Carbonaceous particulate typically represents a large fraction of PM2.5 (20 - 40%). Two primary techniques presently used for the analysis of particulate carbon are Thermal Optical Transmission (TOT - NIOSH Method 5040) and Thermal Optical Reflectance (TOR). These two methods b...
Front lighted optical tooling method and apparatus
Stone, W.J.
1983-06-30
An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument.
Method and apparatus for acoustic imaging of objects in water
Deason, Vance A.; Telschow, Kenneth L.
2005-01-25
A method, system and underwater camera for acoustic imaging of objects in water or other liquids includes an acoustic source for generating an acoustic wavefront for reflecting from a target object as a reflected wavefront. The reflected acoustic wavefront deforms a screen on an acoustic side and correspondingly deforms the opposing optical side of the screen. An optical processing system is optically coupled to the optical side of the screen and converts the deformations on the optical side of the screen into an optical intensity image of the target object.
Reflective optical imaging method and circuit
Shafer, David R.
2001-01-01
An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.
Fabrication of optically reflecting ohmic contacts for semiconductor devices
Sopori, Bhushan L.
1995-01-01
A method is provided to produce a low-resistivity ohmic contact having high optical reflectivity on one side of a semiconductor device. The contact is formed by coating the semiconductor substrate with a thin metal film on the back reflecting side and then optically processing the wafer by illuminating it with electromagnetic radiation of a predetermined wavelength and energy level through the front side of the wafer for a predetermined period of time. This method produces a thin epitaxial alloy layer between the semiconductor substrate and the metal layer when a crystalline substrate is used. The alloy layer provides both a low-resistivity ohmic contact and high optical reflectance.
Front lighted optical tooling method and apparatus
Stone, William J.
1985-06-18
An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument. A method of measuring a radius of curvature of an unknown surface includes positioning the spherometer on a surface between the surface and a depth measuring optical instrument. As the spherometer is frontally illuminated, the distance from the depth measuring instrument to the fiducial mark and the underlying surface are alternately measured and the difference in these measurements is used as the sagittal height to calculate a radius of curvature.
Optical nulling apparatus and method for testing an optical surface
NASA Technical Reports Server (NTRS)
Olczak, Eugene (Inventor); Hannon, John J. (Inventor); Dey, Thomas W. (Inventor); Jensen, Arthur E. (Inventor)
2008-01-01
An optical nulling apparatus for testing an optical surface includes an aspheric mirror having a reflecting surface for imaging light near or onto the optical surface under test, where the aspheric mirror is configured to reduce spherical aberration of the optical surface under test. The apparatus includes a light source for emitting light toward the aspheric mirror, the light source longitudinally aligned with the aspheric mirror and the optical surface under test. The aspheric mirror is disposed between the light source and the optical surface under test, and the emitted light is reflected off the reflecting surface of the aspheric mirror and imaged near or onto the optical surface under test. An optical measuring device is disposed between the light source and the aspheric mirror, where light reflected from the optical surface under test enters the optical measuring device. An imaging mirror is disposed longitudinally between the light source and the aspheric mirror, and the imaging mirror is configured to again reflect light, which is first reflected from the reflecting surface of the aspheric mirror, onto the optical surface under test.
Fabrication of optically reflecting ohmic contacts for semiconductor devices
Sopori, B.L.
1995-07-04
A method is provided to produce a low-resistivity ohmic contact having high optical reflectivity on one side of a semiconductor device. The contact is formed by coating the semiconductor substrate with a thin metal film on the back reflecting side and then optically processing the wafer by illuminating it with electromagnetic radiation of a predetermined wavelength and energy level through the front side of the wafer for a predetermined period of time. This method produces a thin epitaxial alloy layer between the semiconductor substrate and the metal layer when a crystalline substrate is used. The alloy layer provides both a low-resistivity ohmic contact and high optical reflectance. 5 figs.
Method and device for remotely monitoring an area using a low peak power optical pump
Woodruff, Steven D.; Mcintyre, Dustin L.; Jain, Jinesh C.
2014-07-22
A method and device for remotely monitoring an area using a low peak power optical pump comprising one or more pumping sources, one or more lasers; and an optical response analyzer. Each pumping source creates a pumping energy. The lasers each comprise a high reflectivity mirror, a laser media, an output coupler, and an output lens. Each laser media is made of a material that emits a lasing power when exposed to pumping energy. Each laser media is optically connected to and positioned between a corresponding high reflectivity mirror and output coupler along a pumping axis. Each output coupler is optically connected to a corresponding output lens along the pumping axis. The high reflectivity mirror of each laser is optically connected to an optical pumping source from the one or more optical pumping sources via an optical connection comprising one or more first optical fibers.
Reflectance and optical constants for Cer-Vit from 250 to 1050 A
NASA Technical Reports Server (NTRS)
Osantowski, J. F.
1974-01-01
The reflectance for a bowl-feed polished Cer-Vit sample was measured at nine wavelengths and five angles of incidence from 15 to 85 deg. Optical constants were derived by the reflectance-vs-angle-of-incidence method and compared to previously reported values for ultralow-expansion fused silica and several other glasses. Surface-roughness corrections of the reflectance data and optical constants are discussed.
FIBER AND INTEGRATED OPTICS: Multiplexed optical-fiber sensors with autodyne detection
NASA Astrophysics Data System (ADS)
Potapov, V. T.; Mamedov, A. M.; Shatalin, S. V.; Yushkaĭtis, R. V.
1993-09-01
A method is proposed for multiplexing optical-fiber interference sensors. The method involves autodyne reception of frequency-modulated radiation reflected back to the laser. The response of a He-Ne laser with a linearly varying generation frequency to radiation reflected back from a single-mode fiber is studied. The spectrum of beats caused in the laser radiation by the reflection is shown to be governed by the distribution of reflectors along the fiber. The phases of the spectral components contain information about the phase shift of the reflected optical signal. A hydrophone array with a sensitivity of 30 μrad/Hz1/2 is described. A distributed temperature sensor with a spatial resolution of 1 m is also described.
Optical method for the determination of stress in thin films
Maris, H.J.
1999-01-26
A method and optical system is disclosed for measuring an amount of stress in a film layer disposed over a substrate. The method includes steps of: (A) applying a sequence of optical pump pulses to the film layer, individual ones of said optical pump pulses inducing a propagating strain pulse in the film layer, and for each of the optical pump pulses, applying at least one optical probe pulse, the optical probe pulses being applied with different time delays after the application of the corresponding optical probe pulses; (B) detecting variations in an intensity of a reflection of portions of the optical probe pulses, the variations being due at least in part to the propagation of the strain pulse in the film layer; (C) determining, from the detected intensity variations, a sound velocity in the film layer; and (D) calculating, using the determined sound velocity, the amount of stress in the film layer. In one embodiment of this invention the step of detecting measures a period of an oscillation in the intensity of the reflection of portions of the optical probe pulses, while in another embodiment the step of detecting measures a change in intensity of the reflection of portions of the optical probe pulses and determines a time at which the propagating strain pulse reflects from a boundary of the film layer. 16 figs.
Optical method for the determination of stress in thin films
Maris, Humphrey J.
1999-01-01
A method and optical system is disclosed for measuring an amount of stress in a film layer disposed over a substrate. The method includes steps of: (A) applying a sequence of optical pump pulses to the film layer, individual ones of said optical pump pulses inducing a propagating strain pulse in the film layer, and for each of the optical pump pulses, applying at least one optical probe pulse, the optical probe pulses being applied with different time delays after the application of the corresponding optical probe pulses; (B) detecting variations in an intensity of a reflection of portions of the optical probe pulses, the variations being due at least in part to the propagation of the strain pulse in the film layer; (C) determining, from the detected intensity variations, a sound velocity in the film layer; and (D) calculating, using the determined sound velocity, the amount of stress in the film layer. In one embodiment of this invention the step of detecting measures a period of an oscillation in the intensity of the reflection of portions of the optical probe pulses, while in another embodiment the step of detecting measures a change in intensity of the reflection of portions of the optical probe pulses and determines a time at which the propagating strain pulse reflects from a boundary of the film layer.
Specimen illumination apparatus with optical cavity for dark field illumination
Pinkel, Daniel; Sudar, Damir; Albertson, Donna
1999-01-01
An illumination apparatus with a specimen slide holder, an illumination source, an optical cavity producing multiple reflection of illumination light to a specimen comprising a first and a second reflective surface arranged to achieve multiple reflections of light to a specimen is provided. The apparatus can further include additional reflective surfaces to achieve the optical cavity, a slide for mounting the specimen, a coverslip which is a reflective component of the optical cavity, one or more prisms for directing light within the optical cavity, antifading solutions for improving the viewing properties of the specimen, an array of materials for analysis, fluorescent components, curved reflective surfaces as components of the optical cavity, specimen detection apparatus, optical detection equipment, computers for analysis of optical images, a plane polarizer, fiberoptics, light transmission apertures, microscopic components, lenses for viewing the specimen, and upper and lower mirrors above and below the specimen slide as components of the optical cavity. Methods of using the apparatus are also provided.
NASA Technical Reports Server (NTRS)
Montgomery, Robert M. (Inventor)
2006-01-01
An optical profile determining apparatus includes an optical detector and an optical source. The optical source generates a transmit beam including a plurality of wavelengths, and generates a reference beam including the plurality of wavelengths. Optical elements direct the transmit beam to a target, direct a resulting reflected transmit beam back from the target to the optical detector, and combine the reference beam with the reflected transmit beam so that a profile of the target is based upon fringe contrast produced by the plurality of wavelengths in the reference beam and the plurality of wavelengths in the reflected transmit beam.
Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light
NASA Astrophysics Data System (ADS)
Kniazkov, A. V.
2016-04-01
Electro-optic coefficients of variations in the refractive index of PZT and PLZT ceramic materials induced by ac electric field are estimated using modulation of reflected light. The electro-optic coefficients of PLZT ceramics measured with the aid of conventional birefringence using the phase shift of transmitted radiation and the proposed method of birefringence using the modulation of reflected light are compared.
Method for Calculating the Optical Diffuse Reflection Coefficient for the Ocular Fundus
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.
2016-07-01
We have developed a method for calculating the optical diffuse reflection coefficient for the ocular fundus, taking into account multiple scattering of light in its layers (retina, epithelium, choroid) and multiple refl ection of light between layers. The method is based on the formulas for optical "combination" of the layers of the medium, in which the optical parameters of the layers (absorption and scattering coefficients) are replaced by some effective values, different for cases of directional and diffuse illumination of the layer. Coefficients relating the effective optical parameters of the layers and the actual values were established based on the results of a Monte Carlo numerical simulation of radiation transport in the medium. We estimate the uncertainties in retrieval of the structural and morphological parameters for the fundus from its diffuse reflectance spectrum using our method. We show that the simulated spectra correspond to the experimental data and that the estimates of the fundus parameters obtained as a result of solving the inverse problem are reasonable.
New generation all-silica based optical elements for high power laser systems
NASA Astrophysics Data System (ADS)
Tolenis, T.; GrinevičiÅ«tÄ--, L.; Melninkaitis, A.; Selskis, A.; Buzelis, R.; MažulÄ--, L.; Drazdys, R.
2017-08-01
Laser resistance of optical elements is one of the major topics in photonics. Various routes have been taken to improve optical coatings, including, but not limited by, materials engineering and optimisation of electric field distribution in multilayers. During the decades of research, it was found, that high band-gap materials, such as silica, are highly resistant to laser light. Unfortunately, only the production of anti-reflection coatings of all-silica materials are presented to this day. A novel route will be presented in materials engineering, capable to manufacture high reflection optical elements using only SiO2 material and GLancing Angle Deposition (GLAD) method. The technique involves the deposition of columnar structure and tailoring the refractive index of silica material throughout the coating thickness. A numerous analysis indicate the superior properties of GLAD coatings when compared with standard methods for Bragg mirrors production. Several groups of optical components are presented including anti-reflection coatings and Bragg mirrors. Structural and optical characterisation of the method have been performed and compared with standard methods. All researches indicate the possibility of new generation coatings for high power laser systems.
Su, Peiran; Eri, Qitai; Wang, Qiang
2014-04-10
Optical roughness was introduced into the bidirectional reflectance distribution function (BRDF) model to simulate the reflectance characteristics of thermal radiation. The optical roughness BRDF model stemmed from the influence of surface roughness and wavelength on the ray reflectance calculation. This model was adopted to simulate real metal emissivity. The reverse Monte Carlo method was used to display the distribution of reflectance rays. The numerical simulations showed that the optical roughness BRDF model can calculate the wavelength effect on emissivity and simulate the real metal emissivity variance with incidence angles.
NASA Astrophysics Data System (ADS)
Vincent, D. A.; Nielsen, K. E.; Durkee, P. A.; Reid, J. S.
2005-12-01
The advancement and proliferation of high-resolution commercial imaging satellites presents a new opportunity for overland aerosol characterization. Current aerosol optical depth retrieval methods typically fail over areas with high surface reflectance, such as urban areas and deserts, since the upwelling radiance due to scattering by aerosols is small compared to the radiance resulting from surface reflection. The method proposed here uses shadows cast on the surface to exploit the differences between radiance from the adjacent shaded and unshaded areas of the scene. Shaded areas of the scene are primarily illuminated by diffuse irradiance that is scattered downward from the atmosphere, while unshaded areas are illuminated by both diffuse and direct solar irradiance. The first-order difference between the shaded and unshaded areas is the direct component. Given uniform surface reflectance for the shaded and unshaded areas, the difference in reflected radiance measured by a satellite sensor is related to the direct transmission of solar radiation and inversely proportional to total optical depth. Using an iterative approach, surface reflectance and mean aerosol reflectance can be partitioned to refine the retrieved total optical depth. Aerosol optical depth can then be determined from its contribution to the total atmospheric optical depth (following correction for molecular Rayleigh scattering). Intitial results based on QuickBird imagery and AERONET data collected during the United Arab Emirates Unified Aerosol Experiment (UAE2) indicate that aerosol optical depth retrievals are possible in the visible and near-infrared region with an accuracy of ~0.04.
Reflective optical imaging system
Shafer, David R.
2000-01-01
An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kyung-Min; Min Kim, Chul; Moon Jeong, Tae, E-mail: jeongtm@gist.ac.kr
A computational method based on a first-principles multiscale simulation has been used for calculating the optical response and the ablation threshold of an optical material irradiated with an ultrashort intense laser pulse. The method employs Maxwell's equations to describe laser pulse propagation and time-dependent density functional theory to describe the generation of conduction band electrons in an optical medium. Optical properties, such as reflectance and absorption, were investigated for laser intensities in the range 10{sup 10} W/cm{sup 2} to 2 × 10{sup 15} W/cm{sup 2} based on the theory of generation and spatial distribution of the conduction band electrons. The method was applied tomore » investigate the changes in the optical reflectance of α-quartz bulk, half-wavelength thin-film, and quarter-wavelength thin-film and to estimate their ablation thresholds. Despite the adiabatic local density approximation used in calculating the exchange–correlation potential, the reflectance and the ablation threshold obtained from our method agree well with the previous theoretical and experimental results. The method can be applied to estimate the ablation thresholds for optical materials, in general. The ablation threshold data can be used to design ultra-broadband high-damage-threshold coating structures.« less
Method and apparatus for imaging a sample on a device
Trulson, Mark; Stern, David; Fiekowsky, Peter; Rava, Richard; Walton, Ian; Fodor, Stephen P. A.
2001-01-01
A method and apparatus for imaging a sample are provided. An electromagnetic radiation source generates excitation radiation which is sized by excitation optics to a line. The line is directed at a sample resting on a support and excites a plurality of regions on the sample. Collection optics collect response radiation reflected from the sample I and image the reflected radiation. A detector senses the reflected radiation and is positioned to permit discrimination between radiation reflected from a certain focal plane in the sample and certain other planes within the sample.
Determination of optical band gap of powder-form nanomaterials with improved accuracy
NASA Astrophysics Data System (ADS)
Ahsan, Ragib; Khan, Md. Ziaur Rahman; Basith, Mohammed Abdul
2017-10-01
Accurate determination of a material's optical band gap lies in the precise measurement of its absorption coefficients, either from its absorbance via the Beer-Lambert law or diffuse reflectance spectrum via the Kubelka-Munk function. Absorption coefficients of powder-form nanomaterials calculated from absorbance spectrum do not match those calculated from diffuse reflectance spectrum, implying the inaccuracy of the traditional optical band gap measurement method for such samples. We have modified the Beer-Lambert law and the Kubelka-Munk function with proper approximations for powder-form nanomaterials. Applying the modified method for powder-form nanomaterial samples, both absorbance and diffuse reflectance spectra yield exactly the same absorption coefficients and therefore accurately determine the optical band gap.
NASA Technical Reports Server (NTRS)
Moore, Jason P. (Inventor)
2009-01-01
A system and method for determining a reflection wavelength of multiple Bragg gratings in a sensing optical fiber comprise: (1) a source laser; (2) an optical detector configured to detect a reflected signal from the sensing optical fiber; (3) a plurality of frequency generators configured to generate a signal having a frequency corresponding to an interferometer frequency of a different one of the plurality of Bragg gratings; (4) a plurality of demodulation elements, each demodulation element configured to combine the signal produced by a different one of the plurality of frequency generators with the detected signal from the sensing optical fiber; (5) a plurality of peak detectors, each peak detector configured to detect a peak of the combined signal from a different one of the demodulation elements; and (6) a laser wavenumber detection element configured to determine a wavenumber of the laser when any of the peak detectors detects a peak.
Theory of Fiber Optical Bragg Grating: Revisited
NASA Technical Reports Server (NTRS)
Tai, H.
2003-01-01
The reflected signature of an optical fiber Bragg grating is analyzed using the transfer function method. This approach is capable to cast all relevant quantities into proper places and provides a better physical understanding. The relationship between reflected signal, number of periods, index of refraction, and reflected wave phase is elucidated. The condition for which the maximum reflectivity is achieved is fully examined. We also have derived an expression to predict the reflectivity minima accurately when the reflected wave is detuned. Furthermore, using the segmented potential approach, this model can handle arbitrary index of refraction profiles and compare the strength of optical reflectivity of different profiles. The condition of a non-uniform grating is also addressed.
[Spectral characteristics of refractive index based on nanocoated optical fiber F-P sensor].
Jiang, Ming-Shun; Li, Qiu-Shun; Sui, Qing-Mei; Jia, Lei; Peng, Peng
2013-01-01
An optical fiber Fabry-Perot (F-P) interferometer end surface was modified using layer-by-layer assembly and chemical covalent cross linking method, and the refractive index (RI) response characteristics of coated optical fiber F-P sensor were experimentally studied. Poly diallyldimethylammonium chloride (PDDA) and sodium polystyrene sulfonate (PSS) were chosen as nano-film materials. With the numbers of layers increasing, the reflection spectral contrast of optical fiber F-P sensor presents from high to low, then to high regularity. And the reflection spectral contrast has good temperature stability. The reflection spectra of the optical F-P sensor coated with 20 bilayers for a series of concentration of sucrose and inorganic solution were measured. Experimental results show that the inflection point extends from 1.457 to 1.462 3, and the reflection spectral contrast sensitivity to low RI material and high RI material is 24.53 and 3.60 dB x RI(-1), respectively, with good linearity. The results demonstrate that the functional coated optical F-P sensor provides a new method for biology and chemical material test.
NASA Technical Reports Server (NTRS)
Griesser, Timothy; Balanis, Constantine A.
1987-01-01
The backscatter cross-sections of dihedral corner reflectors in the azimuthal plane are presently determined by both physical optics (PO) and the physical theory of diffraction (PTD), yielding results for the vertical and horizontal polarizations. In the first analysis method used, geometrical optics is used in place of PO at initial reflections in order to maintain the planar character of the reflected wave and reduce the complexity of the analysis. In the second method, PO is used at almost every reflection in order to maximize the accuracy of the PTD solution at the expense of a rapid increase in complexity. Induced surface current densities and resulting cross section patterns are illustrated for the two methods.
Hwang, Dusun; Yoon, Dong-Jin; Kwon, Il-Bum; Seo, Dae-Cheol; Chung, Youngjoo
2010-05-10
A novel method for auto-correction of fiber optic distributed temperature sensor using anti-Stokes Raman back-scattering and its reflected signal is presented. This method processes two parts of measured signal. One part is the normal back scattered anti-Stokes signal and the other part is the reflected signal which eliminate not only the effect of local losses due to the micro-bending or damages on fiber but also the differential attenuation. Because the beams of the same wavelength are used to cancel out the local variance in transmission medium there is no differential attenuation inherently. The auto correction concept was verified by the bending experiment on different bending points. (c) 2010 Optical Society of America.
Extended surface parallel coating inspection method
Naulleau, Patrick P.
2006-03-21
Techniques for rapidly characterizing reflective surfaces and especially multi-layer EUV reflective surfaces of optical components involve illuminating the entire reflective surface instantaneously and detecting the image far field. The technique provides a mapping of points on the reflective surface to corresponding points on a detector, e.g., CCD. This obviates the need to scan a probe over the entire surface of the optical component. The reflective surface can be flat, convex, or concave.
Telschow, K.L.; Siu, B.K.
1996-07-09
A method of evaluating integrity of adherence of a conductor bond to a substrate includes: (a) impinging a plurality of light sources onto a substrate; (b) detecting optical reflective signatures emanating from the substrate from the impinged light; (c) determining location of a selected conductor bond on the substrate from the detected reflective signatures; (d) determining a target site on the selected conductor bond from the detected reflective signatures; (e) optically imparting an elastic wave at the target site through the selected conductor bond and into the substrate; (f) optically detecting an elastic wave signature emanating from the substrate resulting from the optically imparting step; and (g) determining integrity of adherence of the selected conductor bond to the substrate from the detected elastic wave signature emanating from the substrate. A system is disclosed which is capable of conducting the method. 13 figs.
Telschow, Kenneth L.; Siu, Bernard K.
1996-01-01
A method of evaluating integrity of adherence of a conductor bond to a substrate includes: a) impinging a plurality of light sources onto a substrate; b) detecting optical reflective signatures emanating from the substrate from the impinged light; c) determining location of a selected conductor bond on the substrate from the detected reflective signatures; d) determining a target site on the selected conductor bond from the detected reflective signatures; e) optically imparting an elastic wave at the target site through the selected conductor bond and into the substrate; f) optically detecting an elastic wave signature emanating from the substrate resulting from the optically imparting step; and g) determining integrity of adherence of the selected conductor bond to the substrate from the detected elastic wave signature emanating from the substrate. A system is disclosed which is capable of conducting the method.
Dynamic Optical Grating Device and Associated Method for Modulating Light
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Chu, Sang-Hyon (Inventor)
2012-01-01
A dynamic optical grating device and associated method for modulating light is provided that is capable of controlling the spectral properties and propagation of light without moving mechanical components by the use of a dynamic electric and/or magnetic field. By changing the electric field and/or magnetic field, the index of refraction, the extinction coefficient, the transmittivity, and the reflectivity fo the optical grating device may be controlled in order to control the spectral properties of the light reflected or transmitted by the device.
The infrared bands Pechan prism axis parallel detection method
NASA Astrophysics Data System (ADS)
Qiang, Hua; Ji, Ming; He, Yu-lan; Wang, Nan-xi; Chang, Wei-jun; Wang, Ling; Liu, Li
2017-02-01
In this paper, we put forward a new method to adjust the air gap of the total reflection air gap of the infrared Pechan prism. The adjustment of the air gap in the air gap of the Pechan prism directly affects the parallelism of the optical axis, so as to affect the consistency of the optical axis of the infrared system. The method solves the contradiction between the total reflection and the high transmission of the infrared wave band, and promotes the engineering of the infrared wave band. This paper puts forward the method of adjusting and controlling, which can ensure the full reflection and high penetration of the light, and also can accurately measure the optical axis of the optical axis of the different Pechan prism, and can achieve the precision of the level of the sec. For Pechan prism used in the infrared band image de rotation, make the product to realize miniaturization, lightweight plays an important significance.
NASA Astrophysics Data System (ADS)
Haji, L.; Hiraoui, M.; Lorrain, N.; Guendouz, M.
2012-03-01
In this letter we report on the use of an electrochemical process for the fabrication of anti resonant reflecting optical waveguide based on oxidized porous silicon. This method is known to allow the formation of various photonic structures (Bragg mirror, microcavity), thanks to the easy and in situ modulation of the porosity and thus of the refractive index. Planar anti resonant reflecting optical waveguide structure made from porous silicon is demonstrated to be very effective for low losses as compared to conventional resonant waveguide. Optical measurements carried out for TE and TM polarizations are reported and related to optical sensing.
NASA Astrophysics Data System (ADS)
Tichý, Vladimír; Hudec, René; Němcová, Šárka
2016-06-01
The algorithm presented is intended mainly for lobster eye optics. This type of optics (and some similar types) allows for a simplification of the classical ray-tracing procedure that requires great many rays to simulate. The method presented performs the simulation of a only few rays; therefore it is extremely effective. Moreover, to simplify the equations, a specific mathematical formalism is used. Only a few simple equations are used, therefore the program code can be simple as well. The paper also outlines how to apply the method to some other reflective optical systems.
Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land
Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano
2010-01-01
Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550nm (τ550) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ550 with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ550 and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ550 retrieved by Module A (r2 = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r2 ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558
High efficiency replicated x-ray optics and fabrication method
Barbee, Jr., Troy W.; Lane, Stephen M.; Hoffman, Donald E.
2001-01-01
Replicated x-ray optics are fabricated by sputter deposition of reflecting layers on a super-polished reusable mandrel. The reflecting layers are strengthened by a supporting multilayer that results in stronger stress-relieved reflecting surfaces that do not deform during separation from the mandrel. The supporting multilayer enhances the ability to part the replica from the mandrel without degradation in surface roughness. The reflecting surfaces are comparable in smoothness to the mandrel surface. An outer layer is electrodeposited on the supporting multilayer. A parting layer may be deposited directly on the mandrel before the reflecting surface to facilitate removal of the layered, tubular optic device from the mandrel without deformation. The inner reflecting surface of the shell can be a single layer grazing reflection mirror or a resonant multilayer mirror. The resulting optics can be used in a wide variety of applications, including lithography, microscopy, radiography, tomography, and crystallography.
NASA Astrophysics Data System (ADS)
Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Frigerio, Jean-Marc; Coolen, Laurent; Schwob, Catherine; Nga, Pham Thu; Gallas, Bruno; Maître, Agnès
2012-10-01
Self-assembled artificial opals (in particular silica opals) constitute a model system to study the optical properties of three-dimensional photonic crystals. The silica optical index is a key parameter to correctly describe an opal but is difficult to measure at the submicrometer scale and usually treated as a free parameter. Here, we propose a method to extract the silica index from the opal reflection spectra and we validate it by comparison with two independent methods based on infrared measurements. We show that this index gives a correct description of the opal reflection spectra, either by a band structure or by a Bragg approximation. In particular, we are able to provide explanations in quantitative agreement with the measurements for two features : the observation of a second reflection peak in specular direction, and the quasicollapse of the p-polarized main reflection peak at a typical angle of 54∘.
System and method for optically locating microchannel positions
Brewer, Laurence R.; Kimbrough, Joseph; Balch, Joseph; Davidson, J. Courtney
2001-01-01
A system and method is disclosed for optically locating a microchannel position. A laser source generates a primary laser beam which is directed at a microchannel plate. The microchannel plates include microchannels at various locations. A back-reflectance beam detector receives a back-reflected beam from the plate. The back-reflected beam is generated when the primary beam reflects off of the plate. A photodiode circuit generates a trigger signal when the back-reflected beam exceeds a predetermined threshold, indicating a presence of the microchannel. The method of the present invention includes the steps of generating a primary beam, directing the primary beam to a plate containing a microchannel, receiving from the plate a back-reflected beam generated in response to the primary beam, and generating a trigger signal when the back-reflected beam exceeds a predetermined threshold which corresponds to a presence of the microchannel.
Optical add/drop filter for wavelength division multiplexed systems
Deri, Robert J.; Strand, Oliver T.; Garrett, Henry E.
2002-01-01
An optical add/drop filter for wavelength division multiplexed systems and construction methods are disclosed. The add/drop filter includes a first ferrule having a first pre-formed opening for receiving a first optical fiber; an interference filter oriented to pass a first set of wavelengths along the first optical fiber and reflect a second set of wavelengths; and, a second ferrule having a second pre-formed opening for receiving the second optical fiber, and the reflected second set of wavelengths. A method for constructing the optical add/drop filter consists of the steps of forming a first set of openings in a first ferrule; inserting a first set of optical fibers into the first set of openings; forming a first set of guide pin openings in the first ferrule; dividing the first ferrule into a first ferrule portion and a second ferrule portion; forming an interference filter on the first ferrule portion; inserting guide pins through the first set of guide pin openings in the first ferrule portion and second ferrule portion to passively align the first set of optical fibers; removing material such that light reflected from the interference filter from the first set of optical fibers is accessible; forming a second set of openings in a second ferrule; inserting a second set of optical fibers into the second set of openings; and positioning the second ferrule with respect to the first ferrule such that the second set of optical fibers receive the light reflected from the interference filter.
Reflective optical imaging systems with balanced distortion
Hudyma, Russell M.
2001-01-01
Optical systems compatible with extreme ultraviolet radiation comprising four reflective elements for projecting a mask image onto a substrate are described. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical systems are particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput, and allows higher semiconductor device density. The inventive optical systems are characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.
Multiple-channel, total-reflection optic with controllable divergence
Gibson, David M.; Downing, Robert G.
1997-01-01
An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence.
Multiple-channel, total-reflection optic with controllable divergence
Gibson, D.M.; Downing, R.G.
1997-02-18
An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence. 11 figs.
Method and apparatus for removing unwanted reflections from an interferometer
NASA Technical Reports Server (NTRS)
Steimle, Lawrence J. (Inventor); Thiessen, David L. (Inventor)
1994-01-01
A device for eliminating unwanted reflections from refractive optical elements in an optical system is provided. The device operates to prevent desired multiple fringe patterns from being obscured by reflections from refractive elements positioned in proximity to a focal plane of the system. The problem occurs when an optical beam is projected into, and reflected back out of, the optical system. Surfaces of the refractive elements reflect portions of the beam which interfere with portions of the beam which are transmitted through the refractive elements. Interference between the reflected and transmitted portions of the beam produce multiple fringe sets which tend to obscure desired interference fringes. With the refractive optical element in close proximity to the focal plane of the system, the undesired reflected light reflects at an angle 180 degrees opposite from the desired transmitted beam. The device exploits the 180-degree offset, or rotational shear, of the undesired reflected light by providing an optical stop for blocking one-half of the cross-section of the test beam. By blocking one-half of the test beam, the undesired offset beam is blocked, while the returning transmitted beam passes into the optical system unaffected. An image is thereby produced from only the desired transmitted beam. In one configuration, the blocking device includes a semicircular aperture which is caused to rotate about the axis of the test beam. By rotating, all portions of the test beam are cyclically projected into the optical system to thereby produce a complete test image. The rotating optical stop is preferably caused to rotate rapidly to eliminate flicker in the resulting image.
Reflective optical imaging system with balanced distortion
Chapman, Henry N.; Hudyma, Russell M.; Shafer, David R.; Sweeney, Donald W.
1999-01-01
An optical system compatible with short wavelength (extreme ultraviolet) An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput and allows higher semiconductor device density. The inventive optical system is characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.
Reconstructing in-vivo reflectance spectrum of pigmented skin lesion by Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Wang, Shuang; He, Qingli; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan
2012-03-01
In dermatology applications, diffuse reflectance spectroscopy has been extensively investigated as a promising tool for the noninvasive method to distinguish melanoma from benign pigmented skin lesion (nevus), which is concentrated with the skin chromophores like melanin and hemoglobin. We carried out a theoretical study to examine melanin distribution in human skin tissue and establish a practical optical model for further pigmented skin investigation. The theoretical simulation was using junctional nevus as an example. A multiple layer skin optical model was developed on established anatomy structures of skin, the published optical parameters of different skin layers, blood and melanin. Monte Carlo simulation was used to model the interaction between excitation light and skin tissue and rebuild the diffuse reflectance process from skin tissue. A testified methodology was adopted to determine melanin contents in human skin based on in vivo diffuse reflectance spectra. The rebuild diffuse reflectance spectra were investigated by adding melanin into different layers of the theoretical model. One of in vivo reflectance spectra from Junctional nevi and their surrounding normal skin was studied by compare the ratio between nevus and normal skin tissue in both the experimental and simulated diffuse reflectance spectra. The simulation result showed a good agreement with our clinical measurements, which indicated that our research method, including the spectral ratio method, skin optical model and modifying the melanin content in the model, could be applied in further theoretical simulation of pigmented skin lesions.
NASA Astrophysics Data System (ADS)
Nozka, L.; Hiklova, H.; Horvath, P.; Hrabovsky, M.; Mandat, D.; Palatka, M.; Pech, M.; Ridky, J.; Schovanek, P.
2018-05-01
We present results of the monitoring method we have used to characterize the optical performance deterioration due to the dust of our mirror segments produced for fluorescence detectors used in astrophysics experiments. The method is based on the measurement of scatter profiles of reflected light. The scatter profiles and the reflectivity of the mirror segments sufficiently describe the performance of the mirrors from the perspective of reconstruction algorithms. The method is demonstrated on our mirror segments installed in frame of the Pierre Auger Observatory project. Although installed in air-conditioned buildings, both the dust sedimentation and the natural aging of the reflective layer deteriorate the optical throughput of the segments. In the paper, we summarized data from ten years of operation of the fluorescence detectors. During this time, we periodically measured in-situ scatter characteristics represented by the specular reflectivity and the reflectivity of the diffusion part at the wavelength of 670 nm of the segment surface (measured by means of the optical scatter technique as well). These measurements were extended with full Bidirectional Reflectance Distribution Functions (BRDF) profiles of selected segments made in the laboratory. Cleaning procedures are also discussed in the paper.
Precise optical observation of 0.5-GPa shock waves in condensed materials
NASA Astrophysics Data System (ADS)
Nagayama, Kunihito; Mori, Yasuhito
1999-06-01
Precision optical observation method was developed to study impact-generated high-pressure shock waves in condensed materials. The present method makes it possible to sensitively detect the shock waves of the relatively low shock stress around 0.5 GPa. The principle of the present method is based on the use of total internal reflection by triangular prisms placed on the free surface of a target assembly. When a plane shock wave arrives at the free surface, the light reflected from the prisms extinguishes instantaneously. The reason is that the total internal reflection changes to the reflection depending on micron roughness of the free surface after the shock arrival. The shock arrival at the bottom face of the prisms can be detected here by two kinds of methods, i.e., a photographic method and a gauge method. The photographic method is an inclined prism method of using a high-speed streak camera. The shock velocity and the shock tilt angle can be estimated accurately from an obtained streak photograph. While in the gauge method, an in-material PVDF stress gauge is combined with an optical prism-pin. The PVDF gauge records electrically the stress profile behind the shockwave front, and the Hugoniot data can be precisely measured by combining the prism pin with the PVDF gauge.
Simplifying BRDF input data for optical signature modeling
NASA Astrophysics Data System (ADS)
Hallberg, Tomas; Pohl, Anna; Fagerström, Jan
2017-05-01
Scene simulations of optical signature properties using signature codes normally requires input of various parameterized measurement data of surfaces and coatings in order to achieve realistic scene object features. Some of the most important parameters are used in the model of the Bidirectional Reflectance Distribution Function (BRDF) and are normally determined by surface reflectance and scattering measurements. Reflectance measurements of the spectral Directional Hemispherical Reflectance (DHR) at various incident angles can normally be performed in most spectroscopy labs, while measuring the BRDF is more complicated or may not be available at all in many optical labs. We will present a method in order to achieve the necessary BRDF data directly from DHR measurements for modeling software using the Sandford-Robertson BRDF model. The accuracy of the method is tested by modeling a test surface by comparing results from using estimated and measured BRDF data as input to the model. These results show that using this method gives no significant loss in modeling accuracy.
Simmert, Steve; Abdosamadi, Mohammad Kazem; Hermsdorf, Gero; Schäffer, Erik
2018-05-28
Optical tweezers combined with various microscopy techniques are a versatile tool for single-molecule force spectroscopy. However, some combinations may compromise measurements. Here, we combined optical tweezers with total-internal-reflection-fluorescence (TIRF) and interference-reflection microscopy (IRM). Using a light-emitting diode (LED) for IRM illumination, we show that single microtubules can be imaged with high contrast. Furthermore, we converted the IRM interference pattern of an upward bent microtubule to its three-dimensional (3D) profile calibrated against the optical tweezers and evanescent TIRF field. In general, LED-based IRM is a powerful method for high-contrast 3D microscopy.
NASA Astrophysics Data System (ADS)
Gao, Chunxue; Zhao, Zhiwei; Zhu, Zhuoya; Li, Shuang; Mi, Changwen
2015-02-01
HfO2/SiO2 high reflective optical coatings are widely used in high power laser applications because of their high laser damage resistance and appropriate spectral performance. The residual stresses strongly influence the performance and longevity of the optical coatings. Thermal stresses are the primary components of the residual stresses. In the present work, the distribution of thermal stresses in HfO2/SiO2 high reflective optical coatings was investigated using two different computational methods: finite element method (FEM) and an analytical method based on force and moment balances and classical beam bending theory. The results by these two methods were compared and found to be in agreement with each other, demonstrating that these two methods are effective and accurate ways to predict the thermal stresses in HfO2/SiO2 optical coatings. In addition, these two methods were also used to obtain the thermal stresses in HfO2/SiO2 optical coatings with different layer number to investigate the effect of the layer number on the thermal stresses of the HfO2/SiO2 optical coatings. The results show that with the increase of the layer number, the stresses in the substrate increase, while the stresses in the respective SiO2 and HfO2 layers decrease. Besides, it was also found that the radius of curvature of the coating system decreases as the layer number increases, leading to larger bending curvature in the system.
