dorsal subdivision of the medial superior temporal area.

    PubMed

    Fetsch, Christopher R; Wang, Sentao; Gu, Yong; Deangelis, Gregory C; Angelaki, Dora E

    2007-01-17

    Heading perception is a complex task that generally requires the integration of visual and vestibular cues. This sensory integration is complicated by the fact that these two modalities encode motion in distinct spatial reference frames (visual, eye-centered; vestibular, head-centered). Visual and vestibular heading signals converge in the primate dorsal subdivision of the medial superior temporal area (MSTd), a region thought to contribute to heading perception, but the reference frames of these signals remain unknown. We measured the heading tuning of MSTd neurons by presenting optic flow (visual condition), inertial motion (vestibular condition), or a congruent combination of both cues (combined condition). Static eye position was varied from trial to trial to determine the reference frame of tuning (eye-centered, head-centered, or intermediate). We found that tuning for optic flow was predominantly eye-centered, whereas tuning for inertial motion was intermediate but closer to head-centered. Reference frames in the two unimodal conditions were rarely matched in single neurons and uncorrelated across the population. Notably, reference frames in the combined condition varied as a function of the relative strength and spatial congruency of visual and vestibular tuning. This represents the first investigation of spatial reference frames in a naturalistic, multimodal condition in which cues may be integrated to improve perceptual performance. Our results compare favorably with the predictions of a recent neural network model that uses a recurrent architecture to perform optimal cue integration, suggesting that the brain could use a similar computational strategy to integrate sensory signals expressed in distinct frames of reference.

  8. Radio-Optical Reference Frame Link Using the U.S. Naval Observatory Astrograph and Deep CCD Imaging

    NASA Astrophysics Data System (ADS)

    Zacharias, N.; Zacharias, M. I.

    2014-05-01

    Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reduced following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3σ level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.

  9. Radio-optical reference frame link using the U.S. Naval observatory astrograph and deep CCD imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharias, N.; Zacharias, M. I., E-mail: nz@usno.navy.mil

    2014-05-01

    Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reducedmore » following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3σ level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.« less

  10. A FORTRAN version implementation of block adjustment of CCD frames and its preliminary application

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Tang, Z.-H.; Li, J.-L.; Zhao, M.

    2005-09-01

    A FORTRAN version implementation of the block adjustment (BA) of overlapping CCD frames is developed and its flowchart is shown. The program is preliminarily applied to obtain the optical positions of four extragalactic radio sources. The results show that because of the increase in the number and sky coverage of reference stars the precision of optical positions with BA is improved compared with the single CCD frame adjustment.

  11. Global VLBI Observations of Weak Extragalactic Radio Sources: Imaging Candidates to Align the VLBI and Gaia Frames

    NASA Technical Reports Server (NTRS)

    Bourda, Geraldine; Collioud, Arnaud; Charlot, Patrick; Porcas, Richard; Garrington, Simon

    2010-01-01

    The space astrometry mission Gaia will construct a dense optical QSO-based celestial reference frame. For consistency between optical and radio positions, it will be important to align the Gaia and VLBI frames (International Celestial Reference Frame) with the highest accuracy. In this respect, it is found that only 10% of the ICRF sources are suitable to establish this link (70 sources), either because most of the ICRF sources are not bright enough at optical wavelengths or because they show extended radio emission which precludes reaching the highest astrometric accuracy. In order to improve the situation, we initiated a multi-step VLBI observational project, dedicated to finding additional suitable radio sources for aligning the two frames. The sample consists of about 450 optically-bright radio sources, typically 20 times weaker than the ICRF sources, which have been selected by cross-correlating optical and radio catalogs. The initial observations, aimed at checking whether these sources are detectable with VLBI, and conducted with the European VLBI Network (EVN) in 2007, showed an excellent 90% detection rate. This paper reports on global VLBI observations carried out in March 2008 to image 105 from the 398 previously detected sources. All sources were successfully imaged, revealing compact VLBI structure for about half of them, which is very promising for the future.

  12. Flying over uneven moving terrain based on optic-flow cues without any need for reference frames or accelerometers.

    PubMed

    Expert, Fabien; Ruffier, Franck

    2015-02-26

    Two bio-inspired guidance principles involving no reference frame are presented here and were implemented in a rotorcraft, which was equipped with panoramic optic flow (OF) sensors but (as in flying insects) no accelerometer. To test these two guidance principles, we built a tethered tandem rotorcraft called BeeRotor (80 grams), which was tested flying along a high-roofed tunnel. The aerial robot adjusts its pitch and hence its speed, hugs the ground and lands safely without any need for an inertial reference frame. The rotorcraft's altitude and forward speed are adjusted via two OF regulators piloting the lift and the pitch angle on the basis of the common-mode and differential rotor speeds, respectively. The robot equipped with two wide-field OF sensors was tested in order to assess the performances of the following two systems of guidance involving no inertial reference frame: (i) a system with a fixed eye orientation based on the curved artificial compound eye (CurvACE) sensor, and (ii) an active system of reorientation based on a quasi-panoramic eye which constantly realigns its gaze, keeping it parallel to the nearest surface followed. Safe automatic terrain following and landing were obtained with CurvACE under dim light to daylight conditions and the active eye-reorientation system over rugged, changing terrain, without any need for an inertial reference frame.

  13. OPTICAL SPECTRA OF CANDIDATE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) FLAT-SPECTRUM RADIO SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, O.; Stanford, Laura M.; Johnston, Helen M.

    2013-07-01

    Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame.more » We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.« less

  14. Linking HIPPARCOS to the Extragalactic Reference Frame Part 5 OF 6, Newc, Cycle 2,CONTINUATION of 2565-HIGH

    NASA Astrophysics Data System (ADS)

    Hemenway, Paul

    1991-07-01

    Determination of a non-rotating Reference Frame is crucial to progress in many areas, including: Galactic motions, local (Oort's A and B) and global (R0) parameters derived from them, solar system motion discrepancies (Planet X); and in conjunction with the VLBI radio reference frame, the registration of radio and optical images at an accuracy well below the resolution limit of HST images (0.06 arcsec). The goal of the Program is to tie the HIPPARCOS and Extra- galactic Reference Frames together at the 0.0005 arcsec and 0.0005 arcsec/year level. The HST data will allow a deter- mination of the brightness distribution in the stellar and extragalactic objects observed and time dependent changes therein at the 0.001 arcsec/year level. The Program requires targets distributed over the whole sky to define a rigid Reference Frame. GTO observations will provide initial first epoch data and preliminary proper motions. The observations will consist of relative positions of Extra- galactic objects (EGOs) and HIPPARCOS stars, measured with the FGSs.

  15. High stability wavefront reference source

    DOEpatents

    Feldman, M.; Mockler, D.J.

    1994-05-03

    A thermally and mechanically stable wavefront reference source which produces a collimated output laser beam is disclosed. The output beam comprises substantially planar reference wavefronts which are useful for aligning and testing optical interferometers. The invention receives coherent radiation from an input optical fiber, directs a diverging input beam of the coherent radiation to a beam folding mirror (to produce a reflected diverging beam), and collimates the reflected diverging beam using a collimating lens. In a class of preferred embodiments, the invention includes a thermally and mechanically stable frame comprising rod members connected between a front end plate and a back end plate. The beam folding mirror is mounted on the back end plate, and the collimating lens mounted to the rods between the end plates. The end plates and rods are preferably made of thermally stable metal alloy. Preferably, the input optical fiber is a single mode fiber coupled to an input end of a second single mode optical fiber that is wound around a mandrel fixedly attached to the frame of the apparatus. The output end of the second fiber is cleaved so as to be optically flat, so that the input beam emerging therefrom is a nearly perfect diverging spherical wave. 7 figures.

  16. High stability wavefront reference source

    DOEpatents

    Feldman, Mark; Mockler, Daniel J.

    1994-01-01

    A thermally and mechanically stable wavefront reference source which produces a collimated output laser beam. The output beam comprises substantially planar reference wavefronts which are useful for aligning and testing optical interferometers. The invention receives coherent radiation from an input optical fiber, directs a diverging input beam of the coherent radiation to a beam folding mirror (to produce a reflected diverging beam), and collimates the reflected diverging beam using a collimating lens. In a class of preferred embodiments, the invention includes a thermally and mechanically stable frame comprising rod members connected between a front end plate and a back end plate. The beam folding mirror is mounted on the back end plate, and the collimating lens mounted to the rods between the end plates. The end plates and rods are preferably made of thermally stable metal alloy. Preferably, the input optical fiber is a single mode fiber coupled to an input end of a second single mode optical fiber that is wound around a mandrel fixedly attached to the frame of the apparatus. The output end of the second fiber is cleaved so as to be optically flat, so that the input beam emerging therefrom is a nearly perfect diverging spherical wave.

  17. Extraordinary-mode refractive-index change produced by the linear electro-optic effect in LiNbO3 and reverse-poled LiNbO3

    NASA Astrophysics Data System (ADS)

    Boyd, Joseph T.; Servizzi, Anthony J.; Sriram, S.; Kingsley, Stuart A.

    1995-07-01

    To examine aspects of an integrated photonic electric-field sensor, we calculate electro-optically induced refractive-index change in regular and reverse-poled LiNbO3. Specifically, for y-propagating extraordinary modes, we determine how index change depends on electric-field magnitude and direction. To accomplish this, changes in index-ellipsoid shape and orientation are found by the use of a numerical eigenvalue procedure to diagonalize the impermeability tensor; then, refractive index is calculated by the use of a vector reference-frame transformation and a small perturbation approximation. A general formula is inferred from calculations for specific field directions. Electro-optic coefficients for reverse-poled LiNbO3 are obtained by application of a tensor reference-frame transformation to those of LiNbO3. The index-calculation procedure has utility beyond the problem that is considered.

  18. Modeling, Simulation, and Analysis of a Decoy State Enabled Quantum Key Distribution System

    DTIC Science & Technology

    2015-03-26

    through the fiber , we assume Alice and Bob have correct basis alignment and timing control for reference frame correction and precise photon detection...optical components ( laser , polarization modulator, electronic variable optical attenuator, fixed optical attenuator, fiber channel, beamsplitter...generated by the laser in the CPG propagate through multiple optical components, each with a unique propagation delay before reaching the OPM. Timing

  19. OPTICAL SPECTRA OF CANDIDATE SOUTHERN HEMISPHERE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) RADIO SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, O.; Jauncey, D. L.; Johnston, H. M.

    2011-11-15

    We present the results of spectroscopic observations of the optical counterparts of 47 southern radio sources from the candidate International Celestial Reference Catalogue as part of a very long baseline interferometry (VLBI) program to strengthen the celestial reference frame, especially in the south. We made the observations with the 3.58 m European Southern Observatory New Technology Telescope. We obtained redshifts for 30 quasars and one radio galaxy, with a further seven objects being probable BL Lac objects with featureless spectra. Of the remainder, four were clear misidentifications with Galactic stars and five had low signal-to-noise spectra and could not bemore » classified. These results, in combination with new VLBI data of the radio sources with redshifts more than 2, add significantly to the existing data needed to refine the distribution of source proper motions over the celestial sphere.« less

  20. Proof-of-principle experiment of reference-frame-independent quantum key distribution with phase coding

    PubMed Central

    Liang, Wen-Ye; Wang, Shuang; Li, Hong-Wei; Yin, Zhen-Qiang; Chen, Wei; Yao, Yao; Huang, Jing-Zheng; Guo, Guang-Can; Han, Zheng-Fu

    2014-01-01

    We have demonstrated a proof-of-principle experiment of reference-frame-independent phase coding quantum key distribution (RFI-QKD) over an 80-km optical fiber. After considering the finite-key bound, we still achieve a distance of 50 km. In this scenario, the phases of the basis states are related by a slowly time-varying transformation. Furthermore, we developed and realized a new decoy state method for RFI-QKD systems with weak coherent sources to counteract the photon-number-splitting attack. With the help of a reference-frame-independent protocol and a Michelson interferometer with Faraday rotator mirrors, our system is rendered immune to the slow phase changes of the interferometer and the polarization disturbances of the channel, making the procedure very robust. PMID:24402550

  1. An Innovative Procedure for Calibration of Strapdown Electro-Optical Sensors Onboard Unmanned Air Vehicles

    PubMed Central

    Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio; Rispoli, Attilio

    2010-01-01

    This paper presents an innovative method for estimating the attitude of airborne electro-optical cameras with respect to the onboard autonomous navigation unit. The procedure is based on the use of attitude measurements under static conditions taken by an inertial unit and carrier-phase differential Global Positioning System to obtain accurate camera position estimates in the aircraft body reference frame, while image analysis allows line-of-sight unit vectors in the camera based reference frame to be computed. The method has been applied to the alignment of the visible and infrared cameras installed onboard the experimental aircraft of the Italian Aerospace Research Center and adopted for in-flight obstacle detection and collision avoidance. Results show an angular uncertainty on the order of 0.1° (rms). PMID:22315559

  2. Perceived Surface Slant Is Systematically Biased in the Actively-Generated Optic Flow

    PubMed Central

    Fantoni, Carlo; Caudek, Corrado; Domini, Fulvio

    2012-01-01

    Humans make systematic errors in the 3D interpretation of the optic flow in both passive and active vision. These systematic distortions can be predicted by a biologically-inspired model which disregards self-motion information resulting from head movements (Caudek, Fantoni, & Domini 2011). Here, we tested two predictions of this model: (1) A plane that is stationary in an earth-fixed reference frame will be perceived as changing its slant if the movement of the observer's head causes a variation of the optic flow; (2) a surface that rotates in an earth-fixed reference frame will be perceived to be stationary, if the surface rotation is appropriately yoked to the head movement so as to generate a variation of the surface slant but not of the optic flow. Both predictions were corroborated by two experiments in which observers judged the perceived slant of a random-dot planar surface during egomotion. We found qualitatively similar biases for monocular and binocular viewing of the simulated surfaces, although, in principle, the simultaneous presence of disparity and motion cues allows for a veridical recovery of surface slant. PMID:22479473

  3. Rotation Sensing with Trapped Ions

    DTIC Science & Technology

    2016-09-01

    Sagnac effect can be used to measure the rotational velocity Ω of a reference frame by observing the phase shift of an interferometer in that frame whose...sensitivity of interferometric gyroscopes. For photons, optical fibers (or ring laser cavities) allow many effective round-trips through the Sagnac...interferometer, thereby increasing the effective area A by 2 times the number of round trips (M) without increasing the actual area of the apparatus. This

  4. Patch-based frame interpolation for old films via the guidance of motion paths

    NASA Astrophysics Data System (ADS)

    Xia, Tianran; Ding, Youdong; Yu, Bing; Huang, Xi

    2018-04-01

    Due to improper preservation, traditional films will appear frame loss after digital. To deal with this problem, this paper presents a new adaptive patch-based method of frame interpolation via the guidance of motion paths. Our method is divided into three steps. Firstly, we compute motion paths between two reference frames using optical flow estimation. Then, the adaptive bidirectional interpolation with holes filled is applied to generate pre-intermediate frames. Finally, using patch match to interpolate intermediate frames with the most similar patches. Since the patch match is based on the pre-intermediate frames that contain the motion paths constraint, we show a natural and inartificial frame interpolation. We test different types of old film sequences and compare with other methods, the results prove that our method has a desired performance without hole or ghost effects.

  5. Rigorous coupled wave analysis of acousto-optics with relativistic considerations.

    PubMed

    Xia, Guoqiang; Zheng, Weijian; Lei, Zhenggang; Zhang, Ruolan

    2015-09-01

    A relativistic analysis of acousto-optics is presented, and a rigorous coupled wave analysis is generalized for the diffraction of the acousto-optical effect. An acoustic wave generates a grating with temporally and spatially modulated permittivity, hindering direct applications of the rigorous coupled wave analysis for the acousto-optical effect. In a reference frame which moves with the acoustic wave, the grating is static, the medium moves, and the coupled wave equations for the static grating may be derived. Floquet's theorem is then applied to cast these equations into an eigenproblem. Using a Lorentz transformation, the electromagnetic fields in the grating region are transformed to the lab frame where the medium is at rest, and relativistic Doppler frequency shifts are introduced into various diffraction orders. In the lab frame, the boundary conditions are considered and the diffraction efficiencies of various orders are determined. This method is rigorous and general, and the plane waves in the resulting expansion satisfy the dispersion relation of the medium and are propagation modes. Properties of various Bragg diffractions are results, rather than preconditions, of this method. Simulations of an acousto-optical tunable filter made by paratellurite, TeO(2), are given as examples.

  6. Variability of extragalactic sources: its contribution to the link between ICRF and the future Gaia Celestial Reference Frame

    NASA Astrophysics Data System (ADS)

    Taris, F.; Damljanovic, G.; Andrei, A.; Souchay, J.; Klotz, A.; Vachier, F.

    2018-03-01

    Context. The first release of the Gaia catalog is available since 14 September 2016. It is a first step in the realization of the future Gaia reference frame. This reference frame will be materialized by the optical positions of the sources and will be compared with and linked to the International Celestial Reference Frame, materialized by the radio position of extragalactic sources. Aim. As in the radio domain, it can be reasonably postulated that quasar optical flux variations can alert us to potential changes in the source structure. These changes could have important implications for the position of the target photocenters (together with the evolution in time of these centers) and in parallel have consequences for the link of the reference systems. Methods: A set of nine optical telescopes was used to monitor the magnitude variations, often at the same time as Gaia, thanks to the Gaia Observation Forecast Tool. The Allan variances, which are statistical tools widely used in the atomic time and frequency community, are introduced. Results: This work describes the magnitude variations of 47 targets that are suitable for the link between reference systems. We also report on some implications for the Gaia catalog. For 95% of the observed targets, new information about their variability is reported. In the case of some targets that are well observed by the TAROT telescopes, the Allan time variance shows that the longest averaging period of the magnitudes is in the range 20-70 d. The observation period by Gaia for a single target largely exceeds these values, which might be a problem when the magnitude variations exhibit flicker or random walk noises. Preliminary computations show that if the coordinates of the targets studied in this paper were affected by a white-phase noise with a formal uncertainty of about 1 mas (due to astrophysical processes that are put in evidence by the magnitude variations of the sources), it would affect the precision of the link at the level of 50 μas. Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A52

  7. Optically Remote Noncontact Heart Rates Sensing Technique

    NASA Astrophysics Data System (ADS)

    Thongkongoum, W.; Boonduang, S.; Limsuwan, P.

    2017-09-01

    Heart rate monitoring via optically remote noncontact technique was reported in this research. A green laser (5 mW, 532±10 nm) was projected onto the left carotid artery. The reflected laser light on the screen carried the deviation of the interference patterns. The interference patterns were recorded by the digital camera. The recorded videos of the interference patterns were frame by frame analysed by 2 standard digital image processing (DIP) techniques, block matching (BM) and optical flow (OF) techniques. The region of interest (ROI) pixels within the interference patterns were analysed for periodically changes of the interference patterns due to the heart pumping action. Both results of BM and OF techniques were compared with the reference medical heart rate monitoring device by which a contact measurement using pulse transit technique. The results obtained from BM technique was 74.67 bpm (beats per minute) and OF technique was 75.95 bpm. Those results when compared with the reference value of 75.43±1 bpm, the errors were found to be 1.01% and 0.69%, respectively.

  8. Interferometer with Continuously Varying Path Length Measured in Wavelengths to the Reference Mirror

    NASA Technical Reports Server (NTRS)

    Ohara, Tetsuo (Inventor)

    2016-01-01

    An interferometer in which the path length of the reference beam, measured in wavelengths, is continuously changing in sinusoidal fashion and the interference signal created by combining the measurement beam and the reference beam is processed in real time to obtain the physical distance along the measurement beam between the measured surface and a spatial reference frame such as the beam splitter. The processing involves analyzing the Fourier series of the intensity signal at one or more optical detectors in real time and using the time-domain multi-frequency harmonic signals to extract the phase information independently at each pixel position of one or more optical detectors and converting the phase information to distance information.

  9. Linking Deep Astrometric Standards to the ICRF

    NASA Astrophysics Data System (ADS)

    Frey, S.; Platais, I.; Fey, A. L.

    2007-07-01

    The next-generation large aperature and large field-of-view telescopes will address fundamantal questions of astrophysica and cosmology such as the nature of dark matter and dark energy. For a variety of applications, the CCD mosaic detectors in the focal plane arrays require astronomic calibrationat the milli-arcsecond (mas) level. The existing optical reference frames are insufficient to support such calibrations. To address this problem, deep optical astronomic fields are being established near the Galactic plane. In order to achiev a 5-10-mas or better positional accuracyfor the Deepp Astrometric Standards (DAS), and to obtain bsolute stellar proper motions for the study of Galactic structure, it is crucial to link these fields to the International Celestial Reference Frame (ICRF). To this end, we selected 15 candidate compact extragalactic radio sources in the Gemini-Orion-Taurus (GOT) field. These sources were observed with the European VLBI Network (EVN) at 5 GHz in phase-reference mode. The bright compact calibrator source J0603+2159 and seven other sources were detected and imaged at the angular resolution of -1.5-8 mas. Relative astrometric positions were derived for these sources at a milli-arcsecond accuracy level. The detection of the optical counterparts of these extragalactic radio sources will allow us to establish a direct link to the ICRF locally in the GOT field.

  10. The Extended HANDS Characterization and Analysis of Metric Biases

    NASA Astrophysics Data System (ADS)

    Kelecy, T.; Knox, R.; Cognion, R.

    The Extended High Accuracy Network Determination System (Extended HANDS) consists of a network of low cost, high accuracy optical telescopes designed to support space surveillance and development of space object characterization technologies. Comprising off-the-shelf components, the telescopes are designed to provide sub arc-second astrometric accuracy. The design and analysis team are in the process of characterizing the system through development of an error allocation tree whose assessment is supported by simulation, data analysis, and calibration tests. The metric calibration process has revealed 1-2 arc-second biases in the right ascension and declination measurements of reference satellite position, and these have been observed to have fairly distinct characteristics that appear to have some dependence on orbit geometry and tracking rates. The work presented here outlines error models developed to aid in development of the system error budget, and examines characteristic errors (biases, time dependence, etc.) that might be present in each of the relevant system elements used in the data collection and processing, including the metric calibration processing. The relevant reference frames are identified, and include the sensor (CCD camera) reference frame, Earth-fixed topocentric frame, topocentric inertial reference frame, and the geocentric inertial reference frame. The errors modeled in each of these reference frames, when mapped into the topocentric inertial measurement frame, reveal how errors might manifest themselves through the calibration process. The error analysis results that are presented use satellite-sensor geometries taken from periods where actual measurements were collected, and reveal how modeled errors manifest themselves over those specific time periods. These results are compared to the real calibration metric data (right ascension and declination residuals), and sources of the bias are hypothesized. In turn, the actual right ascension and declination calibration residuals are also mapped to other relevant reference frames in an attempt to validate the source of the bias errors. These results will serve as the basis for more focused investigation into specific components embedded in the system and system processes that might contain the source of the observed biases.

  11. Reduction of photographic observations of asteroids to the reference frame of a single catalog

    NASA Astrophysics Data System (ADS)

    Chernetenko, Yu. A.

    2008-04-01

    In 2000, the last international program of photographic observations of selected asteroids aimed at the determination of the mutual orientation of the dynamic and stellar coordinate systems came to an end. The Institute of Applied Astronomy of the Russian Academy of Sciences collected more than 25 000 observations for 15 asteroids spanning from 1949 through 1995. These observations were reduced to the reference frame of the Hipparcos catalog using dependencies published along with observations. The accuracy of observations of selected asteroids was 0.30 arcsec, which is comparable to that of modern CCD observations of minor planets. The observations are available at ftp://quasar.ipa.nw.ru/pub/SMP . An important advantage of these observations is that they are already reduced to the reference frame of a single catalog. Our criteria for the quality of the reduction methods and the accuracy of the observations are based on estimating the parameters of the orientation of the reference frames of the PPM and Hipparcos catalogs with respect to DE200/LE200. The most reliable results are those obtained when reducing old optical observations along with modern ground-based and space-borne observations.

  12. Comparison of z-known GRBs with the Main Groups of Bright BATSE Events

    NASA Technical Reports Server (NTRS)

    Mitrofanov, Igor G.; Sanin, Anton B.; Anfimov, Dmitrij S.; Litvak, Maxim L.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey N.; Preece, Robert D.; Meegan, Charles A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The small reference sample of six BATSE gamma-ray bursts with known redshifts from optical afterglows is compared with a comparison group of the 218 brightest BATSE bursts. These two groups are shown to be consistent both with respect to the distributions of the spectral peak parameter in the observer's frame and also with respect to the distributions of the frame-independent cosmological invariant parameter (CIP). Using the known values of the redshifts z for the reference sample, the rest-frame distribution of spectral parameters is built. The de-redshifted distribution of the spectral parameters of the reference sample is compared with distribution of these parameters for the comparison group after de-redshifting by the factor 1/(1+z), with z a free parameter. Requiring consistency between these two distributions produces a collective estimation of the best fitting redshifts z for the comparison group, z=1.8--3.6. These values can be considered as the average cosmological redshift of the sources of the brightest BATSE bursts. The most probable value of the peak energy of the spectrum in the rest frame is 920 keV, close to the rest mass of an electron-positron pair.

  13. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III.

    NASA Astrophysics Data System (ADS)

    Titov, O.; Pursimo, T.; Johnston, Helen M.; Stanford, Laura M.; Hunstead, Richard W.; Jauncey, David L.; Zenere, Katrina A.

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ˜160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  14. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, O.; Stanford, Laura M.; Pursimo, T.

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radiomore » sources.« less

  15. Equivalence principle and quantum mechanics: quantum simulation with entangled photons.

    PubMed

    Longhi, S

    2018-01-15

    Einstein's equivalence principle (EP) states the complete physical equivalence of a gravitational field and corresponding inertial field in an accelerated reference frame. However, to what extent the EP remains valid in non-relativistic quantum mechanics is a controversial issue. To avoid violation of the EP, Bargmann's superselection rule forbids a coherent superposition of states with different masses. Here we suggest a quantum simulation of non-relativistic Schrödinger particle dynamics in non-inertial reference frames, which is based on the propagation of polarization-entangled photon pairs in curved and birefringent optical waveguides and Hong-Ou-Mandel quantum interference measurement. The photonic simulator can emulate superposition of mass states, which would lead to violation of the EP.

  16. Concept for the fast modulation of light in amplitude and phase using analog tilt-mirror arrays

    NASA Astrophysics Data System (ADS)

    Roth, Matthias; Heber, Jörg; Janschek, Klaus

    2017-02-01

    The full complex, spatial modulation of light at high frame rates is essential for a variety of applications. In particular, emerging techniques applied to scattering media, such as Digital Optical Phase Conjugation and Wavefront Shaping, request challenging performance parameters. They refer to imaging tasks inside biological media, whose characteristics concerning the transmission and reflection of scattered light may change over time within milliseconds. Thus, these methods call for frame rates in the kilohertz range. Existing solutions typically over frame rate capabilities below 100 Hz, since they rely on liquid crystal spatial light modulators (SLMs). We propose a diffractive MEMS optical system for this application range. It relies on an analog, tilt-type micro mirror array (MMA) based on an established SLM technology, where the standard application is grayscale amplitude control. The new MMA system design allows the phase manipulation at high-speed as well. The article studies properties of the appropriate optical setup by simulating the propagation of the light. Relevant test patterns and sensitivity parameters of the system will be analyzed. Our results illustrate the main opportunities of the concept with particular focus on the tilt mirror technology. They indicate a promising path to realize the complex light modulation at frame rates above 1 kHz and resolutions well beyond 10,000 complex pixels.

  17. Whispering-gallery-mode-based seismometer

    DOEpatents

    Fourguette, Dominique Claire; Otugen, M Volkan; Larocque, Liane Marie; Ritter, Greg Aan; Meeusen, Jason Jeffrey; Ioppolo, Tindaro

    2014-06-03

    A whispering-gallery-mode-based seismometer provides for receiving laser light into an optical fiber, operatively coupling the laser light from the optical fiber into a whispering-gallery-mode-based optical resonator, operatively coupling a spring of a spring-mass assembly to a housing structure; and locating the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure so as to provide for compressing the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure responsive to a dynamic compression force from the spring-mass assembly responsive to a motion of the housing structure relative to an inertial frame of reference.

  18. Endoscopic pulsed digital holography for 3D measurements

    NASA Astrophysics Data System (ADS)

    Saucedo, A. Tonatiuh; Mendoza Santoyo, Fernando; de La Torre-Ibarra, Manuel; Pedrini, Giancarlo; Osten, Wolfgang

    2006-02-01

    A rigid endoscope and three different object illumination source positions are used in pulsed digital holography to measure the three orthogonal displacement components from hidden areas of a harmonically vibrating metallic cylinder. In order to obtain simultaneous 3D information from the optical set up, it is necessary to match the optical paths of each of the reference object beam pairs, but to incoherently mismatch the three reference object beam pairs, such that three pulsed digital holograms are incoherently recorded within a single frame of the CCD sensor. The phase difference is obtained using the Fourier method and by subtracting two digital holograms captured for two different object positions.

  19. Implementation of a high-speed face recognition system that uses an optical parallel correlator.

    PubMed

    Watanabe, Eriko; Kodate, Kashiko

    2005-02-10

    We implement a fully automatic fast face recognition system by using a 1000 frame/s optical parallel correlator designed and assembled by us. The operational speed for the 1:N (i.e., matching one image against N, where N refers to the number of images in the database) identification experiment (4000 face images) amounts to less than 1.5 s, including the preprocessing and postprocessing times. The binary real-only matched filter is devised for the sake of face recognition, and the system is optimized by the false-rejection rate (FRR) and the false-acceptance rate (FAR), according to 300 samples selected by the biometrics guideline. From trial 1:N identification experiments with the optical parallel correlator, we acquired low error rates of 2.6% FRR and 1.3% FAR. Facial images of people wearing thin glasses or heavy makeup that rendered identification difficult were identified with this system.

  20. Impact of quasar proper motions on the alignment between the International Celestial Reference Frame and the Gaia reference frame

    NASA Astrophysics Data System (ADS)

    Liu, J.-C.; Malkin, Z.; Zhu, Z.

    2018-03-01

    The International Celestial Reference Frame (ICRF) is currently realized by the very long baseline interferometry (VLBI) observations of extragalactic sources with the zero proper motion assumption, while Gaia will observe proper motions of these distant and faint objects to an accuracy of tens of microarcseconds per year. This paper investigates the difference between VLBI and Gaia quasar proper motions and it aims to understand the impact of quasar proper motions on the alignment of the ICRF and Gaia reference frame. We use the latest time series data of source coordinates from the International VLBI Service analysis centres operated at Goddard Space Flight Center (GSF2017) and Paris observatory (OPA2017), as well as the Gaia auxiliary quasar solution containing 2191 high-probability optical counterparts of the ICRF2 sources. The linear proper motions in right ascension and declination of VLBI sources are derived by least-squares fits while the proper motions for Gaia sources are simulated taking into account the acceleration of the Solar system barycentre and realistic uncertainties depending on the source brightness. The individual and global features of source proper motions in GSF2017 and OPA2017 VLBI data are found to be inconsistent, which may result from differences in VLBI observations, data reduction and analysis. A comparison of the VLBI and Gaia proper motions shows that the accuracies of the components of rotation and glide between the two systems are 2-4 μas yr- 1 based on about 600 common sources. For the future alignment of the ICRF and Gaia reference frames at different wavelengths, the proper motions of quasars must necessarily be considered.

  1. The Use of Magnetoencephalography in Evaluating Human Performance

    DTIC Science & Technology

    1991-06-01

    determines the head cartesian coordinate system, and calculates the locations of the dipole sets in this reference frame. This system is based on an optical ...differences in brain activity are found between imagers and nonimagers , the brain areas which seem to be involved will be localized. 25 3. The poor

  2. Object Acquisition and Tracking for Space-Based Surveillance

    DTIC Science & Technology

    1991-11-27

    on multiple image frames, and, accordingly, requires a smaller signal to noise ratio. It is sometimes referred to as track before detect , and can...smaller sensor optics. Both the traditional and track before detect approaches are applicable to systems using scanning sensors, as well as those which use staring sensors.

  3. Evaluating a hybrid three-dimensional metrology system: merging data from optical and touch probe devices

    NASA Astrophysics Data System (ADS)

    Gerde, Janice R.; Christens-Barry, William A.

    2011-08-01

    In a project to meet requirements for CBP Laboratory analysis of footwear under the Harmonized Tariff Schedule of the United States (HTSUS), a hybrid metrology system comprising both optical and touch probe devices has been assembled. A unique requirement must be met: To identify the interface-typically obscured in samples of concern-of the "external surface area upper" (ESAU) and the sole without physically destroying the sample. The sample outer surface is determined by discrete point cloud coordinates obtained using laser scanner optical measurements. Measurements from the optically inaccessible insole region are obtained using a coordinate measuring machine (CMM). That surface similarly is defined by point cloud data. Mathematically, the individual CMM and scanner data sets are transformed into a single, common reference frame. Custom software then fits a polynomial surface to the insole data and extends it to intersect the mesh fitted to the outer surface point cloud. This line of intersection defines the required ESAU boundary, thus permitting further fractional area calculations to determine the percentage of materials present. With a draft method in place, and first-level method validation underway, we examine the transformation of the two dissimilar data sets into the single, common reference frame. We also will consider the six previously-identified potential error factors versus the method process. This paper reports our on-going work and discusses our findings to date.

  4. Responses of neurons in the medial column of the inferior olive in pigeons to translational and rotational optic flowfields.

    PubMed

    Winship, I R; Wylie, D R

    2001-11-01

    The responses of neurons in the medial column of the inferior olive to translational and rotational optic flow were recorded from anaesthetized pigeons. Panoramic translational or rotational flowfields were produced by mechanical devices that projected optic flow patterns onto the walls, ceiling and floor of the room. The axis of rotation/translation could be positioned to any orientation in three-dimensional space such that axis tuning could be determined. Each neuron was assigned a vector representing the axis about/along which the animal would rotate/translate to produce the flowfield that elicited maximal modulation. Both translation-sensitive and rotation-sensitive neurons were found. For neurons responsive to translational optic flow, the preferred axis is described with reference to a standard right-handed coordinate system, where +x, +y and +z represent rightward, upward and forward translation of the animal, respectively (assuming that all recordings were from the right side of the brain). t(+y) neurons were maximally excited in response to a translational optic flowfield that results from self-translation upward along the vertical (y) axis. t(-y) neurons also responded best to translational optic flow along the vertical axis but showed the opposite direction preference. The two remaining groups, t(-x+z) and t(-x-z) neurons, responded best to translational optic flow along horizontal axes that were oriented 45 degrees to the midline. There were two types of neurons responsive to rotational optic flow: rVA neurons preferred rotation about the vertical axis, and rH135c neurons preferred rotation about a horizontal axis at 135 degrees contralateral azimuth. The locations of marking lesions indicated a clear topographical organization of the six response types. In summary, our results reinforce that the olivo-cerebellar system dedicated to the analysis of optic flow is organized according to a reference frame consisting of three approximately orthogonal axes: the vertical axis, and two horizontal axes oriented 45 degrees to either side the midline. Previous research has shown that the eye muscles, vestibular semicircular canals and postural control system all share a similar spatial frame of reference.

  5. VizieR Online Data Catalog: Radio fluxes of 195 ICRF2-Gaia transfer sources (Le Bail+, 2016)

    NASA Astrophysics Data System (ADS)

    Le Bail, K.; Gipson, J. M.; Gordon, D.; MacMillan, D. S.; Behrend, D.; Thomas, C. C.; Bolotin, S.; Himwich, W. E.; Baver, K. D.; Corey, B. E.; Titus, M.; Bourda, G.; Charlot, P.; Collioud, A.

    2016-07-01

    The second realization of the International Celestial Reference Frame (ICRF2) is based on Very Long Baseline Interferometry (VLBI) data at radio frequencies in X band and S band. The European Space Agency's Gaia mission, launched on 2013 December 19, started routine scientific operations in 2014 July. By scanning the whole sky, it is expected to observe ~500000 Quasi Stellar Objects in the optical domain. This means that, in the future, two extragalactic celestial reference frames, at two different frequency domains, will coexist. It will thus be important to align them very accurately. In 2012, the Laboratoire d'Astrophysique de Bordeaux (LAB) selected 195 sources from ICRF2 that will be observed by Gaia and should be suitable for aligning the radio and optical frames: they are called ICRF2-Gaia transfer sources. The LAB submitted a proposal to the International VLBI Service (IVS) to regularly observe these ICRF2-Gaia transfer sources at the same rate as Gaia observes them in the optical realm, e.g., roughly once a month. Of the 195 sources, all but one have been successfully observed in the 12 months prior to 2015 September 01. Table1 lists the 195 ICRF2-Gaia transfer sources. Beginning in 2003 June, the Goddard VLBI group developed a program to purposefully monitor when sources were observed and to increase the observations of "under-observed" sources. In 2013 March, we added all 195 ICRF2-Gaia transfer sources to the IVS source monitoring program with an observation target of 12 successful sessions per year. (1 data file).

  6. Drifting while stepping in place in old adults: Association of self-motion perception with reference frame reliance and ground optic flow sensitivity.

    PubMed

    Agathos, Catherine P; Bernardin, Delphine; Baranton, Konogan; Assaiante, Christine; Isableu, Brice

    2017-04-07

    Optic flow provides visual self-motion information and is shown to modulate gait and provoke postural reactions. We have previously reported an increased reliance on the visual, as opposed to the somatosensory-based egocentric, frame of reference (FoR) for spatial orientation with age. In this study, we evaluated FoR reliance for self-motion perception with respect to the ground surface. We examined how effects of ground optic flow direction on posture may be enhanced by an intermittent podal contact with the ground, and reliance on the visual FoR and aging. Young, middle-aged and old adults stood quietly (QS) or stepped in place (SIP) for 30s under static stimulation, approaching and receding optic flow on the ground and a control condition. We calculated center of pressure (COP) translation and optic flow sensitivity was defined as the ratio of COP translation velocity over absolute optic flow velocity: the visual self-motion quotient (VSQ). COP translation was more influenced by receding flow during QS and by approaching flow during SIP. In addition, old adults drifted forward while SIP without any imposed visual stimulation. Approaching flow limited this natural drift and receding flow enhanced it, as indicated by the VSQ. The VSQ appears to be a motor index of reliance on the visual FoR during SIP and is associated with greater reliance on the visual and reduced reliance on the egocentric FoR. Exploitation of the egocentric FoR for self-motion perception with respect to the ground surface is compromised by age and associated with greater sensitivity to optic flow. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Relativistic quantum optics: The relativistic invariance of the light-matter interaction models

    NASA Astrophysics Data System (ADS)

    Martín-Martínez, Eduardo; Rodriguez-Lopez, Pablo

    2018-05-01

    In this article we discuss the invariance under general changes of reference frame of all the physical predictions of particle detector models in quantum field theory in general and, in particular, of those used in quantum optics to model atoms interacting with light. We find explicitly how the light-matter interaction Hamiltonians change under general coordinate transformations, and analyze the subtleties of the Hamiltonians commonly used to describe the light-matter interaction when relativistic motion is taken into account.

  8. Reference Frames and Relativity.

    ERIC Educational Resources Information Center

    Swartz, Clifford

    1989-01-01

    Stresses the importance of a reference frame in mechanics. Shows the Galilean transformation in terms of relativity theory. Discusses accelerated reference frames and noninertial reference frames. Provides examples of reference frames with diagrams. (YP)

  9. Space Geodesy, VLBI, and the Fourth Pillar of Geodesy - Spacetime Curvature

    NASA Astrophysics Data System (ADS)

    Combrinck, Ludwig

    2014-12-01

    Typically geodesy is described as having ``three pillars'': the variations in Earth's shape, gravity field, and rotation. These pillars form the conceptual and observational basis for the celestial and terrestrial reference frames required for Earth and space observations. However, it is no longer adequate to base the conceptual and observational basis on only three pillars. Spacetime curvature as described by the General Theory of Relativity (GTR) is an integral component of all space geodesy techniques and influences all measurements, techniques, and data reduction. Spacetime curvature is therefore the fourth pillar. It is the measurement of the shape of spacetime and its variations. Due to accuracies of Very Long Baseline Interferometry (VLBI) and optical celestial reference frame measurements reaching the tens of micro-arcsecond level in the near future, it is essential to recognize the impact of spacetime seeing on the accuracy objectives of the Global Geodetic Observing System. Spacetime seeing (resulting from spacetime curvature) is analogous to astronomical seeing (resulting from atmospheric conditions), as all of spacetime is affected by microlensing/weak lensing to some extent as a result of mass (normal baryonic and darkmatter) distribution, placing a limit on the realization of the celestial reference frame.

  10. Astrophysics of Reference Frame Tie Objects

    NASA Technical Reports Server (NTRS)

    Johnston, Kenneth J.; Boboltz, David; Fey, Alan Lee; Gaume, Ralph A.; Zacharias, Norbert

    2004-01-01

    The Astrophysics of Reference Frame Tie Objects Key Science program will investigate the underlying physics of SIM grid objects. Extragalactic objects in the SIM grid will be used to tie the SIM reference frame to the quasi-inertial reference frame defined by extragalactic objects and to remove any residual frame rotation with respect to the extragalactic frame. The current realization of the extragalactic frame is the International Celestial Reference Frame (ICRF). The ICRF is defined by the radio positions of 212 extragalactic objects and is the IAU sanctioned fundamental astronomical reference frame. This key project will advance our knowledge of the physics of the objects which will make up the SIM grid, such as quasars and chromospherically active stars, and relates directly to the stability of the SIM reference frame. The following questions concerning the physics of reference frame tie objects will be investigated.

  11. A FORTRAN realization of the block adjustment of CCD frames

    NASA Astrophysics Data System (ADS)

    Yu, Yong; Tang, Zhenghong; Li, Jinling; Zhao, Ming

    A FORTRAN version realization of the block adjustment (BA) of overlapping CCD frames is developed. The flowchart is introduced including (a) data collection, (b) preprocessing, and (c) BA and object positioning. The subroutines and their functions are also demonstrated. The program package is tested by simulated data with/without the application of white noises. It is also preliminarily applied to the reduction of optical positions of four extragalactic radio sources. The results show that because of the increase in the sky coverage and number of reference stars, the precision of deducted positions is improved compared with single plate adjustment.

  12. Superconductor rotor cooling system

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2004-11-02

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  13. Superconductor rotor cooling system

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  14. A reference Pelton turbine - High speed visualization in the rotating frame

    NASA Astrophysics Data System (ADS)

    Solemslie, Bjørn W.; Dahlhaug, Ole G.

    2016-11-01

    To enable a detailed study the flow mechanisms effecting the flow within the reference Pelton runner designed at the Waterpower Laboratory (NTNLT) a flow visualization system has been developed. The system enables high speed filming of the hydraulic surface of a single bucket in the rotating frame of reference. It is built with an angular borescopes adapter entering the turbine along the rotational axis and a borescope embedded within a bucket. A stationary high speed camera located outside the turbine housing has been connected to the optical arrangement by a non-contact coupling. The view point of the system includes the whole hydraulic surface of one half of a bucket. The system has been designed to minimize the amount of vibrations and to ensure that the vibrations felt by the borescope are the same as those affecting the camera. The preliminary results captured with the system are promising and enable a detailed study of the flow within the turbine.

  15. 3D endoscopic pulsed digital holography

    NASA Astrophysics Data System (ADS)

    Saucedo Anaya, T.; Mendoza Santoyo, F.; Pedrini, G.; Osten, W.

    2006-06-01

    A rigid endoscope is used in pulsed digital holography to simultaneously evaluate the three orthogonal displacement components from hidden areas of a harmonically vibrating metallic cylinder. The cylinder is illuminated from three different illuminating directions. The optical path for each illumination direction is matched to its corresponding reference beam, but also in such a way that each object-reference beam pair optical path is mismatched such that they are incoherent and can be stored in a single CCD frame. As is typical in these types of interferometric arrangements, two digital holograms are needed in order to compare two different states of the cylinder. Each hologram is Fourier transformed and due to the incoherence introduced three separate spectra are readily identified, each belonging to a object-reference beam pair. On comparing by subtraction the phase obtained from the two pulsed digital holograms it is possible to gather quantitative 3D results from harmonic displacements.

  16. The Kepler Full Frame Images

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie L.; Batalha, Natalie; Bryson, Stephen T.; Caldwell, Douglas A.; Clarke, Bruce D.

    2010-01-01

    NASA's exoplanet discovery mission Kepler provides uninterrupted 1-min and 30-min optical photometry of a 100 square degree field over a 3.5 yr nominal mission. Downlink bandwidth is filled at these short cadences by selecting only detector pixels specific to 105 preselected stellar targets. The majority of the Kepler field, comprising 4 x 10(exp 6) m_v < 20 sources, is sampled at much lower 1-month cadence in the form of a full-frame image. The Full Frame Images (FFIs) are calibrated by the Science Operations Center at NASA Ames Research Center. The Kepler Team employ these images for astrometric and photometric reference but make the images available to the astrophysics community through the Multimission Archive at STScI (MAST). The full-frame images provide a resource for potential Kepler Guest Observers to select targets and plan observing proposals, while also providing a freely-available long-cadence legacy of photometric variation across a swathe of the Galactic disk.

  17. Post-processing of adaptive optics images based on frame selection and multi-frame blind deconvolution

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Rao, Changhui; Wei, Kai

    2008-07-01

    The adaptive optics can only partially compensate the image blurred by atmospheric turbulence due to the observing condition and hardware restriction. A post-processing method based on frame selection and multi-frames blind deconvolution to improve images partially corrected by adaptive optics is proposed. The appropriate frames which are suitable for blind deconvolution from the recorded AO close-loop frames series are selected by the frame selection technique and then do the multi-frame blind deconvolution. There is no priori knowledge except for the positive constraint in blind deconvolution. It is benefit for the use of multi-frame images to improve the stability and convergence of the blind deconvolution algorithm. The method had been applied in the image restoration of celestial bodies which were observed by 1.2m telescope equipped with 61-element adaptive optical system at Yunnan Observatory. The results show that the method can effectively improve the images partially corrected by adaptive optics.

  18. Design and validation of an open-source library of dynamic reference frames for research and education in optical tracking.

    PubMed

    Brown, Alisa; Uneri, Ali; Silva, Tharindu De; Manbachi, Amir; Siewerdsen, Jeffrey H

    2018-04-01

    Dynamic reference frames (DRFs) are a common component of modern surgical tracking systems; however, the limited number of commercially available DRFs poses a constraint in developing systems, especially for research and education. This work presents the design and validation of a large, open-source library of DRFs compatible with passive, single-face tracking systems, such as Polaris stereoscopic infrared trackers (NDI, Waterloo, Ontario). An algorithm was developed to create new DRF designs consistent with intra- and intertool design constraints and convert to computer-aided design (CAD) files suitable for three-dimensional printing. A library of 10 such groups, each with 6 to 10 DRFs, was produced and tracking performance was validated in comparison to a standard commercially available reference, including pivot calibration, fiducial registration error (FRE), and target registration error (TRE). Pivot tests showed calibration error [Formula: see text], indistinguishable from the reference. FRE was [Formula: see text], and TRE in a CT head phantom was [Formula: see text], both equivalent to the reference. The library of DRFs offers a useful resource for surgical navigation research and could be extended to other tracking systems and alternative design constraints.

  19. Geometric Cues, Reference Frames, and the Equivalence of Experienced-Aligned and Novel-Aligned Views in Human Spatial Memory

    ERIC Educational Resources Information Center

    Kelly, Jonathan W.; Sjolund, Lori A.; Sturz, Bradley R.

    2013-01-01

    Spatial memories are often organized around reference frames, and environmental shape provides a salient cue to reference frame selection. To date, however, the environmental cues responsible for influencing reference frame selection remain relatively unknown. To connect research on reference frame selection with that on orientation via…

  20. Three-dimensional registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation.

    PubMed

    Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Brandt, Eric; Wen, Di; van Ditzhuijzen, Nienke S; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Alian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G; Wilson, David L

    2016-04-01

    Evidence suggests high-resolution, high-contrast, [Formula: see text] intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and three-dimensional (3-D) registration methods to provide validation of IVOCT pullback volumes using microscopic, color, and fluorescent cryo-image volumes with optional registered cryo-histology. A specialized registration method matched IVOCT pullback images acquired in the catheter reference frame to a true 3-D cryo-image volume. Briefly, an 11-parameter registration model including a polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Multiple assessments suggested that the registration error was better than the [Formula: see text] spacing between IVOCT image frames. Tests on a digital synthetic phantom gave a registration error of only [Formula: see text] (signed distance). Visual assessment of randomly presented nearby frames suggested registration accuracy within 1 IVOCT frame interval ([Formula: see text]). This would eliminate potential misinterpretations confronted by the typical histological approaches to validation, with estimated 1-mm errors. The method can be used to create annotated datasets and automated plaque classification methods and can be extended to other intravascular imaging modalities.

  1. Comparing the TYCHO Catalogue with CCD Astrograph Observations

    NASA Astrophysics Data System (ADS)

    Zacharias, N.; Hoeg, E.; Urban, S. E.; Corbin, T. E.

    1997-08-01

    Selected fields around radio-optical reference frame sources have been observed with the U.S. Naval Observatory CCD astrograph (UCA). This telescope is equipped with a red-corrected 206mm 5-element lens and a 4k by 4k CCD camera which provides a 1 square degree field of view. Positions with internal precisions of 20 mas for stars in the 7 to 12 magnitude range have been obtained with 30 second exposures. A comparison is made with the Tycho Catalogue, which is accurate to about 5 to 50 mas at mean epoch of J1991.25, depending on the magnitude of the star. Preliminary proper motions are obtained using the Astrographic Catalogue (AC) to update the Tycho positions to the epoch of the UCA observations, which adds an error contribution of about 15 to 20 mas. Individual CCD frames have been reduced with an average of 30 Tycho reference stars per frame. A linear plate model gives an average adjustment standard error of 46 mas, consistent with the internal errors. The UCA is capable of significantly improving the positions of Tycho stars fainter than about visual magnitude 9.5.

  2. The Large Quasar Reference Frame (LQRF). An Optical Representation of the ICRS

    DTIC Science & Technology

    2009-10-01

    faint regimes, both the 2MASS and the preliminary northernmost UCAC2 positions are shown of astrometry consistent with the UCAC2 main catalog, and the...is used. 2.7. 2MASS The Two Micron All-Sky Survey point source catalog (Cutri et al. 2003), hereafter 2MASS , derives from an uniform scan of the...17.1, H = 16.4, and K = 15.3. The 2MASS contains the position of 470 992 970 sources, but no proper motions. The astrometry is referred to the

  3. Fast Calcium Imaging with Optical Sectioning via HiLo Microscopy.

    PubMed

    Lauterbach, Marcel A; Ronzitti, Emiliano; Sternberg, Jenna R; Wyart, Claire; Emiliani, Valentina

    2015-01-01

    Imaging intracellular calcium concentration via reporters that change their fluorescence properties upon binding of calcium, referred to as calcium imaging, has revolutionized our way to probe neuronal activity non-invasively. To reach neurons densely located deep in the tissue, optical sectioning at high rate of acquisition is necessary but difficult to achieve in a cost effective manner. Here we implement an accessible solution relying on HiLo microscopy to provide robust optical sectioning with a high frame rate in vivo. We show that large calcium signals can be recorded from dense neuronal populations at high acquisition rates. We quantify the optical sectioning capabilities and demonstrate the benefits of HiLo microscopy compared to wide-field microscopy for calcium imaging and 3D reconstruction. We apply HiLo microscopy to functional calcium imaging at 100 frames per second deep in biological tissues. This approach enables us to discriminate neuronal activity of motor neurons from different depths in the spinal cord of zebrafish embryos. We observe distinct time courses of calcium signals in somata and axons. We show that our method enables to remove large fluctuations of the background fluorescence. All together our setup can be implemented to provide efficient optical sectioning in vivo at low cost on a wide range of existing microscopes.

  4. Fast Calcium Imaging with Optical Sectioning via HiLo Microscopy

    PubMed Central

    Sternberg, Jenna R.; Wyart, Claire; Emiliani, Valentina

    2015-01-01

    Imaging intracellular calcium concentration via reporters that change their fluorescence properties upon binding of calcium, referred to as calcium imaging, has revolutionized our way to probe neuronal activity non-invasively. To reach neurons densely located deep in the tissue, optical sectioning at high rate of acquisition is necessary but difficult to achieve in a cost effective manner. Here we implement an accessible solution relying on HiLo microscopy to provide robust optical sectioning with a high frame rate in vivo. We show that large calcium signals can be recorded from dense neuronal populations at high acquisition rates. We quantify the optical sectioning capabilities and demonstrate the benefits of HiLo microscopy compared to wide-field microscopy for calcium imaging and 3D reconstruction. We apply HiLo microscopy to functional calcium imaging at 100 frames per second deep in biological tissues. This approach enables us to discriminate neuronal activity of motor neurons from different depths in the spinal cord of zebrafish embryos. We observe distinct time courses of calcium signals in somata and axons. We show that our method enables to remove large fluctuations of the background fluorescence. All together our setup can be implemented to provide efficient optical sectioning in vivo at low cost on a wide range of existing microscopes. PMID:26625116

  5. Shaking video stabilization with content completion

    NASA Astrophysics Data System (ADS)

    Peng, Yi; Ye, Qixiang; Liu, Yanmei; Jiao, Jianbin

    2009-01-01

    A new stabilization algorithm to counterbalance the shaking motion in a video based on classical Kandade-Lucas- Tomasi (KLT) method is presented in this paper. Feature points are evaluated with law of large numbers and clustering algorithm to reduce the side effect of moving foreground. Analysis on the change of motion direction is also carried out to detect the existence of shaking. For video clips with detected shaking, an affine transformation is performed to warp the current frame to the reference one. In addition, the missing content of a frame during the stabilization is completed with optical flow analysis and mosaicking operation. Experiments on video clips demonstrate the effectiveness of the proposed algorithm.

  6. Dynamical reference frames in the planetary and earth-moon systems

    NASA Technical Reports Server (NTRS)

    Standish, E. M.; Williams, G.

    1990-01-01

    Estimates of the accuracies of the ephemerides are reviewed using data for planetary and lunar systems to determine the efficacy of the inherent dynamical reference frame. The varied observational data are listed and given with special attention given to ephemeris improvements. The importance of ranging data is discussed with respect to the inner four planets and the moon, and the discrepancy of 1 arcsec/century between mean motions determined by optical observations versus ranging data is addressed. The Viking mission data provide inertial mean motions for the earth and Mars of 0.003 arcsec/century which will deteriorate to 0.01 arcsec after about 10 years. Uncertainties for other planets and the moon are found to correspond to approximately the same level of degradation. In general the data measurements and error estimates are improving the ephemerides, although refitting the data cannot account for changes in mean motion.

  7. Adaptive optics images restoration based on frame selection and multi-framd blind deconvolution

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Rao, C. H.; Wei, K.

    2008-10-01

    The adaptive optics can only partially compensate the image blurred by atmospheric turbulent due to the observing condition and hardware restriction. A post-processing method based on frame selection and multi-frame blind deconvolution to improve images partially corrected by adaptive optics is proposed. The appropriate frames which are picked out by frame selection technique is deconvolved. There is no priori knowledge except the positive constraint. The method has been applied in the image restoration of celestial bodies which were observed by 1.2m telescope equipped with 61-element adaptive optical system in Yunnan Observatory. The results showed that the method can effectively improve the images partially corrected by adaptive optics.

  8. Quantitating Human Optic Disc Topography

    NASA Astrophysics Data System (ADS)

    Graebel, William P.; Cohan, Bruce E.; Pearch, Andrew C.

    1980-07-01

    A method is presented for quantitatively expressing the topography of the human optic disc, applicable in a clinical setting to the diagnosis and management of glaucoma. Pho-tographs of the disc illuminated by a pattern of fine, high contrast parallel lines are digitized. From the measured deviation of the lines as they traverse the disc surface, disc topography is calculated, using the principles of optical sectioning. The quantitators applied to express this topography have the the following advantages : sensitivity to disc shape; objectivity; going beyond the limits of cup-disc ratio estimates and volume calculations; perfect generality in a mathematical sense; an inherent scheme for determining a non-subjective reference frame to compare different discs or the same disc over time.

  9. Astrometry VLBI in Space (AVS

    NASA Technical Reports Server (NTRS)

    Altunin, V.; Alekseev, V.; Akim, E.; Eubanks, M.; Kingham, K.; Treuhaft, R.; Sukhanov, K.

    1995-01-01

    A proposed new space radio astronomy mission for astrometry is described. The Astrometry VLBI (very long baseline) in Space (AVS) nominal mission includes two identical spacecraft, each with a 4-m antenna sending data to a 70-m ground station. The goals of AVS are improving astrometry accuracy to the microarcsecond level and improving the accuracy of the transformation between the inertial radio and optical coordinate reference frames.

  10. Gaia Data Release 1. Astrometry: one billion positions, two million proper motions and parallaxes

    NASA Astrophysics Data System (ADS)

    Lindegren, L.; Lammers, U.; Bastian, U.; Hernández, J.; Klioner, S.; Hobbs, D.; Bombrun, A.; Michalik, D.; Ramos-Lerate, M.; Butkevich, A.; Comoretto, G.; Joliet, E.; Holl, B.; Hutton, A.; Parsons, P.; Steidelmüller, H.; Abbas, U.; Altmann, M.; Andrei, A.; Anton, S.; Bach, N.; Barache, C.; Becciani, U.; Berthier, J.; Bianchi, L.; Biermann, M.; Bouquillon, S.; Bourda, G.; Brüsemeister, T.; Bucciarelli, B.; Busonero, D.; Carlucci, T.; Castañeda, J.; Charlot, P.; Clotet, M.; Crosta, M.; Davidson, M.; de Felice, F.; Drimmel, R.; Fabricius, C.; Fienga, A.; Figueras, F.; Fraile, E.; Gai, M.; Garralda, N.; Geyer, R.; González-Vidal, J. J.; Guerra, R.; Hambly, N. C.; Hauser, M.; Jordan, S.; Lattanzi, M. G.; Lenhardt, H.; Liao, S.; Löffler, W.; McMillan, P. J.; Mignard, F.; Mora, A.; Morbidelli, R.; Portell, J.; Riva, A.; Sarasso, M.; Serraller, I.; Siddiqui, H.; Smart, R.; Spagna, A.; Stampa, U.; Steele, I.; Taris, F.; Torra, J.; van Reeven, W.; Vecchiato, A.; Zschocke, S.; de Bruijne, J.; Gracia, G.; Raison, F.; Lister, T.; Marchant, J.; Messineo, R.; Soffel, M.; Osorio, J.; de Torres, A.; O'Mullane, W.