Optical Method for Estimating the Chlorophyll Contents in Plant Leaves.
Pérez-Patricio, Madaín; Camas-Anzueto, Jorge Luis; Sanchez-Alegría, Avisaí; Aguilar-González, Abiel; Gutiérrez-Miceli, Federico; Escobar-Gómez, Elías; Voisin, Yvon; Rios-Rojas, Carlos; Grajales-Coutiño, Ruben
2018-02-22
This work introduces a new vision-based approach for estimating chlorophyll contents in a plant leaf using reflectance and transmittance as base parameters. Images of the top and underside of the leaf are captured. To estimate the base parameters (reflectance/transmittance), a novel optical arrangement is proposed. The chlorophyll content is then estimated by using linear regression where the inputs are the reflectance and transmittance of the leaf. Performance of the proposed method for chlorophyll content estimation was compared with a spectrophotometer and a Soil Plant Analysis Development (SPAD) meter. Chlorophyll content estimation was realized for Lactuca sativa L., Azadirachta indica , Canavalia ensiforme , and Lycopersicon esculentum . Experimental results showed that-in terms of accuracy and processing speed-the proposed algorithm outperformed many of the previous vision-based approach methods that have used SPAD as a reference device. On the other hand, the accuracy reached is 91% for crops such as Azadirachta indica , where the chlorophyll value was obtained using the spectrophotometer. Additionally, it was possible to achieve an estimation of the chlorophyll content in the leaf every 200 ms with a low-cost camera and a simple optical arrangement. This non-destructive method increased accuracy in the chlorophyll content estimation by using an optical arrangement that yielded both the reflectance and transmittance information, while the required hardware is cheap.
NASA Astrophysics Data System (ADS)
Fonseca, E. S. R.; de Jesus, M. E. P.
2007-07-01
The estimation of optical properties of highly turbid and opaque biological tissue is a difficult task since conventional purely optical methods rapidly loose sensitivity as the mean photon path length decreases. Photothermal methods, such as pulsed or frequency domain photothermal radiometry (FD-PTR), on the other hand, show remarkable sensitivity in experimental conditions that produce very feeble optical signals. Photothermal Radiometry is primarily sensitive to absorption coefficient yielding considerably higher estimation errors on scattering coefficients. Conversely, purely optical methods such as Local Diffuse Reflectance (LDR) depend mainly on the scattering coefficient and yield much better estimates of this parameter. Therefore, at moderate transport albedos, the combination of photothermal and reflectance methods can improve considerably the sensitivity of detection of tissue optical properties. The authors have recently proposed a novel method that combines FD-PTR with LDR, aimed at improving sensitivity on the determination of both optical properties. Signal analysis was performed by global fitting the experimental data to forward models based on Monte-Carlo simulations. Although this approach is accurate, the associated computational burden often limits its use as a forward model. Therefore, the application of analytical models based on the diffusion approximation offers a faster alternative. In this work, we propose the calculation of the diffuse reflectance and the fluence rate profiles under the δ-P I approximation. This approach is known to approximate fluence rate expressions better close to collimated sources and boundaries than the standard diffusion approximation (SDA). We extend this study to the calculation of the diffuse reflectance profiles. The ability of the δ-P I based model to provide good estimates of the absorption, scattering and anisotropy coefficients is tested against Monte-Carlo simulations over a wide range of scattering to absorption ratios. Experimental validation of the proposed method is accomplished by a set of measurements on solid absorbing and scattering phantoms.
NASA Astrophysics Data System (ADS)
Chen, Kaixin; Zhang, Hongbo; Zhang, Daming; Yang, Han; Yi, Maobin
2002-09-01
External electro-optic sampling utilizing a poled polymer asymmetry Fabry-Perot cavity as electro-optic probe tip has been demonstrated. Electro-optical polymer spin coated on the high-reflectivity mirror (HRM) was corona poled. Thus, an asymmetric F-P cavity was formed based on the different reflectivity of the polymer and HRM and it converted the phase modulation that originates from electro-optic effect of the poled polymer to amplitude modulation, so only one laser beam is needed in this system. The principle of the sampling was analyzed by multiple reflection and index ellipsoid methods. A 1.2 GHz microwave signal propagating on coplanar waveguide transmission line was sampled, and the voltage sensitivity about 0.5 mV/ Hz was obtained.
Off-axis reflective optical apparatus
NASA Technical Reports Server (NTRS)
Ames, Lawrence L. (Inventor); Leary, David F. (Inventor); Mammini, Paul V. (Inventor)
2005-01-01
Embodiments of the present invention are directed to a simple apparatus and a convenient and accurate method of mounting the components to form an off-axis reflective optical apparatus such as a collimator. In one embodiment, an off-axis reflective optical apparatus comprises a mounting block having a ferrule holder support surface and an off-axis reflector support surface which is generally perpendicular to the ferrule holder support surface. An optical reflector is mounted on the off-axis reflector support surface and has a reflected beam centerline. The optical reflector has a conic reflective surface and a conic center. A ferrule holder is mounted on the ferrule holder support surface. The ferrule holder provides a ferrule for coupling to an optical fiber and orienting a fiber tip of the optical fiber along a fiber axis toward the optical reflector. The fiber axis is nonparallel to the reflected beam centerline. Prior to mounting the optical reflector to the off-axis reflector support surface and prior to mounting the ferrule holder to the ferrule holder support surface, the optical reflector is movable on the off-axis reflector surface and the ferrule holder is movable on the ferrule holder support surface to align the conic center of the optical reflector with respect to the fiber tip of the optical fiber, and the apparatus has at least one of the following features: (1) the optical reflector is movable on the off-axis reflector support surface to adjust a focus of the fiber tip with respect to the optical reflector, and (2) the ferrule holder is movable on the ferrule holder support surface to adjust the focus of the fiber tip with respect to the optical reflector.
Broadband optical radiation detector
NASA Technical Reports Server (NTRS)
Gupta, A.; Hong, S. D.; Moacanin, J. (Inventor)
1981-01-01
A method and apparatus for detecting optical radiation by optically monitoring temperature changes in a microvolume caused by absorption of the optical radiation to be detected is described. More specifically, a thermal lens forming material is provided which has first and second opposite, substantially parallel surfaces. A reflective coating is formed on the first surface, and a radiation absorbing coating is formed on the reflective coating. Chopped, incoming optical radiation to be detected is directed to irradiate a small portion of the radiation absorbing coating. Heat generated in this small area is conducted to the lens forming material through the reflective coating, thereby raising the temperature of a small portion of the lens forming material and causing a thermal lens to be formed therein.
Two-dimensional PSF prediction of multiple-reflection optical systems with rough surfaces
NASA Astrophysics Data System (ADS)
Tayabaly, Kashmira; Spiga, Daniele; Sironi, Giorgia; Pareschi, Giovani; Lavagna, Michele
2016-09-01
The focusing accuracy in reflective optical systems, usually expressed in terms of the Point Spread Function (PSF) is chiefly determined by two factors: the deviation of the mirror shape from the nominal design and the surface finishing. While the effects of the former are usually well described by the geometrical optics, the latter is diffractive/interferential in nature and determined by a distribution of defects that cover several decades in the lateral scale (from a few millimeters to a few microns). Clearly, reducing the level of scattered light is crucial to improve the focusing of the collected radiation, particularly for astronomical telescopes that aim to detect faint light signals from our Universe. Telescopes are typically arranged in multiple reflections configuration and the behavior of the multiply-scattered radiation becomes difficult to predict and control. Also it is difficult to disentangle the effect of surface scattering from the PSF degradation caused by the shape deformation of the optical elements. This paper presents a simple and unifying method for evaluating the contribution of optical surfaces defects to the two-dimensional PSF of a multi-reflections system, regardless of the classification of a spectral range as "geometry" or "roughness". This method, entirely based on Huygens-Fresnel principle in the far-field approximation, was already applied in grazing-incidence X-ray mirrors and experimentally validated for a single reflection system, accounting for the real surface topography of the optics. In this work we show the extension of this formalism to a double reflection system and introducing real microroughness data. The formalism is applied to a MAGIC-I panel mirror that was fully characterized, allowing us to predict the PSF and the validation with real measurements of the double reflection ASTRI telescope, a prototype of CTA-SST telescope.
Method And Apparatus For Evaluatin Of High Temperature Superconductors
Fishman, Ilya M.; Kino, Gordon S.
1996-11-12
A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.
Additive manufacturing of reflective optics: evaluating finishing methods
NASA Astrophysics Data System (ADS)
Leuteritz, G.; Lachmayer, R.
2018-02-01
Individually shaped light distributions become more and more important in lighting technologies and thus the importance of additively manufactured reflectors increases significantly. The vast field of applications ranges from automotive lighting to medical imaging and bolsters the statement. However, the surfaces of additively manufactured reflectors suffer from insufficient optical properties even when manufactured using optimized process parameters for the Selective Laser Melting (SLM) process. Therefore post-process treatments of reflectors are necessary in order to further enhance their optical quality. This work concentrates on the effectiveness of post-process procedures for reflective optics. Based on already optimized aluminum reflectors, which are manufactured with a SLM machine, the parts are differently machined after the SLM process. Selected finishing methods like laser polishing, sputtering or sand blasting are applied and their effects quantified and compared. The post-process procedures are investigated on their impact on surface roughness and reflectance as well as geometrical precision. For each finishing method a demonstrator will be created and compared to a fully milled sample and among themselves. Ultimately, guidelines are developed in order to figure out the optimal treatment of additively manufactured reflectors regarding their optical and geometrical properties. Simulations of the light distributions will be validated with the developed demonstrators.
Smart Optical Material Characterization System and Method
NASA Technical Reports Server (NTRS)
Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)
2015-01-01
Disclosed is a system and method for characterizing optical materials, using steps and equipment for generating a coherent laser light, filtering the light to remove high order spatial components, collecting the filtered light and forming a parallel light beam, splitting the parallel beam into a first direction and a second direction wherein the parallel beam travelling in the second direction travels toward the material sample so that the parallel beam passes through the sample, applying various physical quantities to the sample, reflecting the beam travelling in the first direction to produce a first reflected beam, reflecting the beam that passes through the sample to produce a second reflected beam that travels back through the sample, combining the second reflected beam after it travels back though the sample with the first reflected beam, sensing the light beam produced by combining the first and second reflected beams, and processing the sensed beam to determine sample characteristics and properties.
Enhanced backscatter of optical beams reflected in atmospheric turbulence
NASA Astrophysics Data System (ADS)
Nelson, W.; Palastro, J. P.; Wu, C.; Davis, C. C.
2014-10-01
Optical beams propagating through the atmosphere acquire phase distortions from turbulent fluctuations in the refractive index. While these distortions are usually deleterious to propagation, beams reflected in a turbulent medium can undergo a local recovery of spatial coherence and intensity enhancement referred to as enhanced backscatter (EBS). Using simulations, we investigate the EBS of optical beams reflected from mirrors, corner cubes, and rough surfaces, and identify the regimes in which EBS is most distinctly observed. Standard EBS detection requires averaging the reflected intensity over many passes through uncorrelated turbulence. Here we present an algorithm called the "tilt-shift method" which allows detection of EBS in static turbulence, improving its suitability for potential applications.
Design and fabrication of sub-wavelength anti-reflection grating
NASA Astrophysics Data System (ADS)
Zou, Wenlong; Li, Chaoming; Chen, Xinrong; Cai, Zhijian; Wu, Jianhong
2018-01-01
In the high power laser system, the reflection of optical surface has a strong impact on the efficiency for luminous energy utilization. Fresnel reflection can be effectively suppressed by antireflection film. For that, the anti-reflection film is one of the important optical elements in high power laser system. The common preparation methods of anti-reflection film include monolayer film, multilayer film and sub-wavelength grating. The effectiveness of monolayer is unsatisfactory, and its application spectrum bandwidth is very narrow. The preparation process of multilayer film is complex and it is very expensive. The emerging technology of fabrication anti-reflection film is sub-wavelength grating. The zero order transmission diffraction efficiency depends on the period, etching depth and duty cycle of the grating. The structure parameters of antireflection grating were designed and optimized under small angle incidence of 351nm based on rigorous coupled wave analysis method. The impaction of zero order reflection diffraction and zero order transmission diffraction efficiency on period, duty cycle and etching depth of grating was discussed in detail in this paper. The sub-wavelength anti-reflection grating was fabricated by holographic and ion etching method.
Rakhmatullina, Ekaterina; Bossen, Anke; Höschele, Christoph; Wang, Xiaojie; Beyeler, Barbara; Meier, Christoph; Lussi, Adrian
2011-01-01
We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r2 ≥ −0.86) as well as calcium release (r2 ≥ −0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r2 = 0.42–0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo. PMID:22029364
NASA Astrophysics Data System (ADS)
Rakhmatullina, Ekaterina; Bossen, Anke; Höschele, Christoph; Wang, Xiaojie; Beyeler, Barbara; Meier, Christoph; Lussi, Adrian
2011-10-01
We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r2 >= -0.86) as well as calcium release (r2 >= -0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r2 = 0.42-0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo.
Compact multi-bounce projection system for extreme ultraviolet projection lithography
Hudyma, Russell M.
2002-01-01
An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four optical elements providing five reflective surfaces for projecting a mask image onto a substrate. The five optical surfaces are characterized in order from object to image as concave, convex, concave, convex and concave mirrors. The second and fourth reflective surfaces are part of the same optical element. The optical system is particularly suited for ring field step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width, which effectively minimizes dynamic distortion.
Feedback module for evaluating optical-power stabilization methods
NASA Astrophysics Data System (ADS)
Downing, John
2016-03-01
A feedback module for evaluating the efficacy of optical-power stabilization without thermoelectric coolers (TECs) is described. The module comprises a pickoff optic for sampling a light beam, a photodiode for converting the sample power to electrical current, and a temperature sensor. The components are mounted on an optical bench that makes accurate (0.05°) beam alignment practical as well as providing high thermal-conductivity among the components. The module can be mounted on existing light sources or the components can be incorporated in new designs. Evaluations of optical and electronic stabilization methods are also reported. The optical method combines a novel, weakly reflective, weakly polarizing coating on the pickoff optic with a photodiode and an automatic-power-control (APC) circuit in a closed loop. The shift of emitter wavelength with temperature, coupled with the wavelength-dependent reflectance of the pickoff optic, enable the APC circuit to compensate for temperature errors. In the electronic method, a mixed-signal processor in a quasiclosed loop generates a control signal from temperature and photocurrent inputs and feeds it back to an APC circuit to compensate for temperature errors. These methods result in temperature coefficients less than 20 ppm/°C and relative rms power equal to 05% for the optical method and 0.02% for the electronic method. The later value represents an order of magnitude improvement over rms specifications for cooled, laser-diode modules and a five-fold improvement in wall-plug efficiency is achieved by eliminating TECs.
NASA Astrophysics Data System (ADS)
Wang, Pengfei; Brambilla, Gilberto; Semenova, Yuliya; Wu, Qiang; Zheng, Jie; Farrell, Gerald
2011-08-01
The well known beam propagation method (BPM) has become one of the most useful, robust and effective numerical simulation tools for the investigation of guided-wave optics, for example integrated optical waveguides and fiber optic devices. In this paper we examine the use of the 2D and 3D wide angle-beam propagation method (WA-BPM) combined with the well known perfectly matched layer (PML) boundary conditions as a tool to analyze TIR based optical switches, in particular the relationship between light propagation and the geometrical parameters of a TIR based optical switch. To analyze the influence of the length and the width of the region in which the refractive index can be externally controlled, the 3D structure of a 2x2 TIR optical switch is firstly considered in 2D using the effective index method (EIM). Then the influence of the etching depth and the tilt angle of the reflection facet on the switch performance are investigated with a 3D model.
Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Pei; Zaslavsky, Alexander; Longo, Paolo
2016-01-07
Accurate optical methods are required to determine the energy bandgap of amorphous semiconductors and elucidate the role of quantum confinement in nanometer-scale, ultra-thin absorbing layers. Here, we provide a critical comparison between well-established methods that are generally employed to determine the optical bandgap of thin-film amorphous semiconductors, starting from normal-incidence reflectance and transmittance measurements. First, we demonstrate that a more accurate estimate of the optical bandgap can be achieved by using a multiple-reflection interference model. We show that this model generates more reliable results compared to the widely accepted single-pass absorption method. Second, we compare two most representative methods (Taucmore » and Cody plots) that are extensively used to determine the optical bandgap of thin-film amorphous semiconductors starting from the extracted absorption coefficient. Analysis of the experimental absorption data acquired for ultra-thin amorphous germanium (a-Ge) layers demonstrates that the Cody model is able to provide a less ambiguous energy bandgap value. Finally, we apply our proposed method to experimentally determine the optical bandgap of a-Ge/SiO{sub 2} superlattices with single and multiple a-Ge layers down to 2 nm thickness.« less
Reflective Optics Design for an LED High Beam Headlamp of Motorbikes
Ge, Peng; Wang, Xiang; Li, Yang; Wang, Hong
2015-01-01
We propose a reflective optics design for an LED motorbike high beam lamp. We set the measuring screen as an elliptical zone and divide it into many small lattices and divide the spatial angle of the LED source into many parts and make relationships between them. According to the conservation law of energy and the Snell's law, the reflector is generated by freeform optics design method. Then the optical system is simulated by Monte Carlo method using ASAP software. Light pattern of simulation could meet the standard. The high beam headlamp is finally fabricated and assembled into a physical object. Experiment results can fully comply with United Nations Economic Commission for Europe (ECE) vehicle regulations R113 revision 2 (Class C). PMID:25961073
Reflective optics design for an LED high beam headlamp of motorbikes.
Ge, Peng; Wang, Xiang; Li, Yang; Wang, Hong
2015-01-01
We propose a reflective optics design for an LED motorbike high beam lamp. We set the measuring screen as an elliptical zone and divide it into many small lattices and divide the spatial angle of the LED source into many parts and make relationships between them. According to the conservation law of energy and the Snell's law, the reflector is generated by freeform optics design method. Then the optical system is simulated by Monte Carlo method using ASAP software. Light pattern of simulation could meet the standard. The high beam headlamp is finally fabricated and assembled into a physical object. Experiment results can fully comply with United Nations Economic Commission for Europe (ECE) vehicle regulations R113 revision 2 (Class C).
Transverse strain measurements using fiber optic grating based sensors
NASA Technical Reports Server (NTRS)
Udd, Eric (Inventor)
1998-01-01
A system and method to sense the application of transverse stress to an optical fiber which includes a light source that producing a relatively wide spectrum light beam. The light beam is reflected or transmitted off of an optical grating in the core of an optical fiber that is transversely stressed either directly or by the exposure to pressure when the fiber is bifringent so that the optical fiber responds to the pressure to transversely stress its core. When transversely stressed, the optical grating produces a reflection or transmission from the light beam that has two peaks or minimums in its frequency spectrum whose spacing and/or spread are indicative of the forces applied to the fiber. One or more detectors sense the reflection or transmissions from the optical grating to produce an output representative of the applied force. Multiple optical gratings and detectors may be employed to simultaneously measure temperature or the forces at different locations along the fiber.
Numerical determination of visible/NIR optical constants from laboratory spectra of HED meteorites
NASA Astrophysics Data System (ADS)
Davalos, Jorge A. G.; Carvano, Jorge Márcio; Blanco, Julio
2017-03-01
Radiative transfer models in particulate media (Hapke, 1981, 1993, 2012b; Shkuratov et al., 1999) are the most versatile tool that can be used to retrieve both composition and surface physical properties from observation of asteroids and other atmosphereless bodies of the Solar System. One caveat is that these methods require as input a sufficiently comprehensive set of optical constants of suitable template materials. These optical constants are the real and imaginary parts of the refractive indexes of the material as function of wavelength, and have to be derived from laboratory measurements of samples of minerals and meteorites. Optical constants can be calculated from a variety of types of measurements, and each has its problems and limitations. In particular, a problem with the determination of optical constants from measurement of reflectance is that the measurements need to be themselves interpreted using radiative transfer models. This is an issue because the number of parameters used in the most accurate versions of the radiative transfer models is large, and for most of the samples many of these parameters were not measured independently. As a result, attempts in the literature to retrieve optical constants from reflectance measurements tend to assume values for the unknown parameters, which can lead to uncertainties in the retrieved optical constants that can be difficult to quantify. In this work we propose a numerical method that allows the simultaneous inversion of the optical constant and the model parameters. This model is then applied to a set of reflectance spectra of 5 HED meteorites from the RELAB database that were measured with the same setup for samples with several particle size intervals. Our results indicate that our method is able to retrieve optical constants which are able to reproduce the measured reflectance of the samples over a large range (25-500 μm) of particle diameters. It is also found that the solutions obtained in this way are non-unique, in the sense that many combination of the model parameters can yield different sets of optical constants that fit equally well the reflectance spectra. Thus, in the absence of the independent determination of at least some of the model parameter the method is unable to decide which solution correspond to the physical optical constants of the materials. Even so, the dispersion of the model parameters (in particular effective particle diameter and porosity) for acceptable solutions (defined as the ones that reproduce the measured reflectance spectra at all size range with residues smaller than 10%) is within a radius of around 30% of the value of the best fit solution for each parameter. Given the ability of the optical constants derived with this method to reproduce the sample spectra over a large range of particle sizes, they can be used without other restriction to assess if a given meteorite assemblage is contributing to the observed spectra of asteroids. However, quantitative informations that can also be derived using these optical constants, like particle sizes, porosity and volumetric fractions of each end-member in a mixture should be regarded only as rough estimates.
Minimising back reflections from the common path objective in a fundus camera
NASA Astrophysics Data System (ADS)
Swat, A.
2016-11-01
Eliminating back reflections is critical in the design of a fundus camera with internal illuminating system. As there is very little light reflected from the retina, even excellent antireflective coatings are not sufficient suppression of ghost reflections, therefore the number of surfaces in the common optics in illuminating and imaging paths shall be minimised. Typically a single aspheric objective is used. In the paper an alternative approach, an objective with all spherical surfaces, is presented. As more surfaces are required, more sophisticated method is needed to get rid of back reflections. Typically back reflections analysis, comprise treating subsequent objective surfaces as mirrors, and reflections from the objective surfaces are traced back through the imaging path. This approach can be applied in both sequential and nonsequential ray tracing. It is good enough for system check but not very suitable for early optimisation process in the optical system design phase. There are also available standard ghost control merit function operands in the sequential ray-trace, for example in Zemax system, but these don't allow back ray-trace in an alternative optical path, illumination vs. imaging. What is proposed in the paper, is a complete method to incorporate ghost reflected energy into the raytracing system merit function for sequential mode which is more efficient in optimisation process. Although developed for the purpose of specific case of fundus camera, the method might be utilised in a wider range of applications where ghost control is critical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, Tanya L.; Tonkyn, Russell G.; Danby, Tyler O.
For optical modeling and other purposes, we have created a library of 57 liquids for which we have measured the complex optical constants n and k. These liquids vary in their nature, ranging in properties including chemical structure, optical band strength, volatility and viscosity. By obtaining the optical constants one can in principle model most optical phenomena in media and at interfaces including reflection, refraction and dispersion. Based on the original methods of J.E. Bertie et al.1 [1Bert1], we have developed improved protocols using multiple path lengths to determine the optical constants n/k for dozens of liquids, including inorganic, organicmore » and organophosphorus compounds. Detailed descriptions of the measurement and data reduction protocols are discussed; agreement of the derived optical constant n and k values with literature values are presented. We also present results using the n/k values as applied to an optical modeling scenario whereby the derived data are presented and tested for models of 1 µm and 100 µm layers for DMMP (dimethyl methyl phosphonate) on both metal (aluminum) and dielectric (soda lime glass) substrates to show substantial differences between the reflected signal from highly reflective substrates and less-reflective substrates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, Tanya L.; Tonkyn, Russell G.; Danby, Tyler O.
For optical modeling and other purposes, we have created a library of 57 liquids for which we have measured the complex optical constants n and k. These liquids vary in their nature, ranging in properties including chemical structure, optical band strength, volatility and viscosity. By obtaining the optical constants one can in principle model most optical phenomena in media and at interfaces including reflection, refraction and dispersion. Based on the original methods of J.E. Bertie et al.1 [1Bert1], we have developed improved protocols using multiple path lengths to determine the optical constants n/k for dozens of liquids, including inorganic, organicmore » and organophosphorus compounds. Detailed descriptions of the measurement and data reduction protocols are discussed; agreement of the derived optical constant n and k values with literature values are presented. We also present results using the n/k values as applied to an optical modeling scenario whereby the derived data are presented and tested for models of 1 µm and 100 µm layers for DMMP (dimethyl methyl phosphonate) on both metal (aluminum) and dielectric (soda lime glass) substrates to show substantial differences between the reflected signal from highly reflective substrates and less-reflective substrates.« less
Measurement and modelization of silica opal optical properties
NASA Astrophysics Data System (ADS)
Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Thu Nga, Pham; Gallas, Bruno; Maître, Agnès
2014-03-01
We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter.
Retrieval of optical properties of skin from measurement and modeling the diffuse reflectance
NASA Astrophysics Data System (ADS)
Douven, Lucien F. A.; Lucassen, Gerald W.
2000-06-01
We present results on the retrieval of skin optical properties obtained by fitting of measurements of the diffuse reflectance of human skin. Reflectance spectra are simulated using an analytical model based on the diffusion approximation. This model is implemented in a simplex fit routine. The skin optical model used consists of five layers representing epidermis, capillary blood plexus, dermis, deep blood plexus and hypodermis. The optical properties of each layer are assumed homogeneously distributed. The main optical absorbers included are melanin in epidermis and blood. The experimental setup consists of a HP photospectrometer equipped with a remote fiber head. Total reflectance spectra were measured in the 400 - 820 nm wavelength range on the volar underarm of 19 volunteers under various conditions influencing the blood content and oxygenation degree. Changes in the reflectance spectra were observed. Using the fit routine changes in blood content in the capillary blood plexus and in the deep blood plexus could be quantified. These showed different influences on the total reflectance. The method can be helpful to quantitatively assess changes in skin color appearance such as occurs in the treatment of port wine stains, blanching, skin irritation and tanning.
NASA Astrophysics Data System (ADS)
Athe, Pratik; Srivastava, Sanjay; Thapa, Khem B.
2018-04-01
In the present work, we demonstrate the generation of optical Fano resonance and electromagnetically induced reflectance (EIR) in one-dimensional superconducting photonic crystal (1D SPC) by numerical simulation using transfer matrix method as analysis tool. We investigated the optical response of 1D SPC structure consisting of alternate layer of two different superconductors and observed that the optical spectra of this structure exhibit two narrow reflectance peaks with zero reflectivity of sidebands. Further, we added a dielectric cap layer to this 1D SPC structure and found that addition of dielectric cap layer transforms the line shape of sidebands around the narrow reflectance peaks which leads to the formation of Fano resonance and EIR line shape in reflectance spectra. We also studied the effects of the number of periods, refractive index and thickness of dielectric cap layer on the lineshape of EIR and Fano resonances. It was observed that the amplitude of peak reflectance of EIR achieves 100% reflectance by increasing the number of periods.
Near-infrared diffuse reflection systems for chlorophyll content of tomato leaves measurement
NASA Astrophysics Data System (ADS)
Jiang, Huanyu; Ying, Yibin; Lu, Huishan
2006-10-01
In this study, two measuring systems for chlorophyll content of tomato leaves were developed based on near-infrared spectral techniques. The systems mainly consists of a FT-IR spectrum analyzer, optic fiber diffuses reflection accessories and data card. Diffuse reflectance of intact tomato leaves was measured by an optics fiber optic fiber diffuses reflection accessory and a smart diffuses reflection accessory. Calibration models were developed from spectral and constituent measurements. 90 samples served as the calibration sets and 30 samples served as the validation sets. Partial least squares (PLS) and principal component regression (PCR) technique were used to develop the prediction models by different data preprocessing. The best model for chlorophyll content had a high correlation efficient of 0.9348 and a low standard error of prediction RMSEP of 4.79 when we select full range (12500-4000 cm -1), MSC path length correction method by the log(1/R). The results of this study suggest that FT-NIR method can be feasible to detect chlorophyll content of tomato leaves rapidly and nondestructively.
Optical fiber head for providing lateral viewing
Everett, Matthew J.; Colston, Billy W.; James, Dale L.; Brown, Steve; Da Silva, Luiz
2002-01-01
The head of an optical fiber comprising the sensing probe of an optical heterodyne sensing device includes a planar surface that intersects the perpendicular to axial centerline of the fiber at a polishing angle .theta.. The planar surface is coated with a reflective material so that light traveling axially through the fiber is reflected transverse to the fiber's axial centerline, and is emitted laterally through the side of the fiber. Alternatively, the planar surface can be left uncoated. The polishing angle .theta. must be no greater than 39.degree. or must be at least 51.degree.. The emitted light is reflected from adjacent biological tissue, collected by the head, and then processed to provide real-time images of the tissue. The method for forming the planar surface includes shearing the end of the optical fiber and applying the reflective material before removing the buffer that circumscribes the cladding and the core.
Low-cost method for producing extreme ultraviolet lithography optics
Folta, James A [Livermore, CA; Montcalm, Claude [Fort Collins, CO; Taylor, John S [Livermore, CA; Spiller, Eberhard A [Mt. Kisco, NY
2003-11-21
Spherical and non-spherical optical elements produced by standard optical figuring and polishing techniques are extremely expensive. Such surfaces can be cheaply produced by diamond turning; however, the roughness in the diamond turned surface prevent their use for EUV lithography. These ripples are smoothed with a coating of polyimide before applying a 60 period Mo/Si multilayer to reflect a wavelength of 134 .ANG. and have obtained peak reflectivities close to 63%. The savings in cost are about a factor of 100.
Determination of optical coefficients of biological tissue from a single integrating-sphere
NASA Astrophysics Data System (ADS)
Zhang, Lianshun; Shi, Aijuan; Lu, Hongguang
2012-01-01
The detection of interactions between light and tissue can be used to characterize the optical properties of the tissue. The development is described of a method that determines optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. The experimental system incorporated a DH-2000 deuterium tungsten halogen light source, a USB4000-VIS-NIR miniature fiber optic spectrometer and an integrating-sphere. Fat emulsion and ink were used to mimic the scattering and absorbing properties of tissue in the tested sample. The measured optical reflectance spectrums with different scattering and absorbing properties were used to train a back-propagation neural network (BPNN). Then the neural network (BPNN) was used to determine the optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. Tests on tissue-simulation phantoms showed the relative errors of this technique to be 7% for the reduced scattering coefficient and 15% for the absorption coefficients. The optical properties of human skin were also measured in vivo.
Muñoz Morales, Aarón A; Vázquez Y Montiel, Sergio
2012-10-01
The determination of optical parameters of biological tissues is essential for the application of optical techniques in the diagnosis and treatment of diseases. Diffuse Reflection Spectroscopy is a widely used technique to analyze the optical characteristics of biological tissues. In this paper we show that by using diffuse reflectance spectra and a new mathematical model we can retrieve the optical parameters by applying an adjustment of the data with nonlinear least squares. In our model we represent the spectra using a Fourier series expansion finding mathematical relations between the polynomial coefficients and the optical parameters. In this first paper we use spectra generated by the Monte Carlo Multilayered Technique to simulate the propagation of photons in turbid media. Using these spectra we determine the behavior of Fourier series coefficients when varying the optical parameters of the medium under study. With this procedure we find mathematical relations between Fourier series coefficients and optical parameters. Finally, the results show that our method can retrieve the optical parameters of biological tissues with accuracy that is adequate for medical applications.
An interferometer having fused optical fibers, and apparatus and method using the interferometer
NASA Technical Reports Server (NTRS)
Hellbaum, Richard F. (Inventor); Claus, Richard O. (Inventor); Murphy, Kent A. (Inventor); Gunther, Michael F. (Inventor)
1992-01-01
An interferometer includes a first optical fiber coupled to a second optical fiber by fusing. At a fused portion, the first and second optical fibers are cut to expose respective cores. The cut or fused end of the first and second optical fibers is arranged to oppose a diaphragm or surface against which a physical phenomenon such as pressure or stress, is applied. In a first embodiment, a source light which is generally single-mode monochromatic, coherent light, is input to the first optical fiber and by evanescence, effectively crosses to the second optical fiber at the fused portion. Source light from the second optical fiber is reflected by the diaphragm or surface, and received at the second optical fiber to generate an output light which has an intensity which depends upon interference of reference light based on the source light, and the reflected light reflected from the diaphragm or surface. The intensity of the output light represents a positional relationship or displacement between the interferometer and the diaphragm or surface.
NASA Astrophysics Data System (ADS)
Wang, Xiu-lin; Wei, Zheng; Wang, Rui; Huang, Wen-cai
2018-05-01
A self-mixing interferometer (SMI) with resolution twenty times higher than that of a conventional interferometer is developed by multiple reflections. Only by employing a simple external reflecting mirror, the multiple-pass optical configuration can be constructed. The advantage of the configuration is simple and easy to make the light re-injected back into the laser cavity. Theoretical analysis shows that the resolution of measurement is scalable by adjusting the number of reflections. The experiment shows that the proposed method has the optical resolution of approximate λ/40. The influence of displacement sensitivity gain ( G) is further analyzed and discussed in practical experiments.
NASA Technical Reports Server (NTRS)
Smith, James A.
1992-01-01
The inversion of the leaf area index (LAI) canopy parameter from optical spectral reflectance measurements is obtained using a backpropagation artificial neural network trained using input-output pairs generated by a multiple scattering reflectance model. The problem of LAI estimation over sparse canopies (LAI < 1.0) with varying soil reflectance backgrounds is particularly difficult. Standard multiple regression methods applied to canopies within a single homogeneous soil type yield good results but perform unacceptably when applied across soil boundaries, resulting in absolute percentage errors of >1000 percent for low LAI. Minimization methods applied to merit functions constructed from differences between measured reflectances and predicted reflectances using multiple-scattering models are unacceptably sensitive to a good initial guess for the desired parameter. In contrast, the neural network reported generally yields absolute percentage errors of <30 percent when weighting coefficients trained on one soil type were applied to predicted canopy reflectance at a different soil background.
Fiber optic moisture sensor with moisture-absorbing reflective target
Kirkham, Randy R.
1987-01-01
A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.
Ultrafast optical technique for the characterization of altered materials
Maris, H.J.
1998-01-06
Disclosed herein is a method and a system for non-destructively examining a semiconductor sample having at least one localized region underlying a surface through into which a selected chemical species has been implanted or diffused. A first step induces at least one transient time-varying change in optical constants of the sample at a location at or near to a surface of the sample. A second step measures a response of the sample to an optical probe beam, either pulsed or continuous wave, at least during a time that the optical constants are varying. A third step associates the measured response with at least one of chemical species concentration, chemical species type, implant energy, a presence or absence of an introduced chemical species region at the location, and a presence or absence of implant-related damage. The method and apparatus in accordance with this invention can be employed in conjunction with a measurement of one or more of the following effects arising from a time-dependent change in the optical constants of the sample due to the application of at least one pump pulse: (a) a change in reflected intensity; (b) a change in transmitted intensity; (c) a change in a polarization state of the reflected and/or transmitted light; (d) a change in the optical phase of the reflected and/or transmitted light; (e) a change in direction of the reflected and/or transmitted light; and (f) a change in optical path length between the sample`s surface and a detector. 22 figs.
Ultrafast optical technique for the characterization of altered materials
Maris, Humphrey J.
1998-01-01
Disclosed herein is a method and a system for non-destructively examining a semiconductor sample (30) having at least one localized region underlying a surface (30a) through into which a selected chemical species has been implanted or diffused. A first step induces at least one transient time-varying change in optical constants of the sample at a location at or near to a surface of the sample. A second step measures a response of the sample to an optical probe beam, either pulsed or continuous wave, at least during a time that the optical constants are varying. A third step associates the measured response with at least one of chemical species concentration, chemical species type, implant energy, a presence or absence of an introduced chemical species region at the location, and a presence or absence of implant-related damage. The method and apparatus in accordance with this invention can be employed in conjunction with a measurement of one or more of the following effects arising from a time-dependent change in the optical constants of the sample due to the application of at least one pump pulse: (a) a change in reflected intensity; (b) a change in transmitted intensity; (c) a change in a polarization state of the reflected and/or transmitted light; (d) a change in the optical phase of the reflected and/or transmitted light; (e) a change in direction of the reflected and/or transmitted light; and (f) a change in optical path length between the sample's surface and a detector.
Multiple-reflection model of human skin and estimation of pigment concentrations
NASA Astrophysics Data System (ADS)
Ohtsuki, Rie; Tominaga, Shoji; Tanno, Osamu
2012-07-01
We describe a new method for estimating the concentrations of pigments in the human skin using surface spectral reflectance. We derive an equation that expresses the surface spectral reflectance of the human skin. First, we propose an optical model of the human skin that accounts for the stratum corneum. We also consider the difference between the scattering coefficient of the epidermis and that of the dermis. We then derive an equation by applying the Kubelka-Munk theory to an optical model of the human skin. Unlike a model developed in a recent study, the present equation considers pigments as well as multiple reflections and the thicknesses of the skin layers as factors that affect the color of the human skin. In two experiments, we estimate the pigment concentrations using the measured surface spectral reflectances. Finally, we confirm the feasibility of the concentrations estimated by the proposed method by evaluating the estimated pigment concentrations in the skin.
NASA Astrophysics Data System (ADS)
Wang, Hong; Li, Xiufeng; Ge, Peng
2017-02-01
We propose a design method of an optical lens combined with a total internal reflection (TIR) freeform surface for a LED front fog lamp. The TIR freeform surface controls the edge rays of the LED source. It totally reflects the edge rays and makes them emit from the top surface of the lens. And the middle rays of the LED source go through the refractive surface and reach the measured plane. We simulate the model by Monte Carlo method. Simulation results show that the front fog lamp system can satisfy the requirement of ECE R19 Rev7. The light control efficiency can reach up to 76%.
NASA Astrophysics Data System (ADS)
Fang, Yun-tuan; Zhang, Yi-chi; Xia, Jing
2018-06-01
In order to obtain tunable unidirectional device, we assumed an ideal periodic layered Parity-Time (PT) symmetry structure inserted by doped LiNbO3 (LN) interlayers. LN is a typical electro-optical material of which the refractive index depends on the external electric field. In our work, we theoretically investigate the modulation effect of the external electric field on the transmittance and reflectance of the structure through numerical method. Through selected structural parameters, the one-way enhanced reflection and high absorption (above 0.9) behaviors are found. Within a special frequency band (not a single frequency), our theoretical model performs enhanced reflection in one incidence direction and high absorption in the other direction. Furthermore, the directions of enhanced reflection and absorption can be reversed through reversing the direction of applied electric field. Such structure with reversible properties has the potential in designing new optical devices.
Kim, Hwi; Min, Sung-Wook; Lee, Byoungho
2008-12-01
Geometrical optics analysis of the structural imperfection of retroreflection corner cubes is described. In the analysis, a geometrical optics model of six-beam reflection patterns generated by an imperfect retroreflection corner cube is developed, and its structural error extraction is formulated as a nonlinear optimization problem. The nonlinear conjugate gradient method is employed for solving the nonlinear optimization problem, and its detailed implementation is described. The proposed method of analysis is a mathematical basis for the nondestructive optical inspection of imperfectly fabricated retroreflection corner cubes.
Zhu, Ming; Wang, Yao-Ting; Sun, Yi-Zhi; Zhang, Lijian; Ding, Wei
2018-02-01
A convenient method using a commercially available ruled grating for precise and overall diameter measurement of optical nanofibers (ONFs) is presented. We form a composite Bragg reflector with a micronscale period by dissolving aluminum coating, slicing the grating along ruling lines, and mounting it on an ONF. The resonant wavelengths of high-order Bragg reflections possess fiber diameter dependence, enabling nondestructive measurement of the ONF diameter profile. This method provides an easy and economic diagnostic tool for wide varieties of ONF-based applications.
Field test investigation of high sensitivity fiber optic seismic geophone
NASA Astrophysics Data System (ADS)
Wang, Meng; Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, Shujuan; Wang, Chang; Zhao, Zhong; Hao, Guanghu
2017-10-01
Seismic reflection, whose measured signal is the artificial seismic waves ,is the most effective method and widely used in the geophysical prospecting. And this method can be used for exploration of oil, gas and coal. When a seismic wave travelling through the Earth encounters an interface between two materials with different acoustic impedances, some of the wave energy will reflect off the interface and some will refract through the interface. At its most basic, the seismic reflection technique consists of generating seismic waves and measuring the time taken for the waves to travel from the source, reflect off an interface and be detected by an array of geophones at the surface. Compared to traditional geophones such as electric, magnetic, mechanical and gas geophone, optical fiber geophones have many advantages. Optical fiber geophones can achieve sensing and signal transmission simultaneously. With the development of fiber grating sensor technology, fiber bragg grating (FBG) is being applied in seismic exploration and draws more and more attention to its advantage of anti-electromagnetic interference, high sensitivity and insensitivity to meteorological conditions. In this paper, we designed a high sensitivity geophone and tested its sensitivity, based on the theory of FBG sensing. The frequency response range is from 10 Hz to 100 Hz and the acceleration of the fiber optic seismic geophone is over 1000pm/g. sixteen-element fiber optic seismic geophone array system is presented and the field test is performed in Shengli oilfield of China. The field test shows that: (1) the fiber optic seismic geophone has a higher sensitivity than the traditional geophone between 1-100 Hz;(2) The low frequency reflection wave continuity of fiber Bragg grating geophone is better.
Enhancement of graphene visibility on transparent substrates by refractive index optimization.
Gonçalves, Hugo; Alves, Luís; Moura, Cacilda; Belsley, Michael; Stauber, Tobias; Schellenberg, Peter
2013-05-20
Optical reflection microscopy is one of the main imaging tools to visualize graphene microstructures. Here is reported a novel method that employs refractive index optimization in an optical reflection microscope, which greatly improves the visibility of graphene flakes. To this end, an immersion liquid with a refractive index that is close to that of the glass support is used in-between the microscope lens and the support improving the contrast and resolution of the sample image. Results show that the contrast of single and few layer graphene crystals and structures can be enhanced by a factor of 4 compared to values commonly achieved with transparent substrates using optical reflection microscopy lacking refractive index optimization.
Method for spatially modulating X-ray pulses using MEMS-based X-ray optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Daniel; Shenoy, Gopal; Wang, Jin
A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.
Optical efficiency of solar concentrators by a reverse optical path method.
Parretta, A; Antonini, A; Milan, E; Stefancich, M; Martinelli, G; Armani, M
2008-09-15
A method for the optical characterization of a solar concentrator, based on the reverse illumination by a Lambertian source and measurement of intensity of light projected on a far screen, has been developed. It is shown that the projected light intensity is simply correlated to the angle-resolved efficiency of a concentrator, conventionally obtained by a direct illumination procedure. The method has been applied by simulating simple reflective nonimaging and Fresnel lens concentrators.
System and method for attitude determination based on optical imaging
NASA Technical Reports Server (NTRS)
Junkins, John L. (Inventor); Pollock, Thomas C. (Inventor); Mortari, Daniele (Inventor)
2003-01-01
A method and apparatus is provide for receiving a first set of optical data from a first field of view and receiving a second set of optical data from a second field of view. A portion of the first set of optical data is communicated and a portion of the second set of optical data is reflected, both toward an optical combiner. The optical combiner then focuses the portions onto the image plane such that information at the image plane that is associated with the first and second fields of view is received by an optical detector and used to determine an attitude characteristic.
Optical assessment of skin carotenoid status as a biomarker of vegetable and fruit intake
USDA-ARS?s Scientific Manuscript database
Resonance Raman spectroscopy (RRS) and reflection spectroscopy (RS) are optical methods applicable to the non-invasive detection of carotenoids in human skin. RRS is the older, more thoroughly validated method, whereas RS is newer and has several advantages. Since collective skin carotenoid levels...
Backward-gazing method for measuring solar concentrators shape errors.
Coquand, Mathieu; Henault, François; Caliot, Cyril
2017-03-01
This paper describes a backward-gazing method for measuring the optomechanical errors of solar concentrating surfaces. It makes use of four cameras placed near the solar receiver and simultaneously recording images of the sun reflected by the optical surfaces. Simple data processing then allows reconstructing the slope and shape errors of the surfaces. The originality of the method is enforced by the use of generalized quad-cell formulas and approximate mathematical relations between the slope errors of the mirrors and their reflected wavefront in the case of sun-tracking heliostats at high-incidence angles. Numerical simulations demonstrate that the measurement accuracy is compliant with standard requirements of solar concentrating optics in the presence of noise or calibration errors. The method is suited to fine characterization of the optical and mechanical errors of heliostats and their facets, or to provide better control for real-time sun tracking.
Malinowski, Michael E.
2005-01-25
The characteristics of radiation that is reflected from carbon deposits and oxidation formations on highly reflective surfaces such as Mo/Si mirrors can be quantified and employed to detect and measure the presence of such impurities on optics. Specifically, it has been shown that carbon deposits on a Mo/Si multilayer mirror decreases the intensity of reflected HeNe laser (632.8 nm) light. In contrast, oxide layers formed on the mirror should cause an increase in HeNe power reflection. Both static measurements and real-time monitoring of carbon and oxide surface impurities on optical elements in lithography tools should be achievable.
Bae, Youngchul
2016-05-23
An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC) voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD) circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision.
Bae, Youngchul
2016-01-01
An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC) voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD) circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision. PMID:27223291
Method of making and structure for monolithic optical circuits
NASA Technical Reports Server (NTRS)
Evanchuk, Vincent L. (Inventor)
1983-01-01
A method for making monolithic optical circuits, with related optical devices as required or desired, on a supporting surface (10) consists of coating the supporting surface with reflecting metal or cladding resin, spreading a layer of liquid radiation senstivie plastic (12) on the surface, exposing the liquid plastic with a mask (14) to cure it in a desired pattern of light conductors (16, 18, 20), washing away the unexposed liquid plastic, and coating the conductors thus formed with reflective metal or cladding resin. The index of refraction for the cladding (22) is selected to be lower than for the conductors so that light in the conductors will be reflected by the interface with the cladding. For multiple level conductors, as where one conductor must cross over another, the process may be repeated to fabricate a bridge with columns (24, 26) of conductors to the next level, and conductor (28) between the columns. For more efficient transfer of energy over the bridge, faces at 45.degree. may be formed to reflect light up and across the bridge.
NASA Astrophysics Data System (ADS)
Apolonskiĭ, A. A.; Vinokurov, Nikolai A.; Zinin, É. I.; Ishchenko, P. I.; Kuklin, A. E.; Popik, V. M.; Sokolov, A. S.; Shchebetov, S. D.
1992-09-01
A method is described for determining the reflection coefficients of high-density mirrors, based on the use of a mode-locked laser and a sensitive detector with a fast time resolution. The laser light is transmitted through an optical resonator formed by the investigated mirrors. The measured delay in the decay of a light pulse gives the damping time of the optical resonator. This is related to its Q factor determined by the reflection coefficients of its mirrors.
Durability tests of a fiber optic corrosion sensor.
Wan, Kai Tai; Leung, Christopher K Y
2012-01-01
Steel corrosion is a major cause of degradation in reinforced concrete structures, and there is a need to develop cost-effective methods to detect the initiation of corrosion in such structures. This paper presents a low cost, easy to use fiber optic corrosion sensor for practical application. Thin iron film is deposited on the end surface of a cleaved optical fiber by sputtering. When light is sent into the fiber, most of it is reflected by the coating. If the surrounding environment is corrosive, the film is corroded and the intensity of the reflected signal drops significantly. In previous work, the sensing principle was verified by various experiments in laboratory and a packaging method was introduced. In this paper, the method of multiplexing several sensors by optical time domain reflectometer (OTDR) and optical splitter is introduced, together with the interpretation of OTDR results. The practical applicability of the proposed sensors is demonstrated in a three-year field trial with the sensors installed in an aggressive marine environment. The durability of the sensor against chemical degradation and physical degradation is also verified by accelerated life test and freeze-thaw cycling test, respectively.
Optical System Design for Noncontact, Normal Incidence, THz Imaging of in vivo Human Cornea.
Sung, Shijun; Dabironezare, Shahab; Llombart, Nuria; Selvin, Skyler; Bajwa, Neha; Chantra, Somporn; Nowroozi, Bryan; Garritano, James; Goell, Jacob; Li, Alex; Deng, Sophie X; Brown, Elliott; Grundfest, Warren S; Taylor, Zachary D
2018-01-01
Reflection mode Terahertz (THz) imaging of corneal tissue water content (CTWC) is a proposed method for early, accurate detection and study of corneal diseases. Despite promising results from ex vivo and in vivo cornea studies, interpretation of the reflectivity data is confounded by the contact between corneal tissue and dielectric windows used to flatten the imaging field. Herein, we present an optical design for non-contact THz imaging of cornea. A beam scanning methodology performs angular, normal incidence sweeps of a focused beam over the corneal surface while keeping the source, detector, and patient stationary. A quasioptical analysis method is developed to analyze the theoretical resolution and imaging field intensity profile. These results are compared to the electric field distribution computed with a physical optics analysis code. Imaging experiments validate the optical theories behind the design and suggest that quasioptical methods are sufficient for designing of THz corneal imaging systems. Successful imaging operations support the feasibility of non-contact in vivo imaging. We believe that this optical system design will enable the first, clinically relevant, in vivo exploration of CTWC using THz technology.
Cleanliness evaluation of rough surfaces with diffuse IR reflectance
NASA Technical Reports Server (NTRS)
Pearson, L. H.
1995-01-01
Contamination on bonding surfaces has been determined to be a primary cause for degraded bond strength in certain solid rocket motor bondlines. Hydrocarbon and silicone based organic contaminants that are airborne or directly introduced to a surface are a significant source of contamination. Diffuse infrared (IR) reflectance has historically been used as an effective technique for detection of organic contaminants, however, common laboratory methods involving the use of a Fourier transform IR spectrometer (FTIR) are impractical for inspecting the large bonding surface areas found on solid rocket motors. Optical methods involving the use of acousto-optic tunable filters and fixed bandpass optical filters are recommended for increased data acquisition speed. Testing and signal analysis methods are presented which provide for simultaneous measurement of contamination concentration and roughness level on rough metal surfaces contaminated with hydrocarbons.
Wu, Jiaye; Yang, Xiangbo
2017-10-30
In this paper, we construct a 1D PT-symmetric Thue-Morse aperiodic optical waveguide network (PTSTMAOWN) and mainly investigate the ultrastrong extraordinary transmission and reflection. We propose an approach to study the photonic modes and solve the problem of calculating photonic modes distributions in aperiodic networks due to the lack of dispersion functions and find that in a PTSTMAOWN there exist more photonic modes and more spontaneous PT-symmetric breaking points, which are quite different from other reported PT-symmetric optical systems. Additionally, we develop a method to sort spontaneous PT-symmetric breaking point zones to seek the strongest extraordinary point and obtain that at this point the strongest extraordinary transmission and reflection arrive at 2.96316 × 10 5 and 1.32761 × 10 5 , respectively, due to the PT-symmetric coupling resonance and the special symmetry pattern of TM networks. These enormous gains are several orders of magnitude larger than the previous results. This optical system may possess potential in designing optical amplifier, optical logic elements in photon computers and ultrasensitive optical switches with ultrahigh monochromatity.
Reflectance confocal microscopy of optical phantoms
Jacques, Steven L.; Wang, Bo; Samatham, Ravikant
2012-01-01
A reflectance confocal scanning laser microscope (rCSLM) operating at 488-nm wavelength imaged three types of optical phantoms: (1) 100-nm-dia. polystyrene microspheres in gel at 2% volume fraction, (2) solid polyurethane phantoms (INO BiomimicTM), and (3) common reflectance standards (SpectralonTM). The noninvasive method measured the exponential decay of reflected signal as the focus (zf) moved deeper into the material. The two experimental values, the attenuation coefficient μ and the pre-exponential factor ρ, were mapped into the material optical scattering properties, the scattering coefficient μs and the anisotropy of scattering g. Results show that μs varies as 58, 8–24, and 130–200 cm-1 for phantom types (1), (2) and (3), respectively. The g varies as 0.112, 0.53–0.67, and 0.003–0.26, respectively. PMID:22741065
Optical properties of armchair (7, 7) single walled carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gharbavi, K.; Badehian, H., E-mail: hojatbadehian@gmail.com
2015-07-15
Full potential linearized augmented plane waves method with the generalized gradient approximation for the exchange-correlation potential was applied to calculate the optical properties of (7, 7) single walled carbon nanotubes. The both x and z directions of the incident photons were applied to estimate optical gaps, dielectric function, electron energy loss spectroscopies, optical conductivity, optical extinction, optical refractive index and optical absorption coefficient. The results predict that dielectric function, ε (ω), is anisotropic since it has higher peaks along z-direction than x-direction. The static optical refractive constant were calculated about 1.4 (z-direction) and 1.1 (x- direction). Moreover, the electron energymore » loss spectroscopy showed a sharp π electron plasmon peaks at about 6 eV and 5 eV for z and x-directions respectively. The calculated reflection spectra show that directions perpendicular to the tube axis have further optical reflection. Moreover, z-direction indicates higher peaks at absorption spectra in low range energies. Totally, increasing the diameter of armchair carbon nanotubes cause the optical band gap, static optical refractive constant and optical reflectivity to decrease. On the other hand, increasing the diameter cause the optical absorption and the optical conductivity to increase. Moreover, the sharp peaks being illustrated at optical spectrum are related to the 1D structure of CNTs which confirm the accuracy of the calculations.« less
Polarization-dependent optical reflection ultrasonic detection
NASA Astrophysics Data System (ADS)
Zhu, Xiaoyi; Huang, Zhiyu; Wang, Guohe; Li, Wenzhao; Li, Changhui
2017-03-01
Although ultrasound transducers based on commercial piezoelectric-material have been widely used, they generally have limited bandwidth centered at the resonant frequency. Currently, several pure-optical ultrasonic detection methods have gained increasing interest due to their wide bandwidth and high sensitivity. However, most of them require customized components (such as micro-ring, SPR, Fabry-Perot film, etc), which limit their broad implementations. In this study, we presented a simple pure-optical ultrasound detection method, called "Polarization-dependent Reflection Ultrasonic Detection" (PRUD). It detects the intensity difference between two polarization components of the probe beam that is modulated by ultrasound waves. PRUD detect the two components by using a balanced detector, which effectively suppressed much of the unwanted noise. We have achieved the sensitivity (noise equivalent pressure) to be 1.7kPa, and this can be further improved. In addition, like many other pure-optical ultrasonic detection methods, PRUD also has a flat and broad bandwidth from almost zero to over 100MHz. Besides theoretical analysis, we did a phantom study by imaging a tungsten filament to demonstrate the performance of PRUD. We believe this simple and economic method will attract both researchers and engineers in optical and ultrasound fields.
Interlayer Crosstalk Reduction by Controlling Backward Reflectivity in Multilayer Optical Discs
NASA Astrophysics Data System (ADS)
Ushiyama, Junko; Miyauchi, Yasushi; Shintani, Toshimichi; Sugiyama, Toshinori; Miyamoto, Harukazu; Kurokawa, Takahiro
2008-05-01
A method is proposed to reduce interlayer crosstalk in multilayer optical discs by controlling backward reflectivity of information layers, which can lead to wider tolerances of disc fabrication accuracy. Reduction of the backward reflectivity reduces the signal from the ghost spot even if thicknesses of spacer layers are equal. Experimental results showed that the ratio of the signals obtained by the readout spot and the ghost spot is less by about one order for a disc with controlled backward reflectivity than for a conventional disc. A rough estimate of the crosstalk caused by the ghost spot agrees qualitatively with the experimental results.
Mansuori, M; Zareei, G H; Hashemi, H
2015-10-01
We present a numerical method for generation of optical pulse width modulation (PWM) based on tunable reflective interface by using a microfluidic droplet. We demonstrate a single layer, planar, optofluidic PWM switch that is driven by excited alternating microbubbles. The main parameters of generation of this PWM such as frequency and speed of switching can be controlled by the mass flow rates of input fluids, and the shape of plug or droplet. Advantages of this design are the reconfigurability in design and the easy control of the switching parameters. The validation of the proposed design is carried out by employing the finite element method (FEM) for the mechanical simulation and the finite-difference time-domain (FDTD) for the optical simulation.
NASA Technical Reports Server (NTRS)
Kim, Mijin; Kim, Jhoon; Wong, Man Sing; Yoon, Jongmin; Lee, Jaehwa; Wu, Dong L.; Chan, P.W.; Nichol, Janet E.; Chung, Chu-Yong; Ou, Mi-Lim
2014-01-01
Despite continuous efforts to retrieve aerosol optical depth (AOD) using a conventional 5-channelmeteorological imager in geostationary orbit, the accuracy in urban areas has been poorer than other areas primarily due to complex urban surface properties and mixed aerosol types from different emission sources. The two largest error sources in aerosol retrieval have been aerosol type selection and surface reflectance. In selecting the aerosol type from a single visible channel, the season-dependent aerosol optical properties were adopted from longterm measurements of Aerosol Robotic Network (AERONET) sun-photometers. With the aerosol optical properties obtained fromthe AERONET inversion data, look-up tableswere calculated by using a radiative transfer code: the Second Simulation of the Satellite Signal in the Solar Spectrum (6S). Surface reflectance was estimated using the clear sky composite method, awidely used technique for geostationary retrievals. Over East Asia, the AOD retrieved from the Meteorological Imager showed good agreement, although the values were affected by cloud contamination errors. However, the conventional retrieval of the AOD over Hong Kong was largely underestimated due to the lack of information on the aerosol type and surface properties. To detect spatial and temporal variation of aerosol type over the area, the critical reflectance method, a technique to retrieve single scattering albedo (SSA), was applied. Additionally, the background aerosol effect was corrected to improve the accuracy of the surface reflectance over Hong Kong. The AOD retrieved froma modified algorithmwas compared to the collocated data measured by AERONET in Hong Kong. The comparison showed that the new aerosol type selection using the critical reflectance and the corrected surface reflectance significantly improved the accuracy of AODs in Hong Kong areas,with a correlation coefficient increase from0.65 to 0.76 and a regression line change from tMI [basic algorithm] = 0.41tAERONET + 0.16 to tMI [new algorithm] = 0.70tAERONET + 0.01.
A comparative review of optical surface contamination assessment techniques
NASA Technical Reports Server (NTRS)
Heaney, James B.
1987-01-01
This paper will review the relative sensitivities and practicalities of the common surface analytical methods that are used to detect and identify unwelcome adsorbants on optical surfaces. The compared methods include visual inspection, simple reflectometry and transmissiometry, ellipsometry, infrared absorption and attenuated total reflectance spectroscopy (ATR), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), and mass accretion determined by quartz crystal microbalance (QCM). The discussion is biased toward those methods that apply optical thin film analytical techniques to spacecraft optical contamination problems. Examples are cited from both ground based and in-orbit experiments.
NASA Astrophysics Data System (ADS)
Zhang, Xuanni; Zhang, Hui; Wang, Yijun
2016-02-01
The optical Doppler Michelson imaging interferometer is widely used for wind measurements. Four interferograms obtained simultaneously are needed to immune to environmental disturbances. Thus, a static and divided mirror Michelson interferometer is proposed. Its highlight is the phase-shifting reflector array, which divides one mirror into four quadrants coated by different multilayer films with high reflectance, specified phase steps π/2 and little polarization effects. By combining analytical and empirical method, four coatings are designed with software TFCalc. The simulated results showed good agreement with the desired optical properties. Due to the limitation of the optical material and function of the software TFCalc, there are some design errors within tolerance.
Kirkham, R.R.
1984-08-03
A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.
Thin-film thickness measurement method based on the reflection interference spectrum
NASA Astrophysics Data System (ADS)
Jiang, Li Na; Feng, Gao; Shu, Zhang
2012-09-01
A method is introduced to measure the thin-film thickness, refractive index and other optical constants. When a beam of white light shines on the surface of the sample film, the reflected lights of the upper and the lower surface of the thin-film will interfere with each other and reflectivity of the film will fluctuate with light wavelength. The reflection interference spectrum is analyzed with software according to the database, while the thickness and refractive index of the thin-film is measured.
Study of optical and electronic properties of nickel from reflection electron energy loss spectra
NASA Astrophysics Data System (ADS)
Xu, H.; Yang, L. H.; Da, B.; Tóth, J.; Tőkési, K.; Ding, Z. J.
2017-09-01
We use the classical Monte Carlo transport model of electrons moving near the surface and inside solids to reproduce the measured reflection electron energy-loss spectroscopy (REELS) spectra. With the combination of the classical transport model and the Markov chain Monte Carlo (MCMC) sampling of oscillator parameters the so-called reverse Monte Carlo (RMC) method was developed, and used to obtain optical constants of Ni in this work. A systematic study of the electronic and optical properties of Ni has been performed in an energy loss range of 0-200 eV from the measured REELS spectra at primary energies of 1000 eV, 2000 eV and 3000 eV. The reliability of our method was tested by comparing our results with the previous data. Moreover, the accuracy of our optical data has been confirmed by applying oscillator strength-sum rule and perfect-screening-sum rule.
Weighted least-square approach for simultaneous measurement of multiple reflective surfaces
NASA Astrophysics Data System (ADS)
Tang, Shouhong; Bills, Richard E.; Freischlad, Klaus
2007-09-01
Phase shifting interferometry (PSI) is a highly accurate method for measuring the nanometer-scale relative surface height of a semi-reflective test surface. PSI is effectively used in conjunction with Fizeau interferometers for optical testing, hard disk inspection, and semiconductor wafer flatness. However, commonly-used PSI algorithms are unable to produce an accurate phase measurement if more than one reflective surface is present in the Fizeau interferometer test cavity. Examples of test parts that fall into this category include lithography mask blanks and their protective pellicles, and plane parallel optical beam splitters. The plane parallel surfaces of these parts generate multiple interferograms that are superimposed in the recording plane of the Fizeau interferometer. When using wavelength shifting in PSI the phase shifting speed of each interferogram is proportional to the optical path difference (OPD) between the two reflective surfaces. The proposed method is able to differentiate each underlying interferogram from each other in an optimal manner. In this paper, we present a method for simultaneously measuring the multiple test surfaces of all underlying interferograms from these superimposed interferograms through the use of a weighted least-square fitting technique. The theoretical analysis of weighted least-square technique and the measurement results will be described in this paper.
Yamamoto, Naoyuki; Kawashima, Natsumi; Kitazaki, Tomoya; Mori, Keita; Kang, Hanyue; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro
2018-05-01
Smart toilets could be used to monitor different components of urine in daily life for early detection of lifestyle-related diseases and prompt provision of treatment. For analysis of biological samples such as urine by midinfrared spectroscopy, thin-film samples like liquid cells are needed because of the strong absorption of midinfrared light by water. Conventional liquid cells or fixed cells are prepared based on the liquid membrane method and solution technique, but these are not quantitative and are difficult to set up and clean. We generated an ultrasonic standing wave reflection plane in a sample and produced an ultrasonic liquid cell. In this cell, the thickness of the optical path length was adjustable, as in the conventional method. The reflection plane could be generated at an arbitrary depth and internal reflected light could be detected by changing the frequency of the ultrasonic wave. We could generate refractive index boundaries using the density difference created by the ultrasonic standing wave. Creation of the reflection plane in the sample was confirmed by optical coherence tomography. Using the proposed method and midinfrared spectroscopy, we discriminated between normal urine samples spiked with glucose at different concentrations and obtained a high correlation coefficient. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Optical Fiber On-Line Detection System for Non-Touch Monitoring Roller Shape
NASA Astrophysics Data System (ADS)
Guo, Y.; Wang, Y. T.
2006-10-01
Basing on the principle of reflective displacement fiber-optic sensor, a high accuracy non-touch on-line optical fiber measurement system for roller shape is presented. The principle and composition of the detection system and the operation process are expatiated also. By using a novel probe of three optical fibers in equal transverse space, the effects of fluctuations in the light source, reflective changing of target surface and the intensity losses in the fiber lines are automatically compensated. Meantime, an optical fiber sensor model of correcting static error based on BP artificial neural network (ANN) is set up. Also by using interpolation method and value filtering to process the signals, effectively reduce the influence of random noise and the vibration of the roller bearing. So enhance the accuracy and resolution remarkably. Experiment proves that the accuracy of the system reach to the demand of practical production process, it provides a new method for the high speed, accurate and automatic on line detection of the mill roller shape.
Surface transmission enhancement of ZnS via continuous-wave laser microstructuring
NASA Astrophysics Data System (ADS)
Major, Kevin J.; Florea, Catalin M.; Poutous, Menelaos K.; Busse, Lynda E.; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.
2014-03-01
Fresnel reflectivity at dielectric boundaries between optical components, lenses, and windows is a major issue for the optics community. The most common method to reduce the index mismatch and subsequent surface reflection is to apply a thin film or films of intermediate indices to the optical materials. More recently, surface texturing or roughening has been shown to approximate a stepwise refractive index thin-film structure, with a gradient index of refraction transition from the bulk material to the surrounding medium. Short-pulse laser ablation is a recently-utilized method to produce such random anti-reflective structured surfaces (rARSS). Typically, high-energy femtosecond pulsed lasers are focused on the surface of the desired optical material to produce periodic or quasi-periodic assemblies of nanostructures which provide reduced surface reflection. This technique is being explored to generate a variety of structures across multiple optical materials. However, femtosecond laser systems are relatively expensive and more difficult to maintain. We present here a low power and low-cost alternative to femtosecond laser ablation, demonstrating random antireflective structures on the surface of Cleartran ZnS windows produced with a continuous-wave laser. In particular, we find that irradiation with a low-powered (<10 mW), defocused, CW 325nm-wavelength laser produces a random surface with significant roughness on ZnS substrates. The transmission through the structured ZnS windows is shown to increase by up to 9% across a broad wavelength range from the visible to the near-infrared.
NASA Astrophysics Data System (ADS)
Lim, H.; Choi, M.; Kim, J.; Go, S.; Chan, P.; Kasai, Y.
2017-12-01
This study attempts to retrieve the aerosol optical properties (AOPs) based on the spectral matching method, with using three visible and one near infrared channels (470, 510, 640, 860nm). This method requires the preparation of look-up table (LUT) approach based on the radiative transfer modeling. Cloud detection is one of the most important processes for guaranteed quality of AOPs. Since the AHI has several infrared channels, which are very advantageous for cloud detection, clouds can be removed by using brightness temperature difference (BTD) and spatial variability test. The Yonsei Aerosol Retrieval (YAER) algorithm is basically utilized on a dark surface, therefore a bright surface (e.g., desert, snow) should be removed first. Then we consider the characteristics of the reflectance of land and ocean surface using three visible channels. The known surface reflectivity problem in high latitude area can be solved in this algorithm by selecting appropriate channels through improving tests. On the other hand, we retrieved the AOPs by obtaining the visible surface reflectance using NIR to normalized difference vegetation index short wave infrared (NDVIswir) relationship. ESR tends to underestimate urban and cropland area, we improved the visible surface reflectance considering urban effect. In this version, ocean surface reflectance is using the new cox and munk method which considers ocean bidirectional reflectance distribution function (BRDF). Input of this method has wind speed, chlorophyll, salinity and so on. Based on validation results with the sun-photometer measurement in AErosol Robotic NETwork (AERONET), we confirm that the quality of Aerosol Optical Depth (AOD) from the YAER algorithm is comparable to the product from the Japan Aerospace Exploration Agency (JAXA) retrieval algorithm. Our future update includes a consideration of improvement land surface reflectance by hybrid approach, and non-spherical aerosols. This will improve the quality of YAER algorithm more, particularly retrieval for the dust particle over the bright surface in East Asia.
Layer-by-layer design method for soft-X-ray multilayers
NASA Technical Reports Server (NTRS)
Yamamoto, Masaki; Namioka, Takeshi
1992-01-01
A new design method effective for a nontransparent system has been developed for soft-X-ray multilayers with the aid of graphic representation of the complex amplitude reflectance in a Gaussian plane. The method provides an effective means of attaining the absolute maximum reflectance on a layer-by-layer basis and also gives clear insight into the evolution of the amplitude reflectance on a multilayer as it builds up. An optical criterion is derived for the selection of a proper pair of materials needed for designing a high-reflectance multilayer. Some examples are given to illustrate the usefulness of this design method.
Fundamental characteristics of a dual-colour fibre optic SPR sensor
NASA Astrophysics Data System (ADS)
Suzuki, Hitoshi; Sugimoto, Mitsunori; Matsui, Yoshikazu; Kondoh, Jun
2006-06-01
In this paper, we present the fundamental characteristics of a novel dual-colour optical fibre surface plasmon resonance (SPR) sensor for a portable low-cost sensing system. The principle of the proposed SPR sensor is based on the differential reflectance method. Light from two light-emitting diodes (LEDs), which are flashing alternately with different wavelengths, is fed to a sensor via two optical couplers. The reflected light is detected by a photodiode. Changes of reflectance at two wavelengths are proportional to the refractive index change of the medium of interest. Taking the difference in reflectance at two wavelengths improves the sensitivity almost twofold. Measuring ethanol solutions with different refractive indices reveals that the sensor has a linear response to the refractive index change from 1.333 to 1.3616. By measuring the stability in the time response we estimate that the limit of detection (LOD) of the refractive index is 5.2 × 10-4.
Optical Distance Measurement Device And Method Thereof
Bowers, Mark W.
2004-06-15
A system and method of efficiently obtaining distance measurements of a target by scanning the target. An optical beam is provided by a light source and modulated by a frequency source. The modulated optical beam is transmitted to an acousto-optical deflector capable of changing the angle of the optical beam in a predetermined manner to produce an output for scanning the target. In operation, reflected or diffused light from the target may be received by a detector and transmitted to a controller configured to calculate the distance to the target as well as the measurement uncertainty in calculating the distance to the target.
NASA Astrophysics Data System (ADS)
Stanford, Adam Christopher
Canopy reflectance models (CRMs) can accurately estimate vegetation canopy biophysical-structural information such as Leaf Area Index (LAI) inexpensively using satellite imagery. The strict physical basis which geometric-optical CRMs employ to mathematically link canopy bidirectional reflectance and structure allows for the tangible replication of a CRM's geometric abstraction of a canopy in the laboratory, enabling robust CRM validation studies. To this end, the ULGS-2 goniometer was used to obtain multiangle, hyperspectral (Spectrodirectional) measurements of a specially-designed tangible physical model forest, developed based upon the Geometric-Optical Mutual Shadowing (GOMS) CRM, at three different canopy cover densities. GOMS forward-modelled reflectance values had high levels of agreement with ULGS-2 measurements, with obtained reflectance RMSE values ranging from 0.03% to 0.1%. Canopy structure modelled via GOMS Multiple-Forward-Mode (MFM) inversion had varying levels of success. The methods developed in this thesis can potentially be extended to more complex CRMs through the implementation of 3D printing.
Smart particles for noble drug delivery system.
Park, Cheolyoung; Kim, Jihoon; Jang, Seunghyun; Woo, Hee-Gweon; Ko, Young Chun; Sohn, Honglae
2010-05-01
Optically encoded smart particles were prepared for noble drug delivery materials. Distributed Bragg reflector (DBR) porous silicon (PSi) was generated by applying a computer-generated pseudo-square wave current waveform. This DBR PSi film was lifted off from the Si substrate and thermally oxidized to convert PSi to porous silicon dioxide (PSD). DBR PSD film was derivatized with 20(S)-Camptothecin (CPT) and fractured by ultrasono-method to give smart particles. DBR PSD smart particles exhibited a sharp photonic band gap in the optical reflectivity spectrum. Optical characteristic of PSD smart particles retained DBR photonic property in aqueous buffer solution. The release of CPT and change of reflection wavelength were measured by UV-vis and reflectance spectrometer, respectively. The intensity of differential peak from reflection resonances of the smart particles was increased with a drug release. The blue shift of reflection peak resulted in the decrease of refractive index of PSD smart particles during the drug release. The concentration of released drug exhibited an linear relationship with a release time.
Total Internal Reflection Microscopy (TIRM) as a nondestructive surface damage assessment tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Z.M.; Cohen, S.J.; Taylor, J.R.
1994-10-01
An easy to use, nondestructive, method for evaluating subsurface damage in polished substrates has been established at LLNL. Subsurface damage has been related to laser damage in coated optical components used in high power, high repetition rate laser systems. Total Internal Reflection Microscopy (TIRM) has been shown to be a viable nondestructive technique in analyzing subsurface damage in optical components. A successful TIRM system has been established for evaluating subsurface damage on fused silica components. Laser light scattering from subsurface damage sites is collected through a Nomarski microscope. These images are then captured by a CCD camera for analysis onmore » a computer. A variety of optics, including components with intentional subsurface damage due to grinding and polishing, have been analyzed and their TIRM images compared to an existing destructive etching method. Methods for quantitative measurement of subsurface damage are also discussed.« less
Linear and angular retroreflecting interferometric alignment target
Maxey, L. Curtis
2001-01-01
The present invention provides a method and apparatus for measuring both the linear displacement and angular displacement of an object using a linear interferometer system and an optical target comprising a lens, a reflective surface and a retroreflector. The lens, reflecting surface and retroreflector are specifically aligned and fixed in optical connection with one another, creating a single optical target which moves as a unit that provides multi-axis displacement information for the object with which it is associated. This displacement information is useful in many applications including machine tool control systems and laser tracker systems, among others.
Noncontact methods for optical testing of convex aspheric mirrors for future large telescopes
NASA Astrophysics Data System (ADS)
Goncharov, Alexander V.; Druzhin, Vladislav V.; Batshev, Vladislav I.
2009-06-01
Non-contact methods for testing of large rotationally symmetric convex aspheric mirrors are proposed. These methods are based on non-null testing with side illumination schemes, in which a narrow collimated beam is reflected from the meridional aspheric profile of a mirror. The figure error of the mirror is deduced from the intensity pattern from the reflected beam obtained on a screen, which is positioned in the tangential plane (containing the optical axis) and perpendicular to the incoming beam. Testing of the entire surface is carried out by rotating the mirror about its optical axis and registering the characteristics of the intensity pattern on the screen. The intensity pattern can be formed using three different techniques: modified Hartman test, interference and boundary curve test. All these techniques are well known but have not been used in the proposed side illumination scheme. Analytical expressions characterizing the shape and location of the intensity pattern on the screen or a CCD have been developed for all types of conic surfaces. The main advantage of these testing methods compared with existing methods (Hindle sphere, null lens, computer generated hologram) is that the reference system does not require large optical components.