    2016-11-01

    Context. Gaia Data Release 1 (DR1) contains astrometric results for more than 1 billion stars brighter than magnitude 20.7 based on observations collected by the Gaia satellite during the first 14 months of its operational phase. Aims: We give a brief overview of the astrometric content of the data release and of the model assumptions, data processing, and validation of the results. Methods: For stars in common with the Hipparcos and Tycho-2 catalogues, complete astrometric single-star solutions are obtained by incorporating positional information from the earlier catalogues. For other stars only their positions are obtained, essentially by neglecting their proper motions and parallaxes. The results are validated by an analysis of the residuals, through special validation runs, and by comparison with external data. Results: For about two million of the brighter stars (down to magnitude 11.5) we obtain positions, parallaxes, and proper motions to Hipparcos-type precision or better. For these stars, systematic errors depending for example on position and colour are at a level of ± 0.3 milliarcsecond (mas). For the remaining stars we obtain positions at epoch J2015.0 accurate to 10 mas. Positions and proper motions are given in a reference frame that is aligned with the International Celestial Reference Frame (ICRF) to better than 0.1 mas at epoch J2015.0, and non-rotating with respect to ICRF to within 0.03 mas yr-1. The Hipparcos reference frame is found to rotate with respect to the Gaia DR1 frame at a rate of 0.24 mas yr-1. Conclusions: Based on less than a quarter of the nominal mission length and on very provisional and incomplete calibrations, the quality and completeness of the astrometric data in Gaia DR1 are far from what is expected for the final mission products. The present results nevertheless represent a huge improvement in the available fundamental stellar data and practical definition of the optical reference frame.

  11. Relativistic Velocity Addition Law from Machine Gun Analogy

    NASA Astrophysics Data System (ADS)

    Rothenstein, Bernhard; Popescu, Stefan

    2009-01-01

    Many derivations of the relativistic addition law of parallel velocities without use of the Lorentz transformations (LT) are known.1-5 Some of them are based on thought experiments that require knowledge of the time dilation and the length contraction effects.1,4,5 Other derivations involve the Doppler effect in the optic domain considered from three inertial reference frames in relative motion.6 A few derivations simply involve only the principle of constancy of the light velocity.2 Such derivations are interesting for the teaching of special relativity theory since the relativistic addition of velocities leads directly to the LT.7 The derivation we propose is based on a machine gun-target analogy8 of the acoustic Doppler effect, considered from the rest frame of the machine gun and from the rest frame of the target.

  12. Effect of Laterally Wedged Insoles on the External Knee Adduction Moment across Different Reference Frames.

    PubMed

    Yamaguchi, Satoshi; Kitamura, Masako; Ushikubo, Tomohiro; Murata, Atsushi; Akagi, Ryuichiro; Sasho, Takahisa

    2015-01-01

    Biomechanical effects of laterally wedged insoles are assessed by reduction in the knee adduction moment. However, the degree of reduction may vary depending on the reference frame with which it is calculated. The purpose of this study was to clarify the effect of reference frame on the reduction in the knee adduction moment by laterally wedged insoles. Twenty-nine healthy participants performed gait trials with a laterally wedged insole and with a flat insole as a control. The knee adduction moment, including the first and second peaks and the angular impulse, were calculated using four different reference frames: the femoral frame, tibial frame, laboratory frame and the Joint Coordinate System. There were significant effects of reference frame on the knee adduction moment first and second peaks (P < 0.001 for both variables), while the effect was not significant for the angular impulse (P = 0.84). No significant interaction between the gait condition and reference frame was found in either of the knee adduction moment variables (P = 0.99 for all variables), indicating that the effects of laterally wedged insole on the knee adduction moments were similar across the four reference frames. On the other hand, the average percent changes ranged from 9% to 16% for the first peak, from 16% to 18% for the second peak and from 17% to 21% for the angular impulse when using the different reference frames. The effects of laterally wedged insole on the reduction in the knee adduction moment were similar across the reference frames. On the other hand, Researchers need to recognize that when the percent change was used as the parameter of the efficacy of laterally wedged insole, the choice of reference frame may influence the interpretation of how laterally wedged insoles affect the knee adduction moment.

  13. The reference frame for encoding and retention of motion depends on stimulus set size.

    PubMed

    Huynh, Duong; Tripathy, Srimant P; Bedell, Harold E; Öğmen, Haluk

    2017-04-01

    The goal of this study was to investigate the reference frames used in perceptual encoding and storage of visual motion information. In our experiments, observers viewed multiple moving objects and reported the direction of motion of a randomly selected item. Using a vector-decomposition technique, we computed performance during smooth pursuit with respect to a spatiotopic (nonretinotopic) and to a retinotopic component and compared them with performance during fixation, which served as the baseline. For the stimulus encoding stage, which precedes memory, we found that the reference frame depends on the stimulus set size. For a single moving target, the spatiotopic reference frame had the most significant contribution with some additional contribution from the retinotopic reference frame. When the number of items increased (Set Sizes 3 to 7), the spatiotopic reference frame was able to account for the performance. Finally, when the number of items became larger than 7, the distinction between reference frames vanished. We interpret this finding as a switch to a more abstract nonmetric encoding of motion direction. We found that the retinotopic reference frame was not used in memory. Taken together with other studies, our results suggest that, whereas a retinotopic reference frame may be employed for controlling eye movements, perception and memory use primarily nonretinotopic reference frames. Furthermore, the use of nonretinotopic reference frames appears to be capacity limited. In the case of complex stimuli, the visual system may use perceptual grouping in order to simplify the complexity of stimuli or resort to a nonmetric abstract coding of motion information.

  14. How Flexible is the Use of Egocentric Versus Allocentric Frame of Reference in the Williams Syndrome Population?

    PubMed

    Heiz, J; Majerus, S; Barisnikov, K

    2017-09-28

    This study examined the spontaneous use of allocentric and egocentric frames of reference and their flexible use as a function of instructions. The computerized spatial reference task created by Heiz and Barisnikov (2015) was used. Participants had to choose a frame of reference according to three types of instructions: spontaneous, allocentric and egocentric. The performances of 16 Williams Syndrome participants between 10 and 41 years were compared to those of two control groups (chronological age and non-verbal intellectual ability). The majority of Williams Syndrome participants did not show a preference for a particular frame of reference. When explicitly inviting participants to use an allocentric frame of reference, all three groups showed an increased use of the allocentric frame of reference. At the same time, an important heterogeneity of type of frame of reference used by Williams Syndrome participants was observed. Results demonstrate that despite difficulties in the spontaneous use of allocentric and egocentric frames of reference, some Williams Syndrome participants show flexibility in the use of an allocentric frame of reference when an explicit instruction is provided. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Frames of Reference in the Classroom

    ERIC Educational Resources Information Center

    Grossman, Joshua

    2012-01-01

    The classic film "Frames of Reference" effectively illustrates concepts involved with inertial and non-inertial reference frames. In it, Donald G. Ivey and Patterson Hume use the cameras perspective to allow the viewer to see motion in reference frames translating with a constant velocity, translating while accelerating, and rotating--all with…

  16. On the Hipparcos Link to the ICRF derived from VLA and MERLIN radio astrometry

    NASA Astrophysics Data System (ADS)

    Hering, R.; Walter, H. G.

    2007-06-01

    Positions and proper motions obtained from observations by the very large array (VLA) and the multi-element radio-linked interferometer network (MERLIN) are used to establish the link of the Hipparcos Celestial Reference Frame (HCRF) to the International Celestial Reference Frame (ICRF). The VLA and MERLIN data are apparently the latest ones published in the literature. Their mean epoch at around 2001 is about 10 years after the epoch of the Hipparcos catalogue and, therefore, the data are considered suitable to check the Hipparcos link established at epoch 1991.25. The parameters of the link, i.e., the angles of frame orientation and the angular rates of frame rotation, are estimated by fitting these parameters to the differences of the optical and radio positions and proper motions of stars common to the Hipparcos catalogue and the VLA and MERLIN data. Both the estimates of the angles of orientation and the angular rates of rotation show nearly consistent but insignificant results for all samples of stars treated. We conclude that not only the size of the samples of 9 15 stars is too small, but also that the accuracy of the radio positions and, above all, of the radio proper motions is insufficient, the latter being based on early-epoch star positions of low accuracy. The present observational data at epoch 2001 suggest that maintenance of the Hipparcos frame is not feasible at this stage.

  17. Adaptive Optics Image Restoration Based on Frame Selection and Multi-frame Blind Deconvolution

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Rao, Chang-hui; Wei, Kai

    Restricted by the observational condition and the hardware, adaptive optics can only make a partial correction of the optical images blurred by atmospheric turbulence. A postprocessing method based on frame selection and multi-frame blind deconvolution is proposed for the restoration of high-resolution adaptive optics images. By frame selection we mean we first make a selection of the degraded (blurred) images for participation in the iterative blind deconvolution calculation, with no need of any a priori knowledge, and with only a positivity constraint. This method has been applied to the restoration of some stellar images observed by the 61-element adaptive optics system installed on the Yunnan Observatory 1.2m telescope. The experimental results indicate that this method can effectively compensate for the residual errors of the adaptive optics system on the image, and the restored image can reach the diffraction-limited quality.

  18. IVS Observation of ICRF2-Gaia Transfer Sources

    NASA Astrophysics Data System (ADS)

    Le Bail, K.; Gipson, J. M.; Gordon, D.; MacMillan, D. S.; Behrend, D.; Thomas, C. C.; Bolotin, S.; Himwich, W. E.; Baver, K. D.; Corey, B. E.; Titus, M.; Bourda, G.; Charlot, P.; Collioud, A.

    2016-03-01

    The second realization of the International Celestial Reference Frame (ICRF2), which is the current fundamental celestial reference frame adopted by the International Astronomical Union, is based on Very Long Baseline Interferometry (VLBI) data at radio frequencies in X band and S band. The European Space Agency’s Gaia mission, launched on 2013 December 19, started routine scientific operations in 2014 July. By scanning the whole sky, it is expected to observe ∼500,000 Quasi Stellar Objects in the optical domain an average of 70 times each during the five years of the mission. This means that, in the future, two extragalactic celestial reference frames, at two different frequency domains, will coexist. It will thus be important to align them very accurately. In 2012, the Laboratoire d’Astrophysique de Bordeaux (LAB) selected 195 sources from ICRF2 that will be observed by Gaia and should be suitable for aligning the radio and optical frames: they are called ICRF2-Gaia transfer sources. The LAB submitted a proposal to the International VLBI Service (IVS) to regularly observe these ICRF2-Gaia transfer sources at the same rate as Gaia observes them in the optical realm, e.g., roughly once a month. We describe our successful effort to implement such a program and report on the results. Most observations of the ICRF2-Gaia transfer sources now occur automatically as part of the IVS source monitoring program, while a subset of 37 sources requires special attention. Beginning in 2013, we scheduled 25 VLBI sessions devoted in whole or in part to measuring these 37 sources. Of the 195 sources, all but one have been successfully observed in the 12 months prior to 2015 September 01. Of the sources, 87 met their observing target of 12 successful sessions per year. The position uncertainties of all of the ICRF2-Gaia transfer sources have improved since the start of this observing program. For a subset of 24 sources whose positions were very poorly known, the uncertainty has decreased, on average, by a factor of four. This observing program is successful because the two main goals were reached for most of the 195 ICRF2-Gaia transfer sources: observing at the requested target of 12 successful sessions per year and improving the position uncertainties to better than 200 μas for both R.A. and decl. However, scheduling some of the transfer sources remains a challenge because of network geometry and the weakness of the sources, and this will be one focus of future sessions used in this ongoing program.

  19. The reference frame of figure-ground assignment.

    PubMed

    Vecera, Shaun P

    2004-10-01

    Figure-ground assignment involves determining which visual regions are foreground figures and which are backgrounds. Although figure-ground processes provide important inputs to high-level vision, little is known about the reference frame in which the figure's features and parts are defined. Computational approaches have suggested a retinally based, viewer-centered reference frame for figure-ground assignment, but figural assignment could also be computed on the basis of environmental regularities in an environmental reference frame. The present research used a newly discovered cue, lower region, to examine the reference frame of figure-ground assignment. Possible reference frames were misaligned by changing the orientation of viewers by having them tilt their heads (Experiments 1 and 2) or turn them upside down (Experiment 3). The results of these experiments indicated that figure-ground perception followed the orientation of the viewer, suggesting a viewer-centered reference frame for figure-ground assignment.

  20. Reframing Student Affairs Leadership: An Analysis of Organizational Frames of Reference and Locus of Control

    ERIC Educational Resources Information Center

    Tull, Ashley; Freeman, Jerrid P.

    2011-01-01

    Examined in this study were the identified frames of reference and locus of control used by 478 student affairs administrators. Administrator responses were examined to identify frames of reference most commonly used and their preference order. Locus of control most commonly used and the relationship between frames of reference and locus of…

  1. Realization of ETRF2000 as a New Terrestrial Reference Frame in Republic of Serbia

    NASA Astrophysics Data System (ADS)

    Blagojevic, D.; Vasilic, V.

    2012-12-01

    The International Earth Rotation and Reference Systems Service (IERS) is a joint service of the International Association of Geodesy (IAG) and the International Astronomical Union (IAU), which provides the scientific community with the means for computing the transformation from the International Celestial Reference System (ICRS) to the International Terrestrial Reference System (ITRS). It further maintains the realizations of these systems by appropriate coordinate sets called "frames". The densification of terrestrial frame usually serves as official frame for positioning and navigation tasks within the territory of particular country. One of these densifications was recently performed in order to establish new reference frame for Republic of Serbia. The paper describes related activities resulting in ETRF2000 as a new Serbian terrestrial reference frame.

  2. Optical variability of extragalactic objects used to tie the HIPPARCOS reference frame to an extragalactic system using Hubble space telescope observations

    NASA Technical Reports Server (NTRS)

    Bozyan, Elizabeth P.; Hemenway, Paul D.; Argue, A. Noel

    1990-01-01

    Observations of a set of 89 extragalactic objects (EGOs) will be made with the Hubble Space Telescope Fine Guidance Sensors and Planetary Camera in order to link the HIPPARCOS Instrumental System to an extragalactic coordinate system. Most of the sources chosen for observation contain compact radio sources and stellarlike nuclei; 65 percent are optical variables beyond a 0.2 mag limit. To ensure proper exposure times, accurate mean magnitudes are necessary. In many cases, the average magnitudes listed in the literature were not adequate. The literature was searched for all relevant photometric information for the EGOs, and photometric parameters were derived, including mean magnitude, maximum range, and timescale of variability. This paper presents the results of that search and the parameters derived. The results will allow exposure times to be estimated such that an observed magnitude different from the tabular magnitude by 0.5 mag in either direction will not degrade the astrometric centering ability on a Planetary Camera CCD frame.

  3. High frame-rate en face optical coherence tomography system using KTN optical beam deflector

    NASA Astrophysics Data System (ADS)

    Ohmi, Masato; Shinya, Yusuke; Imai, Tadayuki; Toyoda, Seiji; Kobayashi, Junya; Sakamoto, Tadashi

    2017-02-01

    We developed high frame-rate en face optical coherence tomography (OCT) system using KTa1-xNbxO3 (KTN) optical beam deflector. In the imaging system, the fast scanning was performed at 200 kHz by the KTN optical beam deflector, while the slow scanning was performed at 800 Hz by the galvanometer mirror. As a preliminary experiment, we succeeded in obtaining en face OCT images of human fingerprint with a frame rate of 800 fps. This is the highest frame-rate obtained using time-domain (TD) en face OCT imaging. The 3D-OCT image of sweat gland was also obtained by our imaging system.

  4. Embodied Interaction Priority: Other's Body Part Affects Numeral-Space Mappings.

    PubMed

    You, Xuqun; Zhang, Yu; Zhu, Rongjuan; Guo, Yu

    2018-01-01

    Traditionally, the spatial-numerical association of response codes (SNARC) effect was presented in two-choice condition, in which only one individual reacted to both even (small) and odd (large) numbers. Few studies explored SNARC effect in a social situation. Moreover, there are many reference frames involved in SNARC effect, and it has not yet been investigated which reference frame is dominated when two participants perform the go-nogo task together. In the present study, we investigated which reference frame plays a primary role in SNARC effect when allocentric and egocentric reference frames were consistent or inconsistent in social settings. Furthermore, we explored how two actors corepresent number-space mapping interactively. Results of the two experiments demonstrated that egocentric reference frame was at work primarily when two reference frames were consistent and inconsistent. This shows that body-centered coordinate frames influence number-space mapping in social settings, and one actor may represent another actor's action and tasks.

  5. Mission Capability Gains from Multi-Mode Propulsion Thrust Variations on a Variety Spacecraft Orbital Maneuvers

    DTIC Science & Technology

    2011-03-01

    Geocentric -Equatorial Reference Frame2 ....................................................................... 31  Figure 8: Perifocal and Geocentric ...67  Figure 25: Mission 3 Geocentric Equatorial Reference Frame ...................................................... 69  Figure 26: Mission 3...Coordinate system, the Geocentric -Equatorial Reference frame and the reference frame depicted on one another is shown below. The following figures are from

  6. A catalog of selected compact radio sources for the construction of an extragalactic radio/optical reference frame (Argue et al. 1984): Documentation for the machine-readable version

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This document describes the machine readable version of the Selected Compact Radio Source Catalog as it is currently being distributed from the international network of astronomical data centers. It is intended to enable users to read and process the computerized catalog. The catalog contains 233 strong, compact extragalactic radio sources having identified optical counterparts. The machine version contains the same data as the published catalog and includes source identifications, equatorial positions at J2000.0 and their mean errors, object classifications, visual magnitudes, redshift, 5-GHz flux densities, and comments.

  7. Error Propagation in the four terrestrial reference frames of the 2022 Modernized National Spatial Reference System

    NASA Astrophysics Data System (ADS)

    Roman, D. R.; Smith, D. A.

    2017-12-01

    In 2022, the National Geodetic Survey will replace all three NAD 83 reference frames with four new terrestrial reference frames. Each frame will be named after a tectonic plate (North American, Pacific, Caribbean and Mariana) and each will be related to the IGS frame through three Euler Pole parameters (EPPs). This talk will focus on three main areas of error propagation when defining coordinates in these four frames. Those areas are (1) use of the small angle approximation to relate true rotation about an Euler Pole to small rotations about three Cartesian axes (2) The current state of the art in determining the Euler Poles of these four plates and (3) the combination of both IGS Cartesian coordinate uncertainties and EPP uncertainties into coordinate uncertainties in the four new frames. Discussion will also include recent efforts at improving the Euler Poles for these frames and expected dates when errors in the EPPs will cause an unacceptable level of uncertainty in the four new terrestrial reference frames.

  8. Optical measurement of high-temperature melt flow rate.

    PubMed

    Bizjan, Benjamin; Širok, Brane; Chen, Jinpeng

    2018-05-20

    This paper presents an optical method and system for contactless measurement of the mass flow rate of melts by digital cameras. The proposed method is based on reconstruction of melt stream geometry and flow velocity calculation by cross correlation, and is very cost-effective due its modest hardware requirements. Using a laboratory test rig with a small inductive melting pot and reference mass flow rate measurement by weighing, the proposed method was demonstrated to have an excellent dynamic response (0.1 s order of magnitude) while producing deviations from the reference of about 5% in the steady-state flow regime. Similar results were obtained in an industrial stone wool production line for two repeated measurements. Our method was tested in a wide range of melt flow rates (0.05-1.2 kg/s) and did not require very fast cameras (120 frames per second would be sufficient for most industrial applications).

  9. Environmental Inversion Effects in Face Perception

    ERIC Educational Resources Information Center

    Davidenko, Nicolas; Flusberg, Stephen J.

    2012-01-01

    Visual processing is highly sensitive to stimulus orientation; for example, face perception is drastically worse when faces are oriented inverted vs. upright. However, stimulus orientation must be established in relation to a particular reference frame, and in most studies, several reference frames are conflated. Which reference frame(s) matter in…

  10. Relativistic spin-orbit interactions of photons and electrons

    NASA Astrophysics Data System (ADS)

    Smirnova, D. A.; Travin, V. M.; Bliokh, K. Y.; Nori, F.

    2018-04-01

    Laboratory optics, typically dealing with monochromatic light beams in a single reference frame, exhibits numerous spin-orbit interaction phenomena due to the coupling between the spin and orbital degrees of freedom of light. Similar phenomena appear for electrons and other spinning particles. Here we examine transformations of paraxial photon and relativistic-electron states carrying the spin and orbital angular momenta (AM) under the Lorentz boosts between different reference frames. We show that transverse boosts inevitably produce a rather nontrivial conversion from spin to orbital AM. The converted part is then separated between the intrinsic (vortex) and extrinsic (transverse shift or Hall effect) contributions. Although the spin, intrinsic-orbital, and extrinsic-orbital parts all point in different directions, such complex behavior is necessary for the proper Lorentz transformation of the total AM of the particle. Relativistic spin-orbit interactions can be important in scattering processes involving photons, electrons, and other relativistic spinning particles, as well as when studying light emitted by fast-moving bodies.

  11. Frames of Reference: A Metaphor for Analyzing and Interpreting Attitudes of Environmental Policy Makers and Policy Influencers

    PubMed

    Swaffield

    1998-07-01

    / The concept of frame of reference offers a potentially useful analytical metaphor in environmental management. This is illustrated by a case study in which attitudes of individuals involved in the management of trees in the New Zealand high country are classified into seven distinctive frames of reference. Some practical and theoretical implications of the use of the frame metaphor are explored, including its potential contribution to the emerg- ing field of communicative planning. KEY WORDS: Frames of reference; Environmental policy analysis; Metaphor; New Zealand high country

  12. GNSS RTK-networks: The significance and issues to realize a recent reference coordinate system

    NASA Astrophysics Data System (ADS)

    Umnig, Elke; Möller, Gregor; Weber, Robert

    2014-05-01

    The upcoming release of the new global reference frame ITRF2013 will provide high accurate reference station positions and station velocities at the mm- and mm/year level, respectively. ITRF users benefit from this development in various ways. For example, this new frame allows for embedding high accurate GNSS baseline observations to an underlying reference of at least the same accuracy. Another advantage is that the IGS products are fully consistent with this frame and therefore all GNSS based zero-difference positioning results (Precise Point Positioning (PPP)) will be aligned to the ITRF2013. Unfortunately the transistion to a new frame (or just to a new epoch) implies also issues in particular for providers and users of real time positioning services. Thus providers have to perform arrangements, such as the readjustment of the reference station coordinates and the update of the transformation parameters from the homogenous GNSS coordinate frame into the national datum. Finally providers have to inform their clients appropriately about these changes and significant adjustments. Furthermore the aspect of the continental reference frame has to be considered: In Europe the use of the continental reference system/reference frame ETRS89/ETRF2000 is, due to cross-national guidelines, recommend by most national mapping authorities. Subsequently GNSS post-processing applications are degraded by the concurrent use of the reference systems and reference frames, to which terrestrial site coordinates and satellite coordinates are aligned. In this presentation we highlight all significant steps and hurdles which have to be jumped over when introducing a new reference frame from point of view of a typical regional RTK-reference station network provider. This network is located in Austria and parts of the neighbouring countries and consists of about 40 reference stations. Moreover, we discuss the significance of permanently monitoring the stability of the reference network sites and the determination of station velocities/rates for geodynamical investigations.

  13. Estimating pixel variances in the scenes of staring sensors

    DOEpatents

    Simonson, Katherine M [Cedar Crest, NM; Ma, Tian J [Albuquerque, NM

    2012-01-24

    A technique for detecting changes in a scene perceived by a staring sensor is disclosed. The technique includes acquiring a reference image frame and a current image frame of a scene with the staring sensor. A raw difference frame is generated based upon differences between the reference image frame and the current image frame. Pixel error estimates are generated for each pixel in the raw difference frame based at least in part upon spatial error estimates related to spatial intensity gradients in the scene. The pixel error estimates are used to mitigate effects of camera jitter in the scene between the current image frame and the reference image frame.

  14. Spatial vision within egocentric and exocentric frames of reference

    NASA Technical Reports Server (NTRS)

    Howard, Ian P.

    1991-01-01

    It is remarkable that we are able to perceive a stable visual world and judge the directions, orientations, and movements of visual objects given that images move on the retina, the eyes move in the head, the head moves on the body, and the body moves in space. An understanding of the mechanisms underlying perceptual stability and spatial judgements requires precise definitions of relevant coordinate systems. An egocentric frame of reference is defined with respect to some part of the observer. There are four principal egocentric frames of reference, a station-point frame associated with the nodal point of the eye, an retinocentric frame associated with the retina, a headcentric frame associated with the head, and a bodycentric frame (torsocentric) associated with the torso. Additional egocentric frames can be identified with respect to any segment of the body. An egocentric task is one in which the position, orientation, or motion of an object is judged with respect to an egocentric frame of reference. A proprioceptive is a special kind of egocentric task in which the object being judged is also part of the body. An example of a proprioceptive task is that of directing the gaze toward the seen or unseen toe. An exocentric frame of reference is external to the observer. Geographical coordinates and the direction of gravity are examples of exocentric frames of reference. These various frames are listed in tabular form, together with examples of judgements of each type.

  15. Astrometry VLBI in Space (AVS)

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Reyes, George

    1995-01-01

    This paper describes a proposal for a new space radio astronomy mission for astrometry using Very Long Baseline Interferometry (VLBI) called Astrometry VLBI in Space (AVS). The ultimate goals of AVS are improving the accuracy of radio astrometry measurements to the microarcsecond level in one epoch of measurements and improving the accuracy of the transformation between the inertial radio and optical coordinate reference frames. This study will also assess the impact of this mission on astrophysics astrometry and geophysics.

  16. Astrometric satellites

    NASA Astrophysics Data System (ADS)

    Lindegren, Lennart

    2012-01-01

    The launch of the Hipparcos satellite in 1989 and the Hubble Space Telescope in 1990 revolutionized astrometry. By no means does this imply that not much progress was made in the ground-based techniques used exclusively until then. On the contrary, the 1960s to 1980s saw an intense development of new or highly improved instruments, including photoelectric meridian circles, automated plate measuring machines, and the use of chargecoupled device (CCD) detectors for small-field differential astrometry (for a review of optical astrometry at the time, see Monet 1988). In the radio domain, very long baseline interferometry (VLBI) astrometry already provided an extragalactic reference frame accurate to about 1 milliarcsecond (mas) (Ma et al. 1990). Spectacular improvements were made in terms of accuracy, the faintness of the observed objects, and their numbers. However, there was a widening gulf between small-angle astrometry, where differential techniques could overcome atmospheric effects down to below 1 mas, and large-angle astrometry, where conventional instruments such as meridian circles seemed to have hit a barrier in the underlying systematic errors at about 100 mas. Though very precise, the small-angle measurements were of limited use for the determination of positions and proper motions, due to the lack of suitable reference objects in the small fields, and even for parallaxes the necessary correction for the mean parallax of background stars was highly non-trivial. Linking the optical observations to the accurate VLBI frame also proved extremely difficult.

  17. Optimization of the segmented method for optical compression and multiplexing system

    NASA Astrophysics Data System (ADS)

    Al Falou, Ayman

    2002-05-01

    Because of the constant increasing demands of images exchange, and despite the ever increasing bandwidth of the networks, compression and multiplexing of images is becoming inseparable from their generation and display. For high resolution real time motion pictures, electronic performing of compression requires complex and time-consuming processing units. On the contrary, by its inherent bi-dimensional character, coherent optics is well fitted to perform such processes that are basically bi-dimensional data handling in the Fourier domain. Additionally, the main limiting factor that was the maximum frame rate is vanishing because of the recent improvement of spatial light modulator technology. The purpose of this communication is to benefit from recent optical correlation algorithms. The segmented filtering used to store multi-references in a given space bandwidth product optical filter can be applied to networks to compress and multiplex images in a given bandwidth channel.

  18. Contextual cueing of tactile search is coded in an anatomical reference frame.

    PubMed

    Assumpção, Leonardo; Shi, Zhuanghua; Zang, Xuelian; Müller, Hermann J; Geyer, Thomas

    2018-04-01

    This work investigates the reference frame(s) underlying tactile context memory, a form of statistical learning in a tactile (finger) search task. In this task, if a searched-for target object is repeatedly encountered within a stable spatial arrangement of task-irrelevant distractors, detecting the target becomes more efficient over time (relative to nonrepeated arrangements), as learned target-distractor spatial associations come to guide tactile search, thus cueing attention to the target location. Since tactile search displays can be represented in several reference frames, including multiple external and an anatomical frame, in Experiment 1 we asked whether repeated search displays are represented in tactile memory with reference to an environment-centered or anatomical reference frame. In Experiment 2, we went on examining a hand-centered versus anatomical reference frame of tactile context memory. Observers performed a tactile search task, divided into a learning and test session. At the transition between the two sessions, we introduced postural manipulations of the hands (crossed ↔ uncrossed in Expt. 1; palm-up ↔ palm-down in Expt. 2) to determine the reference frame of tactile contextual cueing. In both experiments, target-distractor associations acquired during learning transferred to the test session when the placement of the target and distractors was held constant in anatomical, but not external, coordinates. In the latter, RTs were even slower for repeated displays. We conclude that tactile contextual learning is coded in an anatomical reference frame. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. A Variational Approach to Video Registration with Subspace Constraints.

    PubMed

    Garg, Ravi; Roussos, Anastasios; Agapito, Lourdes

    2013-01-01

    This paper addresses the problem of non-rigid video registration, or the computation of optical flow from a reference frame to each of the subsequent images in a sequence, when the camera views deformable objects. We exploit the high correlation between 2D trajectories of different points on the same non-rigid surface by assuming that the displacement of any point throughout the sequence can be expressed in a compact way as a linear combination of a low-rank motion basis. This subspace constraint effectively acts as a trajectory regularization term leading to temporally consistent optical flow. We formulate it as a robust soft constraint within a variational framework by penalizing flow fields that lie outside the low-rank manifold. The resulting energy functional can be decoupled into the optimization of the brightness constancy and spatial regularization terms, leading to an efficient optimization scheme. Additionally, we propose a novel optimization scheme for the case of vector valued images, based on the dualization of the data term. This allows us to extend our approach to deal with colour images which results in significant improvements on the registration results. Finally, we provide a new benchmark dataset, based on motion capture data of a flag waving in the wind, with dense ground truth optical flow for evaluation of multi-frame optical flow algorithms for non-rigid surfaces. Our experiments show that our proposed approach outperforms state of the art optical flow and dense non-rigid registration algorithms.

  20. A micro-CMM with metrology frame for low uncertainty measurements

    NASA Astrophysics Data System (ADS)

    Brand, Uwe; Kirchhoff, Juergen

    2005-12-01

    A conventional bridge-type coordinate measuring machine (CMM) with an opto-tactile fibre probe for the measurement of microstructures has been equipped with a metrology frame in order to reduce its measurement uncertainty. The frame contains six laser interferometers for high-precision position and guiding deviation measurements, a Zerodur cuboid with three measuring surfaces for the laser interferometers to which the fibre probe is fixed, and an invar frame which supports the measuring objects and to which the reference mirrors of the interferometers are fixed. The orthogonality and flatness deviations of the Zerodur measuring surfaces have been measured and taken into account in the equation of motion of the probing sphere. As a first performance test, the flatness of an optical flat has been measured with the fibre probe. Measuring-depth-dependent and probing-force-dependent shifts of the probing position were observed. In order to reduce the scattering of the probing points, 77 measurements were averaged for one coordinate point to be measured. This has led to measuring times of several hours for one plane and strong thermal drifts of the measured probing points.

  1. Decoherence dynamics of interacting qubits coupled to a bath of local optical phonons

    NASA Astrophysics Data System (ADS)

    Lone, Muzaffar Qadir; Yarlagadda, S.

    2016-04-01

    We study decoherence in an interacting qubit system described by infinite range Heisenberg model (IRHM) in a situation where the system is coupled to a bath of local optical phonons. Using perturbation theory in polaron frame of reference, we derive an effective Hamiltonian that is valid in the regime of strong spin-phonon coupling under nonadiabatic conditions. It is shown that the effective Hamiltonian commutes with the IRHM upto leading orders of perturbation and thus has the same eigenstates as the IRHM. Using a quantum master equation with Markovian approximation of dynamical evolution, we show that the off-diagonal elements of the density matrix do not decay in the energy eigen basis of IRHM.

  2. The role of perspective taking in how children connect reference frames when explaining astronomical phenomena

    NASA Astrophysics Data System (ADS)

    Plummer, Julia D.; Bower, Corinne A.; Liben, Lynn S.

    2016-02-01

    This study investigates the role of perspective-taking skills in how children explain spatially complex astronomical phenomena. Explaining many astronomical phenomena, especially those studied in elementary and middle school, requires shifting between an Earth-based description of the phenomena and a space-based reference frame. We studied 7- to 9-year-old children (N = 15) to (a) develop a method for capturing how children make connections between reference frames and to (b) explore connections between perspective-taking skill and the nature of children's explanations. Children's explanations for the apparent motion of the Sun and stars and for seasonal changes in constellations were coded for accuracy of explanation, connection between frames of reference, and use of gesture. Children with higher spatial perspective-taking skills made more explicit connections between reference frames and used certain gesture-types more frequently, although this pattern was evident for only some phenomena. Findings suggest that children - particularly those with lower perspective-taking skills - may need additional support in learning to explicitly connect reference frames in astronomy. Understanding spatial thinking among children who successfully made explicit connections between reference frames in their explanations could be a starting point for future instruction in this domain.

  3. Spatial Updating Strategy Affects the Reference Frame in Path Integration.

    PubMed

    He, Qiliang; McNamara, Timothy P

    2018-06-01

    This study investigated how spatial updating strategies affected the selection of reference frames in path integration. Participants walked an outbound path consisting of three successive waypoints in a featureless environment and then pointed to the first waypoint. We manipulated the alignment of participants' final heading at the end of the outbound path with their initial heading to examine the adopted reference frame. We assumed that the initial heading defined the principal reference direction in an allocentric reference frame. In Experiment 1, participants were instructed to use a configural updating strategy and to monitor the shape of the outbound path while they walked it. Pointing performance was best when the final heading was aligned with the initial heading, indicating the use of an allocentric reference frame. In Experiment 2, participants were instructed to use a continuous updating strategy and to keep track of the location of the first waypoint while walking the outbound path. Pointing performance was equivalent regardless of the alignment between the final and the initial headings, indicating the use of an egocentric reference frame. These results confirmed that people could employ different spatial updating strategies in path integration (Wiener, Berthoz, & Wolbers Experimental Brain Research 208(1) 61-71, 2011), and suggested that these strategies could affect the selection of the reference frame for path integration.

  4. Physical-layer network coding in coherent optical OFDM systems.

    PubMed

    Guan, Xun; Chan, Chun-Kit

    2015-04-20

    We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.

  5. Instantaneous progression reference frame for calculating pelvis rotations: Reliable and anatomically-meaningful results independent of the direction of movement.

    PubMed

    Kainz, Hans; Lloyd, David G; Walsh, Henry P J; Carty, Christopher P

    2016-05-01

    In motion analysis, pelvis angles are conventionally calculated as the rotations between the pelvis and laboratory reference frame. This approach assumes that the participant's motion is along the anterior-posterior laboratory reference frame axis. When this assumption is violated interpretation of pelvis angels become problematic. In this paper a new approach for calculating pelvis angles based on the rotations between the pelvis and an instantaneous progression reference frame was introduced. At every time-point, the tangent to the trajectory of the midpoint of the pelvis projected into the horizontal plane of the laboratory reference frame was used to define the anterior-posterior axis of the instantaneous progression reference frame. This new approach combined with the rotation-obliquity-tilt rotation sequence was compared to the conventional approach using the rotation-obliquity-tilt and tilt-obliquity-rotation sequences. Four different movement tasks performed by eight healthy adults were analysed. The instantaneous progression reference frame approach was the only approach that showed reliable and anatomically meaningful results for all analysed movement tasks (mean root-mean-square-differences below 5°, differences in pelvis angles at pre-defined gait events below 10°). Both rotation sequences combined with the conventional approach led to unreliable results as soon as the participant's motion was not along the anterior-posterior laboratory axis (mean root-mean-square-differences up to 30°, differences in pelvis angles at pre-defined gait events up to 45°). The instantaneous progression reference frame approach enables the gait analysis community to analysis pelvis angles for movements that do not follow the anterior-posterior axis of the laboratory reference frame. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Four-Year-Olds Use a Mixture of Spatial Reference Frames

    PubMed Central

    Negen, James; Nardini, Marko

    2015-01-01

    Keeping track of unseen objects is an important spatial skill. In order to do this, people must situate the object in terms of different frames of reference, including body position (egocentric frame of reference), landmarks in the surrounding environment (extrinsic frame reference), or other attached features (intrinsic frame of reference). Nardini et al. hid a toy in one of 12 cups in front of children, turned the array when they were not looking, and then asked them to point to the cup with the toy. This forced children to use the intrinsic frame (information about the array of cups) to locate the hidden toy. Three-year-olds made systematic errors by using the wrong frame of reference, 4-year-olds were at chance, and only 5- and 6-year-olds were successful. Can we better understand the developmental change that takes place at four years? This paper uses a modelling approach to re-examine the data and distinguish three possible strategies that could lead to the previous results at four years: (1) Children were choosing cups randomly, (2) Children were pointing between the egocentric/extrinsic-cued location and the correct target, and (3) Children were pointing near the egocentric/extrinsic-cued location on some trials and near the target on the rest. Results heavily favor the last possibility: 4-year-olds were not just guessing or trying to combine the available frames of reference. They were using the intrinsic frame on some trials, but not doing so consistently. These insights suggest that accounts of improving spatial performance at 4 years need to explain why there is a mixture of responses. Further application of the selected model also suggests that children become both more reliant on the correct frame and more accurate with any chosen frame as they mature. PMID:26133990

  7. Spatial cognition and navigation

    NASA Technical Reports Server (NTRS)

    Aretz, Anthony J.

    1989-01-01

    An experiment that provides data for the development of a cognitive model of pilot flight navigation is described. The experiment characterizes navigational awareness as the mental alignment of two frames of reference: (1) the ego centered reference frame that is established by the forward view out of the cockpit and (2) the world centered reference frame that is established by the aircraft's location on a map. The data support a model involving at least two components: (1) the perceptual encoding of the navigational landmarks and (2) the mental rotation of the map's world reference frame into alignment with the ego centered reference frame. The quantitative relationships of these two factors are provided as possible inputs for a computational model of spatial cognition during flight navigation.

  8. Physics of Non-Inertial Reference Frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamalov, Timur F.

    2010-12-22

    Physics of non-inertial reference frames is a generalizing of Newton's laws to any reference frames. It is the system of general axioms for classical and quantum mechanics. The first, Kinematics Principle reads: the kinematic state of a body free of forces conserves and equal in absolute value to an invariant of the observer's reference frame. The second, Dynamics Principle extended Newton's second law to non-inertial reference frames and also contains additional variables there are higher derivatives of coordinates. Dynamics Principle reads: a force induces a change in the kinematic state of the body and is proportional to the rate ofmore » its change. It is mean that if the kinematic invariant of the reference frame is n-th derivative with respect the time, then the dynamics of a body being affected by the force F is described by the 2n-th differential equation. The third, Statics Principle reads: the sum of all forces acting a body at rest is equal to zero.« less

  9. The assessment of the transformation of global tectonic plate models and the global terrestrial reference frames using the Velocity Decomposition Analysis

    NASA Astrophysics Data System (ADS)

    Ampatzidis, Dimitrios; König, Rolf; Glaser, Susanne; Heinkelmann, Robert; Schuh, Harald; Flechtner, Frank; Nilsson, Tobias

    2016-04-01

    The aim of our study is to assess the classical Helmert similarity transformation using the Velocity Decomposition Analysis (VEDA). The VEDA is a new methodology, developed by GFZ for the assessment of the reference frames' temporal variation and it is based on the separation of the velocities into two specified parts: The first is related to the reference system choice (the so called datum effect) and the latter one which refers to the real deformation of the terrestrial points. The advantage of the VEDA is its ability to detect the relative biases and reference system effects between two different frames or two different realizations of the same frame, respectively. We apply the VEDA for the assessment between several modern tectonic plate models and the recent global terrestrial reference frames.

  10. Sensitivity distribution of a vibration sensor based on Mach-Zehnder interferometer designed inside the window system

    NASA Astrophysics Data System (ADS)

    Zboril, Ondrej; Nedoma, Jan; Cubik, Jakub; Novak, Martin; Bednarek, Lukas; Fajkus, Marcel; Vasinek, Vladimir

    2016-04-01

    Interferometric sensors are very accurate and sensitive sensors that due to the extreme sensitivity allow sensing vibration and acoustic signals. This paper describes a new method of implementation of Mach-Zehnder interferometer for sensing of vibrations caused by touching on the window panes. Window panes are part of plastic windows, in which the reference arm of the interferometer is mounted and isolated inside the frame, a measuring arm of the interferometer is fixed to the window pane and it is mounted under the cover of the window frame. It prevents visibility of the optical fiber and this arrangement is the basis for the safety system. For the construction of the vibration sensor standard elements of communication networks are used - optical fiber according to G.652D and 1x2 splitters with dividing ratio 1:1. Interferometer operated at a wavelength of 1550 nm. The paper analyses the sensitivity of the window in a 12x12 measuring points matrix, there is specified sensitivity distribution of the window pane.

  11. Two configurations of miniature Mirau interferometry for swept-source OCT imaging: applications in dermatology and gastroendoscopy

    NASA Astrophysics Data System (ADS)

    Gorecki, Christophe

    2015-08-01

    The early diagnosis of cancer is essential since it can be treated more effectively when detected earlier. Visual inspection followed by histological examination is, still today, the gold standard for clinicians. However, a large number of unnecessary surgical procedures are still performed. New diagnostics aids are emerging including the recent techniques of optical coherence tomography (OCT) which permits non-invasive 3D optical biopsies of biological tissues, improving patient's quality of life. Nevertheless, the existing bulk or fiber optics systems are expensive, only affordable at the hospital and thus, not sufficiently used by physicians or cancer's specialists as an early diagnosis tool. We developed two different microsystems based on Mirau interferometry and applied for swept source OCT imaging: one for dermatology and second for gastroenterology. In both cases the architecture is based tem based on spectrally tuned Mirau interferometry. The first configuration, developed in the frame of the European project VIAMOS, includes an active array of 4x4 Mirau interferometers. The matrix of Mirau reference mirrors is integrated on top of an electrostatic vertical comb-drive actuator. In second configuration, developed in the frame of Labex ACTION, we adapted VIAMOS technology to develop an OCT endomicroscope with a single-channel passive Mirau interferometer.

  12. Investigating the Impact of Optical Selection Effects on Observed Rest-frame Prompt GRB Properties

    NASA Astrophysics Data System (ADS)

    Turpin, D.; Heussaff, V.; Dezalay, J.-P.; Atteia, J.-L.; Klotz, A.; Dornic, D.

    2016-11-01

    Measuring gamma-ray burst (GRB) properties in their rest frame is crucial for understanding the physics at work in GRBs. This can only be done for GRBs with known redshifts. Since redshifts are usually measured from the optical spectrum of the afterglow, correlations between prompt and afterglow emissions may introduce biases into the distribution of the rest-frame properties of the prompt emission, especially considering that we measure the redshift of only one-third of Swift GRBs. In this paper, we study the optical flux of GRB afterglows and its connection to various intrinsic properties of GRBs. We also discuss the impact of the optical selection effect on the distribution of rest-frame prompt properties of GRBs. Our analysis is based on a sample of 90 GRBs with good optical follow-up and well-measured prompt emission. Seventy-six of them have a measure of redshift and 14 have no redshift. We compare the rest-frame prompt properties of GRBs with different afterglow optical fluxes in order to check for possible correlations between the promt properties and the optical flux of the afterglow. The optical flux is measured two hours after the trigger, which is a typical time for the measure of the redshift. We find that the optical flux of GRB afterglows in our sample is mainly driven by their optical luminosity and depends only slightly on their redshift. We show that GRBs with low and high afterglow optical fluxes have similar E {}{{pi}}, E {}{{iso}}, and L {}{{iso}}, indicating that the rest-frame distributions computed from GRBs with a redshift are not significantly distorted by optical selection effects. However, we found that the {T}90{rest} distribution is not immune to optical selection effects, which favor the selection of GRBs with longer durations. Finally, we note that GRBs well above the E {}{{pi}}-E {}{{iso}} relation have lower optical fluxes and we show that optical selection effects favor the detection of GRBs with bright optical afterglows located close to or below the best-fit E {}{{pi}}-E {}{{iso}} relation (Amati relation), whose redshift is easily measurable. With more than 300 GRBs with a redshift, we now have a much better view of the intrinsic properties of these remarkable events. At the same time, increasing statistics allow us to understand the biases acting on the measurements. The optical selection effects induced by the redshift measurement strategies cannot be neglected when we study the properties of GRBs in their rest frame, even for studies focused on prompt emission.

  13. Research of influence of nonlinear optical effects in fine-grained glasses on the transmitted pulse signal

    NASA Astrophysics Data System (ADS)

    Sultanov, Albert H.; Kanakov, Vladimir I.; Vinogradova, Irina L.

    2005-06-01

    The present paper is devoted to probing of a possibility of application of the transparent nanostructure quartz at build-up of components of all-optical networks. Nanostructure photos are obtained and diagrams of allocation of grains on the reference sizes built. Measurements of stimulated Mandelshtam-Brillouin (SSMB) scattering in such samples are carried out. It is established, that there is build-down SSMB on 7...10%. The analysis of distortions of a digital signal is theoretically carried theoretically out by action of nonlinear and dispersion optical effects on the part of managing radiation. The theoretical estimation of importance of transmission rate and reflectivity of mirrors of the interference device of management in which limits dispersion distortions will stay in the frames installed by the specifications and tecimical documentation is carried out.

  14. Why the Greenwich Meridian Moved

    DTIC Science & Technology

    2015-08-01

    that are related to the geocentric reference frame introduced by the Bureau International de l’Heure (BIH) in 1984. This BIHTerrestrial System provided...the basis for orientation of subsequent geocentric reference frames, including all realizations of theWorld Geodetic Sys- tem 1984 and the...astronomical time. The coordinates of satellite-navigation receivers are provided in reference frames that are related to the geocentric reference

  15. Newton-Cartan Gravity in Noninertial Reference Frames

    NASA Astrophysics Data System (ADS)

    Rodriguez, Leo; St. Germaine-Fuller, James; Wickramasekara, Sujeev

    2015-03-01

    We study Newton-Cartan gravity under transformations into all noninertial, nonrelativistic reference frames. These transformations form an infinite dimensional Lie group, called the Galilean line group, which contains as a subgroup the Galilei group. The fictitious forces of noninertial reference frames are encoded in the Cartan connection transformed under the Galilean line group. These fictitious forces, which are coordinate effects, do not contribute to the Ricci tensor. Only the 00-component of the Ricci tensor is non-zero and equals (4 π times) the matter density in all reference frames. While the Ricci field equation and Gauss' law are fulfilled by the physical matter density in inertial and linearly accelerating reference frames, in rotating reference frames Gauss' law holds for an effective mass density that differs from the physical matter density. This effective density has its origin in the simulated magnetic field of rotating frames, highlighting a striking difference between linearly and rotationally accelerating frames. The equations governing the simulated fields have the same form as Maxwell's equations, a surprising result given that these equations obey special relativity (and U (1) -gauge symmetry), rather than Galilean symmetry. This work was supported in part by the HHMI Undergraduate Science Education Award 52006298 and the Grinnell College Academic Affairs' CSFS and MAP programs.

  16. Report of the panel on earth rotation and reference frames, section 7

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.; Dickman, Steven R.; Eubanks, Marshall T.; Feissel, Martine; Herring, Thomas A.; Mueller, Ivan I.; Rosen, Richard D.; Schutz, Robert E.; Wahr, John M.; Wilson, Charles R.

    1991-01-01

    Objectives and requirements for Earth rotation and reference frame studies in the 1990s are discussed. The objectives are to observe and understand interactions of air and water with the rotational dynamics of the Earth, the effects of the Earth's crust and mantle on the dynamics and excitation of Earth rotation variations over time scales of hours to centuries, and the effects of the Earth's core on the rotational dynamics and the excitation of Earth rotation variations over time scales of a year or longer. Another objective is to establish, refine and maintain terrestrial and celestrial reference frames. Requirements include improvements in observations and analysis, improvements in celestial and terrestrial reference frames and reference frame connections, and improved observations of crustal motion and mass redistribution on the Earth.

  17. TIGO: a geodetic observatory for the improvement of the global reference frame

    NASA Astrophysics Data System (ADS)

    Schlueter, Wolfgang; Hase, Hayo; Boeer, Armin

    1999-12-01

    The Bundesamt fuer Kartographie und Geodaesie (BKG) will provide a major contribution to the improvement and maintenance of the global reference frames: ICRF (International Celestial Reference Frame), ITRF (International Terrestrial Reference Frame) with the operation of TIGO (Transportable Integrated Geodetic Observatory). TIGO is designed as a transportable geodetic observatory which consists of all relevant geodetic space techniques for a fundamental station (including VLBI, SLR, GPS). The transportability of the observatory enables to fill up gaps in the International Space Geodetic Network and to optimize the contribution to the global reference frames. TIGO should operate for a period of 2 to 3 years (at minimum) at one location. BKG is looking for a cooperation with countries willing to contribute to the ITRF and to support the operation of TIGO.

  18. Reliability of frames of reference used for tibial component rotation in total knee arthroplasty.

    PubMed

    Page, Stephen R; Deakin, Angela H; Payne, Anthony P; Picard, Frederic

    2011-01-01

    This study evaluated seven different frames of reference used for tibial component rotation in total knee arthroplasty (TKA) to determine which ones showed good reliability between bone specimens. An optoelectronic system based around a computer-assisted surgical navigation system was used to measure and locate 34 individual anatomical landmarks on 40 tibias. Each particular frame of reference was reconstructed from a group of data points taken from the surface of each bone. The transverse axis was used as the baseline to which the other axes were compared, and the differences in angular rotation between the other six reference frames and the transverse axis were calculated. There was high variability in the tibial rotational alignment associated with all frames of reference. Of the references widely used in current TKA procedures, the tibial tuberosity axis and the anterior condylar axis had lower standard deviations (6.1° and 7.3°, respectively) than the transmalleolar axis and the posterior condylar axis (9.3° for both). In conclusion, we found high variability in the frames of reference used for tibial rotation alignment. However, the anterior condylar axis and transverse axis may warrant further tests with the use of navigation. Combining different frames of reference such as the tibial tuberosity axis, anterior condylar axis and transverse axis may reduce the range of errors found in all of these measurements.

  19. NChina16: A stable geodetic reference frame for geological hazard studies in North China

    NASA Astrophysics Data System (ADS)

    Wang, Guoquan; Bao, Yan; Gan, Weijun; Geng, Jianghui; Xiao, Gengru; Shen, Jack S.

    2018-04-01

    We have developed a stable North China Reference Frame 2016 (NChina16) using five years of continuous GPS observations (2011.8-2016.8) from 12 continuously operating reference stations (CORS) fixed to the North China Craton. Applications of NChina16 in landslide and subsidence studies are illustrated in this article. A method for realizing a regional geodetic reference frame is introduced. The primary result of this study is the seven parameters for transforming Cartesian ECEF (Earth-Centered, Earth-Fixed) coordinates X, Y, and Z from the International GNSS Service Reference Frame 2008 (IGS08) to NChina16. The seven parameters include the epoch that is used to align the regional reference frame to IGS08 and the time derivatives of three translations and three rotations. The GIPSY-OASIS (V6.4) software package was used to obtain the precise point positioning (PPP) daily solutions with respect to IGS08. The frame stability of NChina16 is approximately 0.5 mm/year in both horizontal and vertical directions. This study also developed a regional model for correcting seasonal motions superimposed into the vertical component of the GPS-derived displacement time series. Long-term GPS observations (1999-2016) from five CORS in North China were used to develop the seasonal model. According to this study, the PPP daily solutions with respect to NChina16 could achieve 2-3 mm horizontal accuracy and 4-5 mm vertical accuracy after being modified by the regional model. NChina16 will be critical to study geodynamic problems in North China, such as earthquakes, faulting, subsidence, and landslides. The regional reference frame will be periodically updated every few years to mitigate degradation of the frame with time and be synchronized with the update of IGS reference frame.

  20. Optical technologies for space sensor

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Liu, Jie; Xue, Yaoke; Liu, Yang; Liu, Meiying; Wang, Lingguang; Yang, Shaodong; Lin, Shangmin; Chen, Su; Luo, Jianjun

    2015-10-01

    Space sensors are used in navigation sensor fields. The sun, the earth, the moon and other planets are used as frame of reference to obtain stellar position coordinates, and then to control the attitude of an aircraft. Being the "eyes" of the space sensors, Optical sensor system makes images of the infinite far stars and other celestial bodies. It directly affects measurement accuracy of the space sensor, indirectly affecting the data updating rate. Star sensor technology is the pilot for Space sensors. At present more and more attention is paid on all-day star sensor technology. By day and night measurements of the stars, the aircraft's attitude in the inertial coordinate system can be provided. Facing the requirements of ultra-high-precision, large field of view, wide spectral range, long life and high reliability, multi-functional optical system, we integration, integration optical sensors will be future space technology trends. In the meantime, optical technologies for space-sensitive research leads to the development of ultra-precision optical processing, optical and precision test machine alignment technology. It also promotes the development of long-life optical materials and applications. We have achieved such absolute distortion better than ±1um, Space life of at least 15years of space-sensitive optical system.

  1. Improved optical flow motion estimation for digital image stabilization

    NASA Astrophysics Data System (ADS)

    Lai, Lijun; Xu, Zhiyong; Zhang, Xuyao

    2015-11-01

    Optical flow is the instantaneous motion vector at each pixel in the image frame at a time instant. The gradient-based approach for optical flow computation can't work well when the video motion is too large. To alleviate such problem, we incorporate this algorithm into a pyramid multi-resolution coarse-to-fine search strategy. Using pyramid strategy to obtain multi-resolution images; Using iterative relationship from the highest level to the lowest level to obtain inter-frames' affine parameters; Subsequence frames compensate back to the first frame to obtain stabilized sequence. The experiment results demonstrate that the promoted method has good performance in global motion estimation.

  2. SU-E-J-58: Comparison of Conformal Tracking Methods Using Initial, Adaptive and Preceding Image Frames for Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teo, P; Guo, K; Alayoubi, N

    Purpose: Accounting for tumor motion during radiation therapy is important to ensure that the tumor receives the prescribed dose. Increasing the field size to account for this motion exposes the surrounding healthy tissues to unnecessary radiation. In contrast to using motion-encompassing techniques to treat moving tumors, conformal radiation therapy (RT) uses a smaller field to track the tumor and adapts the beam aperture according to the motion detected. This work investigates and compares the performance of three markerless, EPID based, optical flow methods to track tumor motion with conformal RT. Methods: Three techniques were used to track the motions ofmore » a 3D printed lung tumor programmed to move according to the tumor of seven lung cancer patients. These techniques utilized a multi-resolution optical flow algorithm as the core computation for image registration. The first method (DIR) registers the incoming images with an initial reference frame, while the second method (RFSF) uses an adaptive reference frame and the third method (CU) uses preceding image frames for registration. The patient traces and errors were evaluated for the seven patients. Results: The average position errors for all patient traces were 0.12 ± 0.33 mm, −0.05 ± 0.04 mm and −0.28 ± 0.44 mm for CU, DIR and RFSF method respectively. The position errors distributed within 1 standard deviation are 0.74 mm, 0.37 mm and 0.96 mm respectively. The CU and RFSF algorithms are sensitive to the characteristics of the patient trace and produce a wider distribution of errors amongst patients. Although the mean error for the DIR method is negatively biased (−0.05 mm) for all patients, it has the narrowest distribution of position error, which can be corrected using an offset calibration. Conclusion: Three techniques of image registration and position update were studied. Using direct comparison with an initial frame yields the best performance. The authors would like to thank Dr.YeLin Suh for making the Cyberknife dataset available to us. Scholarship funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) and CancerCare Manitoba Foundation is acknowledged.« less

  3. Transport equations of electrodiffusion processes in the laboratory reference frame.

    PubMed

    Garrido, Javier

    2006-02-23

    The transport equations of electrodiffusion processes use three reference frames for defining the fluxes: Fick's reference in diffusion, solvent-fixed reference in transference numbers, and laboratory fluxes in electric conductivity. The convenience of using only one reference frame is analyzed here from the point of view of the thermodynamics of irreversible processes. A relation between the fluxes of ions and solvent and the electric current density is deduced first from a mass and volume balance. This is then used to show that (i) the laboratory and Fick's diffusion coefficients are identical and (ii) the transference numbers of both the solvent and the ion in the laboratory reference frame are related. Finally, four experimental methods for the measurement of ion transference numbers are analyzed critically. New expressions for evaluating transference numbers for the moving boundary method and the chronopotentiometry technique are deduced. It is concluded that the ion transport equation in the laboratory reference frame plays a key role in the description of electrodiffusion processes.

  4. Definition and Proposed Realization of the International Height Reference System (IHRS)

    NASA Astrophysics Data System (ADS)

    Ihde, Johannes; Sánchez, Laura; Barzaghi, Riccardo; Drewes, Hermann; Foerste, Christoph; Gruber, Thomas; Liebsch, Gunter; Marti, Urs; Pail, Roland; Sideris, Michael

    2017-05-01

    Studying, understanding and modelling global change require geodetic reference frames with an order of accuracy higher than the magnitude of the effects to be actually studied and with high consistency and reliability worldwide. The International Association of Geodesy, taking care of providing a precise geodetic infrastructure for monitoring the Earth system, promotes the implementation of an integrated global geodetic reference frame that provides a reliable frame for consistent analysis and modelling of global phenomena and processes affecting the Earth's gravity field, the Earth's surface geometry and the Earth's rotation. The definition, realization, maintenance and wide utilization of the International Terrestrial Reference System guarantee a globally unified geometric reference frame with an accuracy at the millimetre level. An equivalent high-precision global physical reference frame that supports the reliable description of changes in the Earth's gravity field (such as sea level variations, mass displacements, processes associated with geophysical fluids) is missing. This paper addresses the theoretical foundations supporting the implementation of such a physical reference surface in terms of an International Height Reference System and provides guidance for the coming activities required for the practical and sustainable realization of this system. Based on conceptual approaches of physical geodesy, the requirements for a unified global height reference system are derived. In accordance with the practice, its realization as the International Height Reference Frame is designed. Further steps for the implementation are also proposed.