NASA Astrophysics Data System (ADS)
Lu, En; Ran, Zengling; Peng, Fei; Liu, Zhiwei; Xu, Fuguo
2012-03-01
Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic Fabry-Perot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.
NASA Astrophysics Data System (ADS)
Ran, Zengling; Rao, Yunjiang; Liu, Zhiwei; Xu, Fuguo
2011-05-01
Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic fabry-periot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.
NASA Astrophysics Data System (ADS)
Otani, Minoru; Biro, Ryuji; Ouchi, Chidane; Hasegawa, Masanobu; Suzuki, Yasuyuki; Sone, Kazuho; Niisaka, Shunsuke; Saito, Tadahiko; Saito, Jun; Tanaka, Akira
2002-06-01
The total loss that can be suffered by an antireflection (AR) coating consists of reflectance loss, absorption loss, and scatter loss. To separate these losses we developed a calorimetric absorption measurement apparatus and an ellipsoidal Coblentz hemisphere based scatterometer for 157-nm optics. Reflectance, absorption, and scatter of AR coatings were measured with these apparatuses. The AR coating samples were supplied by Japanese vendors. Each AR coating as supplied was coated with the vendor's coating design by that vendor's coating process. Our measurement apparatuses, methods, and results for these AR coatings are presented here.
Cortexin diffusion in human eye sclera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genina, Elina A; Bashkatov, A N; Tuchin, Valerii V
2011-05-31
Investigation of the diffusion of cytamines, a typical representative of which is cortexin, is important for evaluating the drug dose, necessary to provide sufficient concentration of the preparation in the inner tissues of the eye. In the present paper, the cortexin diffusion rate in the eye sclera is measured using the methods of optical coherence tomography (OCT) and reflectance spectroscopy. The technique for determining the diffusion coefficient is based on the registration of temporal dependence of the eye sclera scattering parameters caused by partial replacement of interstitial fluid with the aqueous cortexin solution, which reduces the level of the OCTmore » signal and decreases the reflectance of the sclera. The values of the cortexin diffusion coefficient obtained using two independent optical methods are in good agreement. (optical technologies in biophysics and medicine)« less
Coherent gradient sensing method and system for measuring surface curvature
NASA Technical Reports Server (NTRS)
Rosakis, Ares J. (Inventor); Moore, Jr., Nicholas R. (Inventor); Singh, Ramen P. (Inventor); Kolawa, Elizabeth (Inventor)
2000-01-01
A system and method for determining a curvature of a specularly reflective surface based on optical interference. Two optical gratings are used to produce a spatial displacement in an interference field of two different diffraction components produced by one grating from different diffraction components produced by another grating. Thus, the curvature of the surface can be determined.
An improved methodology for heliostat testing and evaluation at the Plataforma Solar de Almería
NASA Astrophysics Data System (ADS)
Monterreal, Rafael; Enrique, Raúl; Fernández-Reche, Jesús
2017-06-01
The optical quality of a heliostat basically quantifies the difference between the scattering effects of the actual solar radiation reflected on its optical surface, compared to the so called canonical dispersion, that is, the one reflected on an optical surface free of constructional errors (paradigm). However, apart from the uncertainties of the measuring process itself, the value of the optical quality must be independent of the measuring instrument; so, any new measuring techniques that provide additional information about the error sources on the heliostat reflecting surface would be welcome. That error sources are responsible for the final optical quality value, with different degrees of influence. For the constructor of heliostats it will be extremely useful to know the value of the classical sources of error and their weight on the overall optical quality of a heliostat, such as facets geometry or focal length, as well as the characteristics of the heliostat as a whole, i.e., its geometry, focal length, facets misalignment and also the possible dependence of these effects with mechanical and/or meteorological factors. It is the goal of the present paper to unfold these optical quality error sources by exploring directly the reflecting surface of the heliostat with the help of a laser-scanner device and link the result with the traditional methods of heliostat evaluation at the Plataforma Solar de Almería.
Noninvasive glucose monitoring by optical reflective and thermal emission spectroscopic measurements
NASA Astrophysics Data System (ADS)
Saetchnikov, V. A.; Tcherniavskaia, E. A.; Schiffner, G.
2005-08-01
Noninvasive method for blood glucose monitoring in cutaneous tissue based on reflective spectrometry combined with a thermal emission spectroscopy has been developed. Regression analysis, neural network algorithms and cluster analysis are used for data processing.
Li, Zexiao; Liu, Xianlei; Fang, Fengzhou; Zhang, Xiaodong; Zeng, Zhen; Zhu, Linlin; Yan, Ning
2018-03-19
Multi-reflective imaging systems find wide applications in optical imaging and space detection. However, it is faced with difficulties in adjusting the freeform mirrors with high accuracy to guarantee the optical function. Motivated by this, an alignment-free manufacture approach is proposed to machine the optical system. The direct optical performance-guided manufacture route is established without measuring the form error of freeform optics. An analytical model is established to investigate the effects of machine errors to serve the error identification and compensation in machining. Based on the integrated manufactured system, an ingenious self-designed testing configuration is constructed to evaluate the optical performance by directly measuring the wavefront aberration. Experiments are carried out to manufacture a three-mirror anastigmat, surface topographical details and optical performance shows agreement to the designed expectation. The final system works as an off-axis infrared imaging system. Results validate the feasibility of the proposed method to achieve excellent optical application.
A Method for Medical Diagnosis Based on Optical Fluence Rate Distribution at Tissue Surface
Hamdy, Omnia; El-Azab, Jala; Al-Saeed, Tarek A.; Hassan, Mahmoud F.
2017-01-01
Optical differentiation is a promising tool in biomedical diagnosis mainly because of its safety. The optical parameters’ values of biological tissues differ according to the histopathology of the tissue and hence could be used for differentiation. The optical fluence rate distribution on tissue boundaries depends on the optical parameters. So, providing image displays of such distributions can provide a visual means of biomedical diagnosis. In this work, an experimental setup was implemented to measure the spatially-resolved steady state diffuse reflectance and transmittance of native and coagulated chicken liver and native and boiled breast chicken skin at 635 and 808 nm wavelengths laser irradiation. With the measured values, the optical parameters of the samples were calculated in vitro using a combination of modified Kubelka-Munk model and Bouguer-Beer-Lambert law. The estimated optical parameters values were substituted in the diffusion equation to simulate the fluence rate at the tissue surface using the finite element method. Results were verified with Monte-Carlo simulation. The results obtained showed that the diffuse reflectance curves and fluence rate distribution images can provide discrimination tools between different tissue types and hence can be used for biomedical diagnosis. PMID:28930158
A Method for Medical Diagnosis Based on Optical Fluence Rate Distribution at Tissue Surface.
Hamdy, Omnia; El-Azab, Jala; Al-Saeed, Tarek A; Hassan, Mahmoud F; Solouma, Nahed H
2017-09-20
Optical differentiation is a promising tool in biomedical diagnosis mainly because of its safety. The optical parameters' values of biological tissues differ according to the histopathology of the tissue and hence could be used for differentiation. The optical fluence rate distribution on tissue boundaries depends on the optical parameters. So, providing image displays of such distributions can provide a visual means of biomedical diagnosis. In this work, an experimental setup was implemented to measure the spatially-resolved steady state diffuse reflectance and transmittance of native and coagulated chicken liver and native and boiled breast chicken skin at 635 and 808 nm wavelengths laser irradiation. With the measured values, the optical parameters of the samples were calculated in vitro using a combination of modified Kubelka-Munk model and Bouguer-Beer-Lambert law. The estimated optical parameters values were substituted in the diffusion equation to simulate the fluence rate at the tissue surface using the finite element method. Results were verified with Monte-Carlo simulation. The results obtained showed that the diffuse reflectance curves and fluence rate distribution images can provide discrimination tools between different tissue types and hence can be used for biomedical diagnosis.
NASA Astrophysics Data System (ADS)
Ma, Zhuang; Zheng, Jiayi; Wang, Song; Gao, Lihong
2018-01-01
It is an effective method to protect components from high power laser damage using high reflective materials. The rare earth tantalates RETaO4 with high dielectric constant suggests that they may have very high reflectivity, according to the relationship between dielectric constant and reflectivity. The crystal structures, electronic structures, and optical properties of RETaO4 (RE=Y, La, Sm, Eu, Dy, Er) have been studied by first-principle calculations. With the increasing atomic number of RE (i.e., the number of 4f electrons), a 4f electron shell moves from the bottom of conduction band to the forbidden gap and then to the valence band. The relationship between the electronic structures and optical properties is explored. The electron transitions among O 2p states, RE 4f states, and Ta 5d states have a key effect on optical properties such as dielectric function, absorption coefficient, and reflectivity. For the series of RETaO4, the appearance of the 4f electronic states will obviously promote the improvement of reflectivity. When the 4f states appear at the middle of the forbidden gap, the reflectivity reaches the maximum. The reflectivity of EuTaO4 at 1064 nm is up to 93.47%, indicating that it has potential applications in the antilaser radiation area.
Sharif, S.A.; Taydas, E.; Mazhar, A.; Rahimian, R.; Kelly, K.M.; Choi, B.; Durkin, A.J.
2012-01-01
Port wine stain (PWS) birthmarks are one class of benign congenital vascular malformation. Laser therapy is the most successful treatment modality of PWS. Unfortunately, this approach has limited efficacy, with only 10% of patients experiencing complete blanching of the PWS. To address this problem, several research groups have developed technologies and methods designed to study treatment outcome and improve treatment efficacy. This paper reviews seven optical imaging techniques currently in use or under development to assess treatment efficacy, focusing on: Reflectance spectrophotometers/tristimulus colorimeters, Laser Doppler flowmetry (LDF) and Laser Doppler imaging (LDI), Cross-polarized diffuse reflectance color imaging system (CDR), Reflectance Confocal Microscopy (RCM), Optical Coherence Tomography (OCT), Spatial Frequency Domain Imaging (SFDI), and Laser Speckle Imaging (LSI). PMID:22804872
Remote Sensing of Soil Moisture: A Comparison of Optical and Thermal Methods
NASA Astrophysics Data System (ADS)
Foroughi, H.; Naseri, A. A.; Boroomandnasab, S.; Sadeghi, M.; Jones, S. B.; Tuller, M.; Babaeian, E.
2017-12-01
Recent technological advances in satellite and airborne remote sensing have provided new means for large-scale soil moisture monitoring. Traditional methods for soil moisture retrieval require thermal and optical RS observations. In this study we compared the traditional trapezoid model parameterized based on the land surface temperature - normalized difference vegetation index (LST-NDVI) space with the recently developed optical trapezoid model OPTRAM parameterized based on the shortwave infrared transformed reflectance (STR)-NDVI space for an extensive sugarcane field located in Southwestern Iran. Twelve Landsat-8 satellite images were acquired during the sugarcane growth season (April to October 2016). Reference in situ soil moisture data were obtained at 22 locations at different depths via core sampling and oven-drying. The obtained results indicate that the thermal/optical and optical prediction methods are comparable, both with volumetric moisture content estimation errors of about 0.04 cm3 cm-3. However, the OPTRAM model is more efficient because it does not require thermal data and can be universally parameterized for a specific location, because unlike the LST-soil moisture relationship, the reflectance-soil moisture relationship does not significantly vary with environmental variables (e.g., air temperature, wind speed, etc.).
Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E; Ramanujam, Nimmi
2011-02-01
Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.
Study of cylindrical optical micro-structure technology used in infrared laser protection
NASA Astrophysics Data System (ADS)
Sun, Yanjun; Liu, Shunrui; Wang, Zhining; Zhao, Yixuan; Wu, Boqi; Leng, Yanbing; Wang, Li
2016-10-01
The paper aimed at the problem that strong absorption in visible wavelengths and equipment or operator injury caused by specular reflection exist in infrared laser protection technology to propose an infrared laser non-specular reflection optical micro-structure formed from optical window surface. It has the function of little effect on visible light transmission and large-angle scattering to 1064nm infrared laser in order to enable laser protection. The paper uses light track method to design double-side micro-cylindrical lens arrays with dislocation construction. Array period T and curvature radius of lens units R should meet the condition:0
Estimation of viscoelastic surface wave parameters using a low cost optical deflection method
NASA Astrophysics Data System (ADS)
Brum, J.; Balay, G.; Arzúa, A.; Núñez, I.; Negreira, C.
2010-01-01
In this work an optical deflection method was used to study surface vibrations created by a low frequency source placed on the sample's surface. The optical method consists in placing a laser beam perpendicularly the sample's surface (gelatine based phantom). A beam-splitter is placed between the laser and the sample to project the reflected beam into a screen. As the surface moves due to the action of the low frequency source the laser beam on the screen also moves. Recording this movement with a digital camera allow us to reconstruct de surface motion using the light reflection law. If the scattering of the surface is very strong (such the one in biological tissue) a lens is placed between the surface and the beam-splitter to collect the scattered light. As validation method the surface movement was measured using a 10 MHz ultrasonic transducer placed normal to the surface in pulse-eco mode. The optical measurements were in complete agreement with the acoustical measurements. The optical measurement has the following advantages over the acoustic: 2-dimensional motion could be recorded and it is low cost. Since the acquisition was synchronized and the source-laser beam distance is known, measuring the time of flight an estimation of the surface wave velocity is obtained in order to measure the elasticity of the sample. The authors conclude that a reliable optical, low cost method for obtaining surface wave parameters of biological tissue was developed and successfully validate.
NASA Astrophysics Data System (ADS)
Huemmrich, K. F.; Middleton, E.; Corp, L. A.; Campbell, P. K.; Kustas, W. P.
2014-12-01
Optical sampling of spectral reflectance and solar induced fluorescence provide information on the physiological status of vegetation that can be used to infer stress responses and estimates of production. Multiple repeated observations are required to observe the effects of changing environmental conditions on vegetation. This study examines the use of optical signals to determine inputs to a light use efficiency (LUE) model describing productivity of a cornfield where repeated observations of carbon flux, spectral reflectance and fluorescence were collected. Data were collected at the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) fields (39.03°N, 76.85°W) at USDA Beltsville Agricultural Research Center. Agricultural Research Service researchers measured CO2 fluxes using eddy covariance methods throughout the growing season. Optical measurements were made from the nearby tower supporting the NASA FUSION sensors. The sensor system consists of two dual channel, upward and downward looking, spectrometers used to simultaneously collect high spectral resolution measurements of reflected and fluoresced light from vegetation canopies. Estimates of chlorophyll fluorescence, combined with measures of vegetation pigment content and the Photosynthetic Reflectance Index (PRI) derived from the spectral reflectance are compared with CO2 fluxes over diurnal periods for multiple days. PRI detects changes in Xanthophyll cycle pigments using reflectance at 531 nm compared to a reference band at 570 nm. The relationships among the different optical measurements indicate that they are providing different types of information on the vegetation and that combinations of these measurements provide improved retrievals of CO2 fluxes than any index alone.
NASA Astrophysics Data System (ADS)
Huemmrich, K. F.; Corp, L.; Campbell, P. K.; Cook, B. D.; Middleton, E.; Cheng, Y.; Zhang, Q.; Russ, A.; Kustas, W. P.
2013-12-01
Optical sampling of spectral reflectance and solar induced fluorescence provide information on the physiological status of vegetation that can be used to infer stress responses and estimates of production. Multiple repeated observations can observe the effects of changing environmental conditions on vegetation. This study examines the use of optical signals to determine inputs to a light use efficiency (LUE) model describing productivity of a cornfield where repeated observations of carbon flux, spectral reflectance and fluorescence were collected. Data were collected at the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) fields (39.03°N, 76.85°W) at USDA Beltsville Agricultural Research Center. Agricultural Research Service researchers measured CO2 fluxes using eddy covariance methods throughout the growing season. Optical measurements were made from the nearby tower supporting the NASA FUSION sensors. This sensor system consists of two dual channel, upward and downward looking, spectrometers used to simultaneously collect high spectral resolution measurements of reflected and fluoresced light from vegetation canopies. Estimates of chlorophyll fluorescence, combined with measures of vegetation pigment content and the Photosynthetic Reflectance Index (PRI) derived from the spectral reflectance are compared with CO2 fluxes over diurnal periods for multiple days. PRI detects changes in Xanthophyll cycle pigments using reflectance at 531 nm compared to a reference band at 570 nm. The relationships among the different optical measurements indicate that they are providing different types of information on the vegetation and that combinations of these measurements provide improved retrievals of CO2 fluxes than any index alone.
Programmable Iterative Optical Image And Data Processing
NASA Technical Reports Server (NTRS)
Jackson, Deborah J.
1995-01-01
Proposed method of iterative optical image and data processing overcomes limitations imposed by loss of optical power after repeated passes through many optical elements - especially, beam splitters. Involves selective, timed combination of optical wavefront phase conjugation and amplification to regenerate images in real time to compensate for losses in optical iteration loops; timing such that amplification turned on to regenerate desired image, then turned off so as not to regenerate other, undesired images or spurious light propagating through loops from unwanted reflections.
Maghsoodi, Sina; Brophy, Brenor L.; Abrams, Ze'ev R.; Gonsalves, Peter R.
2016-06-28
Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.
NASA Astrophysics Data System (ADS)
Fontaine, Norman Henry
1997-10-01
Techniques which can be used to obtain depth-resolved information on the thermodynamics at polymer-polymer and polymer-wall interfaces, and of small molecule diffusion in polymers, are of particular interest to industry. Optical methods which are sensitive to molecular vibrations (such as internal reflection Raman spectroscopy) are advantageous because they can non- destructively probe molecular content, orientation, and polarity of the local environment in a sample. However, while optical internal reflection depth-profiling methods have been reported, they have never progressed beyond the demonstration stage. In this work, the theory and methodology of internal reflection spectroscopy are developed and optimized into a rigorous field-controlled spectroscopic technique. A novel asymmetric internal reflection element (IRE) is introduced which traps back-reflections, allowing precise evanescent and standing wave probe-field control in the sample for all angles of incidence. It is demonstrated that a Gaussian laser beam will best approximate an infinite homogeneous plane wave when the IRE/sample interface lies in the paraxial-Fraunhofer region (far- field) of the beam path. Calibration methods are presented, sources of systematic errors are identified, and the angular resolution limit (ARL) is introduced as a measure of the field control developed in a sample by any internal reflection method. A general model of Raman scattering and photon detection from multi-layer thin films is developed. A new and generalized operator based transfer matrix method is developed and applied to electromagnetic field and diffusion computations in multi-layer systems. Total internal reflection spectroscopy is extended to include sub-critical angles of incidence, where resonant field enhancements generate large and selective amplification of the probe-field intensity within the layers of the sample. Fitting these resonances to the model spectral intensities allows unique determination of the location of buried interfaces in micron-sized polymer multi-layers with nanometer scale precision and the refractive indices of the layers with precision of /Delta n/approx/pm 0.0001. The Raman active molecular content of each optically distinct layer of the film is determinable simultaneously with the optical properties. Resonant mode VAIRRS studies of poly(methyl methacrylate) films spun-cast from toluene and then dried under ambient conditions have shown evidence for toluene diffusion concurrent with a rotationally hindered relaxation of oriented ester side groups about the polymer backbone. Low temperature annealing (≈87oC) has shown evidence that this hindered rotational relaxation may be reversible. VAIRRS study of a polystyrene/poly(methyl methacrylate) bi-layer has detected evidence for toluene diffusion across the buried polymer-polymer interface.
Reflectance and fluorescence spectroscopies in photodynamic therapy
NASA Astrophysics Data System (ADS)
Finlay, Jarod C.
In vivo fluorescence spectroscopy during photodynamic therapy (PDT) has the potential to provide information on the distribution and degradation of sensitizers, the formation of fluorescent photoproducts and changes in tissue autofluorescence induced by photodynamic treatment. Reflectance spectroscopy allows quantification of light absorption and scattering in tissue. We present the results of several related studies of fluorescence and reflectance spectroscopy and their applications to photodynamic dosimetry. First, we develop and test an empirical method for the correction of the distortions imposed on fluorescence spectra by absorption and scattering in turbid media. We characterize the irradiance dependence of the in vivo photobleaching of three sensitizers, protoporphyrin IX (PpIX), Photofrin and mTHPC, in a rat skin model. The photobleaching and photoproduct formation of PpIX exhibit irradiance dependence consistent with singlet oxygen (1O2)-mediated bleaching. The bleaching of mTHPC occurs in two phases, only one of which is consistent with a 1O 2-mediated mechanism. Photofrin's bleaching is independent of irradiance, although its photoproduct formation is not. This can be explained by a mixed-mechanism bleaching model. Second, we develop an algorithm for the determination of tissue optical properties using diffuse reflectance spectra measured at a single source-detector separation and demonstrate the recovery of the hemoglobin oxygen dissociation curve from tissue-simulating phantoms containing human erythrocytes. This method is then used to investigate the heterogeneity of oxygenation response in murine tumors induced by carbogen inhalation. We find that while the response varies among animals and within each tumor, the majority of tumors exhibit an increase in blood oxygenation during carbogen breathing. We present a forward-adjoint model of fluorescence propagation that uses the optical property information acquired from reflectance spectroscopy to obtain the undistorted fluorescence spectrum over a wide range of optical properties. Finally, we investigate the ability of the forward-adjoint theory to extract undistorted fluorescence and optical property information simultaneously from a single measured fluorescence spectrum. This method can recover the hemoglobin oxygen dissociation curve in tissue-simulating phantoms with an accuracy comparable to that of reflectance-based methods while correcting distortions in the fluorescence over a wide range of absorption and scattering coefficients.
NASA Astrophysics Data System (ADS)
Ankri, Rinat; Fixler, Dror
2017-07-01
Optical imaging is a powerful tool for investigating the structure and function of tissues. Tissue optical imaging technologies are generally discussed under two broad regimes: microscopic and macroscopic, while the latter is widely investigated in the field of light-tissue interaction. Among the developed optical technologies for tissue investigation, the diffusion reflectance (DR) method is a simple and safe technology. However, this method suffers from low specificity and low signal-to-noise ratio, so the extraction of the tissue properties is not an easy task. In this review, we describe the use of gold nanorods (GNRs) in DR spectroscopy. The GNRs present unique optical properties which enhance the scattering and absorption properties of a tissue. The GNRs can be easily targeted toward abnormal sites in order to improve the DR signal and to distinguish between the healthy and the abnormal sites in the tissue, with high specificity. This article describes the use of the DR-GNRs method for the detection of cancer and atherosclerosis, from light transfer theory, through the extraction of the tissue properties using the diffusion theory and up to DR in vivo measurements.
Nonimaging optics for nonuniform brightness distributions
NASA Astrophysics Data System (ADS)
Jenkins, David G.; Winston, Roland
1995-08-01
We present a general design method of nonimaging optics that obtains the highest possible concentration for a given absorber shape. This technique, which uses a complimentary edge ray to simplify the geometrical formulism, recovers familiar designs for flat phase space distributions, such as trumpets, and (theta) 1-(theta) 2 concentrators. This method is easy to use and handles diverse boundary conditions, such as reflection, satisfying total internal reflection or design within a material of graded index. Presented is a novel two-stage 2D solar collector with a fixed circular primary mirror and nonimaging secondary. This newly developed secondary gives a 25% improvement over conventional nonimaging concentrators.
Low-noise delays from dynamic Brillouin gratings based on perfect Golomb coding of pump waves.
Antman, Yair; Levanon, Nadav; Zadok, Avi
2012-12-15
A method for long variable all-optical delay is proposed and simulated, based on reflections from localized and stationary dynamic Brillouin gratings (DBGs). Inspired by radar methods, the DBGs are inscribed by two pumps that are comodulated by perfect Golomb codes, which reduce the off-peak reflectivity. Compared with random bit sequence coding, Golomb codes improve the optical signal-to-noise ratio (OSNR) of delayed waveforms by an order of magnitude. Simulations suggest a delay of 5 Gb/s data by 9 ns, or 45 bit durations, with an OSNR of 13 dB.
AVIRIS calibration using the cloud-shadow method
NASA Technical Reports Server (NTRS)
Carder, K. L.; Reinersman, P.; Chen, R. F.
1993-01-01
More than 90 percent of the signal at an ocean-viewing, satellite sensor is due to the atmosphere, so a 5 percent sensor-calibration error viewing a target that contributes but 10 percent of the signal received at the sensor may result in a target-reflectance error of more than 50 percent. Since prelaunch calibration accuracies of 5 percent are typical of space-sensor requirements, recalibration of the sensor using ground-base methods is required for low-signal target. Known target reflectance or water-leaving radiance spectra and atmospheric correction parameters are required. In this article we describe an atmospheric-correction method that uses cloud shadowed pixels in combination with pixels in a neighborhood region of similar optical properties to remove atmospheric effects from ocean scenes. These neighboring pixels can then be used as known reflectance targets for validation of the sensor calibration and atmospheric correction. The method uses the difference between water-leaving radiance values for these two regions. This allows nearly identical optical contributions to the two signals (e.g., path radiance and Fresnel-reflected skylight) to be removed, leaving mostly solar photons backscattered from beneath the sea to dominate the residual signal. Normalization by incident solar irradiance reaching the sea surface provides the remote-sensing reflectance of the ocean at the location of the neighbor region.
Park, B Hyle; Pierce, Mark C; Cense, Barry; de Boer, Johannes F
2004-11-01
We present an analysis for polarization-sensitive optical coherence tomography that facilitates the unrestricted use of fiber and fiber-optic components throughout an interferometer and yields sample birefringence, diattenuation, and relative optic axis orientation. We use a novel Jones matrix approach that compares the polarization states of light reflected from the sample surface with those reflected from within a biological sample for pairs of depth scans. The incident polarization alternated between two states that are perpendicular in a Poincaré sphere representation to ensure proper detection of tissue birefringence regardless of optical fiber contributions. The method was validated by comparing the calculated diattenuation of a polarizing sheet, chicken tendon, and muscle with that obtained by independent measurement. The relative importance of diattenuation versus birefringence to angular displacement of Stokes vectors on a Poincaré sphere was quantified.
NASA Astrophysics Data System (ADS)
Saghaei, Hamed; Zahedi, Abdulhamid; Karimzadeh, Rouhollah; Parandin, Fariborz
2017-10-01
In this paper, a triangular two-dimensional photonic crystal (PhC) of As2Se3-chalcogenide rods in air is presented and its photonic band diagram is calculated by plane wave method. In this structure, an optical waveguide is obtained by creating a line defect (eliminating rods) in diagonal direction of PhC. Numerical simulations based on finite difference time domain method show that when self-collimated beams undergo total internal reflection at the PhC-air interface, a total reflection of 90° occurs for the output beams. We also demonstrate that by decreasing the radius of As2Se3-chalcogenide instead of eliminating a diagonal line, a two-channel optical splitter will be designed. In this case, incoming self-collimated beams can be divided into the reflected and transmitted beams with arbitrary power ratio by adjusting the value of their radii. Based on these results, we propose a four-channel optical splitter using four line defects. The power ratio among output channels can be controlled systematically by varying the radius of rods in the line defects. We also demonstrate that by launching two optical sources with the same intensity and 90° phase difference from both perpendicular faces of the PhC, two logic OR and XOR gates will be achieved at the output channels. These optical devices have some applications in photonic integrated circuits for controlling and steering (managing) the light as desired.
Heterodyne interferometer with angstrom-level periodic nonlinearity
Schmitz, Tony L.; Beckwith, John F.
2005-01-25
Displacement measuring interferometer systems and methods are disclosed. One or more acousto-optic modulators for receiving a laser light beam from a laser light source can be utilized to split the laser light beam into two or more laser light beams, while spatially separating frequencies thereof. One or more reflective mechanisms can be utilized to reflect one or more of the laser light beams back to the acousto-optic modulator. Interference of two or more of the laser light beams generally at the acousto-optic modulator can provide an interfered laser light beam thereof. A detector for receiving the interfered laser light beam can be utilized to provide interferometer measurement data.
Bourlier, Christophe
2006-08-20
The emissivity from a stationary random rough surface is derived by taking into account the multiple reflections and the shadowing effect. The model is applied to the ocean surface. The geometric optics approximation is assumed to be valid, which means that the rough surface is modeled as a collection of facets reflecting locally the light in the specular direction. In particular, the emissivity with zero, single, and double reflections are analytically calculated, and each contribution is studied numerically by considering a 1D sea surface observed in the near infrared band. The model is also compared with results computed from a Monte Carlo ray-tracing method.
Active Beam Shaping System and Method Using Sequential Deformable Mirrors
NASA Technical Reports Server (NTRS)
Pueyo, Laurent A. (Inventor); Norman, Colin A. (Inventor)
2015-01-01
An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.
System and method for online inspection of turbines using an optical tube with broadspectrum mirrors
Baleine, Erwan
2015-12-22
An optical inspection system for nondestructive internal visual inspection and non-contact infra-red (IR) temperature monitoring of an online, operating power generation turbine. The optical inspection system includes an optical tube having a viewing port, at least one reflective mirror or a mirror array having a reflectivity spectral range from 550 nm to 20 .mu.m, and capable of continuous operation at temperatures greater than 932 degrees Fahrenheit (500 degrees Celsius), and a transparent window with high transmission within the same spectral range mounted distal the viewing port. The same optical mirror array may be used to measure selectively surface temperature of metal turbine blades in the near IR range (approximately 1 .mu.m wavelength) and of thermal barrier coated turbine blades in the long IR range (approximately 10 .mu.m wavelength).
VCSEL fault location apparatus and method
Keeler, Gordon A [Albuquerque, NM; Serkland, Darwin K [Albuquerque, NM
2007-05-15
An apparatus for locating a fault within an optical fiber is disclosed. The apparatus, which can be formed as a part of a fiber-optic transmitter or as a stand-alone instrument, utilizes a vertical-cavity surface-emitting laser (VCSEL) to generate a test pulse of light which is coupled into an optical fiber under test. The VCSEL is subsequently reconfigured by changing a bias voltage thereto and is used as a resonant-cavity photodetector (RCPD) to detect a portion of the test light pulse which is reflected or scattered from any fault within the optical fiber. A time interval .DELTA.t between an instant in time when the test light pulse is generated and the time the reflected or scattered portion is detected can then be used to determine the location of the fault within the optical fiber.
Recirculating Etalon Spectrometer
NASA Technical Reports Server (NTRS)
Stephen, Mark A. (Inventor); Fahey, Molly E. (Inventor); Krainak, Michael A. (Inventor)
2017-01-01
Systems, methods, and devices may provide an optical scheme that achieves simultaneous wavelength channels and maintains the resolution and luminosity of an etalon. Various embodiments may provide a method to optically recirculate the light reflected from the etalon back through the same etalon at new angles. Various embodiments create an etalon spectrometer based on angular dispersion without moving parts and without losing the light that is not initially transmitted. Various embodiments may provide a spectrally-resolved receiver and/or transmitter. Various embodiments may provide a system including a retro-reflector, a detector or transmitter array, and an etalon disposed between the retro-reflector and the detector or transmitter array, wherein the retro-reflector is configured to redirect light reflected by the etalon back to the etalon at a different angle of incidence than an original angle of incidence on the etalon of the light reflected by the etalon.
Refractive index measurement for biomaterial samples by total internal reflection.
Jin, Y L; Chen, J Y; Xu, L; Wang, P N
2006-10-21
The refractive index of biological tissue is a fundamental parameter in applications of optical diagnosis and laser treatments. In the present work, the refractive indices and thermo-optic coefficients of some basic biomaterials, such as blood plasma, haemoglobin solution and lipid membrane, were studied by the method of total internal reflection at the wavelengths of 532 and 632.8 nm that are the most frequently used laser wavelengths in the biomedical field. The effects of the sample concentration and the temperature on refractive index were measured, and empirical relationships were summarized, accompanied by a theoretical explanation based on molecular polarization theory. The results provide some fundamental data for the refractive indices of these biomaterials under variant conditions, and also demonstrate that the total internal reflection method is a feasible and reliable way to measure the refractive indices of biological samples.
Zhang, Changxing; Qu, Zhe; Fang, Xufei; Feng, Xue; Hwang, Keh-Chih
2015-02-01
Thin film stresses in thin film/substrate systems at elevated temperatures affect the reliability and safety of such structures in microelectronic devices. The stresses result from the thermal mismatch strain between the film and substrate. The reflection mode digital gradient sensing (DGS) method, a real-time, full-field optical technique, measures deformations of reflective surface topographies. In this paper, we developed this method to measure topographies and thin film stresses of thin film/substrate systems at elevated temperatures. We calibrated and compensated for the air convection at elevated temperatures, which is a serious problem for optical techniques. We covered the principles for surface topography measurements by the reflection mode DGS method at elevated temperatures and the governing equations to remove the air convection effects. The proposed method is applied to successfully measure the full-field topography and deformation of a NiTi thin film on a silicon substrate at elevated temperatures. The evolution of thin film stresses obtained by extending Stoney's formula implies the "nonuniform" effect the experimental results have shown.
Near-Field Magneto-Optical Microscope
Vlasko-Vlasov, Vitalii; Welp, Ulrich; and Crabtree, George W.
2005-12-06
A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.
Near Field Magneto-Optical Microscope
Vlasko-Vlasov, Vitalii K.; Welp, Ulrich; Crabtree, George W.
2005-12-06
A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.
Optical methods for noninvasive determination of carotenoids in human and animal skin
NASA Astrophysics Data System (ADS)
Darvin, Maxim E.; Meinke, Martina C.; Sterry, Wolfram; Lademann, Juergen
2013-06-01
Carotenoids are important substances for human skin due to their powerful antioxidant properties in reaction of neutralization of free radicals and especially reactive oxygen species, including singlet oxygen. Concentration of carotenoids in the skin could mirror the current redox status of the skin and should be investigated in vivo. Optical methods are ideally suited for determination of carotenoids in mammalian skin in vivo as they are both noninvasive and quick. Four different optical methods could be used for in vivo measurement of carotenoids in the human or animal skin: (1) resonance Raman spectroscopy; (2) Raman microscopy; (3) reflection spectroscopy; (4) skin color measurements. The advantages, shortcomings, and limitations of the above-mentioned optical methods are discussed.
Optical methods for noninvasive determination of carotenoids in human and animal skin.
Darvin, Maxim E; Meinke, Martina C; Sterry, Wolfram; Lademann, Juergen
2013-06-01
Carotenoids are important substances for human skin due to their powerful antioxidant properties in reaction of neutralization of free radicals and especially reactive oxygen species, including singlet oxygen. Concentration of carotenoids in the skin could mirror the current redox status of the skin and should be investigated in vivo. Optical methods are ideally suited for determination of carotenoids in mammalian skin in vivo as they are both noninvasive and quick. Four different optical methods could be used for in vivo measurement of carotenoids in the human or animal skin: (1) resonance Raman spectroscopy; (2) Raman microscopy; (3) reflection spectroscopy; (4) skin color measurements. The advantages, shortcomings, and limitations of the above-mentioned optical methods are discussed.
Optical diagnostics of mercuric iodide crystal growth
NASA Astrophysics Data System (ADS)
Burger, A.; Morgan, S. H.; Silberman, E.; Nason, D.
Two optical methods were recently developed for in situ monitoring of the growth process of mercuric iodide crystals. The first method uses resonance fluorescence spectroscopy (RFS) for the determination of iodine vapor present in the growth ampule, which is an important parameter in determining the stoichiometry, and therefore the quality of the crystals. The second method, Reflectance Spectroscopy Thermometry (RST) measures the crystal face temperature with a percent accuracy of plus or minus 1.5 C.
Optical diagnostics of mercuric iodide crystal growth
NASA Astrophysics Data System (ADS)
Burger, Arnold; Morgan, Steven H.; Silberman, Enrique; Nason, Donald
1991-12-01
Two optical methods were recently developed for in situ monitoring of the growth process of mercuric iodide crystals. The first method uses resonance fluorescence spectroscopy (RFS) for the determination of iodine vapor present in the growth ampule, which is an important parameter in determining the stoichiometry, and therefore the quality of the crystals. The second method, reflectance spectroscopy thermometry (RST) measures the crystal face temperature with a present accuracy of +/- 1.5 degree(s)C.
NASA Technical Reports Server (NTRS)
Helder, Dennis; Thome, Kurtis John; Aaron, Dave; Leigh, Larry; Czapla-Myers, Jeff; Leisso, Nathan; Biggar, Stuart; Anderson, Nik
2012-01-01
A significant problem facing the optical satellite calibration community is limited knowledge of the uncertainties associated with fundamental measurements, such as surface reflectance, used to derive satellite radiometric calibration estimates. In addition, it is difficult to compare the capabilities of calibration teams around the globe, which leads to differences in the estimated calibration of optical satellite sensors. This paper reports on two recent field campaigns that were designed to isolate common uncertainties within and across calibration groups, particularly with respect to ground-based surface reflectance measurements. Initial results from these efforts suggest the uncertainties can be as low as 1.5% to 2.5%. In addition, methods for improving the cross-comparison of calibration teams are suggested that can potentially reduce the differences in the calibration estimates of optical satellite sensors.
Integration of non-Lambertian LED and reflective optical element as efficient street lamp.
Pan, Jui-Wen; Tu, Sheng-Han; Sun, Wen-Shing; Wang, Chih-Ming; Chang, Jenq-Yang
2010-06-21
A cost effective, high throughput, and high yield method for the increase of street lamp potency was proposed in this paper. We integrated the imprinting technology and the reflective optical element to obtain a street lamp with high illumination efficiency and without glare effect. The imprinting technique can increase the light extraction efficiency and modulate the intensity distribution in the chip level. The non-Lambertian light source was achieved by using imprinting technique. The compact reflective optical element was added to efficiently suppress the emitting light intensity with small emitting angle for the uniform of illumination intensity and excluded the light with high emitting angle for the prevention of glare. Compared to the conventional street lamp, the novel design has 40% enhancement in illumination intensity, the uniform illumination and the glare effect elimination.