  5. Coordinates of Human Visual and Inertial Heading Perception.

    PubMed

    Crane, Benjamin Thomas

    2015-01-01

    Heading estimation involves both inertial and visual cues. Inertial motion is sensed by the labyrinth, somatic sensation by the body, and optic flow by the retina. Because the eye and head are mobile these stimuli are sensed relative to different reference frames and it remains unclear if a perception occurs in a common reference frame. Recent neurophysiologic evidence has suggested the reference frames remain separate even at higher levels of processing but has not addressed the resulting perception. Seven human subjects experienced a 2s, 16 cm/s translation and/or a visual stimulus corresponding with this translation. For each condition 72 stimuli (360° in 5° increments) were delivered in random order. After each stimulus the subject identified the perceived heading using a mechanical dial. Some trial blocks included interleaved conditions in which the influence of ±28° of gaze and/or head position were examined. The observations were fit using a two degree-of-freedom population vector decoder (PVD) model which considered the relative sensitivity to lateral motion and coordinate system offset. For visual stimuli gaze shifts caused shifts in perceived head estimates in the direction opposite the gaze shift in all subjects. These perceptual shifts averaged 13 ± 2° for eye only gaze shifts and 17 ± 2° for eye-head gaze shifts. This finding indicates visual headings are biased towards retina coordinates. Similar gaze and head direction shifts prior to inertial headings had no significant influence on heading direction. Thus inertial headings are perceived in body-centered coordinates. Combined visual and inertial stimuli yielded intermediate results.

  6. Coordinates of Human Visual and Inertial Heading Perception

    PubMed Central

    Crane, Benjamin Thomas

    2015-01-01

    Heading estimation involves both inertial and visual cues. Inertial motion is sensed by the labyrinth, somatic sensation by the body, and optic flow by the retina. Because the eye and head are mobile these stimuli are sensed relative to different reference frames and it remains unclear if a perception occurs in a common reference frame. Recent neurophysiologic evidence has suggested the reference frames remain separate even at higher levels of processing but has not addressed the resulting perception. Seven human subjects experienced a 2s, 16 cm/s translation and/or a visual stimulus corresponding with this translation. For each condition 72 stimuli (360° in 5° increments) were delivered in random order. After each stimulus the subject identified the perceived heading using a mechanical dial. Some trial blocks included interleaved conditions in which the influence of ±28° of gaze and/or head position were examined. The observations were fit using a two degree-of-freedom population vector decoder (PVD) model which considered the relative sensitivity to lateral motion and coordinate system offset. For visual stimuli gaze shifts caused shifts in perceived head estimates in the direction opposite the gaze shift in all subjects. These perceptual shifts averaged 13 ± 2° for eye only gaze shifts and 17 ± 2° for eye-head gaze shifts. This finding indicates visual headings are biased towards retina coordinates. Similar gaze and head direction shifts prior to inertial headings had no significant influence on heading direction. Thus inertial headings are perceived in body-centered coordinates. Combined visual and inertial stimuli yielded intermediate results. PMID:26267865

  7. Asynchronous reference frame agreement in a quantum network

    NASA Astrophysics Data System (ADS)

    Islam, Tanvirul; Wehner, Stephanie

    2016-03-01

    An efficient implementation of many multiparty protocols for quantum networks requires that all the nodes in the network share a common reference frame. Establishing such a reference frame from scratch is especially challenging in an asynchronous network where network links might have arbitrary delays and the nodes do not share synchronised clocks. In this work, we study the problem of establishing a common reference frame in an asynchronous network of n nodes of which at most t are affected by arbitrary unknown error, and the identities of the faulty nodes are not known. We present a protocol that allows all the correctly functioning nodes to agree on a common reference frame as long as the network graph is complete and not more than t\\lt n/4 nodes are faulty. As the protocol is asynchronous, it can be used with some assumptions to synchronise clocks over a network. Also, the protocol has the appealing property that it allows any existing two-node asynchronous protocol for reference frame agreement to be lifted to a robust protocol for an asynchronous quantum network.

  8. Mercury's Reference Frames After the MESSENGER Mission

    NASA Astrophysics Data System (ADS)

    Stark, A.; Oberst, J.; Preusker, F.; Burmeister, S.; Steinbrügge, G.; Hussmann, H.

    2018-05-01

    We provide an overview of Mercury's reference frames based on MESSENGER observations. We discuss the dynamical, the principal-axes, the ellipsoid, as well as the cartographic frame, which was adopted for MESSENGER data products.

  9. Determination of Galactic Aberration from VLBI Measurements and Its Effect on VLBI Reference Frames and Earth Orientation Parameters.

    NASA Astrophysics Data System (ADS)

    MacMillan, D. S.

    2014-12-01

    Galactic aberration is due to the motion of the solar system barycenter around the galactic center. It results in a systematic pattern of apparent proper motion of radio sources observed by VLBI. This effect is not currently included in VLBI analysis. Estimates of the size of this effect indicate that it is important that this secular aberration drift be accounted for in order to maintain an accurate celestial reference frame and allow astrometry at the several microarcsecond level. Future geodetic observing systems are being designed to be capable of producing a future terrestrial reference frame with an accuracy of 1 mm and stability of 0.1 mm/year. We evaluate the effect galactic aberration on attaining these reference frame goals. This presentation will discuss 1) the estimation of galactic aberration from VLBI data and 2) the effect of aberration on the Terrestrial and Celestial Reference Frames and the Earth Orientation Parameters that connect these frames.

  10. The error of L5/S1 joint moment calculation in a body-centered non-inertial reference frame when the fictitious force is ignored.

    PubMed

    Xu, Xu; Faber, Gert S; Kingma, Idsart; Chang, Chien-Chi; Hsiang, Simon M

    2013-07-26

    In ergonomics studies, linked segment models are commonly used for estimating dynamic L5/S1 joint moments during lifting tasks. The kinematics data input to these models are with respect to an arbitrary stationary reference frame. However, a body-centered reference frame, which is defined using the position and the orientation of human body segments, is sometimes used to conveniently identify the location of the load relative to the body. When a body-centered reference frame is moving with the body, it is a non-inertial reference frame and fictitious force exists. Directly applying a linked segment model to the kinematics data with respect to a body-centered non-inertial reference frame will ignore the effect of this fictitious force and introduce errors during L5/S1 moment estimation. In the current study, various lifting tasks were performed in the laboratory environment. The L5/S1 joint moments during the lifting tasks were calculated by a linked segment model with respect to a stationary reference frame and to a body-centered non-inertial reference frame. The results indicate that applying a linked segment model with respect to a body-centered non-inertial reference frame will result in overestimating the peak L5/S1 joint moments of the coronal plane, sagittal plane, and transverse plane during lifting tasks by 78%, 2%, and 59% on average, respectively. The instant when the peak moment occurred was delayed by 0.13, 0.03, and 0.09s on average, correspondingly for the three planes. The root-mean-square errors of the L5/S1 joint moment for the three planes are 21Nm, 19Nm, and 9Nm, correspondingly. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Multiple reference frames in haptic spatial processing

    NASA Astrophysics Data System (ADS)

    Volčič, R.

    2008-08-01

    The present thesis focused on haptic spatial processing. In particular, our interest was directed to the perception of spatial relations with the main focus on the perception of orientation. To this end, we studied haptic perception in different tasks, either in isolation or in combination with vision. The parallelity task, where participants have to match the orientations of two spatially separated bars, was used in its two-dimensional and three-dimensional versions in Chapter 2 and Chapter 3, respectively. The influence of non-informative vision and visual interference on performance in the parallelity task was studied in Chapter 4. A different task, the mental rotation task, was introduced in a purely haptic study in Chapter 5 and in a visuo-haptic cross-modal study in Chapter 6. The interaction of multiple reference frames and their influence on haptic spatial processing were the common denominators of these studies. In this thesis we approached the problems of which reference frames play the major role in haptic spatial processing and how the relative roles of distinct reference frames change depending on the available information and the constraints imposed by different tasks. We found that the influence of a reference frame centered on the hand was the major cause of the deviations from veridicality observed in both the two-dimensional and three-dimensional studies. The results were described by a weighted average model, in which the hand-centered egocentric reference frame is supposed to have a biasing influence on the allocentric reference frame. Performance in haptic spatial processing has been shown to depend also on sources of information or processing that are not strictly connected to the task at hand. When non-informative vision was provided, a beneficial effect was observed in the haptic performance. This improvement was interpreted as a shift from the egocentric to the allocentric reference frame. Moreover, interfering visual information presented in the vicinity of the haptic stimuli parametrically modulated the magnitude of the deviations. The influence of the hand-centered reference frame was shown also in the haptic mental rotation task where participants were quicker in judging the parity of objects when these were aligned with respect to the hands than when they were physically aligned. Similarly, in the visuo-haptic cross-modal mental rotation task the parity judgments were influenced by the orientation of the exploring hand with respect to the viewing direction. This effect was shown to be modulated also by an intervening temporal delay that supposedly counteracts the influence of the hand-centered reference frame. We suggest that the hand-centered reference frame is embedded in a hierarchical structure of reference frames where some of these emerge depending on the demands and the circumstances of the surrounding environment and the needs of an active perceiver.

  12. Resonator memories and optical novelty filters

    NASA Astrophysics Data System (ADS)

    Anderson, Dana Z.; Erle, Marie C.

    Optical resonators having holographic elements are potential candidates for storing information that can be accessed through content addressable or associative recall. Closely related to the resonator memory is the optical novelty filter, which can detect the differences between a test object and a set of reference objects. We discuss implementations of these devices using continuous optical media such as photorefractive materials. The discussion is framed in the context of neural network models. There are both formal and qualitative similarities between the resonator memory and optical novelty filter and network models. Mode competition arises in the theory of the resonator memory, much as it does in some network models. We show that the role of the phenomena of "daydreaming" in the real-time programmable optical resonator is very much akin to the role of "unlearning" in neural network memories. The theory of programming the real-time memory for a single mode is given in detail. This leads to a discussion of the optical novelty filter. Experimental results for the resonator memory, the real-time programmable memory, and the optical tracking novelty filter are reviewed. We also point to several issues that need to be addressed in order to implement more formal models of neural networks.

  13. Resonator Memories And Optical Novelty Filters

    NASA Astrophysics Data System (ADS)

    Anderson, Dana Z.; Erie, Marie C.

    1987-05-01

    Optical resonators having holographic elements are potential candidates for storing information that can be accessed through content-addressable or associative recall. Closely related to the resonator memory is the optical novelty filter, which can detect the differences between a test object and a set of reference objects. We discuss implementations of these devices using continuous optical media such as photorefractive ma-terials. The discussion is framed in the context of neural network models. There are both formal and qualitative similarities between the resonator memory and optical novelty filter and network models. Mode competition arises in the theory of the resonator memory, much as it does in some network models. We show that the role of the phenomena of "daydream-ing" in the real-time programmable optical resonator is very much akin to the role of "unlearning" in neural network memories. The theory of programming the real-time memory for a single mode is given in detail. This leads to a discussion of the optical novelty filter. Experimental results for the resonator memory, the real-time programmable memory, and the optical tracking novelty filter are reviewed. We also point to several issues that need to be addressed in order to implement more formal models of neural networks.

  14. Pitch body orientation influences the perception of self-motion direction induced by optic flow.

    PubMed

    Bourrelly, A; Vercher, J-L; Bringoux, L

    2010-10-04

    We studied the effect of static pitch body tilts on the perception of self-motion direction induced by a visual stimulus. Subjects were seated in front of a screen on which was projected a 3D cluster of moving dots visually simulating a forward motion of the observer with upward or downward directional biases (relative to a true earth horizontal direction). The subjects were tilted at various angles relative to gravity and were asked to estimate the direction of the perceived motion (nose-up, as during take-off or nose-down, as during landing). The data showed that body orientation proportionally affected the amount of error in the reported perceived direction (by 40% of body tilt magnitude in a range of +/-20 degrees) and these errors were systematically recorded in the direction of body tilt. As a consequence, a same visual stimulus was differently interpreted depending on body orientation. While the subjects were required to perform the task in a geocentric reference frame (i.e., relative to a gravity-related direction), they were obviously influenced by egocentric references. These results suggest that the perception of self-motion is not elaborated within an exclusive reference frame (either egocentric or geocentric) but rather results from the combined influence of both. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  15. A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging.

    PubMed

    Zhu, Xinhui; Wang, Ren; Sun, Fuping; Wang, Jinling

    2016-02-08

    Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people's daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement,as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging) is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station's geocentric coordinates and velocities relative to the centre of the Earth's mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF). The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System) and VLBI (very long baseline interferometry) velocity observations, and the unity of other velocity fields and SVRF was realized,as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement.

  16. A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging

    PubMed Central

    Zhu, Xinhui; Wang, Ren; Sun, Fuping; Wang, Jinling

    2016-01-01

    Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people’s daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement, as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging) is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station’s geocentric coordinates and velocities relative to the centre of the Earth’s mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF). The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System) and VLBI (very long baseline interferometry) velocity observations, and the unity of other velocity fields and SVRF was realized, as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement. PMID:26867197

  17. Reference Frames in Relativistic Space-Time

    NASA Astrophysics Data System (ADS)

    Soffel, M.; Herold, H.; Ruder, H.; Schneider, M.

    Three fundamental concepts of reference frames in relativistic space-time are confronted: 1. the gravitation compass, 2. the stellar compass and 3. the inertial compass. It is argued that under certain conditions asymptotically fixed (stellar) reference frames can be introduced with the same rigour as local Fermi frames, thereby eliminating one possible psychological reason why the importance of Fermi frames frequently has been overestimated in the past. As applications of these three concepts the authors discuss: 1. a relativistic definition of the geoid, 2. a relativistic astrometric problem and 3. the post-Newtonian theory of a laser gyroscope fixed to the Earth's surface.

  18. Different reference frames can lead to different hand transplantation decisions by patients and physicians.

    PubMed

    Edgell, S E; McCabe, S J; Breidenbach, W C; Neace, W P; LaJoie, A S; Abell, T D

    2001-03-01

    Different frames of reference can affect one's assessment of the value of hand transplantation. This can result in different yet rational decisions by different groups of individuals, especially patients and physicians. In addition, factors other than frames of reference can affect one's evaluation of hand transplantation, which can result in different decisions.

  19. Quantum reference frames and their applications to thermodynamics.

    PubMed

    Popescu, Sandu; Sainz, Ana Belén; Short, Anthony J; Winter, Andreas

    2018-07-13

    We construct a quantum reference frame, which can be used to approximately implement arbitrary unitary transformations on a system in the presence of any number of extensive conserved quantities, by absorbing any back action provided by the conservation laws. Thus, the reference frame at the same time acts as a battery for the conserved quantities. Our construction features a physically intuitive, clear and implementation-friendly realization. Indeed, the reference system is composed of the same types of subsystems as the original system and is finite for any desired accuracy. In addition, the interaction with the reference frame can be broken down into two-body terms coupling the system to one of the reference frame subsystems at a time. We apply this construction to quantum thermodynamic set-ups with multiple, possibly non-commuting conserved quantities, which allows for the definition of explicit batteries in such cases.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  20. Current Trends and Challenges in Satellite Laser Ranging

    NASA Astrophysics Data System (ADS)

    Appleby, Graham M.; Bianco, Giuseppe; Noll, Carey E.; Pavlis, Erricos C.; Pearlman, Michael R.

    2016-12-01

    Satellite Laser Ranging (SLR) is used to measure accurately the distance from ground stations to retro-reflectors on satellites and on the Moon. SLR is one of the fundamental space-geodetic techniques that define the International Terrestrial Reference Frame (ITRF), which is the basis upon which many aspects of global change over space, time, and evolving technology are measured; with VLBI the two techniques define the scale of the ITRF; alone the SLR technique defines its origin (geocenter). The importance of the reference frame has recently been recognized at the inter-governmental level through the United Nations, which adopted in February 2015 the Resolution "Global Geodetic Reference Frame for Sustainable Development." Laser Ranging provides precision orbit determination and instrument calibration and validation for satellite-borne altimeters for the better understanding of sea level change, ocean dynamics, ice mass-balance, and terrestrial topography. It is also a tool to study the dynamics of the Moon and fundamental constants and theories. With the exception of the currently in-orbit GPS constellation, all GNSS satellites now carry retro-reflectors for improved orbit determination, harmonization of reference frames, and in-orbit co-location and system performance validation; the next generation of GPS satellites due for launch from 2019 onwards will also carry retro-reflectors. The ILRS delivers weekly realizations that are accumulated sequentially to extend the ITRF and the Earth Orientation Parameter series with a daily resolution. SLR technology continues to evolve towards the next-generation laser ranging systems and it is expected to successfully meet the challenges of the GGOS2020 program for a future Global Space Geodetic Network. Ranging precision is improving as higher repetition rate, narrower pulse lasers, and faster detectors are implemented within the network. Automation and pass interleaving at some stations is expanding temporal coverage and greatly enhancing efficiency. Discussions are ongoing with some missions that will allow the SLR network stations to provide crucial, but energy-safe, range measurements to optically vulnerable satellites. New retro-reflector designs are improving the signal link and enable daylight ranging that is now the norm for many stations. We discuss many of these laser ranging activities and some of the tough challenges that the SLR network currently faces.

  1. The Reciprocal Internal/External Frame of Reference Model: An Integration of Models of Relations between Academic Achievement and Self-Concept

    ERIC Educational Resources Information Center

    Moller, Jens; Retelsdorf, Jan; Koller, Olaf; Marsh, Herb W.

    2011-01-01

    The reciprocal internal/external frame of reference model (RI/EM) combines the internal/external frame of reference model and the reciprocal effects model. The RI/EM predicts positive effects of mathematics and verbal achievement and academic self-concepts (ASC) on subsequent mathematics and verbal achievements and ASCs within domains and negative…

  2. Implementing system simulation of C3 systems using autonomous objects

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1987-01-01

    The basis of all conflict recognition in simulation is a common frame of reference. Synchronous discrete-event simulation relies on the fixed points in time as the basic frame of reference. Asynchronous discrete-event simulation relies on fixed-points in the model space as the basic frame of reference. Neither approach provides sufficient support for autonomous objects. The use of a spatial template as a frame of reference is proposed to address these insufficiencies. The concept of a spatial template is defined and an implementation approach offered. Discussed are the uses of this approach to analyze the integration of sensor data associated with Command, Control, and Communication systems.

  3. Current control of PMSM based on maximum torque control reference frame

    NASA Astrophysics Data System (ADS)

    Ohnuma, Takumi

    2017-07-01

    This study presents a new method of current controls of PMSMs (Permanent Magnet Synchronous Motors) based on a maximum torque control reference frame, which is suitable for high-performance controls of the PMSMs. As the issues of environment and energy increase seriously, PMSMs, one of the AC motors, are becoming popular because of their high-efficiency and high-torque density in various applications, such as electric vehicles, trains, industrial machines, and home appliances. To use the PMSMs efficiently, a proper current control of the PMSMs is necessary. In general, a rotational coordinate system synchronizing with the rotor is used for the current control of PMSMs. In the rotating reference frame, the current control is easier because the currents on the rotating reference frame can be expressed as a direct current in the controller. On the other hand, the torque characteristics of PMSMs are non-linear and complex; the PMSMs are efficient and high-density though. Therefore, a complicated control system is required to involve the relation between the torque and the current, even though the rotating reference frame is adopted. The maximum torque control reference frame provides a simpler way to control efficiently the currents taking the torque characteristics of the PMSMs into consideration.

  4. A new method for getting the three-dimensional curve of the groove of a spectacle frame by optical measuring

    NASA Astrophysics Data System (ADS)

    Rückwardt, M.; Göpfert, A.; Schnellhorn, M.; Correns, M.; Rosenberger, M.; Linß, G.

    2010-07-01

    Precise measuring of spectacle frames is an important field of quality assurance for opticians and their customers. Different supplier and a number of measuring methods are available but all of them are tactile ones. In this paper the possible employment of optical coordinate measuring machines is discussed for detecting the groove of a spectacle frame. The ambient conditions like deviation and measuring time are even multifaceted like quantity of quality characteristics and measuring objects itself and have to be tested. But the main challenge for an optical coordinate measuring machine is the blocked optical path, because the device under test is located behind an undercut. In this case it is necessary to deflect the beam of the machine for example with a rotating plane mirror. In the next step the difficulties of machine vision connecting to the spectacle frame are explained. Finally first results are given.

  5. Mechanical Energy Change in Inertial Reference Frames

    ERIC Educational Resources Information Center

    Ghanbari, Saeed

    2016-01-01

    The mechanical energy change of a system in an inertial frame of reference equals work done by the total nonconservative force in the same frame. This relation is covariant under the Galilean transformations from inertial frame S to S', where S' moves with constant velocity relative to S. In the presence of nonconservative forces, such as normal…

  6. Automatic frame-centered object representation and integration revealed by iconic memory, visual priming, and backward masking.

    PubMed

    Lin, Zhicheng; He, Sheng

    2012-10-25

    Object identities ("what") and their spatial locations ("where") are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects ("files") within the reference frame ("cabinet") are orderly coded relative to the frame.

  7. Support time-dependent transformations for surveying and GIS : current status and upcoming challenges

    NASA Astrophysics Data System (ADS)

    Mahmoudabadi, H.; Lercier, D.; Vielliard, S.; Mein, N.; Briggs, G.

    2016-12-01

    The support of time-dependent transformations for surveying and GIS is becoming a critical issue. We need to convert positions from the realizations of the International Terrestrial Reference Frame to any national reference frame. This problem is easy to solve when all of the required information is available. But it becomes really complicated in a worldwide context. We propose an overview of the current ITRF-aligned reference frames and we describe a global solution to support time-dependent transformations between them and the International Terrestrial Reference Frame. We focus on the uncertainties of station velocities used. In a first approximation, we use a global tectonic plate model to calculate point velocities. We show the impact of the velocity model on the coordinate accuracies. Several countries, particularly in active regions, are developing semi-dynamic reference frames. These frames include local displacement models updated regularly and/or after major events (such as earthquakes). Their integration into surveying or GIS applications is an upcoming challenge. We want to encourage the geodetic community to develop and use standard formats.

  8. Kinematics of Laying an Automated Weapon System

    DTIC Science & Technology

    2017-07-19

    mathematical transformation is required to move the firing solution from its reference frame to a reference frame that is meaningful to the weapon system. This...Procedures 2 Conventions and Variable Definitions 2 Rotation Matrices 5 Transformation of a Vector 5 Conversion Between Cartestian and Spherical...Coordinate Systems 6 Transformation of Earth Referenced Lay to Platform Reference Frame 6 Results and Discussions 7 Conclusions 8 Bibliography 9

  9. Differential School Contextual Effects for Math and English: Integrating the Big-Fish-Little-Pond Effect and the Internal/External Frame of Reference

    ERIC Educational Resources Information Center

    Parker, Philip D.; Marsh, Herbert W.; Ludtke, Oliver; Trautwein, Ulrich

    2013-01-01

    The internal/external frame of reference and the big-fish-little-pond effect are two major models of academic self-concept formation which have considerable theoretical and empirical support. Integrating the domain specific and compensatory processes of the internal/external frame of reference model with the big-fish-little-pond effect suggests a…

  10. The International Celestial Reference Frame (ICRF) and the Relationship Between Frames

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2000-01-01

    The International Celestial Reference Frame (ICRF), a catalog of VLBI source positions, is now the basis for astrometry and geodesy. Its construction and extension/maintenance will be discussed as well as the relationship of the ICRF, ITRF, and EOP/nutation.

  11. Networked Mediated Influence 2.0

    DTIC Science & Technology

    2014-12-12

    but they communicate the information through different frames of reference. . . . Frames work by accessing a particular perspective on an issue...nature yet attention grabbers.214 Framing. A form of communications where information is presented in a unique slant, focal point, or frame of reference...mental frameworks differ in their implications for decision making, the results can be dramatic.215 Information Communication Technologies (ICTs). A term

  12. What a speaker's choice of frame reveals: reference points, frame selection, and framing effects.

    PubMed

    McKenzie, Craig R M; Nelson, Jonathan D

    2003-09-01

    Framing effects are well established: Listeners' preferences depend on how outcomes are described to them, or framed. Less well understood is what determines how speakers choose frames. Two experiments revealed that reference points systematically influenced speakers' choices between logically equivalent frames. For example, speakers tended to describe a 4-ounce cup filled to the 2-ounce line as half full if it was previously empty but described it as half empty if it was previously full. Similar results were found when speakers could describe the outcome of a medical treatment in terms of either mortality or survival (e.g., 25% die vs. 75% survive). Two additional experiments showed that listeners made accurate inferences about speakers' reference points on the basis of the selected frame (e.g., if a speaker described a cup as half empty, listeners inferred that the cup used to be full). Taken together, the data suggest that frames reliably convey implicit information in addition to their explicit content, which helps explain why framing effects are so robust.

  13. Comparison of corneal endothelial image analysis by Konan SP8000 noncontact and Bio-Optics Bambi systems.

    PubMed

    Benetz, B A; Diaconu, E; Bowlin, S J; Oak, S S; Laing, R A; Lass, J H

    1999-01-01

    Compare corneal endothelial image analysis by Konan SP8000 and Bio-Optics Bambi image-analysis systems. Corneal endothelial images from 98 individuals (191 eyes), ranging in age from 4 to 87 years, with a normal slit-lamp examination and no history of ocular trauma, intraocular surgery, or intraocular inflammation were obtained by the Konan SP8000 noncontact specular microscope. One observer analyzed these images by using the Konan system and a second observer by using the Bio-Optics Bambi system. Three methods of analyses were used: a fixed-frame method to obtain cell density (for both Konan and Bio-Optics Bambi) and a "dot" (Konan) or "corners" (Bio-Optics Bambi) method to determine morphometric parameters. The cell density determined by the Konan fixed-frame method was significantly higher (157 cells/mm2) than the Bio-Optics Bambi fixed-frame method determination (p<0.0001). However, the difference in cell density, although still statistically significant, was smaller and reversed comparing the Konan fixed-frame method with both Konan dot and Bio-Optics Bambi comers method (-74 cells/mm2, p<0.0001; -55 cells/mm2, p<0.0001, respectively). Small but statistically significant morphometric analyses differences between Konan and Bio-Optics Bambi were seen: cell density, +19 cells/mm2 (p = 0.03); cell area, -3.0 microm2 (p = 0.008); and coefficient of variation, +1.0 (p = 0.003). There was no statistically significant difference between these two methods in the percentage of six-sided cells detected (p = 0.55). Cell densities measured by the Konan fixed-frame method were comparable with Konan and Bio-Optics Bambi's morphometric analysis, but not with the Bio-Optics Bambi fixed-frame method. The two morphometric analyses were comparable with minimal or no differences for the parameters that were studied. The Konan SP8000 endothelial image-analysis system may be useful for large-scale clinical trials determining cell loss; its noncontact system has many clinical benefits (including patient comfort, safety, ease of use, and short procedure time) and provides reliable cell-density calculations.

  14. Updating of visual orientation in a gravity-based reference frame.

    PubMed

    Niehof, Nynke; Tramper, Julian J; Doeller, Christian F; Medendorp, W Pieter

    2017-10-01

    The brain can use multiple reference frames to code line orientation, including head-, object-, and gravity-centered references. If these frames change orientation, their representations must be updated to keep register with actual line orientation. We tested this internal updating during head rotation in roll, exploiting the rod-and-frame effect: The illusory tilt of a vertical line surrounded by a tilted visual frame. If line orientation is stored relative to gravity, these distortions should also affect the updating process. Alternatively, if coding is head- or frame-centered, updating errors should be related to the changes in their orientation. Ten subjects were instructed to memorize the orientation of a briefly flashed line, surrounded by a tilted visual frame, then rotate their head, and subsequently judge the orientation of a second line relative to the memorized first while the frame was upright. Results showed that updating errors were mostly related to the amount of subjective distortion of gravity at both the initial and final head orientation, rather than to the amount of intervening head rotation. In some subjects, a smaller part of the updating error was also related to the change of visual frame orientation. We conclude that the brain relies primarily on a gravity-based reference to remember line orientation during head roll.

  15. Celestial reference frames and the gauge freedom in the post-Newtonian mechanics of the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei; Xie, Yi

    2010-11-01

    We introduce the Jacobi coordinates adopted to the advanced theoretical analysis of the relativistic Celestial Mechanics of the Earth-Moon system. Theoretical derivation utilizes the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. The resolutions assume that the Solar System is isolated and space-time is asymptotically flat at infinity and the primary reference frame covers the entire space-time, has its origin at the Solar System barycenter (SSB) with spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are assumed to be at rest on the sky forming the International Celestial Reference Frame (ICRF). The second reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames—geocentric and selenocentric—have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description of the metric tensor and relative equations of motion of the Moon with respect to Earth. Each local frame can be converted to kinematically non-rotating one after alignment with the axes of ICRF by applying the matrix of the relativistic precession as recommended by the IAU resolutions. The set of one global and three local frames is introduced in order to decouple physical effects of gravity from the gauge-dependent effects in the equations of relative motion of the Moon with respect to Earth.

  16. Thinking inside the box: Spatial frames of reference for drawing in Williams syndrome and typical development.

    PubMed

    Hudson, Kerry D; Farran, Emily K

    2017-09-01

    Successfully completing a drawing relies on the ability to accurately impose and manipulate spatial frames of reference for the object that is being drawn and for the drawing space. Typically developing (TD) children use cues such as the page boundary as a frame of reference to guide the orientation of drawn lines. Individuals with Williams syndrome (WS) typically produce incohesive drawings; this is proposed to reflect a local processing bias. Across two studies, we provide the first investigation of the effect of using a frame of reference when drawing simple lines and shapes in WS and TD groups (matched for non-verbal ability). Individuals with WS (N=17 Experiment 1; N=18 Experiment 2) and TD children matched by non-verbal ability drew single lines (Experiment One) and whole shapes (Experiment Two) within a neutral, incongruent or congruent frame. The angular deviation of the drawn line/shape, relative to the model line/shape, was measured. Both groups were sensitive to spatial frames of reference when drawing single lines and whole shapes, imposed by a frame around the drawing space. A local processing bias in WS cannot explain poor drawing performance in WS. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  17. Post-Newtonian Reference Frames for Advanced Theory of the Lunar Motion and a New Generation of Lunar Laser Ranging

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Kopeikin, Sergei Affiliaiton: AB(Department of Physics and Astronomy, University of Missouri, USA kopeikins@missouri.edu)

    2010-08-01

    We overview a set of post-Newtonian reference frames for a comprehensive study of the orbital dynamics and rotational motion of Moon and Earth by means of lunar laser ranging (LLR). We employ a scalar-tensor theory of gravity depending on two post-Newtonian parameters, and , and utilize the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. We assume that the solar system is isolated and space-time is asymptotically flat at infinity. The primary reference frame covers the entire space-time, has its origin at the solar-system barycenter (SSB) and spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are forming the International Celestial Reference Frame (ICRF). The secondary reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally-inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames geocentric (GRF) and selenocentric (SRF) have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description. Each local frame can be aligned with the axes of ICRF after applying the matrix of the relativistic precession. The set of one global and three local frames is introduced in order to fully decouple the relative motion of Moon with respect to Earth from the orbital motion of the Earth-Moon barycenter as well as to connect the coordinate description of the lunar motion, an observer on Earth, and a retro-reflector on Moon to directly measurable quantities such as the proper time and the round-trip laser-light distance. We solve the gravity field equations and find out the metric tensor and the scalar field in all frames which description includes the post-Newtonian multipole moments of the gravitational field of Earth and Moon. We also derive the post-Newtonian coordinate transformations between the frames and analyze the residual gauge freedom.

  18. Spectrum slicer for snapshot spectral imaging

    NASA Astrophysics Data System (ADS)

    Tamamitsu, Miu; Kitagawa, Yutaro; Nakagawa, Keiichi; Horisaki, Ryoichi; Oishi, Yu; Morita, Shin-ya; Yamagata, Yutaka; Motohara, Kentaro; Goda, Keisuke

    2015-12-01

    We propose and demonstrate an optical component that overcomes critical limitations in our previously demonstrated high-speed multispectral videography-a method in which an array of periscopes placed in a prism-based spectral shaper is used to achieve snapshot multispectral imaging with the frame rate only limited by that of an image-recording sensor. The demonstrated optical component consists of a slicing mirror incorporated into a 4f-relaying lens system that we refer to as a spectrum slicer (SS). With its simple design, we can easily increase the number of spectral channels without adding fabrication complexity while preserving the capability of high-speed multispectral videography. We present a theoretical framework for the SS and its experimental utility to spectral imaging by showing real-time monitoring of a dynamic colorful event through five different visible windows.

  19. The influence of visual and vestibular orientation cues in a clock reading task.

    PubMed

    Davidenko, Nicolas; Cheong, Yeram; Waterman, Amanda; Smith, Jacob; Anderson, Barrett; Harmon, Sarah

    2018-05-23

    We investigated how performance in the real-life perceptual task of analog clock reading is influenced by the clock's orientation with respect to egocentric, gravitational, and visual-environmental reference frames. In Experiment 1, we designed a simple clock-reading task and found that observers' reaction time to correctly tell the time depends systematically on the clock's orientation. In Experiment 2, we dissociated egocentric from environmental reference frames by having participants sit upright or lie sideways while performing the task. We found that both reference frames substantially contribute to response times in this task. In Experiment 3, we placed upright or rotated participants in an upright or rotated immersive virtual environment, which allowed us to further dissociate vestibular from visual cues to the environmental reference frame. We found evidence of environmental reference frame effects only when visual and vestibular cues were aligned. We discuss the implications for the design of remote and head-mounted displays. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry

    NASA Astrophysics Data System (ADS)

    Fey, A. L.; Gordon, D.; Jacobs, C. S.; Ma, C.; Gaume, R. A.; Arias, E. F.; Bianco, G.; Boboltz, D. A.; Böckmann, S.; Bolotin, S.; Charlot, P.; Collioud, A.; Engelhardt, G.; Gipson, J.; Gontier, A.-M.; Heinkelmann, R.; Kurdubov, S.; Lambert, S.; Lytvyn, S.; MacMillan, D. S.; Malkin, Z.; Nothnagel, A.; Ojha, R.; Skurikhina, E.; Sokolova, J.; Souchay, J.; Sovers, O. J.; Tesmer, V.; Titov, O.; Wang, G.; Zharov, V.

    2015-08-01

    We present the second realization of the International Celestial Reference Frame (ICRF2) at radio wavelengths using nearly 30 years of Very Long Baseline Interferometry observations. ICRF2 contains precise positions of 3414 compact radio astronomical objects and has a positional noise floor of ∼40 μas and a directional stability of the frame axes of ∼10 μas. A set of 295 new “defining” sources was selected on the basis of positional stability and the lack of extensive intrinsic source structure. The positional stability of these 295 defining sources and their more uniform sky distribution eliminates the two greatest weaknesses of the first realization of the International Celestial Reference Frame (ICRF1). Alignment of ICRF2 with the International Celestial Reference System was made using 138 positionally stable sources common to both ICRF2 and ICRF1. The resulting ICRF2 was adopted by the International Astronomical Union as the new fundamental celestial reference frame, replacing ICRF1 as of 2010 January 1.

  1. Recovery of a geocentric reference frame using the present-day GPS system

    NASA Technical Reports Server (NTRS)

    Malla, Rajendra P.; Wu, Sien-Chong

    1990-01-01

    A geocentric reference frame adopts the center of mass of the earth as the origin of the coordinate axes. The center of mass of the earth is the natural and unambiguous origin of a geocentric satellite dynamical system. But in practice a kinematically obtained terrestrial reference frame may assume an origin other than the geocenter. The establishment of a geocentric reference frame, to which all relevant observations and results can be referred and in which geodynamic theories or models for the dynamic behavior of earth can be formulated, requires the ability to accurately recover a given coordinate frame origin offset from the geocenter. GPS measurements, because of their abundance and broad distribution, provide a powerful tool to obtain this origin offset in a short period of time. Two effective strategies have been devised. Data from the First Central And South America (Casa Uno) geodynamics experiment has been studied, in order to demonstrate the ability of recovering the geocenter location with present day GPS satellites and receivers.

  2. Automatic frame-centered object representation and integration revealed by iconic memory, visual priming, and backward masking

    PubMed Central

    Lin, Zhicheng; He, Sheng

    2012-01-01

    Object identities (“what”) and their spatial locations (“where”) are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects (“files”) within the reference frame (“cabinet”) are orderly coded relative to the frame. PMID:23104817

  3. Design and Principles Enabling the Space Reference FOM

    NASA Technical Reports Server (NTRS)

    Moeller, Bjoern; Dexter, Dan; Madden, Michael; Crues, Edwin Z.; Garro, Alfredo; Skuratovskiy, Anton

    2017-01-01

    A first complete draft of the Simulation Interoperability Standards Organization (SISO) Space Reference Federation Object Model (FOM) has now been produced. This paper provides some insights into its capabilities and discusses the opportunity for reuse in other domains. The focus of this first version of the standard is execution control, time management and coordinate systems, well-known reference frames, as well as some basic support for physical entities. The biggest part of the execution control is the coordinated start-up process. This process contains a number of steps, including checking of required federates, handling of early versus late joiners, sharing of federation wide configuration data and multi-phase initialization. An additional part of Execution Control is the coordinated and synchronized transition between Run mode, Freeze mode and Shutdown. For time management, several time lines are defined, including real-time, scenario time, High Level Architecture (HLA) logical time and physical time. A strategy for mixing simulations that use different time steps is introduced, as well as an approach for finding common boundaries for fully synchronized freeze. For describing spatial information, a mechanism with a set of reference frames is specified. Each reference frame has a position and orientation related to a parent reference frame. This makes it possible for federates to perform calculations in reference frames that are convenient to them. An operation on the Moon can be performed using lunar coordinates whereas an operation on Earth can be performed using Earth coordinates. At the same time, coordinates in one reference frame have an unambiguous relationship to a coordinate in another reference frame. While the Space Reference FOM is originally being developed for Space operations, the authors believe that many parts of it can be reused for any simulation that has a focus on physical processes with one or more coordinate systems, and require high fidelity and repeatability.

  4. GPS-Only Terrestrial Reference Frame Based on a Global Reprocessing

    NASA Astrophysics Data System (ADS)

    Dietrich, R.; Rothacher, M.; Ruelke, A.; Fritsche, M.; Steigenberger, P.

    2007-12-01

    The realization of the International Terrestrial Reference System (ITRS) with highest accuracy and stability is fundamental and crucial for applications in geodesy, geodynamics, geophysics and global change. In a joint effort TU Dresden and TU Munich/GFZ Potsdam reprocessed a global GPS network of more than 200 stations. As a contribution to an ITRS realization daily normal equations from 1994 to 2005 were rigorously combined in order to determine a global GPS-only reference frame (PDR05/Potsdam-Dresden-Reprocessing Reference Frame). We present a realization of the global terrestrial reference system which follows the center of mass approach in consideration of the load-induced deformation of the Earth's crust due to the redistribution of surface masses. The stability of our reference frame will be evaluated based on the obtained long-term trends of station coordinates, the load-induced deformation estimates and the homogeneous time series of station positions. We will compare our solution with other recent terrestrial reference system realizations and give some conclusions for future realizations of the ITRS.

  5. Airy Wave Packets Accelerating in Space-Time

    NASA Astrophysics Data System (ADS)

    Kondakci, H. Esat; Abouraddy, Ayman F.

    2018-04-01

    Although diffractive spreading is an unavoidable feature of all wave phenomena, certain waveforms can attain propagation invariance. A lesser-explored strategy for achieving optical self-similar propagation exploits the modification of the spatiotemporal field structure when observed in reference frames moving at relativistic speeds. For such an observer, it is predicted that the associated Lorentz boost can bring to a halt the axial dynamics of a wave packet of an arbitrary profile. This phenomenon is particularly striking in the case of a self-accelerating beam—such as an Airy beam—whose peak normally undergoes a transverse displacement upon free propagation. Here we synthesize an acceleration-free Airy wave packet that travels in a straight line by deforming its spatiotemporal spectrum to reproduce the impact of a Lorentz boost. The roles of the axial spatial coordinate and time are swapped, leading to "time diffraction" manifested in self-acceleration observed in the propagating Airy wave-packet frame.

  6. Interference data correction methods for lunar observation with a large-aperture static imaging spectrometer.

    PubMed

    Zhang, Geng; Wang, Shuang; Li, Libo; Hu, Xiuqing; Hu, Bingliang

    2016-11-01

    The lunar spectrum has been used in radiometric calibration and sensor stability monitoring for spaceborne optical sensors. A ground-based large-aperture static image spectrometer (LASIS) can be used to acquire the lunar spectral image for lunar radiance model improvement when the moon orbits over its viewing field. The lunar orbiting behavior is not consistent with the desired scanning speed and direction of LASIS. To correctly extract interferograms from the obtained data, a translation correction method based on image correlation is proposed. This method registers the frames to a reference frame to reduce accumulative errors. Furthermore, we propose a circle-matching-based approach to achieve even higher accuracy during observation of the full moon. To demonstrate the effectiveness of our approaches, experiments are run on true lunar observation data. The results show that the proposed approaches outperform the state-of-the-art methods.

  7. Reference frames, gauge transformations and gravitomagnetism in the post-Newtonian theory of the lunar motion

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Kopeikin, Sergei

    2010-01-01

    We construct a set of reference frames for description of the orbital and rotational motion of the Moon. We use a scalar-tensor theory of gravity depending on two parameters of the parametrized post-Newtonian (PPN) formalism and utilize the concepts of the relativistic resolutions on reference frames adopted by the International Astronomical Union in 2000. We assume that the solar system is isolated and space-time is asymptotically flat. The primary reference frame has the origin at the solar-system barycenter (SSB) and spatial axes are going to infinity. The SSB frame is not rotating with respect to distant quasars. The secondary reference frame has the origin at the Earth-Moon barycenter (EMB). The EMB frame is local with its spatial axes spreading out to the orbits of Venus and Mars and not rotating dynamically in the sense that both the Coriolis and centripetal forces acting on a free-falling test particle, moving with respect to the EMB frame, are excluded. Two other local frames, the geocentric (GRF) and the selenocentric (SRF) frames, have the origin at the center of mass of the Earth and Moon respectively. They are both introduced in order to connect the coordinate description of the lunar motion, observer on the Earth, and a retro-reflector on the Moon to the observable quantities which are the proper time and the laser-ranging distance. We solve the gravity field equations and find the metric tensor and the scalar field in all frames. We also derive the post-Newtonian coordinate transformations between the frames and analyze the residual gauge freedom of the solutions of the field equations. We discuss the gravitomagnetic effects in the barycentric equations of the motion of the Moon and argue that they are beyond the current accuracy of lunar laser ranging (LLR) observations.

  8. Determination of the extragalactic-planetary frame tie from joint analysis of radio interferometric and lunar laser ranging measurements

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Charlot, P.; Finger, M. H.; Williams, J. G.; Sovers, O. J.; Newhall, XX; Standish, E. M., Jr.

    1994-01-01

    Very Long Baseline Interferometry (VLBI) observations of extragalactic radio sources provide the basis for defining an accurate non-rotating reference frame in terms of angular positions of the sources. Measurements of the distance from the Earth to the Moon and to the inner planets provide the basis for defining an inertial planetary ephemeris reference frame. The relative orientation, or frame tie, between these two reference frames is of interest for combining Earth orientation measurements, for comparing Earth orientation results with theories referred to the mean equator and equinox, and for determining the positions of the planets with respect to the extragalactic reference frame. This work presents an indirect determination of the extragalactic-planetary frame tie from a combined reduction of VLBI and Lunar Laser Ranging (LLR) observations. For this determination, data acquired by LLR tracking stations since 1969 have been analyzed and combined with 14 years of VLBI data acquired by NASA's Deep Space Network since 1978. The frame tie derived from this joint analysis, with an accuracy of 0.003 sec, is the most accurate determination obtained so far. This result, combined with a determination of the mean ecliptic (defined in the rotating sense), shows that the mean equinox of epoch J2000 is offset from the x-axis of the extragalactic frame adopted by the International Earth Rotation Service for astrometric and geodetic applications by 0.078 sec +/- 0.010 sec along the y-direction and y 0.019 sec +/- 0.001 sec. along the z-direction.

  9. Satellite Ephemeris Correction via Remote Site Observation for Star Tracker Navigation Performance Improvement

    DTIC Science & Technology

    2016-03-01

    squared RMS root mean squared GCRF Geocentric Celestial Reference Frame xi List of Figures Figure Page 1 Geometry of single observation...RA and DEC in the celestial sphere. The Geocentric Celestial Reference Frame (GCRF) is the standard geocentric frame that measures the RA east in the...Figure 2. Right ascension (α) and declination (δ) in the celestial sphere[6] 7 made between geocentric and topocentric angles. Geocentric is referred to

  10. Establishing a celestial VLBI reference frame. 1: Searching for VLBI sources

    NASA Technical Reports Server (NTRS)

    Preston, R. A.; Morabito, D. D.; Williams, J. G.; Slade, M. A.; Harris, A. W.; Finley, S. G.; Skjerve, L. J.; Tanida, L.; Spitzmesser, D. J.; Johnson, B.

    1978-01-01

    The Deep Space Network is currently engaged in establishing a new high-accuracy VLBI celestial reference frame. The present status of the task of finding suitable celestial radio sources for constructing this reference frame is discussed. To date, 564 VLBI sources were detected, with 166 of these lying within 10 deg of the ecliptic plane. The variation of the sky distribution of these sources with source strength is examined.

  11. Instantaneous phase-shifting Fizeau interferometry with high-speed pixelated phase-mask camera

    NASA Astrophysics Data System (ADS)

    Yatagai, Toyohiko; Jackin, Boaz Jessie; Ono, Akira; Kiyohara, Kosuke; Noguchi, Masato; Yoshii, Minoru; Kiyohara, Motosuke; Niwa, Hayato; Ikuo, Kazuyuki; Onuma, Takashi

    2015-08-01

    A Fizeou interferometer with instantaneous phase-shifting ability using a Wollaston prism is designed. to measure dynamic phase change of objects, a high-speed video camera of 10-5s of shutter speed is used with a pixelated phase-mask of 1024 × 1024 elements. The light source used is a laser of wavelength 532 nm which is split into orthogonal polarization states by passing through a Wollaston prism. By adjusting the tilt of the reference surface it is possible to make the reference and object beam with orthogonal polarizations states to coincide and interfere. Then the pixelated phase-mask camera calculate the phase changes and hence the optical path length difference. Vibration of speakers and turbulence of air flow were successfully measured in 7,000 frames/sec.

  12. Point spread function engineering for iris recognition system design.

    PubMed

    Ashok, Amit; Neifeld, Mark A

    2010-04-01

    Undersampling in the detector array degrades the performance of iris-recognition imaging systems. We find that an undersampling of 8 x 8 reduces the iris-recognition performance by nearly a factor of 4 (on CASIA iris database), as measured by the false rejection ratio (FRR) metric. We employ optical point spread function (PSF) engineering via a Zernike phase mask in conjunction with multiple subpixel shifted image measurements (frames) to mitigate the effect of undersampling. A task-specific optimization framework is used to engineer the optical PSF and optimize the postprocessing parameters to minimize the FRR. The optimized Zernike phase enhanced lens (ZPEL) imager design with one frame yields an improvement of nearly 33% relative to a thin observation module by bounded optics (TOMBO) imager with one frame. With four frames the optimized ZPEL imager achieves a FRR equal to that of the conventional imager without undersampling. Further, the ZPEL imager design using 16 frames yields a FRR that is actually 15% lower than that obtained with the conventional imager without undersampling.

  13. Overall properties of the Gaia DR1 reference frame

    NASA Astrophysics Data System (ADS)

    Liu, N.; Zhu, Z.; Liu, J.-C.; Ding, C.-Y.

    2017-03-01

    Aims: The first Gaia data release (Gaia DR1) provides 2191 ICRF2 sources with their positions in the auxiliary quasar solution and five astrometric parameters - positions, parallaxes, and proper motions - for stars in common between the Tycho-2 catalogue and Gaia in the joint Tycho-Gaia astrometric solution (TGAS). We aim to analyze the overall properties of Gaia DR1 reference frame. Methods: We compare quasar positions of the auxiliary quasar solution with ICRF2 sources using different samples and evaluate the influence on the Gaia DR1 reference frame owing to the Galactic aberration effect over the J2000.0-J2015.0 period. Then we estimate the global rotation between TGAS with Tycho-2 proper motion systems to investigate the property of the Gaia DR1 reference frame. Finally, the Galactic kinematics analysis using the K-M giant proper motions is performed to understand the property of Gaia DR1 reference frame. Results: The positional comparison between the auxiliary quasar solution and ICRF2 shows negligible orientation and validates the declination bias of -0.1mas in Gaia quasar positions with respect to ICRF2. Galactic aberration effect is thought to cause an offset 0.01mas of the Z axis direction of Gaia DR1 reference frame. The global rotation between TGAS and Tycho-2 proper motion systems, obtained by different samples, shows a much smaller value than the claimed value 0.24mas yr-1. For the Galactic kinematics analysis of the TGAS K-M giants, we find possible non-zero Galactic rotation components beyond the classical Oort constants: the rigid part ωYG = -0.38±0.15mas yr-1 and the differential part ω^primeYG = -0.29±0.19mas yr-1 around the YG axis of Galactic coordinates, which indicates possible residual rotation in Gaia DR1 reference frame or problems in the current Galactic kinematical model. Conclusions: The Gaia DR1 reference frame is well aligned to ICRF2, and the possible influence of the Galactic aberration effect should be taken into consideration for the future Gaia-ICRF link. The cause of the rather small global rotation between TGAS and Tycho-2 proper motion systems is unclear and needs further investigation. The possible residual rotation in Gaia DR1 reference frame inferred from the Galactic kinematic analysis should be noted and examined in future data release.

  14. A transform from absorption to Raman excitation profile. A time-dependent approach

    NASA Astrophysics Data System (ADS)

    Lee, Soo-Y.; Yeo, Robert C. K.

    1994-04-01

    An alternative time-frame approach, which is canonically conjugate to the energy-frame approach, for implementing the transform relations for calculating Raman excitation profiles directly from the optical absorption spectrum is presented. Practical and efficient fast Fourier transformation in the time frame replaces the widely used Chan and Page algorithm for evaluating the Hilbert transform in the energy frame. The time-frame approach is applied to: (a) a two-mode model which illustrates the missing mode effect in both absorption and Raman excitation profiles, (b) carotene, in which both the absorption spectrum and the Raman excitation profile show vibrational structure and (c) hexamethylbenzene: TCNE electron donor—acceptor complex where the same spectra are structureless and the Raman excitation profile for the 168 cm -1 mode poses a problem for the energy-frame approach. A similar time-frame approach can be used for the inverse transform from the Raman excitation profile to the optical absorption spectrum.

  15. High-speed adaptive optics line scan confocal retinal imaging for human eye

    PubMed Central

    Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Purpose Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. Methods A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye’s optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. Results The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. Conclusions We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss. PMID:28257458

  16. High-speed adaptive optics line scan confocal retinal imaging for human eye.

    PubMed

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye's optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss.

  17. Spatial vision within egocentric and exocentric frames of reference

    NASA Technical Reports Server (NTRS)

    Howard, Ian P.

    1989-01-01

    The extent to which perceptual judgements within egocentric and exocentric frames of reference are subject to illusory disturbances and long term modifications is discussed. It is argued that well known spatial illusions, such as the oculogyral illusion and induced visual motion have usually been discussed without proper attention being paid to the frame of reference within which they occur, and that this has led to the construction of inadequate theories and inappropriate procedures for testing them.

  18. Reference frames in virtual spatial navigation are viewpoint dependent

    PubMed Central

    Török, Ágoston; Nguyen, T. Peter; Kolozsvári, Orsolya; Buchanan, Robert J.; Nadasdy, Zoltan

    2014-01-01

    Spatial navigation in the mammalian brain relies on a cognitive map of the environment. Such cognitive maps enable us, for example, to take the optimal route from a given location to a known target. The formation of these maps is naturally influenced by our perception of the environment, meaning it is dependent on factors such as our viewpoint and choice of reference frame. Yet, it is unknown how these factors influence the construction of cognitive maps. Here, we evaluated how various combinations of viewpoints and reference frames affect subjects' performance when they navigated in a bounded virtual environment without landmarks. We measured both their path length and time efficiency and found that (1) ground perspective was associated with egocentric frame of reference, (2) aerial perspective was associated with allocentric frame of reference, (3) there was no appreciable performance difference between first and third person egocentric viewing positions and (4) while none of these effects were dependent on gender, males tended to perform better in general. Our study provides evidence that there are inherent associations between visual perspectives and cognitive reference frames. This result has implications about the mechanisms of path integration in the human brain and may also inspire designs of virtual reality applications. Lastly, we demonstrated the effective use of a tablet PC and spatial navigation tasks for studying spatial and cognitive aspects of human memory. PMID:25249956

  19. Reference frames in virtual spatial navigation are viewpoint dependent.

    PubMed

    Török, Agoston; Nguyen, T Peter; Kolozsvári, Orsolya; Buchanan, Robert J; Nadasdy, Zoltan

    2014-01-01

    Spatial navigation in the mammalian brain relies on a cognitive map of the environment. Such cognitive maps enable us, for example, to take the optimal route from a given location to a known target. The formation of these maps is naturally influenced by our perception of the environment, meaning it is dependent on factors such as our viewpoint and choice of reference frame. Yet, it is unknown how these factors influence the construction of cognitive maps. Here, we evaluated how various combinations of viewpoints and reference frames affect subjects' performance when they navigated in a bounded virtual environment without landmarks. We measured both their path length and time efficiency and found that (1) ground perspective was associated with egocentric frame of reference, (2) aerial perspective was associated with allocentric frame of reference, (3) there was no appreciable performance difference between first and third person egocentric viewing positions and (4) while none of these effects were dependent on gender, males tended to perform better in general. Our study provides evidence that there are inherent associations between visual perspectives and cognitive reference frames. This result has implications about the mechanisms of path integration in the human brain and may also inspire designs of virtual reality applications. Lastly, we demonstrated the effective use of a tablet PC and spatial navigation tasks for studying spatial and cognitive aspects of human memory.

  20. Radio-planetary from tie from Phobos-2 VLBI data

    NASA Technical Reports Server (NTRS)

    Hildebrand, C. E.; Iijima, B. A.; Kroger, P. M.; Folkner, W. M.; Edwards, C. D.

    1994-01-01

    In an ongoing effort to improve the knowledge of the relative orientation (the 'frame tie') of the planetary ephemeris reference frame used in deep navigation and a second reference frame that is defined by the coordinates of a set of extragalactic radio sources, VLBI observations of the Soviet Phobos-2 spacecraft and nearby (in angle) radio sources were obtained at two epochs in 1989, shortly after the spacecraft entered orbit about Mars. The frame tie is an important systematic error source affecting both interplanetary navigation and the process of improving the theory of the Earth's orientation. The data from a single Phobos-2 VLBI session measure one component of the direction vector from Earth to Mars in the frame of the extragalactic radio sources (the 'radio frame'). The radio frame has been shown to be stable and internally consistent with an accuracy of 5 nrad. The planetary ephemeris reference frame has an internal consistency of approximately 15 nrad. The planetary and radio source reference frames were aligned prior to 1989 and measurements of occulations of the radio source 3C273 by the Moon. The Phobos-2 VLBI measurements provide improvement in the accuracy of two of the three angles describing a general rotation between the planetary and radio reference frames. A complete set of measurements is not available because data acquisition was terminated prematurely by loss of spacecraft. The analysis of the two Phobos-2 VLBI data sets indicates that, in the directions of the two rotation components determined by these data, the JPL planetary ephemeris DE200 is aligned with the radio frame as adopted by the International Earth Rotation Service within an accuracy of 20-40 nrad, depending on direction. The limiting errors in the solutions for these offsets are spacecraft trajectory (20 nrad), instrumental biases (19 nrad), and dependence of quasar coordinates on observing frequency (24 nrad).

  1. Light escape cones in local reference frames of Kerr-de Sitter black hole spacetimes and related black hole shadows

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdeněk; Charbulák, Daniel; Schee, Jan

    2018-03-01

    We construct the light escape cones of isotropic spot sources of radiation residing in special classes of reference frames in the Kerr-de Sitter (KdS) black hole spacetimes, namely in the fundamental class of `non-geodesic' locally non-rotating reference frames (LNRFs), and two classes of `geodesic' frames, the radial geodesic frames (RGFs), both falling and escaping, and the frames related to the circular geodesic orbits (CGFs). We compare the cones constructed in a given position for the LNRFs, RGFs, and CGFs. We have shown that the photons locally counter-rotating relative to LNRFs with positive impact parameter and negative covariant energy are confined to the ergosphere region. Finally, we demonstrate that the light escaping cones govern the shadows of black holes located in front of a radiating screen, as seen by the observers in the considered frames. For shadows related to distant static observers the LNRFs are relevant.

  2. Location memory biases reveal the challenges of coordinating visual and kinesthetic reference frames

    PubMed Central

    Simmering, Vanessa R.; Peterson, Clayton; Darling, Warren; Spencer, John P.

    2008-01-01

    Five experiments explored the influence of visual and kinesthetic/proprioceptive reference frames on location memory. Experiments 1 and 2 compared visual and kinesthetic reference frames in a memory task using visually-specified locations and a visually-guided response. When the environment was visible, results replicated previous findings of biases away from the midline symmetry axis of the task space, with stability for targets aligned with this axis. When the environment was not visible, results showed some evidence of bias away from a kinesthetically-specified midline (trunk anterior–posterior [a–p] axis), but there was little evidence of stability when targets were aligned with body midline. This lack of stability may reflect the challenges of coordinating visual and kinesthetic information in the absence of an environmental reference frame. Thus, Experiments 3–5 examined kinesthetic guidance of hand movement to kinesthetically-defined targets. Performance in these experiments was generally accurate with no evidence of consistent biases away from the trunk a–p axis. We discuss these results in the context of the challenges of coordinating reference frames within versus between multiple sensori-motor systems. PMID:17703284

  3. Quantum Communication without Alignment using Multiple-Qubit Single-Photon States

    NASA Astrophysics Data System (ADS)

    Aolita, L.; Walborn, S. P.

    2007-03-01

    We propose a scheme for encoding logical qubits in a subspace protected against collective rotations around the propagation axis using the polarization and transverse spatial degrees of freedom of single photons. This encoding allows for quantum key distribution without the need of a shared reference frame. We present methods to generate entangled states of two logical qubits using present day down-conversion sources and linear optics, and show that the application of these entangled logical states to quantum information schemes allows for alignment-free tests of Bell’s inequalities, quantum dense coding, and quantum teleportation.

  4. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons.

    PubMed Central

    Fan, G Y; Fujisaki, H; Miyawaki, A; Tsay, R K; Tsien, R Y; Ellisman, M H

    1999-01-01

    A video-rate (30 frames/s) scanning two-photon excitation microscope has been successfully tested. The microscope, based on a Nikon RCM 8000, incorporates a femtosecond pulsed laser with wavelength tunable from 690 to 1050 nm, prechirper optics for laser pulse-width compression, resonant galvanometer for video-rate point scanning, and a pair of nonconfocal detectors for fast emission ratioing. An increase in fluorescent emission of 1.75-fold is consistently obtained with the use of the prechirper optics. The nonconfocal detectors provide another 2.25-fold increase in detection efficiency. Ratio imaging and optical sectioning can therefore be performed more efficiently without confocal optics. Faster frame rates, at 60, 120, and 240 frames/s, can be achieved with proportionally reduced scan lines per frame. Useful two-photon images can be acquired at video rate with a laser power as low as 2.7 mW at specimen with the genetically modified green fluorescent proteins. Preliminary results obtained using this system confirm that the yellow "cameleons" exhibit similar optical properties as under one-photon excitation conditions. Dynamic two-photon images of cardiac myocytes and ratio images of yellow cameleon-2.1, -3.1, and -3.1nu are also presented. PMID:10233058

  5. Optic disc segmentation: level set methods and blood vessels inpainting

    NASA Astrophysics Data System (ADS)

    Almazroa, A.; Sun, Weiwei; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2017-03-01

    Segmenting the optic disc (OD) is an important and essential step in creating a frame of reference for diagnosing optic nerve head (ONH) pathology such as glaucoma. Therefore, a reliable OD segmentation technique is necessary for automatic screening of ONH abnormalities. The main contribution of this paper is in presenting a novel OD segmentation algorithm based on applying a level set method on a localized OD image. To prevent the blood vessels from interfering with the level set process, an inpainting technique is applied. The algorithm is evaluated using a new retinal fundus image dataset called RIGA (Retinal Images for Glaucoma Analysis). In the case of low quality images, a double level set is applied in which the first level set is considered to be a localization for the OD. Five hundred and fifty images are used to test the algorithm accuracy as well as its agreement with manual markings by six ophthalmologists. The accuracy of the algorithm in marking the optic disc area and centroid is 83.9%, and the best agreement is observed between the results of the algorithm and manual markings in 379 images.

  6. System for Measuring Flexing of a Large Spaceborne Structure

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel; Kuhnert, Andreas; Kovalik, Joseph; Hadaegh, Fred; Shaddock, Daniel

    2008-01-01

    An optoelectronic metrology system is used for determining the attitude and flexing of a large spaceborne radar antenna or similar structure. The measurements are needed for accurate pointing of the antenna and correction and control of the phase of the radar signal wavefront. The system includes a dual-field-of-view star tracker; a laser ranging unit (LRU) and a position-sensitive-detector (PSD)-based camera mounted on an optical bench; and fiducial targets at various locations on the structure. The fiducial targets are illuminated in sequence by laser light coupled via optical fibers. The LRU and the PSD provide measurements of the position of each fiducial target in a reference frame attached to the optical bench. During routine operation, the star tracker utilizes one field of view and functions conventionally to determine the orientation of the optical bench. During operation in a calibration mode, the star tracker also utilizes its second field of view, which includes stars that are imaged alongside some of the fiducial targets in the PSD; in this mode, the PSD measurements are traceable to star measurements.

  7. Combining near-field scanning optical microscopy with spectral interferometry for local characterization of the optical electric field in photonic structures.

    PubMed

    Trägårdh, Johanna; Gersen, Henkjan

    2013-07-15

    We show how a combination of near-field scanning optical microscopy with crossed beam spectral interferometry allows a local measurement of the spectral phase and amplitude of light propagating in photonic structures. The method only requires measurement at the single point of interest and at a reference point, to correct for the relative phase of the interferometer branches, to retrieve the dispersion properties of the sample. Furthermore, since the measurement is performed in the spectral domain, the spectral phase and amplitude could be retrieved from a single camera frame, here in 70 ms for a signal power of less than 100 pW limited by the dynamic range of the 8-bit camera. The method is substantially faster than most previous time-resolved NSOM methods that are based on time-domain interferometry, which also reduced problems with drift. We demonstrate how the method can be used to measure the refractive index and group velocity in a waveguide structure.

  8. Separability and Entanglement in the Hilbert Space Reference Frames Related Through the Generic Unitary Transform for Four Level System

    NASA Astrophysics Data System (ADS)

    Man'ko, V. I.; Markovich, L. A.

    2018-02-01

    Quantum correlations in the state of four-level atom are investigated by using generic unitary transforms of the classical (diagonal) density matrix. Partial cases of pure state, X-state, Werner state are studied in details. The geometrical meaning of unitary Hilbert reference-frame rotations generating entanglement in the initially separable state is discussed. Characteristics of the entanglement in terms of concurrence, entropy and negativity are obtained as functions of the unitary matrix rotating the reference frame.

  9. Superenergy flux of Einstein-Rosen waves

    NASA Astrophysics Data System (ADS)

    Domínguez, P. J.; Gallegos, A.; Macías-Díaz, J. E.; Vargas-Rodríguez, H.

    In this work, we consider the propagation speed of the superenergy flux associated to the Einstein-Rosen cylindrical waves propagating in vacuum and over the background of the gravitational field of an infinitely long mass line distribution. The velocity of the flux is determined considering the reference frame in which the super-Poynting vector vanishes. This reference frame is then considered as comoving with the flux. The explicit expressions for the velocities are given with respect to a reference frame at rest with the symmetry axis.

  10. All-optical framing photography based on hyperspectral imaging method

    NASA Astrophysics Data System (ADS)

    Liu, Shouxian; Li, Yu; Li, Zeren; Chen, Guanghua; Peng, Qixian; Lei, Jiangbo; Liu, Jun; Yuan, Shuyun

    2017-02-01

    We propose and experimentally demonstrate a new all optical-framing photography that uses hyperspectral imaging methods to record a chirped pulse's temporal-spatial information. This proposed method consists of three parts: (1) a chirped laser pulse encodes temporal phenomena onto wavelengths; (2) a lenslet array generates a series of integral pupil images;(3) a dispersive device disperses the integral images at void space of image sensor. Compared with Ultrafast All-Optical Framing Technology(Daniel Frayer,2013,2014) and Sequentially Time All-Optical Mapping Photography( Nakagawa 2014, 2015), our method is convenient to adjust the temporal resolution and to flexibly increase the numbers of frames. Theoretically, the temporal resolution of our scheme is limited by the amount of dispersion that is added to a Fourier transform limited femtosecond laser pulse. Correspondingly, the optimal number of frames is decided by the ratio of the observational time window to the temporal resolution, and the effective pixels of each frame are mostly limited by the dimensions M×N of the lenslet array. For example, if a 40fs Fourier transform limited femtosecond pulse is stretched to 10ps, a CCD camera with 2048×3072 pixels can record 15 framing images with temporal resolution of 650fs and image size of 100×100 pixels. As spectrometer structure, our recording part has another advantage that not only amplitude images but also frequency domain interferograms can be imaged. Therefore, it is comparatively easy to capture fast dynamics in the refractive index change of materials. A further dynamic experiment is being conducted.

  11. Word and frame synchronization with verification for PPM optical communications

    NASA Technical Reports Server (NTRS)

    Marshall, William K.

    1986-01-01

    A method for obtaining word and frame synchronization in pulse position modulated optical communication systems is described. The method uses a short sync sequence inserted at the beginning of each data frame and a verification procedure to distinguish between inserted and randomly occurring sequences at the receiver. This results in an easy to implement sync system which provides reliable synchronization even at high symbol error rates. Results are given for the application of this approach to a highly energy efficient 256-ary PPM test system.

  12. GENERAL RELATIVITY DERIVATION OF BEAM REST-FRAME HAMILTONIAN.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WEI,J.

    2001-06-18

    Analysis of particle interaction in the laboratory frame of storage rings is often complicated by the fact that particle motion is relativistic, and that reference particle trajectory is curved. Rest frame of the reference particle is a convenient coordinate system to work with, within which particle motion is non-relativistic. We have derived the equations of motion in the beam rest frame from the general relativity formalism, and have successfully applied them to the analysis of crystalline beams [1].

  13. Assessment of second- and third-order ionospheric effects on regional networks: case study in China with longer CMONOC GPS coordinate time series

    NASA Astrophysics Data System (ADS)

    Deng, Liansheng; Jiang, Weiping; Li, Zhao; Chen, Hua; Wang, Kaihua; Ma, Yifang

    2017-02-01

    Higher-order ionospheric (HOI) delays are one of the principal technique-specific error sources in precise global positioning system analysis and have been proposed to become a standard part of precise GPS data processing. In this research, we apply HOI delay corrections to the Crustal Movement Observation Network of China's (CMONOC) data processing (from January 2000 to December 2013) and furnish quantitative results for the effects of HOI on CMONOC coordinate time series. The results for both a regional reference frame and global reference frame are analyzed and compared to clarify the HOI effects on the CMONOC network. We find that HOI corrections can effectively reduce the semi-annual signals in the northern and vertical components. For sites with lower semi-annual amplitudes, the average decrease in magnitude can reach 30 and 10 % for the northern and vertical components, respectively. The noise amplitudes with HOI corrections and those without HOI corrections are not significantly different. Generally, the HOI effects on CMONOC networks in a global reference frame are less obvious than the results in the regional reference frame, probably because the HOI-induced errors are smaller in comparison to the higher noise levels seen when using a global reference frame. Furthermore, we investigate the combined contributions of environmental loading and HOI effects on the CMONOC stations. The largest loading effects on the vertical displacement are found in the mid- to high-latitude areas. The weighted root mean square differences between the corrected and original weekly GPS height time series of the loading model indicate that the mass loading adequately reduced the scatter on the CMONOC height time series, whereas the results in the global reference frame showed better agreements between the GPS coordinate time series and the environmental loading. When combining the effects of environmental loading and HOI corrections, the results with the HOI corrections reduced the scatter on the observed GPS height coordinates better than the height when estimated without HOI corrections, and the combined solutions in the regional reference frame indicate more preferred improvements. Therefore, regional reference frames are recommended to investigate the HOI effects on regional networks.

  14. Detection of Abnormal Events via Optical Flow Feature Analysis

    PubMed Central

    Wang, Tian; Snoussi, Hichem

    2015-01-01

    In this paper, a novel algorithm is proposed to detect abnormal events in video streams. The algorithm is based on the histogram of the optical flow orientation descriptor and the classification method. The details of the histogram of the optical flow orientation descriptor are illustrated for describing movement information of the global video frame or foreground frame. By combining one-class support vector machine and kernel principal component analysis methods, the abnormal events in the current frame can be detected after a learning period characterizing normal behaviors. The difference abnormal detection results are analyzed and explained. The proposed detection method is tested on benchmark datasets, then the experimental results show the effectiveness of the algorithm. PMID:25811227

  15. Digital holographic microscopy combined with optical tweezers

    NASA Astrophysics Data System (ADS)

    Cardenas, Nelson; Yu, Lingfeng; Mohanty, Samarendra K.

    2011-02-01

    While optical tweezers have been widely used for the manipulation and organization of microscopic objects in three dimensions, observing the manipulated objects along axial direction has been quite challenging. In order to visualize organization and orientation of objects along axial direction, we report development of a Digital holographic microscopy combined with optical tweezers. Digital holography is achieved by use of a modified Mach-Zehnder interferometer with digital recording of interference pattern of the reference and sample laser beams by use of a single CCD camera. In this method, quantitative phase information is retrieved dynamically with high temporal resolution, only limited by frame rate of the CCD. Digital focusing, phase-unwrapping as well as online analysis and display of the quantitative phase images was performed on a software developed on LabView platform. Since phase changes observed in DHOT is very sensitive to optical thickness of trapped volume, estimation of number of particles trapped in the axial direction as well as orientation of non-spherical objects could be achieved with high precision. Since in diseases such as malaria and diabetics, change in refractive index of red blood cells occurs, this system can be employed to map such disease-specific changes in biological samples upon immobilization with optical tweezers.

  16. Ray-tracing of shape metrology data of grazing incidence x-ray astronomy mirrors

    NASA Astrophysics Data System (ADS)

    Zocchi, Fabio E.; Vernani, Dervis

    2008-07-01

    A number of future X-ray astronomy missions (e.g. Simbol-X, eROSITA) plan to utilize high throughput grazing incidence optics with very lightweight mirrors. The severe mass specifications require a further optimization of the existing technology with the consequent need of proper optical numerical modeling capabilities for both the masters and the mirrors. A ray tracing code has been developed for the simulation of the optical performance of type I Wolter masters and mirrors starting from 2D and 3D metrology data. In particular, in the case of 2D measurements, a 3D data set is reconstructed on the basis of dimensional references and used for the optical analysis by ray tracing. In this approach, the actual 3D shape is used for the optical analysis, thus avoiding the need of combining the separate contributions of different 2D measurements that require the knowledge of their interactions which is not normally available. The paper describes the proposed approach and presents examples of application on a prototype engineering master in the frame of ongoing activities carried out for present and future X-ray missions.

  17. Positioning and tracking control system analysis for mobile free space optical network

    NASA Astrophysics Data System (ADS)

    Li, Yushan; Refai, Hazem; Sluss, , James J., Jr.; Verma, Pramode; LoPresti, Peter

    2005-08-01

    Free Space Optical (FSO) communication has evolved to be applied to the mobile network, because it can provide up to 2.5Gbps or higher data rate wireless communication. One of the key challenges with FSO systems is to maintain the Line of Sight (LOS) between transmitter and receiver. In this paper, the feasibility and performance of applying the FSO technology to the mobile network is explored, and the design plan of the attitude positioning and tracking control system of the FSO transceiver is investigated. First, the system architecture is introduced, the requirements for the control system are analyzed, the involved reference frames and frame transformation are presented. Second, the control system bandwidth is used to evaluate the system performance in controlling a positioning system consisting of a gimbal and a steering mirror, some definitions to describe the positioning accuracy and tracking capacity are given. The attitude control of a FSO transceiver is split into 2 similar channels: pitch and yaw. Using an equivalent linear control system model, the simulations are carried out, with and without the presence of uncertainties that includes GPS data errors and sensor measurement errors. Finally, based on the simulation results in the pitch channel, the quantitative evaluation on the performance of the control system is given, including positioning accuracy, tracking capability and uncertainty tolerance.

  18. Hierarchical motion organization in random dot configurations

    NASA Technical Reports Server (NTRS)

    Bertamini, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    2000-01-01

    Motion organization has 2 aspects: the extraction of a (moving) frame of reference and the hierarchical organization of moving elements within the reference frame. Using a discrimination of relative motions task, the authors found large differences between different types of motion (translation, divergence, and rotation) in the degree to which each can serve as a moving frame of reference. Translation and divergence are superior to rotation. There are, however, situations in which rotation can serve as a reference frame. This is due to the presence of a second factor, structural invariants (SIs). SIs are spatial relationships persisting among the elements within a configuration such as a collinearity among points or one point coinciding with the center of rotation for another (invariant radius). The combined effect of these 2 factors--motion type and SIs-influences perceptual motion organization.

  19. A spatial reference frame model of Beijing based on spatial cognitive experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Zhang, Jing; Liu, Yu

    2006-10-01

    Orientation relation in the spatial relation is very important in GIS. People can obtain orientation information by making use of map reading and the cognition of the surrounding environment, and then create the spatial reference frame. City is a kind of special spatial environment, a person with life experiences has some spatial knowledge about the city where he or she lives in. Based on the spatial knowledge of the city environment, people can position, navigate and understand the meaning embodied in the environment correctly. Beijing as a real geographic space, its layout is very special and can form a kind of new spatial reference frame. Based on the characteristics of the layout of Beijing city, this paper will introduce a new spatial reference frame of Beijing and use two psychological experiments to validate its cognitive plausibility.

  20. Description and User Instructions for the Quaternion_to_Orbit_v3 Software

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Kruizinga, Gerhard L.; Paik, Meegyeong; Yuan, Dah-Ning; Asmar, Sami W.

    2012-01-01

    For a given inertial frame of reference, the software combines the spacecraft orbits with the spacecraft attitude quaternions, and rotates the body-fixed reference frame of a particular spacecraft to the inertial reference frame. The conversion assumes that the two spacecraft are aligned with respect to the mutual line of sight, with a parameterized time tag. The software is implemented in Python and is completely open source. It is very versatile, and may be applied under various circumstances and for other related purposes. Based on the solid linear algebra analysis, it has an extra option for compensating the linear pitch. This software has been designed for simulation of the calibration maneuvers performed by the two spacecraft comprising the GRAIL mission to the Moon, but has potential use for other applications. In simulations of formation flights, one needs to coordinate the spacecraft orbits represented in an appropriate inertial reference frame and the spacecraft attitudes. The latter are usually given as the time series of quaternions rotating the body-fixed reference frame of a particular spacecraft to the inertial reference frame. It is often desirable to simulate the same maneuver for different segments of the orbit. It is also useful to study various maneuvers that could be performed at the same orbit segment. These two lines of study are more timeand labor-efficient if the attitude and orbit data are generated independently, so that the part of the data that has not been changed can be recycled in the course of multiple simulations.

  1. ``Frames of Reference'' revisited

    NASA Astrophysics Data System (ADS)

    Steyn-Ross, Alistair; Ivey, Donald G.

    1992-12-01

    The PSSC teaching film, ``Frames of Reference,'' was made in 1960, and was one of the first audio-visual attempts at showing how your physical ``point of view,'' or frame of reference, necessarily alters both your perceptions and your observations of motion. The gentle humor and original demonstrations made a lasting impact on many audiences, and with its recent re-release as part of the AAPT Cinema Classics videodisc it is timely that we should review both the message and the methods of the film. An annotated script and photographs from the film are presented, followed by extension material on rotating frames which teachers may find appropriate for use in their classrooms: constructions, demonstrations, an example, and theory.

  2. Design of a mutual authentication based on NTRUsign with a perturbation and inherent multipoint control protocol frames in an Ethernet-based passive optical network

    NASA Astrophysics Data System (ADS)

    Yin, Aihan; Ding, Yisheng

    2014-11-01

    Identity-related security issues inherently present in passive optical networks (PON) still exist in the current (1G) and next-generation (10G) Ethernet-based passive optical network (EPON) systems. We propose a mutual authentication scheme that integrates an NTRUsign digital signature algorithm with inherent multipoint control protocol (MPCP) frames over an EPON system between the optical line terminal (OLT) and optical network unit (ONU). Here, a primitive NTRUsign algorithm is significantly modified through the use of a new perturbation so that it can be effectively used for simultaneously completing signature and authentication functions on the OLT and the ONU sides. Also, in order to transmit their individual sensitive messages, which include public key, signature, and random value and so forth, to each other, we redefine three unique frames according to MPCP format frame. These generated messages can be added into the frames and delivered to each other, allowing the OLT and the ONU to go ahead with a mutual identity authentication process to verify their legal identities. Our simulation results show that this proposed scheme performs very well in resisting security attacks and has low influence on the registration efficiency to to-be-registered ONUs. A performance comparison with traditional authentication algorithms is also presented. To the best of our knowledge, no detailed design of mutual authentication in EPON can be found in the literature up to now.

  3. Use of Reference Frames for Interplanetary Navigation at JPL

    NASA Technical Reports Server (NTRS)

    Heflin, Michael; Jacobs, Chris; Sovers, Ojars; Moore, Angelyn; Owen, Sue

    2010-01-01

    Navigation of interplanetary spacecraft is typically based on range, Doppler, and differential interferometric measurements made by ground-based telescopes. Acquisition and interpretation of these observations requires accurate knowledge of the terrestrial reference frame and its orientation with respect to the celestial frame. Work is underway at JPL to reprocess historical VLBI and GPS data to improve realizations of the terrestrial and celestial frames. Improvements include minimal constraint alignment, improved tropospheric modeling, better orbit determination, and corrections for antenna phase center patterns.

  4. Calibration and Limitations of the Mg II Line-based Black Hole Masses

    NASA Astrophysics Data System (ADS)

    Woo, Jong-Hak; Le, Huynh Anh N.; Karouzos, Marios; Park, Dawoo; Park, Daeseong; Malkan, Matthew A.; Treu, Tommaso; Bennert, Vardha N.

    2018-06-01

    We present single-epoch black hole mass ({M}BH}) calibrations based on the rest-frame ultraviolet (UV) and optical measurements of Mg II 2798 Å and Hβ 4861 Å lines and the active galactic nucleus (AGN) continuum, using a sample of 52 moderate-luminosity AGNs at z ∼ 0.4 and z ∼ 0.6 with high-quality Keck spectra. We combine this sample with a large number of luminous AGNs from the Sloan Digital Sky Survey to increase the dynamic range for a better comparison of UV and optical velocity and luminosity measurements. With respect to the reference {M}BH} based on the line dispersion of Hβ and continuum luminosity at 5100 Å, we calibrate the UV and optical mass estimators by determining the best-fit values of the coefficients in the mass equation. By investigating whether the UV estimators show a systematic trend with Eddington ratio, FWHM of Hβ, Fe II strength, or UV/optical slope, we find no significant bias except for the slope. By fitting the systematic difference of Mg II-based and Hβ-based masses with the L 3000/L 5100 ratio, we provide a correction term as a function of the spectral index as ΔC = 0.24 (1 + α λ ) + 0.17, which can be added to the Mg II-based mass estimators if the spectral slope can be well determined. The derived UV mass estimators typically show >∼0.2 dex intrinsic scatter with respect to the Hβ-based {M}BH}, suggesting that the UV-based mass has an additional uncertainty of ∼0.2 dex, even if high-quality rest-frame UV spectra are available.

  5. To frame is to explain: a deductive frame-analysis of Dutch and French climate change coverage during the annual UN Conferences of the Parties.

    PubMed

    Dirikx, Astrid; Gelders, Dave

    2010-11-01

    This study examines the way Dutch and French newspapers frame climate change during the annual United Nations Conferences of the Parties. The methods used in previous studies on the framing of climate change do not allow for general cross-national comparisons. We conduct a quantitative deductive framing analysis on 257 quality Dutch and French newspaper articles between 2001 and 2007. Both countries' newspapers seem to frame climate change through mainly the same lens. The majority of the articles make reference to the consequences of the (non-)pursuit of a certain course of action and of possible losses and gains (consequences frame). Additionally, many articles mention the need for urgent actions, refer to possible solutions and suggest that governments are responsible for and/or capable of alleviating climate change problems (responsibility frame). Finally, the conflict frame was found to be used less often than the aforementioned frames, but more regularly than the human interest frame.

  6. Optical Navigation Image of Ganymede

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's Galileo spacecraft, now in orbit around Jupiter, returned this optical navigation image June 3, 1996, showing that the spacecraft is accurately targeted for its first flyby of the giant moon Ganymede on June 27. The missing data in the frame is the result of a special editing feature recently added to the spacecraft's computer to transmit navigation images more quickly. This is first in a series of optical navigation frames, highly edited onboard the spacecraft, that will be used to fine-tune the spacecraft's trajectory as Galileo approaches Ganymede. The image, used for navigation purposes only, is the product of new computer processing capabilities on the spacecraft that allow Galileo to send back only the information required to show the spacecraft is properly targeted and that Ganymede is where navigators calculate it to be. 'This navigation image is totally different from the pictures we'll be taking for scientific study of Ganymede when we get close to it later this month,' said Galileo Project Scientist Dr. Torrence Johnson. On June 27, Galileo will fly just 844 kilometers (524 miles) above Ganymede and return the most detailed, full-frame, high-resolution images and other measurements of the satellite ever obtained. Icy Ganymede is the largest moon in the solar system and three-quarters the size of Mars. It is one of the four large Jovian moons that are special targets of study for the Galileo mission. Of the more than 5 million bits contained in a single image, Galileo performed on-board editing to send back a mere 24,000 bits containing the essential information needed to assure proper targeting. Only the light-to-dark transitions of the crescent Ganymede and reference star locations were transmitted to Earth. The navigation image was taken from a distance of 9.8 million kilometers (6.1 million miles). On June 27th, the spacecraft will be 10,000 times closer to Ganymede.

  7. Cultural background shapes spatial reference frame proclivity

    PubMed Central

    Goeke, Caspar; Kornpetpanee, Suchada; Köster, Moritz; Fernández-Revelles, Andrés B.; Gramann, Klaus; König, Peter

    2015-01-01

    Spatial navigation is an essential human skill that is influenced by several factors. The present study investigates how gender, age, and cultural background account for differences in reference frame proclivity and performance in a virtual navigation task. Using an online navigation study, we recorded reaction times, error rates (confusion of turning axis), and reference frame proclivity (egocentric vs. allocentric reference frame) of 1823 participants. Reaction times significantly varied with gender and age, but were only marginally influenced by the cultural background of participants. Error rates were in line with these results and exhibited a significant influence of gender and culture, but not age. Participants’ cultural background significantly influenced reference frame selection; the majority of North-Americans preferred an allocentric strategy, while Latin-Americans preferred an egocentric navigation strategy. European and Asian groups were in between these two extremes. Neither the factor of age nor the factor of gender had a direct impact on participants’ navigation strategies. The strong effects of cultural background on navigation strategies without the influence of gender or age underlines the importance of socialized spatial cognitive processes and argues for socio-economic analysis in studies investigating human navigation. PMID:26073656

  8. Language and spatial frames of reference in mind and brain.

    PubMed

    Gallistel, C R.

    2002-08-01

    Some language communities routinely use allocentric reference directions (e.g. 'uphill-downhill') where speakers of European languages would use egocentric references ('left-right'). Previous experiments have suggested that the different language groups use different reference frames in non-linguistic tasks involving the recreation of oriented arrays. However, a recent paper argues that manipulating test conditions produces similar effects in monolingual English speakers, and in animals.

  9. Joint Transform Correlation for face tracking: elderly fall detection application

    NASA Astrophysics Data System (ADS)

    Katz, Philippe; Aron, Michael; Alfalou, Ayman

    2013-03-01

    In this paper, an iterative tracking algorithm based on a non-linear JTC (Joint Transform Correlator) architecture and enhanced by a digital image processing method is proposed and validated. This algorithm is based on the computation of a correlation plane where the reference image is updated at each frame. For that purpose, we use the JTC technique in real time to track a patient (target image) in a room fitted with a video camera. The correlation plane is used to localize the target image in the current video frame (frame i). Then, the reference image to be exploited in the next frame (frame i+1) is updated according to the previous one (frame i). In an effort to validate our algorithm, our work is divided into two parts: (i) a large study based on different sequences with several situations and different JTC parameters is achieved in order to quantify their effects on the tracking performances (decimation, non-linearity coefficient, size of the correlation plane, size of the region of interest...). (ii) the tracking algorithm is integrated into an application of elderly fall detection. The first reference image is a face detected by means of Haar descriptors, and then localized into the new video image thanks to our tracking method. In order to avoid a bad update of the reference frame, a method based on a comparison of image intensity histograms is proposed and integrated in our algorithm. This step ensures a robust tracking of the reference frame. This article focuses on face tracking step optimisation and evalutation. A supplementary step of fall detection, based on vertical acceleration and position, will be added and studied in further work.

  10. Examining reference frame interaction in spatial memory using a distribution analysis.

    PubMed

    Street, Whitney N; Wang, Ranxiao Frances

    2016-02-01

    Previous research showed competition among reference frames in spatial attention and language. The present studies developed a new distribution analysis to examine reference frame interactions in spatial memory. Participants viewed virtual arrays of colored pegs and were instructed to remember them either from their own perspective or from the perspective aligned with the rectangular floor. Then they made judgments of relative directions from their respective encoding orientation. Those taking the floor-axis perspective showed systematic bias in the signed errors toward their egocentric perspective, while those taking their own perspective showed no systematic bias, both for random and symmetrical object arrays. The bias toward the egocentric perspective was observed when learning a real symmetric regular object array with strong environmental cues for the aligned axis. These results indicate automatic processing of the self reference while taking the floor-axis perspective but not vice versa, and suggest that research on spatial memory needs to consider the implications of competition effects in reference frame use.

  11. Technical Note: Modification of the standard gain correction algorithm to compensate for the number of used reference flat frames in detector performance studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantinidis, Anastasios C.; Olivo, Alessandro; Speller, Robert D.

    2011-12-15

    Purpose: The x-ray performance evaluation of digital x-ray detectors is based on the calculation of the modulation transfer function (MTF), the noise power spectrum (NPS), and the resultant detective quantum efficiency (DQE). The flat images used for the extraction of the NPS should not contain any fixed pattern noise (FPN) to avoid contamination from nonstochastic processes. The ''gold standard'' method used for the reduction of the FPN (i.e., the different gain between pixels) in linear x-ray detectors is based on normalization with an average reference flat-field. However, the noise in the corrected image depends on the number of flat framesmore » used for the average flat image. The aim of this study is to modify the standard gain correction algorithm to make it independent on the used reference flat frames. Methods: Many publications suggest the use of 10-16 reference flat frames, while other studies use higher numbers (e.g., 48 frames) to reduce the propagated noise from the average flat image. This study quantifies experimentally the effect of the number of used reference flat frames on the NPS and DQE values and appropriately modifies the gain correction algorithm to compensate for this effect. Results: It is shown that using the suggested gain correction algorithm a minimum number of reference flat frames (i.e., down to one frame) can be used to eliminate the FPN from the raw flat image. This saves computer memory and time during the x-ray performance evaluation. Conclusions: The authors show that the method presented in the study (a) leads to the maximum DQE value that one would have by using the conventional method and very large number of frames and (b) has been compared to an independent gain correction method based on the subtraction of flat-field images, leading to identical DQE values. They believe this provides robust validation of the proposed method.« less

  12. Ray Effect Mitigation Through Reference Frame Rotation

    DOE PAGES

    Tencer, John

    2016-05-01

    The discrete ordinates method is a popular and versatile technique for solving the radiative transport equation, a major drawback of which is the presence of ray effects. Mitigation of ray effects can yield significantly more accurate results and enhanced numerical stability for combined mode codes. Moreover, when ray effects are present, the solution is seen to be highly dependent upon the relative orientation of the geometry and the global reference frame. It is an undesirable property. A novel ray effect mitigation technique of averaging the computed solution for various reference frame orientations is proposed.

  13. Spatial and physical frames of reference in positioning a limb.

    PubMed

    Garrett, S R; Pagano, C; Austin, G; Turvey, M T

    1998-10-01

    Splints attached to the right forearm were used to rotate the forearm's physical reference frame, as defined by the eigenvectors of its inertia tensor, relative to its spatial reference frame. In two experiments, when subjects were required to orient the forearm parallel to, or at 45 degrees to, the environmental horizontal, they produced limb orientations that were systematically deflected from the forearm's longitudinal spatial axis in the direction of the forearm's physical axes. The position sense seems to be based on inertial eigenvectors rather than on joint angles or gravitational torques.

  14. Coordinate references for the indoor/outdoor seamless positioning

    NASA Astrophysics Data System (ADS)

    Ruan, Ling; Zhang, Ling; Long, Yi; Cheng, Fei

    2018-05-01

    Indoor positioning technologies are being developed rapidly, and seamless positioning which connected indoor and outdoor space is a new trend. The indoor and outdoor positioning are not applying the same coordinate system and different indoor positioning scenes uses different indoor local coordinate reference systems. A specific and unified coordinate reference frame is needed as the space basis and premise in seamless positioning application. Trajectory analysis of indoor and outdoor integration also requires a uniform coordinate reference. However, the coordinate reference frame in seamless positioning which can applied to various complex scenarios is lacking of research for a long time. In this paper, we proposed a universal coordinate reference frame in indoor/outdoor seamless positioning. The research focus on analysis and classify the indoor positioning scenes and put forward the coordinate reference system establishment and coordinate transformation methods in each scene. And, through some experiments, the calibration method feasibility was verified.

  15. A multi-ring optical packet and circuit integrated network with optical buffering.

    PubMed

    Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya

    2012-12-17

    We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate < 1 × 10(-4)) operation was achieved with optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.

  16. A Paleolatitude Calculator for Paleoclimate Studies

    PubMed Central

    van Hinsbergen, Douwe J. J.; de Groot, Lennart V.; van Schaik, Sebastiaan J.; Spakman, Wim; Bijl, Peter K.; Sluijs, Appy; Langereis, Cor G.; Brinkhuis, Henk

    2015-01-01

    Realistic appraisal of paleoclimatic information obtained from a particular location requires accurate knowledge of its paleolatitude defined relative to the Earth’s spin-axis. This is crucial to, among others, correctly assess the amount of solar energy received at a location at the moment of sediment deposition. The paleolatitude of an arbitrary location can in principle be reconstructed from tectonic plate reconstructions that (1) restore the relative motions between plates based on (marine) magnetic anomalies, and (2) reconstruct all plates relative to the spin axis using a paleomagnetic reference frame based on a global apparent polar wander path. Whereas many studies do employ high-quality relative plate reconstructions, the necessity of using a paleomagnetic reference frame for climate studies rather than a mantle reference frame appears under-appreciated. In this paper, we briefly summarize the theory of plate tectonic reconstructions and their reference frames tailored towards applications of paleoclimate reconstruction, and show that using a mantle reference frame, which defines plate positions relative to the mantle, instead of a paleomagnetic reference frame may introduce errors in paleolatitude of more than 15° (>1500 km). This is because mantle reference frames cannot constrain, or are specifically corrected for the effects of true polar wander. We used the latest, state-of-the-art plate reconstructions to build a global plate circuit, and developed an online, user-friendly paleolatitude calculator for the last 200 million years by placing this plate circuit in three widely used global apparent polar wander paths. As a novelty, this calculator adds error bars to paleolatitude estimates that can be incorporated in climate modeling. The calculator is available at www.paleolatitude.org. We illustrate the use of the paleolatitude calculator by showing how an apparent wide spread in Eocene sea surface temperatures of southern high latitudes may be in part explained by a much wider paleolatitudinal distribution of sites than previously assumed. PMID:26061262

  17. A Paleolatitude Calculator for Paleoclimate Studies.

    PubMed

    van Hinsbergen, Douwe J J; de Groot, Lennart V; van Schaik, Sebastiaan J; Spakman, Wim; Bijl, Peter K; Sluijs, Appy; Langereis, Cor G; Brinkhuis, Henk

    2015-01-01

    Realistic appraisal of paleoclimatic information obtained from a particular location requires accurate knowledge of its paleolatitude defined relative to the Earth's spin-axis. This is crucial to, among others, correctly assess the amount of solar energy received at a location at the moment of sediment deposition. The paleolatitude of an arbitrary location can in principle be reconstructed from tectonic plate reconstructions that (1) restore the relative motions between plates based on (marine) magnetic anomalies, and (2) reconstruct all plates relative to the spin axis using a paleomagnetic reference frame based on a global apparent polar wander path. Whereas many studies do employ high-quality relative plate reconstructions, the necessity of using a paleomagnetic reference frame for climate studies rather than a mantle reference frame appears under-appreciated. In this paper, we briefly summarize the theory of plate tectonic reconstructions and their reference frames tailored towards applications of paleoclimate reconstruction, and show that using a mantle reference frame, which defines plate positions relative to the mantle, instead of a paleomagnetic reference frame may introduce errors in paleolatitude of more than 15° (>1500 km). This is because mantle reference frames cannot constrain, or are specifically corrected for the effects of true polar wander. We used the latest, state-of-the-art plate reconstructions to build a global plate circuit, and developed an online, user-friendly paleolatitude calculator for the last 200 million years by placing this plate circuit in three widely used global apparent polar wander paths. As a novelty, this calculator adds error bars to paleolatitude estimates that can be incorporated in climate modeling. The calculator is available at www.paleolatitude.org. We illustrate the use of the paleolatitude calculator by showing how an apparent wide spread in Eocene sea surface temperatures of southern high latitudes may be in part explained by a much wider paleolatitudinal distribution of sites than previously assumed.

  18. Medición de posiciones astrométricas con CCD en la zona de Rup 21

    NASA Astrophysics Data System (ADS)

    Bustos Fierro, I. H.; Calderón, J. H.

    It is shown the utilization of the block adjustment method for the measurement of astrometric positions from a mosaic of sixteen CCD images with partial overlap, which were taken with the Telescope Jorge Sahade of CASLEO. The observations cover an area of 25' x 25' around the open cluster Rup21. The source of reference positions was ACT Reference Catalog. The internal error of the measured positions is analyzed, and the external error is estimated from the comparison with the catalog USNO-A. In this comparison it is found that the direct CCD images taken with focal reducer could be distorted by severe field curvature. The effect of the distortion presumably introduced by the optics is eliminated with the suitable corrections of the stellar positions measured on every frame, but a new systematic effect on scales of the entire field is observed, which could be due to the distribution of the reference stars.

  19. NChina16: A stable geodetic reference frame for geological hazard studies in north China

    NASA Astrophysics Data System (ADS)

    Wang, G.; Yan, B.; Gan, W.; Geng, J.

    2017-12-01

    This study established a stable North China Reference Frame 2016 (NChina16) using five years of continuous GPS observations (2011.8 to 2016.8) from 12 continuously operating reference stations (CORS) fixed to the stable interior of the North China Craton. Applications of NChina16 in landslide, subsidence, and post-seismic displacement studies are illustrated. The primary result of this study is the seven parameters for transforming Cartesian ECEF (Earth-Centered, Earth-Fixed) coordinates X, Y, and Z from the International GNSS Service Reference Frame 2008 (IGS08) to NChina16. The seven parameters include the epoch that is used to tie the regional reference frame to IGS08 and the time derivatives of three translations and three rotations. A method for developing a regional geodetic reference frame is introduced in detail. The GIPSY-OASIS (V6.4) software package was used to obtain the precise point positioning (PPP) time series with respect to IGS08. The stability (accuracy) of NChina16 is about 0.5 mm/year in both vertical and horizontal directions. This study also developed a regional seasonal model for correcting vertical displacement time series data derived from the PPP solutions. Long-term GPS observations (1999-2016) from five CORS in north China were used to develop the seasonal model. According to this study, the PPP daily solutions with respect to NChina16 could achieve 2-3 mm horizontal accuracy and 4-5 mm vertical accuracy after being modified by the regional model. NChina16 will be critical to the long-term landslide, subsidence, fault, and structural monitoring in north China and for ongoing post-seismic crustal deformation studies in Japan. NChina16 will be incrementally improved and synchronized with the IGS reference frame update.

  20. Optically phase-locked electronic speckle pattern interferometer system performance for vibration measurement in random displacement fields

    NASA Astrophysics Data System (ADS)

    Moran, Steve E.; Lugannani, Robert; Craig, Peter N.; Law, Robert L.

    1989-02-01

    An analysis is made of the performance of an optically phase-locked electronic speckle pattern interferometer in the presence of random noise displacements. Expressions for the phase-locked speckle contrast for single-frame imagery and the composite rms exposure for two sequentially subtracted frames are obtained in terms of the phase-locked composite and single-frame fringe functions. The noise fringe functions are evaluated for stationary, coherence-separable noise displacements obeying Gauss-Markov temporal statistics. The theoretical findings presented here are qualitatively supported by experimental results.

  1. Influences of indigenous language on spatial frames of reference in Aboriginal English

    NASA Astrophysics Data System (ADS)

    Edmonds-Wathen, Cris

    2014-06-01

    The Aboriginal English spoken by Indigenous children in remote communities in the Northern Territory of Australia is influenced by the home languages spoken by themselves and their families. This affects uses of spatial terms used in mathematics such as `in front' and `behind.' Speakers of the endangered Indigenous Australian language Iwaidja use the intrinsic frame of reference in contexts where speakers of Standard Australian English use the relative frame of reference. Children speaking Aboriginal English show patterns of use that parallel the Iwaidja contexts. This paper presents detailed examples of spatial descriptions in Iwaidja and Aboriginal English that demonstrate the parallel patterns of use. The data comes from a study that investigated how an understanding of spatial frame of reference in Iwaidja could assist teaching mathematics to Indigenous language-speaking students. Implications for teaching mathematics are explored for teachers without previous experience in a remote Indigenous community.

  2. Change of reference frame for tactile localization during child development.

    PubMed

    Pagel, Birthe; Heed, Tobias; Röder, Brigitte

    2009-11-01

    Temporal order judgements (TOJ) for two tactile stimuli, one presented to the left and one to the right hand, are less precise when the hands are crossed over the midline than when the hands are uncrossed. This 'crossed hand' effect has been considered as evidence for a remapping of tactile input into an external reference frame. Since late, but not early, blind individuals show such remapping, it has been hypothesized that the use of an external reference frame develops during childhood. Five- to 10-year-old children were therefore tested with the tactile TOJ task, both with uncrossed and crossed hands. Overall performance in the TOJ task improved with age. While children older than 5 1/2 years displayed a crossed hand effect, younger children did not. Therefore the use of an external reference frame for tactile, and possibly multisensory, localization seems to be acquired at age 5.

  3. Spatial Reorientation of Sensorimotor Balance Control in Altered Gravity

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.; Black, F. L.; Kaufman, G. D.; Reschke, M. F.; Wood, S. J.

    2007-01-01

    Sensorimotor coordination of body segments following space flight are more pronounced after landing when the head is actively tilted with respect to the trunk. This suggests that central vestibular processing shifts from a gravitational frame of reference to a head frame of reference in microgravity. A major effect of such changes is a significant postural instability documented by standard head-erect Sensory Organization Tests. Decrements in functional performance may still be underestimated when head and gravity reference frames remained aligned. The purpose of this study was to examine adaptive changes in spatial processing for balance control following space flight by incorporating static and dynamic tilts that dissociate head and gravity reference frames. A second aim of this study was to examine the feasibility of altering the re-adaptation process following space flight by providing discordant visual-vestibular-somatosensory stimuli using short-radius pitch centrifugation.

  4. inertial orientation tracker having automatic drift compensation using an at rest sensor for tracking parts of a human body

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M. (Inventor)

    2004-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive sate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  5. Inertial orientation tracker having automatic drift compensation for tracking human head and other similarly sized body

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M. (Inventor)

    2000-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive rate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  6. Inertial orientation tracker having gradual automatic drift compensation for tracking human head and other similarly sized body

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M. (Inventor)

    2002-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive rate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  7. Inertial orientation tracker apparatus method having automatic drift compensation for tracking human head and other similarly sized body

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M. (Inventor)

    1998-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive rate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  8. Inertial orientation tracker apparatus having automatic drift compensation for tracking human head and other similarly sized body

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M. (Inventor)

    1997-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive rate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  9. Electrooptic converter to control linear displacements of the large structures of the buildings and facilities

    NASA Astrophysics Data System (ADS)

    Vasilev, Aleksandr S.; Konyakhin, Igor A.; Timofeev, Alexander N.; Lashmanov, Oleg U.; Molev, Fedor V.

    2015-05-01

    The paper analyzes the construction matters and metrological parameters of the electrooptic converter to control linear displacements of the large structures of the buildings and facilities. The converter includes the base module, the processing module and a set of the reference marks. The base module is the main unit of the system, it includes the receiving optical system and the CMOS photodetector array that realizes the instrument coordinate system that controls the mark coordinates in the space. The methods of the frame-to-frame difference, adaptive threshold filtration, binarization and objects search by the tied areas to detect the marks against accidental contrast background is the basis of the algorithm. The entire algorithm is performed during one image reading stage and is based on the FPGA. The developed and manufactured converter experimental model was tested in laboratory conditions at the metrological bench at the distance between the base module and the mark 50±0.2 m. The static characteristic was read during the experiment of the reference mark displacement at the pitch of 5 mm in the horizontal and vertical directions for the displacement range 400 mm. The converter experimental model error not exceeding ±0.5 mm was obtained in the result of the experiment.

  10. Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects

    NASA Astrophysics Data System (ADS)

    Chen, Xucai; Wang, Jianjun; Versluis, Michel; de Jong, Nico; Villanueva, Flordeliza S.

    2013-06-01

    High speed imaging has application in a wide area of industry and scientific research. In medical research, high speed imaging has the potential to reveal insight into mechanisms of action of various therapeutic interventions. Examples include ultrasound assisted thrombolysis, drug delivery, and gene therapy. Visual observation of the ultrasound, microbubble, and biological cell interaction may help the understanding of the dynamic behavior of microbubbles and may eventually lead to better design of such delivery systems. We present the development of a high speed bright field and fluorescence imaging system that incorporates external mechanical waves such as ultrasound. Through collaborative design and contract manufacturing, a high speed imaging system has been successfully developed at the University of Pittsburgh Medical Center. We named the system "UPMC Cam," to refer to the integrated imaging system that includes the multi-frame camera and its unique software control, the customized modular microscope, the customized laser delivery system, its auxiliary ultrasound generator, and the combined ultrasound and optical imaging chamber for in vitro and in vivo observations. This system is capable of imaging microscopic bright field and fluorescence movies at 25 × 106 frames per second for 128 frames, with a frame size of 920 × 616 pixels. Example images of microbubble under ultrasound are shown to demonstrate the potential application of the system.

  11. Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects

    PubMed Central

    Chen, Xucai; Wang, Jianjun; Versluis, Michel; de Jong, Nico; Villanueva, Flordeliza S.

    2013-01-01

    High speed imaging has application in a wide area of industry and scientific research. In medical research, high speed imaging has the potential to reveal insight into mechanisms of action of various therapeutic interventions. Examples include ultrasound assisted thrombolysis, drug delivery, and gene therapy. Visual observation of the ultrasound, microbubble, and biological cell interaction may help the understanding of the dynamic behavior of microbubbles and may eventually lead to better design of such delivery systems. We present the development of a high speed bright field and fluorescence imaging system that incorporates external mechanical waves such as ultrasound. Through collaborative design and contract manufacturing, a high speed imaging system has been successfully developed at the University of Pittsburgh Medical Center. We named the system “UPMC Cam,” to refer to the integrated imaging system that includes the multi-frame camera and its unique software control, the customized modular microscope, the customized laser delivery system, its auxiliary ultrasound generator, and the combined ultrasound and optical imaging chamber for in vitro and in vivo observations. This system is capable of imaging microscopic bright field and fluorescence movies at 25 × 106 frames per second for 128 frames, with a frame size of 920 × 616 pixels. Example images of microbubble under ultrasound are shown to demonstrate the potential application of the system. PMID:23822346

  12. Frames of Reference in the Classroom

    NASA Astrophysics Data System (ADS)

    Grossman, Joshua

    2012-12-01

    The classic film "Frames of Reference"1,2 effectively illustrates concepts involved with inertial and non-inertial reference frames. In it, Donald G. Ivey and Patterson Hume use the cameras perspective to allow the viewer to see motion in reference frames translating with a constant velocity, translating while accelerating, and rotating—all with respect to the Earth frame. The film is a classic for good reason, but today it does have a couple of drawbacks: 1) The film by nature only accommodates passive learning. It does not give students the opportunity to try any of the experiments themselves. 2) The dated style of the 50-year-old film can distract students from the physics content. I present here a simple setup that can recreate many of the movies demonstrations in the classroom. The demonstrations can be used to supplement the movie or in its place, if desired. All of the materials except perhaps the inexpensive web camera should likely be available already in most teaching laboratories. Unlike previously described activities, these experiments do not require travel to another location3 or an involved setup.4,5

  13. Effect of gravito-inertial cues on the coding of orientation in pre-attentive vision.

    PubMed

    Stivalet, P; Marendaz, C; Barraclough, L; Mourareau, C

    1995-01-01

    To see if the spatial reference frame used by pre-attentive vision is specified in a retino-centered frame or in a reference frame integrating visual and nonvisual information (vestibular and somatosensory), subjects were centrifuged in a non-pendular cabin and were asked to search for a target distinguishable from distractors by difference in orientation (Treisman's "pop-out" paradigm [1]). In a control condition, in which subjects were sitting immobilized but not centrifuged, this task gave an asymmetric search pattern: Search was rapid and pre-attentional except when the target was aligned with the horizontal retinal/head axis, in which case search was slow and attentional (2). Results using a centrifuge showed that slow/serial search patterns were obtained when the target was aligned with the subjective horizontal axis (and not with the horizontal retinal/head axis). These data suggest that a multisensory reference frame is used in pre-attentive vision. The results are interpreted in terms of Riccio and Stoffregen's "ecological theory" of orientation in which the vertical and horizontal axes constitute independent reference frames (3).

  14. Reference-Frame-Independent and Measurement-Device-Independent Quantum Key Distribution Using One Single Source

    NASA Astrophysics Data System (ADS)

    Li, Qian; Zhu, Changhua; Ma, Shuquan; Wei, Kejin; Pei, Changxing

    2018-04-01

    Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all detector side-channel attacks. However, practical implementations of MDI-QKD, which require two-photon interferences from separated independent single-photon sources and a nontrivial reference alignment procedure, are still challenging with current technologies. Here, we propose a scheme that significantly reduces the experimental complexity of two-photon interferences and eliminates reference frame alignment by the combination of plug-and-play and reference frame independent MDI-QKD. Simulation results show that the secure communication distance can be up to 219 km in the finite-data case and the scheme has good potential for practical MDI-QKD systems.

  15. Experimental Methodology for Determining Turbomachinery Blade Damping Using Magnetic Bearing Excitation and Non-Contacting Optical Measurements

    NASA Technical Reports Server (NTRS)

    Provenza, Andrew J.; Duffy, Kirsten P.

    2010-01-01

    Experiments to determine the effects of turbomachinery fan blade damping concepts such as passively shunted piezoelectric materials on blade response are ongoing at the NASA Glenn Research Center. A vertical rotor is suspended and excited with active magnetic bearings (AMBs) usually in a vacuum chamber to eliminate aerodynamic forces. Electromagnetic rotor excitation is superimposed onto rotor PD-controlled support and can be fixed to either a stationary or rotating frame of reference. The rotor speed is controlled with an air turbine system. Blade vibrations are measured using optical probes as part of a Non-Contacting Stress Measurement System (NSMS). Damping is calculated from these measurements. It can be difficult to get accurate damping measurements using this experimental setup and some of the details of how to obtain quality results are seemingly nontrivial. The intent of this paper is to present those details.

  16. Emotional valence and contextual affordances flexibly shape approach-avoidance movements

    PubMed Central

    Saraiva, Ana Carolina; Schüür, Friederike; Bestmann, Sven

    2013-01-01

    Behavior is influenced by the emotional content—or valence—of stimuli in our environment. Positive stimuli facilitate approach, whereas negative stimuli facilitate defensive actions such as avoidance (flight) and attack (fight). Facilitation of approach or avoidance movements may also be influenced by whether it is the self that moves relative to a stimulus (self-reference) or the stimulus that moves relative to the self (object-reference), adding flexibility and context-dependence to behavior. Alternatively, facilitation of approach avoidance movements may happen in a pre-defined and muscle-specific way, whereby arm flexion is faster to approach positive (e.g., flexing the arm brings a stimulus closer) and arm extension faster to avoid negative stimuli (e.g., extending the arm moves the stimulus away). While this allows for relatively fast responses, it may compromise the flexibility offered by contextual influences. Here we asked under which conditions approach-avoidance actions are influenced by contextual factors (i.e., reference-frame). We manipulated the reference-frame in which actions occurred by asking participants to move a symbolic manikin (representing the self) toward or away from a positive or negative stimulus, and move a stimulus toward or away from the manikin. We also controlled for the type of movements used to approach or avoid in each reference. We show that the reference-frame influences approach-avoidance actions to emotional stimuli, but additionally we find muscle-specificity for negative stimuli in self-reference contexts. We speculate this muscle-specificity may be a fast and adaptive response to threatening stimuli. Our results confirm that approach-avoidance behavior is flexible and reference-frame dependent, but can be muscle-specific depending on the context and valence of the stimulus. Reference-frame and stimulus-evaluation are key factors in guiding approach-avoidance behavior toward emotional stimuli in our environment. PMID:24379794

  17. Natural motion of the optic nerve head revealed by high speed phase-sensitive OCT

    NASA Astrophysics Data System (ADS)

    OHara, Keith; Schmoll, Tilman; Vass, Clemens; Leitgeb, Rainer A.

    2013-03-01

    We use phase-sensitive optical coherence tomography (OCT) to measure the deformation of the optic nerve head during the pulse cycle, motivated by the possibility that these deformations might be indicative of the progression of glaucoma. A spectral-domain OCT system acquired 100k A-scans per second, with measurements from a pulse-oximeter recorded simultaneously, correlating OCT data to the subject's pulse. Data acquisition lasted for 2 seconds, to cover at least two pulse cycles. A frame-rate of 200-400 B-scans per second results in a sufficient degree of correlated speckle between successive frames that the phase-differences between fames can be extracted. Bulk motion of the entire eye changes the phase by several full cycles between frames, but this does not severely hinder extracting the smaller phase-changes due to differential motion within a frame. The central cup moves about 5 μm/s relative to the retinal-pigment-epithelium edge, with tissue adjacent to blood vessels showing larger motion.

  18. Tracking features in retinal images of adaptive optics confocal scanning laser ophthalmoscope using KLT-SIFT algorithm

    PubMed Central

    Li, Hao; Lu, Jing; Shi, Guohua; Zhang, Yudong

    2010-01-01

    With the use of adaptive optics (AO), high-resolution microscopic imaging of living human retina in the single cell level has been achieved. In an adaptive optics confocal scanning laser ophthalmoscope (AOSLO) system, with a small field size (about 1 degree, 280 μm), the motion of the eye severely affects the stabilization of the real-time video images and results in significant distortions of the retina images. In this paper, Scale-Invariant Feature Transform (SIFT) is used to abstract stable point features from the retina images. Kanade-Lucas-Tomasi(KLT) algorithm is applied to track the features. With the tracked features, the image distortion in each frame is removed by the second-order polynomial transformation, and 10 successive frames are co-added to enhance the image quality. Features of special interest in an image can also be selected manually and tracked by KLT. A point on a cone is selected manually, and the cone is tracked from frame to frame. PMID:21258443

  19. Connecting kinematic and dynamic reference frames by D-VLBI

    NASA Astrophysics Data System (ADS)

    Schuh, Harald; Plank, Lucia; Madzak, Matthias; Böhm, Johannes

    2012-08-01

    In geodetic and astrometric practice, terrestrial station coordinates are usually provided in the kinematic International Terrestrial Reference Frame (ITRF) and radio source coordinates in the International Celestial Reference Frame (ICRF), whereas measurements of space probes such as satellites and spacecrafts, or planetary ephemerides rest upon dynamical theories. To avoid inconsistencies and errors during measurement and calculation procedures, exact frame ties between quasi - inertial, kinematic and dynamic reference frames have to be secured. While the Earth Orientation Parameters (EOP), e.g. measured by VLBI, link the ITRF to the ICRF, the ties with the dynamic frames can be established with the differential Very Long Baseline Interferometry (D - VLBI) method. By observing space probes alternately t o radio sources, the relative position of the targets to each other on the sky can be determined with high accuracy. While D - VLBI is a common technique in astrophysics (source imaging) and deep space navigation, just recently there have been several effort s to use it for geodetic purposes. We present investigations concerning possible VLBI observations to satellites. This includes the potential usage of available GNNS satellites as well as specifically designed missions, as e.g. the GRASP mission proposed b y JPL/NASA and an international consortium, where the aspect of co - location in space of various techniques (VLBI, SLR, GNSS, DORIS) is the main focus.

  20. Parallel updating and weighting of multiple spatial maps for visual stability during whole body motion

    PubMed Central

    Medendorp, W. P.

    2015-01-01

    It is known that the brain uses multiple reference frames to code spatial information, including eye-centered and body-centered frames. When we move our body in space, these internal representations are no longer in register with external space, unless they are actively updated. Whether the brain updates multiple spatial representations in parallel, or whether it restricts its updating mechanisms to a single reference frame from which other representations are constructed, remains an open question. We developed an optimal integration model to simulate the updating of visual space across body motion in multiple or single reference frames. To test this model, we designed an experiment in which participants had to remember the location of a briefly presented target while being translated sideways. The behavioral responses were in agreement with a model that uses a combination of eye- and body-centered representations, weighted according to the reliability in which the target location is stored and updated in each reference frame. Our findings suggest that the brain simultaneously updates multiple spatial representations across body motion. Because both representations are kept in sync, they can be optimally combined to provide a more precise estimate of visual locations in space than based on single-frame updating mechanisms. PMID:26490289

  1. Frame by Frame II: A Filmography of the African American Image, 1978-1994.

    ERIC Educational Resources Information Center

    Klotman, Phyllis R.; Gibson, Gloria J.

    A reference guide on African American film professionals, this book is a companion volume to the earlier "Frame by Frame I." It focuses on giving credit to African Americans who have contributed their talents to a film industry that has scarcely recognized their contributions, building on the aforementioned "Frame by Frame I,"…

  2. Assessment of curing behavior of light-activated dental composites using intensity correlation based multiple reference optical coherence tomography.

    PubMed

    Dsouza, Roshan; Subhash, Hrebesh; Neuhaus, Kai; Kantamneni, Ramakrishna; McNamara, Paul M; Hogan, Josh; Wilson, Carol; Leahy, Martin

    2016-01-01

    Monitoring the curing kinetics of light-activated resin is a key area of research. These resins are used in restorative applications and particularly in dental applications. They can undergo volumetric shrinkage due to poor control of the depth dependent curing process, modulated by the intensity and duration of the curing light source. This often results in the formation of marginal gaps, causing pain and damage to the restoration site. In this study, we demonstrate the capabilities of a correlation method applied using a multiple references optical coherence tomography (MR-OCT) architecture to monitor the curing of the resin. A MR-OCT system is used in this study to monitor the curing of the resin. The system operates at the center wavelength of 1310 nm with an A-scan rate of 1200 A-scans per second. The axial and lateral resolution of the system is ∼13 μm and ∼27 μm. The method to determine the intensity correlation between adjacent B-frames is based on the Pearson correlation coefficient for a region of interest. Calculating the correlation coefficient for multiple B-frames related to the first B-frame at regular spaced time points, shows for a noncured resin a reduction of the correlation coefficient over time due to Brownian motion. The time constant of the reduction of the correlation value is a measure for the progress of the polymerization during LED light irradiation of the resin. The proposed approach is potentially a low-cost, powerful and unique optical imaging modality for measuring the curing behavior of dental resin and other resins, coatings, and adhesives in medical and industrial applications. To demonstrate the proposed method to monitor the curing process, a light-activated resin composite from GRADIA DIRECT ANTERIOR (GC Corporation, Japan) is studied. The curing time of resin was measured and monitored as a function of depth. The correlation coefficient method is highly sensitive to Brownian motion. The process of curing results in a change in intensity as measured by the MR-OCT signal and hence can be monitored using this method. These results show that MR-OCT has the potential to measure the curing time and monitor the curing process as a function of depth. Moreover, MR-OCT as a product has potential to be compact, low-cost and to fit into a smartphone. Using such a device for monitoring the curing of the resin will be suitable for dentists in stationary and mobile clinical settings. © 2015 Wiley Periodicals, Inc.

  3. Analog Landau-He-McKellar-Wilkens quantization due to noninertial effects of the Fermi-Walker reference frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakke, Knut

    2010-05-15

    We will show that when a neutral particle with permanent electric dipole moment interacts with a specific field configuration when the local reference frames of the observers are Fermi-Walker transported, the Landau quantization analog to the He-McKellar-Wilkens setup arises in the nonrelativistic quantum dynamics of the neutral particle due the noninertial effects of the Fermi-Walker reference frame. We show that the noninertial effects do not break the infinity degeneracy of the energy levels, but in this case, the cyclotron frequency depends on the angular velocity.