Optical based tactile shear and normal load sensor
Salisbury, Curt Michael
2015-06-09
Various technologies described herein pertain to a tactile sensor that senses normal load and/or shear load. The tactile sensor includes a first layer and an optically transparent layer bonded together. At least a portion of the first layer is made of optically reflective material. The optically transparent layer is made of resilient material (e.g., clear silicone rubber). The tactile sensor includes light emitter/light detector pair(s), which respectively detect either normal load or shear load. Light emitter(s) emit light that traverses through the optically transparent layer and reflects off optically reflective material of the first layer, and light detector(s) detect and measure intensity of reflected light. When a normal load is applied, the optically transparent layer compresses, causing a change in reflected light intensity. When shear load is applied, a boundary between optically reflective material and optically absorptive material is laterally displaced, causing a change in reflected light intensity.
New Wrinkles in Retinal Densitometry
Masella, Benjamin D.; Hunter, Jennifer J.; Williams, David R.
2014-01-01
Purpose. Retinal densitometry provides objective information about retinal function. But, a number of factors, including retinal reflectance changes that are not directly related to photopigment depletion, complicate its interpretation. We explore these factors and suggest a method to minimize their impact. Methods. An adaptive optics scanning light ophthalmoscope (AOSLO) was used to measure changes in photoreceptor reflectance in monkeys before and after photopigment bleaching with 514-nm light. Reflectance measurements at 514 nm and 794 nm were recorded simultaneously. Several methods of normalization to extract the apparent optical density of the photopigment were compared. Results. We identified stimulus-related fluctuations in 794-nm reflectance that are not associated with photopigment absorptance and occur in both rods and cones. These changes had a magnitude approaching those associated directly with pigment depletion, precluding the use of infrared reflectance for normalization. We used a spatial normalization method instead, which avoided the fluctuations in the near infrared, as well as a confocal AOSLO designed to minimize light from layers other than the receptors. However, these methods produced a surprisingly low estimate of the apparent rhodopsin density (animal 1: 0.073 ± 0.006, animal 2: 0.032 ± 0.003). Conclusions. These results confirm earlier observations that changes in photopigment absorption are not the only source of retinal reflectance change during dark adaptation. It appears that the stray light that has historically reduced the apparent density of cone photopigment in retinal densitometry arises predominantly from layers near the photoreceptors themselves. Despite these complications, this method provides a valuable, objective measure of retinal function. PMID:25316726
A satellite AOT derived from the ground sky transmittance measurements
NASA Astrophysics Data System (ADS)
Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Tan, K. C.; Wong, C. J.; Saleh, N. Mohd.
2008-10-01
The optical properties of aerosols such as smoke from burning vary due to aging processes and these particles reach larger sizes at high concentrations. The objectives of this study are to develop and evaluate an algorithm for estimating atmospheric optical thickness from Landsat TM image. This study measured the sky transmittance at the ground using a handheld spectroradiometer in a wide wavelength spectrum to retrieve atmospheric optical thickness. The in situ measurement of atmospheric transmittance data were collected simultaneously with the acquisition of remotely sensed satellite data. The digital numbers for the three visible bands corresponding to the in situ locations were extracted and then converted into reflectance values. The reflectance measured from the satellite was subtracted by the amount given by the surface reflectance to obtain the atmospheric reflectance. These atmospheric reflectance values were used for calibration of the AOT algorithm. This study developed an empirical method to estimate the AOT values from the sky transmittance values. Finally, a AOT map was generated using the proposed algorithm and colour-coded for visual interpretation.
NASA Technical Reports Server (NTRS)
Kaul, Anupama B. (Inventor); Coles, James B. (Inventor)
2015-01-01
A monolithic optical absorber and methods of making same. The monolithic optical absorber uses an array of mutually aligned carbon nanotubes that are grown using a PECVD growth process and a structure that includes a conductive substrate, a refractory template layer and a nucleation layer. Monolithic optical absorbers made according to the described structure and method exhibit high absorptivity, high site densities (greater than 10.sup.9 nanotubes/cm.sup.2), very low reflectivity (below 1%), and high thermal stability in air (up to at least 400.degree. C.). The PECVD process allows the application of such absorbers in a wide variety of end uses.
Cylinder and metal grating polarization beam splitter
NASA Astrophysics Data System (ADS)
Yang, Junbo; Xu, Suzhi
2017-08-01
We propose a novel and compact metal grating polarization beam splitter (PBS) based on its different reflected and transmitted orders. The metal grating exhibits a broadband high reflectivity and polarization dependence. The rigorous coupled wave analysis is used to calculate the reflectivity and the transmitting spectra and optimize the structure parameters to realize the broadband PBS. The finite-element method is used to calculate the field distribution. The characteristics of the broadband high reflectivity, transmitting and the polarization dependence are investigated including wavelength, period, refractive index and the radius of circle grating. When grating period d = 400 nm, incident wavelength λ = 441 nm, incident angle θ = 60° and radius of circle d/5, then the zeroth reflection order R0 = 0.35 and the transmission zeroth order T0 = 0.08 for TE polarization, however, T0 = 0.34 and R0 = 0.01 for TM mode. The simple fabrication method involves only single etch step and good compatibility with complementary metal oxide semiconductor technology. PBS designed here is particularly suited for optical communication and optical information processing.
Channel Model Optimization with Reflection Residual Component for Indoor MIMO-VLC System
NASA Astrophysics Data System (ADS)
Chen, Yong; Li, Tengfei; Liu, Huanlin; Li, Yichao
2017-12-01
A fast channel modeling method is studied to solve the problem of reflection channel gain for multiple input multiple output-visible light communications (MIMO-VLC) in the paper. For reducing the computational complexity when associating with the reflection times, no more than 3 reflections are taken into consideration in VLC. We think that higher order reflection link consists of corresponding many times line of sight link and firstly present reflection residual component to characterize higher reflection (more than 2 reflections). We perform computer simulation results for point-to-point channel impulse response, receiving optical power and receiving signal to noise ratio. Based on theoretical analysis and simulation results, the proposed method can effectively reduce the computational complexity of higher order reflection in channel modeling.
Method and apparatus for determining pressure-induced frequency-shifts in shock-compressed materials
Moore, David S.; Schmidt, Stephen C.
1985-01-01
A method and an apparatus for conducting coherent anti-Stokes Raman scattering spectroscopy in shock-compressed materials are disclosed. The apparatus includes a sample vessel having an optically transparent wall and an opposing optically reflective wall. Two coherent laser beams, a pump beam and a broadband Stokes beam, are directed through the window and focused on a portion of the sample. In the preferred embodiment, a projectile is fired from a high-pressure gas gun to impact the outside of the reflective wall, generating a planar shock wave which travels through the sample toward the window. The pump and Stokes beams result in the emission from the shock-compressed sample of a coherent anti-Stokes beam, which is emitted toward the approaching reflective wall of the vessel and reflected back through the window. The anti-Stokes beam is folded into a spectrometer for frequency analysis. The results of such analysis are useful for determining chemical and physical phenomena which occur during the shock-compression of the sample.
Method and apparatus for determining pressure-induced frequency-shifts in shock-compressed materials
Moore, D.S.; Schmidt, S.C.
1983-12-16
A method and an apparatus for conducting coherent anti-Stokes Raman scattering spectroscopy in shock-compressed materials are disclosed. The apparatus includes a sample vessel having an optically transparent wall and an opposing optically reflective wall. Two coherent laser beams, a pump beam and a broadband Stokes beam, are directed through the window and focused on a portion of the sample. In the preferred embodiment, a projectile is fired from a high-pressure gas gun to impact the outside of the reflective wall, generating a planar shock wave which travels through the sample toward the window. The pump and Stokes beams result in the emission from the shock-compressed sample of a coherent anti-Stokes beam, which is emitted toward the approaching reflective wall of the vessel and reflected back through the window. The anti-Stokes beam is folded into a spectrometer for frequency analysis. The results of such analysis are useful for determining chemical and physical phenomena which occur during the shock-compression of the sample.
Hwang, Jungseek
2015-03-04
We performed a reverse process of the usual optical data analysis of boson-exchange superconductors. We calculated the optical self-energy from two (MMP and MMP+peak) input model electron-boson spectral density functions using Allen's formula for one normal and two (s- and d-wave) superconducting cases. We obtained the optical constants including the optical conductivity and the dynamic dielectric function from the optical self-energy using an extended Drude model, and finally calculated the reflectance spectrum. Furthermore, to investigate impurity effects on optical quantities we added various levels of impurities (from the clean to the dirty limit) in the optical self-energy and performed the same reverse process to obtain the optical conductivity, the dielectric function, and reflectance. From these optical constants obtained from the reverse process we extracted the impurity-dependent superfluid densities for two superconducting cases using two independent methods (the Ferrel-Glover-Tinkham sum rule and the extrapolation to zero frequency of -ϵ1(ω)ω(2)); we found that a certain level of impurities is necessary to get a good agreement on results obtained by the two methods. We observed that impurities give similar effects on various optical constants of s- and d-wave superconductors; the greater the impurities the more distinct the gap feature and the lower the superfluid density. However, the s-wave superconductor gives the superconducting gap feature more clearly than the d-wave superconductor because in the d-wave superconductors the optical quantities are averaged over the anisotropic Fermi surface. Our results supply helpful information to see how characteristic features of the electron-boson spectral function and the s- and d-wave superconducting gaps appear in various optical constants including raw reflectance spectrum. Our study may help with a thorough understanding of the usual optical analysis process. Further systematic study of experimental data collected at various conditions using the optical analysis process will help to reveal the origin of the mediated boson in the boson-exchange superconductors.
Bennett, J M; Booty, M J
1966-01-01
A computational method of determining n and k for an evaporated film from the measured reflectance, transmittance, and film thickness has been programmed for an IBM 7094 computer. The method consists of modifications to the NOTS multilayer film program. The basic program computes normal incidence reflectance, transmittance, phase change on reflection, and other parameters from the optical constants and thicknesses of all materials. In the modification, n and k for the film are varied in a prescribed manner, and the computer picks from among these values one n and one k which yield reflectance and transmittance values almost equalling the measured values. Results are given for films of silicon and aluminum.
Structure for monolithic optical circuits
NASA Technical Reports Server (NTRS)
Evanchuk, Vincent L. (Inventor)
1984-01-01
A method for making monolithic optical circuits, with related optical devices as required or desired, on a supporting surface (10) consists of coating the supporting surface with reflecting metal or cladding resin, spreading a layer of liquid radiation sensitive plastic (12) on the surface, exposing the liquid plastic with a mask (14) to cure it in a desired pattern of light conductors (16, 18, 20), washing away the unexposed liquid plastic, and coating the conductors thus formed with reflective metal or cladding resin. The index of refraction for the cladding (22) is selected to be lower than for the conductors so that light in the conductors will be reflected by the interface with the cladding. For multiple level conductors, as where one conductor must cross over another, the process may be repeated to fabricate a bridge with columns (24, 26) of conductors to the next level, and conductor (28) between the columns. For more efficient transfer of energy over the bridge, faces at 45.degree. may be formed to reflect light up and across the bridge.
Drugs of abuse detection in saliva based on actuated optical method
NASA Astrophysics Data System (ADS)
Shao, Jie; Li, Zhenyu; Jiang, Hong; Wang, Wenlong; Wu, Yixuan
2014-12-01
There has been a considerable increase in the abuse of drugs during the past decade. Combing drug use with driving is very dangerous. More than 11% of drivers in a roadside survey tested positive for drugs, while 18% of drivers killed in accidents tested positive for drugs as reported in USA, 2007. Toward developing a rapid drug screening device, we use saliva as the sample, and combining the traditional immunoassays method with optical magnetic technology. There were several methods for magnetic nanoparticles detection, such as magnetic coils, SQUID, microscopic imaging, and Hall sensors. All of these methods were not suitable for our demands. By developing a novel optical scheme, we demonstrate high-sensitivity detection in saliva. Drugs of abuse are detected at sub-nano gram per milliliter levels in less than 120 seconds. Evanescent wave principle has been applied to sensitively monitor the presence of magnetic nanoparticles on the binding surface. Like the total internal reflection fluorescence microscope (TIRFM), evanescent optical field is generated at the plastic/fluid interface, which decays exponentially and penetrates into the fluid by only a sub-wavelength distance. By disturbance total internal reflection with magnetic nanoparticles, the optical intensity would be influenced. We then detected optical output by imaging the sensor surface onto a CCD camera. We tested four drugs tetrahydrocannabinol (THC), methamphetamine (MAMP), ketamine (KET), morphine (OPI), using this technology. 100 ng mL-1 sensitivity was achieved, and obvious evidence showed that this results could be improved in further researches.
THUNDER Piezoelectric Actuators as a Method of Stretch-Tuning an Optical Fiber Grating
NASA Technical Reports Server (NTRS)
Allison, Sidney G.; Fox, Robert L.; Froggatt, Mark E.; Childers, Brooks A.
2000-01-01
A method of stretching optical fiber holds interest for measuring strain in smart structures where the physical displacement may be used to tune optical fiber lasers. A small, light weight, low power tunable fiber laser is ideal for demodulating strain in optical fiber Bragg gratings attached to smart structures such as the re-usable launch vehicle that is being developed by NASA. A method is presented for stretching optical fibers using the THUNDER piezoelectric actuators invented at NASA Langley Research Center. THUNDER actuators use a piezoelectric layer bonded to a metal backing to enable the actuators to produce displacements larger than the unbonded piezoelectric material. The shift in reflected optical wavelength resulting from stretching the fiber Bragg grating is presented. Means of adapting THUNDER actuators for stretching optical fibers is discussed, including ferrules, ferrule clamp blocks, and plastic hinges made with stereo lithography.
Condenser optic with sacrificial reflective surface
Tichenor, Daniel A.; Kubiak, Glenn D.; Lee, Sang Hun
2006-07-25
Employing collector optics that have a sacrificial reflective surface can significantly prolong the useful life of the collector optics and the overall performance of the condenser in which the collector optics are incorporated. The collector optics are normally subject to erosion by debris from laser plasma source of radiation. The presence of an upper sacrificial reflective surface over the underlying reflective surface effectively increases the life of the optics while relaxing the constraints on the radiation source. Spatial and temporally varying reflectivity that results from the use of the sacrificial reflective surface can be accommodated by proper condenser design.
Condenser optic with sacrificial reflective surface
Tichenor, Daniel A [Castro Valley, CA; Kubiak, Glenn D [Livermore, CA; Lee, Sung Hun [Sunnyvale, CA
2007-07-03
Employing collector optics that has a sacrificial reflective surface can significantly prolong the useful life of the collector optics and the overall performance of the condenser in which the collector optics are incorporated. The collector optics is normally subject to erosion by debris from laser plasma source of radiation. The presence of an upper sacrificial reflective surface over the underlying reflective surface effectively increases the life of the optics while relaxing the constraints on the radiation source. Spatial and temporally varying reflectivity that results from the use of the sacrificial reflective surface can be accommodated by proper condenser design.
Influence of Aerosols And Surface Reflectance On NO2 Retrieval Over China From 2005 to 2015
NASA Astrophysics Data System (ADS)
Liu, M.; Lin, J.
2016-12-01
Satellite observation is a powerful way to analysis annual and seasonal variations of nitrogen dioxide (NO2). However, much retrieval of vertical column densities (VCDs) of normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. In traditional retrieval, aerosols' effects are often considered as cloud. However, China has complicated aerosols type and aerosol loading. Their optical properties may be very different from the cloud. Furthermore, China has undergone big changes in land use type in recent 10 years. Traditional climatology surface reflectance data may not have representation. In order to study spatial-temporal variation of and influences of these two factors on variations and trends, we use an improved retrieval method of VCDs over China, called the POMINO, based on measurements from the Ozone Monitoring Instrument (OMI), and we compare the results of without aerosol, without surface reflectance treatments and without both to the original POMINO product from 2005 to 2015. Furthermore, we will study correspondent spatial-temporal variations of aerosols, represented by MODIS aerosol optical depth (AOD) data and CALIOP extinction data; surface reflectance, represented by MODIS bidirectional reflectance distribution function (BRDF) data.
Yeh, Shu-Jen; Khalil, Omar S; Hanna, Charles F; Kantor, Stanislaw
2003-07-01
We observed a difference in the thermal response of localized reflectance signal of human skin between type 2 diabetics and nondiabetics. We investigated the use of this thermo-optical behavior as the basis for a noninvasive method for the determination of the diabetic status of a subject. We used a two-site temperature differential method, which is predicated upon the measurement of localized reflectance from two areas on the surface of the skin. Each of these areas is subjected to a different thermal perturbation. The response of localized reflectance to temperature perturbation was measured and used in a classification algorithm. We used a discriminant function to classify subjects as diabetic or nondiabetic. In a prediction set of twenty-four noninvasive tests collected from six diabetic and six nondiabetic subjects, the sensitivity ranged between 73 and 100%, and the specificity ranged between 75 and 100%, depending on the thermal conditions and the probe-skin contact time. The difference in the thermo-optical response of the skin of the two groups is explained in terms of a difference in the response of cutaneous microcirculation, which is manifested as a difference in the near-infrared light absorption. Another factor is the difference in the temperature response of the scattering coefficient between the two groups, which may be caused by cutaneous structural differences induced by nonenzymatic glycation of skin protein fibers, and possibly by the difference in blood cell aggregation. (c) 2003 Society of Photo-Optical Instrumentation Engineers.
Methods of making composite optical devices employing polymer liquid crystal
Jacobs, Stephen D.; Marshall, Kenneth L.; Cerqua, Kathleen A.
1991-01-01
Composite optical devices using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T.sub.g) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device.
Free-form reflective optics for mid-infrared camera and spectrometer on board SPICA
NASA Astrophysics Data System (ADS)
Fujishiro, Naofumi; Kataza, Hirokazu; Wada, Takehiko; Ikeda, Yuji; Sakon, Itsuki; Oyabu, Shinki
2017-11-01
SPICA (Space Infrared Telescope for Cosmology and Astrophysics) is an astronomical mission optimized for mid-and far-infrared astronomy with a cryogenically cooled 3-m class telescope, envisioned for launch in early 2020s. Mid-infrared Camera and Spectrometer (MCS) is a focal plane instrument for SPICA with imaging and spectroscopic observing capabilities in the mid-infrared wavelength range of 5-38μm. MCS consists of two relay optical modules and following four scientific optical modules of WFC (Wide Field Camera; 5'x 5' field of view, f/11.7 and f/4.2 cameras), LRS (Low Resolution Spectrometer; 2'.5 long slits, prism dispersers, f/5.0 and f/1.7 cameras, spectral resolving power R ∼ 50-100), MRS (Mid Resolution Spectrometer; echelles, integral field units by image slicer, f/3.3 and f/1.9 cameras, R ∼ 1100-3000) and HRS (High Resolution Spectrometer; immersed echelles, f/6.0 and f/3.6 cameras, R ∼ 20000-30000). Here, we present optical design and expected optical performance of MCS. Most parts of MCS optics adopt off-axis reflective system for covering the wide wavelength range of 5-38μm without chromatic aberration and minimizing problems due to changes in shapes and refractive indices of materials from room temperature to cryogenic temperature. In order to achieve the high specification requirements of wide field of view, small F-number and large spectral resolving power with compact size, we employed the paraxial and aberration analysis of off-axial optical systems (Araki 2005 [1]) which is a design method using free-form surfaces for compact reflective optics such as head mount displays. As a result, we have successfully designed compact reflective optics for MCS with as-built performance of diffraction-limited image resolution.
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2017-01-01
Photoacoustic spectroscopy has been used to measure optical absorption coefficient and the application of tens of wavelength bands in photoacoustic spectroscopy was reported. Using optical methods, absorption-related information is, generally, derived from reflectance or transmittance values. Hence measurement accuracy is limited for highly absorbing samples where the reflectance or transmittance is too low to give reasonable signal-to-noise ratio. In this context, this paper proposes and illustrates a hyperspectral photoacoustic spectroscopy system to measure the absorption-related properties of highly absorbing samples directly. The normalized optical absorption coefficient spectrum of the highly absorbing iris is acquired using an optical absorption coefficient standard. The proposed concepts and the feasibility of the developed diagnostic medical imaging system are demonstrated using fluorescent microsphere suspensions and porcine eyes as test samples.
Diffusely reflecting paints including polytetrafluoroethylene and method of manufacture
NASA Technical Reports Server (NTRS)
Schutt, J. B.; Shai, M. C. (Inventor)
1985-01-01
The invention pertains to a high diffuse, reflective paint comprising an alcohol soluble binder, polytetrafluoroethylene (TFE) and an alcohol for coating a substrate and forming an optical reference with a superior Lambertian characteristic. A method for making the paint by first mixing the biner and alcohol, and thereafter by mixing in outgassed TFE is described. A wetting agent may be employed to aid the mixing process.
Calculation of far-field scattering from nonspherical particles using a geometrical optics approach
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.
1991-01-01
A numerical method was developed using geometrical optics to predict far-field optical scattering from particles that are symmetric about the optic axis. The diffractive component of scattering is calculated and combined with the reflective and refractive components to give the total scattering pattern. The phase terms of the scattered light are calculated as well. Verification of the method was achieved by assuming a spherical particle and comparing the results to Mie scattering theory. Agreement with the Mie theory was excellent in the forward-scattering direction. However, small-amplitude oscillations near the rainbow regions were not observed using the numerical method. Numerical data from spheroidal particles and hemispherical particles are also presented. The use of hemispherical particles as a calibration standard for intensity-type optical particle-sizing instruments is discussed.
Method of fabricating reflection-mode EUV diffusers
Anderson, Erik; Naulleau, Patrick P.
2005-03-01
Techniques for fabricating well-controlled, random relief, engineered surfaces that serve as substrates for EUV optical devices are accomplished with grayscale exposure. The method of fabricating a multilevel EUV optical element includes: (a) providing a substrate; (b) depositing a layer of curable material on a surface of the substrate; (c) creating a relief profile in a layer of cured material from the layer of curable material wherein the relief profile comprises multiple levels of cured material that has a defined contour; and (d) depositing a multilayer reflection film over the relief profile wherein the film has an outer contour that substantially matches that of the relief profile. The curable material can comprise photoresist or a low dielectric constant material.
On physical optics for calculating scattering from coated bodies
NASA Technical Reports Server (NTRS)
Baldauf, J.; Lee, S. W.; Ling, H.; Chou, R.
1989-01-01
The familiar physical optics (PO) approximation is no longer valid when the perfectly conducting scatterer is coated with dielectric material. This paper reviews several possible PO formulations. By comparing the PO formulation with the moment method solution based on the impedance boundary condition for the case of the coated cone-sphere, a PO formulation using both electric and magnetic currents consistently gives the best numerical results. Comparisons of the exact moment method with the PO formulations using the impedance boundary condition and the PO formulation using the Fresnel reflection coefficient for the case of scattering from the cone-ellipsoid demonstrate that the Fresnel reflection coefficient gives the best numerical results in general.
Study of 3D printing method for GRIN micro-optics devices
NASA Astrophysics Data System (ADS)
Wang, P. J.; Yeh, J. A.; Hsu, W. Y.; Cheng, Y. C.; Lee, W.; Wu, N. H.; Wu, C. Y.
2016-03-01
Conventional optical elements are based on either refractive or reflective optics theory to fulfill the design specifications via optics performance data. In refractive optical lenses, the refractive index of materials and radius of curvature of element surfaces determine the optical power and wavefront aberrations so that optical performance can be further optimized iteratively. Although gradient index (GRIN) phenomenon in optical materials is well studied for more than a half century, the optics theory in lens design via GRIN materials is still yet to be comprehensively investigated before realistic GRIN lenses are manufactured. In this paper, 3D printing method for manufacture of micro-optics devices with special features has been studied based on methods reported in the literatures. Due to the additive nature of the method, GRIN lenses in micro-optics devices seem to be readily achievable if a design methodology is available. First, derivation of ray-tracing formulae is introduced for all possible structures in GRIN lenses. Optics simulation program is employed for characterization of GRIN lenses with performance data given by aberration coefficients in Zernike polynomial. Finally, a proposed structure of 3D printing machine is described with conceptual illustration.
A study of muscular tissue of animal origin by reflection-spectroscopy methods
NASA Astrophysics Data System (ADS)
Plotnikova, L. V.; Nechiporenko, A. P.; Orekhova, S. M.; Plotnikov, P. P.; Ishevskii, A. L.
2017-06-01
A comparative analysis of the spectral characteristics of the surface of muscular tissue of animal origin (pork) and its main components has been performed by the methods of diffuse reflection electronic spectroscopy (DRES) and frustrated total internal reflection IR spectroscopy. The experiments have shown that the application of the DRES method makes it possible to detect more pronounced changes in the surface optical characteristics of muscular tissue and obtain electronic spectra containing information about the component composition of its main parts under successive extraction of sarcoplasmic materials, myofibrillar proteins of the actomyosin complex, and stroma mucopolysaccharides.
A real-time photo-realistic rendering algorithm of ocean color based on bio-optical model
NASA Astrophysics Data System (ADS)
Ma, Chunyong; Xu, Shu; Wang, Hongsong; Tian, Fenglin; Chen, Ge
2016-12-01
A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributions to absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We establish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model's outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the reflection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.
Optical stress generator and detector
Maris, Humphrey J.; Stoner, Robert J
2001-01-01
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.
Optical stress generator and detector
Maris, Humphrey J.; Stoner, Robert J.
1998-01-01
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.
Optical stress generator and detector
Maris, H.J.; Stoner, R.J.
1998-05-05
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects. 32 figs.
Optical stress generator and detector
Maris, Humphrey J.; Stoner, Robert J
2002-01-01
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.
Optical stress generator and detector
Maris, Humphrey J.; Stoner, Robert J
1999-01-01
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.
NASA Technical Reports Server (NTRS)
Fauchez, T.; Platnick, S.; Meyer, K.; Sourdeval, O.; Cornet, C.; Zhang, Z.; Szczap, F.
2016-01-01
This study presents preliminary results on the effect of cirrus heterogeneities on top-of-atmosphere (TOA) simulated radiances or reflectances for MODIS channels centered at 0.86, 2.21, 8.56, 11.01 and 12.03 micrometers , and on cloud optical properties retrieved with a research-level optimal estimation method (OEM). Synthetic cirrus cloud fields are generated using a 3D cloud generator (3DCLOUD) and radiances/reflectances are simulated using a 3D radiative transfer code (3DMCPOL). We find significant differences between the heterogeneity effects on either visible and near-infrared (VNIR) or thermal infrared (TIR) radiances. However, when both wavelength ranges are combined, heterogeneity effects are dominated by the VNIR horizontal radiative transport effect. As a result, small optical thicknesses are overestimated and large ones are underestimated. Retrieved effective diameter are found to be slightly affected, contrarily to retrievals using TIR channels only.
Utilizing a Tower Based System for Optical Sensing of Ecosystem Carbon Fluxes
NASA Astrophysics Data System (ADS)
Huemmrich, K. F.; Corp, L. A.; Middleton, E.; Campbell, P. K. E.; Landis, D.; Kustas, W. P.
2015-12-01
Optical sampling of spectral reflectance and solar induced fluorescence provide information on the physiological status of vegetation that can be used to infer stress responses and estimates of production. Multiple repeated observations are required to observe the effects of changing environmental conditions on vegetation. This study examines the use of optical signals to determine inputs to a light use efficiency (LUE) model describing productivity of a cornfield where repeated observations of carbon flux, spectral reflectance and fluorescence were collected. Data were collected at the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) fields (39.03°N, 76.85°W) at USDA Beltsville Agricultural Research Center. Agricultural Research Service researchers measured CO2 fluxes using eddy covariance methods throughout the growing season. Optical measurements were made from the nearby tower supporting the NASA FUSION sensors. The sensor system consists of two dual channel, upward and downward looking, spectrometers used to simultaneously collect high spectral resolution measurements of reflected and fluoresced light from vegetation canopies at multiple view angles. Estimates of chlorophyll fluorescence, combined with measures of vegetation pigment content and the Photosynthetic Reflectance Index (PRI) derived from the spectral reflectance are compared with CO2 fluxes over diurnal periods for multiple days. The relationships among the different optical measurements indicate that they are providing different types of information on the vegetation and that combinations of these measurements provide improved retrievals of CO2 fluxes than any index alone
The theory behind the full scattering profile
NASA Astrophysics Data System (ADS)
Feder, Idit; Duadi, Hamootal; Fixler, Dror
2018-02-01
Optical methods for extracting properties of tissues are commonly used. These methods are non-invasive, cause no harm to the patient and are characterized by high speed. The human tissue is a turbid media hence it poses a challenge for different optical methods. In addition the analysis of the emitted light requires calibration for achieving accuracy information. Most of the methods analyze the reflected light based on their phase and amplitude or the transmitted light. We suggest a new optical method for extracting optical properties of cylindrical tissues based on their full scattering profile (FSP), which means the angular distribution of the reemitted light. The FSP of cylindrical tissues is relevant for biomedical measurement of fingers, earlobes or pinched tissues. We found the iso-pathlength (IPL) point, a point on the surface of the cylinder medium where the light intensity remains constant and does not depend on the reduced scattering coefficient of the medium, but rather depends on the spatial structure and the cylindrical geometry. However, a similar behavior was also previously reported in reflection from a semi-infinite medium. Moreover, we presented a linear dependency between the radius of the tissue and the point's location. This point can be used as a self-calibration point and thus improve the accuracy of optical tissue measurements. This natural phenomenon has not been investigated before. We show this phenomenon theoretically, based on the diffusion theory, which is supported by our simulation results using Monte Carlo simulation.
Reflective coherent spatial light modulator
Simpson, John T.; Richards, Roger K.; Hutchinson, Donald P.; Simpson, Marcus L.
2003-04-22
A reflective coherent spatial light modulator (RCSLM) includes a subwavelength resonant grating structure (SWS), the SWS including at least one subwavelength resonant grating layer (SWL) have a plurality of areas defining a plurality of pixels. Each pixel represents an area capable of individual control of its reflective response. A structure for modulating the resonant reflective response of at least one pixel is provided. The structure for modulating can include at least one electro-optic layer in optical contact with the SWS. The RCSLM is scalable in both pixel size and wavelength. A method for forming a RCSLM includes the steps of selecting a waveguide material and forming a SWS in the waveguide material, the SWS formed from at least one SWL, the SWL having a plurality of areas defining a plurality of pixels.
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Polka, Lesley A.; Polycarpou, Anastasis C.
1994-01-01
Formulations for scattering from the coated plate and the coated dihedral corner reflector are included. A coated plate model based upon the Uniform Theory of Diffraction (UTD) for impedance wedges was presented in the last report. In order to resolve inaccuracies and discontinuities in the predicted patterns using the UTD-based model, an improved model that uses more accurate diffraction coefficients is presented. A Physical Optics (PO) model for the coated dihedral corner reflector is presented as an intermediary step in developing a high-frequency model for this structure. The PO model is based upon the reflection coefficients for a metal-backed lossy material. Preliminary PO results for the dihedral corner reflector suggest that, in addition to being much faster computationally, this model may be more accurate than existing moment method (MM) models. An improved Physical Optics (PO)/Equivalent Currents model for modeling the Radar Cross Section (RCS) of both square and triangular, perfectly conducting, trihedral corner reflectors is presented. The new model uses the PO approximation at each reflection for the first- and second-order reflection terms. For the third-order reflection terms, a Geometrical Optics (GO) approximation is used for the first reflection; and PO approximations are used for the remaining reflections. The previously reported model used GO for all reflections except the terminating reflection. Using PO for most of the reflections results in a computationally slower model because many integrations must be performed numerically, but the advantage is that the predicted RCS using the new model is much more accurate. Comparisons between the two PO models, Finite-Difference Time-Domain (FDTD) and experimental data are presented for validation of the new model.
High-precision reflectivity measurements: improvements in the calibration procedure
NASA Astrophysics Data System (ADS)
Jupe, Marco; Grossmann, Florian; Starke, Kai; Ristau, Detlev
2003-05-01
The development of high quality optical components is heavily depending on precise characterization procedures. The reflectance and transmittance of laser components are the most important parameters for advanced laser applications. In the industrial fabrication of optical coatings, quality management is generally insured by spectral photometric methods according to ISO/DIS 15386 on a medium level of accuracy. Especially for high reflecting mirrors, a severe discrepancy in the determination of the absolute reflectivity can be found for spectral photometric procedures. In the first part of the CHOCLAB project, a method for measuring reflectance and transmittance with an enhanced precision was developed, which is described in ISO/WD 13697. In the second part of the CHOCLAB project, the evaluation and optimization for the presented method is scheduled. Within this framework international Round-Robin experiment is currently in progress. During this Round-Robin experiment, distinct deviations could be observed between the results of high precision measurement facilities of different partners. Based on the extended experiments, the inhomogeneity of the sample reflectivity was identified as one important origin for the deviation. Consequently, this inhomogeneity is also influencing the calibration procedure. Therefore, a method was developed that allows the calibration of the chopper blade using always the same position on the reference mirror. During the investigations, the homogeneity of several samples was characterized by a surface mapping procedure for 1064 nm. The measurement facility was extended to the additional wavelength 532 nm and a similar set-up was assembled at 10.6 μm. The high precision reflectivity procedure at the mentioned wavelengths is demonstrated for exemplary measurements.
Improved Oxygen-Beam Texturing of Glucose-Monitoring Optics
NASA Technical Reports Server (NTRS)
Banks, Bruce A.
2006-01-01
An improved method has been devised for using directed, hyperthermal beams of oxygen atoms and ions to impart desired textures to the tips of polymethylmethacrylate [PMMA] optical fibers to be used in monitoring the glucose content of blood. The improved method incorporates, but goes beyond, the method described in Texturing Blood-Glucose- Monitoring Optics Using Oxygen Beams (LEW-17642-1), NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 11a. The basic principle of operation of such a glucose-monitoring sensor is as follows: The textured surface of the optical fiber is coated with chemicals that interact with glucose in such a manner as to change the reflectance of the surface. Light is sent down the optical fiber and is reflected from, the textured surface. The resulting change in reflectance of the light is measured as an indication of the concentration of glucose. The required texture on the ends of the optical fibers is a landscape of microscopic cones or pillars having high aspect ratios (microscopic structures being taller than they are wide). The average distance between hills must be no more than about 5 mso that blood cells (which are wider) cannot enter the valleys between the hills, where they would interfere with optical sensing of glucose in the blood plasma. On the other hand, the plasma is required to enter the valleys, and high aspect ratio structures are needed to maximize the surface area in contact with the plasma, thereby making it possible to obtain a given level of optical glucose-measurement sensitivity with a relatively small volume of blood. There is an additional requirement that the hills be wide enough that a sufficient amount of light can propagate into them and, after reflection, can propagate out of them. The method described in the cited prior article produces a texture comprising cones and pillars that conform to the average-distance and aspect-ratio requirements. However, a significant fraction of the cones and pillars are so narrow that not enough light can propagate along them. The improved method makes it possible to form wider cones and pillars while still satisfying the average-distance and aspect-ratio requirements. In the improved method, as in the previously reported method, multiple optical fibers are first bundled together for simultaneous texturing of their distal tips. However, prior to texturing by exposure to an oxygen beam, the tips are first coated by vapor deposition of a thin, sparse layer of aluminum: The exposure to the aluminum vapor must be short enough (typically of the order of seconds) so that the aluminum nucleates into islands separated by uncoated areas. The coated tips are textured by exposure to a directed beam of hyperthermal (kinetic energy >1 eV) oxygen atoms and/or ions in a vacuum chamber, as in the previously reported method. The aluminum islands partially shield the underlying PMMA from oxidation and erosion by the beam, so that the cones or pillars remaining after texturing are wider than they would otherwise be. To some extent, the dimensions of the hills and the distances between them can be tailored through choice of the thickness of the aluminum coat and/or the oxygen-beam fluence. The figure illustrates an example of texturing of the tip of a PMMA optical fiber without and with prior aluminum coating.
Chapter 7: Total internal reflection fluorescence microscopy.
Axelrod, Daniel
2008-01-01
Total internal reflection fluorescence microscopy (TIRFM), also known as evanescent wave microscopy, is used in a wide range of applications, particularly to view single molecules attached to planar surfaces and to study the position and dynamics of molecules and organelles in living culture cells near the contact regions with the glass coverslip. TIRFM selectively illuminates fluorophores only in a very thin (less than 100 nm deep) layer near the substrate, thereby avoiding excitation of fluorophores outside this subresolution optical section. This chapter reviews the history, current applications in cell biology and biochemistry, basic optical theory, combinations with numerous other optical and spectroscopic approaches, and a range of setup methods, both commercial and custom.
Metal-coated Bragg grating reflecting fibre
NASA Astrophysics Data System (ADS)
Chamorovskiy, Yu. K.; Butov, O. V.; Kolosovskiy, A. O.; Popov, S. M.; Voloshin, V. V.; Vorob'ev, I. L.; Vyatkin, M. Yu.
2017-03-01
High-temperature optical fibres (OF) with fibre Bragg gratings (FBG) arrays written over a long length and in-line metal coating have been made for the first time. The optical parameters of the FBG arrays were tested by the optical frequency domain reflectometer (OFDR) method in a wide temperature range, demonstrating no degradation in reflection at heating up to 600 °C for a fibre with Al coating. The mechanical strength of the developed fibre was practically the same as "ordinary" OF with similar coating, showing the absence of the influence of FBG writing process on fibre strength. Further experiments are necessary to evaluate the possibility of further increases in the operational temperature range.