  4. A Celestial Reference Frame at X/ka-Band (8.4/32 Ghz) for Deep Space Navigation

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Clark, J. E.; Garcia-Miro, C.; Horiuchi, S.; Romero-Wolf, A.; Snedeker, L.; Sotuela, I.

    2012-01-01

    Deep space tracking and navigation are done in a quasi-inertial reference frame based upon the angular positions of distant active galactic nuclei (AGN). These objects, which are found at extreme distances characterized by median redshifts of z = 1, are ideal for reference frame definition because they exhibit no measurable parallax or proper motion. They are thought to be powered by super massive black holes whose gravitational energy drives galactic sized relativistic jets. These jets produce synchrotron emissions which are detectable by modern radio techniques such as Very Long baseline Interferometry (VLBI).

  5. GNSS-SLR satellite co-location for the estimate of local ties

    NASA Astrophysics Data System (ADS)

    Bruni, Sara; Zerbini, Susanna; Errico, Maddalena; Santi, Efisio

    2013-04-01

    The current realization of the International Terrestrial Reference Frame (ITRF) is based on four different space-geodetic techniques, so that the benefits brought by each observing system to the definition of the frame can compensate for the drawbacks of the others and technique-specific systematic errors might be identified. The strategy used to combine the observations from the different techniques is then of prominent importance for the realization of a precise and stable reference frame. This study concentrates, in particular, on the combination of Satellite Laser Ranging (SLR) and Global Navigation Satellite System (GNSS) observations by exploiting satellite co-locations. This innovative approach is based on the fact that laser tracking of GNSS satellites, carrying on board laser reflector arrays, allows for the combination of optical and microwave signals in the determination of the spacecraft orbit. Besides, the use of satellite co-locations differs quite significantly from the traditional combination method in which each single technique solution is carried out autonomously and is interrelated in a second step. One of the benefits of the approach adopted in this study is that it allows for an independent validation of the local tie, i.e. of the vector connecting the SLR and GNSS reference points in a multi-techniques station. Typically, local ties are expressed by a single value, measured with ground-based geodetic techniques and taken as constant. In principle, however, local ties might show time variations likely caused by the different monumentation characteristics of the GNSS antennas with respect to those of a SLR system. This study evaluates the possibility of using the satellite co-location approach to generate local-ties time series by means of observations available for a selected network of ILRS stations. The data analyzed in this study were acquired as part of the NASA's Earth Science Data Systems and are archived and distributed by the Crustal Dynamics Data Information System (CDDIS).

  6. Quantum mechanics in noninertial reference frames: Violations of the nonrelativistic equivalence principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klink, W.H.; Wickramasekara, S., E-mail: wickrama@grinnell.edu; Department of Physics, Grinnell College, Grinnell, IA 50112

    2014-01-15

    In previous work we have developed a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group that includes transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as is the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. A special feature of these previously constructed representations is that they all respect the non-relativistic equivalence principle, wherein the fictitious forces associated with linear acceleration canmore » equivalently be described by gravitational forces. In this paper we exhibit a large class of cocycle representations of the Galilean line group that violate the equivalence principle. Nevertheless the classical mechanics analogue of these cocycle representations all respect the equivalence principle. -- Highlights: •A formulation of Galilean quantum mechanics in non-inertial reference frames is given. •The key concept is the Galilean line group, an infinite dimensional group. •A large class of general cocycle representations of the Galilean line group is constructed. •These representations show violations of the equivalence principle at the quantum level. •At the classical limit, no violations of the equivalence principle are detected.« less

  7. Language supports young children’s use of spatial relations to remember locations

    PubMed Central

    Miller, Hilary E.; Patterson, Rebecca; Simmering, Vanessa R.

    2016-01-01

    Two experiments investigated the role of language in children’s spatial recall performance. In particular, we assessed whether selecting an intrinsic reference frame could be improved through verbal encoding. Selecting an intrinsic reference frame requires remembering locations relative to nearby objects independent of one’s body (egocentric) or distal environmental (allocentric) cues, and does not reliably occur in children under 5 years of age (Nardini, Burgess, Breckenridge, & Atkinson, 2006). The current studies tested the relation between spatial language and 4-year-olds’ selection of an intrinsic reference frame in spatial recall. Experiment 1 showed that providing 4-year-olds with location-descriptive cues during (Exp. 1a) or before (Exp. 1b) the recall task improved performance both overall and specifically on trials relying most on an intrinsic reference frame. Additionally, children’s recall performance was predicted by their verbal descriptions of the task space (Exp. 1a control condition). Non-verbally highlighting relations among objects during the recall task (Exp. 2) supported children’s performance relative to the control condition, but significantly less than the location-descriptive cues. These results suggest that the ability to verbally represent relations is a potential mechanism that could account for developmental changes in the selection of an intrinsic reference frame during spatial recall. PMID:26896902

  8. Language supports young children's use of spatial relations to remember locations.

    PubMed

    Miller, Hilary E; Patterson, Rebecca; Simmering, Vanessa R

    2016-05-01

    Two experiments investigated the role of language in children's spatial recall performance. In particular, we assessed whether selecting an intrinsic reference frame could be improved through verbal encoding. Selecting an intrinsic reference frame requires remembering locations relative to nearby objects independent of one's body (egocentric) or distal environmental (allocentric) cues, and does not reliably occur in children under 5 years of age (Nardini, Burgess, Breckenridge, & Atkinson, 2006). The current studies tested the relation between spatial language and 4-year-olds' selection of an intrinsic reference frame in spatial recall. Experiment 1 showed that providing 4-year-olds with location-descriptive cues during (Exp. 1a) or before (Exp. 1b) the recall task improved performance both overall and specifically on trials relying most on an intrinsic reference frame. Additionally, children's recall performance was predicted by their verbal descriptions of the task space (Exp. 1a control condition). Non-verbally highlighting relations among objects during the recall task (Exp. 2) supported children's performance relative to the control condition, but significantly less than the location-descriptive cues. These results suggest that the ability to verbally represent relations is a potential mechanism that could account for developmental changes in the selection of an intrinsic reference frame during spatial recall. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. High frame-rate computational ghost imaging system using an optical fiber phased array and a low-pixel APD array.

    PubMed

    Liu, Chunbo; Chen, Jingqiu; Liu, Jiaxin; Han, Xiang'e

    2018-04-16

    To obtain a high imaging frame rate, a computational ghost imaging system scheme is proposed based on optical fiber phased array (OFPA). Through high-speed electro-optic modulators, the randomly modulated OFPA can provide much faster speckle projection, which can be precomputed according to the geometry of the fiber array and the known phases for modulation. Receiving the signal light with a low-pixel APD array can effectively decrease the requirement on sampling quantity and computation complexity owing to the reduced data dimensionality while avoiding the image aliasing due to the spatial periodicity of the speckles. The results of analysis and simulation show that the frame rate of the proposed imaging system can be significantly improved compared with traditional systems.

  10. A Modernized National Spatial Reference System in 2022: Focus on the Caribbean Terrestrial Reference Frame

    NASA Astrophysics Data System (ADS)

    Roman, D. R.

    2017-12-01

    In 2022, the National Geodetic Survey will replace all three NAD 83 reference frames the four new terrestrial reference frames. Each frame will be named after a tectonic plate (North American, Pacific, Caribbean and Mariana) and each will be related to the IGS frame through three Euler Pole parameters (EPPs). This talk will focus on practical application in the Caribbean region. A working group is being re-established for development of the North American region and will likely also result in analysis of the Pacific region as well. Both of these regions are adequately covered with existing CORS sites to model the EPPs. The Mariana region currently lacks sufficient coverage, but a separate project is underway to collect additional information to help in defining EPPs for that region at a later date. The Caribbean region has existing robust coverage through UNAVCO's COCONet and other data sets, but these require further analysis. This discussion will focus on practical examination of Caribbean sites to establish candidates for determining the Caribbean frame EPPs as well as an examination of any remaining velocities that might inform a model of the remaining velocities within that frame (Intra-Frame Velocity Model). NGS has a vested interest in defining such a model to meet obligations to U.S. citizens in Puerto Rico and the U.S. Virgin Islands. Beyond this, NGS aims to collaborate with other countries in the region through efforts with SIRGAS and UN-GGIM-Americas for a more acceptable regional model to serve everyone's needs.

  11. Needle detection in ultrasound using the spectral properties of the displacement field: a feasibility study

    NASA Astrophysics Data System (ADS)

    Beigi, Parmida; Salcudean, Tim; Rohling, Robert; Lessoway, Victoria A.; Ng, Gary C.

    2015-03-01

    This paper presents a new needle detection technique for ultrasound guided interventions based on the spectral properties of small displacements arising from hand tremour or intentional motion. In a block-based approach, the displacement map is computed for each block of interest versus a reference frame, using an optical flow technique. To compute the flow parameters, the Lucas-Kanade approach is used in a multiresolution and regularized form. A least-squares fit is used to estimate the flow parameters from the overdetermined system of spatial and temporal gradients. Lateral and axial components of the displacement are obtained for each block of interest at consecutive frames. Magnitude-squared spectral coherency is derived between the median displacements of the reference block and each block of interest, to determine the spectral correlation. In vivo images were obtained from the tissue near the abdominal aorta to capture the extreme intrinsic body motion and insertion images were captured from a tissue-mimicking agar phantom. According to the analysis, both the involuntary and intentional movement of the needle produces coherent displacement with respect to a reference window near the insertion site. Intrinsic body motion also produces coherent displacement with respect to a reference window in the tissue; however, the coherency spectra of intrinsic and needle motion are distinguishable spectrally. Blocks with high spectral coherency at high frequencies are selected, estimating a channel for needle trajectory. The needle trajectory is detected from locally thresholded absolute displacement map within the initial estimate. Experimental results show the RMS localization accuracy of 1:0 mm, 0:7 mm, and 0:5 mm for hand tremour, vibrational and rotational needle movements, respectively.

  12. Performance of laser guide star adaptive optics at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S.S.; An, J.; Avicola, K.

    1995-07-19

    A sodium-layer laser guide star adaptive optics system has been developed at Lawrence Livermore National Laboratory (LLNL) for use on the 3-meter Shane telescope at Lick Observatory. The system is based on a 127-actuator continuous-surface deformable mirror, a Hartmann wavefront sensor equipped with a fast-framing low-noise CCD camera, and a pulsed solid-state-pumped dye laser tuned to the atomic sodium resonance line at 589 nm. The adaptive optics system has been tested on the Shane telescope using natural reference stars yielding up to a factor of 12 increase in image peak intensity and a factor of 6.5 reduction in image fullmore » width at half maximum (FWHM). The results are consistent with theoretical expectations. The laser guide star system has been installed and operated on the Shane telescope yielding a beam with 22 W average power at 589 nm. Based on experimental data, this laser should generate an 8th magnitude guide star at this site, and the integrated laser guide star adaptive optics system should produce images with Strehl ratios of 0.4 at 2.2 {mu}m in median seeing and 0.7 at 2.2 {mu}m in good seeing.« less

  13. What is the longitudinal magneto-optical Kerr effect?

    NASA Astrophysics Data System (ADS)

    Ander Arregi, Jon; Riego, Patricia; Berger, Andreas

    2017-01-01

    We explore the commonly used classification scheme for the magneto-optical Kerr effect (MOKE), which essentially utilizes a dual definition based simultaneously on the Cartesian coordinate components of the magnetization vector with respect to the plane of incidence reference frame and specific elements of the reflection matrix, which describes light reflection from a ferromagnetic surface. We find that an unambiguous correspondence in between reflection matrix elements and magnetization components is valid only in special cases, while in more general cases, it leads to inconsistencies due to an intermixing of the presumed separate effects of longitudinal, transverse and polar MOKE. As an example, we investigate in this work both theoretically and experimentally a material that possesses anisotropic magneto-optical properties in accordance with its crystal symmetry. The derived equations, which specifically predict a so-far unknown polarization effect for the transverse magnetization component, are confirmed by detailed experiments on epitaxial hcp Co films. The results indicate that magneto-optical anisotropy causes significant deviations from the commonly employed MOKE data interpretation. Our work addresses the associated anomalies, provides a suitable analysis route for reliable MOKE magnetometry procedures, and proposes a revised MOKE terminology scheme.

  14. Second-order Compton-Getting effect on arbitrary intensity distribution

    NASA Technical Reports Server (NTRS)

    Ng, C. K.

    1985-01-01

    Theoretical studies of energetic particles in space are often referred to a special frame of reference. To compare theory with experiment, one has to transform the particle distribution from the special frame to the observer's frame, or vice versa. Various methods have been derived to obtain the directional distribution in the comoving frame from the directional fluxes measured on a spacecraft. These methods have become progressively complicated as increasingly detailed directional particle data become available. A set of 2nd order correct formulae for the transformation of an arbitrary differential intensity distribution, expressed as a series of spherical harmonics, between any two frames in constant relative motion is presented. These formulae greatly simplify the complicated procedures currently in use for the determination of the differential intensity distribution in a comoving frame.

  15. Integration of image capture and processing: beyond single-chip digital camera

    NASA Astrophysics Data System (ADS)

    Lim, SukHwan; El Gamal, Abbas

    2001-05-01

    An important trend in the design of digital cameras is the integration of capture and processing onto a single CMOS chip. Although integrating the components of a digital camera system onto a single chip significantly reduces system size and power, it does not fully exploit the potential advantages of integration. We argue that a key advantage of integration is the ability to exploit the high speed imaging capability of CMOS image senor to enable new applications such as multiple capture for enhancing dynamic range and to improve the performance of existing applications such as optical flow estimation. Conventional digital cameras operate at low frame rates and it would be too costly, if not infeasible, to operate their chips at high frame rates. Integration solves this problem. The idea is to capture images at much higher frame rates than he standard frame rate, process the high frame rate data on chip, and output the video sequence and the application specific data at standard frame rate. This idea is applied to optical flow estimation, where significant performance improvements are demonstrate over methods using standard frame rate sequences. We then investigate the constraints on memory size and processing power that can be integrated with a CMOS image sensor in a 0.18 micrometers process and below. We show that enough memory and processing power can be integrated to be able to not only perform the functions of a conventional camera system but also to perform applications such as real time optical flow estimation.

  16. 3D registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation

    NASA Astrophysics Data System (ADS)

    Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Wen, Di; Brandt, Eric; van Ditzhuijzen, Nienke S.; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Farmazilian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    High resolution, 100 frames/sec intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and 3D registration methods, to provide validation of IVOCT pullback volumes using microscopic, brightfield and fluorescent cryoimage volumes, with optional, exactly registered cryo-histology. The innovation was a method to match an IVOCT pullback images, acquired in the catheter reference frame, to a true 3D cryo-image volume. Briefly, an 11-parameter, polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Local minima were possible, but when we started within reasonable ranges, every one of 24 digital phantom cases converged to a good solution with a registration error of only +1.34+/-2.65μm (signed distance). Registration was applied to 10 ex-vivo cadaver coronary arteries (LADs), resulting in 10 registered cryo and IVOCT volumes yielding a total of 421 registered 2D-image pairs. Image overlays demonstrated high continuity between vascular and plaque features. Bland- Altman analysis comparing cryo and IVOCT lumen area, showed mean and standard deviation of differences as 0.01+/-0.43 mm2. DICE coefficients were 0.91+/-0.04. Finally, visual assessment on 20 representative cases with easily identifiable features suggested registration accuracy within one frame of IVOCT (+/-200μm), eliminating significant misinterpretations introduced by 1mm errors in the literature. The method will provide 3D data for training of IVOCT plaque algorithms and can be used for validation of other intravascular imaging modalities.

  17. Evaluation from 3-Years Time Serie of Daily Actual Evapotranspiration over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Faivre, R.; Menenti, M.

    2016-08-01

    The estimation of turbulent uxes is of primary interest for hydrological and climatological studies. Also the use of optical remote sensing data in the VNIR and TIR domain already proved to allow for the parameterization of surface energy balance, leading to many algorithms. Their use over arid high elevation areas require detailed characterisation of key surface physical properties and atmospheric statement at a reference level. Satellite products aquired over the Tibetan Plateau and simulations results delivered in the frame of the CEOP-AEGIS project provide incentives for a regular analysis at medium scale.This work aims at evaluating the use Feng-Yun 2 series and MODIS data (VNIR and TIR) for land surface evapotranspiration (ET) daily mapping based on SEBI algorithm, over the whole Tibetan Plateau (Faivre, 2014). An evaluation is performed over some reference sites set-up through the Tibetan Plateau.

  18. Different strategies for spatial updating in yaw and pitch path integration

    PubMed Central

    Goeke, Caspar M.; König, Peter; Gramann, Klaus

    2013-01-01

    Research in spatial navigation revealed the existence of discrete strategies defined by the use of distinct reference frames during virtual path integration. The present study investigated the distribution of these navigation strategies as a function of gender, video gaming experience, and self-estimates of spatial navigation abilities in a population of 300 subjects. Participants watched videos of virtual passages through a star-field with one turn in either the horizontal (yaw) or the vertical (pitch) axis. At the end of a passage they selected one out of four homing arrows to indicate the initial starting location. To solve the task, participants could employ two discrete strategies, navigating within either an egocentric or an allocentric reference frame. The majority of valid subjects (232/260) consistently used the same strategy in more than 75% of all trials. With that approach 33.1% of all participants were classified as Turners (using an egocentric reference frame on both axes) and 46.5% as Non-turners (using an allocentric reference frame on both axes). 9.2% of all participants consistently used an egocentric reference frame in the yaw plane but an allocentric reference frame in the pitch plane (Switcher). Investigating the influence of gender on navigation strategies revealed that females predominantly used the Non-turner strategy while males used both the Turner and the Non-turner strategy with comparable probabilities. Other than expected, video gaming experience did not influence strategy use. Based on a strong quantitative basis with the sample size about an order of magnitude larger than in typical psychophysical studies these results demonstrate that most people reliably use one out of three possible navigation strategies (Turners, Non-turners, Switchers) for spatial updating and provides a sound estimate of how those strategies are distributed within the general population. PMID:23412683

  19. Importance of baseline specification in evaluating conservation interventions and achieving no net loss of biodiversity.

    PubMed

    Bull, J W; Gordon, A; Law, E A; Suttle, K B; Milner-Gulland, E J

    2014-06-01

    There is an urgent need to improve the evaluation of conservation interventions. This requires specifying an objective and a frame of reference from which to measure performance. Reference frames can be baselines (i.e., known biodiversity at a fixed point in history) or counterfactuals (i.e., a scenario that would have occurred without the intervention). Biodiversity offsets are interventions with the objective of no net loss of biodiversity (NNL). We used biodiversity offsets to analyze the effects of the choice of reference frame on whether interventions met stated objectives. We developed 2 models to investigate the implications of setting different frames of reference in regions subject to various biodiversity trends and anthropogenic impacts. First, a general analytic model evaluated offsets against a range of baseline and counterfactual specifications. Second, a simulation model then replicated these results with a complex real world case study: native grassland offsets in Melbourne, Australia. Both models showed that achieving NNL depended upon the interaction between reference frame and background biodiversity trends. With a baseline, offsets were less likely to achieve NNL where biodiversity was decreasing than where biodiversity was stable or increasing. With a no-development counterfactual, however, NNL was achievable only where biodiversity was declining. Otherwise, preventing development was better for biodiversity. Uncertainty about compliance was a stronger determinant of success than uncertainty in underlying biodiversity trends. When only development and offset locations were considered, offsets sometimes resulted in NNL, but not across an entire region. Choice of reference frame determined feasibility and effort required to attain objectives when designing and evaluating biodiversity offset schemes. We argue the choice is thus of fundamental importance for conservation policy. Our results shed light on situations in which biodiversity offsets may be an inappropriate policy instrument.

  20. Quantum mechanics in non-inertial reference frames: Time-dependent rotations and loop prolongations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klink, W.H., E-mail: william-klink@uiowa.edu; Wickramasekara, S., E-mail: wickrama@grinnell.edu; Department of Physics, Grinnell College, Grinnell, IA 50112

    2013-09-15

    This is the fourth in a series of papers on developing a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group to include transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. In previous work, we have shown that there exist representations of the Galilean line group that uphold the non-relativistic equivalence principle asmore » well as representations that violate the equivalence principle. In these previous studies, the focus was on linear accelerations. In this paper, we undertake an extension of the formulation to include rotational accelerations. We show that the incorporation of rotational accelerations requires a class of loop prolongations of the Galilean line group and their unitary cocycle representations. We recover the centrifugal and Coriolis force effects from these loop representations. Loops are more general than groups in that their multiplication law need not be associative. Hence, our broad theoretical claim is that a Galilean quantum theory that holds in arbitrary non-inertial reference frames requires going beyond groups and group representations, the well-established framework for implementing symmetry transformations in quantum mechanics. -- Highlights: •A formulation of Galilean quantum mechanics in non-inertial reference frames is presented. •The Galilei group is generalized to infinite dimensional Galilean line group. •Loop prolongations of Galilean line group contain central extensions of Galilei group. •Unitary representations of the loops are constructed. •These representations lead to terms in the Hamiltonian corresponding to fictitious forces, including centrifugal and Coriolis forces.« less

  1. Motion-based nearest vector metric for reference frame selection in the perception of motion.

    PubMed

    Agaoglu, Mehmet N; Clarke, Aaron M; Herzog, Michael H; Ögmen, Haluk

    2016-05-01

    We investigated how the visual system selects a reference frame for the perception of motion. Two concentric arcs underwent circular motion around the center of the display, where observers fixated. The outer (target) arc's angular velocity profile was modulated by a sine wave midflight whereas the inner (reference) arc moved at a constant angular speed. The task was to report whether the target reversed its direction of motion at any point during its motion. We investigated the effects of spatial and figural factors by systematically varying the radial and angular distances between the arcs, and their relative sizes. We found that the effectiveness of the reference frame decreases with increasing radial- and angular-distance measures. Drastic changes in the relative sizes of the arcs did not influence motion reversal thresholds, suggesting no influence of stimulus form on perceived motion. We also investigated the effect of common velocity by introducing velocity fluctuations to the reference arc as well. We found no effect of whether or not a reference frame has a constant motion. We examined several form- and motion-based metrics, which could potentially unify our findings. We found that a motion-based nearest vector metric can fully account for all the data reported here. These findings suggest that the selection of reference frames for motion processing does not result from a winner-take-all process, but instead, can be explained by a field whose strength decreases with the distance between the nearest motion vectors regardless of the form of the moving objects.

  2. Cross-Sensory Transfer of Reference Frames in Spatial Memory

    ERIC Educational Resources Information Center

    Kelly, Jonathan W.; Avraamides, Marios N.

    2011-01-01

    Two experiments investigated whether visual cues influence spatial reference frame selection for locations learned through touch. Participants experienced visual cues emphasizing specific environmental axes and later learned objects through touch. Visual cues were manipulated and haptic learning conditions were held constant. Imagined perspective…

  3. Dynamical Reference Frame: Current Relevance and Future Prospects

    NASA Technical Reports Server (NTRS)

    Standish, E. M., Jr

    2000-01-01

    Planetary and lunar ephemerides are no longer used for the determination of inertial space. Instead, the new fundamental reference frame, the International Celestial Reference Frame (ICRF), is inherently less susceptible to extraneous, non-inertial rotations than a dynamical reference frame determined by the ephemerides would be. Consequently, the ephemerides are now adjusted onto the ICRF, and they are fit to two modern, accurate observational data types: ranging (radar, lunar laser, spacecraft) and Very Long Baseline Interferometry (VLBI) (of spacecraft near planets). The uncertainties remaining in the inner planet ephemerides are on the order of 1 kilometer, both in relative positions between the bodies and in the orientation of the inner system as a whole. The predictive capabilities of the inner planet ephemerides are limited by the uncertainties in the masses of many asteroids. For this reason, future improvements to the ephemerides must await determinations of many asteroid masses. Until then, it will be necessary to constantly update the ephemerides with a continuous supply of observational data.

  4. Effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame

    NASA Technical Reports Server (NTRS)

    Zhu, S. Y.; Mueller, I. I.

    1982-01-01

    The effect of adopting definitive precession and equinox corrections on the terrestrial reference frame was investigated. It is noted that the effect on polar motion is a diurnal periodic term with an amplitude increasing linearly in time whole on UT1 it is a linear term: general principles are given to determine the effects of small rotations of the frame of a conventional inertial reference system (CIS) on the frame of the conventional terrestrial reference system (CTS); seven CTS options are presented, one of which is necessary to accommodate such rotation. Accommodating possible future changes in the astronomical nutation is discussed. The effects of differences which may exist between the various CTS's and CIS's on Earth rotation parameters (ERP) and how these differences can be determined are examined. It is shown that the CTS differences can be determined from observations made at the same site. The CIS differences by comparing the ERP's are determined by the different techniques during the same time period.

  5. Effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame

    NASA Technical Reports Server (NTRS)

    Zhu, S. Y.; Mueller, I. I.

    1982-01-01

    The effects of adopting new definitive precession and equinox corrections on the terrestrial reference frame was investigated. It is noted that: (1) the effect on polar motion is a diurnal periodic term with an amplitude increasing linearly in time whole on UT1 it is a linear term; (2) general principles are given to determine the effects of small rotations of the frame of a conventional inertial reference system (CIS) on the frame of the conventional terrestrial reference system (CTS); (3) seven CTS options are presented, one of which is necessary to accommodate such rotation. Accommodating possible future changes in the astronomical nutation is discussed. The effects of differences which may exist between the various CTS's and CIS's on Earth rotation parameters (ERP) and how these differences can be determined are examined. It is shown that the CTS differences can be determined from observations made at the same site, while the CIS differences by comparing the ERP's determined by the different techniques during the same time period.

  6. Time evolution of an SLR reference frame

    NASA Astrophysics Data System (ADS)

    Angermann, D.; Gerstl, M.; Kelm, R.; Müller, H.; Seemüller, W.; Vei, M.

    2002-07-01

    On the basis of LAGEOS-1 and LAGEOS-2 data we computed a 10-years (1990-2000) solution for SLR station positions and velocities. The paper describes the data processing with the DGFI software package DOGS. We present results for station coordinates and their time variation for 41 stations of the global SLR network, and discuss the stability and time evolution of the SLR reference frame established in the same way. We applied different methods to assess the quality and consistency of the SLR results. The results presented in this paper include: (1) a time series of weekly estimated station coordinates; (2) a comparison of a 10-year LAGEOS-1 and LAGEOS-2 solution; (3) a comparison of 2.5-year solutions with the combined 10-year solution to assess the internal stability and the time evolution of the SLR reference frame; (4) a comparison of the SLR reference frame with ITRF97; and (5) a comparison of SLR station velocities with those of ITRF97 and NNR NUVEL-1A.

  7. The Current Status and Tendency of China Millimeter Coordinate Frame Implementation and Maintenance

    NASA Astrophysics Data System (ADS)

    Cheng, P.; Cheng, Y.; Bei, J.

    2017-12-01

    China Geodetic Coordinate System 2000 (CGCS2000) was first officially declared as the national standard coordinate system on July 1, 2008. This reference frame was defined in the ITRF97 frame at epoch 2000.0 and included 2600 GPS geodetic control points. The paper discusses differences between China Geodetic Coordinate System 2000 (CGCS2000) and later updated ITRF versions, such as ITRF2014,in terms of technical implementation and maintenance. With the development of the Beidou navigation satellite system, especially third generation of BDS with signal global coverage in the future, and with progress of space geodetic technology, it is possible for us to establish a global millimeter-level reference frame based on space geodetic technology including BDS. The millimeter reference frame implementation concerns two factors: 1) The variation of geocenter motion estimation, and 2) the site nonlinear motion modeling. In this paper, the geocentric inversion methods are discussed and compared among results derived from various technical methods. Our nonlinear site movement modeling focuses on singular spectrum analysis method, which is of apparent advantages over earth physical effect modeling. All presented in the paper expected to provide reference to our future CGCS2000 maintenance.

  8. Validation of new satellite aerosol optical depth retrieval algorithm using Raman lidar observations at radiative transfer laboratory in Warsaw

    NASA Astrophysics Data System (ADS)

    Zawadzka, Olga; Stachlewska, Iwona S.; Markowicz, Krzysztof M.; Nemuc, Anca; Stebel, Kerstin

    2018-04-01

    During an exceptionally warm September of 2016, the unique, stable weather conditions over Poland allowed for an extensive testing of the new algorithm developed to improve the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) aerosol optical depth (AOD) retrieval. The development was conducted in the frame of the ESA-ESRIN SAMIRA project. The new AOD algorithm aims at providing the aerosol optical depth maps over the territory of Poland with a high temporal resolution of 15 minutes. It was tested on the data set obtained between 11-16 September 2016, during which a day of relatively clean atmospheric background related to an Arctic airmass inflow was surrounded by a few days with well increased aerosol load of different origin. On the clean reference day, for estimating surface reflectance the AOD forecast available on-line via the Copernicus Atmosphere Monitoring Service (CAMS) was used. The obtained AOD maps were validated against AODs available within the Poland-AOD and AERONET networks, and with AOD values obtained from the PollyXT-UW lidar. of the University of Warsaw (UW).

  9. Hyperbolic geometrical optics: Hyperbolic glass

    NASA Astrophysics Data System (ADS)

    De Micheli, Enrico; Scorza, Irene; Viano, Giovanni Alberto

    2006-02-01

    We study the geometrical optics generated by a refractive index of the form n (x,y)=1/y (y>0), where y is the coordinate of the vertical axis in an orthogonal reference frame in R2. We thus obtain what we call "hyperbolic geometrical optics" since the ray trajectories are geodesics in the Poincaré-Lobachevsky half-plane H2. Then we prove that the constant phase surface are horocycles and obtain the horocyclic waves, which are closely related to the classical Poisson kernel and are the analogs of the Euclidean plane waves. By studying the transport equation in the Beltrami pseudosphere, we prove (i) the conservation of the flow in the entire strip 0

  10. Optical sectioning microscopy using two-frame structured illumination and Hilbert-Huang data processing

    NASA Astrophysics Data System (ADS)

    Trusiak, M.; Patorski, K.; Tkaczyk, T.

    2014-12-01

    We propose a fast, simple and experimentally robust method for reconstructing background-rejected optically-sectioned microscopic images using two-shot structured illumination approach. Innovative data demodulation technique requires two grid-illumination images mutually phase shifted by π (half a grid period) but precise phase displacement value is not critical. Upon subtraction of the two frames the input pattern with increased grid modulation is computed. The proposed demodulation procedure comprises: (1) two-dimensional data processing based on the enhanced, fast empirical mode decomposition (EFEMD) method for the object spatial frequency selection (noise reduction and bias term removal), and (2) calculating high contrast optically-sectioned image using the two-dimensional spiral Hilbert transform (HS). The proposed algorithm effectiveness is compared with the results obtained for the same input data using conventional structured-illumination (SIM) and HiLo microscopy methods. The input data were collected for studying highly scattering tissue samples in reflectance mode. In comparison with the conventional three-frame SIM technique we need one frame less and no stringent requirement on the exact phase-shift between recorded frames is imposed. The HiLo algorithm outcome is strongly dependent on the set of parameters chosen manually by the operator (cut-off frequencies for low-pass and high-pass filtering and η parameter value for optically-sectioned image reconstruction) whereas the proposed method is parameter-free. Moreover very short processing time required to efficiently demodulate the input pattern predestines proposed method for real-time in-vivo studies. Current implementation completes full processing in 0.25s using medium class PC (Inter i7 2,1 GHz processor and 8 GB RAM). Simple modification employed to extract only first two BIMFs with fixed filter window size results in reducing the computing time to 0.11s (8 frames/s).

  11. Coordination of multiple robot arms

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Soloway, D.

    1987-01-01

    Kinematic resolved-rate control from one robot arm is extended to the coordinated control of multiple robot arms in the movement of an object. The structure supports the general movement of one axis system (moving reference frame) with respect to another axis system (control reference frame) by one or more robot arms. The grippers of the robot arms do not have to be parallel or at any pre-disposed positions on the object. For multiarm control, the operator chooses the same moving and control reference frames for each of the robot arms. Consequently, each arm then moves as though it were carrying out the commanded motions by itself.

  12. VLBI astrometry and the Hipparcos link to the extragalactic reference frame

    NASA Technical Reports Server (NTRS)

    Lestrade, J.-F.; Preston, R. A.; Gabuzda, D. C.; Phillips, R. B.

    1991-01-01

    Intermediate results are reported from a program of VLBI radio observations designed to establish a link between the rotating reference frame of the ESA Hipparcos astrometric satellite and the extragalactic VLBI frame being developed by the International Earth Rotation Service. A group of 12 link stars have been observed at various epochs since 1982, and more observations are being undertaken during the 3-yr Hipparcos mission (1989-1992). Analysis of data on Algol indicates that phase-reference VLBI can determine an expected sky displacement of 4 marcsec with an uncertainty of 0.5 marcsec, even when the activity is only a few mJy.

  13. The right frame of reference makes it simple: an example of introductory mechanics supported by video analysis of motion

    NASA Astrophysics Data System (ADS)

    Klein, P.; Gröber, S.; Kuhn, J.; Fleischhauer, A.; Müller, A.

    2015-01-01

    The selection and application of coordinate systems is an important issue in physics. However, considering different frames of references in a given problem sometimes seems un-intuitive and is difficult for students. We present a concrete problem of projectile motion which vividly demonstrates the value of considering different frames of references. We use this example to explore the effectiveness of video-based motion analysis (VBMA) as an instructional technique at university level in enhancing students’ understanding of the abstract concept of coordinate systems. A pilot study with 47 undergraduate students indicates that VBMA instruction improves conceptual understanding of this issue.

  14. Quantum mechanics in noninertial reference frames: Relativistic accelerations and fictitious forces

    NASA Astrophysics Data System (ADS)

    Klink, W. H.; Wickramasekara, S.

    2016-06-01

    One-particle systems in relativistically accelerating reference frames can be associated with a class of unitary representations of the group of arbitrary coordinate transformations, an extension of the Wigner-Bargmann definition of particles as the physical realization of unitary irreducible representations of the Poincaré group. Representations of the group of arbitrary coordinate transformations become necessary to define unitary operators implementing relativistic acceleration transformations in quantum theory because, unlike in the Galilean case, the relativistic acceleration transformations do not themselves form a group. The momentum operators that follow from these representations show how the fictitious forces in noninertial reference frames are generated in quantum theory.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doug Blankenship

    Natural fracture data from wells 33-7, 33A-7,52A-7, 52B-7 and 83-11 at West Flank. Fracture orientations were determined from image logs of these wells (see accompanying submissions). Data files contain depth, apparent (in wellbore reference frame) and true (in geographic reference frame) azimuth and dip, respectively.

  16. On Translators' Cultural Frame of Functionist Reference

    ERIC Educational Resources Information Center

    Fu, Zhiyi

    2009-01-01

    A deep cognition with translators' cultural frame of functionist reference can help instructors and teachers adjust and extend patterns and schemes of translation and generate the optimal classroom conditions for acquisition of the target language. The author of the paper, in the perspectives of motivational, cognitive and communicative…

  17. Contribution of TIGA reprocessing to the ITRF densification

    NASA Astrophysics Data System (ADS)

    Rudenko, S.; Dähnn, M.; Gendt, G.; Brandt, A.; Nischan, T.

    2009-04-01

    Analysis of tide gauge measurements with the purpose of sea level change investigations requires a well defined reference frame. Such reference frame can be realized through precise positions of GPS stations located at or near tide gauges (TIGA stations) and analyzed within the IGS GPS Tide Gauge Benchmark Monitoring Pilot Project (TIGA). To tie this reference frame to the International Terrestrial Reference Frame (ITRF), one should process simultaneously GPS data from TIGA and IGS stations included in the ITRF. A time series of GPS station positions has been recently derived by reprocessing GPS data from about 400 GPS stations globally distributed covering totally time span from 1998 till 2008 using EPOS-Potsdam software developed at GFZ and improved in the recent years. The analysis is based on the use of IERS Conventions 2003, ITRF2005 as a priori reference frame, FES2004 ocean tide loading model, absolute phase centre variations for GPS satellite transmit and ground receive antennae and other models. About 220 stations of the solution are IGS ones and about 180 are TIGA GPS stations that are not IGS ones. The solution includes weekly coordinates of GPS stations, daily values of the Earth rotation parameters and their rates, as well as satellite antenna offsets. On the other hand, our new solution can contribute to the ITRF densification by providing positions of about 200 stations being not present in ITRF2005. The solution can be also used for the integration of regional frames. The paper presents the results of the analysis and the comparison of our solution with ITRF2005 and the solutions of other TIGA and IGS Analysis Centres.

  18. Optical joint correlator for real-time image tracking and retinal surgery

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Inventor)

    1991-01-01

    A method for tracking an object in a sequence of images is described. Such sequence of images may, for example, be a sequence of television frames. The object in the current frame is correlated with the object in the previous frame to obtain the relative location of the object in the two frames. An optical joint transform correlator apparatus is provided to carry out the process. Such joint transform correlator apparatus forms the basis for laser eye surgical apparatus where an image of the fundus of an eyeball is stabilized and forms the basis for the correlator apparatus to track the position of the eyeball caused by involuntary movement. With knowledge of the eyeball position, a surgical laser can be precisely pointed toward a position on the retina.

  19. Reference Frames and 3-D Shape Perception of Pictured Objects: On Verticality and Viewpoint-From-Above

    PubMed Central

    van Doorn, Andrea J.; Wagemans, Johan

    2016-01-01

    Research on the influence of reference frames has generally focused on visual phenomena such as the oblique effect, the subjective visual vertical, the perceptual upright, and ambiguous figures. Another line of research concerns mental rotation studies in which participants had to discriminate between familiar or previously seen 2-D figures or pictures of 3-D objects and their rotated versions. In the present study, we disentangled the influence of the environmental and the viewer-centered reference frame, as classically done, by comparing the performances obtained in various picture and participant orientations. However, this time, the performance is the pictorial relief: the probed 3-D shape percept of the depicted object reconstructed from the local attitude settings of the participant. Comparisons between the pictorial reliefs based on different picture and participant orientations led to two major findings. First, in general, the pictorial reliefs were highly similar if the orientation of the depicted object was vertical with regard to the environmental or the viewer-centered reference frame. Second, a viewpoint-from-above interpretation could almost completely account for the shears occurring between the pictorial reliefs. More specifically, the shears could largely be considered as combinations of slants generated from the viewpoint-from-above, which was determined by the environmental as well as by the viewer-centered reference frame. PMID:27433329

  20. Ipsilateral wrist-ankle movements in the sagittal plane encoded in extrinsic reference frame.

    PubMed

    Muraoka, Tetsuro; Ishida, Yuki; Obu, Takashi; Crawshaw, Larry; Kanosue, Kazuyuki

    2013-04-01

    When performing oscillatory movements of two joints in the sagittal plane, there is a directional constraint for performing such movements. Previous studies could not distinguish whether the directional constraint reflected movement direction encoded in the extrinsic (outside the body) reference frame or in the intrinsic (the participants' torso/head) reference frame since participants performed coordinated movements in a sitting position where the torso/head was stationary relative to the external world. In order to discern the reference frame in the present study, participants performed paced oscillatory movements of the ipsilateral wrist and ankle in the sagittal plane in a standing position so that the torso/head moved relative to the external world. The coordinated movements were performed in one of two modes of coordination, moving the hand upward concomitant with either ankle plantarflexion or ankle dorsiflexion. The same directional mode relative to extrinsic space was more stable and accurate as compared with the opposite directional mode. When forearm position was changed from the pronated position to the supinated position, similar results were obtained, indicating that the results were independent of a particular coupling of muscles. These findings suggest that the directional constraint on ipsilateral joints movements in the sagittal plane reflects movement direction encoded in the extrinsic reference frame. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  1. FRAME, animal experimentation and the Three Rs: past, present and future.

    PubMed

    Balls, Michael

    2009-12-01

    At the opening of a meeting to celebrate the 50th anniversary of the publication of The Principles of Humane Experimental Technique, by W.M.S. Russell and R.L. Burch, and the 40th anniversary of the establishment of FRAME, some comments on the early days of the Charity are made, with particular reference to the special contributions made by its founder-Chairman, Dorothy Hegarty, and the author's own appointment as a Trustee, and later as Chairman. Reference is made to some key events and successes, and especially to the importance of FRAME's move from London to Nottingham, and the establishment of an ongoing collaboration with the University of Nottingham, including the setting-up of the FRAME Alternatives Laboratory. 2009 FRAME.

  2. The application of high-speed photography in z-pinch high-temperature plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Wang, Kui-lu; Qiu, Meng-tong; Hei, Dong-wei

    2007-01-01

    This invited paper is presented to discuss the application of high speed photography in z-pinch high temperature plasma diagnostics in recent years in Northwest Institute of Nuclear Technology in concentrative mode. The developments and applications of soft x-ray framing camera, soft x-ray curved crystal spectrometer, optical framing camera, ultraviolet four-frame framing camera and ultraviolet-visible spectrometer are introduced.

  3. Development of optical packet and circuit integrated ring network testbed.

    PubMed

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate < 1×10(-4)) operation was achieved with optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. © 2011 Optical Society of America

  4. VLBI-based Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You terrestrial reference frames and to predict the variable orientation of the Earth in three-dimensional space antennas that define a VLBI-based Terrestrial Reference Frame (TRF) and the Earth Orientation Parameters

  5. Limited Aspects of Reality: Frames of Reference in Language Assessment

    ERIC Educational Resources Information Center

    Fulcher, Glenn; Svalberg, Agneta

    2013-01-01

    Language testers operate within two frames of reference: norm-referenced (NRT) and criterion-referenced testing (CRT). The former underpins the world of large-scale standardized testing that prioritizes variability and comparison. The latter supports substantive score meaning in formative and domain specific assessment. Some claim that the…

  6. Frames of Reference in African Proverbs on Disability.

    ERIC Educational Resources Information Center

    Devlieger, Patrick J.

    1999-01-01

    Fifty-five proverbs relating to disability were collected from sub-Saharan African countries and analyzed for larger frames of reference of personhood and cosmogony. Themes include warnings against laughing at a disabled person, personhood, existential insecurity, acceptance of what is, and the function and nature of disability. (DB)

  7. Equity and Satisfaction among the Elderly.

    ERIC Educational Resources Information Center

    Carp, Frances M.; And Others

    1982-01-01

    Compared the contribution of equity to that of aspiration, friends, and typical American as frames-of-reference for current status in predicting domain satisfactions and overall well-being. Results confirmed the relevance of an equity frame-of-reference in accounting for the satisfaction of older people with specific conditions of their lives.…

  8. Understanding Frame-of-Reference Training Success: A Social Learning Theory Perspective

    ERIC Educational Resources Information Center

    Sulsky, Lorne M.; Kline, Theresa J. B.

    2007-01-01

    Employing the social learning theory (SLT) perspective on training, we analysed the effects of alternative frame-of-reference (FOR) training protocols on various criteria of training effectiveness. Undergraduate participants (N = 65) were randomly assigned to one of four FOR training conditions and a control condition. Training effectiveness was…

  9. SU-G-BRA-02: Development of a Learning Based Block Matching Algorithm for Ultrasound Tracking in Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepard, A; Bednarz, B

    Purpose: To develop an ultrasound learning-based tracking algorithm with the potential to provide real-time motion traces of anatomy-based fiducials that may aid in the effective delivery of external beam radiation. Methods: The algorithm was developed in Matlab R2015a and consists of two main stages: reference frame selection, and localized block matching. Immediately following frame acquisition, a normalized cross-correlation (NCC) similarity metric is used to determine a reference frame most similar to the current frame from a series of training set images that were acquired during a pretreatment scan. Segmented features in the reference frame provide the basis for the localizedmore » block matching to determine the feature locations in the current frame. The boundary points of the reference frame segmentation are used as the initial locations for the block matching and NCC is used to find the most similar block in the current frame. The best matched block locations in the current frame comprise the updated feature boundary. The algorithm was tested using five features from two sets of ultrasound patient data obtained from MICCAI 2014 CLUST. Due to the lack of a training set associated with the image sequences, the first 200 frames of the image sets were considered a valid training set for preliminary testing, and tracking was performed over the remaining frames. Results: Tracking of the five vessel features resulted in an average tracking error of 1.21 mm relative to predefined annotations. The average analysis rate was 15.7 FPS with analysis for one of the two patients reaching real-time speeds. Computations were performed on an i5-3230M at 2.60 GHz. Conclusion: Preliminary tests show tracking errors comparable with similar algorithms at close to real-time speeds. Extension of the work onto a GPU platform has the potential to achieve real-time performance, making tracking for therapy applications a feasible option. This work is partially funded by NIH grant R01CA190298.« less

  10. Integrated GNSS Attitude Determination and Positioning for Direct Geo-Referencing

    PubMed Central

    Nadarajah, Nandakumaran; Paffenholz, Jens-André; Teunissen, Peter J. G.

    2014-01-01

    Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS navigation system to provide estimates of the position and attitude (orientation) of a 3D laser scanner. The proposed multi-sensor system (MSS) consists of multiple GNSS antennas rigidly mounted on the frame of a rotating laser scanner and a reference GNSS station with known coordinates. Precise GNSS navigation requires the resolution of the carrier phase ambiguities. The proposed method uses the multivariate constrained integer least-squares (MC-LAMBDA) method for the estimation of rotating frame ambiguities and attitude angles. MC-LAMBDA makes use of the known antenna geometry to strengthen the underlying attitude model and, hence, to enhance the reliability of rotating frame ambiguity resolution and attitude determination. The reliable estimation of rotating frame ambiguities is consequently utilized to enhance the relative positioning of the rotating frame with respect to the reference station. This integrated (array-aided) method improves ambiguity resolution, as well as positioning accuracy between the rotating frame and the reference station. Numerical analyses of GNSS data from a real-data campaign confirm the improved performance of the proposed method over the existing method. In particular, the integrated method yields reliable ambiguity resolution and reduces position standard deviation by a factor of about 0.8, matching the theoretical gain of 3/4 for two antennas on the rotating frame and a single antenna at the reference station. PMID:25036330

  11. Integrated GNSS attitude determination and positioning for direct geo-referencing.

    PubMed

    Nadarajah, Nandakumaran; Paffenholz, Jens-André; Teunissen, Peter J G

    2014-07-17

    Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS navigation system to provide estimates of the position and attitude (orientation) of a 3D laser scanner. The proposed multi-sensor system (MSS) consists of multiple GNSS antennas rigidly mounted on the frame of a rotating laser scanner and a reference GNSS station with known coordinates. Precise GNSS navigation requires the resolution of the carrier phase ambiguities. The proposed method uses the multivariate constrained integer least-squares (MC-LAMBDA) method for the estimation of rotating frame ambiguities and attitude angles. MC-LAMBDA makes use of the known antenna geometry to strengthen the underlying attitude model and, hence, to enhance the reliability of rotating frame ambiguity resolution and attitude determination. The reliable estimation of rotating frame ambiguities is consequently utilized to enhance the relative positioning of the rotating frame with respect to the reference station. This integrated (array-aided) method improves ambiguity resolution, as well as positioning accuracy between the rotating frame and the reference station. Numerical analyses of GNSS data from a real-data campaign confirm the improved performance of the proposed method over the existing method. In particular, the integrated method yields reliable ambiguity resolution and reduces position standard deviation by a factor of about 0:8, matching the theoretical gain of √ 3/4 for two antennas on the rotating frame and a single antenna at the reference station.

  12. Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit

    NASA Technical Reports Server (NTRS)

    Ansar, Adnan I.; Clouse, Daniel S.; McHenry, Michael C.; Zarzhitsky, Dimitri V.; Pagdett, Curtis W.

    2013-01-01

    This software automatically calibrates a camera or an imaging array to an inertial navigation system (INS) that is rigidly mounted to the array or imager. In effect, it recovers the coordinate frame transformation between the reference frame of the imager and the reference frame of the INS. This innovation can automatically derive the camera-to-INS alignment using image data only. The assumption is that the camera fixates on an area while the aircraft flies on orbit. The system then, fully automatically, solves for the camera orientation in the INS frame. No manual intervention or ground tie point data is required.

  13. Varieties of virtualization

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.

    1991-01-01

    Natural environments have a content, i.e., the objects in them; a geometry, i.e., a pattern of rules for positioning and displacing the objects; and a dynamics, i.e., a system of rules describing the effects of forces acting on the objects. Human interaction with most common natural environments has been optimized by centuries of evolution. Virtual environments created through the human-computer interface similarly have a content, geometry, and dynamics, but the arbitrary character of the computer simulation creating them does not insure that human interaction with these virtual environments will be natural. The interaction, indeed, could be supernatural but it also could be impossible. An important determinant of the comprehensibility of a virtual environment is the correspondence between the environmental frames of reference and those associated with the control of environmental objects. The effects of rotation and displacement of control frames of reference with respect to corresponding environmental references differ depending upon whether perceptual judgement or manual tracking performance is measured. The perceptual effects of frame of reference displacement may be analyzed in terms of distortions in the process of virtualizing the synthetic environment space. The effects of frame of reference displacement and rotation have been studied by asking subjects to estimate exocentric direction in a virtual space.

  14. Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics.

    PubMed

    Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan

    2017-04-06

    An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.

  15. Solar central receiver heliostat reflector assembly

    DOEpatents

    Horton, Richard H.; Zdeb, John J.

    1980-01-01

    A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e. central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system.

  16. Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics

    PubMed Central

    Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan

    2017-01-01

    An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods. PMID:28383503

  17. Wavelength band selection method for multispectral target detection.

    PubMed

    Karlholm, Jörgen; Renhorn, Ingmar

    2002-11-10

    A framework is proposed for the selection of wavelength bands for multispectral sensors by use of hyperspectral reference data. Using the results from the detection theory we derive a cost function that is minimized by a set of spectral bands optimal in terms of detection performance for discrimination between a class of small rare targets and clutter with known spectral distribution. The method may be used, e.g., in the design of multispectral infrared search and track and electro-optical missile warning sensors, where a low false-alarm rate and a high-detection probability for detection of small targets against a clutter background are of critical importance, but the required high frame rate prevents the use of hyperspectral sensors.

  18. Verification of the Polish Geodetic Reference Frame by Means of a New Solution Based on Permanent GNSS Data from the Years 2011-2014

    NASA Astrophysics Data System (ADS)

    Liwosz, T.; Ryczywolski, M.

    2016-12-01

    The new solution for the Polish geodetic primary GNSS network was created to verify the currently used reference frame (PL-ETRF2000). The new solution is based on more GNSS data (more daily observation sessions included, a longer data timespan, GLONASS observations added) which were processed in a newer reference frame (IGb08) according to up-to-date methodology and using the latest version of Bernese GNSS Software. The new long-term solution (spanning 3.7 years) was aligned to the IGb08 reference frame using a minimum constraints approach. We categorized Polish reference stations into two categories according to their data length. We obtained good agreement of the new solution with the PL-ETRF2000: for most stations position differences did not exceed 5 mm in horizontal, and 10 mm in vertical components. However, for 30 stations we observed discontinuities in position time series, mostly due to GNSS equipment changes, which occured after the introduction of PL-ETRF2000. Position changes due to the discontinuities reached 9.1 mm in horizontal components, and 26.9 mm in vertical components. The new solution takes into account position discontinuities, and in addition also includes six new stations which were installed after the introduction of the PL-ETRF2000. Therefore, we propose to update the currently-used reference frame for the Polish geodetic primary network (PL-ETRF2000) with the new solution. The new solution was also accepted by the EUREF Technical Working Group as a class A solution (highest accuracy) according to EUREF standards.

  19. Long-Term Variations of the EOP and ICRF2

    NASA Technical Reports Server (NTRS)

    Zharov, Vladimir; Sazhin, Mikhail; Sementsov, Valerian; Sazhina, Olga

    2010-01-01

    We analyzed the time series of the coordinates of the ICRF radio sources. We show that part of the radio sources, including the defining sources, shows a significant apparent motion. The stability of the celestial reference frame is provided by a no-net-rotation condition applied to the defining sources. In our case this condition leads to a rotation of the frame axes with time. We calculated the effect of this rotation on the Earth orientation parameters (EOP). In order to improve the stability of the celestial reference frame we suggest a new method for the selection of the defining sources. The method consists of two criteria: the first one we call cosmological and the second one kinematical. It is shown that a subset of the ICRF sources selected according to cosmological criteria provides the most stable reference frame for the next decade.

  20. [Effects of frame of reference on the judgments of whole-body vibration intensity].

    PubMed

    Suzuki, H

    1997-02-01

    Although the concept of the term 'riding comfort' is ambiguous, in the present paper it means a perceptual experience derived from the vibrational factors of a running railway vehicle. When we regard riding comfort evaluation as a perceptual judgment process, we must consider that what is perceived is dependent not only on the physical properties of the stimuli, but also on the frame of reference. The purpose of the present study is to examine the effect of the frame on the judgments of vibration intensity in the anchoring effect paradigm. Using the four-axis vibration apparatus, we conducted experiments for eighty subjects, in which frequencies and lateral accelerations of vibrations were changed. As the result, we found a clear anchoring effect. This suggests that we must take into consideration effects of frame of reference in terms of riding comfort criterion of railway vehicles.

  1. Formulation of blade-flutter spectral analyses in stationary reference frame

    NASA Technical Reports Server (NTRS)

    Kurkov, A. P.

    1984-01-01

    Analytic representations are developed for the discrete blade deflection and the continuous tip static pressure fields in a stationary reference frame. Considered are the sampling rates equal to the rotational frequency, equal to blade passing frequency, and for the pressure, equal to a multiple of the blade passing frequency. For the last two rates the expressions for determining the nodal diameters from the spectra are included. A procedure is presented for transforming the complete unsteady pressure field into a rotating frame of reference. The determination of the true flutter frequency by using two sensors is described. To illustrate their use, the developed procedures are used to interpret selected experimental results.

  2. Noninertial Multirelativity

    NASA Astrophysics Data System (ADS)

    Smarandache, Florentin

    2012-10-01

    We firstly propose an extension of Einstein's thought experiment with atomic clocks of the Special Theory of Relativity: considering non-constant accelerations and arbitrary 3D-curves for both a particle's speed and trajectory inside the rocket and respectively the rocket's speed and trajectory. And secondly we propose as research multiple reference frames F1, F2, , Fn moving on respectively arbitrary 3D-curves C1, C2, , Cn with respectively arbitrary non-constant accelerations a1, a2, , an and respectively initial velocities v1, v2, , vn. The reference frame Fi is moving with a nonconstant acceleration ai and initial velocity vi on a 3D-curve Ci with respect to another reference frame Fi+1 (where 1 <= i <= n-1).

  3. System and method for calibrating inter-star-tracker misalignments in a stellar inertial attitude determination system

    NASA Technical Reports Server (NTRS)

    Li, Rongsheng (Inventor); Wu, Yeong-Wei Andy (Inventor); Hein, Douglas H. (Inventor)

    2004-01-01

    A method and apparatus for determining star tracker misalignments is disclosed. The method comprises the steps of defining a defining a reference frame for the star tracker assembly according to a boresight of the primary star tracker and a boresight of a second star tracker wherein the boresight of the primary star tracker and a plane spanned by the boresight of the primary star tracker and the boresight of the second star tracker at least partially define a datum for the reference frame for the star tracker assembly; and determining the misalignment of the at least one star tracker as a rotation of the defined reference frame.

  4. Quantum mechanics in noninertial reference frames: Relativistic accelerations and fictitious forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klink, W.H., E-mail: william-klink@uiowa.edu; Wickramasekara, S., E-mail: wickrama@grinnell.edu

    2016-06-15

    One-particle systems in relativistically accelerating reference frames can be associated with a class of unitary representations of the group of arbitrary coordinate transformations, an extension of the Wigner–Bargmann definition of particles as the physical realization of unitary irreducible representations of the Poincaré group. Representations of the group of arbitrary coordinate transformations become necessary to define unitary operators implementing relativistic acceleration transformations in quantum theory because, unlike in the Galilean case, the relativistic acceleration transformations do not themselves form a group. The momentum operators that follow from these representations show how the fictitious forces in noninertial reference frames are generated inmore » quantum theory.« less

  5. Optical Interarray Processing.

    DTIC Science & Technology

    1980-03-01

    of around 30 frames/sec. One dimensional input transducers such as acousto-optic Bragg cells have much higher frame rates. For example, a TeO2 Bragg...Conventional manufacturing processes such as grinding and polish- ing a glass piece would be difficult if not impossible to apply to the fabrication of such...time-bandwidth product (TBW). An acoustic shear wave in a TeO2 Bragg cell will propagate with a speed of 617 meters/ sec, while the practical physical

  6. Spectral domain polarization-sensitive optical coherence tomography at 850 nm

    NASA Astrophysics Data System (ADS)

    Cense, Barry; Chen, Teresa C.; Mujat, Mircea; Joo, Chulmin; Akkin, Taner; Park, B. H.; Pierce, Mark C.; Yun, Andy; Bouma, Brett E.; Tearney, Guillermo J.; de Boer, Johannes F.

    2005-04-01

    Spectral-Domain Polarization-Sensitive Optical Coherence Tomography (SD-PS-OCT) is a technique developed to measure the thickness and birefringence of the nerve fiber layer in vivo as a tool for the early diagnosis of glaucoma. A clinical SD-PS-OCT system was developed and scans were made around the optic nerve head (ONH) using ten concentric circles of increasing diameter. One healthy volunteer was imaged. Retinal nerve fiber layer thickness and birefringence information was extracted from the data. Polarization-sensitive OCT images were acquired at video rate (29 frames per second (fps), 1000 A-lines / frame) and at 7 fps (1000 A-lines / frame). The last setting improved the signal to noise ratio by approximately 6 dB. Birefringence measurements on the healthy volunteer gave similar results as earlier reported values that were obtained with a time-domain setup. The measurement time was reduced from more than a minute to less than a second.

  7. Multiple Strategies for Spatial Integration of 2D Layouts within Working Memory

    PubMed Central

    Meilinger, Tobias; Watanabe, Katsumi

    2016-01-01

    Prior results on the spatial integration of layouts within a room differed regarding the reference frame that participants used for integration. We asked whether these differences also occur when integrating 2D screen views and, if so, what the reasons for this might be. In four experiments we showed that integrating reference frames varied as a function of task familiarity combined with processing time, cues for spatial transformation, and information about action requirements paralleling results in the 3D case. Participants saw part of an object layout in screen 1, another part in screen 2, and reacted on the integrated layout in screen 3. Layout presentations between two screens coincided or differed in orientation. Aligning misaligned screens for integration is known to increase errors/latencies. The error/latency pattern was thus indicative of the reference frame used for integration. We showed that task familiarity combined with self-paced learning, visual updating, and knowing from where to act prioritized the integration within the reference frame of the initial presentation, which was updated later, and from where participants acted respectively. Participants also heavily relied on layout intrinsic frames. The results show how humans flexibly adjust their integration strategy to a wide variety of conditions. PMID:27101011

  8. A Ka-Band Celestial Reference Frame with Applications to Deep Space Navigation

    NASA Technical Reports Server (NTRS)

    Jacobs, Christopher S.; Clark, J. Eric; Garcia-Miro, Cristina; Horiuchi, Shinji; Sotuela, Ioana

    2011-01-01

    The Ka-band radio spectrum is now being used for a wide variety of applications. This paper highlights the use of Ka-band as a frequency for precise deep space navigation based on a set of reference beacons provided by extragalactic quasars which emit broadband noise at Ka-band. This quasar-based celestial reference frame is constructed using X/Ka-band (8.4/32 GHz) from fifty-five 24-hour sessions with the Deep Space Network antennas in California, Australia, and Spain. We report on observations which have detected 464 sources covering the full 24 hours of Right Ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the international standard S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of approximately 200 micro-arcsec in alpha cos(delta) and approximately 300 micro-arcsec in delta. There is evidence for systematic errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of instrumental phase calibration, tropospheric refraction mis-modeling, and limited southern geometry. The motivation for extending the celestial reference frame to frequencies above 8 GHz is to access more compact source morphology for improved frame stability and to support spacecraft navigation for Ka-band based NASA missions.

  9. Mission Capability Gains from Multi-Mode Propulsion Thrust Profile Variations for a Plane Change Maneuver

    DTIC Science & Technology

    2010-12-29

    propellant mass [kg] msc = mass of the spacecraft [kg] MMP = multi-mode propulsion   = position in the Geocentric Equatorial Reference...thrust burn time [s] Tsc = thrust of the spacecraft [N] = vector between current and final velocity vector   = velocity vector in the Geocentric ...Equatorial Reference Frame of spacecraft in intended orbit [km/s]   = velocity vector in the Geocentric Equatorial Reference Frame of spacecraft in

  10. Reduction of speckle noise from optical coherence tomography images using multi-frame weighted nuclear norm minimization method

    NASA Astrophysics Data System (ADS)

    Thapa, Damber; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2015-12-01

    In this paper, we propose a speckle noise reduction method for spectral-domain optical coherence tomography (SD-OCT) images called multi-frame weighted nuclear norm minimization (MWNNM). This method is a direct extension of weighted nuclear norm minimization (WNNM) in the multi-frame framework since an adequately denoised image could not be achieved with single-frame denoising methods. The MWNNM method exploits multiple B-scans collected from a small area of a SD-OCT volumetric image, and then denoises and averages them together to obtain a high signal-to-noise ratio B-scan. The results show that the image quality metrics obtained by denoising and averaging only five nearby B-scans with MWNNM method is considerably better than those of the average image obtained by registering and averaging 40 azimuthally repeated B-scans.

  11. High-accuracy and robust face recognition system based on optical parallel correlator using a temporal image sequence

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Ishikawa, Mami; Ohta, Maiko; Kodate, Kashiko

    2005-09-01

    Face recognition is used in a wide range of security systems, such as monitoring credit card use, searching for individuals with street cameras via Internet and maintaining immigration control. There are still many technical subjects under study. For instance, the number of images that can be stored is limited under the current system, and the rate of recognition must be improved to account for photo shots taken at different angles under various conditions. We implemented a fully automatic Fast Face Recognition Optical Correlator (FARCO) system by using a 1000 frame/s optical parallel correlator designed and assembled by us. Operational speed for the 1: N (i.e. matching a pair of images among N, where N refers to the number of images in the database) identification experiment (4000 face images) amounts to less than 1.5 seconds, including the pre/post processing. From trial 1: N identification experiments using FARCO, we acquired low error rates of 2.6% False Reject Rate and 1.3% False Accept Rate. By making the most of the high-speed data-processing capability of this system, much more robustness can be achieved for various recognition conditions when large-category data are registered for a single person. We propose a face recognition algorithm for the FARCO while employing a temporal image sequence of moving images. Applying this algorithm to a natural posture, a two times higher recognition rate scored compared with our conventional system. The system has high potential for future use in a variety of purposes such as search for criminal suspects by use of street and airport video cameras, registration of babies at hospitals or handling of an immeasurable number of images in a database.

  12. Three questions you need to ask about your brand.

    PubMed

    Keller, Kevin Lane; Sternthal, Brian; Tybout, Alice

    2002-09-01

    Traditionally, the people responsible for positioning brands have concentrated on the differences that set each brand apart from the competition. But emphasizing differences isn't enough to sustain a brand against competitors. Managers should also consider the frame of reference within which the brand works and the features the brand shares with other products. Asking three questions about your brand can help: HAVE WE ESTABLISHED A FRAME?: A frame of reference--for Coke, it might be as narrow as other colas or as broad as all thirst-quenching drinks--signals to consumers the goal they can expect to achieve by using a brand. Brand managers need to pay close attention to this issue, in some cases expanding their focus in order to preempt the competition. ARE WE LEVERAGING OUR POINTS OF PARITY?: Certain points of parity must be met if consumers are to perceive your product as a legitimate player within its frame of reference. For instance, consumers might not consider a bank truly a bank unless it offers checking and savings plans. ARE THE POINTS OF DIFFERENCE COMPELLING?: A distinguishing characteristic that consumers find both relevant and believable can become a strong, favorable, unique brand association, capable of distinguishing the brand from others in the same frame of reference. Frames of reference, points of parity, and points of difference are moving targets. Maytag isn't the only dependable brand of appliance, Tide isn't the only detergent with whitening power, and BMWs aren't the only cars on the road with superior handling. The key questions you need to ask about your brand may not change, but their context certainly will. The saviest brand positioners are also the most vigilant.

  13. Motion of a Point Mass in a Rotating Disc: A Quantitative Analysis of the Coriolis and Centrifugal Force

    NASA Astrophysics Data System (ADS)

    Haddout, Soufiane

    2016-06-01

    In Newtonian mechanics, the non-inertial reference frames is a generalization of Newton's laws to any reference frames. While this approach simplifies some problems, there is often little physical insight into the motion, in particular into the effects of the Coriolis force. The fictitious Coriolis force can be used by anyone in that frame of reference to explain why objects follow curved paths. In this paper, a mathematical solution based on differential equations in non-inertial reference is used to study different types of motion in rotating system. In addition, the experimental data measured on a turntable device, using a video camera in a mechanics laboratory was conducted to compare with mathematical solution in case of parabolically curved, solving non-linear least-squares problems, based on Levenberg-Marquardt's and Gauss-Newton algorithms.

  14. Reference Frames during the Acquisition and Development of Spatial Memories

    ERIC Educational Resources Information Center

    Kelly, Jonathan W.; McNamara, Timothy P.

    2010-01-01

    Four experiments investigated the role of reference frames during the acquisition and development of spatial knowledge, when learning occurs incrementally across views. In two experiments, participants learned overlapping spatial layouts. Layout 1 was first studied in isolation, and Layout 2 was later studied in the presence of Layout 1. The…

  15. The Bernoulli Equation in a Moving Reference Frame

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2011-01-01

    Unlike other standard equations in introductory classical mechanics, the Bernoulli equation is not Galilean invariant. The explanation is that, in a reference frame moving with respect to constrictions or obstacles, those surfaces do work on the fluid, constituting an extra term that needs to be included in the work-energy calculation. A…

  16. Implications of an Absolute Simultaneity Theory for Cosmology and Universe Acceleration

    PubMed Central

    Kipreos, Edward T.

    2014-01-01

    An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift–distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe. PMID:25536116

  17. Speech and gesture in spatial language and cognition among the Yucatec Mayas.

    PubMed

    Le Guen, Olivier

    2011-07-01

    In previous analyses of the influence of language on cognition, speech has been the main channel examined. In studies conducted among Yucatec Mayas, efforts to determine the preferred frame of reference in use in this community have failed to reach an agreement (Bohnemeyer & Stolz, 2006; Levinson, 2003 vs. Le Guen, 2006, 2009). This paper argues for a multimodal analysis of language that encompasses gesture as well as speech, and shows that the preferred frame of reference in Yucatec Maya is only detectable through the analysis of co-speech gesture and not through speech alone. A series of experiments compares knowledge of the semantics of spatial terms, performance on nonlinguistic tasks and gestures produced by men and women. The results show a striking gender difference in the knowledge of the semantics of spatial terms, but an equal preference for a geocentric frame of reference in nonverbal tasks. In a localization task, participants used a variety of strategies in their speech, but they all exhibited a systematic preference for a geocentric frame of reference in their gestures. Copyright © 2011 Cognitive Science Society, Inc.

  18. The consistency of the current conventional celestial and terrestrial reference frames and the conventional EOP series

    NASA Astrophysics Data System (ADS)

    Heinkelmann, R.; Belda-Palazon, S.; Ferrándiz, J.; Schuh, H.

    2015-08-01

    For applications in Earth sciences, navigation, and astronomy the celestial (ICRF) and terrestrial (ITRF) reference frames as well as the orientation among them, the Earth orientation parameters (EOP), have to be consistent at the level of 1 mm and 0.1 mm/yr (GGOS recommendations). We assess the effect of unmodelled geophysical signals in the regularized coordinates and the sensitivity with respect to different a priori EOP and celestial reference frames. The EOP are determined using the same VLBI data but with station coordinates fixed on different TRFs. The conclusion is that within the time span of data incorporated into ITRF2008 (Altamimi, et al., 2011) the ITRF2008 and the IERS 08 C04 are consistent. This consistency involves that non-linear station motion such as unmodelled geophysical signals partly affect the IERS 08 C04 EOP. There are small but not negligible inconsistencies between the conventional celestial reference frame, ICRF2 (Fey, et al., 2009), the ITRF2008 and the conventional EOP that are quantified by comparing VTRF2008 (Böckmann, et al., 2010) and ITRF2008.

  19. Disentangling the Contribution of Spatial Reference Frames to Executive Functioning in Healthy and Pathological Aging: An Experimental Study with Virtual Reality.

    PubMed

    Serino, Silvia; Morganti, Francesca; Colombo, Desirée; Pedroli, Elisa; Cipresso, Pietro; Riva, Giuseppe

    2018-06-01

    A growing body of evidence pointed out that a decline in effectively using spatial reference frames for categorizing information occurs both in normal and pathological aging. Moreover, it is also known that executive deficits primarily characterize the cognitive profile of older individuals. Acknowledging this literature, the current study was aimed to specifically disentangle the contribution of the cognitive abilities related to the use of spatial reference frames to executive functioning in both healthy and pathological aging. 48 healthy elderly individuals and 52 elderly suffering from probable Alzheimer's Disease (AD) took part in the study. We exploited the potentiality of Virtual Reality to specifically measure the abilities in retrieving and syncing between different spatial reference frames, and then we administrated different neuropsychological tests for evaluating executive functions. Our results indicated that allocentric functions contributed significantly to the planning abilities, while syncing abilities influenced the attentional ones. The findings were discussed in terms of previous literature exploring relationships between cognitive deficits in the first phase of AD.

  20. Implications of an absolute simultaneity theory for cosmology and universe acceleration.

    PubMed

    Kipreos, Edward T

    2014-01-01

    An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe.

  1. The role of language in suicide reporting: Investigating the influence of problematic suicide referents.

    PubMed

    Arendt, Florian; Scherr, Sebastian; Niederkrotenthaler, Thomas; Till, Benedikt

    2018-02-14

    Although suicide experts recommend using neutral suicide referents in news media reporting, this recommendation has not yet been tested empirically. This recommendation, based on the empirically yet untested assumption that problematic suicide referents carry meaning that is inappropriate from a prevention perspective, may lead to a different perspective on suicide, termed "framing effects." For example, in German-speaking countries, the neutral term Suizid (suicide) is recommended. Conversely, Freitod ("free death") and Selbstmord ("self-murder") convey associative meanings related to problematic concepts such as free will (Freitod) and crime/murder (Selbstmord), and are therefore not recommended. Using a web-based randomized controlled trial focused on German speakers (N = 451), we tested whether the news media's use of Suizid, Selbstmord, and Freitod elicits framing effects. Participants read identical news reports about suicide. Only the specific suicide referents varied depending on the experimental condition. Post-reading, participants wrote short summaries of the news reports, completed a word-fragment completion test and a questionnaire targeting suicide-related attitudes. We found that the news frame primed some frame-related concepts in the memory and also increased frame-related word choice. Importantly, we found that participants reading the free will-related Freitod frame showed greater attitudinal support for suicide among individuals suffering from incurable diseases. This study highlights the importance of how the news media write about suicide and supports the language recommendations put forward by suicide experts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Not all memories are the same: Situational context influences spatial recall within one's city of residency.

    PubMed

    Meilinger, Tobias; Frankenstein, Julia; Simon, Nadine; Bülthoff, Heinrich H; Bresciani, Jean-Pierre

    2016-02-01

    Reference frames in spatial memory encoding have been examined intensively in recent years. However, their importance for recall has received considerably less attention. In the present study, passersby used tags to arrange a configuration map of prominent city center landmarks. It has been shown that such configurational knowledge is memorized within a north-up reference frame. However, participants adjusted their maps according to their body orientations. For example, when participants faced south, the maps were likely to face south-up. Participants also constructed maps along their location perspective-that is, the self-target direction. If, for instance, they were east of the represented area, their maps were oriented west-up. If the location perspective and body orientation were in opposite directions (i.e., if participants faced away from the city center), participants relied on location perspective. The results indicate that reference frames in spatial recall depend on the current situation rather than on the organization in long-term memory. These results cannot be explained by activation spread within a view graph, which had been used to explain similar results in the recall of city plazas. However, the results are consistent with forming and transforming a spatial image of nonvisible city locations from the current location. Furthermore, prior research has almost exclusively focused on body- and environment-based reference frames. The strong influence of location perspective in an everyday navigational context indicates that such a reference frame should be considered more often when examining human spatial cognition.

  3. Importance of Baseline Specification in Evaluating Conservation Interventions and Achieving No Net Loss of Biodiversity

    PubMed Central

    Bull, J W; Gordon, A; Law, E A; Suttle, K B; Milner-Gulland, E J

    2014-01-01

    There is an urgent need to improve the evaluation of conservation interventions. This requires specifying an objective and a frame of reference from which to measure performance. Reference frames can be baselines (i.e., known biodiversity at a fixed point in history) or counterfactuals (i.e., a scenario that would have occurred without the intervention). Biodiversity offsets are interventions with the objective of no net loss of biodiversity (NNL). We used biodiversity offsets to analyze the effects of the choice of reference frame on whether interventions met stated objectives. We developed 2 models to investigate the implications of setting different frames of reference in regions subject to various biodiversity trends and anthropogenic impacts. First, a general analytic model evaluated offsets against a range of baseline and counterfactual specifications. Second, a simulation model then replicated these results with a complex real world case study: native grassland offsets in Melbourne, Australia. Both models showed that achieving NNL depended upon the interaction between reference frame and background biodiversity trends. With a baseline, offsets were less likely to achieve NNL where biodiversity was decreasing than where biodiversity was stable or increasing. With a no-development counterfactual, however, NNL was achievable only where biodiversity was declining. Otherwise, preventing development was better for biodiversity. Uncertainty about compliance was a stronger determinant of success than uncertainty in underlying biodiversity trends. When only development and offset locations were considered, offsets sometimes resulted in NNL, but not across an entire region. Choice of reference frame determined feasibility and effort required to attain objectives when designing and evaluating biodiversity offset schemes. We argue the choice is thus of fundamental importance for conservation policy. Our results shed light on situations in which biodiversity offsets may be an inappropriate policy instrument Importancia de la Especificación de Línea de Base en la Evaluación de Intervenciones de Conservación y la Obtención de Ninguna Pérdida Neta de la Biodiversidad PMID:24945031

  4. Distortions in memory for visual displays

    NASA Technical Reports Server (NTRS)

    Tversky, Barbara

    1989-01-01

    Systematic errors in perception and memory present a challenge to theories of perception and memory and to applied psychologists interested in overcoming them as well. A number of systematic errors in memory for maps and graphs are reviewed, and they are accounted for by an analysis of the perceptual processing presumed to occur in comprehension of maps and graphs. Visual stimuli, like verbal stimuli, are organized in comprehension and memory. For visual stimuli, the organization is a consequence of perceptual processing, which is bottom-up or data-driven in its earlier stages, but top-down and affected by conceptual knowledge later on. Segregation of figure from ground is an early process, and figure recognition later; for both, symmetry is a rapidly detected and ecologically valid cue. Once isolated, figures are organized relative to one another and relative to a frame of reference. Both perceptual (e.g., salience) and conceptual factors (e.g., significance) seem likely to affect selection of a reference frame. Consistent with the analysis, subjects perceived and remembered curves in graphs and rivers in maps as more symmetric than they actually were. Symmetry, useful for detecting and recognizing figures, distorts map and graph figures alike. Top-down processes also seem to operate in that calling attention to the symmetry vs. asymmetry of a slightly asymmetric curve yielded memory errors in the direction of the description. Conceptual frame of reference effects were demonstrated in memory for lines embedded in graphs. In earlier work, the orientation of map figures was distorted in memory toward horizontal or vertical. In recent work, graph lines, but not map lines, were remembered as closer to an imaginary 45 deg line than they had been. Reference frames are determined by both perceptual and conceptual factors, leading to selection of the canonical axes as a reference frame in maps, but selection of the imaginary 45 deg as a reference frame in graphs.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, Harsh

    This dissertation presents research on addressing some of the contemporary challenges in the analysis of vector fields—an important type of scientific data useful for representing a multitude of physical phenomena, such as wind flow and ocean currents. In particular, new theories and computational frameworks to enable consistent feature extraction from vector fields are presented. One of the most fundamental challenges in the analysis of vector fields is that their features are defined with respect to reference frames. Unfortunately, there is no single “correct” reference frame for analysis, and an unsuitable frame may cause features of interest to remain undetected, thusmore » creating serious physical consequences. This work develops new reference frames that enable extraction of localized features that other techniques and frames fail to detect. As a result, these reference frames objectify the notion of “correctness” of features for certain goals by revealing the phenomena of importance from the underlying data. An important consequence of using these local frames is that the analysis of unsteady (time-varying) vector fields can be reduced to the analysis of sequences of steady (timeindependent) vector fields, which can be performed using simpler and scalable techniques that allow better data management by accessing the data on a per-time-step basis. Nevertheless, the state-of-the-art analysis of steady vector fields is not robust, as most techniques are numerical in nature. The residing numerical errors can violate consistency with the underlying theory by breaching important fundamental laws, which may lead to serious physical consequences. This dissertation considers consistency as the most fundamental characteristic of computational analysis that must always be preserved, and presents a new discrete theory that uses combinatorial representations and algorithms to provide consistency guarantees during vector field analysis along with the uncertainty visualization of unavoidable discretization errors. Together, the two main contributions of this dissertation address two important concerns regarding feature extraction from scientific data: correctness and precision. The work presented here also opens new avenues for further research by exploring more-general reference frames and more-sophisticated domain discretizations.« less

  6. Construction Theory and Noise Analysis Method of Global CGCS2000 Coordinate Frame

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Wang, F.; Bai, J.; Li, Z.

    2018-04-01

    The definition, renewal and maintenance of geodetic datum has been international hot issue. In recent years, many countries have been studying and implementing modernization and renewal of local geodetic reference coordinate frame. Based on the precise result of continuous observation for recent 15 years from state CORS (continuously operating reference system) network and the mainland GNSS (Global Navigation Satellite System) network between 1999 and 2007, this paper studies the construction of mathematical model of the Global CGCS2000 frame, mainly analyzes the theory and algorithm of two-step method for Global CGCS2000 Coordinate Frame formulation. Finally, the noise characteristic of the coordinate time series are estimated quantitatively with the criterion of maximum likelihood estimation.

  7. Data rate enhancement of optical camera communications by compensating inter-frame gaps

    NASA Astrophysics Data System (ADS)

    Nguyen, Duy Thong; Park, Youngil

    2017-07-01

    Optical camera communications (OCC) is a convenient way of transmitting data between LED lamps and image sensors that are included in most smart devices. Although many schemes have been suggested to increase the data rate of the OCC system, it is still much lower than that of the photodiode-based LiFi system. One major reason of this low data rate is attributed to the inter-frame gap (IFG) of image sensor system, that is, the time gap between consecutive image frames. In this paper, we propose a way to compensate for this IFG efficiently by an interleaved Hamming coding scheme. The proposed scheme is implemented and the performance is measured.

  8. Modernizing the National Spatial Reference System

    NASA Astrophysics Data System (ADS)

    Smith, D. A.

    2016-12-01

    The National Spatial Reference System (NSRS) is that system of datums, reference frames, shorelines, software and standards which serve the entire federal civilian geospatial community. It is the mission of the National Geodetic Survey (NGS) to define, maintain and provide access to the NSRS. Currently the NSRS contains three geometric reference frames (NAD 83(2011), NAD 83(PA11) and NAD 83(MA11)), one dynamic height datum (IGLD 85) and 6 vertical datums (NAVD 88, PRVD02, ASVD02, NMVD03, GUVD04, VIVD09). All of these datums are built on aging technology and contain systematic errors that grow more noticeable as access to accurate positioning becomes more widespread. It was determined by NGS in 2007 that this was not sustainable and as such, all datums and reference frames are scheduled to be replaced in 2022. [At the time of this abstract, the exact names of the replacements are being finalized and are expected to be announced by the AGU fall meeting.] Replacing the official datums and reference frames requires a carefully coordinated effort of dozens of interrelated technical projects spanning years (over a decade in some cases) and involving a majority of NGS employees. This talk will cover the plans thus far, projects completed, projects underway and will summarize the NSRS as it is expected to look and be accessed in 2022 and beyond.

  9. Lung tumor tracking in fluoroscopic video based on optical flow

    PubMed Central

    Xu, Qianyi; Hamilton, Russell J.; Schowengerdt, Robert A.; Alexander, Brian; Jiang, Steve B.

    2008-01-01

    Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (∼0.7 mm) in the best case and 2.8 pixels (∼1.4 mm) in the worst case for the five patients studied. PMID:19175094

  10. Lung tumor tracking in fluoroscopic video based on optical flow.

    PubMed

    Xu, Qianyi; Hamilton, Russell J; Schowengerdt, Robert A; Alexander, Brian; Jiang, Steve B

    2008-12-01

    Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (approximately 0.7 mm) in the best case and 2.8 pixels (approximately 1.4 mm) in the worst case for the five patients studied.

  11. Direct Estimation of Structure and Motion from Multiple Frames

    DTIC Science & Technology

    1990-03-01

    sequential frames in an image sequence. As a consequence, the information that can be extracted from a single optical flow field is limited to a snapshot of...researchers have developed techniques that extract motion and structure inform.4tion without computation of the optical flow. Best known are the "direct...operated iteratively on a sequence of images to recover structure. It required feature extraction and matching. Broida and Chellappa [9] suggested the use of

  12. HIGH SPEED KERR CELL FRAMING CAMERA

    DOEpatents

    Goss, W.C.; Gilley, L.F.

    1964-01-01

    The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)

  13. Robust optical flow using adaptive Lorentzian filter for image reconstruction under noisy condition

    NASA Astrophysics Data System (ADS)

    Kesrarat, Darun; Patanavijit, Vorapoj

    2017-02-01

    In optical flow for motion allocation, the efficient result in Motion Vector (MV) is an important issue. Several noisy conditions may cause the unreliable result in optical flow algorithms. We discover that many classical optical flows algorithms perform better result under noisy condition when combined with modern optimized model. This paper introduces effective robust models of optical flow by using Robust high reliability spatial based optical flow algorithms using the adaptive Lorentzian norm influence function in computation on simple spatial temporal optical flows algorithm. Experiment on our proposed models confirm better noise tolerance in optical flow's MV under noisy condition when they are applied over simple spatial temporal optical flow algorithms as a filtering model in simple frame-to-frame correlation technique. We illustrate the performance of our models by performing an experiment on several typical sequences with differences in movement speed of foreground and background where the experiment sequences are contaminated by the additive white Gaussian noise (AWGN) at different noise decibels (dB). This paper shows very high effectiveness of noise tolerance models that they are indicated by peak signal to noise ratio (PSNR).

  14. Free-space quantum key distribution by rotation-invariant twisted photons.

    PubMed

    Vallone, Giuseppe; D'Ambrosio, Vincenzo; Sponselli, Anna; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2014-08-08

    "Twisted photons" are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network.

  15. Free-Space Quantum Key Distribution by Rotation-Invariant Twisted Photons

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; D'Ambrosio, Vincenzo; Sponselli, Anna; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2014-08-01

    "Twisted photons" are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network.

  16. Eight-channel Kirkpatrick-Baez microscope for multiframe x-ray imaging diagnostics in laser plasma experiments.

    PubMed

    Yi, Shengzhen; Zhang, Zhe; Huang, Qiushi; Zhang, Zhong; Mu, Baozhong; Wang, Zhanshan; Fang, Zhiheng; Wang, Wei; Fu, Sizu

    2016-10-01

    Because grazing-incidence Kirkpatrick-Baez (KB) microscopes have better resolution and collection efficiency than pinhole cameras, they have been widely used for x-ray imaging diagnostics of laser inertial confinement fusion. The assembly and adjustment of a multichannel KB microscope must meet stringent requirements for image resolution and reproducible alignment. In the present study, an eight-channel KB microscope was developed for diagnostics by imaging self-emission x-rays with a framing camera at the Shenguang-II Update (SGII-Update) laser facility. A consistent object field of view is ensured in the eight channels using an assembly method based on conical reference cones, which also allow the intervals between the eight images to be tuned to couple with the microstrips of the x-ray framing camera. The eight-channel KB microscope was adjusted via real-time x-ray imaging experiments in the laboratory. This paper describes the details of the eight-channel KB microscope, its optical and multilayer design, the assembly and alignment methods, and results of imaging in the laboratory and at the SGII-Update.

  17. Global reference frame: Intercomparison of results (SLR, VLBI and GPS)

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Watkins, Michael M.; Heflin, M.

    1994-01-01

    The terrestrial reference frame (TRF) is realized by a set of positions and velocities derived from a combination of the three space geodetic techniques, SLR, VLBI and GPS. The standard International TRF is constructed by the International Earth Rotation Service in such a way that it is stable with time and the addition of new data. An adopted model for overall plate motion, NUVEL-1 NNR, defines the conceptual reference frame in which all the plates are moving. In addition to the measurements made between reference points within the space geodetic instruments, it is essential to have accurate, documented eccentricity measurements from the instrument reference points to ground monuments. Proper local surveys between the set of ground monuments at a site are also critical for the use of the space geodetic results. Eccentricities and local surveys are, in fact, the most common and vexing sources of error in the use of the TRF for such activities as collocation and intercomparison.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hechenblaikner, Gerald; Gerndt, Ruediger; Johann, Ulrich

    We describe the first investigations of the complete engineering model of the optical metrology system (OMS), a key subsystem of the LISA Pathfinder science mission to space. The latter itself is a technological precursor mission to LISA, a spaceborne gravitational wave detector. At its core, the OMS consists of four heterodyne Mach-Zehnder interferometers, a highly stable laser with an external modulator, and a phase meter. It is designed to monitor and track the longitudinal motion and attitude of two floating test masses in the optical reference frame with (relative) precision in the picometer and nanorad range, respectively. We analyze sensormore » signal correlations and determine a physical sensor noise limit. The coupling parameters between motional degrees of freedom and interferometer signals are analytically derived and compared to measurements. We also measure adverse cross-coupling effects originating from system imperfections and limitations and describe algorithmic mitigation techniques to overcome some of them. Their impact on system performance is analyzed within the context of the Pathfinder mission.« less

  19. Does Changing the Reference Frame Affect Infant Categorization of the Spatial Relation BETWEEN?

    ERIC Educational Resources Information Center

    Quinn, Paul C.; Doran, Matthew M.; Papafragou, Anna

    2011-01-01

    Past research has shown that variation in the target objects depicting a given spatial relation disrupts the formation of a category representation for that relation. In the current research, we asked whether changing the orientation of the referent frame depicting the spatial relation would also disrupt the formation of a category representation…

  20. The Generalized Internal/External Frame of Reference Model: An Extension to Dimensional Comparison Theory

    ERIC Educational Resources Information Center

    Möller, Jens; Müller-Kalthoff, Hanno; Helm, Friederike; Nagy, Nicole; Marsh, Herb W.

    2016-01-01

    The dimensional comparison theory (DCT) focuses on the effects of internal, dimensional comparisons (e.g., "How good am I in math compared to English?") on academic self-concepts with widespread consequences for students' self-evaluation, motivation, and behavioral choices. DCT is based on the internal/external frame of reference model…

  1. Cognitive Ability, Academic Achievement and Academic Self-Concept: Extending the Internal/External Frame of Reference Model

    ERIC Educational Resources Information Center

    Chen, Ssu-Kuang; Hwang, Fang-Ming; Yeh, Yu-Chen; Lin, Sunny S. J.

    2012-01-01

    Background: Marsh's internal/external (I/E) frame of reference model depicts the relationship between achievement and self-concept in specific academic domains. Few efforts have been made to examine concurrent relationships among cognitive ability, achievement, and academic self-concept (ASC) within an I/E model framework. Aim: To simultaneously…

  2. The Role of Perspective Taking in How Children Connect Reference Frames When Explaining Astronomical Phenomena

    ERIC Educational Resources Information Center

    Plummer, Julia D.; Bower, Corinne A.; Liben, Lynn S.

    2016-01-01

    This study investigates the role of perspective-taking skills in how children explain spatially complex astronomical phenomena. Explaining many astronomical phenomena, especially those studied in elementary and middle school, requires shifting between an Earth-based description of the phenomena and a space-based reference frame. We studied 7- to…

  3. Operationalization of a Frame of Reference for Studying Organizational Culture in Middle Schools.

    ERIC Educational Resources Information Center

    Daniel, Larry G.

    A frame of reference for studying culture in middle schools was developed. Items for the Middle School Description Survey (MSDS), which was designed to test elements of the ideal middle school culture, were created based on middle school advocacy literature. The items were conceptually categorized according to E. H. Schein's (1985) cultural…

  4. Facing the Sunrise: Cultural Worldview Underlying Intrinsic-Based Encoding of Absolute Frames of Reference in Aymara

    ERIC Educational Resources Information Center

    Nunez, Rafael E.; Cornejo, Carlos

    2012-01-01

    The Aymara of the Andes use absolute (cardinal) frames of reference for describing the relative position of ordinary objects. However, rather than encoding them in available absolute lexemes, they do it in lexemes that are intrinsic to the body: "nayra" ("front") and "qhipa" ("back"), denoting east and west,…

  5. Mechanisms of Reference Frame Selection in Spatial Term Use: Computational and Empirical Studies

    ERIC Educational Resources Information Center

    Schultheis, Holger; Carlson, Laura A.

    2017-01-01

    Previous studies have shown that multiple reference frames are available and compete for selection during the use of spatial terms such as "above." However, the mechanisms that underlie the selection process are poorly understood. In the current paper we present two experiments and a comparison of three computational models of selection…

  6. Frame of Reference Rater Training Issues: Recall, Time and Behavior Observation Training.

    ERIC Educational Resources Information Center

    Roch, Sylvia G.; O'Sullivan, Brian J.

    2003-01-01

    Graduate students were trained as raters either using frame of reference (FOR, n=220, behavior observation training (BOT, n=21), or performance appraisal (controls, n=21). They rated videotaped lecturers twice. FOR increased number of behaviors recalled; FOR and BOT improved recall quality. FOR improved rating accuracy even after 2 weeks.…

  7. Myths, Misconceptions, and Misunderstandings: A Different Spin on Coriolis--Applying Frame of Reference

    ERIC Educational Resources Information Center

    DiSpezio, Michael A.

    2011-01-01

    This article addresses misconceptions surrounding the Coriolis force and describes how it should be presented as a function within inertial and noninertial frames of reference. Not only does this demonstrate the nature of science as it strives to best interpret the natural world (and presents alternative explanations), but it offers a rich…

  8. Velocity Estimate Following Air Data System Failure

    DTIC Science & Technology

    2008-03-01

    39 Figure 3.3. Sampled Two Vector Approach .................................................................... 40 Figure 3.4...algorithm design in terms of reference frames, equations of motion, and velocity triangles describing the vector relationship between airspeed, wind speed...2.2.1 Reference Frames The flight of an aircraft through the air mass can be described in specific coordinate systems [ Nelson 1998]. To determine how

  9. iGRaND: an invariant frame for RGBD sensor feature detection and descriptor extraction with applications

    NASA Astrophysics Data System (ADS)

    Willis, Andrew R.; Brink, Kevin M.

    2016-06-01

    This article describes a new 3D RGBD image feature, referred to as iGRaND, for use in real-time systems that use these sensors for tracking, motion capture, or robotic vision applications. iGRaND features use a novel local reference frame derived from the image gradient and depth normal (hence iGRaND) that is invariant to scale and viewpoint for Lambertian surfaces. Using this reference frame, Euclidean invariant feature components are computed at keypoints which fuse local geometric shape information with surface appearance information. The performance of the feature for real-time odometry is analyzed and its computational complexity and accuracy is compared with leading alternative 3D features.

  10. Integrating Analysis Goals for EOP, CRF and TRF

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; MacMillan, Daniel; Petrov, Leonid

    2002-01-01

    In a simplified, idealized way the TRF (Terrestrial Reference Frame) can be considered a set of positions at epoch and corresponding linear rates of change while the CRF (Celestial Reference Frame) is a set of fixed directions in space. VLBI analysis can be optimized for CRF and TRF separately while handling some of the complexity of geodetic and astrometric reality. For EOP (Earth Orientation Parameter) time series both CRF and TRF should be accurate at the epoch of interest and well defined over time. The optimal integration of EOP, TRF and CRF in a single VLBI solution configuration requires a detailed consideration of the data set and the possibly conflicting nature of the reference frames. A possible approach for an integrated analysis is described.

  11. Laser-Camera Vision Sensing for Spacecraft Mobile Robot Navigation

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Khalil, Ahmad S.; Dorais, Gregory A.; Gawdiak, Yuri

    2002-01-01

    The advent of spacecraft mobile robots-free-flyng sensor platforms and communications devices intended to accompany astronauts or remotely operate on space missions both inside and outside of a spacecraft-has demanded the development of a simple and effective navigation schema. One such system under exploration involves the use of a laser-camera arrangement to predict relative positioning of the mobile robot. By projecting laser beams from the robot, a 3D reference frame can be introduced. Thus, as the robot shifts in position, the position reference frame produced by the laser images is correspondingly altered. Using normalization and camera registration techniques presented in this paper, the relative translation and rotation of the robot in 3D are determined from these reference frame transformations.

  12. Multithreaded hybrid feature tracking for markerless augmented reality.

    PubMed

    Lee, Taehee; Höllerer, Tobias

    2009-01-01

    We describe a novel markerless camera tracking approach and user interaction methodology for augmented reality (AR) on unprepared tabletop environments. We propose a real-time system architecture that combines two types of feature tracking. Distinctive image features of the scene are detected and tracked frame-to-frame by computing optical flow. In order to achieve real-time performance, multiple operations are processed in a synchronized multi-threaded manner: capturing a video frame, tracking features using optical flow, detecting distinctive invariant features, and rendering an output frame. We also introduce user interaction methodology for establishing a global coordinate system and for placing virtual objects in the AR environment by tracking a user's outstretched hand and estimating a camera pose relative to it. We evaluate the speed and accuracy of our hybrid feature tracking approach, and demonstrate a proof-of-concept application for enabling AR in unprepared tabletop environments, using bare hands for interaction.

  13. Reference Frames in Earth Rotation Theories

    NASA Astrophysics Data System (ADS)

    Ferrándiz, José M.; Belda, Santiago; Heinkelmann, Robert; Getino, Juan; Schuh, Harald; Escapa, Alberto

    2015-04-01

    Nowadays the determination of the Earth Orientation Parameters (EOP) and the different Terrestrial Reference Frames (TRF) are not independent. The available theories of Earth rotation aims at providing the orientation of a certain reference system linked somehow to the Earth with respect to a given celestial system, considered as inertial. In the past years a considerable effort has been dedicated to the improvement of the TRF realizations, following the lines set up in the 1980's. However, the reference systems used in the derivation of the theories have been rather considered as something fully established, not deserving a special attention. In this contribution we review the definitions of the frames used in the main theoretical approaches, focusing on those used in the construction of IAU2000, and the extent to which their underlying hypotheses hold. The results are useful to determine the level of consistency of the predicted and determined EOP.

  14. A Newton-Euler Description for Sediment Movement.

    NASA Astrophysics Data System (ADS)

    Maniatis, G.; Hoey, T.; Drysdale, T.; Hodge, R. A.; Valyrakis, M.

    2015-12-01

    We present progress from the development of a purpose specific sensing system for sediment transport (Maniatis et al. 2013). This system utilises the capabilities of contemporary inertial micro-sensors (strap-down accelerometers and gyroscopes) to record fluvial transport from the moving body-frame of artificial pebbles modelled precisely to represent the motion of real, coarse sediment grains (D90=100 mm class). This type of measurements can be useful in the context of sediment transport only if the existing mathematical understanding of the process is updated. We test a new mathematical model which defines specifically how the data recorded in the body frame of the sensor (Lagrangian frame of reference) can be generalised to the reference frame of the flow (channel, Eulerian frame of reference). Given the association of the two most widely used models for sediment transport with those frames of reference (Shields' to Eulerian frame and HA. Einstein's to Lagrangian frame), this description builds the basis for the definition of explicit incipient motion criteria (Maniatis et al. 2015) and for the upscaling from point-grain scale measurements to averaged, cross-sectional, stream related metrics. Flume experiments where conducted in the Hydraulics laboratory of the University of Glasgow where a spherical sensor of 800 mm diameter and capable of recoding inertial dynamics at 80Hz frequency was tested under fluvial transport conditions. We managed to measure the dynamical response of the unit during pre-entrainment/entrainment transitions, on scaled and non-scaled to the sensor's diameter bed and for a range of hydrodynamic conditions (slope up to 0.02 and flow increase rate up to 0.05m3.s-1. Preliminary results from field deployment on a mixed bedrock-alluvial channel are also presented. Maniatis et. al 2013 J. Sens. Actuator Netw. 2013, 2(4), 761-779; Maniatis et. al 2015: "CALCULATION OF EXPLICIT PROBABILITY OF ENTRAINMENT BASED ON INERTIAL ACCELERATION MEASUREMENTS" J. Hydraulic Engineering, Under review.

  15. Blood flow velocity measurement by endovascular Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sun, Cuiru; Nolte, Felix; Vuong, Barry; Cheng, Kyle H. Y.; Lee, Kenneth K. C.; Standish, Beau A.; Courtney, Brian; Marotta, Tom R.; Yang, Victor X. D.

    2013-03-01

    Blood flow velocity and volumetric flow measurements are important parameters for assessment of the severity of stenosis and the outcome of interventional therapy. However, feasibility of intravascular flow measurement using a rotational catheter based phase resolved Doppler optical coherence tomography (DOCT) is difficult. Motion artefacts induced by the rotating optical imaging catheter, and the radially dependent noise background of measured Doppler signals are the main challenges encountered. In this study, a custom-made data acquisition system and developed algorithms to remove non-uniform rotational distortion (NURD) induced phase shift artefact by tracking the phase shift observed on catheter sheath. The flow velocity is calculated from Doppler shift obtained by Kasai autocorrelation after motion artefact removal. Blood flow velocity profiles in porcine carotid arteries in vivo were obtained at 100 frames/s with 500 A-lines/frame and DOCT images were taken at 20 frames/s with 2500 A-lines/frame. Time-varying velocity profiles were obtained at an artery branch. Furthermore, the identification of a vein adjacent to the catheterized vessel based on the color Doppler signal was also observed. The absolute measurement of intravascular flow using a rotating fiber catheter can provide insights to different stages of interventional treatment of stenosis in carotid artery.

  16. Comparison of Optic Disc Margin Identified by Color Disc Photography and High-Speed Ultrahigh-Resolution Optical Coherence Tomography

    PubMed Central

    Manassakorn, Anita; Ishikawa, Hiroshi; Kim, Jong S.; Wollstein, Gadi; Bilonick, Richard A.; Kagemann, Larry; Gabriele, Michelle L.; Sung, Kyung Rim; Mumcuoglu, Tarkan; Duker, Jay S.; Fujimoto, James G.; Schuman, Joel S.

    2009-01-01

    Objective To determine the correspondence between optic disc margins evaluated using disc photography (DP) and optical coherence tomography (OCT). Methods From May 1, 2005, through November 10, 2005, 17 healthy volunteers (17 eyes) had raster scans (180 frames, 501 samplings per frame) centered on the optic disc taken with stereo-optic DP and high-speed ultrahigh-resolution OCT (hsUHR-OCT). Two image outputs were derived from the hsUHR-OCT data set: an en face hsUHR-OCT fundus image and a set of 180 frames of cross-sectional images. Three ophthalmologists independently and in a masked, randomized fashion marked the disc margin on the DP, hsUHR-OCT fundus, and cross-sectional images using custom software. Disc size (area and horizontal and vertical diameters) and location of the geometric disc center were compared among the 3 types of images. Results The hsUHR-OCT fundus image definition showed a significantly smaller disc size than the DP definition (P<.001, mixed-effects analysis). The hsUHR-OCT cross-sectional image definition showed a significantly larger disc size than the DP definition (P<.001). The geometric disc center location was similar among the 3 types of images except for the y-coordinate, which was significantly smaller in the hsUHR-OCT fundus images than in the DP images. Conclusion The optic disc margin as defined by hsUHR-OCT was significantly different than the margin defined by DP. PMID:18195219

  17. Noise reduction in single time frame optical DNA maps

    PubMed Central

    Müller, Vilhelm; Westerlund, Fredrik

    2017-01-01

    In optical DNA mapping technologies sequence-specific intensity variations (DNA barcodes) along stretched and stained DNA molecules are produced. These “fingerprints” of the underlying DNA sequence have a resolution of the order one kilobasepairs and the stretching of the DNA molecules are performed by surface adsorption or nano-channel setups. A post-processing challenge for nano-channel based methods, due to local and global random movement of the DNA molecule during imaging, is how to align different time frames in order to produce reproducible time-averaged DNA barcodes. The current solutions to this challenge are computationally rather slow. With high-throughput applications in mind, we here introduce a parameter-free method for filtering a single time frame noisy barcode (snap-shot optical map), measured in a fraction of a second. By using only a single time frame barcode we circumvent the need for post-processing alignment. We demonstrate that our method is successful at providing filtered barcodes which are less noisy and more similar to time averaged barcodes. The method is based on the application of a low-pass filter on a single noisy barcode using the width of the Point Spread Function of the system as a unique, and known, filtering parameter. We find that after applying our method, the Pearson correlation coefficient (a real number in the range from -1 to 1) between the single time-frame barcode and the time average of the aligned kymograph increases significantly, roughly by 0.2 on average. By comparing to a database of more than 3000 theoretical plasmid barcodes we show that the capabilities to identify plasmids is improved by filtering single time-frame barcodes compared to the unfiltered analogues. Since snap-shot experiments and computational time using our method both are less than a second, this study opens up for high throughput optical DNA mapping with improved reproducibility. PMID:28640821

  18. Influence of the Pixel Sizes of Reference Computed Tomography on Single-photon Emission Computed Tomography Image Reconstruction Using Conjugate-gradient Algorithm.

    PubMed

    Okuda, Kyohei; Sakimoto, Shota; Fujii, Susumu; Ida, Tomonobu; Moriyama, Shigeru

    The frame-of-reference using computed-tomography (CT) coordinate system on single-photon emission computed tomography (SPECT) reconstruction is one of the advanced characteristics of the xSPECT reconstruction system. The aim of this study was to reveal the influence of the high-resolution frame-of-reference on the xSPECT reconstruction. 99m Tc line-source phantom and National Electrical Manufacturers Association (NEMA) image quality phantom were scanned using the SPECT/CT system. xSPECT reconstructions were performed with the reference CT images in different sizes of the display field-of-view (DFOV) and pixel. The pixel sizes of the reconstructed xSPECT images were close to 2.4 mm, which is acquired as originally projection data, even if the reference CT resolution was varied. The full width at half maximum (FWHM) of the line-source, absolute recovery coefficient, and background variability of image quality phantom were independent on the sizes of DFOV in the reference CT images. The results of this study revealed that the image quality of the reconstructed xSPECT images is not influenced by the resolution of frame-of-reference on SPECT reconstruction.

  19. Optical flow estimation on image sequences with differently exposed frames

    NASA Astrophysics Data System (ADS)

    Bengtsson, Tomas; McKelvey, Tomas; Lindström, Konstantin

    2015-09-01

    Optical flow (OF) methods are used to estimate dense motion information between consecutive frames in image sequences. In addition to the specific OF estimation method itself, the quality of the input image sequence is of crucial importance to the quality of the resulting flow estimates. For instance, lack of texture in image frames caused by saturation of the camera sensor during exposure can significantly deteriorate the performance. An approach to avoid this negative effect is to use different camera settings when capturing the individual frames. We provide a framework for OF estimation on such sequences that contain differently exposed frames. Information from multiple frames are combined into a total cost functional such that the lack of an active data term for saturated image areas is avoided. Experimental results demonstrate that using alternate camera settings to capture the full dynamic range of an underlying scene can clearly improve the quality of flow estimates. When saturation of image data is significant, the proposed methods show superior performance in terms of lower endpoint errors of the flow vectors compared to a set of baseline methods. Furthermore, we provide some qualitative examples of how and when our method should be used.

  20. Dynamic Imaging of the Eye, Optic Nerve, and Extraocular Muscles With Golden Angle Radial MRI

    PubMed Central

    Smith, David S.; Smith, Alex K.; Welch, E. Brian; Smith, Seth A.

    2017-01-01

    Purpose The eye and its accessory structures, the optic nerve and the extraocular muscles, form a complex dynamic system. In vivo magnetic resonance imaging (MRI) of this system in motion can have substantial benefits in understanding oculomotor functioning in health and disease, but has been restricted to date to imaging of static gazes only. The purpose of this work was to develop a technique to image the eye and its accessory visual structures in motion. Methods Dynamic imaging of the eye was developed on a 3-Tesla MRI scanner, based on a golden angle radial sequence that allows freely selectable frame-rate and temporal-span image reconstructions from the same acquired data set. Retrospective image reconstructions at a chosen frame rate of 57 ms per image yielded high-quality in vivo movies of various eye motion tasks performed in the scanner. Motion analysis was performed for a left–right version task where motion paths, lengths, and strains/globe angle of the medial and lateral extraocular muscles and the optic nerves were estimated. Results Offline image reconstructions resulted in dynamic images of bilateral visual structures of healthy adults in only ∼15-s imaging time. Qualitative and quantitative analyses of the motion enabled estimation of trajectories, lengths, and strains on the optic nerves and extraocular muscles at very high frame rates of ∼18 frames/s. Conclusions This work presents an MRI technique that enables high-frame-rate dynamic imaging of the eyes and orbital structures. The presented sequence has the potential to be used in furthering the understanding of oculomotor mechanics in vivo, both in health and disease. PMID:28813574

  1. Making Meaning Out of Text.

    ERIC Educational Resources Information Center

    Kathpalia, Sujata S.

    2001-01-01

    Investigates textual coherence of popular psychology articles mediated through the theory of frames and identifies the linguistic evidence of factual frames. Inferencing is also discussed as a supplementary means to comprehension, with particular reference to the notion of bridging assumptions. Evidence for textual frames is discussed in relation…

  2. FOOT PLACEMENT IN A BODY REFERENCE FRAME DURING WALKING AND ITS RELATIONSHIP TO HEMIPARETIC WALKING PERFORMANCE

    PubMed Central

    Balasubramanian, Chitralakshmi K.; Neptune, Richard R.; Kautz, Steven A.

    2010-01-01

    Background Foot placement during walking is closely linked to the body position, yet it is typically quantified relative to the other foot. The purpose of this study was to quantify foot placement patterns relative to body post-stroke and investigate its relationship to hemiparetic walking performance. Methods Thirty-nine participants with hemiparesis walked on a split-belt treadmill at their self-selected speeds and twenty healthy participants walked at matched slow speeds. Anterior-posterior and medial-lateral foot placements (foot center-of-mass) relative to body (pelvis center-of-mass) quantified stepping in body reference frame. Walking performance was quantified using step length asymmetry ratio, percent of paretic propulsion and paretic weight support. Findings Participants with hemiparesis placed their paretic foot further anterior than posterior during walking compared to controls walking at matched slow speeds (p < .05). Participants also placed their paretic foot further lateral relative to pelvis than non-paretic (p < .05). Anterior-posterior asymmetry correlated with step length asymmetry and percent paretic propulsion but some persons revealed differing asymmetry patterns in the translating reference frame. Lateral foot placement asymmetry correlated with paretic weight support (r = .596; p < .001), whereas step widths showed no relation to paretic weight support. Interpretation Post-stroke gait is asymmetric when quantifying foot placement in a body reference frame and this asymmetry related to the hemiparetic walking performance and explained motor control mechanisms beyond those explained by step lengths and step widths alone. We suggest that biomechanical analyses quantifying stepping performance in impaired populations should investigate foot placement in a body reference frame. PMID:20193972

  3. Foot placement in a body reference frame during walking and its relationship to hemiparetic walking performance.

    PubMed

    Balasubramanian, Chitralakshmi K; Neptune, Richard R; Kautz, Steven A

    2010-06-01

    Foot placement during walking is closely linked to the body position, yet it is typically quantified relative to the other foot. The purpose of this study was to quantify foot placement patterns relative to body post-stroke and investigate its relationship to hemiparetic walking performance. Thirty-nine participants with hemiparesis walked on a split-belt treadmill at their self-selected speeds and 20 healthy participants walked at matched slow speeds. Anterior-posterior and medial-lateral foot placements (foot center-of-mass) relative to body (pelvis center-of-mass) quantified stepping in body reference frame. Walking performance was quantified using step length asymmetry ratio, percent of paretic propulsion and paretic weight support. Participants with hemiparesis placed their paretic foot further anterior than posterior during walking compared to controls walking at matched slow speeds (P<.05). Participants also placed their paretic foot further lateral relative to pelvis than non-paretic (P<.05). Anterior-posterior asymmetry correlated with step length asymmetry and percent paretic propulsion but some persons revealed differing asymmetry patterns in the translating reference frame. Lateral foot placement asymmetry correlated with paretic weight support (r=.596; P<.001), whereas step widths showed no relation to paretic weight support. Post-stroke gait is asymmetric when quantifying foot placement in a body reference frame and this asymmetry related to the hemiparetic walking performance and explained motor control mechanisms beyond those explained by step lengths and step widths alone. We suggest that biomechanical analyses quantifying stepping performance in impaired populations should investigate foot placement in a body reference frame. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Unitary cocycle representations of the Galilean line group: Quantum mechanical principle of equivalence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGregor, B.R.; McCoy, A.E.; Wickramasekara, S., E-mail: wickrama@grinnell.edu

    2012-09-15

    We present a formalism of Galilean quantum mechanics in non-inertial reference frames and discuss its implications for the equivalence principle. This extension of quantum mechanics rests on the Galilean line group, the semidirect product of the real line and the group of analytic functions from the real line to the Euclidean group in three dimensions. This group provides transformations between all inertial and non-inertial reference frames and contains the Galilei group as a subgroup. We construct a certain class of unitary representations of the Galilean line group and show that these representations determine the structure of quantum mechanics in non-inertialmore » reference frames. Our representations of the Galilean line group contain the usual unitary projective representations of the Galilei group, but have a more intricate cocycle structure. The transformation formula for the Hamiltonian under the Galilean line group shows that in a non-inertial reference frame it acquires a fictitious potential energy term that is proportional to the inertial mass, suggesting the equivalence of inertial mass and gravitational mass in quantum mechanics. - Highlights: Black-Right-Pointing-Pointer A formulation of Galilean quantum mechanics in non-inertial reference frames is given. Black-Right-Pointing-Pointer The key concept is the Galilean line group, an infinite dimensional group. Black-Right-Pointing-Pointer Unitary, cocycle representations of the Galilean line group are constructed. Black-Right-Pointing-Pointer A non-central extension of the group underlies these representations. Black-Right-Pointing-Pointer Quantum equivalence principle and gravity emerge from these representations.« less

  5. Fast optically sectioned fluorescence HiLo endomicroscopy.

    PubMed

    Ford, Tim N; Lim, Daryl; Mertz, Jerome

    2012-02-01

    We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.

  6. Fast optically sectioned fluorescence HiLo endomicroscopy

    NASA Astrophysics Data System (ADS)

    Ford, Tim N.; Lim, Daryl; Mertz, Jerome

    2012-02-01

    We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.

  7. Fourier-based integration of quasi-periodic gait accelerations for drift-free displacement estimation using inertial sensors.

    PubMed

    Sabatini, Angelo Maria; Ligorio, Gabriele; Mannini, Andrea

    2015-11-23

    In biomechanical studies Optical Motion Capture Systems (OMCS) are considered the gold standard for determining the orientation and the position (pose) of an object in a global reference frame. However, the use of OMCS can be difficult, which has prompted research on alternative sensing technologies, such as body-worn inertial sensors. We developed a drift-free method to estimate the three-dimensional (3D) displacement of a body part during cyclical motions using body-worn inertial sensors. We performed the Fourier analysis of the stride-by-stride estimates of the linear acceleration, which were obtained by transposing the specific forces measured by the tri-axial accelerometer into the global frame using a quaternion-based orientation estimation algorithm and detecting when each stride began using a gait-segmentation algorithm. The time integration was performed analytically using the Fourier series coefficients; the inverse Fourier series was then taken for reconstructing the displacement over each single stride. The displacement traces were concatenated and spline-interpolated to obtain the entire trace. The method was applied to estimate the motion of the lower trunk of healthy subjects that walked on a treadmill and it was validated using OMCS reference 3D displacement data; different approaches were tested for transposing the measured specific force into the global frame, segmenting the gait and performing time integration (numerically and analytically). The width of the limits of agreements were computed between each tested method and the OMCS reference method for each anatomical direction: Medio-Lateral (ML), VerTical (VT) and Antero-Posterior (AP); using the proposed method, it was observed that the vertical component of displacement (VT) was within ±4 mm (±1.96 standard deviation) of OMCS data and each component of horizontal displacement (ML and AP) was within ±9 mm of OMCS data. Fourier harmonic analysis was applied to model stride-by-stride linear accelerations during walking and to perform their analytical integration. Our results showed that analytical integration based on Fourier series coefficients was a useful approach to accurately estimate 3D displacement from noisy acceleration data.

  8. Simultaneous tracking and regulation visual servoing of wheeled mobile robots with uncalibrated extrinsic parameters

    NASA Astrophysics Data System (ADS)

    Lu, Qun; Yu, Li; Zhang, Dan; Zhang, Xuebo

    2018-01-01

    This paper presentsa global adaptive controller that simultaneously solves tracking and regulation for wheeled mobile robots with unknown depth and uncalibrated camera-to-robot extrinsic parameters. The rotational angle and the scaled translation between the current camera frame and the reference camera frame, as well as the ones between the desired camera frame and the reference camera frame can be calculated in real time by using the pose estimation techniques. A transformed system is first obtained, for which an adaptive controller is then designed to accomplish both tracking and regulation tasks, and the controller synthesis is based on Lyapunov's direct method. Finally, the effectiveness of the proposed method is illustrated by a simulation study.

  9. When Students Doubt Their Teachers' Diagnostic Competence: Moderation in the Internal/External Frame of Reference Model

    ERIC Educational Resources Information Center

    Zimmermann, Friederike; Möller, Jens; Köller, Olaf

    2018-01-01

    The internal/external frame of reference model (I/E model) posits that individuals' achievement-related self-concepts are formed through social comparisons (e.g., self vs. peers) within academic domains and dimensional comparisons (e.g., math vs. verbal) between distinct domains. A large body of research has supported the theorized pattern of…

  10. Antecedents of Academic Emotions: Testing the Internal/External Frame of Reference Model for Academic Enjoyment

    ERIC Educational Resources Information Center

    Goetz, Thomas; Frenzel, Anne C.; Hall, Nathan C.; Pekrun, Reinhard

    2008-01-01

    The present study focused on students' academic enjoyment as predicted by achievement in multiple academic domains. Assumptions were based on Marsh's internal/external (I/E) frame of reference model and Pekrun's control-value theory of achievement emotions, and were tested in a sample of 1380 German students from grades 5 to 10. Students' academic…

  11. Learning to Explain Astronomy across Moving Frames of Reference: Exploring the Role of Classroom and Planetarium-Based Instructional Contexts

    ERIC Educational Resources Information Center

    Plummer, Julia Diane; Kocareli, Alicia; Slagle, Cynthia

    2014-01-01

    Learning astronomy involves significant spatial reasoning, such as learning to describe Earth-based phenomena and understanding space-based explanations for those phenomena as well as using the relevant size and scale information to interpret these frames of reference. This study examines daily celestial motion (DCM) as one case of how children…

  12. Layout Geometry in the Selection of Intrinsic Frames of Reference from Multiple Viewpoints

    ERIC Educational Resources Information Center

    Mou, Weimin; Zhao, Mintao; McNamara, Timothy P.

    2007-01-01

    Four experiments investigated the roles of layout geometry in the selection of intrinsic frames of reference in spatial memory. Participants learned the locations of objects in a room from 2 or 3 viewing perspectives. One view corresponded to the axis of bilateral symmetry of the layout, and the other view(s) was (were) nonorthogonal to the axis…

  13. Teachers' Interpretations of the Internet. An Applied Case Study for the Evaluation of Technological Frames of Reference

    ERIC Educational Resources Information Center

    Camilleri, Patrick

    2012-01-01

    In 1994 Orlikowski and Gash articulated Technological Frames of Reference as a systematic theoretical lens to examine technological developments in organisations. A decade later, in 2004, Davidson and Pai expressed concern that while the lens was widely cited in academic discourse, the incidence and adoption of the model as an analytical framework…

  14. Does Environmental Experience Shape Spatial Cognition? Frames of Reference among Ancash Quechua Speakers (Peru)

    ERIC Educational Resources Information Center

    Shapero, Joshua A.