Cui, Jiwen; Hu, Yang; Feng, Kunpeng; Li, Junying; Tan, Jiubin
2015-01-01
In this paper, a high resolution and response speed interrogation method based on a reflective-matched Fiber Bragg Grating (FBG) scheme is investigated in detail. The nonlinear problem of the reflective-matched FBG sensing interrogation scheme is solved by establishing and optimizing the mathematical model. A mechanical adjustment to optimize the interrogation method by tuning the central wavelength of the reference FBG to improve the stability and anti-temperature perturbation performance is investigated. To satisfy the measurement requirements of optical and electric signal processing, a well- designed acquisition circuit board is prepared, and experiments on the performance of the interrogation method are carried out. The experimental results indicate that the optical power resolution of the acquisition circuit border is better than 8 pW, and the stability of the interrogation method with the mechanical adjustment can reach 0.06%. Moreover, the nonlinearity of the interrogation method is 3.3% in the measurable range of 60 pm; the influence of temperature is significantly reduced to 9.5%; the wavelength resolution and response speed can achieve values of 0.3 pm and 500 kHz, respectively. PMID:26184195
A thermally tunable inverse opal photonic crystal for monitoring glass transition.
Sun, Liguo; Xie, Zhuoying; Xu, Hua; Xu, Ming; Han, Guozhi; Wang, Cheng; Bai, Xuduo; Gu, ZhongZe
2012-03-01
An optical method was developed to monitor the glass transition of the polymer by taking advantage of reflection spectrum change of the thermally tunable inverse opal photonic crystal. The thermally tunable photonic bands of the polymer inverse opal photonic crystal were traceable to the segmental motion of macromolecules, and the segmental motion was temperature dependent. By observing the reflection spectrum change of the polystyrene inverse opal photonic crystal during thermal treatment, the glass transition temperature of polystyrene was gotten. Both changes of the position and intensity of the reflection peak were observed during the glass transition process of the polystyrene inverse opal photonic crystal. The optical change of inverse opal photonic crystal was so large that the glass transition temperature could even be estimated by naked eyes. The glass transition temperature derived from this method was consistent with the values measured by differential scanning calorimeter.
Shack-Hartmann reflective micro profilometer
NASA Astrophysics Data System (ADS)
Gong, Hai; Soloviev, Oleg; Verhaegen, Michel; Vdovin, Gleb
2018-01-01
We present a quantitative phase imaging microscope based on a Shack-Hartmann sensor, that directly reconstructs the optical path difference (OPD) in reflective mode. Comparing with the holographic or interferometric methods, the SH technique needs no reference beam in the setup, which simplifies the system. With a preregistered reference, the OPD image can be reconstructed from a single shot. Also, the method has a rather relaxed requirement on the illumination coherence, thus a cheap light source such as a LED is feasible in the setup. In our previous research, we have successfully verified that a conventional transmissive microscope can be transformed into an optical path difference microscope by using a Shack-Hartmann wavefront sensor under incoherent illumination. The key condition is that the numerical aperture of illumination should be smaller than the numerical aperture of imaging lens. This approach is also applicable to characterization of reflective and slightly scattering surfaces.
Zeng, Huanhuan; Wang, Jin; Ye, Qing; Deng, Zhichao; Mei, Jianchun; Zhou, Wenyuan; Zhang, Chunping; Tian, Jianguo
2014-10-01
In recent years, the tissue optical clearing (OC) technique in the biomedicine field has drawn lots of attention. Various physical and chemical methods have been introduced to improve the efficacy of OC. In this study, the effect of the combination of glycerol and ultrasound treatment on OC of in vitro porcine muscle tissues has been investigated. The refractive index (RI) matching mechanism of OC was directly observed based on the derivative total reflection method. A theoretical model was used to simulate the proportion of tissue fluid in the illuminated area. Moreover, the total transmittance spectra have been obtained by a spectrometer over the range from 450 nm to 700 nm. The administration of glycerol and ultrasound has led to an increase of the RI of background medium and a more RI matching environment was achieved. The experimental results support the validity of the ultrasound treatment for OC. The RI matching mechanism has been firstly quantitatively analyzed based on the derivative total reflection method.
Optical devices and methods employing nanoparticles, microcavities, and semicontinuous metal films
NASA Technical Reports Server (NTRS)
Shalaev, Vladimir M. (Inventor); Sarychev, Andrey K. (Inventor); Armstrong, Robert L. (Inventor); Smith, Harold V. (Inventor); Ying, Z. Charles (Inventor)
2006-01-01
An optical sensing enhancing material (and corresponding method of making) comprising: a medium, the medium comprising a plurality of aggregated nanoparticles comprising fractals; and a microcavity, wherein the medium is located in a vicinity of the microcavity. Also an optical sensor and sensing method comprising: providing a doped medium, the medium comprising a plurality of aggregated nanoparticles comprising fractals, with the material; locating the doped medium in the vicinity of a microcavity; exciting the doped medium with a light source; and detecting light reflected from the doped medium. Also an optical sensing enhancing material comprising a medium, the medium comprising a semicontinuous metal film of randomly distributed metal particles and their clusters at approximately their percolation threshold. The medium preferably additionally comprises a microcavity/microresonator. Also devices and methods employing such material.
Intrinsic Fabry-Perot optical fiber sensors and their multiplexing
Wang, Anbo
2007-12-11
An intrinsic Fabry-Perot optical sensor includes a thin film sandwiched between two fiber ends. When light is launched into the fiber, two reflections are generated at the two fiber/thin film interfaces due to a difference in refractive indices between the fibers and the film, giving rise to the sensor output. In another embodiment, a portion of the cladding of a fiber is removed, creating two parallel surfaces. Part of the evanescent fields of light propagating in the fiber is reflected at each of the surfaces, giving rise to the sensor output. In a third embodiment, the refractive index of a small portion of a fiber is changed through exposure to a laser beam or other radiation. Interference between reflections at the ends of the small portion give rise to the sensor output. Multiple sensors along a single fiber are multiplexed using an optical time domain reflectometry method.
Optical spectroscopy for quantitative sensing in human pancreatic tissues
NASA Astrophysics Data System (ADS)
Wilson, Robert H.; Chandra, Malavika; Lloyd, William; Chen, Leng-Chun; Scheiman, James; Simeone, Diane; McKenna, Barbara; Mycek, Mary-Ann
2011-07-01
Pancreatic adenocarcinoma has a five-year survival rate of only 6%, largely because current diagnostic methods cannot reliably detect the disease in its early stages. Reflectance and fluorescence spectroscopies have the potential to provide quantitative, minimally-invasive means of distinguishing pancreatic adenocarcinoma from normal pancreatic tissue and chronic pancreatitis. The first collection of wavelength-resolved reflectance and fluorescence spectra and time-resolved fluorescence decay curves from human pancreatic tissues was acquired with clinically-compatible instrumentation. Mathematical models of reflectance and fluorescence extracted parameters related to tissue morphology and biochemistry that were statistically significant for distinguishing between pancreatic tissue types. These results suggest that optical spectroscopy has the potential to detect pancreatic disease in a clinical setting.
Gabriel, Nicholas T; Kim, Sangho S; Talghader, Joseph J
2009-07-01
A mechanical design technique for optical coatings that simultaneously controls thermal deformation and optical reflectivity is reported. The method requires measurement of the refractive index and thermal stress of single films prior to the design. Atomic layer deposition was used for deposition because of the high repeatability of the film constants. An Al2O3/HfO2 distributed Bragg reflector was deposited with a predicted peak reflectivity of 87.9% at 542.4 nm and predicted edge deformation of -360 nm/K on a 10 cm silicon substrate. The measured peak reflectivity was 85.7% at 541.7 nm with an edge deformation of -346 nm/K.
Cylindrical microlens with an internally reflecting surface and a method of fabrication
Beach, Raymond J.; Freitas, Barry L.
2004-03-23
A fast (high numerical aperture) cylindrical microlens, which includes an internally reflective surface, that functions to deviate the direction of the light that enters the lens from its original propagation direction is employed in optically conditioning laser diodes, laser diode arrays and laser diode bars.
A Cylindrical Microlens With An Internally Reflective Surface And A Method Of Fabrication
Beach, Raymond J.; Freitas, Barry L.
2005-09-27
A fast (high numerical aperture) cylindrical microlens, which includes an internally reflective surface, that functions to deviate the direction of the light that enters the lens from its original propagation direction is employed in optically conditioning laser diodes, laser diode arrays and laser diode bars.
Interferometric reflection moire
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Combell, Olivier
1995-06-01
A new reflection moire technique is introduced in this paper. The basic equations that relate the measurement of slopes to the basic geometric and optical parameters of the system are derived. The sensitivity and accuracy of the method are discussed. Examples of application to the study of silicon wafers and electronic chips are given.
NASA Astrophysics Data System (ADS)
Shinoda, Masahisa; Nakatani, Hidehiko
2015-04-01
We theoretically calculate the behavior of the focusing error signal in the land-groove-type optical disk when the objective lens traverses on out of the radius of the optical disk. The differential astigmatic method is employed instead of the conventional astigmatic method for generating the focusing error signals. The signal behaviors are compared and analyzed in terms of the gain difference of the slope sensitivity of the focusing error signals from the land and the groove. In our calculation, the format of digital versatile disc-random access memory (DVD-RAM) is adopted as the land-groove-type optical disk model, and advantageous conditions for suppressing the gain difference are investigated. The calculation method and results described in this paper will be reflected in the next generation land-groove-type optical disks.
NASA Astrophysics Data System (ADS)
Shinoda, Masahisa; Nakatani, Hidehiko; Nakai, Kenya; Ohmaki, Masayuki
2015-09-01
We theoretically calculate behaviors of focusing error signals generated by an astigmatic method in a land-groove-type optical disk. The focusing error signal from the land does not coincide with that from the groove. This behavior is enhanced when a focused spot of an optical pickup moves beyond the radius of the optical disk. A gain difference between the slope sensitivities of focusing error signals from the land and the groove is an important factor with respect to stable focusing servo control. In our calculation, the format of digital versatile disc-random access memory (DVD-RAM) is adopted as the land-groove-type optical disk model, and the dependences of the gain difference on various factors are investigated. The gain difference strongly depends on the optical intensity distribution of the laser beam in the optical pickup. The calculation method and results in this paper will be reflected in newly developed land-groove-type optical disks.
Garai, Sisir Kumar
2012-04-10
To meet the demand of very fast and agile optical networks, the optical processors in a network system should have a very fast execution rate, large information handling, and large information storage capacities. Multivalued logic operations and multistate optical flip-flops are the basic building blocks for such fast running optical computing and data processing systems. In the past two decades, many methods of implementing all-optical flip-flops have been proposed. Most of these suffer from speed limitations because of the low switching response of active devices. The frequency encoding technique has been used because of its many advantages. It can preserve its identity throughout data communication irrespective of loss of light energy due to reflection, refraction, attenuation, etc. The action of polarization-rotation-based very fast switching of semiconductor optical amplifiers increases processing speed. At the same time, tristate optical flip-flops increase information handling capacity.
NASA Astrophysics Data System (ADS)
Huang, Hao; Ouyang, Zhengbiao
2018-01-01
We propose a general method for eliminating the reflection of waves in 2 dimensional photonic crystal waveguides (2D-PCWs), a kind of 2D material, by introducing extra scatterers inside the 2D-PCWs. The intrinsic reflection in 2D-PCWs is compensated by the backward-scattered waves from these scatterers, so that the overall reflection is greatly reduced and the insertion loss is improved accordingly. We first present the basic theory for the compensation method. Then, as a demonstration, we give four examples of extremely-low-reflection and high-transmission 90°bent 2D-PCWs created according to the method proposed. In the four examples, it is demonstrated by plane-wave expansion method and finite-difference time-domain method that the 90°bent 2D-PCWs can have high transmission ratio greater than 90% in a wide range of operating frequency, and the highest transmission ratio can be greater than 99.95% with a return loss higher than 43 dB, better than that in other typical 90°bent 2D-PCWs. With our method, the bent 2D-PCWs can be optimized to obtain high transmission ratio at different operating wavelengths. As a further application of this method, a waveguide-based optical bridge for light crossing is presented, showing an optimum return loss of 46.85 dB, transmission ratio of 99.95%, and isolation rates greater than 41.77 dB. The method proposed provides also a useful way for improving conventional waveguides made of cables, fibers, or metal walls in the optical, infrared, terahertz, and microwave bands.
Estimation of reflectance from camera responses by the regularized local linear model.
Zhang, Wei-Feng; Tang, Gongguo; Dai, Dao-Qing; Nehorai, Arye
2011-10-01
Because of the limited approximation capability of using fixed basis functions, the performance of reflectance estimation obtained by traditional linear models will not be optimal. We propose an approach based on the regularized local linear model. Our approach performs efficiently and knowledge of the spectral power distribution of the illuminant and the spectral sensitivities of the camera is not needed. Experimental results show that the proposed method performs better than some well-known methods in terms of both reflectance error and colorimetric error. © 2011 Optical Society of America
Optical sensing: recognition elements and devices
NASA Astrophysics Data System (ADS)
Gauglitz, Guenter G.
2012-09-01
The requirements in chemical and biochemical sensing with respect to recognition elements, avoiding non-specific interactions, and high loading of the surface for detection of low concentrations as well as optimized detection systems are discussed. Among the many detection principles the optical techniques are classified. Methods using labeled compounds like Total Internal Reflection Fluorescence (TIRF) and direct optical methods like micro reflectometry or refractometry are discussed in comparison. Reflectometric Interference Spectroscopy (RIfS) is presented as a robust simple method for biosensing. As applications, trace analysis of endocrine disruptors in water, hormones in food, detection of viruses and bacteria in food and clinical diagnostics are discussed.
NASA Astrophysics Data System (ADS)
Matsutani, Natsuki; Lee, Heeyoung; Mizuno, Yosuke; Nakamura, Kentaro
2018-01-01
For Brillouin-sensing applications, we develop a method for mitigating the Fresnel reflection at the perfluorinated-polymer-optical-fiber ends by covering them with an amorphous fluoropolymer (CYTOP, fiber core material) dissolved in a volatile solvent. Unlike the conventional method using water, even after solvent evaporation, the CYTOP layer remains, resulting in long-term Fresnel reduction. In addition, the high viscosity of the CYTOP solution is a practical advantage. The effectiveness of this method is experimentally proved by Brillouin measurement.
Chidley, Matthew D; Carlson, Kristen D; Richards-Kortum, Rebecca R; Descour, Michael R
2006-04-10
The design, analysis, assembly methods, and optical-bench test results for a miniature injection-molded plastic objective lens used in a fiber-optic confocal reflectance microscope are presented. The five-lens plastic objective was tested as a stand-alone optical system before its integration into a confocal microscope for in vivo imaging of cells and tissue. Changing the spacing and rotation of the individual optical elements can compensate for fabrication inaccuracies and improve performance. The system performance of the miniature objective lens is measured by use of an industry-accepted slanted-edge modulation transfer function (MTF) metric. An estimated Strehl ratio of 0.61 and a MTF value of 0.66 at the fiber-optic bundle Nyquist frequency have been obtained. The optical bench testing system is configured to permit interactive optical alignment during testing to optimize performance. These results are part of an effort to demonstrate the manufacturability of low-cost, high-performance biomedical optics for high-resolution in vivo imaging. Disposable endoscopic microscope objectives could help in vivo confocal microscopy technology mature to permit wide-scale clinical screening and detection of early cancers and precancerous lesions.
Microscale optical cryptography using a subdiffraction-limit optical key
NASA Astrophysics Data System (ADS)
Ogura, Yusuke; Aino, Masahiko; Tanida, Jun
2018-04-01
We present microscale optical cryptography using a subdiffraction-limit optical pattern, which is finer than the diffraction-limit size of the decrypting optical system, as a key and a substrate with a reflectance distribution as an encrypted image. Because of the subdiffraction-limit spatial coding, this method enables us to construct a secret image with the diffraction-limit resolution. Simulation and experimental results demonstrate, both qualitatively and quantitatively, that the secret image becomes recognizable when and only when the substrate is illuminated with the designed key pattern.
Online determination of biophysical parameters of mucous membranes of a human body
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.
2013-07-01
We have developed a method for online determination of biophysical parameters of mucous membranes (MMs) of a human body (transport scattering coefficient, scattering anisotropy factor, haemoglobin concentration, degrees of blood oxygenation, average diameter of capillaries with blood) from measurements of spectral and spatial characteristics of diffuse reflection. The method is based on regression relationships between linearly independent components of the measured light signals and the unknown parameters of MMs, obtained by simulation of the radiation transfer in the MM under conditions of its general variability. We have proposed and justified the calibration-free fibre-optic method for determining the concentration of haemoglobin in MMs by measuring the light signals diffusely reflected by the tissue in four spectral regions at two different distances from the illumination spot. We have selected the optimal wavelengths of optical probing for the implementation of the method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blake, Thomas A.; Brauer, Carolyn S.; Kelly-Gorham, Molly Rose K.
The optical constants n and k can be used to model infrared spectra, including refraction, absorption, reflectance, and emissivity, but obtaining reliable values for solid materials (pure or otherwise) presents a challenge: In the past, the best results for n and k have been obtained from bulk, homogeneous materials, free of defects. That is, materials where the Fresnel equations are operant since there is no light scattering. Since it is often not possible to obtain a pure macroscopic (crystalline) material, it may be possible to press the material into a (uniform, void-free) disk. We have recently been able to domore » this with ammonium sulfate powder and then measured the n & k values via two independent methods: 1) Ellipsometry - which measures the changes in amplitude and phase of light reflected from the material of interest as a function of wavelength and angle of incidence, and 2) Single angle specular reflectance with an FT spectrometer using a specular reflectance device within an FT instrument which measures the change in amplitude of light reflected from the material of interest as a function of wavelength and angle of incidence over a wide wavelength range. The quality of the derived n & k values was tested by generating the reflectance spectra of the pellet and comparing to the calculated to measured reflectance spectra of the pure material which has been previously published. The comparison to literature values showed good accuracy and good agreement, indicating promise to measure other materials by such methods.« less
Novel ultra-lightweight and high-resolution MEMS x-ray optics
NASA Astrophysics Data System (ADS)
Mitsuishi, Ikuyuki; Ezoe, Yuichiro; Takagi, Utako; Mita, Makoto; Riveros, Raul; Yamaguchi, Hitomi; Kato, Fumiki; Sugiyama, Susumu; Fujiwara, Kouzou; Morishita, Kohei; Nakajima, Kazuo; Fujihira, Shinya; Kanamori, Yoshiaki; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa; Maeda, Ryutaro
2009-05-01
We have been developing ultra light-weight X-ray optics using MEMS (Micro Electro Mechanical Systems) technologies.We utilized crystal planes after anisotropic wet etching of silicon (110) wafers as X-ray mirrors and succeeded in X-ray reflection and imaging. Since we can etch tiny pores in thin wafers, this type of optics can be the lightest X-ray telescope. However, because the crystal planes are alinged in certain directions, we must approximate ideal optical surfaces with flat planes, which limits angular resolution of the optics on the order of arcmin. In order to overcome this issue, we propose novel X-ray optics based on a combination of five recently developed MEMS technologies, namely silicon dry etching, X-ray LIGA, silicon hydrogen anneal, magnetic fluid assisted polishing and hot plastic deformation of silicon. In this paper, we describe this new method and report on our development of X-ray mirrors fabricated by these technologies and X-ray reflection experiments of two types of MEMS X-ray mirrors made of silicon and nickel. For the first time, X-ray reflections on these mirrors were detected in the angular response measurements. Compared to model calculations, surface roughness of the silicon and nickel mirrors were estimated to be 5 nm and 3 nm, respectively.
The Tuning of Optical Properties of Nanoscale MOFs-Based Thin Film through Post-Modification.
Yin, Wenchang; Tao, Cheng-An; Zou, Xiaorong; Wang, Fang; Qu, Tianlian; Wang, Jianfang
2017-08-29
Optical properties, which determine the application of optical devices in different fields, are the most significant properties of optical thin films. In recent years, Metal-organic framework (MOF)-based optical thin films have attracted increasing attention because of their novel optical properties and important potential applications in optical and photoelectric devices, especially optical thin films with tunable optical properties. This study reports the first example of tuning the optical properties of a MOF-based optical thin film via post-modification. The MOF-based optical thin film was composed of NH₂-MIL-53(Al) nanorods (NRs) (MIL: Materials from Institute Lavoisier), and was constructed via a spin-coating method. Three aldehydes with different lengths of carbon chains were chosen to modify the MOF optical thin film to tune their optical properties. After post-modification, the structural color of the NH₂-MIL-53(Al) thin film showed an obvious change from purple to bluish violet and cyan. The reflection spectrum and the reflectivity also altered in different degrees. The effective refractive index ( n eff ) of MOFs thin film can also be tuned from 1.292 to 1.424 at a wavelength of 750 nm. The success of tuning of the optical properties of MOFs thin films through post-modification will make MOFs optical thin films meet different needs of optical properties in various optical and optoelectronic devices.
The Tuning of Optical Properties of Nanoscale MOFs-Based Thin Film through Post-Modification
Zou, Xiaorong; Wang, Fang; Qu, Tianlian; Wang, Jianfang
2017-01-01
Optical properties, which determine the application of optical devices in different fields, are the most significant properties of optical thin films. In recent years, Metal-organic framework (MOF)-based optical thin films have attracted increasing attention because of their novel optical properties and important potential applications in optical and photoelectric devices, especially optical thin films with tunable optical properties. This study reports the first example of tuning the optical properties of a MOF-based optical thin film via post-modification. The MOF-based optical thin film was composed of NH2-MIL-53(Al) nanorods (NRs) (MIL: Materials from Institute Lavoisier), and was constructed via a spin-coating method. Three aldehydes with different lengths of carbon chains were chosen to modify the MOF optical thin film to tune their optical properties. After post-modification, the structural color of the NH2-MIL-53(Al) thin film showed an obvious change from purple to bluish violet and cyan. The reflection spectrum and the reflectivity also altered in different degrees. The effective refractive index (neff) of MOFs thin film can also be tuned from 1.292 to 1.424 at a wavelength of 750 nm. The success of tuning of the optical properties of MOFs thin films through post-modification will make MOFs optical thin films meet different needs of optical properties in various optical and optoelectronic devices. PMID:28850057
High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing
Hu, Chenyuan; Bai, Wei
2018-01-01
A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing. PMID:29495263
High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing.
Hu, Chenyuan; Bai, Wei
2018-02-24
A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing.
Optical study of solar tower power plants
NASA Astrophysics Data System (ADS)
Eddhibi, F.; Ben Amara, M.; Balghouthi, M.; Guizani, A.
2015-04-01
The central receiver technology for electricity generation consists of concentrating solar radiation coming from the solar tracker field into a central receiver surface located on the top of the tower. The heliostat field is constituted of a big number of reflective mirrors; each heliostat tracks the sun individually and reflects the sunlight to a focal point. Therefore, the heliostat should be positioned with high precision in order to minimize optical losses. In the current work, a mathematical model for the analysis of the optical efficiency of solar tower field power plant is proposed. The impact of the different factors which influence the optical efficiency is analyzed. These parameters are mainly, the shading and blocking losses, the cosine effect, the atmospheric attenuation and the spillage losses. A new method for the calculation of blocking and shadowing efficiency is introduced and validated by open literature.
Hirschfeld, T.B.
1985-04-09
An apparatus and method are disclosed for sensing changes in pressure and for generating optical signals related to changes in pressure. Light from a fiber optic is directed to a movable surface which is coated with a light-responsive material, and which moves relative to the end of the fiber optic in response to changes in pressure. The same fiber optic collects a portion of the reflected or emitted light from the movable surface. Changes in pressure are determined by measuring changes in the amount of light collected. 5 figs.
Measurement of large strains in ropes using plastic optical fibers
Williams, Jerry Gene; Smith, David Barton; Muhs, Jeffrey David
2006-02-14
A method for the direct measurement of large strains in ropes in situ using a plastic optical fiber, for example, perfluorocarbon or polymethyl methacrylate and Optical Time-Domain Reflectometer or other light time-of-flight measurement instrumentation. Protective sheaths and guides are incorporated to protect the plastic optical fiber. In one embodiment, a small rope is braided around the plastic optical fiber to impose lateral compressive forces to restrain the plastic optical fiber from slipping and thus experience the same strain as the rope. Methods are described for making reflective interfaces along the length of the plastic optical fiber and to provide the capability to measure strain within discrete segments of the rope. Interpretation of the data allows one to calculate the accumulated strain at any point in time and to determine if the rope has experienced local damage.
Methods of making composite optical devices employing polymer liquid crystal
Jacobs, S.D.; Marshall, K.L.; Cerqua, K.A.
1991-10-08
Composite optical devices are disclosed using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T[sub g]) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device. 7 figures.
NASA Astrophysics Data System (ADS)
Zhang, Lan-Ying; Gao, Yan-Zi; Song, Ping; Wu, Xiao-Juan; Yuan, Xiao; He, Bao-Feng; Chen, Xing-Wu; Hu, Wang; Guo, Ren-Wei; Ding, Hang-Jun; Xiao, Jiu-Mei; Yang, Huai
2016-09-01
Cholesteric liquid crystals (CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architecture and their excellent selective reflection of light based on the Bragg relationship. Nowadays, by the virtue of building the self-organized nanostructures with pitch gradient or non-uniform pitch distribution, extensive work has already been performed to obtain CLC films with a broad reflection band. Based on authors’ many years’ research experience, this critical review systematically summarizes the physical and optical background of the CLCs with broadband reflection characteristics, methods to obtain broadband reflection of CLCs, as well as the application in the field of intelligent optical modulation materials. Combined with the research status and the advantages in the field, the important basic and applied scientific problems in the research direction are also introduced. Project supported by the National Natural Science Foundation of China (Grant Nos. 51573006, 51573003, 51203003, 51303008, 51302006, 51402006, 51272026, and 51273022), the Major Project of Beijing Science and Technology Program, China (Grant Nos. Z151100003315023 and Z141100003814011), and the Fok Ying Tung Education Foundation, China (Grant No. 142009).
NASA Astrophysics Data System (ADS)
Kim, Jong Man; Choi, Byung So; Choi, Yoon Sun; Kim, Jong Min; Bjelkhagen, Hans I.; Phillips, Nicholas J.
2002-03-01
Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOEs). The drawback of DCG is its low energetic sensitivity and limited spectral response. Silver halide materials can be processed in such a way that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-fine-grain silver halide (AgHal) emulsions. In particular, high spatial-frequency fringes associated with HOEs of the reflection type are difficult to construct when SHSG processing methods are employed. Therefore an optimized processing technique for reflection HOEs recorded in the new AgHal materials is introduced. Diffraction efficiencies over 90% can be obtained repeatably for reflection diffraction gratings. Understanding the importance of a selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOEs, also including high-quality display holograms of the reflection type in both monochrome and full color.
NASA Astrophysics Data System (ADS)
Du Le, Vinh Nguyen; Provias, John; Murty, Naresh; Patterson, Michael S.; Nie, Zhaojun; Hayward, Joseph E.; Farrell, Thomas J.; McMillan, William; Zhang, Wenbin; Fang, Qiyin
2017-02-01
Glioma itself accounts for 80% of all malignant primary brain tumors, and glioblastoma multiforme (GBM) accounts for 55% of such tumors. Diffuse reflectance and fluorescence spectroscopy have the potential to discriminate healthy tissues from abnormal tissues and therefore are promising noninvasive methods for improving the accuracy of brain tissue resection. Optical properties were retrieved using an experimentally evaluated inverse solution. On average, the scattering coefficient is 2.4 times higher in GBM than in low grade glioma (LGG), and the absorption coefficient is 48% higher. In addition, the ratio of fluorescence to diffuse reflectance at the emission peak of 460 nm is 2.6 times higher for LGG while reflectance at 650 nm is 2.7 times higher for GBM. The results reported also show that the combination of diffuse reflectance and fluorescence spectroscopy could achieve sensitivity of 100% and specificity of 90% in discriminating GBM from LGG during ex vivo measurements of 22 sites from seven glioma specimens. Therefore, the current technique might be a promising tool for aiding neurosurgeons in determining the extent of surgical resection of glioma and, thus, improving intraoperative tumor identification for guiding surgical intervention.
Du Le, Vinh Nguyen; Provias, John; Murty, Naresh; Patterson, Michael S; Nie, Zhaojun; Hayward, Joseph E; Farrell, Thomas J; McMillan, William; Zhang, Wenbin; Fang, Qiyin
2017-02-01
Glioma itself accounts for 80% of all malignant primary brain tumors, and glioblastoma multiforme (GBM) accounts for 55% of such tumors. Diffuse reflectance and fluorescence spectroscopy have the potential to discriminate healthy tissues from abnormal tissues and therefore are promising noninvasive methods for improving the accuracy of brain tissue resection. Optical properties were retrieved using an experimentally evaluated inverse solution. On average, the scattering coefficient is 2.4 times higher in GBM than in low grade glioma (LGG), and the absorption coefficient is 48% higher. In addition, the ratio of fluorescence to diffuse reflectance at the emission peak of 460 nm is 2.6 times higher for LGG while reflectance at 650 nm is 2.7 times higher for GBM. The results reported also show that the combination of diffuse reflectance and fluorescence spectroscopy could achieve sensitivity of 100% and specificity of 90% in discriminating GBM from LGG during ex vivo measurements of 22 sites from seven glioma specimens. Therefore, the current technique might be a promising tool for aiding neurosurgeons in determining the extent of surgical resection of glioma and, thus, improving intraoperative tumor identification for guiding surgical intervention.
Three-Dimensional Displacement Measurement Using Diffractive Optic Interferometry
NASA Technical Reports Server (NTRS)
Gilbert, John A.; Cole, Helen J.; Shepherd, Robert L.; Ashley Paul R.
1999-01-01
This paper introduces a powerful new optical method which utilizes diffractive optic interferometry (DOI) to measure both in-plane and out-of-plane displacement with variable sensitivity using the same optical system. Sensitivity is varied by utilizing various combinations of the different wavefronts produced by a conjugate pair of binary Optical elements; a transmission grating is used to produce several illumination beams while a reflective grating replicated on the surface of a specimen, provides the reference for the undeformed state. A derivation of the equations which govern the method is included along with a discussion Of the experimental tests conducted to verify the theory. Overall, the results are excellent, with experimental data agreeing to within a few percent of the theoretical predictions.
Puszka, Agathe; Hervé, Lionel; Planat-Chrétien, Anne; Koenig, Anne; Derouard, Jacques; Dinten, Jean-Marc
2013-01-01
We show how to apply the Mellin-Laplace transform to process time-resolved reflectance measurements for diffuse optical tomography. We illustrate this method on simulated signals incorporating the main sources of experimental noise and suggest how to fine-tune the method in order to detect the deepest absorbing inclusions and optimize their localization in depth, depending on the dynamic range of the measurement. To finish, we apply this method to measurements acquired with a setup including a femtosecond laser, photomultipliers and a time-correlated single photon counting board. Simulations and experiments are illustrated for a probe featuring the interfiber distance of 1.5 cm and show the potential of time-resolved techniques for imaging absorption contrast in depth with this geometry. PMID:23577292
Repair of high performance multilayer coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaines, D.P.; Ceglio, N.M.; Vernon, S.P.
1991-07-01
Fabrication and environmental damage issues may require that the multilayer x-ray reflection coatings used in soft x-ray projection lithography be replaced or repaired. Two repair strategies were investigated. The first was to overcoat defective multilayers with a new multilayer. The feasibility of this approach was demonstrated by depositing high reflectivity (61% at 130 {Angstrom}) molybdenum silicon (Mo/Si) multilayers onto fused silica figured optics that had already been coated with a Mo/Si multilayer. Because some types of damage mechanisms and fabrication errors are not repairable by this method, a second method of repair was investigated. The multilayer was stripped from themore » optical substrate by etching a release layer which was deposited onto the substrate beneath the multilayer. The release layer consisted of a 1000 {Angstrom} aluminum film deposited by ion beam sputtering or by electron beam evaporation, with a 300 {Angstrom} SiO{sub 2} protective overcoat. The substrates were superpolished zerodur optical flats. The normal incidence x-ray reflectivity of multilayers deposited on these aluminized substrates was degraded, presumably due to the roughness of the aluminum films. Multilayers, and the underlying release layers, have been removed without damaging the substrates.« less
NASA Astrophysics Data System (ADS)
Todoran, D.; Todoran, R.; Anitas, E. M.; Szakacs, Zs.
2017-12-01
This paper presents results concerning optical and electrical properties of galena natural mineral and of the interface layer formed between it and the potassium ethyl xanthate solution. The applied experimental method was differential optical reflectance spectroscopy over the UV-Vis/NIR spectral domain. Computations were made using the Kramers-Kronig formalism. Spectral dependencies of the electron loss functions, determined from the reflectance data obtained from the polished mineral surface, display van Hove singularities, leading to the determination of its valence band gap and electron plasma energy. Time dependent measurement of the spectral dispersion of the relative reflectance of the film formed at the interface, using the same computational formalism, leads to the dynamical determination of the spectral variation of its optical and electrical properties. We computed behaviors of the dielectric constant (dielectric permittivity), the dielectric loss function, refractive index and extinction coefficient, effective valence number and of the electron loss functions. The measurements tend to stabilize when the dynamic adsorption-desorption equilibrium is reached at the interface level.
Optical properties of micromachined polysilicon reflective surfaces with etching holes
NASA Astrophysics Data System (ADS)
Zou, Jun; Byrne, Colin; Liu, Chang; Brady, David J.
1998-08-01
MUMPS (Multi-User MEMS Process) is receiving increasingly wide use in micro optics. We have investigated the optical properties of the polysilicon reflective surface in a typical MUMPS chip within the visible light spectrum. The effect of etching holes on the reflected laser beam is studied. The reflectivity and diffraction patterns at five different wavelengths have been measured. The optical properties of the polysilicon reflective surface are greatly affected by the surface roughness, the etching holes, as well as the material. The etching holes contribute to diffraction and reduction of reflectivity. This study provides a basis for optimal design of micromachined free-space optical systems.
Fiber optic temperature sensor
NASA Technical Reports Server (NTRS)
Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)
2000-01-01
A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.
Fiber optic temperature sensor
NASA Technical Reports Server (NTRS)
Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor); Mattes, Brenton L. (Inventor); Charnetski, Clark J. (Inventor)
1999-01-01
A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.
Optical and x-ray alignment approaches for off-plane reflection gratings
NASA Astrophysics Data System (ADS)
Allured, Ryan; Donovan, Benjamin D.; DeRoo, Casey T.; Marlowe, Hannah R.; McEntaffer, Randall L.; Tutt, James H.; Cheimets, Peter N.; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; Menz, Benedikt
2015-09-01
Off-plane reflection gratings offer the potential for high-resolution, high-throughput X-ray spectroscopy on future missions. Typically, the gratings are placed in the path of a converging beam from an X-ray telescope. In the off-plane reflection grating case, these gratings must be co-aligned such that their diffracted spectra overlap at the focal plane. Misalignments degrade spectral resolution and effective area. In-situ X-ray alignment of a pair of off-plane reflection gratings in the path of a silicon pore optics module has been performed at the MPE PANTER beamline in Germany. However, in-situ X-ray alignment may not be feasible when assembling all of the gratings required for a satellite mission. In that event, optical methods must be developed to achieve spectral alignment. We have developed an alignment approach utilizing a Shack-Hartmann wavefront sensor and diffraction of an ultraviolet laser. We are fabricating the necessary hardware, and will be taking a prototype grating module to an X-ray beamline for performance testing following assembly and alignment.
NASA Astrophysics Data System (ADS)
Naim, Nani Fadzlina; Ab-Rahman, Mohammad Syuhaimi; Kamaruddin, Nur Hasiba; Bakar, Ahmad Ashrif A.
2013-09-01
Nowadays, optical networks are becoming dense while detecting faulty branches in the tree-structured networks has become problematic. Conventional methods are inconvenient as they require an engineer to visit the failure site to check the optical fiber using an optical time-domain reflectometer. An innovative monitoring technique for tree-structured network topology in Ethernet passive optical networks (EPONs) by using the erbium-doped fiber amplifier to amplify the traffic signal is demonstrated, and in the meantime, a residual amplified spontaneous emission spectrum is used as the input signal to monitor the optical cable from the central office. Fiber Bragg gratings with distinct center wavelengths are employed to reflect the monitoring signals. Faulty branches of the tree-structured EPONs can be identified using a simple and low-cost receiver. We will show that this technique is capable of providing monitoring range up to 32 optical network units using a power meter with a sensitivity of -65 dBm while maintaining the bit error rate of 10-13.
Heh, Ding Yu; Tan, Eng Leong
2011-04-12
This paper presents the modeling of hemoglobin at optical frequency (250 nm - 1000 nm) using the unconditionally stable fundamental alternating-direction-implicit finite-difference time-domain (FADI-FDTD) method. An accurate model based on complex conjugate pole-residue pairs is proposed to model the complex permittivity of hemoglobin at optical frequency. Two hemoglobin concentrations at 15 g/dL and 33 g/dL are considered. The model is then incorporated into the FADI-FDTD method for solving electromagnetic problems involving interaction of light with hemoglobin. The computation of transmission and reflection coefficients of a half space hemoglobin medium using the FADI-FDTD validates the accuracy of our model and method. The specific absorption rate (SAR) distribution of human capillary at optical frequency is also shown. While maintaining accuracy, the unconditionally stable FADI-FDTD method exhibits high efficiency in modeling hemoglobin.
Heh, Ding Yu; Tan, Eng Leong
2011-01-01
This paper presents the modeling of hemoglobin at optical frequency (250 nm – 1000 nm) using the unconditionally stable fundamental alternating-direction-implicit finite-difference time-domain (FADI-FDTD) method. An accurate model based on complex conjugate pole-residue pairs is proposed to model the complex permittivity of hemoglobin at optical frequency. Two hemoglobin concentrations at 15 g/dL and 33 g/dL are considered. The model is then incorporated into the FADI-FDTD method for solving electromagnetic problems involving interaction of light with hemoglobin. The computation of transmission and reflection coefficients of a half space hemoglobin medium using the FADI-FDTD validates the accuracy of our model and method. The specific absorption rate (SAR) distribution of human capillary at optical frequency is also shown. While maintaining accuracy, the unconditionally stable FADI-FDTD method exhibits high efficiency in modeling hemoglobin. PMID:21559129
Yang, Guowei; You, Shengzui; Bi, Meihua; Fan, Bing; Lu, Yang; Zhou, Xuefang; Li, Jing; Geng, Hujun; Wang, Tianshu
2017-09-10
Free-space optical (FSO) communication utilizing a modulating retro-reflector (MRR) is an innovative way to convey information between the traditional optical transceiver and the semi-passive MRR unit that reflects optical signals. The reflected signals experience turbulence-induced fading in the double-pass channel, which is very different from that in the traditional single-pass FSO channel. In this paper, we consider the corner cube reflector (CCR) as the retro-reflective device in the MRR. A general geometrical model of the CCR is established based on the ray tracing method to describe the ray trajectory inside the CCR. This ray tracing model could treat the general case that the optical beam is obliquely incident on the hypotenuse surface of the CCR with the dihedral angle error and surface nonflatness. Then, we integrate this general CCR model into the wave-optics (WO) simulation to construct the double-pass beam propagation simulation. This double-pass simulation contains the forward propagation from the transceiver to the MRR through the atmosphere, the retro-reflection of the CCR, and the backward propagation from the MRR to the transceiver, which can be realized by a single-pass WO simulation, the ray tracing CCR model, and another single-pass WO simulation, respectively. To verify the proposed CCR model and double-pass WO simulation, the effective reflection area, the incremental phase, and the reflected beam spot on the transceiver plane of the CCR are analyzed, and the numerical results are in agreement with the previously published results. Finally, we use the double-pass WO simulation to investigate the double-pass channel in the MRR FSO systems. The histograms of the turbulence-induced fading in the forward and backward channels are obtained from the simulation data and are fitted by gamma-gamma (ΓΓ) distributions. As the two opposite channels are highly correlated, we model the double-pass channel fading by the product of two correlated ΓΓ random variables (RVs).
Recent progress in design and hybridization of planar grating-based transceivers
NASA Astrophysics Data System (ADS)
Bidnyk, S.; Pearson, M.; Balakrishnan, A.; Gao, M.
2007-06-01
We report on recent progress in simulations, physical layout, fabrication and hybridization of planar grating-based transceivers for passive optical networks (PONs). Until recently, PON transceivers have been manufactured using bulk micro-optical components. Today, advancements in modeling and simulation techniques has made it possible to design complex elements in the same silica-on silicon PLC platform and create an alternative platform for manufacturing of bi-directional transceivers. In our chips we simulated an integrated chip that monolithically combined planar reflective gratings and cascaded Mach-Zehnder interferometers. We used a combination of the finite element method and beam propagation method to model cascaded interferometers with enhanced coupling coefficients. Our simulations show that low-diffraction order planar reflective gratings, designed for small incidence and reflection angles, possess the required dispersion strength to meet the PON specifications. Subsequently, we created structures for passive alignment and hybridized photodetectors and lasers. We believe that advancements in simulation of planar lightwave circuits with embedded planar reflective gratings will result in displacement of the thin-film filters (TFFs) technology in many applications that require a high degree of monolithic and hybrid integration.
Multi-layered fabrication of large area PDMS flexible optical light guide sheets
NASA Astrophysics Data System (ADS)
Green, Robert; Knopf, George K.; Bordatchev, Evgueni V.
2017-02-01
Large area polydimethylsiloxane (PDMS) flexible optical light guide sheets can be used to create a variety of passive light harvesting and illumination systems for wearable technology, advanced indoor lighting, non-planar solar light collectors, customized signature lighting, and enhanced safety illumination for motorized vehicles. These thin optically transparent micro-patterned polymer sheets can be draped over a flat or arbitrarily curved surface. The light guiding behavior of the optical light guides depends on the geometry and spatial distribution of micro-optical structures, thickness and shape of the flexible sheet, refractive indices of the constituent layers, and the wavelength of the incident light. A scalable fabrication method that combines soft-lithography, closed thin cavity molding, partial curing, and centrifugal casting is described in this paper for building thin large area multi-layered PDMS optical light guide sheets. The proposed fabrication methodology enables the of internal micro-optical structures (MOSs) in the monolithic PDMS light guide by building the optical system layer-by-layer. Each PDMS layer in the optical light guide can have the similar, or a slightly different, indices of refraction that permit total internal reflection within the optical sheet. The individual molded layers may also be defect free or micro-patterned with microlens or reflecting micro-features. In addition, the bond between adjacent layers is ensured because each layer is only partially cured before the next functional layer is added. To illustrate the scalable build-by-layers fabrication method a three-layer mechanically flexible illuminator with an embedded LED strip is constructed and demonstrated.
System for testing optical fibers
Golob, John E. [Olathe, KS; Looney, Larry D. [Los Alamos, NM; Lyons, Peter B. [Los Alamos, NM; Nelson, Melvin A. [Santa Barbara, CA; Davies, Terence J. [Santa Barbara, CA
1980-07-15
A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector.
Full scattering profile for detecting physiological tissue properties
NASA Astrophysics Data System (ADS)
Duadi, Hamootal; Fixler, Dror
2017-02-01
Light reflectance and transmission from soft tissue has been utilized in noninvasive clinical measurement devices such as the photoplethysmograph (PPG) and reflectance pulse oximeter. Most methods of near infrared (NIR) spectroscopy focus on the volume reflectance from a semi-infinite sample, while very few measure transmission. We have previously shown that examining the full scattering profile (FSP), which is the angular distribution of exiting photons, provides more comprehensive information when measuring from a cylindrical tissue, such as earlobe, fingertip and pinched tissue. Our hypothesis is that the change in blood vessel diameter is more significant than the change in optical properties. The findings of this work demonstrate a realistic model for optical tissue measurements such as NIR spectroscopy, PPG and pulse oximetery.
Zheng, Yulong; Bremer, Kort
2018-01-01
In this work we investigate the strain, temperature and humidity sensitivity of a Fiber Bragg Grating (FBG) inscribed in a near infrared low-loss multimode perfluorinated polymer optical fiber based on cyclic transparent optical polymer (CYTOP). For this purpose, FBGs were inscribed into the multimode CYTOP fiber with a core diameter of 50 µm by using a krypton fluoride (KrF) excimer laser and the phase mask method. The evolution of the reflection spectrum of the FBG detected with a multimode interrogation technique revealed a single reflection peak with a full width at half maximum (FHWM) bandwidth of about 9 nm. Furthermore, the spectral envelope of the single FBG reflection peak can be optimized depending on the KrF excimer laser irradiation time. A linear shift of the Bragg wavelength due to applied strain, temperature and humidity was measured. Furthermore, depending on irradiation time of the KrF excimer laser, both the failure strain and strain sensitivity of the multimode fiber with FBG can be controlled. The inherent low light attenuation in the near infrared wavelength range (telecommunication window) of the multimode CYTOP fiber and the single FBG reflection peak when applying the multimode interrogation set-up will allow for new applications in the area of telecommunication and optical sensing. PMID:29734734
The SKED: speckle knife edge detector
NASA Astrophysics Data System (ADS)
Sharpies, S. D.; Light, R. A.; Achamfuo-Yeboah, S. O.; Clark, M.; Somekh, M. G.
2014-06-01
The knife edge detector—also known as optical beam deflection—is a simple and robust method of detecting ultrasonic waves using a laser. It is particularly suitable for detection of high frequency surface acoustic waves as the response is proportional to variation of the local tilt of the surface. In the case of a specular reflection of the incident laser beam from a smooth surface, any lateral movement of the reflected beam caused by the ultrasonic waves is easily detected by a pair of photodiodes. The major disadvantage of the knife edge detector is that it does not cope well with optically rough surfaces, those that give a speckled reflection. The optical speckles from a rough surface adversely affect the efficiency of the knife edge detector, because 'dark' speckles move synchronously with 'bright' speckles, and their contributions to the ultrasonic signal cancel each other out. We have developed a new self-adapting sensor which can cope with the optical speckles reflected from a rough surface. It is inelegantly called the SKED—speckle knife edge detector—and like its smooth surface namesake it is simple, cheap, compact, and robust. We describe the theory of its operation, and present preliminary experimental results validating the overall concept and the operation of the prototype device.
Zheng, Yulong; Bremer, Kort; Roth, Bernhard
2018-05-05
In this work we investigate the strain, temperature and humidity sensitivity of a Fiber Bragg Grating (FBG) inscribed in a near infrared low-loss multimode perfluorinated polymer optical fiber based on cyclic transparent optical polymer (CYTOP). For this purpose, FBGs were inscribed into the multimode CYTOP fiber with a core diameter of 50 µm by using a krypton fluoride (KrF) excimer laser and the phase mask method. The evolution of the reflection spectrum of the FBG detected with a multimode interrogation technique revealed a single reflection peak with a full width at half maximum (FHWM) bandwidth of about 9 nm. Furthermore, the spectral envelope of the single FBG reflection peak can be optimized depending on the KrF excimer laser irradiation time. A linear shift of the Bragg wavelength due to applied strain, temperature and humidity was measured. Furthermore, depending on irradiation time of the KrF excimer laser, both the failure strain and strain sensitivity of the multimode fiber with FBG can be controlled. The inherent low light attenuation in the near infrared wavelength range (telecommunication window) of the multimode CYTOP fiber and the single FBG reflection peak when applying the multimode interrogation set-up will allow for new applications in the area of telecommunication and optical sensing.
Howansky, Adrian; Peng, Boyu; Lubinsky, Anthony R.; Zhao, Wei
2017-01-01
Purpose Pulse height spectroscopy has been used by investigators to deduce the imaging properties of scintillators. Pulse height spectra (PHS) are used to compute the Swank factor, which describes the variation in scintillator light output per x-ray interaction. The spread in PHS measured below the K-edge is related to the optical component of the Swank factor, i.e. variations in light escape efficiency from different depths of x-ray interaction in the scintillator, denoted ε̄(z). Optimizing scintillators for medical imaging applications requires understanding of these optical properties, as they determine tradeoffs between parameters such as x-ray absorption, light yield, and spatial resolution. This work develops a model for PHS acquisition such that the effect of measurement uncertainty can be removed. This method allows ε̄(z) to be quantified on an absolute scale and permits more accurate estimation of the optical Swank factor of scintillators. Methods The pulse height spectroscopy acquisition chain was modeled as a linear system of stochastic gain stages. Analytical expressions were derived for signal and noise propagation through the PHS chain, accounting for deterministic and stochastic aspects of x-ray absorption, scintillation, and light detection with a photomultiplier tube. The derived expressions were used to calculate PHS of thallium-doped cesium iodide (CsI) scintillators using parameters that were measured, calculated, or known from literature. PHS were measured at 25 and 32 keV of CsI samples designed with an optically-reflective or absorptive backing, with or without a fiber-optic faceplate (FOP), and with thicknesses ranging from 150–1000 μm. Measured PHS were compared with calculated PHS, then light escape model parameters were varied until measured and modeled results reached agreement. Resulting estimates of ε̄(z) were used to calculate each scintillator’s optical Swank factor. Results For scintillators of the same optical design, only minor differences in light escape efficiency were observed between samples with different thickness. As thickness increased, escape efficiency decreased by up to 20% for interactions furthest away from light collection. Optical design (i.e. backing and FOP) predominantly affected the magnitude and relative variation in ε̄(z). Depending on interaction depth and scintillator thickness, samples with an absorptive backing and FOP were estimated to yield 4.1–13.4 photons/keV. Samples with a reflective backing and FOP yielded 10.4–18.4 keV−1, while those with a reflective backing and no FOP yielded 29.5–52.0 keV−1. Optical Swank factors were approximately 0.9 and near-unity in samples featuring an absorptive or reflective backing, respectively. Conclusions This work uses a modeling approach to remove the noise introduced by the measurement apparatus from measured PHS. This method allows absolute quantification of ε̄(z) and more accurate estimation of the optical Swank factor of scintillators. The method was applied to CsI scintillators with different thickness and optical design, and determined that optical design more strongly affects ε̄(z) and Swank factor than differences in CsI thickness. Despite large variations in ε̄(z) between optical designs, the Swank factor of all evaluated samples is above 0.9. Information provided by this methodology can help validate Monte Carlo simulations of structured CsI and optimize scintillator design for x-ray imaging applications. PMID:28039881
Optical waveguides in fluoride lead silicate glasses fabricated by carbon ion implantation
NASA Astrophysics Data System (ADS)
Shen, Xiao-liang; Wang, Yue; Zhu, Qi-feng; Lü, Peng; Li, Wei-nan; Liu, Chun-xiao
2018-03-01
The carbon ion implantation with energy of 4.0 MeV and a dose of 4.0×1014 ions/cm2 is employed for fabricating the optical waveguide in fluoride lead silicate glasses. The optical modes as well as the effective refractive indices are measured by the prism coupling method. The refractive index distribution in the fluoride lead silicate glass waveguide is simulated by the reflectivity calculation method (RCM). The light intensity profile and the energy losses are calculated by the finite-difference beam propagation method (FD-BPM) and the program of stopping and range of ions in matter (SRIM), respectively. The propagation properties indicate that the C2+ ion-implanted fluoride lead silicate glass waveguide is a candidate for fabricating optical devices.
A review of recent measurements of optical and thermal properties of α-mercuric iodide
NASA Astrophysics Data System (ADS)
Burger, A.; Morgan, S. H.; Silberman, E.; Nason, D.; Cheng, A. Y.
1992-11-01
The band gap energy of α-mercuric iodide was measured recently at elevated temperatures using optical absorption and reflection methods. In addition, reflection spectral measurements indicate that the temperature dependence of the exciton peak can provide a means of measuring, in a nondisturbing and remote manner, the local surface temperature of an α-mercuric iodide crystal during its growth from the vapor. Recent measurements of the thermal diffusivity and thermal expansion tensors have confirmed the anisotropy of this material and have implications for growth morphology and the generation of lattice defects.
Method and system for compact, multi-pass pulsed laser amplifier
Erlandson, Alvin Charles
2014-11-25
A laser amplifier includes an input aperture operable to receive laser radiation having a first polarization, an output aperture coupled to the input aperture by an optical path, and a polarizer disposed along an optical path. A transmission axis of the polarizer is aligned with the first polarization. The laser amplifier also includes n optical switch disposed along the optical path. The optical switch is operable to pass the laser radiation when operated in a first state and to reflect the laser radiation when operated in a second state. The laser amplifier further includes an optical gain element disposed along the optical path and a polarization rotation device disposed along the optical path.
System for testing optical fibers
Golob, J.E.; Looney, L.D.; Lyons, P.B.; Nelson, M.A.; Davies, T.J.
1980-07-15
A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector. 2 figs.
Non-contact XUV metrology of Ru/B4C multilayer optics by means of Hartmann wavefront analysis.
Ruiz-Lopez, Mabel; Dacasa, Hugo; Mahieu, Benoit; Lozano, Magali; Li, Lu; Zeitoun, Philippe; Bleiner, Davide
2018-02-20
Short-wavelength imaging, spectroscopy, and lithography scale down the characteristic length-scale to nanometers. This poses tight constraints on the optics finishing tolerances, which is often difficult to characterize. Indeed, even a tiny surface defect degrades the reflectivity and spatial projection of such optics. In this study, we demonstrate experimentally that a Hartmann wavefront sensor for extreme ultraviolet (XUV) wavelengths is an effective non-contact analytical method for inspecting the surface of multilayer optics. The experiment was carried out in a tabletop laboratory using a high-order harmonic generation as an XUV source. The wavefront sensor was used to measure the wavefront errors after the reflection of the XUV beam on a spherical Ru/B 4 C multilayer mirror, scanning a large surface of approximately 40 mm in diameter. The results showed that the technique detects the aberrations in the nanometer range.
Diffuse reflectance spectroscopy of liver tissue
NASA Astrophysics Data System (ADS)
Reistad, Nina; Nilsson, Jan; Vilhelmsson Timmermand, Oskar; Sturesson, Christian; Andersson-Engels, Stefan
2015-06-01
Diffuse reflectance spectroscopy (DRS) with a fiber-optic contact probe is a cost-effective, rapid, and non-invasive optical method used to extract diagnosis information of tissue. By combining commercially available VIS- and NIR-spectrometers with various fiber-optic contact-probes, we have access to the full wavelength range from around 400 to 1600 nm. Using this flexible and portable spectroscopy system, we have acquired ex-vivo DRS-spectra from murine, porcine, and human liver tissue. For extracting the tissue optical properties from the measured spectra, we have employed and compared predictions from two models for light propagation in tissue, diffusion theory model (DT) and Monte Carlo simulations (MC). The focus in this work is on the capacity of this DRS-technique in discriminating metastatic tumor tissue from normal liver tissue as well as in assessing and characterizing damage to non-malignant liver tissue induced by preoperative chemotherapy for colorectal liver metastases.
Hirano, Takashi; Osaka, Taito; Sano, Yasuhisa; Inubushi, Yuichi; Matsuyama, Satoshi; Tono, Kensuke; Ishikawa, Tetsuya; Yabashi, Makina; Yamauchi, Kazuto
2016-06-01
We have developed a method of fabricating speckle-free channel-cut crystal optics with plasma chemical vaporization machining, an etching method using atmospheric-pressure plasma, for coherent X-ray applications. We investigated the etching characteristics to silicon crystals and achieved a small surface roughness of less than 1 nm rms at a removal depth of >10 μm, which satisfies the requirements for eliminating subsurface damage while suppressing diffuse scattering from rough surfaces. We applied this method for fabricating channel-cut Si(220) crystals for a hard X-ray split-and-delay optical system and confirmed that the crystals provided speckle-free reflection profiles under coherent X-ray illumination.
A method of online quantitative interpretation of diffuse reflection profiles of biological tissues
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.
2013-02-01
We have developed a method of combined interpretation of spectral and spatial characteristics of diffuse reflection of biological tissues, which makes it possible to determine biophysical parameters of the tissue with a high accuracy in real time under conditions of their general variability. Using the Monte Carlo method, we have modeled a statistical ensemble of profiles of diffuse reflection coefficients of skin, which corresponds to a wave variation of its biophysical parameters. On its basis, we have estimated the retrieval accuracy of biophysical parameters using the developed method and investigated the stability of the method to errors of optical measurements. We have showed that it is possible to determine online the concentrations of melanin, hemoglobin, bilirubin, oxygen saturation of blood, and structural parameters of skin from measurements of its diffuse reflection in the spectral range 450-800 nm at three distances between the radiation source and detector.
An historical overview of cavity-enhanced methods
NASA Astrophysics Data System (ADS)
Paldus, B. A.; Kachanov, A. A.
2005-10-01
An historical overview of laser-based, spectroscopic methods that employ high-finesse optical resonators is presented. The overview begins with the early work in atomic absorption (1962) and optical cavities (1974) that led to the first mirror reflectivity measurements in 1980. This paper concludes with very recent extensions of cavity-enhanced methods for the study of condensed-phase media and biological systems. Methods described here include cavity ring-down spectroscopy, integrated cavity output spectroscopy, and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. Given the explosive growth of the field over the past decade, this review does not attempt to present a comprehensive bibliography of all work published in cavity-enhanced spectroscopy, but rather strives to illustrate the rich history, creative diversity, and broad applications potential of these methods.
Genetic algorithms and MCML program for recovery of optical properties of homogeneous turbid media
Morales Cruzado, Beatriz; y Montiel, Sergio Vázquez; Atencio, José Alberto Delgado
2013-01-01
In this paper, we present and validate a new method for optical properties recovery of turbid media with slab geometry. This method is an iterative method that compares diffuse reflectance and transmittance, measured using integrating spheres, with those obtained using the known algorithm MCML. The search procedure is based in the evolution of a population due to selection of the best individual, i.e., using a genetic algorithm. This new method includes several corrections such as non-linear effects in integrating spheres measurements and loss of light due to the finite size of the sample. As a potential application and proof-of-principle experiment of this new method, we use this new algorithm in the recovery of optical properties of blood samples at different degrees of coagulation. PMID:23504404
A fiber optic sensor for on-line non-touch monitoring of roll shape
NASA Astrophysics Data System (ADS)
Guo, Yuan; Qu, Weijian; Yuan, Qi
2009-07-01
Basing on the principle of reflective displacement fibre-optic sensor, a high accuracy non-touch on-line optical fibre sensor for detecting roll shape is presented. The principle and composition of the detection system and the operation process are expatiated also. By using a novel probe of three optical fibres in equal transverse space, the effects of fluctuations in the light source, reflective changing of target surface and the intensity losses in the fibre lines are automatically compensated. Meantime, an optical fibre sensor model of correcting static error based on BP artificial neural network (ANN) is set up. Also by using interpolation method and value filtering to process the signals, effectively reduce the influence of random noise and the vibration of the roll bearing. So the accuracy and resolution were enhanced remarkably. Experiment proves that the resolution is 1μm and the precision can reach to 0.1%. So the system reaches to the demand of practical production process.
Computer driven optical keratometer and method of evaluating the shape of the cornea
NASA Technical Reports Server (NTRS)
Baroth, Edmund C. (Inventor); Mouneimme, Samih A. (Inventor)
1994-01-01
An apparatus and method for measuring the shape of the cornea utilize only one reticle to generate a pattern of rings projected onto the surface of a subject's eye. The reflected pattern is focused onto an imaging device such as a video camera and a computer compares the reflected pattern with a reference pattern stored in the computer's memory. The differences between the reflected and stored patterns are used to calculate the deformation of the cornea which may be useful for pre-and post-operative evaluation of the eye by surgeons.
Multislice does it all—calculating the performance of nanofocusing X-ray optics
Li, Kenan; Wojcik, Michael; Jacobsen, Chris
2017-01-23
Here, we describe an approach to calculating the optical performance of a wide range of nanofocusing X-ray optics using multislice scalar wave propagation with a complex X-ray refractive index. This approach produces results indistinguishable from methods such as coupled wave theory, and it allows one to reproduce other X-ray optical phenomena such as grazing incidence reflectivity where the direction of energy flow is changed significantly. Just as finite element analysis methods allow engineers to compute the thermal and mechanical responses of arbitrary structures too complex to model by analytical approaches, multislice propagation can be used to understand the properties ofmore » the real-world optics of finite extent and with local imperfections, allowing one to better understand the limits to nanoscale X-ray imaging.« less
A physical optics/equivalent currents model for the RCS of trihedral corner reflectors
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Polycarpou, Anastasis C.
1993-01-01
The scattering in the interior regions of both square and triangular trihedral corner reflectors is examined. The theoretical model presented combines geometrical and physical optics (GO and PO), used to account for reflection terms, with equivalent edge currents (EEC), used to account for first-order diffractions from the edges. First-order, second-order, and third-order reflection terms are included. Calculating the first-order reflection terms involves integrating over the entire surface of the illuminated plate. Calculating the second- and third-order reflection terms, however, is much more difficult because the illuminated area is an arbitrary polygon whose shape is dependent upon the incident angles. The method for determining the area of integration is detailed. Extensive comparisons between the high-frequency model, Finite-Difference Time-Domain (FDTD) and experimental data are used for validation of the radar cross section (RCS) of both square and triangular trihedral reflectors.
Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Liu, Jieying; Chen, Shuqi; Tian, Jianguo
2016-01-01
Optical metasurfaces consisting of single-layer nanostructures have immensely promising applications in wavefront control because they can be used to arbitrarily manipulate wave phase, and polarization. However, anomalous refraction and reflection waves have not yet been simultaneously and asymmetrically generated, and the limited efficiency and bandwidth of pre-existing single-layer metasurfaces hinder their practical applications. Here, a few-layer anisotropic metasurface is presented for simultaneously generating high-efficiency broadband asymmetric anomalous refraction and reflection waves. Moreover, the normal transmission and reflection waves are low and the anomalous waves are the predominant ones, which is quite beneficial for practical applications such as beam deflectors. Our work provides an effective method of enhancing the performance of anomalous wave generation, and the asymmetric performance of the proposed metasurface shows endless possibilities in wavefront control for nanophotonics device design and optical communication applications. PMID:27762286
[Measurement and analysis on complex refraction indices of pear pollen in infrared band].
Li, Le; Hu, Yi-hua; Gu, You-lin; Chen, Wei; Zhao, Yi-zheng; Chen, Shan-jing
2015-01-01
Pollen is an important part of bioaerosols, and its complex refractive index is a crucial parameter for study on optical characteristics and detection, identification of bioaerosols. The reflection spectra of pear pollen within the 2. 5 - 15µm waveband were measured by squash method. Based on the measured data, the complex refractive index of pear pollen within the wave-band of 2. 5 to 15 µm was calculated by using Kramers-Kroning (K-K) relation, and calculation deviation about incident angle and different reflectivities at high and low frequencies.were analyzed. The results indicate that 18 degrees angle of incidence and different reflectivities at high and low frequencies have little effect on the results, and it is practicable to calculate the complex refractive index of pollen based on its reflection spectral data. The data of complex refractive index of pollen have some reference value for optical characteristics of pollen, detection and identification of bioaerosols.
NASA Astrophysics Data System (ADS)
Zhou, Yijie; Huang, Aibin; Zhou, Huaijuan; Ji, Shidong; Jin, Ping
2018-03-01
Research on functional flexible films has recently been attracting widespread attention especially with regards to foils, which can be designed artificially on the basis of the practical requirements. In this work, a foil with high visible reflection and a strong near infrared shielding efficiency was prepared by a simple wet chemical method. In the process of making this kind of optical foil, emulsion polymerization was first introduced to synthesize polymer opals, which were further compressed between two pieces of polyethylene terephthalate (PET) foil under polymer melting temperature to obtain a photonic crystal film with a strong reflection in the visible region to block blue rays. The following step was to coat a layer of the inorganic nano paint, which was synthesized by dispersing Cs-doped WO3 (CWO) nanoparticles homogenously into organic resin on the surface of the PET to achieve a high near infrared shielding ability. The final composite foil exhibited unique optical properties such as high visible reflectance (23.9%) to block blue rays, and excellent near infrared shielding efficiency (98.0%), meanwhile it still maintained a high transparency meaning that this foil could potentially be applied in energy-saving window films. To sum up, this study provides new insight into devising flexible hybrid films with novel optical properties, which could be further extended to prepare other optical films for potential use in automobile, architectural and other decorative fields.
Calibration of AIS Data Using Ground-based Spectral Reflectance Measurements
NASA Technical Reports Server (NTRS)
Conel, J. E.
1985-01-01
Present methods of correcting airborne imaging spectrometer (AIS) data for instrumental and atmospheric effects include the flat- or curved-field correction and a deviation-from-the-average adjustment performed on a line-by-line basis throughout the image. Both methods eliminate the atmospheric absorptions, but remove the possibility of studying the atmosphere for its own sake, or of using the atmospheric information present as a possible basis for theoretical modeling. The method discussed here relies on use of ground-based measurements of the surface spectral reflectance in comparison with scanner data to fix in a least-squares sense parameters in a simplified model of the atmosphere on a wavelength-by-wavelength basis. The model parameters (for optically thin conditions) are interpretable in terms of optical depth and scattering phase function, and thus, in principle, provide an approximate description of the atmosphere as a homogeneous body intervening between the sensor and the ground.
NASA Technical Reports Server (NTRS)
Sato, M.; Kawabata, K.; Hansen, J. E.
1977-01-01
The invariant imbedding method considered is based on an equation which describes the change in the reflected radiation when an optically thin layer is added to the top of the atmosphere. The equation is used to treat the problem of reflection from a planetary atmosphere as an initial value problem. A fast method is discussed for the solution of the invariant imbedding equation. The speed and accuracy of the new method are illustrated by comparing it with the doubling program published by Hansen and Travis (1974). Computations are performed of the equivalent widths of carbon dioxide absorption lines in solar radiation reflected by Venus for several models of the planetary atmosphere.
Kuzmina, Ilona; Diebele, Ilze; Spigulis, Janis; Valeine, Lauma; Berzina, Anna; Abelite, Anita
2011-04-01
Optical fiber contact probe diffuse reflectance spectroscopy and remote multispectral imaging methods in the spectral range of 400 to 1100 nm were used for skin vascular malformation assessment and recovery tracing after treatment by intense pulsed light. The results confirmed that oxy-hemoglobin relative changes and the optical density difference between lesion and healthy skin in the spectral region 500 to 600 nm may be successfully used for objective appraisal of the therapy effect. Color redness parameter a* = 2 is suggested as a diagnostic border to distinguish healthy skin and vascular lesions, and as the indicator of phototreatment efficiency. Valuable diagnostic information on large area (>5 mm) lesions and lesions with uncertain borders can be proved by the multispectral imaging method.
NASA Astrophysics Data System (ADS)
Kuzmina, Ilona; Diebele, Ilze; Spigulis, Janis; Valeine, Lauma; Berzina, Anna; Abelite, Anita
2011-04-01
Optical fiber contact probe diffuse reflectance spectroscopy and remote multispectral imaging methods in the spectral range of 400 to 1100 nm were used for skin vascular malformation assessment and recovery tracing after treatment by intense pulsed light. The results confirmed that oxy-hemoglobin relative changes and the optical density difference between lesion and healthy skin in the spectral region 500 to 600 nm may be successfully used for objective appraisal of the therapy effect. Color redness parameter a* = 2 is suggested as a diagnostic border to distinguish healthy skin and vascular lesions, and as the indicator of phototreatment efficiency. Valuable diagnostic information on large area (>5 mm) lesions and lesions with uncertain borders can be proved by the multispectral imaging method.
Johnson, Steve A.; Shannon, Robert R.
1987-01-01
Diagnostic apparatus for use in determining the proper alignment of a plurality of laser beams onto a fiber optics interface is disclosed. The apparatus includes a lens assembly which serves two functions, first to focus a plurality of laser beams onto the fiber optics interface, and secondly to reflect and image the interface using scattered light to a monitor means. The monitor means permits indirect observation of the alignment or focusing of the laser beams onto the fiber optics interface.
Gant, Patricia; Ghasemi, Foad; Maeso, David; Munuera, Carmen; López-Elvira, Elena; Frisenda, Riccardo; De Lara, David Pérez; Rubio-Bollinger, Gabino; Garcia-Hernandez, Mar
2017-01-01
We study mechanically exfoliated nanosheets of franckeite by quantitative optical microscopy. The analysis of transmission-mode and epi-illumination-mode optical microscopy images provides a rapid method to estimate the thickness of the exfoliated flakes at first glance. A quantitative analysis of the optical contrast spectra by means of micro-reflectance allows one to determine the refractive index of franckeite over a broad range of the visible spectrum through a fit of the acquired spectra to a model based on the Fresnel law. PMID:29181292
Johnson, S.A.; Shannon, R.R.
1985-01-18
Diagnostic apparatus for use in determining the proper alignment of a plurality of laser beams onto a fiber optics interface is disclosed. The apparatus includes a lens assembly which serves two functions, first to focus a plurality of laser beams onto the fiber optics interface, and secondly to reflect and image the interface using scattered light to a monitor means. The monitor means permits indirect observation of the alignment or focusing of the laser beams onto the fiber optics interface.
Tissues viability and blood flow sensing based on a new nanophotonics method
NASA Astrophysics Data System (ADS)
Yariv, Inbar; Haddad, Menashe; Duadi, Hamootal; Motiei, Menachem; Fixler, Dror
2018-02-01
Extracting optical parameters of turbid medium (e.g. tissue) by light reflectance signals is of great interest and has many applications in the medical world, life science, material analysis and biomedical optics. The reemitted light from an irradiated tissue is affected by the light's interaction with the tissue components and contains the information about the tissue structure and physiological state. In this research we present a novel noninvasive nanophotonics technique, i.e., iterative multi-plane optical property extraction (IMOPE) based on reflectance measurements. The reflectance based IMOPE was applied for tissue viability examination, detection of gold nanorods (GNRs) within the blood circulation as well as blood flow detection using the GNRs presence within the blood vessels. The basics of the IMOPE combine a simple experimental setup for recording light intensity images with an iterative Gerchberg-Saxton (G-S) algorithm for reconstructing the reflected light phase and computing its standard deviation (STD). Changes in tissue composition affect its optical properties which results in changes in the light phase that can be measured by its STD. This work presents reflectance based IMOPE tissue viability examination, producing a decrease in the computed STD for older tissues, as well as investigating their organic material absorption capability. Finally, differentiation of the femoral vein from adjacent tissues using GNRs and the detection of their presence within blood circulation and tissues are also presented with high sensitivity (better than computed tomography) to low quantities of GNRs (<3 mg).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, J. W.; Bol, A. A.; Sanden, M. C. M. van de
2014-07-07
This work presents an improved thin film approximation to extract the optical conductivity from infrared transmittance in a simple yet accurate way. This approximation takes into account the incoherent reflections from the backside of the substrate. These reflections are shown to have a significant effect on the extracted optical conductivity and hence on derived parameters as carrier mobility and density. By excluding the backside reflections, the error for these parameters for typical chemical vapor deposited (CVD) graphene on a silicon substrate can be as high as 17% and 45% for the carrier mobility and density, respectively. For the mid- andmore » near-infrared, the approximation can be simplified such that the real part of the optical conductivity is extracted without the need for a parameterization of the optical conductivity. This direct extraction is shown for Fourier transform infrared (FTIR) transmittance measurements of CVD graphene on silicon in the photon energy range of 370–7000 cm{sup −1}. From the real part of the optical conductivity, the carrier density, mobility, and number of graphene layers are determined but also residue, originating from the graphene transfer, is detected. FTIR transmittance analyzed with the improved thin film approximation is shown to be a non-invasive, easy, and accurate measurement and analysis method for assessing the quality of graphene and can be used for other 2-D materials.« less
Spectral Optical Readout of Rectangular–Miniature Hollow Glass Tubing for Refractive Index Sensing
Rigamonti, Giulia; Bello, Valentina
2018-01-01
For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances. PMID:29462907
Spectral Optical Readout of Rectangular-Miniature Hollow Glass Tubing for Refractive Index Sensing.
Rigamonti, Giulia; Bello, Valentina; Merlo, Sabina
2018-02-16
For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances.
NASA Astrophysics Data System (ADS)
Baek, Sang-In; Kim, Sung-Jo; Kim, Jong-Hyun
2015-09-01
Although the homeotropic alignment of liquid crystals is widely used in LCD TVs, no easy method exists to measure its anchoring coefficient. In this study, we propose an easy and convenient measurement technique in which a polarizing optical microscope is used in the reflective mode with an objective lens having a low depth of focus. All measurements focus on the reflection of light near the interface between the liquid crystal and alignment layer. The change in the reflected light is measured by applying an electric field. We model the response of the director of the liquid crystal to the electric field and, thus, the change in reflectance. By adjusting the extrapolation length in the calculation, we match the experimental and calculated results and obtain the anchoring coefficient. In our experiment, the extrapolation lengths were 0.31 ± 0.04 μm, 0.32 ± 0.08 μm, and 0.23 ± 0.05 μm for lecithin, AL-64168, and SE-5662, respectively.
NASA Astrophysics Data System (ADS)
Fauchez, T.; Platnick, S. E.; Sourdeval, O.; Wang, C.; Meyer, K.; Cornet, C.; Szczap, F.
2017-12-01
Cirrus are an important part of the Earth radiation budget but an assessment of their role yet remains highly uncertain. Cirrus optical properties such as Cloud Optical Thickness (COT) and ice crystal effective particle size (Re) are often retrieved with a combination of Visible/Near InfraRed (VNIR) and ShortWave-InfraRed (SWIR) reflectance channels. Alternatively, Thermal InfraRed (TIR) techniques, such as the Split Window Technique (SWT), have demonstrated better sensitivity to thin cirrus. However, current satellite operational products for both retrieval methods assume that cloudy pixels are horizontally homogeneous (Plane Parallel and Homogeneous Approximation (PPHA)) and independent (Independent Pixel Approximation (IPA)). The impact of these approximations on cirrus retrievals needs to be understood and, as far as possible, corrected. Horizontal heterogeneity effects can be more easily estimated and corrected in the TIR range because they are mainly dominated by the PPA bias, which primarily depends on the COT subpixel heterogeneity. For solar reflectance channels, in addition to the PPHA bias, the IPA can lead to significant retrieval errors if there is large photon transport between cloudy columns in addition to brightening and shadowing effects that are more difficult to quantify.The effects of cirrus horizontal heterogeneity are here studied on COT and Re retrievals obtained using simulated MODIS reflectances at 0.86 and 2.11 μm and radiances at 8.5, 11.0 and 12.0 μm, for spatial resolutions ranging from 50 m to 10 km. For each spatial resolution, simulated TOA reflectances and radiances are combined for cloud optical property retrievals with a research-level optimal estimation retrieval method (OEM). The impact of horizontal heterogeneity on the retrieved products is assessed for different solar geometries and various combinations of the five channels.