    2017-01-01

    Previous studies have shown that language contributes to humans' ability to orient using landmarks and shapes their use of frames of reference (FoRs) for memory. However, the role of environmental experience in shaping spatial cognition has not been investigated. This study addresses such a possibility by examining the use of FoRs in a nonverbal…

  15. Justifying Alternative Models in Learning Astronomy: A Study of K-8 Science Teachers' Understanding of Frames of Reference

    ERIC Educational Resources Information Center

    Shen, Ji; Confrey, Jere

    2010-01-01

    Understanding frames of reference is critical in describing planetary motion and learning astronomy. Historically, the geocentric and heliocentric models were defended and advocated against each other. Today, there are still many people who do not understand the relationship between the two models. This topic is not adequately treated in astronomy…

  16. The Reciprocal Internal/External Frame of Reference Model Using Grades and Test Scores

    ERIC Educational Resources Information Center

    Möller, Jens; Zimmermann, Friederike; Köller, Olaf

    2014-01-01

    Background: The reciprocal I/E model (RI/EM) combines the internal/external frame of reference model (I/EM) with the reciprocal effects model (REM). The RI/EM extends the I/EM longitudinally and the REM across domains. The model predicts that, within domains, mathematics and verbal achievement (VACH) and academic self-concept have positive effects…

  17. New architecture for dynamic frame-skipping transcoder.

    PubMed

    Fung, Kai-Tat; Chan, Yui-Lam; Siu, Wan-Chi

    2002-01-01

    Transcoding is a key technique for reducing the bit rate of a previously compressed video signal. A high transcoding ratio may result in an unacceptable picture quality when the full frame rate of the incoming video bitstream is used. Frame skipping is often used as an efficient scheme to allocate more bits to the representative frames, so that an acceptable quality for each frame can be maintained. However, the skipped frame must be decompressed completely, which might act as a reference frame to nonskipped frames for reconstruction. The newly quantized discrete cosine transform (DCT) coefficients of the prediction errors need to be re-computed for the nonskipped frame with reference to the previous nonskipped frame; this can create undesirable complexity as well as introduce re-encoding errors. In this paper, we propose new algorithms and a novel architecture for frame-rate reduction to improve picture quality and to reduce complexity. The proposed architecture is mainly performed on the DCT domain to achieve a transcoder with low complexity. With the direct addition of DCT coefficients and an error compensation feedback loop, re-encoding errors are reduced significantly. Furthermore, we propose a frame-rate control scheme which can dynamically adjust the number of skipped frames according to the incoming motion vectors and re-encoding errors due to transcoding such that the decoded sequence can have a smooth motion as well as better transcoded pictures. Experimental results show that, as compared to the conventional transcoder, the new architecture for frame-skipping transcoder is more robust, produces fewer requantization errors, and has reduced computational complexity.

  18. Experimental test of photonic entanglement in accelerated reference frames

    NASA Astrophysics Data System (ADS)

    Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C.; Ursin, Rupert

    2017-05-01

    The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g--under free-fall as well on a spinning centrifuge--and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement.

  19. Coriolis effect in optics: unified geometric phase and spin-Hall effect.

    PubMed

    Bliokh, Konstantin Y; Gorodetski, Yuri; Kleiner, Vladimir; Hasman, Erez

    2008-07-18

    We examine the spin-orbit coupling effects that appear when a wave carrying intrinsic angular momentum interacts with a medium. The Berry phase is shown to be a manifestation of the Coriolis effect in a noninertial reference frame attached to the wave. In the most general case, when both the direction of propagation and the state of the wave are varied, the phase is given by a simple expression that unifies the spin redirection Berry phase and the Pancharatnam-Berry phase. The theory is supported by the experiment demonstrating the spin-orbit coupling of electromagnetic waves via a surface plasmon nanostructure. The measurements verify the unified geometric phase, demonstrated by the observed polarization-dependent shift (spin-Hall effect) of the waves.

  20. Experimental test of photonic entanglement in accelerated reference frames.

    PubMed

    Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C; Ursin, Rupert

    2017-05-10

    The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g-under free-fall as well on a spinning centrifuge-and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement.

  1. Text-Frame Relationships and ESL.

    ERIC Educational Resources Information Center

    Burquest, Donald A.; Henry, Floreen Barger

    The relationship of contextual background to comprehension of written texts is discussed with reference to instruction in English as a second language (ESL). A theory advanced by Kerry Stewart Robichaux proposes six possible relationships between a text and its cultural "frame." Applications of the six text-frame relationships to foreign…

  2. Realizing a terrestrial reference frame using the Global Positioning System

    NASA Astrophysics Data System (ADS)

    Haines, Bruce J.; Bar-Sever, Yoaz E.; Bertiger, Willy I.; Desai, Shailen D.; Harvey, Nate; Sibois, Aurore E.; Weiss, Jan P.

    2015-08-01

    We describe a terrestrial reference frame (TRF) realization based on Global Positioning System (GPS) data alone. Our approach rests on a highly dynamic, long-arc (9 day) estimation strategy and on GPS satellite antenna calibrations derived from Gravity Recovery and Climate Experiment and TOPEX/Poseidon low Earth orbit receiver GPS data. Based on nearly 17 years of data (1997-2013), our solution for scale rate agrees with International Terrestrial Reference Frame (ITRF)2008 to 0.03 ppb yr-1, and our solution for 3-D origin rate agrees with ITRF2008 to 0.4 mm yr-1. Absolute scale differs by 1.1 ppb (7 mm at the Earth's surface) and 3-D origin by 8 mm. These differences lie within estimated error levels for the contemporary TRF.

  3. Whisking mechanics and active sensing

    PubMed Central

    Bush, Nicholas E; Solla, Sara A

    2017-01-01

    We describe recent advances in quantifying the three-dimensional (3D) geometry and mechanics of whisking. Careful delineation of relevant 3D reference frames reveals important geometric and mechanical distinctions between the localization problem (‘where’ is an object) and the feature extraction problem (‘what’ is an object). Head-centered and resting-whisker reference frames lend themselves to quantifying temporal and kinematic cues used for object localization. The whisking-centered reference frame lends itself to quantifying the contact mechanics likely associated with feature extraction. We offer the ‘windowed sampling’ hypothesis for active sensing: that rats can estimate an object’s spatial features by integrating mechanical information across whiskers during brief (25–60 ms) windows of ‘haptic enclosure’ with the whiskers, a motion that resembles a hand grasp. PMID:27632212

  4. Whisking mechanics and active sensing.

    PubMed

    Bush, Nicholas E; Solla, Sara A; Hartmann, Mitra Jz

    2016-10-01

    We describe recent advances in quantifying the three-dimensional (3D) geometry and mechanics of whisking. Careful delineation of relevant 3D reference frames reveals important geometric and mechanical distinctions between the localization problem ('where' is an object) and the feature extraction problem ('what' is an object). Head-centered and resting-whisker reference frames lend themselves to quantifying temporal and kinematic cues used for object localization. The whisking-centered reference frame lends itself to quantifying the contact mechanics likely associated with feature extraction. We offer the 'windowed sampling' hypothesis for active sensing: that rats can estimate an object's spatial features by integrating mechanical information across whiskers during brief (25-60ms) windows of 'haptic enclosure' with the whiskers, a motion that resembles a hand grasp. Copyright © 2016. Published by Elsevier Ltd.

  5. SIRGAS: the core geodetic infrastructure in Latin America and the Caribbean

    NASA Astrophysics Data System (ADS)

    Sanchez, L.; Brunini, C.; Drewes, H.; Mackern, V.; da Silva, A.

    2013-05-01

    Studying, understanding, and modelling geophysical phenomena, such as global change and geodynamics, require geodetic reference frames with (1) an order of accuracy higher than the magnitude of the effects we want to study, (2) consistency and reliability worldwide (the same accuracy everywhere), and (3) a long-term stability (the same order of accuracy at any time). The definition, realisation, maintenance, and wide-utilisation of the International Terrestrial Reference System (ITRS) are oriented to guarantee a globally unified geometric reference frame with reliability at the mm-level, i.e. the International Terrestrial Reference Frame (ITRF). The densification of the global ITRF in Latin America and The Caribbean is given by SIRGAS (Sistema de Referencia Geocéntrico para Las Américas), primary objective of which is to provide the most precise coordinates in the region. Therefore, SIRGAS is the backbone for all regional projects based on the generation, use, and analysis of geo-referenced data at national as well as at international level. Besides providing the reference for a wide range of scientific applications such as the monitoring of Earth's crust deformations, vertical movements, sea level variations, atmospheric studies, etc., SIRGAS is also the platform for practical applications such as engineering projects, digital administration of geographical data, geospatial data infrastructures, etc. According to this, the present contribution describes the main features of SIRGAS, giving special care to those challenges faced to continue providing the best possible, long-term stable and high-precise reference frame for Latin America and the Caribbean.

  6. Eyeglass Benefits: Consideration of Frame of Choice for Retired Service Members

    DTIC Science & Technology

    2009-04-20

    20100329217 t. ABSTRACT ’he Department of Defense (DoD) provides basic eyewear to our nation’s military members. .Ithough not specifically entitled under...Title X, military retirees historically also receive tandard issue eyewear . The military’s Frame of Choice (FOC) program currently benefits the...current fiscal environment. . SUBJECT TERMS ^eglasses, Frame of Choice, Retiree, Service Members, Entitlements, Eyewear , snefit, Optometry, Optical

  7. Promotional Frames' Influence on Price Perceptions of Two Apparel Products.

    ERIC Educational Resources Information Center

    Stanforth, Nancy; Lennon, Sharron; Shin, Jung Im

    2001-01-01

    A study explored the differences in price perceptions of two apparel products when promotions were framed as either a price discount or a gift-with-purchase. The majority preferred the discount. Results illustrate the importance of promotional framing in forming consumer price perceptions. (Contains 30 references.) (Author/JOW)

  8. Frame of Reference Model of Self-Concept and Locus of Control: A Cross Gender Study in the United Arab Emirates.

    ERIC Educational Resources Information Center

    Abu-Hilal, Maher M.

    A study tested predictions for I/E (internal external) frame of reference model and extended this model to include locus of control. A sample of upper elementary (n=181) and junior high (n=191) students in the United Arab Emirates participated in the study. Structural equation modeling (SEM) analyses provided support to the external comparison…

  9. The Internal/External Frame of Reference Model of Self-Concept and Achievement Relations: Age-Cohort and Cross-Cultural Differences

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Abduljabbar, Adel Salah; Parker, Philip D.; Morin, Alexandre J. S.; Abdelfattah, Faisal; Nagengast, Benjamin; Möller, Jens; Abu-Hilal, Maher M.

    2015-01-01

    The internal/external frame of reference (I/E) model and dimensional comparison theory posit paradoxical relations between achievement (ACH) and self-concept (SC) in mathematics (M) and verbal (V) domains; ACH in each domain positively affects SC in the matching domain (e.g., MACH to MSC) but negatively in the nonmatching domain (e.g., MACH to…

  10. Verbal and Math Self-Concepts: An Extension of the Internal/External Frame of Reference Model.

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Byrne, Barbara M.

    The internal/external (I/E) frame of reference model describes relations among Verbal self-concept (VSC), Math self-concept (MSC), and corresponding achievement scores (VACH, MACH). In support of the model Marsh (1986) found that: (1) VSC and MSC were nearly uncorrelated; (2) the effect of VACH on VSC, and of MACH on MSC, were positive; but (3)…

  11. The Effect of Motion Analysis Activities in a Video-Based Laboratory in Students' Understanding of Position, Velocity and Frames of Reference

    ERIC Educational Resources Information Center

    Koleza, Eugenia; Pappas, John

    2008-01-01

    In this article, we present the results of a qualitative research project on the effect of motion analysis activities in a Video-Based Laboratory (VBL) on students' understanding of position, velocity and frames of reference. The participants in our research were 48 pre-service teachers enrolled in Education Departments with no previous strong…

  12. Frame-of-Reference Training Effectiveness: Effects of Goal Orientation and Self-Efficacy on Affective, Cognitive, Skill-Based, and Transfer Outcomes

    ERIC Educational Resources Information Center

    Dierdorff, Erich C.; Surface, Eric A.; Brown, Kenneth G.

    2010-01-01

    Empirical evidence supporting frame-of-reference (FOR) training as an effective intervention for calibrating raters is convincing. Yet very little is known about who does better or worse in FOR training. We conducted a field study of how motivational factors influence affective, cognitive, and behavioral learning outcomes, as well as near transfer…

  13. Ultra-fast framing camera tube

    DOEpatents

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  14. Processing Near-Infrared Imagery of the Orion Heatshield During EFT-1 Hypersonic Reentry

    NASA Technical Reports Server (NTRS)

    Spisz, Thomas S.; Taylor, Jeff C.; Gibson, David M.; Kennerly, Steve; Osei-Wusu, Kwame; Horvath, Thomas J.; Schwartz, Richard J.; Tack, Steven; Bush, Brett C.; Oliver, A. Brandon

    2016-01-01

    The Scientifically Calibrated In-Flight Imagery (SCIFLI) team captured high-resolution, calibrated, near-infrared imagery of the Orion capsule during atmospheric reentry of the EFT-1 mission. A US Navy NP-3D aircraft equipped with a multi-band optical sensor package, referred to as Cast Glance, acquired imagery of the Orion capsule's heatshield during a period when Orion was slowing from approximately Mach 10 to Mach 7. The line-of-sight distance ranged from approximately 65 to 40 nmi. Global surface temperatures of the capsule's thermal heatshield derived from the near-infrared intensity measurements complemented the in-depth (embedded) thermocouple measurements. Moreover, these derived surface temperatures are essential to the assessment of the thermocouples' reliance on inverse heat transfer methods and material response codes to infer the surface temperature from the in-depth measurements. The paper describes the image processing challenges associated with a manually-tracked, high-angular rate air-to-air observation. Issues included management of significant frame-to-frame motions due to both tracking jerk and jitter as well as distortions due to atmospheric effects. Corrections for changing sky backgrounds (including some cirrus clouds), atmospheric attenuation, and target orientations and ranges also had to be made. The image processing goal is to reduce the detrimental effects due to motion (both sensor and capsule), vibration (jitter), and atmospherics for image quality improvement, without compromising the quantitative integrity of the data, especially local intensity (temperature) variations. The paper will detail the approach of selecting and utilizing only the highest quality images, registering several co-temporal image frames to a single image frame to the extent frame-to-frame distortions would allow, and then co-adding the registered frames to improve image quality and reduce noise. Using preflight calibration data, the registered and averaged infrared intensity images were converted to surface temperatures on the Orion capsule's heatshield. Temperature uncertainties will be discussed relative to uncertainties of surface emissivity and atmospheric transmission loss. Comparison of limited onboard surface thermocouple data to the image derived surface temperature will be presented.

  15. Theory and Realization of Global Terrestrial Reference Systems

    NASA Technical Reports Server (NTRS)

    Ma, C.; Bolotin, S.; Gipson, J.; Gordon, D.; Le Bail, K.; MacMillan, D.

    2010-01-01

    Comparison of realizations of the terrestrial reference frame. IGN and DGFI both generated realizations of the terrestrial reference frame under the auspices of the IERS from combination of the same space geodetic data. We examined both results for VLBI sites using the full geodetic VLBI data set with respect to site positions and velocities and time series of station positions, baselines and Earth orientation parameters. One of the difficulties encountered was matching episodic breaks and periods of non-linear motion of the two realizations with the VLBI models. Our analysis and conclusions will be discussed.

  16. Deriving a geocentric reference frame for satellite positioning and navigation

    NASA Technical Reports Server (NTRS)

    Malla, R. P.; Wu, S.-C.

    1988-01-01

    With the advent of Earth-orbiting geodetic satellites, nongeocentric datums or reference frames have become things of the past. Accurate geocentric three-dimensional positioning is now possible and is of great importance for various geodetic and oceanographic applications. While relative positioning accuracy of a few centimeters has become a reality using very long baseline interferometry (VLBI), the uncertainty in the offset of the adopted coordinate system origin from the geocenter is still believed to be on the order of 1 meter. Satellite laser ranging (SLR), however, is capable of determining this offset to better than 10 cm, but this is possible only after years of measurements. Global Positioning System (GPS) measurements provide a powerful tool for an accurate determination of this origin offset. Two strategies are discussed. The first strategy utilizes the precise relative positions that were predetermined by VLBI to fix the frame orientation and the absolute scaling, while the offset from the geocenter is determined from GPS measurements. Three different cases are presented under this strategy. The reference frame thus adopted will be consistent with the VLBI coordinate system. The second strategy establishes a reference frame by holding only the longitude of one of the tracking sites fixed. The absolute scaling is determined by the adopted gravitational constant (GM) of the Earth; and the latitude is inferred from the time signature of the Earth rotation in the GPS measurements. The coordinate system thus defined will be a geocentric Earth-fixed coordinate system.

  17. The Gaia inertial reference frame and the tilting of the Milky Way disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perryman, Michael; Spergel, David N.; Lindegren, Lennart, E-mail: mac.perryman@gmail.com

    2014-07-10

    While the precise relationship between the Milky Way disk and the symmetry planes of the dark matter halo remains somewhat uncertain, a time-varying disk orientation with respect to an inertial reference frame seems probable. Hierarchical structure formation models predict that the dark matter halo is triaxial and tumbles with a characteristic rate of ∼2 rad H{sub 0}{sup −1} (∼30 μas yr{sup –1}). These models also predict a time-dependent accretion of gas, such that the angular momentum vector of the disk should be misaligned with that of the halo. These effects, as well as tidal effects of the LMC, will resultmore » in the rotation of the angular momentum vector of the disk population with respect to the quasar reference frame. We assess the accuracy with which the positions and proper motions from Gaia can be referred to a kinematically non-rotating system, and show that the spin vector of the transformation from any rigid self-consistent catalog frame to the quasi-inertial system defined by quasars should be defined to better than 1 μas yr{sup –1}. Determination of this inertial frame by Gaia will reveal any signature of the disk orientation varying with time, improve models of the potential and dynamics of the Milky Way, test theories of gravity, and provide new insights into the orbital evolution of the Sagittarius dwarf galaxy and the Magellanic Clouds.« less

  18. The African Reference Frame (AFREF) project: a fundamental geodetic tool for Africa

    NASA Astrophysics Data System (ADS)

    Farah, H.

    2009-04-01

    AFREF has as objective the establishment and maintenance of a unified geodetic reference frame for Africa, which will support and facilitate fundamental scientific and technical projects. The installation of observation systems all over Africa will provide important data that can be used in many different scientific fields (e.g., geodynamics, meteorological). Furthermore, AFREF will create an uniform frame that will support development projects, uniform environmental and mapping programmes as well as aid in resolving current and future international boundary disputes. This reference frame will be based on the International Terrestrial Reference Frame (ITRF) and will be realised through the establishment of a network of permanent Global Navigation Satellite System (GNSS) receivers. In close collaboration with several institutional role players, AFREF is an initiative of the United Nations Economic Commission for Africa (UNECA) Committee on Development Information (CODI). A steering committee is currently responsible for the over-all management and coordination of the implementation of AFREF. Implementation of AFREF is envisaged to be at national level in collaboration with National Mapping Organizations. Furthermore, many scientific Institutions are contributing for the densification of the network. The current status of the AFREF network will be discussed in detail. Several CORS systems have been installed to support AFREF specifically. In addition, most or all of the IGS stations located in Africa will automatically qualify as AFREF core stations. Furthermore, we will show examples of interaction between specific projects and AFREF that are contributing for the development of science in Africa.

  19. Frames of reference in spatial language acquisition.

    PubMed

    Shusterman, Anna; Li, Peggy

    2016-08-01

    Languages differ in how they encode spatial frames of reference. It is unknown how children acquire the particular frame-of-reference terms in their language (e.g., left/right, north/south). The present paper uses a word-learning paradigm to investigate 4-year-old English-speaking children's acquisition of such terms. In Part I, with five experiments, we contrasted children's acquisition of novel word pairs meaning left-right and north-south to examine their initial hypotheses and the relative ease of learning the meanings of these terms. Children interpreted ambiguous spatial terms as having environment-based meanings akin to north and south, and they readily learned and generalized north-south meanings. These studies provide the first direct evidence that children invoke geocentric representations in spatial language acquisition. However, the studies leave unanswered how children ultimately acquire "left" and "right." In Part II, with three more experiments, we investigated why children struggle to master body-based frame-of-reference words. Children successfully learned "left" and "right" when the novel words were systematically introduced on their own bodies and extended these words to novel (intrinsic and relative) uses; however, they had difficulty learning to talk about the left and right sides of a doll. This difficulty was paralleled in identifying the left and right sides of the doll in a non-linguistic memory task. In contrast, children had no difficulties learning to label the front and back sides of a doll. These studies begin to paint a detailed account of the acquisition of spatial terms in English, and provide insights into the origins of diverse spatial reference frames in the world's languages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Co-adding techniques for image-based wavefront sensing for segmented-mirror telescopes

    NASA Astrophysics Data System (ADS)

    Smith, J. S.; Aronstein, David L.; Dean, Bruce H.; Acton, D. S.

    2007-09-01

    Image-based wavefront sensing algorithms are being used to characterize the optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be co-added in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on each PSF frame individually and average the resulting wavefronts. The choice of co-add methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using models and data from the James Webb Space Telescope (JWST) Testbed Telescope (TBT), we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the co-add method. Of particular interest, segment piston is more accurately recovered in "image-plane space" co-adding, while segment tip/tilt is recovered in "pupil-plane space" co-adding.

  1. U.S. Geological Survey National Computer Technology Meeting: Program and Abstracts, Norfolk, Virginia, May 17-22, 1992

    DTIC Science & Technology

    1992-05-01

    formats, and character formats that can easily integrate graphics and text into one document. FrameMaker is one of few ERP software programs that has...easier and faster using ERP software. The DIS-II ERP software program is FrameMaker by Frame Technology, Incorporated. FrameMaker uses the X window...functions, calculus, relations, and other complicated math applications. FrameMaker permits the user to define formats for master pages, reference pages

  2. Optical voltage reference

    DOEpatents

    Rankin, Richard; Kotter, Dale

    1994-01-01

    An optical voltage reference for providing an alternative to a battery source. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function.

  3. A computational model for reference-frame synthesis with applications to motion perception.

    PubMed

    Clarke, Aaron M; Öğmen, Haluk; Herzog, Michael H

    2016-09-01

    As discovered by the Gestaltists, in particular by Duncker, we often perceive motion to be within a non-retinotopic reference frame. For example, the motion of a reflector on a bicycle appears to be circular, whereas, it traces out a cycloidal path with respect to external world coordinates. The reflector motion appears to be circular because the human brain subtracts the horizontal motion of the bicycle from the reflector motion. The bicycle serves as a reference frame for the reflector motion. Here, we present a general mathematical framework, based on vector fields, to explain non-retinotopic motion processing. Using four types of non-retinotopic motion paradigms, we show how the theory works in detail. For example, we show how non-retinotopic motion in the Ternus-Pikler display can be computed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Orbital motions of astronomical bodies and their centre of mass from different reference frames: a conceptual step between the geocentric and heliocentric models

    NASA Astrophysics Data System (ADS)

    Guerra, André G. C.; Simeão Carvalho, Paulo

    2016-09-01

    The motion of astronomical bodies and the centre of mass of the system is not always well perceived by students. One of the struggles is the conceptual change of reference frame, which is the same that held back the acceptance of the Heliocentric model over the Geocentric one. To address the question, the notion of centre of mass, motion equations (and their numerical solution for a system of multiple bodies), and change of frame of reference is introduced. The discussion is done based on conceptual and real world examples, using the solar system. Consequently, through the use of simple ‘do it yourself’ methods and basic equations, students can debate complex motions, and have a wider and potentially effective understanding of physics.

  5. Spiking cortical model based non-local means method for despeckling multiframe optical coherence tomography data

    NASA Astrophysics Data System (ADS)

    Gu, Yameng; Zhang, Xuming

    2017-05-01

    Optical coherence tomography (OCT) images are severely degraded by speckle noise. Existing methods for despeckling multiframe OCT data cannot deliver sufficient speckle suppression while preserving image details well. To address this problem, the spiking cortical model (SCM) based non-local means (NLM) method has been proposed in this letter. In the proposed method, the considered frame and two neighboring frames are input into three SCMs to generate the temporal series of pulse outputs. The normalized moment of inertia (NMI) of the considered patches in the pulse outputs is extracted to represent the rotational and scaling invariant features of the corresponding patches in each frame. The pixel similarity is computed based on the Euclidean distance between the NMI features and used as the weight. Each pixel in the considered frame is restored by the weighted averaging of all pixels in the pre-defined search window in the three frames. Experiments on the real multiframe OCT data of the pig eye demonstrate the advantage of the proposed method over the frame averaging method, the multiscale sparsity based tomographic denoising method, the wavelet-based method and the traditional NLM method in terms of visual inspection and objective metrics such as signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), equivalent number of looks (ENL) and cross-correlation (XCOR).

  6. Effects of visual information regarding allocentric processing in haptic parallelity matching.

    PubMed

    Van Mier, Hanneke I

    2013-10-01

    Research has revealed that haptic perception of parallelity deviates from physical reality. Large and systematic deviations have been found in haptic parallelity matching most likely due to the influence of the hand-centered egocentric reference frame. Providing information that increases the influence of allocentric processing has been shown to improve performance on haptic matching. In this study allocentric processing was stimulated by providing informative vision in haptic matching tasks that were performed using hand- and arm-centered reference frames. Twenty blindfolded participants (ten men, ten women) explored the orientation of a reference bar with the non-dominant hand and subsequently matched (task HP) or mirrored (task HM) its orientation on a test bar with the dominant hand. Visual information was provided by means of informative vision with participants having full view of the test bar, while the reference bar was blocked from their view (task VHP). To decrease the egocentric bias of the hands, participants also performed a visual haptic parallelity drawing task (task VHPD) using an arm-centered reference frame, by drawing the orientation of the reference bar. In all tasks, the distance between and orientation of the bars were manipulated. A significant effect of task was found; performance improved from task HP, to VHP to VHPD, and HM. Significant effects of distance were found in the first three tasks, whereas orientation and gender effects were only significant in tasks HP and VHP. The results showed that stimulating allocentric processing by means of informative vision and reducing the egocentric bias by using an arm-centered reference frame led to most accurate performance on parallelity matching. © 2013 Elsevier B.V. All rights reserved.

  7. 78 FR 46528 - Surety Bond Guarantee Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... proposing to reduce the time frame allowed for a Surety to reimburse or credit SBA for salvage and recovery... the time frame reference required by the Recovery Act, which has expired, and by inserting the...)(1). SBA is proposing to reduce the time frame allowed for a Prior Approval Surety to submit a claim...

  8. Some aspects of an induced electric dipole moment in rotating and non-rotating frames.

    PubMed

    Oliveira, Abinael B; Bakke, Knut

    2017-06-01

    Quantum effects on a neutral particle (atom or molecule) with an induced electric dipole moment are investigated when it is subject to the Kratzer potential and a scalar potential proportional to the radial distance. In addition, this neutral is placed in a region with electric and magnetic fields. This system is analysed in both non-rotating and rotating reference frames. Then, it is shown that bound state solutions to the Schrödinger equation can be achieved and, in the search for polynomial solutions to the radial wave function, a restriction on the values of the cyclotron frequency is analysed in both reference frames.

  9. The Internal/External Frame of Reference of Academic Self-Concept: Extension to a Foreign Language and the Role of Language of Instruction

    ERIC Educational Resources Information Center

    Xu, Man K.; Marsh, Herbert W.; Hau, Kit-Tai; Ho, Irene T.; Morin, Alexandre J. S.; Abduljabbar, Adel S.

    2013-01-01

    The internal/external frame of reference (I/E) model (Marsh, 1986) posits that the effects of contrasting math and verbal domains of achievement are positive for matching academic self-concepts (ASCs) but negative for nonmatching ASCs (i.e., math achievement on verbal ASC; verbal achievement on math ASC). We extend the classic I/E model by…

  10. The Longitudinal Interplay of Students' Academic Self-Concepts and Achievements within and across Domains: Replicating and Extending the Reciprocal Internal/External Frame of Reference Model

    ERIC Educational Resources Information Center

    Niepel, Christoph; Brunner, Martin; Preckel, Franzis

    2014-01-01

    Students' cognitive and motivational profiles have a large impact on their academic careers. The development of such profiles can partly be explained by the reciprocal internal/external frame of reference model (RI/E model). The RI/E model predicts positive and negative longitudinal effects between academic self-concepts and achievements within…

  11. An Analysis of the Accessibility of Earth-Approaching Asteroids.

    DTIC Science & Technology

    1985-12-01

    coordinate system. Outputs are the X,Y,Z coordinates of the sun in the geocentric-equatorial coordinate system. The obliquity of the ecliptic is a variable...All positions and velocities are calculated in heliocentric- ecliptic coordinates thus requiring no transformations into unusual frames of reference...tion vectors of the departure and arrival planets in the heliocentric- ecliptic reference frame. ,\\. , V I(W() - / n (16) %: ~22% .b The angle between

  12. Explaining as Mediated Action: An Analysis of Pre-Service Teachers' Account of Forces of Inertia in Non-Inertial Frames of Reference

    ERIC Educational Resources Information Center

    de Pereira, Alexsandro Pereira; Lima Junior, Paulo; Rodrigues, Renato Felix

    2016-01-01

    Explaining is one of the most important everyday practices in science education. In this article, we examine how scientific explanations could serve as cultural tools for members of a group of pre-service physics teachers. Specifically, we aim at their use of explanations about forces of inertia in non-inertial frames of reference. A basic…

  13. The principle of relativity, superluminality and EPR experiments. "Riserratevi sotto coverta ..."

    NASA Astrophysics Data System (ADS)

    Cocciaro, B.

    2015-07-01

    The principle of relativity claims the invariance of the results for experiments carried out in inertial reference frames if the system under examination is not in interaction with the outside world. In this paper it is analysed a model suggested by J. S. Bell, and later developed by P. H. Eberhard, D. Bohm and B. Hiley on the basis of which the EPR correlations would be due to superluminal exchanges between the various parts of the entangled system under examination. In the model the existence of a privileged reference frame (PF) for the propagation of superluminal signals is hypothesized so that these superluminal signals may not give rise to causal paradoxes. According to this model, in an EPR experiment, the entangled system interacts with the outer world since the result of the experiment depends on an entity (the reference frame PF) that is not prepared by the experimenter. The existence of this privileged reference frame makes the model non invariant for Lorentz transformations. In this paper, in opposition to what claimed by the authors mentioned above, the perfect compatibility of the model with the theory of relativity is strongly maintained since, as already said, the principle of relativity does not require that the results of experiments carried out on systems interacting with the outside world should be invariant.

  14. Effects of non-tidal atmospheric loading on a Kalman filter-based terrestrial reference frame

    NASA Astrophysics Data System (ADS)

    Abbondanza, C.; Altamimi, Z.; Chin, T. M.; Collilieux, X.; Dach, R.; Heflin, M. B.; Gross, R. S.; König, R.; Lemoine, F. G.; MacMillan, D. S.; Parker, J. W.; van Dam, T. M.; Wu, X.

    2013-12-01

    The International Terrestrial Reference Frame (ITRF) adopts a piece-wise linear model to parameterize regularized station positions and velocities. The space-geodetic (SG) solutions from VLBI, SLR, GPS and DORIS global networks used as input in the ITRF combination process account for tidal loading deformations, but ignore the non-tidal part. As a result, the non-linear signal observed in the time series of SG-derived station positions in part reflects non-tidal loading displacements not introduced in the SG data reduction. In this analysis, the effect of non-tidal atmospheric loading (NTAL) corrections on the TRF is assessed adopting a Remove/Restore approach: (i) Focusing on the a-posteriori approach, the NTAL model derived from the National Center for Environmental Prediction (NCEP) surface pressure is removed from the SINEX files of the SG solutions used as inputs to the TRF determinations. (ii) Adopting a Kalman-filter based approach, a linear TRF is estimated combining the 4 SG solutions free from NTAL displacements. (iii) Linear fits to the NTAL displacements removed at step (i) are restored to the linear reference frame estimated at (ii). The velocity fields of the (standard) linear reference frame in which the NTAL model has not been removed and the one in which the model has been removed/restored are compared and discussed.

  15. Learning to Explain Astronomy Across Moving Frames of Reference: Exploring the role of classroom and planetarium-based instructional contexts

    NASA Astrophysics Data System (ADS)

    Plummer, Julia Diane; Kocareli, Alicia; Slagle, Cynthia

    2014-05-01

    Learning astronomy involves significant spatial reasoning, such as learning to describe Earth-based phenomena and understanding space-based explanations for those phenomena as well as using the relevant size and scale information to interpret these frames of reference. This study examines daily celestial motion (DCM) as one case of how children learn to move between frames of reference in astronomy wherein one explains Earth-based descriptions of the Sun's, Moon's, and stars' apparent motion using the Earth's daily rotation. We analysed interviews with 8-9-year-old students (N = 99) who participated in one of four instructional conditions emphasizing: the space-based perspective; the Earth-based perspective in the planetarium; constructing explanations for the Earth-based observations; and a combination of the planetarium plus constructing explanations in the classroom. We used an embodied cognition framework to analyse outcomes while also considering challenges learners face due to the high cognitive demands of spatial reasoning. Results support the hypothesis that instruction should engage students in learning both the Earth-based observations and space-based explanations, as focusing on a single frame of reference resulted in less sophisticated explanations; however, few students were able to construct a fully scientific explanation after instruction.

  16. Optical voltage reference

    DOEpatents

    Rankin, R.; Kotter, D.

    1994-04-26

    An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

  17. Ultrahigh-frame CCD imagers

    NASA Astrophysics Data System (ADS)

    Lowrance, John L.; Mastrocola, V. J.; Renda, George F.; Swain, Pradyumna K.; Kabra, R.; Bhaskaran, Mahalingham; Tower, John R.; Levine, Peter A.

    2004-02-01

    This paper describes the architecture, process technology, and performance of a family of high burst rate CCDs. These imagers employ high speed, low lag photo-detectors with local storage at each photo-detector to achieve image capture at rates greater than 106 frames per second. One imager has a 64 x 64 pixel array with 12 frames of storage. A second imager has a 80 x 160 array with 28 frames of storage, and the third imager has a 64 x 64 pixel array with 300 frames of storage. Application areas include capture of rapid mechanical motion, optical wavefront sensing, fluid cavitation research, combustion studies, plasma research and wind-tunnel-based gas dynamics research.

  18. High speed line-scan confocal imaging of stimulus-evoked intrinsic optical signals in the retina

    PubMed Central

    Li, Yang-Guo; Liu, Lei; Amthor, Franklin; Yao, Xin-Cheng

    2010-01-01

    A rapid line-scan confocal imager was developed for functional imaging of the retina. In this imager, an acousto-optic deflector (AOD) was employed to produce mechanical vibration- and inertia-free light scanning, and a high-speed (68,000 Hz) linear CCD camera was used to achieve sub-cellular and sub-millisecond spatiotemporal resolution imaging. Two imaging modalities, i.e., frame-by-frame and line-by-line recording, were validated for reflected light detection of intrinsic optical signals (IOSs) in visible light stimulus activated frog retinas. Experimental results indicated that fast IOSs were tightly correlated with retinal stimuli, and could track visible light flicker stimulus frequency up to at least 2 Hz. PMID:20125743

  19. THE POSITION/STRUCTURE STABILITY OF FOUR ICRF2 SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomalont, Ed; Johnston, Kenneth; Fey, Alan

    2011-03-15

    Four close radio sources in the International Celestial Reference Frame (ICRF) catalog were observed using phase referencing with the VLBA at 43, 23, and 8.6 GHz, and with VERA at 23 GHz over a one-year period. The goal was to determine the stability of the radio cores and to assess structure effects associated with positions in the ICRF. Although the four sources were compact at 8.6 GHz, the VLBA images at 43 GHz with 0.3 mas resolution showed that all were composed of several components. A component in each source was identified as the radio core using some or allmore » of the following emission properties: compactness, spectral index, location at the end of the extended emission region, and stationary in the sky. Over the observing period, the relative positions between the four radio cores were constant to 0.02 mas, the phase-referencing positional accuracy obtained at 23 and 43 GHz among the sources, suggesting that once a radio core is identified, it remains stationary in the sky to this accuracy. Other radio components in two of the four sources had detectable motion in the radio jet direction. Comparison of the 23 and 43 GHz VLBA images with the VLBA 8.6 GHz images and the ICRF positions suggests that some ICRF positions are dominated by a moving jet component; hence, they can be displaced up to 0.5 mas from the radio core and may also reflect the motion of the jet component. Future astrometric efforts to determine a more accurate quasar reference frame at 23 and 43 GHz and from the VLBI2010 project are discussed, and supporting VLBA or European VLBI Network observations of ICRF sources at 43 GHz are recommended in order to determine the internal structure of the sources. A future collaboration between the radio (ICRF) and the optical frame of GAIA is discussed.« less

  20. Quantum frames

    NASA Astrophysics Data System (ADS)

    Brown, Matthew J.

    2014-02-01

    The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.

  1. Fast optically sectioned fluorescence HiLo endomicroscopy

    PubMed Central

    Lim, Daryl; Mertz, Jerome

    2012-01-01

    Abstract. We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies. PMID:22463023

  2. Novel toggle-rate based energy-efficient scheme for heavy load real-time IM-DD OFDM-PON with ONU LLID identification in time-domain using amplitude decision.

    PubMed

    Qin, Youxiang; Zhang, Junjie

    2017-07-10

    A novel low complexity and energy-efficient scheme by controlling the toggle-rate of ONU with time-domain amplitude identification is proposed for a heavy load downlink in an intensity-modulation and direct-detection orthogonal frequency division multiplexing passive optical network (IM-DD OFDM-PON). In a conventional OFDM-PON downlink, all ONUs have to perform demodulation for all the OFDM frames in a broadcast way no matter whether the frames are targeted to or not, which causes a huge energy waste. However, in our scheme, the optical network unit (ONU) logical link identifications (LLIDs) are inserted into each downlink OFDM frame in time-domain at the optical line terminal (OLT) side. At the ONU side, the LLID is obtained with a low complexity and high precision amplitude identification method. The ONU sets the toggle-rate of demodulation module to zero when the frames are not targeted to, which avoids unnecessary digital signal processing (DSP) energy consumption. Compared with the sleep-mode methods consisting of clock recovery and synchronization, toggle-rate shows its advantage in fast changing, which is more suitable for the heavy load scenarios. Moreover, for the first time to our knowledge, the characteristics of the proposed scheme are investigated in a real-time IM-DD OFDM system, which performs well at the received optical power as low as -21dBm. The experimental results show that 25.1% energy consumption can be saved in the receiver compared to the conventional configurations.

  3. Compilation of Published Estimates of Annual Geocenter Motions Using Space Geodesy

    NASA Technical Reports Server (NTRS)

    Elosegui, P.

    2005-01-01

    The definition of the term "geocenter motion" depends on the adopted origin of the reference frame. Common reference frames used in Space Geodesy include: the center of mass of the whole Earth (CM), the center of mass of the Solid Earth without mass load (CE), and the center of figure of the outer surface of the Solid Earth (CF). There are two established definitions of the term geocenter: one, the vector offset of CF relative to CM and, two, the reverse, the vector offset of CM relative to CF. Obviously, their amplitude is the same and their phase differs by 180 deg. Following Dong et al. [2003], we label the first X(sub CF, sup CM) and the second X(sup CF, sup CM) (i.e., the superscript represents the frame, the subscript represents any point in the frame).

  4. JPL VLBI Analysis Center IVS Annual Report for 2004

    NASA Technical Reports Server (NTRS)

    Jacobs, Chris

    2005-01-01

    This report describes the activities of the JPL VLBI analysis center for the year 2004. We continue to be celestial reference frame, terrestrial reference frame, earth orientation, and spacecraft navigation work using the VLBI technique. There are several areas of our work that are undergoing active development. In 2004 we demonstrated 1 mm level troposphere calibration on an intercontinental baseline. We detected our first X/Ka (8.4/32 GHz) VLBI fringes. We began to deploy Mark 5 recorders and to interface the Mark 5 units to our software correlator. We also have actively participated in the international VLBI community through our involvement in six papers at the February IVS meeting and by collaborating on a number of projects such as densifying the S/X celestial frame creating celestial frames at K (24 GHz) and Q-bands ($# GHz)>

  5. Assessment of the possible contribution of space ties on-board GNSS satellites to the terrestrial reference frame

    NASA Astrophysics Data System (ADS)

    Bruni, Sara; Rebischung, Paul; Zerbini, Susanna; Altamimi, Zuheir; Errico, Maddalena; Santi, Efisio

    2018-04-01

    The realization of the international terrestrial reference frame (ITRF) is currently based on the data provided by four space geodetic techniques. The accuracy of the different technique-dependent materializations of the frame physical parameters (origin and scale) varies according to the nature of the relevant observables and to the impact of technique-specific errors. A reliable computation of the ITRF requires combining the different inputs, so that the strengths of each technique can compensate for the weaknesses of the others. This combination, however, can only be performed providing some additional information which allows tying together the independent technique networks. At present, the links used for that purpose are topometric surveys (local/terrestrial ties) available at ITRF sites hosting instruments of different techniques. In principle, a possible alternative could be offered by spacecrafts accommodating the positioning payloads of multiple geodetic techniques realizing their co-location in orbit (space ties). In this paper, the GNSS-SLR space ties on-board GPS and GLONASS satellites are thoroughly examined in the framework of global reference frame computations. The investigation focuses on the quality of the realized physical frame parameters. According to the achieved results, the space ties on-board GNSS satellites cannot, at present, substitute terrestrial ties in the computation of the ITRF. The study is completed by a series of synthetic simulations investigating the impact that substantial improvements in the volume and quality of SLR observations to GNSS satellites would have on the precision of the GNSS frame parameters.

  6. Motion compensation and noise tolerance in phase-shifting digital in-line holography.

    PubMed

    Stenner, Michael D; Neifeld, Mark A

    2006-05-15

    We present a technique for phase-shifting digital in-line holography which compensates for lateral object motion. By collecting two frames of interference between object and reference fields with identical reference phase, one can estimate the lateral motion that occurred between frames using the cross-correlation. We also describe a very general linear framework for phase-shifting holographic reconstruction which minimizes additive white Gaussian noise (AWGN) for an arbitrary set of reference field amplitudes and phases. We analyze the technique's sensitivity to noise (AWGN, quantization, and shot), errors in the reference fields, errors in motion estimation, resolution, and depth of field. We also present experimental motion-compensated images achieving the expected resolution.

  7. Free Space Optical Communication for Tactical Operations

    DTIC Science & Technology

    2016-09-01

    communications. Military communications further require secure connections for data transfer . The Free Space Optical (FSO) communication system, with its...communications. Military communications further require secure connections for data transfer . The Free Space Optical (FSO) communication system...13. Percentage of Frame Loss at Location 1A .................................... 34 Figure 14. Received Power at Location 1A

  8. The Gemini/HST Galaxy Cluster Project: Redshift 0.2–1.0 Cluster Sample, X-Ray Data, and Optical Photometry Catalog

    NASA Astrophysics Data System (ADS)

    Jørgensen, Inger; Chiboucas, Kristin; Hibon, Pascale; Nielsen, Louise D.; Takamiya, Marianne

    2018-04-01

    The Gemini/HST Galaxy Cluster Project (GCP) covers 14 z = 0.2–1.0 clusters with X-ray luminosity of {L}500≥slant {10}44 {erg} {{{s}}}-1 in the 0.1–2.4 keV band. In this paper, we provide homogeneously calibrated X-ray luminosities, masses, and radii, and we present the complete catalog of the ground-based photometry for the GCP clusters. The clusters were observed with either Gemini North or South in three or four of the optical passbands g‧, r‧, i‧, and z‧. The photometric catalog includes consistently calibrated total magnitudes, colors, and geometrical parameters. The photometry reaches ≈25 mag in the passband closest to the rest-frame B band. We summarize comparisons of our photometry with data from the Sloan Digital Sky Survey. We describe the sample selection for our spectroscopic observations, and establish the calibrations to obtain rest-frame magnitudes and colors. Finally, we derive the color–magnitude relations for the clusters, and briefly discuss these in the context of evolution with redshift. Consistent with our results based on spectroscopic data, the color–magnitude relations support passive evolution of the red sequence galaxies. The absence of change in the slope with redshift constrains the allowable age variation along the red sequence to <0.05 dex between the brightest cluster galaxies and those four magnitudes fainter. This paper serves as the main reference for the GCP cluster and galaxy selection, X-ray data, and ground-based photometry.

  9. Multiwavelength study of Chandra X-ray sources in the Antennae

    NASA Astrophysics Data System (ADS)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2011-01-01

    We use Wide-field InfraRed Camera (WIRC) infrared (IR) images of the Antennae (NGC 4038/4039) together with the extensive catalogue of 120 X-ray point sources to search for counterpart candidates. Using our proven frame-tie technique, we find 38 X-ray sources with IR counterparts, almost doubling the number of IR counterparts to X-ray sources that we first identified. In our photometric analysis, we consider the 35 IR counterparts that are confirmed star clusters. We show that the clusters with X-ray sources tend to be brighter, Ks≈ 16 mag, with (J-Ks) = 1.1 mag. We then use archival Hubble Space Telescope (HST) images of the Antennae to search for optical counterparts to the X-ray point sources. We employ our previous IR-to-X-ray frame-tie as an intermediary to establish a precise optical-to-X-ray frame-tie with <0.6 arcsec rms positional uncertainty. Due to the high optical source density near the X-ray sources, we determine that we cannot reliably identify counterparts. Comparing the HST positions to the 35 identified IR star cluster counterparts, we find optical matches for 27 of these sources. Using Bruzual-Charlot spectral evolutionary models, we find that most clusters associated with an X-ray source are massive, and young, ˜ 106 yr.

  10. Framing Vision: An Examination of Framing, Sensegiving, and Sensemaking during a Change Initiative

    ERIC Educational Resources Information Center

    Hamilton, William

    2016-01-01

    The purpose of this short article is to review the findings from an instrumental case study that examines how a college president used what this article refers to as "frame alignment processes" to mobilize internal and external support for a college initiative--one that achieved success under the current president. Specifically, I…

  11. Extending F10.7’s Time Resolution to Capture Solar Flare Phenomena

    DTIC Science & Technology

    2008-07-01

    Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 REFERENCES ...accelera- tion, (iii) maximum power is emitted in a direction perpendicular to the acceleration, and (iv) the radiation from protons is insignificant...then is P = 2 3 e2 c3 v2⊥e 2B2γ2 m2ec 2 . (2.19) In the electron reference frame, the power emitted is dipolar and in the rest frame, the power is

  12. How and Why to Do VLBI on GPS

    NASA Technical Reports Server (NTRS)

    Dickey, J. M.

    2010-01-01

    In order to establish the position of the center of mass of the Earth in the International Celestial Reference Frame, observations of the Global Positioning Satellite (GPS) constellation using the IVS network are important. With a good frame-tie between the coordinates of the IVS telescopes and nearby GPS receivers, plus a common local oscillator reference signal, it should be possible to observe and record simultaneously signals from the astrometric calibration sources and the GPS satellites. The standard IVS solution would give the atmospheric delay and clock offsets to use in analysis of the GPS data. Correlation of the GPS signals would then give accurate orbital parameters of the satellites in the ICRF reference frame, i.e., relative to the positions of the astrometric sources. This is particularly needed to determine motion of the center of mass of the earth along the rotation axis.

  13. Users manual for a one-dimensional Lagrangian transport model

    USGS Publications Warehouse

    Schoellhamer, D.H.; Jobson, H.E.

    1986-01-01

    A Users Manual for the Lagrangian Transport Model (LTM) is presented. The LTM uses Lagrangian calculations that are based on a reference frame moving with the river flow. The Lagrangian reference frame eliminates the need to numerically solve the convective term of the convection-diffusion equation and provides significant numerical advantages over the more commonly used Eulerian reference frame. When properly applied, the LTM can simulate riverine transport and decay processes within the accuracy required by most water quality studies. The LTM is applicable to steady or unsteady one-dimensional unidirectional flows in fixed channels with tributary and lateral inflows. Application of the LTM is relatively simple and optional capabilities improve the model 's convenience. Appendices give file formats and three example LTM applications that include the incorporation of the QUAL II water quality model 's reaction kinetics into the LTM. (Author 's abstract)

  14. Nursing home staff members' subjective frames of reference on residents' achievement of ego integrity: A Q-methodology study.

    PubMed

    Lim, Sun-Young; Chang, Sung-Ok

    2018-01-01

    To discover the structure of the frames of reference for nursing home staff members' subjective judgment of residents' achievement of ego integrity. Q-methodology was applied. Twenty-eight staff members who were working in a nursing home sorted 34 Q-statements into the shape of a normal distribution. A centroid factor analysis and varimax rotation, using the PQ-method program, revealed four factors: identifying clues to residents' positive acceptance of their whole life span, identifying residents' ways of enjoying their current life, referencing residents' attitudes and competencies toward harmonious relationships, and identifying residents' integrated efforts to establish self-esteem. These subjective frames of reference need to be investigated in order to improve the relationships with nursing home residents and their quality of life. Consequently, the fundamental monitoring tools to help staff members make subjective judgments can be formed. © 2017 Japan Academy of Nursing Science.

  15. What constitutes an efficient reference frame for vision?

    PubMed Central

    Tadin, Duje; Lappin, Joseph S.; Blake, Randolph; Grossman, Emily D.

    2015-01-01

    Vision requires a reference frame. To what extent does this reference frame depend on the structure of the visual input, rather than just on retinal landmarks? This question is particularly relevant to the perception of dynamic scenes, when keeping track of external motion relative to the retina is difficult. We tested human subjects’ ability to discriminate the motion and temporal coherence of changing elements that were embedded in global patterns and whose perceptual organization was manipulated in a way that caused only minor changes to the retinal image. Coherence discriminations were always better when local elements were perceived to be organized as a global moving form than when they were perceived to be unorganized, individually moving entities. Our results indicate that perceived form influences the neural representation of its component features, and from this, we propose a new method for studying perceptual organization. PMID:12219092

  16. Research Activities for the DORIS Contribution to the Next International Terrestrial Reference Frame

    NASA Technical Reports Server (NTRS)

    Soudarin, L.; Moreaux, G.; Lemoine, F.; Willis, P.; Stepanek, P.; Otten, M.; Govind, R.; Kuzin, S.; Ferrage, P.

    2012-01-01

    For the preparation of ITRF2008, the IDS processed data from 1993 to 2008, including data from TOPEX/Poseidon, the SPOT satellites and Envisat in the weekly solutions. Since the development of ITRF2008, the IDS has been engaged in a number of efforts to try and improve the reference frame solutions. These efforts include (i) assessing the contribution of the new DORIS satellites, Jason-2 and Cryosat2 (2008-2011), (ii) individually analyzing the DORIS satellite contributions to geocenter and scale, and (iii) improving orbit dynamics (atmospheric loading effects, satellite surface force modeling. . . ). We report on the preliminary results from these research activities, review the status of the IDS combination which is now routinely generated from the contributions of the IDS analysis centers, and discuss the prospects for continued improvement in the DORIS contribution to the next international reference frame.

  17. Seasonal station variations in the Vienna VLBI terrestrial reference frame VieTRF16a

    NASA Astrophysics Data System (ADS)

    Krásná, Hana; Böhm, Johannes; Madzak, Matthias

    2017-04-01

    The special analysis center of the International Very Long Baseline Interferometry (VLBI) Service for Geodesy and Astrometry (IVS) at TU Wien (VIE) routinely analyses the VLBI measurements and estimates its own Terrestrial Reference Frame (TRF) solutions. We present our latest solution VieTRF16a (1979.0 - 2016.5) computed with the software VieVS version 3.0. Several recent updates of the software have been applied, e.g., the estimation of annual and semi-annual station variations as global parameters. The VieTRF16a is determined in the form of the conventional model (station position and its linear velocity) simultaneously with the celestial reference frame and Earth orientation parameters. In this work, we concentrate on the seasonal station variations in the residual time series and compare our TRF with the three combined TRF solutions ITRF2014, DTRF2014 and JTRF2014.

  18. Experimental test of photonic entanglement in accelerated reference frames

    PubMed Central

    Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C.; Ursin, Rupert

    2017-01-01

    The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g—under free-fall as well on a spinning centrifuge—and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement. PMID:28489082

  19. SED16 autonomous star tracker night sky testing

    NASA Astrophysics Data System (ADS)

    Foisneau, Thierry; Piriou, Véronique; Perrimon, Nicolas; Jacob, Philippe; Blarre, Ludovic; Vilaire, Didier

    2017-11-01

    The SED16 is an autonomous multi-missions star tracker which delivers three axis satellite attitude in an inertial reference frame and the satellite angular velocity with no prior information. The qualification process of this star sensor includes five validation steps using optical star simulator, digitized image simulator and a night sky tests setup. The night sky testing was the final step of the qualification process during which all the functions of the star tracker were used in almost nominal conditions : Autonomous Acquisition of the attitude, Autonomous Tracking of ten stars. These tests were performed in Calern in the premises of the OCA (Observatoire de la Cote d'Azur). The test set-up and the test results are described after a brief review of the sensor main characteristics and qualification process.

  20. KALREF—A Kalman filter and time series approach to the International Terrestrial Reference Frame realization

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoping; Abbondanza, Claudio; Altamimi, Zuheir; Chin, T. Mike; Collilieux, Xavier; Gross, Richard S.; Heflin, Michael B.; Jiang, Yan; Parker, Jay W.

    2015-05-01

    The current International Terrestrial Reference Frame is based on a piecewise linear site motion model and realized by reference epoch coordinates and velocities for a global set of stations. Although linear motions due to tectonic plates and glacial isostatic adjustment dominate geodetic signals, at today's millimeter precisions, nonlinear motions due to earthquakes, volcanic activities, ice mass losses, sea level rise, hydrological changes, and other processes become significant. Monitoring these (sometimes rapid) changes desires consistent and precise realization of the terrestrial reference frame (TRF) quasi-instantaneously. Here, we use a Kalman filter and smoother approach to combine time series from four space geodetic techniques to realize an experimental TRF through weekly time series of geocentric coordinates. In addition to secular, periodic, and stochastic components for station coordinates, the Kalman filter state variables also include daily Earth orientation parameters and transformation parameters from input data frames to the combined TRF. Local tie measurements among colocated stations are used at their known or nominal epochs of observation, with comotion constraints applied to almost all colocated stations. The filter/smoother approach unifies different geodetic time series in a single geocentric frame. Fragmented and multitechnique tracking records at colocation sites are bridged together to form longer and coherent motion time series. While the time series approach to TRF reflects the reality of a changing Earth more closely than the linear approximation model, the filter/smoother is computationally powerful and flexible to facilitate incorporation of other data types and more advanced characterization of stochastic behavior of geodetic time series.

  1. Examination of global correlations in ground deformation for terrestrial reference frame estimation

    NASA Astrophysics Data System (ADS)

    Chin, T. M.; Abbondanza, C.; Argus, D. F.; Gross, R. S.; Heflin, M. B.; Parker, J. W.; Wu, X.

    2016-12-01

    The KALman filter for REFerence frames (KALREF, Wu et al. 2015) has been developed to produce terrestrial reference frame (TRF) solutions. TRFs consist of precise position coordinates and velocity vectors of terrestrial reference sites (with the geocenter as the origin) along with the Earth orientation parameters, and they are produced by combining decades worth of space geodetic data using site tie data. To perform the combination, KALREF relies on stochastic models of the geophysical processes that are causing the Earth's surface to deform and reference sites to be displaced. We are investigating application of the GRACE data to improve the KALREF stochastic models by determining spatial statistics of the deformation of the Earth's surface caused by mass loading. A potential target of improvement is the non-uniform distribution of the geodetic observation sites, which can introduce bias in TRF estimates of the geocenter. The global and relatively uniform coverage of the GRACE measurements is expected to be free of such bias and allow us to improve physical realism of the stochastic model. For such a goal, we examine the spatial correlations in ground deformation derived from several GRACE data sets.[Wu et al. 2015: Journal of Geophysical Research (Solid Earth) 120:3775-3802

  2. SPLASH-SXDF Multi-wavelength Photometric Catalog

    NASA Astrophysics Data System (ADS)

    Mehta, Vihang; Scarlata, Claudia; Capak, Peter; Davidzon, Iary; Faisst, Andreas; Hsieh, Bau Ching; Ilbert, Olivier; Jarvis, Matt; Laigle, Clotilde; Phillips, John; Silverman, John; Strauss, Michael A.; Tanaka, Masayuki; Bowler, Rebecca; Coupon, Jean; Foucaud, Sébastien; Hemmati, Shoubaneh; Masters, Daniel; McCracken, Henry Joy; Mobasher, Bahram; Ouchi, Masami; Shibuya, Takatoshi; Wang, Wei-Hao

    2018-04-01

    We present a multi-wavelength catalog in the Subaru/XMM-Newton Deep Field (SXDF) as part of the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH). We include the newly acquired optical data from the Hyper-Suprime-Cam Subaru Strategic Program, accompanied by IRAC coverage from the SPLASH survey. All available optical and near-infrared data is homogenized and resampled on a common astrometric reference frame. Source detection is done using a multi-wavelength detection image including the u-band to recover the bluest objects. We measure multi-wavelength photometry and compute photometric redshifts as well as physical properties for ∼1.17 million objects over ∼4.2 deg2, with ∼800,000 objects in the 2.4 deg2 HSC-Ultra-Deep coverage. Using the available spectroscopic redshifts from various surveys over the range of 0 < z < 6, we verify the performance of the photometric redshifts and we find a normalized median absolute deviation of 0.023 and outlier fraction of 3.2%. The SPLASH-SXDF catalog is a valuable, publicly available resource, perfectly suited for studying galaxies in the early universe and tracing their evolution through cosmic time.

  3. Optimal Parameter Design of Coarse Alignment for Fiber Optic Gyro Inertial Navigation System.

    PubMed

    Lu, Baofeng; Wang, Qiuying; Yu, Chunmei; Gao, Wei

    2015-06-25

    Two different coarse alignment algorithms for Fiber Optic Gyro (FOG) Inertial Navigation System (INS) based on inertial reference frame are discussed in this paper. Both of them are based on gravity vector integration, therefore, the performance of these algorithms is determined by integration time. In previous works, integration time is selected by experience. In order to give a criterion for the selection process, and make the selection of the integration time more accurate, optimal parameter design of these algorithms for FOG INS is performed in this paper. The design process is accomplished based on the analysis of the error characteristics of these two coarse alignment algorithms. Moreover, this analysis and optimal parameter design allow us to make an adequate selection of the most accurate algorithm for FOG INS according to the actual operational conditions. The analysis and simulation results show that the parameter provided by this work is the optimal value, and indicate that in different operational conditions, the coarse alignment algorithms adopted for FOG INS are different in order to achieve better performance. Lastly, the experiment results validate the effectiveness of the proposed algorithm.

  4. Combined measurement system for double shield tunnel boring machine guidance based on optical and visual methods.

    PubMed

    Lin, Jiarui; Gao, Kai; Gao, Yang; Wang, Zheng

    2017-10-01

    In order to detect the position of the cutting shield at the head of a double shield tunnel boring machine (TBM) during the excavation, this paper develops a combined measurement system which is mainly composed of several optical feature points, a monocular vision sensor, a laser target sensor, and a total station. The different elements of the combined system are mounted on the TBM in suitable sequence, and the position of the cutting shield in the reference total station frame is determined by coordinate transformations. Subsequently, the structure of the feature points and matching technique for them are expounded, the position measurement method based on monocular vision is presented, and the calibration methods for the unknown relationships among different parts of the system are proposed. Finally, a set of experimental platforms to simulate the double shield TBM is established, and accuracy verification experiments are conducted. Experimental results show that the mean deviation of the system is 6.8 mm, which satisfies the requirements of double shield TBM guidance.

  5. Identification of Age-Related Macular Degeneration Using OCT Images

    NASA Astrophysics Data System (ADS)

    Arabi, Punal M., Dr; Krishna, Nanditha; Ashwini, V.; Prathibha, H. M.

    2018-02-01

    Age-related Macular Degeneration is the most leading retinal disease in the recent years. Macular degeneration occurs when the central portion of the retina, called macula deteriorates. As the deterioration occurs with the age, it is commonly referred as Age-related Macular Degeneration. This disease can be visualized by several imaging modalities such as Fundus imaging technique, Optical Coherence Tomography (OCT) technique and many other. Optical Coherence Tomography is the widely used technique for screening the Age-related Macular Degeneration disease, because it has an ability to detect the very minute changes in the retina. The Healthy and AMD affected OCT images are classified by extracting the Retinal Pigmented Epithelium (RPE) layer of the images using the image processing technique. The extracted layer is sampled, the no. of white pixels in each of the sample is counted and the mean value of the no. of pixels is calculated. The average mean value is calculated for both the Healthy and the AMD affected images and a threshold value is fixed and a decision rule is framed to classify the images of interest. The proposed method showed an accuracy of 75%.

  6. Determining the locations of the various CIRC recording format information blocks (user data blocks, C2 and C1 words and EFM frames) on a recorded compact disc

    NASA Technical Reports Server (NTRS)

    Howe, Dennis G.

    1993-01-01

    Just prior to its being EFM modulated (i.e., converted to eight-to-fourteen channel data by the EFM encoder) and written to a Compact Disc (CD), information that passes through the CIRC Block Encoder is grouped into 33-byte blocks referred to as EFM frames. Twenty four of the bytes that make up a given EFM frame are user data that was input into the CIRC encoder at various (different) times, 4 of the bytes of this same EFM frame were created by the C2 ECC encoder (each at a different time), and another 4 were created by the C1 ECC encoder (again, each at a different time). The one remaining byte of the given EFM frame, which is known as the EFM frame C&D (for Control & Display) byte, carries information that identifies which portion of the current disc program track the given EFM frame belongs to and also specifies the location of the given EFM frame on the disc (in terms of a time stamp that has a resolution of l/75th second, or 98 EFM frames). (Note: since the program track and time information is stored as a 98-byte word, a logical group consisting of 98 consecutive EFM frames must be read, and their respective C&D bytes must be catenated and decoded, before the program track identification and time position information that pertains to the entire block of 98 EFM frames can be obtained.) The C&D byte is put at the start (0th byte) of an EFM frame in real time; its placement completes the construction of the EFM frame - it is assigned just before the EFM frame enters the EFM encoder. Four distinct blocks of data are referred to: 24-byte User Input Data Blocks; 28-byte C2 words; 32-byte C1 words; and 33-byte EFM frames.

  7. High-performance parallel interface to synchronous optical network gateway

    DOEpatents

    St. John, Wallace B.; DuBois, David H.

    1996-01-01

    A system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway.

  8. A-frame model for metaphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilpatrick, W.

    1982-01-01

    While literal language is successfully being subjected to automatic analysis, metaphors remain intractable. Using Minsky's frame theory the metaphoric process is viewed as a copying of stereotypic terminal clusters from the frames of the 1 degrees and 2 degrees terms of the metaphor. Stereotypic values from the two original frames share equal status in this new frame, while non-stereotypic values from the two will be kept separate for possible use in metaphoric extension. The a-frame analysis is illustrated by application to non-literary novel metaphors. Frames provide the quantity of information needed for interpretation. Certain frame values are marked as stereotypic.more » Creativity is realized by the construction of a new a-frame, and the tension is realized by the presence in a single a-frame of both shared stereotypic and discrete non-stereotypic values. 10 references.« less

  9. Object acquisition and tracking for space-based surveillance

    NASA Astrophysics Data System (ADS)

    1991-11-01

    This report presents the results of research carried out by Space Computer Corporation under the U.S. government's Small Business Innovation Research (SBIR) Program. The work was sponsored by the Strategic Defense Initiative Organization and managed by the Office of Naval Research under Contracts N00014-87-C-0801 (Phase 1) and N00014-89-C-0015 (Phase 2). The basic purpose of this research was to develop and demonstrate a new approach to the detection of, and initiation of track on, moving targets using data from a passive infrared or visual sensor. This approach differs in very significant ways from the traditional approach of dividing the required processing into time dependent, object dependent, and data dependent processing stages. In that approach individual targets are first detected in individual image frames, and the detections are then assembled into tracks. That requires that the signal to noise ratio in each image frame be sufficient for fairly reliable target detection. In contrast, our approach bases detection of targets on multiple image frames, and, accordingly, requires a smaller signal to noise ratio. It is sometimes referred to as track before detect, and can lead to a significant reduction in total system cost. For example, it can allow greater detection range for a single sensor, or it can allow the use of smaller sensor optics. Both the traditional and track before detect approaches are applicable to systems using scanning sensors, as well as those which use staring sensors.

  10. Object acquisition and tracking for space-based surveillance. Final report, Dec 88-May 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-11-27

    This report presents the results of research carried out by Space Computer Corporation under the U.S. government's Small Business Innovation Research (SBIR) Program. The work was sponsored by the Strategic Defense Initiative Organization and managed by the Office of Naval Research under Contracts N00014-87-C-0801 (Phase I) and N00014-89-C-0015 (Phase II). The basic purpose of this research was to develop and demonstrate a new approach to the detection of, and initiation of track on, moving targets using data from a passive infrared or visual sensor. This approach differs in very significant ways from the traditional approach of dividing the required processingmore » into time dependent, object-dependent, and data-dependent processing stages. In that approach individual targets are first detected in individual image frames, and the detections are then assembled into tracks. That requires that the signal to noise ratio in each image frame be sufficient for fairly reliable target detection. In contrast, our approach bases detection of targets on multiple image frames, and, accordingly, requires a smaller signal to noise ratio. It is sometimes referred to as track before detect, and can lead to a significant reduction in total system cost. For example, it can allow greater detection range for a single sensor, or it can allow the use of smaller sensor optics. Both the traditional and track before detect approaches are applicable to systems using scanning sensors, as well as those which use staring sensors.« less

  11. Simultaneous in situ Optical Monitoring Techniques during Crystal Growth of ZnSe by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, C.- H.; Feth, S.; Lehoczky, S. L.

    1998-01-01

    ZnSe crystals grown in sealed ampoules by the physical vapor transport method were monitored in situ using three techniques, simultaneously. A Michelson interferometer was set-up to observe the growth rate and surface morphological evolution. An interference pattern (interferogram) is formed by the interaction between the reflection of a HeNe laser (632.8 nm wavelength) off the crystal-vapor interface and a reference beam from the same laser. Preliminary results indicate that the rate of growth/thermal-etching can be calculated using analog data acquisition and simple fringe counting techniques. Gross surface features may also be observed using a digital frame grabber and fringe analysis software. The second in situ technique uses optical absorption to determine the partial pressures of the vapor species. The Se2 and Zn vapor species present in the sealed ampoule absorb light at characteristic wavelengths. The optical absorption is determined by monitoring the light intensity difference between the sample and reference beams. The Se2 Partial pressure profile along the length of the ampoule was estimated from the vibronic absorption peaks at 340.5, 350.8, 361.3 and 379.2 nm using the Beer's law constants established in the calibration runs of pure Se. Finally, because the high temperature crystal growth furnace contains windows, in situ visual observation of the growing crystal is also possible. The use of these techniques not only permits in situ investigation of high temperature vapor growth of semiconductors, but also offers the potential for real time feed back on the growing crystal and allows the possibility of actively controlling the growth process.

  12. Automatic Near-Real-Time Image Processing Chain for Very High Resolution Optical Satellite Data

    NASA Astrophysics Data System (ADS)

    Ostir, K.; Cotar, K.; Marsetic, A.; Pehani, P.; Perse, M.; Zaksek, K.; Zaletelj, J.; Rodic, T.

    2015-04-01

    In response to the increasing need for automatic and fast satellite image processing SPACE-SI has developed and implemented a fully automatic image processing chain STORM that performs all processing steps from sensor-corrected optical images (level 1) to web-delivered map-ready images and products without operator's intervention. Initial development was tailored to high resolution RapidEye images, and all crucial and most challenging parts of the planned full processing chain were developed: module for automatic image orthorectification based on a physical sensor model and supported by the algorithm for automatic detection of ground control points (GCPs); atmospheric correction module, topographic corrections module that combines physical approach with Minnaert method and utilizing anisotropic illumination model; and modules for high level products generation. Various parts of the chain were implemented also for WorldView-2, THEOS, Pleiades, SPOT 6, Landsat 5-8, and PROBA-V. Support of full-frame sensor currently in development by SPACE-SI is in plan. The proposed paper focuses on the adaptation of the STORM processing chain to very high resolution multispectral images. The development concentrated on the sub-module for automatic detection of GCPs. The initially implemented two-step algorithm that worked only with rasterized vector roads and delivered GCPs with sub-pixel accuracy for the RapidEye images, was improved with the introduction of a third step: super-fine positioning of each GCP based on a reference raster chip. The added step exploits the high spatial resolution of the reference raster to improve the final matching results and to achieve pixel accuracy also on very high resolution optical satellite data.

  13. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators.

    PubMed

    Bullen, A; Patel, S S; Saggau, P

    1997-07-01

    The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging.

  14. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators.

    PubMed Central

    Bullen, A; Patel, S S; Saggau, P

    1997-01-01

    The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging. Images FIGURE 6 PMID:9199810

  15. Plate and Plume Flux: Constraints for paleomagnetic reference frames and interpretation of deep mantle seismic heterogeneity. (Invited)

    NASA Astrophysics Data System (ADS)

    Bunge, H.; Schuberth, B. S.; Shephard, G. E.; Müller, D.

    2010-12-01

    Plate and plume flow are dominant modes of mantle convection, as pointed out by Geoff Davies early on. Driven, respectively, from a cold upper and a hot lower thermal boundary layer these modes are now sufficiently well imaged by seismic tomographers to exploit the thermal boundary layer concept as an effective tool in exploring two long standing geodynamic problems. One relates to the choice of an absolute reference frame in plate tectonic reconstructions. Several absolute reference frames have been proposed over the last decade, including those based on hotspot tracks displaying age progression and assuming either fixity or motion, as well as palaeomagnetically-based reference frames, a subduction reference frame and hybrid versions. Each reference frame implies a particular history of the location of subduction zones through time and thus the evolution of mantle heterogeneity via mixing of subducted slab material in the mantle. Here we compare five alternative absolute plate motion models in terms of their consequences for deep mantle structure. Taking global paleo-plate boundaries and plate velocities back to 140 Ma derived from the new plate tectonic reconstruction software GPlates and assimilating them into vigorous 3-D spherical mantle circulation models, we infer geodynamic mantle heterogeneity and compare it to seismic tomography for each absolute rotation model. We also focus on the challenging problem of interpreting deep mantle seismic heterogeneity in terms of thermal and compositional variations. Using published thermodynamically self-consistent mantle mineralogy models in the pyrolite composition, we find strong plume flux from the CMB, with a high temperature contrast (on the order of 1000 K) across the lower thermal boundary layer is entirely sufficient to explain elastic heterogeneity in the deep mantle for a number of quantitative measures. A high excess temperatures of +1000--1500 K for plumes in the lowermost mantle is particularly important in understanding the strong seismic velocity reduction mapped by tomography in low-velocity bodies of the deep mantle, as this produces significant negative anomalies of shear wave velocity of up to -4%. We note, however, that our results do not account for the curious observation of seismic anti-correlation, which appears difficult to explain in any case. Our results provide important constraints for the integration of plate tectonics and mantle dynamics and their use in forward and inverse geodynamic mantle models.

  16. Datum maintenance of the main Egyptian geodetic control networks by utilizing Precise Point Positioning "PPP" technique

    NASA Astrophysics Data System (ADS)

    Rabah, Mostafa; Elmewafey, Mahmoud; Farahan, Magda H.

    2016-06-01

    A geodetic control network is the wire-frame or the skeleton on which continuous and consistent mapping, Geographic Information Systems (GIS), and surveys are based. Traditionally, geodetic control points are established as permanent physical monuments placed in the ground and precisely marked, located, and documented. With the development of satellite surveying methods and their availability and high degree of accuracy, a geodetic control network could be established by using GNSS and referred to an international terrestrial reference frame used as a three-dimensional geocentric reference system for a country. Based on this concept, in 1992, the Egypt Survey Authority (ESA) established two networks, namely High Accuracy Reference Network (HARN) and the National Agricultural Cadastral Network (NACN). To transfer the International Terrestrial Reference Frame to the HARN, the HARN was connected with four IGS stations. The processing results were 1:10,000,000 (Order A) for HARN and 1:1,000,000 (Order B) for NACN relative network accuracy standard between stations defined in ITRF1994 Epoch1996. Since 1996, ESA did not perform any updating or maintaining works for these networks. To see how non-performing maintenance degrading the values of the HARN and NACN, the available HARN and NACN stations in the Nile Delta were observed. The Processing of the tested part was done by CSRS-PPP Service based on utilizing Precise Point Positioning "PPP" and Trimble Business Center "TBC". The study shows the feasibility of Precise Point Positioning in updating the absolute positioning of the HARN network and its role in updating the reference frame (ITRF). The study also confirmed the necessity of the absent role of datum maintenance of Egypt networks.

  17. Spectroscopy and optical imaging of coalescing droplets

    NASA Astrophysics Data System (ADS)

    Ivanov, Maksym; Viderström, Michel; Chang, Kelken; Ramírez Contreras, Claudia; Mehlig, Bernhard; Hanstorp, Dag

    2016-09-01

    We report on experimental investigations of the dynamics of colliding liquid droplets by combining optical trapping, spectroscopy and high-speed color imaging. Two droplets with diameters between 5 and 50 microns are suspended in quiescent air by optical traps. The traps allows us to control the initial positions, and hence the impact parameter and the relative velocity of the colliding droplets. Movies of the droplet dynamics are recorded using high-speed digital movie cameras at a frame rate of up to 63000 frames per second. A fluorescent dye is added to one of the colliding droplets. We investigate the temporal evolution of the scattered and fluorescence light from the colliding droplets with concurrent spectroscopy and color imaging. This technique can be used to detect the exchange of molecules between a pair of neutral or charged droplets.

  18. The Influence of Framing on Risky Decisions: A Meta-analysis.

    PubMed

    Kühberger

    1998-07-01

    In framing studies, logically equivalent choice situations are differently described and the resulting preferences are studied. A meta-analysis of framing effects is presented for risky choice problems which are framed either as gains or as losses. This evaluates the finding that highlighting the positive aspects of formally identical problems does lead to risk aversion and that highlighting their equivalent negative aspects does lead to risk seeking. Based on a data pool of 136 empirical papers that reported framing experiments with nearly 30,000 participants, we calculated 230 effect sizes. Results show that the overall framing effect between conditions is of small to moderate size and that profound differences exist between research designs. Potentially relevant characteristics were coded for each study. The most important characteristics were whether framing is manipulated by changing reference points or by manipulating outcome salience, and response mode (choice vs. rating/judgment). Further important characteristics were whether options differ qualitatively or quantitatively in risk, whether there is one or multiple risky events, whether framing is manipulated by gain/loss or by task-responsive wording, whether dependent variables are measured between- or within- subjects, and problem domains. Sample (students vs. target populations) and unit of analysis (individual vs. group) was not influential. It is concluded that framing is a reliable phenomenon, but that outcome salience manipulations, which constitute a considerable amount of work, have to be distinguished from reference point manipulations and that procedural features of experimental settings have a considerable effect on effect sizes in framing experiments. Copyright 1998 Academic Press.

  19. The Celestial Reference Frame at X/Ka-band (8.4/32 GHz)

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Clark, J. E.; Heflin, M. B.; Skjerve, L. J.; Sovers, O. J.; Garcia-Miro, C.; Moll, V. E.; Horiuchi, S.

    2011-01-01

    A celestial reference frame at X/Ka-band (8.4/32 GHz) has been constructed using fifty-one 24-hour sessions with the Deep Space Network. We report on observations which have detected 436 sources covering the full 24 hours of right ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of 200 micro-arcsec in a cos delta and 290 micro-arcsec in delta. There is evidence for zonal errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of phase calibration, troposphere mismodelling, and limited southern geometry. The motivations for extending the ICRF to frequencies above 8 GHz are to access more compact source morphology for improved frame stability, to provide calibrators for phase referencing, and to support spacecraft navigation at Ka-band.

  20. The Celestial Reference Frame at X/Ka-band (8.4/32 GHz)

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Clark, J. E.; Heflin, M. B.; Skjerve, L. J.; Sovers, O. J.; Garcia-Miro, C.; Moll, V. E.; Horiuchi, S.

    2010-01-01

    A celestial reference frame at X/Kaband (8.4/32 GHz) has been constructed using fiftyone 24-hour sessions with the Deep Space Network. We report on observations which have detected 436 sources covering the full 24 hours of right ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of 200 micro-arcsec ( mu as) in alpha cos delta and 290 mu as in delta. There is evidence for zonal errors at the 100 mu as level. Known errors include limited SNR, lack of phase calibration, troposphere mismodelling, and limited southern geometry. The motivations for extending the ICRF to frequencies above 8 GHz are to access more compact source morphology for improved frame stability, to provide calibrators for phase referencing, and to support spacecraft navigation at Ka-band.

  1. Postglacial Rebound from VLBI Geodesy: On Establishing Vertical Reference

    NASA Technical Reports Server (NTRS)

    Argus, Donald F.

    1996-01-01

    Difficulty in establishing a reference frame fixed to the earth's interior complicates the measurement of the vertical (radial) motions of the surface. I propose that a useful reference frame for vertical motions is that found by minimizing differences between vertical motions observed with VLBI [Ma and Ryan] and predictions from postglacial rebound predictions [Peltier]. The optimal translation of the geocenter is 1.7mm/year toward 36degN, 111degE when determined from the motions of 10 VLBI sites. This translation gives a better fit of observations to predictions than does the VLBI reference frame used by Ma and Ryan, but the improvement is statistically insignificant. The root mean square of differences decreases 20% to 0.73 mm/yr and the correlation coefficient increases from 0.76 to 0.87. Postglacial rebound is evident in the uplift of points in Sweden and Ontario that were beneath the ancient ice sheets of Fennoscandia and Canada, and in the subsidence of points in the northeastern U.S., Germany, and Alaska that were around the periphery of the ancient ice sheets.

  2. Effects of tectonic plate deformation on the geodetic reference frame of Mexico

    NASA Astrophysics Data System (ADS)

    Gonzalez Franco, G. A.; Avalos, D.; Esquivel, R.

    2013-05-01

    Positioning for geodetic applications is commonly determined at one observation epoch, but tectonic drift and tectonic deformation cause the coordinates to be different for any other epoch. Finding the right coordinates at a different epoch from that of the observation time is necessary in Mexico in order to comply the official reference frame, which requires all coordinates to be referred to the standard epoch 2010.0. Available models of horizontal movement in rigid tectonic plates are used to calculate the displacement of coordinates; however for a portion of Mexico these models fail because of miss-modeled regional deformation, decreasing the quality of users' data transformed to the standard epoch. In this work we present the progress achieved in measuring actual horizontal motion towards an improved modeling of horizontal displacements for some regions. Miss-modeled velocities found are as big as 23mm/a, affecting significantly applications like cadastral and geodetic control. Data from a large set of GNSS permanent stations in Mexico is being analyzed to produce the preliminary model of horizontal crustal movement that will be used to minimize distortions of the reference frame.

  3. Osculating Relative Orbit Elements Resulting from Chief Eccentricity and J2 Perturbing Forces

    DTIC Science & Technology

    2011-03-01

    significant importance to the analytical investigation in this study and is described in depth in Section 3.1.1. There do exist approaches to mapping the...necessary to introduce the environment which the majority of models describe. 2.2.1 Inertial Reference Frame. A geocentric reference frame will be used for...closest approach , modifying the period and minima locations of the radial and in-track components. This change impacts the periodicity of the radial

  4. Covariance Analysis of Vision Aided Navigation by Bootstrapping

    DTIC Science & Technology

    2012-03-22

    vision aided navigation. The aircraft uses its INS estimate to geolocate ground features, track those features to aid the INS, and using that aided...development of the 2-D case, including the dynamics and measurement model development, the state space representation and the use of the Kalman filter ...reference frame. This reference frame has its origin located somewhere on an A/C. Normally the origin is set at the A/C center of gravity to allow the use

  5. Large perceptual distortions of locomotor action space occur in ground-based coordinates: Angular expansion and the large-scale horizontal-vertical illusion.

    PubMed

    Klein, Brennan J; Li, Zhi; Durgin, Frank H

    2016-04-01

    What is the natural reference frame for seeing large-scale spatial scenes in locomotor action space? Prior studies indicate an asymmetric angular expansion in perceived direction in large-scale environments: Angular elevation relative to the horizon is perceptually exaggerated by a factor of 1.5, whereas azimuthal direction is exaggerated by a factor of about 1.25. Here participants made angular and spatial judgments when upright or on their sides to dissociate egocentric from allocentric reference frames. In Experiment 1, it was found that body orientation did not affect the magnitude of the up-down exaggeration of direction, suggesting that the relevant orientation reference frame for this directional bias is allocentric rather than egocentric. In Experiment 2, the comparison of large-scale horizontal and vertical extents was somewhat affected by viewer orientation, but only to the extent necessitated by the classic (5%) horizontal-vertical illusion (HVI) that is known to be retinotopic. Large-scale vertical extents continued to appear much larger than horizontal ground extents when observers lay sideways. When the visual world was reoriented in Experiment 3, the bias remained tied to the ground-based allocentric reference frame. The allocentric HVI is quantitatively consistent with differential angular exaggerations previously measured for elevation and azimuth in locomotor space. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Large perceptual distortions of locomotor action space occur in ground-based coordinates: Angular expansion and the large-scale horizontal-vertical illusion

    PubMed Central

    Klein, Brennan J.; Li, Zhi; Durgin, Frank H.

    2015-01-01

    What is the natural reference frame for seeing large-scale spatial scenes in locomotor action space? Prior studies indicate an asymmetric angular expansion in perceived direction in large-scale environments: Angular elevation relative to the horizon is perceptually exaggerated by a factor of 1.5, whereas azimuthal direction is exaggerated by a factor of about 1.25. Here participants made angular and spatial judgments when upright or on their sides in order to dissociate egocentric from allocentric reference frames. In Experiment 1 it was found that body orientation did not affect the magnitude of the up-down exaggeration of direction, suggesting that the relevant orientation reference frame for this directional bias is allocentric rather than egocentric. In Experiment 2, the comparison of large-scale horizontal and vertical extents was somewhat affected by viewer orientation, but only to the extent necessitated by the classic (5%) horizontal-vertical illusion (HVI) that is known to be retinotopic. Large-scale vertical extents continued to appear much larger than horizontal ground extents when observers lay sideways. When the visual world was reoriented in Experiment 3, the bias remained tied to the ground-based allocentric reference frame. The allocentric HVI is quantitatively consistent with differential angular exaggerations previously measured for elevation and azimuth in locomotor space. PMID:26594884

  7. On the ability to provide evaluative comments: further explorations of children's narrative competencies.

    PubMed

    Bamberg, M; Damrad-Frye, R

    1991-10-01

    This study investigated the changing functions of evaluative devices in children's narratives. The evaluative devices included (a) references to 'frames of mind', particularly to emotions, (b) character speech, (c) 'hedges', (d) negative qualifiers, and (e) causal connectors. Narratives were elicited from a 24-picture story book. The subjects were three groups of native English-speaking Americans (12 per group): five- and nine-year-old children and college undergraduate students. A quantitative comparison revealed that (i) adults used evaluative devices three times as often as five-year-olds, and two-and-a-half times as often as the nine-year-old children; (ii) adults used significantly more references to 'frames of mind' and 'hedges' than the children; and (iii) whereas five-year-olds used each evaluative type equally often, nine-year-olds and adults used references to 'frames of mind' significantly more than the other four evaluation types. A second analysis, focusing specifically on the discourse functions of references to 'frames of mind' revealed that, early on, this particular device is used to express a local evaluative perspective on particular events, while with increasing age it is used to signal the hierarchial organization of the story events. These findings are discussed with regard to two non-linguistic developmental achievements, the formation of event schemas and the formation of a theory of mind.

  8. Quantum image coding with a reference-frame-independent scheme

    NASA Astrophysics Data System (ADS)

    Chapeau-Blondeau, François; Belin, Etienne

    2016-07-01

    For binary images, or bit planes of non-binary images, we investigate the possibility of a quantum coding decodable by a receiver in the absence of reference frames shared with the emitter. Direct image coding with one qubit per pixel and non-aligned frames leads to decoding errors equivalent to a quantum bit-flip noise increasing with the misalignment. We show the feasibility of frame-invariant coding by using for each pixel a qubit pair prepared in one of two controlled entangled states. With just one common axis shared between the emitter and receiver, exact decoding for each pixel can be obtained by means of two two-outcome projective measurements operating separately on each qubit of the pair. With strictly no alignment information between the emitter and receiver, exact decoding can be obtained by means of a two-outcome projective measurement operating jointly on the qubit pair. In addition, the frame-invariant coding is shown much more resistant to quantum bit-flip noise compared to the direct non-invariant coding. For a cost per pixel of two (entangled) qubits instead of one, complete frame-invariant image coding and enhanced noise resistance are thus obtained.

  9. Co-location of space geodetic techniques carried out at the Geodetic Observatory Wettzell using a closure in time and a multi-technique reference target

    NASA Astrophysics Data System (ADS)

    Kodet, J.; Schreiber, K. U.; Eckl, J.; Plötz, C.; Mähler, S.; Schüler, T.; Klügel, T.; Riepl, S.

    2018-01-01

    The quality of the links between the different space geodetic techniques (VLBI, SLR, GNSS and DORIS) is still one of the major limiting factors for the realization of a unique global terrestrial reference frame that is accurate enough to allow the monitoring of the Earth system, i.e., of processes like sea level change, postglacial rebound and silent earthquakes. According to the specifications of the global geodetic observing system of the International Association of Geodesy, such a reference frame should be accurate to 1 mm over decades, with rates of change stable at the level of 0.1 mm/year. The deficiencies arise from inaccurate or incomplete local ties at many fundamental sites as well as from systematic instrumental biases in the individual space geodetic techniques. Frequently repeated surveys, the continuous monitoring of antenna heights and the geometrical mount stability (Lösler et al. in J Geod 90:467-486, 2016. https://doi.org/10.1007/s00190-016-0887-8) have not provided evidence for insufficient antenna stability. Therefore, we have investigated variations in the respective system delays caused by electronic circuits, which is not adequately captured by the calibration process, either because of subtle differences in the circuitry between geodetic measurement and calibration, high temporal variability or because of lacking resolving bandwidth. The measured system delay variations in the electric chain of both VLBI- and SLR systems reach the order of 100 ps, which is equivalent to 3 cm of path length. Most of this variability is usually removed by the calibrations but by far not all. This paper focuses on the development of new technologies and procedures for co-located geodetic instrumentation in order to identify and remove systematic measurement biases within and between the individual measurement techniques. A closed-loop optical time and frequency distribution system and a common inter-technique reference target provide the possibility to remove variable system delays. The main motivation for the newly established central reference target, locked to the station clock, is the combination of all space geodetic instruments at a single reference point at the observatory. On top of that it provides the unique capability to perform a closure measurement based on the observation of time.

  10. Error reduction in three-dimensional metrology combining optical and touch probe data

    NASA Astrophysics Data System (ADS)

    Gerde, Janice R.; Christens-Barry, William A.

    2010-08-01

    Analysis of footwear under the Harmonized Tariff Schedule of the United States (HTSUS) is partly based on identifying the boundary ("parting line") between the "external surface area upper" (ESAU) and the sample's sole. Often, that boundary is obscured. We establish the parting line as the curved intersection between the sample outer surface and its insole surface. The outer surface is determined by discrete point cloud coordinates obtained using a laser scanner. The insole surface is defined by point cloud data, obtained using a touch probe device-a coordinate measuring machine (CMM). Because these point cloud data sets do not overlap spatially, a polynomial surface is fitted to the insole data and extended to intersect a mesh fitted to the outer surface point cloud. This line of intersection defines the ESAU boundary, permitting further fractional area calculations to proceed. The defined parting line location is sensitive to the polynomial used to fit experimental data. Extrapolation to the intersection with the ESAU can heighten this sensitivity. We discuss a methodology for transforming these data into a common reference frame. Three scenarios are considered: measurement error in point cloud coordinates, from fitting a polynomial surface to a point cloud then extrapolating beyond the data set, and error from reference frame transformation. These error sources can influence calculated surface areas. We describe experiments to assess error magnitude, the sensitivity of calculated results on these errors, and minimizing error impact on calculated quantities. Ultimately, we must ensure that statistical error from these procedures is minimized and within acceptance criteria.

  11. Measurements and properties of ice particles and carbon dioxide bubbles in aqueous mixture utilizing optical techniques

    NASA Astrophysics Data System (ADS)

    Diallo, Amadou O.

    Optical techniques are used to determine the size, shape and many other properties of particles ranging from the micro to a nano-level. These techniques have endless applications. This research is based on a project assigned by a "Vendor" that wants anonymity. The Leica optical microscope and the Dark Field Polarizing Metallurgical Microscope is used to determine the size and count of ice crystals (Vendors products) in multiple time frames. Since the ice temperature influences, its symmetry and the shape is subject to changes at room temperature (300 K) and the atmospheric pressure that is exerted on the ice crystals varies. The ice crystals are in a mixture of water, electrolytes and carbon dioxide with the optical spectroscopy (Qpod2) and Spectra suite, the optical density of the ice crystals is established from the absorbance and transmission measurements. The optical density in this case is also referred to as absorption; it is plotted with respect to a frequency (GHz), wavelength (nm) or Raman shift (1/cm) which shows the light colliding with the ice particles and CO2. Depending on the peaks positions, it is possible to profile the ice crystal sizes using a mean distribution plots. The region of absorbency wavelength expected for the ice is in the visible range; the water molecules in the (UV) Ultra-violet range and the CO2 in the (IR) infrared region. It is also possible to obtain the reflection and transmission output as a percentage change with the wavelengths ranging from 200 to 1100 nm. The refractive index of the ice can be correlated to the density based on the optical acoustic theorem, or Mie Scattering Theory. The viscosity of the ice crystals and the solutions from which the ice crystals are made of as well are recorded with the SV-10 viscometer. The baseline viscosity is used as reference and set lower than that of the ice crystals. The Zeta potential of the particles present in the mixture are approximated by first finding the viscosity of the solution where the pH level contribute to the surface charges, afterward use Stoke's diameter to compute the settling velocity of the bubbles, or alternatively record it under the microscope. With those parameters in hand the surface charge of the bubble (zeta potential) is approximated.

  12. Modeling moving systems with RELAP5-3D

    DOE PAGES

    Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; ...

    2015-12-04

    RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the acceleratingmore » frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.« less

  13. JPEG XS-based frame buffer compression inside HEVC for power-aware video compression

    NASA Astrophysics Data System (ADS)

    Willème, Alexandre; Descampe, Antonin; Rouvroy, Gaël.; Pellegrin, Pascal; Macq, Benoit

    2017-09-01

    With the emergence of Ultra-High Definition video, reference frame buffers (FBs) inside HEVC-like encoders and decoders have to sustain huge bandwidth. The power consumed by these external memory accesses accounts for a significant share of the codec's total consumption. This paper describes a solution to significantly decrease the FB's bandwidth, making HEVC encoder more suitable for use in power-aware applications. The proposed prototype consists in integrating an embedded lightweight, low-latency and visually lossless codec at the FB interface inside HEVC in order to store each reference frame as several compressed bitstreams. As opposed to previous works, our solution compresses large picture areas (ranging from a CTU to a frame stripe) independently in order to better exploit the spatial redundancy found in the reference frame. This work investigates two data reuse schemes namely Level-C and Level-D. Our approach is made possible thanks to simplified motion estimation mechanisms further reducing the FB's bandwidth and inducing very low quality degradation. In this work, we integrated JPEG XS, the upcoming standard for lightweight low-latency video compression, inside HEVC. In practice, the proposed implementation is based on HM 16.8 and on XSM 1.1.2 (JPEG XS Test Model). Through this paper, the architecture of our HEVC with JPEG XS-based frame buffer compression is described. Then its performance is compared to HM encoder. Compared to previous works, our prototype provides significant external memory bandwidth reduction. Depending on the reuse scheme, one can expect bandwidth and FB size reduction ranging from 50% to 83.3% without significant quality degradation.

  14. The Experimental Research on Seismic Capacity of the Envelope Systems with Steel Frame

    NASA Astrophysics Data System (ADS)

    Li, Jiuyang; Wang, Bingbing; Li, Hengxu

    2017-09-01

    In this paper, according to the present application situation of the external envelope systems steel frame in the severe cold region, the stuffed composite wall panels are improved, the flexible connection with the steel frame is designed, the reduced scale specimens are made, the seismic capacity test is made and some indexes of the envelope systems such as bearing capacity, energy consumption and ductility, etc. are compared, which provide reference for the development and application of the steel frame envelope systems.

  15. Effect of general relativity on a near-Earth satellite in the geocentric and barycentric reference frames

    NASA Technical Reports Server (NTRS)

    Ries, J. C.; Huang, C.; Watkins, M. M.

    1988-01-01

    Whether one uses a solar-system barycentric frame or a geocentric frame when including the general theory of relativity in orbit determinations for near-Earth satellites, the results should be equivalent to some limiting accuracy. The purpose of this paper is to clarify the effects of relativity in each frame and to demonstrate their equivalence through the analysis of real laser-tracking data. A correction to the conventional barycentric equations of motion is shown to be required.

  16. Results from the JPL IGS Analysis Center IGS14 Reprocessing Campaign

    NASA Astrophysics Data System (ADS)

    Ries, P. A.; Amiri, N.; Heflin, M. B.; Sakumura, C.; Sibois, A. E.; Sibthorpe, A.; David, M. W.

    2017-12-01

    The JPL IGS analysis center has begun a campaign to reprocess GPS orbits and clocks in the IGS14 reference frame. Though the new frame is only a few millimeters offset from the previous IGb08 frame, a reprocessing is required for consistent use of the new frame due to a change in the satellite phase center offsets between the frames. We will present results on the reprocessing campaign from 2002 to present in order to evaluate any effects caused by the new frame. We also create long-term time-series and periodograms of translation, rotation, and scale parameters to see if there is any divergence between the frames. We will also process long-term PPP time series and derived velocities for a well-distributed set of stations in each frame to compare with the published frame offsets.

  17. Method and apparatus for detecting internal structures of bulk objects using acoustic imaging

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2002-01-01

    Apparatus for producing an acoustic image of an object according to the present invention may comprise an excitation source for vibrating the object to produce at least one acoustic wave therein. The acoustic wave results in the formation of at least one surface displacement on the surface of the object. A light source produces an optical object wavefront and an optical reference wavefront and directs the optical object wavefront toward the surface of the object to produce a modulated optical object wavefront. A modulator operatively associated with the optical reference wavefront modulates the optical reference wavefront in synchronization with the acoustic wave to produce a modulated optical reference wavefront. A sensing medium positioned to receive the modulated optical object wavefront and the modulated optical reference wavefront combines the modulated optical object and reference wavefronts to produce an image related to the surface displacement on the surface of the object. A detector detects the image related to the surface displacement produced by the sensing medium. A processing system operatively associated with the detector constructs an acoustic image of interior features of the object based on the phase and amplitude of the surface displacement on the surface of the object.

  18. The Influence of the Terrestrial Reference Frame on Studies of Sea Level Change

    NASA Astrophysics Data System (ADS)

    Nerem, R. S.; Bar-Sever, Y. E.; Haines, B. J.; Desai, S.; Heflin, M. B.

    2015-12-01

    The terrestrial reference frame (TRF) provides the foundation for the accurate monitoring of sea level using both ground-based (tide gauges) and space-based (satellite altimetry) techniques. For the latter, tide gauges are also used to monitor drifts in the satellite instruments over time. The accuracy of the terrestrial reference frame (TRF) is thus a critical component for both types of sea level measurements. The TRF is central to the formation of geocentric sea-surface height (SSH) measurements from satellite altimeter data. The computed satellite orbits are linked to a particular TRF via the assumed locations of the ground-based tracking systems. The manner in which TRF errors are expressed in the orbit solution (and thus SSH) is not straightforward, and depends on the models of the forces underlying the satellite's motion. We discuss this relationship, and provide examples of the systematic TRF-induced errors in the altimeter derived sea-level record. The TRF is also crucial to the interpretation of tide-gauge measurements, as it enables the separation of vertical land motion from volumetric changes in the water level. TRF errors affect tide gauge measurements through GNSS estimates of the vertical land motion at each tide gauge. This talk will discuss the current accuracy of the TRF and how errors in the TRF impact both satellite altimeter and tide gauge sea level measurements. We will also discuss simulations of how the proposed Geodetic Reference Antenna in SPace (GRASP) satellite mission could reduce these errors and revolutionize how reference frames are computed in general.

  19. Imaging spectroscopy using embedded diffractive optical arrays

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Hinnrichs, Bradford

    2017-09-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera based on diffractive optic arrays. This approach to hyperspectral imaging has been demonstrated in all three infrared bands SWIR, MWIR and LWIR. The hyperspectral optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of this infrared hyperspectral sensor. This new and innovative approach to an infrared hyperspectral imaging spectrometer uses micro-optics that are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a small satellite, mini-UAV, commercial quadcopter or man portable. Also, an application of how this spectral imaging technology can easily be used to quantify the mass and volume flow rates of hydrocarbon gases. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. The detector array is divided into sub-images covered by each lenslet. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the number of simultaneous different spectral images collected each frame of the camera. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4 lenslet array on a 1024 x 1024 pixel element focal plane array which gives 16 spectral images of 256 x 256 pixel resolution each frame. This system spans the SWIR and MWIR bands with a single optical array and focal plane array.

  20. 22. CRUNCH BOARD #2 HANGAR BAY FRAME 100 STARBOARD SIDETERM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. CRUNCH BOARD #2 HANGAR BAY FRAME 100 STARBOARD SIDE-TERM CRUNCH REFERS TO HANGAR DECK MISHAPS WHICH RESULTED IN DAMAGE TO AIRCRAFT. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  1. Astrometric surveys in the Gaia era

    NASA Astrophysics Data System (ADS)

    Zacharias, Norbert

    2018-04-01

    The Gaia first data release (DR1) already provides an almost error free optical reference frame on the milli-arcsecond (mas) level allowing significantly better calibration of ground-based astrometric data than ever before. Gaia DR1 provides positions, proper motions and trigonometric parallaxes for just over 2 million stars in the Tycho-2 catalog. For over 1.1 billion additional stars DR1 gives positions. Proper motions for these, mainly fainter stars (G >= 11.5) are currently provided by several new projects which combine earlier epoch ground-based observations with Gaia DR1 positions. These data are very helpful in the interim period but will become obsolete with the second Gaia data release (DR2) expected in April 2018. The era of traditional, ground-based, wide-field astrometry with the goal to provide accurate reference stars has come to an end. Future ground-based astrometry will fill in some gaps (very bright stars, observations needed at many or specific epochs) and mainly will go fainter than the Gaia limit, like the PanSTARRS and the upcoming LSST surveys.

  2. The GLAS Algorithm Theoretical Basis Document for Laser Footprint Location (Geolocation) and Surface Profiles

    NASA Technical Reports Server (NTRS)

    Shutz, Bob E.; Urban, Timothy J.

    2014-01-01

    This ATBD summarizes (and links with other ATBDs) the elements used to obtain the geolocated GLAS laser spot location, with respect to the Earth Center of Mass. Because of the approach used, the reference frame used to express the geolocation is linked to the reference frame used for POD and PAD, which are related to the ITRF. The geolocated spot coordinates (which includes the elevation or height, with respect to an adopted reference ellipsoid) is the inferred position of the laser spot, since the spot location is not directly measured. This document also summarizes the GLAS operation time periods.

  3. Facial measurements for frame design.

    PubMed

    Tang, C Y; Tang, N; Stewart, M C

    1998-04-01

    Anthropometric data for the purpose of spectacle frame design are scarce in the literature. Definitions of facial features to be measured with existing systems of facial measurement are often not specific enough for frame design and manufacturing. Currently, for individual frame design, experienced personnel collect data with facial rules or instruments. A new measuring system is proposed, making use of a template in the form of a spectacle frame. Upon fitting the template onto a subject, most of the measuring references can be defined. Such a system can be administered by lesser-trained personnel and can be used for researches covering a larger population.

  4. Trajectory Generation by Piecewise Spline Interpolation

    DTIC Science & Technology

    1976-04-01

    Lx) -a 0 + atx + aAx + x (21)0 1 2 3 and the coefficients are obtained from Equation (20) as ao m fl (22)i al " fi, (23) S3(fi + I f ) 2fj + fj+ 1 (24...reference frame to the vehicle fixed frame is pTO’ 0TO’ OTO’ *TO where a if (gZv0 - A >- 0 aCI (64) - azif (gzv0- AzvO < 0 These rotations may be...velocity frame axes directions (velocity frame from the output frame) aO, al , a 2 , a 3 Coefficients of the piecewise cubic polynomials [B ] Tridiagonal

  5. Current Trends in Satellite Laser Ranging

    NASA Technical Reports Server (NTRS)

    Pearlman, M. R.; Appleby, G. M.; Kirchner, G.; McGarry, J.; Murphy, T.; Noll, C. E.; Pavlis, E. C.; Pierron, F.

    2010-01-01

    Satellite Laser Ranging (SLR) techniques are used to accurately measure the distance from ground stations to retroreflectors on satellites and the moon. SLR is one of the fundamental techniques that define the international Terrestrial Reference Frame (iTRF), which is the basis upon which we measure many aspects of global change over space, time, and evolving technology. It is one of the fundamental techniques that define at a level of precision of a few mm the origin and scale of the ITRF. Laser Ranging provides precision orbit determination and instrument calibration/validation for satellite-borne altimeters for the better understanding of sea level change, ocean dynamics, ice budget, and terrestrial topography. Laser ranging is also a tool to study the dynamics of the Moon and fundamental constants. Many of the GNSS satellites now carry retro-reflectors for improved orbit determination, harmonization of reference frames, and in-orbit co-location and system performance validation. The GNSS Constellations will be the means of making the reference frame available to worldwide users. Data and products from these measurements support key aspects of the GEOSS 10-Year implementation Plan adopted on February 16, 2005, The ITRF has been identified as a key contribution of the JAG to GEOSS and the ILRS makes a major contribution for its development since its foundation. The ILRS delivers weekly additional realizations that are accumulated sequentially to extend the ITRF and the Earth Orientation Parameter (EOP) series with a daily resolution. Additional products are currently under development such as precise orbits of satellites, EOP with daily availability, low-degree gravitational harmonics for studies of Earth dynamics and kinematics, etc. SLR technology continues to evolve toward the next generation laser ranging systems as programmatic requirements become more stringent. Ranging accuracy is improving as higher repetition rate, narrower pulse lasers and faster detectors are implemented. Automation and pass interleaving at some stations is already expanding temporal coverage. Web-based safety keys are allowing the SLR network stations to range to optically vulnerable satellites. Some stations are experimenting with two-wavelength operation as a means of better understanding the atmospheric refraction and with very low power laser to improve eye-safety conditions. New retroreflector designs are improving the signal link and enable daylight ranging. Dramatic improvements have also been made with lunar ranging with the new APOLLO Site in New ?Mexico, USA and the upgraded lunar station "MEO" in Grasse,

  6. Mechanical design of a power-adjustable spectacle lens frame.

    PubMed

    Zapata, Asuncion; Barbero, Sergio

    2011-05-01

    Power-adjustable spectacle lenses, based on the Alvarez-Lohmann principle, can be used to provide affordable spectacles for subjective refractive errors measurement and its correction. A new mechanical frame has been designed to maximize the advantages of this technology. The design includes a mechanism to match the interpupillary distance with that of the optical centers of the lenses. The frame can be manufactured using low cost plastic injection molding techniques. A prototype has been built to test the functioning of this mechanical design.

  7. Corrections to the Thomson cross section caused by relativistic effects and by the presence of the drift velocity of a classical charged particle in the field of a monochromatic plane wave

    NASA Astrophysics Data System (ADS)

    Perestoronin, A. V.

    2017-03-01

    An approach to the solution of the relativistic problem of the motion of a classical charged particle in the field of a monochromatic plane wave with an arbitrary polarization (linear, circular, or elliptic) is proposed. It is based on the analysis of the 4-vector equation of motion of the charged particle together with the 4-vector and tensor equations for the components of the electromagnetic field tensor of a monochromatic plane wave. This approach provides analytical expressions for the time-averaged square of the 4-acceleration of the charge, as well as for the averaged values of any quantities periodic in the time of the reference frame. Expressions for the integral power of scattered radiation, which is proportional to the time-averaged square of the 4-acceleration of the charge, and for the integral scattering cross section, which is the ratio of the power of scattered radiation to the intensity of incident radiation, are obtained for an arbitrary inertial reference frame. An expression for the scattering cross section, which coincides with the known results at the circular and linear polarizations of the incident waves and describes the case of elliptic polarization of the incident wave, is obtained for the reference frame where the charged particle is on average at rest. An expression for the scattering cross section including relativistic effects and the nonzero drift velocity of a particle in this system is obtained for the laboratory reference frame, where the initial velocity of the charged particle is zero. In the case of the circular polarization of the incident wave, the scattering cross section in the laboratory frame is equal to the Thompson cross section.

  8. Global plate motion frames: Toward a unified model

    NASA Astrophysics Data System (ADS)

    Torsvik, Trond H.; Müller, R. Dietmar; van der Voo, Rob; Steinberger, Bernhard; Gaina, Carmen

    2008-09-01

    Plate tectonics constitutes our primary framework for understanding how the Earth works over geological timescales. High-resolution mapping of relative plate motions based on marine geophysical data has followed the discovery of geomagnetic reversals, mid-ocean ridges, transform faults, and seafloor spreading, cementing the plate tectonic paradigm. However, so-called "absolute plate motions," describing how the fragments of the outer shell of the Earth have moved relative to a reference system such as the Earth's mantle, are still poorly understood. Accurate absolute plate motion models are essential surface boundary conditions for mantle convection models as well as for understanding past ocean circulation and climate as continent-ocean distributions change with time. A fundamental problem with deciphering absolute plate motions is that the Earth's rotation axis and the averaged magnetic dipole axis are not necessarily fixed to the mantle reference system. Absolute plate motion models based on volcanic hot spot tracks are largely confined to the last 130 Ma and ideally would require knowledge about the motions within the convecting mantle. In contrast, models based on paleomagnetic data reflect plate motion relative to the magnetic dipole axis for most of Earth's history but cannot provide paleolongitudes because of the axial symmetry of the Earth's magnetic dipole field. We analyze four different reference frames (paleomagnetic, African fixed hot spot, African moving hot spot, and global moving hot spot), discuss their uncertainties, and develop a unifying approach for connecting a hot spot track system and a paleomagnetic absolute plate reference system into a "hybrid" model for the time period from the assembly of Pangea (˜320 Ma) to the present. For the last 100 Ma we use a moving hot spot reference frame that takes mantle convection into account, and we connect this to a pre-100 Ma global paleomagnetic frame adjusted 5° in longitude to smooth the reference frame transition. Using plate driving force arguments and the mapping of reconstructed large igneous provinces to core-mantle boundary topography, we argue that continental paleolongitudes can be constrained with reasonable confidence.

  9. Frames of reference for helicopter electronic maps - The relevance of spatial cognition and componential analysis

    NASA Technical Reports Server (NTRS)

    Harwood, Kelly; Wickens, Christopher D.

    1991-01-01

    Computer-generated map displays for NOE and low-level helicopter flight were formed according to prior research on maps, navigational problem solving, and spatial cognition in large-scale environments. The north-up map emphasized consistency of object location, wheareas, the track-up map emphasized map-terrain congruency. A component analysis indicates that different cognitive components, e.g., orienting and absolute object location, are supported to varying degrees by properties of different frames of reference.

  10. Observable Zitterbewegung in curved spacetimes

    NASA Astrophysics Data System (ADS)

    Kobakhidze, Archil; Manning, Adrian; Tureanu, Anca

    2016-06-01

    Zitterbewegung, as it was originally described by Schrödinger, is an unphysical, non-observable effect. We verify whether the effect can be observed in non-inertial reference frames/curved spacetimes, where the ambiguity in defining particle states results in a mixing of positive and negative frequency modes. We explicitly demonstrate that such a mixing is in fact necessary to obtain the correct classical value for a particle's velocity in a uniformly accelerated reference frame, whereas in cosmological spacetime a particle does indeed exhibit Zitterbewegung.

  11. Self- and Other-Referent Criteria of Career Success.

    ERIC Educational Resources Information Center

    Heslin, Peter A.

    2003-01-01

    Business students (n=71) evaluated their career success thus far. Framed by social comparison theory, results showed that 68% used other-referent criteria to assess their success. Participants who believed that ability and personality are fixed attributes had greater reliance on other-referent criteria. (Contains 100 references.) (SK)

  12. A challenge to identify an optical counterpart of the gravitational wave event GW151226 with Hyper Suprime-Cam†

    NASA Astrophysics Data System (ADS)

    Utsumi, Yousuke; Tominaga, Nozomu; Tanaka, Masaomi; Morokuma, Tomoki; Yoshida, Michitoshi; Asakura, Yuichiro; Finet, François; Furusawa, Hisanori; Kawabata, Koji S.; Liu, Wei; Matsubayashi, Kazuya; Moritani, Yuki; Motohara, Kentaro; Nakata, Fumiaki; Ohta, Kouji; Terai, Tsuyoshi; Uemura, Makoto; Yasuda, Naoki

    2018-01-01

    We present the results of detailed analysis of an optical imaging survey conducted using the Subaru/Hyper Suprime-Cam (HSC) that aimed to identify an optical counterpart to the gravitational wave event GW151226. In half a night, the i- and z-band imaging survey by HSC covered 63.5 deg2 of the error region, which contains about 7% of the LIGO localization probability, and the same field was observed in three different epochs. The detectable magnitude of the candidates in a differenced image is evaluated as i ˜ 23.2 mag for the requirement of at least two 5 σ detections, and 1744 candidates are discovered. Assuming a kilonova as an optical counterpart, we compare the optical properties of the candidates with model predictions. A red and rapidly declining light curve condition enables the discrimination of a kilonova from other transients, and a small number of candidates satisfy this condition. The presence of stellar-like counterparts in the reference frame suggests that the surviving candidates are likely to be flare stars. The fact that most of those candidates are in the galactic plane, |b| < 5°, supports this interpretation. We also check whether the candidates are associated with the nearby GLADE galaxies, which reduces the number of contaminants even with a looser color cut. When a better probability map (with localization accuracy of ˜50 deg2) is available, kilonova searches of up to approximately 200 Mpc will become feasible by conducting immediate follow-up observations with an interval of 3-6 d.

  13. Full-Frame Reference for Test Photo of Moon

    NASA Image and Video Library

    2005-09-10

    This pair of views shows how little of the full image frame was taken up by the Moon in test images taken Sept. 8, 2005, by the High Resolution Imaging Science Experiment HiRISE camera on NASA Mars Reconnaissance Orbiter.

  14. Three-beam interferogram analysis method for surface flatness testing of glass plates and wedges

    NASA Astrophysics Data System (ADS)

    Sunderland, Zofia; Patorski, Krzysztof

    2015-09-01

    When testing transparent plates with high quality flat surfaces and a small angle between them the three-beam interference phenomenon is observed. Since the reference beam and the object beams reflected from both the front and back surface of a sample are detected, the recorded intensity distribution may be regarded as a sum of three fringe patterns. Images of that type cannot be succesfully analyzed with standard interferogram analysis methods. They contain, however, useful information on the tested plate surface flatness and its optical thickness variations. Several methods were elaborated to decode the plate parameters. Our technique represents a competitive solution which allows for retrieval of phase components of the three-beam interferogram. It requires recording two images: a three-beam interferogram and the two-beam one with the reference beam blocked. Mutually subtracting these images leads to the intensity distribution which, under some assumptions, provides access to the two component fringe sets which encode surfaces flatness. At various stages of processing we take advantage of nonlinear operations as well as single-frame interferogram analysis methods. Two-dimensional continuous wavelet transform (2D CWT) is used to separate a particular fringe family from the overall interferogram intensity distribution as well as to estimate the phase distribution from a pattern. We distinguish two processing paths depending on the relative density of fringe sets which is connected with geometry of a sample and optical setup. The proposed method is tested on simulated data.

  15. Cryogenic characterization of LEDs for space application

    NASA Astrophysics Data System (ADS)

    Carron, Jérôme; Philippon, Anne; How, Lip Sun; Delbergue, Audrey; Hassanzadeh, Sahar; Cillierre, David; Danto, Pascale; Boutillier, Mathieu

    2017-09-01

    In the frame of EUCLID project, the Calibration Unit of the VIS (VISible Imager) instrument must provide an accurate and well characterized light source for in-flight instrument calibration without noise when it is switched off. The Calibration Unit consists of a set of LEDs emitting at various wavelengths in the visible towards an integrating sphere. The sphere's output provides a uniform illumination over the entire focal plane. Nine references of LEDs from different manufacturers were selected, screened and qualified under cryogenic conditions. Testing this large quantity of samples led to the implementation of automated testing equipment with complete in-situ monitoring of optoelectronic parameters as well as temperature and vacuum values. All the electrical and optical parameters of the LED have been monitored and recorded at ambient and cryogenic temperatures. These results have been compiled in order to show the total deviation of the LED electrical and electro-optical properties in the whole mission and to select the best suitable LED references for the mission. This qualification has demonstrated the robustness of COTS LEDs to operate at low cryogenic temperatures and in the space environment. Then 6 wavelengths were selected and submitted to an EMC sensitivity test at room and cold temperature by counting the number of photons when LEDs drivers are OFF. Characterizations were conducted in the full frequency spectrum in order to implement solutions at system level to suppress the emission of photons when the LED drivers are OFF. LEDs impedance was also characterized at room temperature and cold temperature.

  16. 640x480 PtSi Stirling-cooled camera system

    NASA Astrophysics Data System (ADS)

    Villani, Thomas S.; Esposito, Benjamin J.; Davis, Timothy J.; Coyle, Peter J.; Feder, Howard L.; Gilmartin, Harvey R.; Levine, Peter A.; Sauer, Donald J.; Shallcross, Frank V.; Demers, P. L.; Smalser, P. J.; Tower, John R.

    1992-09-01

    A Stirling cooled 3 - 5 micron camera system has been developed. The camera employs a monolithic 640 X 480 PtSi-MOS focal plane array. The camera system achieves an NEDT equals 0.10 K at 30 Hz frame rate with f/1.5 optics (300 K background). At a spatial frequency of 0.02 cycles/mRAD the vertical and horizontal Minimum Resolvable Temperature are in the range of MRT equals 0.03 K (f/1.5 optics, 300 K background). The MOS focal plane array achieves a resolution of 480 TV lines per picture height independent of background level and position within the frame.

  17. Coadding Techniques for Image-based Wavefront Sensing for Segmented-mirror Telescopes

    NASA Technical Reports Server (NTRS)

    Smith, Scott; Aronstein, David; Dean, Bruce; Acton, Scott

    2007-01-01

    Image-based wavefront sensing algorithms are being used to characterize optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be coadded in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on every set of PSFs individually and average the resulting wavefronts. The choice of coadd methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using data collected on and simulations of the James Webb Space Telescope Testbed Telescope (TBT) commissioned at Ball Aerospace, we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the coadd method. Of particular interest, segment piston is more accurately recovered in "image-plane space" coadding, while segment tip/tilt is recovered in "pupil-plane space" coadding.

  18. Near infrared and optical spectroscopy of FSC10214+4724

    NASA Technical Reports Server (NTRS)

    Soifer, B. T.; Cohen, J. G.; Armus, L.; Matthews, K.; Neugebauer, G.; Oke, J. B.

    1995-01-01

    New infrared and optical spectroscopic observations, obtained with the W.M. Keck Telescope, are reported for the highly luminous infrared source FSC10214+4724. The rest frame optical spectrum shows new emission lines of (NeIII, (NeV), (OI), (OII), (SII), and He(+) while the rest frame ultraviolet spectrum shows new lines of OIV+SiIV, NII, NIV, SiII, NeIV and possibly NII and (NeIII), as well as clearly showing the L alpha is self-absorbed. The emission line spectrum is most characteristic of a Seyfert 2 nucleus. The preponderance of spectroscopic evidence strengthens the case of a dust enshrouded AGN powering much or most of the observed luminosity. The various spectral lines lead to a wide range in the inferred reddening and ionization parameter for this system, suggesting that we are viewing several environments through differing extinctions.

  19. Space Imagery Enhancement Investigations; Software for Processing Middle Atmosphere Data

    DTIC Science & Technology

    2011-12-19

    SUPPLEMENTARY NOTES 14. ABSTRACT This report summarizes work related to optical superresolution for the ideal incoherent 1D spread function...optical superresolution , incoherent image eigensystem, image registration, multi-frame image reconstruction, deconvolution 16. SECURITY... Superresolution -Related Investigations ............................................................................. 1 2.2.1 Eigensystem Formulations

  20. Time-resolved nanoseconds dynamics of ultrasound contrast agent microbubbles manipulated and controlled by optical tweezers

    NASA Astrophysics Data System (ADS)

    Garbin, Valeria; Cojoc, Dan; Ferrari, Enrico; Di Fabrizio, Enzo; Overvelde, Marlies L. J.; Versluis, Michel; van der Meer, Sander M.; de Jong, Nico; Lohse, Detlef

    2006-08-01

    Optical tweezers enable non-destructive, contact-free manipulation of ultrasound contrast agent (UCA) microbubbles, which are used in medical imaging for enhancing the echogenicity of the blood pool and to quantify organ perfusion. The understanding of the fundamental dynamics of ultrasound-driven contrast agent microbubbles is a first step for exploiting their acoustical properties and to develop new diagnostic and therapeutic applications. In this respect, optical tweezers can be used to study UCA microbubbles under controlled and repeatable conditions, by positioning them away from interfaces and from neighboring bubbles. In addition, a high-speed imaging system is required to record the dynamics of UCA microbubbles in ultrasound, as their oscillations occur on the nanoseconds timescale. In this work, we demonstrate the use of an optical tweezers system combined with a high-speed camera capable of 128-frame recordings at up to 25 million frames per second (Mfps), for the study of individual UCA microbubble dynamics as a function of the distance from solid interfaces.

Top