Research on Retro-reflecting Modulation in Space Optical Communication System
NASA Astrophysics Data System (ADS)
Zhu, Yifeng; Wang, Guannan
2018-01-01
Retro-reflecting modulation space optical communication is a new type of free space optical communication technology. Unlike traditional free space optical communication system, it applys asymmetric optical systems to reduce the size, weight and power consumption of the system and can effectively solve the limits of traditional free space optical communication system application, so it can achieve the information transmission. This paper introduces the composition and working principle of retro-reflecting modulation optical communication system, analyzes the link budget of this system, reviews the types of optical system and optical modulator, summarizes this technology future research direction and application prospects.
NASA Technical Reports Server (NTRS)
Yang, Ye; Soyemi, Olusola O.; Landry, Michelle R.; Soller, Babs R.
2005-01-01
The influence of fat thickness on the diffuse reflectance spectra of muscle in the near infrared (NIR) region is studied by Monte Carlo simulations of a two-layer structure and with phantom experiments. A polynomial relationship was established between the fat thickness and the detected diffuse reflectance. The influence of a range of optical coefficients (absorption and reduced scattering) for fat and muscle over the known range of human physiological values was also investigated. Subject-to-subject variation in the fat optical coefficients and thickness can be ignored if the fat thickness is less than 5 mm. A method was proposed to correct the fat thickness influence. c2005 Optical Society of America.
Nondispersive neutron focusing method beyond the critical angle of mirrors
Ice, Gene E.
2008-10-21
This invention extends the Kirkpatrick-Baez (KB) mirror focusing geometry to allow nondispersive focusing of neutrons with a convergence on a sample much larger than is possible with existing KB optical schemes by establishing an array of at least three mirrors and focusing neutrons by appropriate multiple deflections via the array. The method may be utilized with supermirrors, multilayer mirrors, or total external reflection mirrors. Because high-energy x-rays behave like neutrons in their absorption and reflectivity rates, this method may be used with x-rays as well as neutrons.
Spectral analysis of the UFBG-based acousto—optical modulator in V-I transmission matrix formalism
NASA Astrophysics Data System (ADS)
Wu, Liang-Ying; Pei, Li; Liu, Chao; Wang, Yi-Qun; Weng, Si-Jun; Wang, Jian-Shuai
2014-11-01
In this study, the V-I transmission matrix formalism (V-I method) is proposed to analyze the spectrum characteristics of the uniform fiber Bragg grating (FBG)-based acousto—optic modulators (UFBG-AOM). The simulation results demonstrate that both the amplitude of the acoustically induced strain and the frequency of the acoustic wave (AW) have an effect on the spectrum. Additionally, the wavelength spacing between the primary reflectivity peak and the secondary reflectivity peak is proportional to the acoustic frequency with the ratio 0.1425 nm/MHz. Meanwhile, we compare the amount of calculation. For the FBG whose period is M, the calculation of the V-I method is 4 × (2M-1) in addition/subtraction, 8 × (2M - 1) in multiply/division and 2M in exponent arithmetic, which is almost a quarter of the multi-film method and transfer matrix (TM) method. The detailed analysis indicates that, compared with the conventional multi-film method and transfer matrix (TM) method, the V-I method is faster and less complex.
Anti-reflection coating design for metallic terahertz meta-materials
Pancaldi, Matteo; Freeman, Ryan; Hudl, Matthias; ...
2018-01-26
We demonstrate a silicon-based, single-layer anti-reflection coating that suppresses the reflectivity of metals at near-infrared frequencies, enabling optical probing of nano-scale structures embedded in highly reflective surroundings. Our design does not affect the interaction of terahertz radiation with metallic structures that can be used to achieve terahertz near-field enhancement. We have verified the functionality of the design by calculating and measuring the reflectivity of both infrared and terahertz radiation from a silicon/gold double layer as a function of the silicon thickness. We have also fabricated the unit cell of a terahertz meta-material, a dipole antenna comprising two 20-nm thick extendedmore » gold plates separated by a 2 μm gap, where the terahertz field is locally enhanced. We used the time-domain finite element method to demonstrate that such near-field enhancement is preserved in the presence of the anti-reflection coating. Finally, we performed magneto-optical Kerr effect measurements on a single 3-nm thick, 1-μm wide magnetic wire placed in the gap of such a dipole antenna. The wire only occupies 2% of the area probed by the laser beam, but its magneto-optical response can be clearly detected. Our design paves the way for ultrafast time-resolved studies, using table-top femtosecond near-infrared lasers, of dynamics in nano-structures driven by strong terahertz radiation.« less
Anti-reflection coating design for metallic terahertz meta-materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pancaldi, Matteo; Freeman, Ryan; Hudl, Matthias
We demonstrate a silicon-based, single-layer anti-reflection coating that suppresses the reflectivity of metals at near-infrared frequencies, enabling optical probing of nano-scale structures embedded in highly reflective surroundings. Our design does not affect the interaction of terahertz radiation with metallic structures that can be used to achieve terahertz near-field enhancement. We have verified the functionality of the design by calculating and measuring the reflectivity of both infrared and terahertz radiation from a silicon/gold double layer as a function of the silicon thickness. We have also fabricated the unit cell of a terahertz meta-material, a dipole antenna comprising two 20-nm thick extendedmore » gold plates separated by a 2 μm gap, where the terahertz field is locally enhanced. We used the time-domain finite element method to demonstrate that such near-field enhancement is preserved in the presence of the anti-reflection coating. Finally, we performed magneto-optical Kerr effect measurements on a single 3-nm thick, 1-μm wide magnetic wire placed in the gap of such a dipole antenna. The wire only occupies 2% of the area probed by the laser beam, but its magneto-optical response can be clearly detected. Our design paves the way for ultrafast time-resolved studies, using table-top femtosecond near-infrared lasers, of dynamics in nano-structures driven by strong terahertz radiation.« less
Anti-reflection coating design for metallic terahertz meta-materials.
Pancaldi, Matteo; Freeman, Ryan; Hudl, Matthias; Hoffmann, Matthias C; Urazhdin, Sergei; Vavassori, Paolo; Bonetti, Stefano
2018-02-05
We demonstrate a silicon-based, single-layer anti-reflection coating that suppresses the reflectivity of metals at near-infrared frequencies, enabling optical probing of nano-scale structures embedded in highly reflective surroundings. Our design does not affect the interaction of terahertz radiation with metallic structures that can be used to achieve terahertz near-field enhancement. We have verified the functionality of the design by calculating and measuring the reflectivity of both infrared and terahertz radiation from a silicon/gold double layer as a function of the silicon thickness. We have also fabricated the unit cell of a terahertz meta-material, a dipole antenna comprising two 20-nm thick extended gold plates separated by a 2 μm gap, where the terahertz field is locally enhanced. We used the time-domain finite element method to demonstrate that such near-field enhancement is preserved in the presence of the anti-reflection coating. Finally, we performed magneto-optical Kerr effect measurements on a single 3-nm thick, 1-μm wide magnetic wire placed in the gap of such a dipole antenna. The wire only occupies 2% of the area probed by the laser beam, but its magneto-optical response can be clearly detected. Our design paves the way for ultrafast time-resolved studies, using table-top femtosecond near-infrared lasers, of dynamics in nano-structures driven by strong terahertz radiation.
Thennadil, Suresh N; Chen, Yi-Chieh
2017-02-01
The usual approach for estimating bulk optical properties using an integrating sphere measurement setup is by acquiring spectra from three measurement modes namely collimated transmittance (T c ), total transmittance (T d ), and total diffuse reflectance (R d ), followed by the inversion of these measurements using the adding-doubling method. At high scattering levels, accurate acquisition of T c becomes problematic due to the presence of significant amounts of forward-scattered light in this measurement which is supposed to contain only unscattered light. In this paper, we propose and investigate the effectiveness of using alternative sets of integrating sphere measurements that avoid the use of T c and could potentially increase the upper limit of concentrations of suspensions at which bulk optical property measurements can be obtained in the visible-near-infrared (Vis-NIR) region of the spectrum. We examine the possibility of replacing T c with one or more reflectance measurements at different sample thicknesses. We also examine the possibility of replacing both the collimated (T c ) and total transmittance (T d ) measurements with reflectance measurements taken from different sample thicknesses. The analysis presented here indicates that replacing T c with a reflectance measurement can reduce the errors in the bulk scattering properties when scattering levels are high. When only multiple reflectance measurements are used, good estimates of the bulk optical properties can be obtained when the absorption levels are low. In addition, we examine whether there is any advantage in using three measurements instead of two to obtain the reduced bulk scattering coefficient and the bulk absorption coefficient. This investigation is made in the context of chemical and biological suspensions which have a much larger range of optical properties compared to those encountered with tissue.
Electro-Optic Diffraction Grating Tuned Laser.
The patent concerns an electro - optic diffraction grating tuned laser comprising a laser medium, output mirror, retro-reflective grating and an electro - optic diffraction grating beam deflector positioned between the laser medium and the reflective diffraction grating. An optional angle multiplier may be used between the electro - optic diffraction grating and the reflective grating.
Litts, Katie M.; Wang, Xiaolin; Clark, Mark E.; Owsley, Cynthia; Freund, K. Bailey; Curcio, Christine A.; Zhang, Yuhua
2016-01-01
Purpose To investigate the microscopic structure of outer retinal tubulation (ORT) and optical properties of cone photoreceptors in vivo, we studied ORT appearance by multimodal imaging, including spectral domain optical coherence tomography (SD-OCT) and adaptive optics scanning laser ophthalmoscopy (AOSLO). Methods Four eyes of 4 subjects with advanced AMD underwent color fundus photography, infrared reflectance imaging, SD-OCT, and AOSLO with a high-resolution research instrument. ORT was identified in closely spaced (11 μm) SD-OCT volume scans. Results ORT in cross-sectional and en face SD-OCT was a hyporeflective area representing a lumen surrounded by a hyperreflective border consisting of cone photoreceptor mitochondria and external limiting membrane, per previous histology. In contrast, ORT by AOSLO was a hyporeflective structure of the same shape as in en face SD-OCT but lacking visualizable cone photoreceptors. Conclusion Lack of ORT cone reflectivity by AOSLO indicates that cones have lost their normal directionality and waveguiding property due to loss of outer segments and subsequent retinal remodeling. Reflective ORT cones by SD-OCT, in contrast, may depend partly on mitochondria as light scatterers within inner segments of these degenerating cells, a phenomenon enhanced by coherent imaging. Multimodal imaging of ORT provides insight into cone degeneration and reflectivity sources in OCT. PMID:27584549
NASA Astrophysics Data System (ADS)
Qin, Jianwei; Lu, Renfu
2005-11-01
Absorption and reduced scattering coefficients are two fundamental optical properties for turbid biological materials. This paper presents the technique and method of using hyperspectral diffuse reflectance for fast determination of the optical properties of fruit and vegetable juices and milks. A hyperspectral imaging system was used to acquire spatially resolved steady-state diffuse reflectance over the spectral region between 530 and 900 nm from a variety of fruit and vegetable juices (citrus, grapefruit, orange, and vegetable) and milks with different fat levels (full, skim and mixed). The system collected diffuse reflectance in the source-detector separation range from 1.1 to 10.0 mm. The hyperspectral reflectance data were analyzed by using a diffusion theory model for semi-infinite homogeneous media. The absorption and reduced scattering coefficients of the fruit and vegetable juices and milks were extracted by inverse algorithms from the scattering profiles for wavelengths of 530-900 nm. Values of the absorption and reduced scattering coefficient at 650 nm were highly correlated to the fat content of the milk samples with the correlation coefficient of 0.990 and 0.989, respectively. The hyperspectral imaging technique can be extended to the measurement of other liquid and solid foods in which light scattering is dominant.
NASA Astrophysics Data System (ADS)
Melnikova, I.; Mukai, S.; Vasilyev, A.
Data of remote measurements of reflected radiance with the POLDER instrument on board of ADEOS satellite are used for retrieval of the optical thickness, single scattering albedo and phase function parameter of cloudy and clear atmosphere. The method of perceptron neural network that from input values of multiangle radiance and Solar incident angle allows to obtain surface albedo, the optical thickness, single scattering albedo and phase function parameter in case of clear sky. Two last parameters are determined as optical average for atmospheric column. The calculation of solar radiance with using the MODTRAN-3 code with taking into account multiple scattering is accomplished for neural network learning. All mentioned parameters were randomly varied on the base of statistical models of possible measured parameters variation. Results of processing one frame of remote observation that consists from 150,000 pixels are presented. The methodology elaborated allows operative determining optical characteristics as cloudy as clear atmosphere. Further interpretation of these results gives the possibility to extract the information about total contents of atmospheric aerosols and absorbing gases in the atmosphere and create models of the real cloudiness An analytical method of interpretation that based on asymptotic formulas of multiple scattering theory is applied to remote observations of reflected radiance in case of cloudy pixel. Details of the methodology and error analysis were published and discussed earlier. Here we present results of data processing of pixel size 6x6 km In many studies the optical thickness is evaluated earlier in the assumption of the conservative scattering. But in case of true absorption in clouds the large errors in parameter obtained are possible. The simultaneous retrieval of two parameters at every wavelength independently is the advantage comparing with earlier studies. The analytical methodology is based on the transfer theory asymptotic formula inversion for optically thick stratus clouds. The model of horizontally infinite layer is considered. The slight horizontal heterogeneity is approximately taken into account. Formulas containing only the measured values of two-direction radiance and functions of solar and view angles were derived earlier. The 6 azimuth harmonics of reflection function are taken into account. The simple approximation of the cloud top boarder heterogeneity is used. The clouds, projecting upper the cloud top plane causes the increase of diffuse radiation in the incident flux. It is essential for calculation of radiative characteristics, which depends on lighting conditions. Escape and reflection functions describe this dependence for reflected radiance and local albedo of semi-infinite medium - for irradiance. Thus the functions depending on solar incident angle is to replace by their modifications. Firstly optical thickness of every pixel is obtained with simple formula assuming conservative scattering for all available view directions. Deviations between obtained values may be taken as a measure of the cloud top deviation from the plane. The special parameter is obtained, which takes into account the shadowing effect. Then single scattering albedo and optical thickness (with the true absorption assuming) are obtained for pairs of view directions with equal optical thickness. After that the averaging of values obtained and relative error evaluation is accomplished for all viewing directions of every pixel. The procedure is repeated for all wavelengths and pixels independently.
Advanced optical measuring systems for measuring the properties of fluids and structures
NASA Technical Reports Server (NTRS)
Decker, A. J.
1986-01-01
Four advanced optical models are reviewed for the measurement of visualization of flow and structural properties. Double-exposure, diffuse-illumination, holographic interferometry can be used for three-dimensional flow visualization. When this method is combined with optical heterodyning, precise measurements of structural displacements or fluid density are possible. Time-average holography is well known as a method for displaying vibrational mode shapes, but it also can be used for flow visualization and flow measurements. Deflectometry is used to measure or visualize the deflection of light rays from collimation. Said deflection occurs because of refraction in a fluid or because of reflection from a tilted surface. The moire technique for deflectometry, when combined with optical heterodyning, permits very precise measurements of these quantities. The rainbow schlieren method of deflectometry allows varying deflection angles to be encoded with colors for visualization.
Improved methods of performing coherent optical correlation
NASA Technical Reports Server (NTRS)
Husain-Abidi, A. S.
1972-01-01
Coherent optical correlators are described in which complex spatial filters are recorded by a quasi-Fourier transform method. The high-pass spatial filtering effects (due to the dynamic range of photographic films) normally encountered in Vander Lugt type complex filters are not present in this system. Experimental results for both transmittive as well as reflective objects are presented. Experiments are also performed by illuminating the object with diffused light. A correlator using paraboloidal mirror segments as the Fourier-transforming element is also described.
The simulation study on optical target laser active detection performance
NASA Astrophysics Data System (ADS)
Li, Ying-chun; Hou, Zhao-fei; Fan, Youchen
2014-12-01
According to the working principle of laser active detection system, the paper establishes the optical target laser active detection simulation system, carry out the simulation study on the detection process and detection performance of the system. For instance, the performance model such as the laser emitting, the laser propagation in the atmosphere, the reflection of optical target, the receiver detection system, the signal processing and recognition. We focus on the analysis and modeling the relationship between the laser emitting angle and defocus amount and "cat eye" effect echo laser in the reflection of optical target. Further, in the paper some performance index such as operating range, SNR and the probability of the system have been simulated. The parameters including laser emitting parameters, the reflection of the optical target and the laser propagation in the atmosphere which make a great influence on the performance of the optical target laser active detection system. Finally, using the object-oriented software design methods, the laser active detection system with the opening type, complete function and operating platform, realizes the process simulation that the detection system detect and recognize the optical target, complete the performance simulation of each subsystem, and generate the data report and the graph. It can make the laser active detection system performance models more intuitive because of the visible simulation process. The simulation data obtained from the system provide a reference to adjust the structure of the system parameters. And it provides theoretical and technical support for the top level design of the optical target laser active detection system and performance index optimization.
Figure correction of multilayer coated optics
Chapman; Henry N. , Taylor; John S.
2010-02-16
A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.
Integrating sphere based reflectance measurements for small-area semiconductor samples
NASA Astrophysics Data System (ADS)
Saylan, S.; Howells, C. T.; Dahlem, M. S.
2018-05-01
This article describes a method that enables reflectance spectroscopy of small semiconductor samples using an integrating sphere, without the use of additional optical elements. We employed an inexpensive sample holder to measure the reflectance of different samples through 2-, 3-, and 4.5-mm-diameter apertures and applied a mathematical formulation to remove the bias from the measured spectra caused by illumination of the holder. Using the proposed method, the reflectance of samples fabricated using expensive or rare materials and/or low-throughput processes can be measured. It can also be incorporated to infer the internal quantum efficiency of small-area, research-level solar cells. Moreover, small samples that reflect light at large angles and develop scattering may also be measured reliably, by virtue of an integrating sphere insensitive to directionalities.
Spectrophotometric Method for Differentiation of Human Skin Melanoma. II. Diagnostic Characteristics
NASA Astrophysics Data System (ADS)
Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barunb, V. V.
2016-05-01
Experimental data on the spectral dependences of the optical diffuse reflection coefficient for skin from different people with melanoma or nevus are presented in the form of the probability density of the diffuse reflection coefficient for the corresponding pigmented lesions. We propose a noninvasive technique for differentiating between malignant and benign tumors, based on measuring the diffuse reflection coefficient for a specific patient and comparing the value obtained with a pre-set threshold. If the experimental result is below the threshold, then it is concluded that the person has melanoma; otherwise, no melanoma is present. As an example, we consider the wavelength 870 nm. We determine the risk of malignant transformation of a nevus (its transition to melanoma) for different measured diffuse reflection coefficients. We have studied the errors in the method, its operating characteristics and probability characteristics as the threshold diffuse reflection coefficient is varied. We find that the diagnostic confidence, sensitivity, specificity, and effectiveness (accuracy) parameters are maximum (>0.82) for a threshold of 0.45-0.47. The operating characteristics for the proposed technique exceed the corresponding parameters for other familiar optical approaches to melanoma diagnosis. Its distinguishing feature is operation at only one wavelength, and consequently implementation of the experimental technique is simplified and made less expensive.
Pulse shaping with transmission lines
Wilcox, Russell B.
1987-01-01
A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.
Pulse shaping with transmission lines
Wilcox, R.B.
1985-08-15
A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.
One-dimensional ion-beam figuring for grazing-incidence reflective optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Lin; Idir, Mourad; Bouet, Nathalie
2016-01-01
One-dimensional ion-beam figuring (1D-IBF) can improve grazing-incidence reflective optics, such as Kirkpatrick–Baez mirrors. 1D-IBF requires only one motion degree of freedom, which reduces equipment complexity, resulting in compact and low-cost IBF instrumentation. Furthermore, 1D-IBF is easy to integrate into a single vacuum system with other fabrication processes, such as a thin-film deposition. The NSLS-II Optical Metrology and Fabrication Group has recently integrated the 1D-IBF function into an existing thin-film deposition system by adding an RF ion source to the system. Using a rectangular grid, a 1D removal function needed to perform 1D-IBF has been produced. In this paper, demonstration experimentsmore » of the 1D-IBF process are presented on one spherical and two plane samples. The final residual errors on both plane samples are less than 1 nm r.m.s. In conclusion, the surface error on the spherical sample has been successfully reduced by a factor of 12. The results show that the 1D-IBF method is an effective method to process high-precision 1D synchrotron optics.« less
Optical method for the characterization of laterally-patterned samples in integrated circuits
Maris, Humphrey J.
2001-01-01
Disclosed is a method for characterizing a sample having a structure disposed on or within the sample, comprising the steps of applying a first pulse of light to a surface of the sample for creating a propagating strain pulse in the sample, applying a second pulse of light to the surface so that the second pulse of light interacts with the propagating strain pulse in the sample, sensing from a reflection of the second pulse a change in optical response of the sample, and relating a time of occurrence of the change in optical response to at least one dimension of the structure.
Maris, Humphrey J.
2008-03-04
Disclosed is a method for characterizing a sample having a structure disposed on or within the sample, comprising the steps of applying a first pulse of light to a surface of the sample for creating a propagating strain pulse in the sample, applying a second pulse of light to the surface so that the second pulse of light interacts with the propagating strain pulse in the sample, sensing from a reflection of the second pulse a change in optical response of the sample, and relating a time of occurrence of the change in optical response to at least one dimension of the structure.
Optical method for the characterization of laterally-patterned samples in integrated circuits
Maris, Humphrey J.
2010-08-24
Disclosed is a method for characterizing a sample having a structure disposed on or within the sample, comprising the steps of applying a first pulse of light to a surface of the sample for creating a propagating strain pulse in the sample, applying a second pulse of light to the surface so that the second pulse of light interacts with the propagating strain pulse in the sample, sensing from a reflection of the second pulse a change in optical response of the sample, and relating a time of occurrence of the change in optical response to at least one dimension of the structure.
Optical method for the characterization of laterally patterned samples in integrated circuits
Maris, Humphrey J [Barrington, RI
2009-03-17
Disclosed is a method for characterizing a sample having a structure disposed on or within the sample, comprising the steps of applying a first pulse of light to a surface of the sample for creating a propagating strain pulse in the sample, applying a second pulse of light to the surface so that the second pulse of light interacts with the propagating strain pulse in the sample, sensing from a reflection of the second pulse a change in optical response of the sample, and relating a time of occurrence of the change in optical response to at least one dimension of the structure.
Maris, Humphrey J [Barrington, RI
2011-02-22
Disclosed is a method for characterizing a sample having a structure disposed on or within the sample, comprising the steps of applying a first pulse of light to a surface of the sample for creating a propagating strain pulse in the sample, applying a second pulse of light to the surface so that the second pulse of light interacts with the propagating strain pulse in the sample, sensing from a reflection of the second pulse a change in optical response of the sample, and relating a time of occurrence of the change in optical response to at least one dimension of the structure.
NASA Astrophysics Data System (ADS)
Akter, Sharmin; Tanabe, Tomoki; Maejima, Satoshi; Kawauchi, Satoko; Sato, Shunichi; Hinoki, Akinari; Aosasa, Suefumi; Yamamoto, Junji; Nishidate, Izumi
2016-04-01
To quantify the changes in optical properties of in vivo rat liver tissue, we applied diffuse reflectance spectroscopy (DRS) system using single-reflectance fiber probe during ischemia and reperfusion evoked by hepatic portal occlusion (hepatic artery, portal vein and bile duct). Changes in the reduced scattering coefficient μ s', the absorption coefficient μ a, the tissue oxygen saturation StO2, and the oxidation of heme aa3 in cytochrome c oxidase (C cO) OHaa3 of in vivo rat liver (n = 6) were evaluated. Heme aa3 in C cO were significantly reduced (P < 0.05) during ischemia, which indicates a sign of mitochondrial energy failure induced by oxygen insufficiency of liver tissue. We found that OHaa3 obtained from the proposed method was unchanged immediately after the onset of ischemia and started gradually decreasing at 2 min after the onset of ischemia. Difference in the time course between OHaa3 and the conventional ratio metric analysis with μ a(605)/ μ a(620) reported in literature demonstrates that the proposed method is effective in reduction of optical cross talk between hemoglobin and heme aa3. Our results suggest that DRS technique is applicable and useful for assessing in vivo tissue viability and hemodynamics in liver intraoperatively.
Infrared-optical transmission and reflection measurements on loose powders
NASA Astrophysics Data System (ADS)
Kuhn, J.; Korder, S.; Arduini-Schuster, M. C.; Caps, R.; Fricke, J.
1993-09-01
A method is described to determine quantitatively the infrared-optical properties of loose powder beds via directional-hemispherical transmission and reflection measurements. Instead of the integration of the powders into a potassium bromide (KBr) or a paraffin oil matrix, which would drastically alter the scattering behavior, the powders are placed onto supporting layers of polyethylene (PE) and KBr. A commercial spectrometer is supplemented by an external optics, which enables measurements on horizontally arranged samples. For data evaluation we use a solution of the equation of radiative transfer in the 3-flux approximation under boundary conditions adapted to the PE or KBr/powder system. A comparison with Kubelka-Munk's theory and Schuster's 2-flux approximation is performed, which shows that 3-flux approximation yields results closest to the exact solution. Equations are developed, which correct transmission and reflection of the samples for the influence of the supporting layer and calculate the specific extinction and the albedo of the powder and thus enables us to separate scattering and absorption part of the extinction spectrum. Measurements on TiO2 powder are presented, which show the influence of preparation techniques and data evaluation with different methods to obtain the albedo. The specific extinction of various TiO2 powders is presented.
Method of Making Lightweight, Single Crystal Mirror
NASA Technical Reports Server (NTRS)
Bly, Vincent T. (Inventor)
2015-01-01
A method of making a mirror from a single crystal blank may include fine grinding top and bottom surfaces of the blank to be parallel. The blank may then be heat treated to near its melting temperature. An optical surface may be created on an optical side of the blank. A protector may be bonded to the optical surface. With the protector in place, the blank may be light weighted by grinding a non-optical surface of the blank using computer controlled grinding. The light weighting may include creating a structure having a substantially minimum mass necessary to maintain distortion of the mirror within a preset limit. A damaged layer of the non-optical surface caused by light weighting may be removed with an isotropic etch and/or repaired by heat treatment. If an oxide layer is present, the entire blank may then be etched using, for example, hydrofluoric acid. A reflecting coating may be deposited on the optical surface.
Simulation of fluorescent measurements in the human skin
NASA Astrophysics Data System (ADS)
Meglinski, Igor V.; Sinichkin, Yurii P.; Utz, Sergei R.; Pilipenko, Helena A.
1995-05-01
Reflectance and fluorescence spectroscopy are successfully used for skin disease diagnostics. Human skin optical parameters are defined by its turbid, scattering properties with nonuniform absorption and fluorescence chromophores distribution, its multilayered structure, and variability under different physiological and pathological conditions. Theoretical modeling of light propagation in skin could improve the understanding of these condition and may be useful in the interpretation of in vivo reflectance and autofluorescence (AF) spectra. Laser application in medical optical tomography, tissue spectroscopy, and phototherapy stimulates the development of optical and mathematical light-tissue interaction models allowing to account the specific features of laser beam and tissue inhomogeneities. This paper presents the version of a Monte Carlo method for simulating of optical radiation propagation in biotissue and highly scattering media, allowing for 3D geometry of a medium. The simulation is based on use of Green's function of medium response to single external pulse. The process of radiation propagation is studied in the area with given boundary conditions, taking into account the processes of reflection and refraction at the boundaries of layers inside the medium under study. Results of Monte Carlo simulation were compared with experimental investigations and demonstrated good agreement.
Operation modes for a linear array of optical flexible reflective analog modulators
NASA Astrophysics Data System (ADS)
Doucet, Michel; Picard, Francis; Niall, Keith K.; Jerominek, Hubert
2005-05-01
A unique MEMS based spatial light modulator has been developed by INO and its partners for projection display applications. This unique device incorporates a linear array of micromirrors. Each micromirror is a 25 μm x 25 μm microbridge. Electrostatic actuation allows the control of the curvature of each micromirror independently. Combined with appropriate optics, this allows display of images with well over a thousands columns at a frame rate of 60 Hz. Operation and performance of this modulator have already been reported in the literature (SPIE Proceeding, Vol. 4985, p. 44-55; SPIE Proceeding, Vol. 5289, p. 284-293). In the latter paper, a brief description of various possible operation modes of this modulator has been presented. The objective of the present article is to provide an in-depth study of these operation modes. The study is done using numerical simulations. Several methods are employed to propagate the laser beam illuminating the micromirrors through the optical system. The gaussian beam superposition method is used to propagate the laser beam from the system input to the micromirrors. The reflexion on the micromirrors is computed by ray tracing. Finally, the angular spectrum of plane waves method is used to propagate the reflected coherent beam through Schlieren optics which converts the curvature of the micromirror into gray levels. The simulated optical response of the system as a function of the micromirror curvature is provided for various operation modes.
Method and apparatus for free-space quantum key distribution in daylight
Hughes, Richard J.; Buttler, William T.; Lamoreaux, Steve K.; Morgan, George L.; Nordholt, Jane E.; Peterson, C. Glen; Kwiat, Paul G.
2004-06-08
A quantum cryptography apparatus securely generates a key to be used for secure transmission between a sender and a receiver connected by an atmospheric transmission link. A first laser outputs a timing bright light pulse; other lasers output polarized optical data pulses after having been enabled by a random bit generator. Output optics transmit output light from the lasers that is received by receiving optics. A first beam splitter receives light from the receiving optics, where a received timing bright light pulse is directed to a delay circuit for establishing a timing window for receiving light from the lasers and where an optical data pulse from one of the lasers has a probability of being either transmitted by the beam splitter or reflected by the beam splitter. A first polarizer receives transmitted optical data pulses to output one data bit value and a second polarizer receives reflected optical data pulses to output a second data bit value. A computer receives pulses representing receipt of a timing bright timing pulse and the first and second data bit values, where receipt of the first and second data bit values is indexed by the bright timing pulse.
Evanescent Field Based Photoacoustics: Optical Property Evaluation at Surfaces
Goldschmidt, Benjamin S.; Rudy, Anna M.; Nowak, Charissa A.; Tsay, Yowting; Whiteside, Paul J. D.; Hunt, Heather K.
2016-01-01
Here, we present a protocol to estimate material and surface optical properties using the photoacoustic effect combined with total internal reflection. Optical property evaluation of thin films and the surfaces of bulk materials is an important step in understanding new optical material systems and their applications. The method presented can estimate thickness, refractive index, and use absorptive properties of materials for detection. This metrology system uses evanescent field-based photoacoustics (EFPA), a field of research based upon the interaction of an evanescent field with the photoacoustic effect. This interaction and its resulting family of techniques allow the technique to probe optical properties within a few hundred nanometers of the sample surface. This optical near field allows for the highly accurate estimation of material properties on the same scale as the field itself such as refractive index and film thickness. With the use of EFPA and its sub techniques such as total internal reflection photoacoustic spectroscopy (TIRPAS) and optical tunneling photoacoustic spectroscopy (OTPAS), it is possible to evaluate a material at the nanoscale in a consolidated instrument without the need for many instruments and experiments that may be cost prohibitive. PMID:27500652
Value of Reflected Light Microscopy in Teaching.
ERIC Educational Resources Information Center
Pasteris, Jill Dill
1983-01-01
Briefly reviews some optical and other physical properties of minerals that can be determined in reflected/incident light. Topics include optical properties of minerals, reflectance, internal reflections, color, bireflectance and reflection pleochroism, anisotropism, zonation, and reflected light microscopy as a teaching tool in undergraduate…
NASA Astrophysics Data System (ADS)
Kim, H. W.; Yeom, J. M.; Woo, S. H.
2017-12-01
Over the thin cloud region, satellite can simultaneously detect the reflectance from thin clouds and land surface. Since the mixed reflectance is not the exact cloud information, the background surface reflectance should be eliminated to accurately distinguish thin cloud such as cirrus. In the previous research, Kim et al (2017) was developed the cloud masking algorithm using the Geostationary Ocean Color Imager (GOCI), which is one of significant instruments for Communication, Ocean, and Meteorology Satellite (COMS). Although GOCI has 8 spectral channels including visible and near infra-red spectral ranges, the cloud masking has quantitatively reasonable result when comparing with MODIS cloud mask (Collection 6 MYD35). Especially, we noticed that this cloud masking algorithm is more specialized in thin cloud detections through the validation with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Because this cloud masking method was concentrated on eliminating background surface effects from the top-of-atmosphere (TOA) reflectance. Applying the difference between TOA reflectance and the bi-directional reflectance distribution function (BRDF) model-based background surface reflectance, cloud areas both thick cloud and thin cloud can be discriminated without infra-red channels which were mostly used for detecting clouds. Moreover, when the cloud mask result was utilized as the input data when simulating BRDF model and the optimized BRDF model-based surface reflectance was used for the optimized cloud masking, the probability of detection (POD) has higher value than POD of the original cloud mask. In this study, we examine the correlation between cloud optical depth (COD) and its cloud mask result. Cloud optical depths mostly depend on the cloud thickness, the characteristic of contents, and the size of cloud contents. COD ranges from less than 0.1 for thin clouds to over 1000 for the huge cumulus due to scattering by droplets. With the cloud optical depth of CALIPSO, the cloud masking result can be more improved since we can figure out how deep cloud is. To validate the cloud mask and the correlation result, the atmospheric retrieval will be computed to compare the difference between TOA reflectance and the simulated surface reflectance.
NASA Astrophysics Data System (ADS)
Schelkanova, Irina; Pandya, Aditya; Saiko, Guennadi; Nacy, Lidia; Babar, Hannan; Shah, Duoaud; Lilge, Lothar; Douplik, Alexandre
2016-01-01
A portable, spatially resolved, diffuse reflectance lensless imaging technique based on the charge-coupled device or complementary metal-oxide semiconductor sensor directly coupled to the fiber optic bundle is proposed for visualization of subsurface structures such as superficial microvasculature in the epithelium. We discuss an experimental method for emulating a lensless imaging setup via raster scanning a single fiber-optic cable over a microfluidic phantom containing periodic hemoglobin absorption contrast. To evaluate the ability of the technique to recover information about the subsurface linear structures, scattering layers formed of the Sylgard® 184 Silicone Elastomer and titanium dioxide were placed atop the microfluidic phantom. Thickness of the layers ranged from 0.2 to 0.7 mm, and the values of the reduced scattering coefficient (μs‧) were between 0.85 and 4.25 mm-1. The results demonstrate that fiber-optic, lensless platform can be used for two-dimensional imaging of absorbing inclusions in diffuse reflectance mode. In these experiments, it was shown that diffuse reflectance imaging can provide sufficient spatial sampling of the phantom for differentiation of 30 μm structural features of the embedded absorbing pattern inside the scattering media.
Optical-diffraction method for determining crystal orientation
Sopori, B.L.
1982-05-07
Disclosed is an optical diffraction technique for characterizing the three-dimensional orientation of a crystal sample. An arbitrary surface of the crystal sample is texture etched so as to generate a pseudo-periodic diffraction grating on the surface. A laser light beam is then directed onto the etched surface, and the reflected light forms a farfield diffraction pattern in reflection. Parameters of the diffraction pattern, such as the geometry and angular dispersion of the diffracted beam are then related to grating shape of the etched surface which is in turn related to crystal orientation. This technique may be used for examining polycrystalline silicon for use in solar cells.
NASA Technical Reports Server (NTRS)
Anselmo, V. J.; Reilly, T. H. (Inventor)
1979-01-01
A skin diagnosis system includes a scanning and optical arrangement whereby light reflected from each incremental area (pixel) of the skin is directed simultaneously to three separate light filters, e.g., IR, red, and green. As a result, the three devices simultaneously produce three signals which are directly related to the reflectance of light of different wavelengths from the corresponding pixel. These three signals for each pixel after processing are used as inputs to one or more output devices to produce a visual color display and/or a hard copy color print, for one usable as a diagnostic aid by a physician.
Enhanced backscatter of optical beams reflected in turbulent air.
Nelson, W; Palastro, J P; Wu, C; Davis, C C
2015-07-01
Optical beams propagating through air acquire phase distortions from turbulent fluctuations in the refractive index. While these distortions are usually deleterious to propagation, beams reflected in a turbulent medium can undergo a local recovery of spatial coherence and intensity enhancement referred to as enhanced backscatter (EBS). Here we validate the commonly used phase screen simulation with experimental results obtained from lab-scale experiments. We also verify theoretical predictions of the dependence of the turbulence strength on EBS. Finally, we present a novel algorithm called the "tilt-shift method" which allows detection of EBS in frozen turbulence, reducing the time required to detect the EBS signal.
Physically based reflectance model utilizing polarization measurement.
Nakano, Takayuki; Tamagawa, Yasuhisa
2005-05-20
A surface bidirectional reflectance distribution function (BRDF) depends on both the optical properties of the material and the microstructure of the surface and appears as combination of these factors. We propose a method for modeling the BRDF based on a separate optical-property (refractive-index) estimation by polarization measurement. Because the BRDF and the refractive index for precisely the same place can be determined, errors cased by individual difference or spatial dependence can be eliminated. Our BRDF model treats the surface as an aggregation of microfacets, and the diffractive effect is negligible because of randomness. An example model of a painted aluminum plate is presented.
Optical Johnson noise thermometry
Shepard, Robert L.; Blalock, Theron V.; Roberts, Michael J.; Maxey, Lonnie C.
1992-01-01
Method and device for direct, non-contact temperature measure of a body. A laser beam is reflected from the surface of the body and detected along with the Planck radiation. The detected signal is analyzed using signal correlation technique to generate an output signal proportional to the Johnson noise introduced into the reflected laser beam as a direct measure of the absolute temperature of the body.
ERIC Educational Resources Information Center
Yurumezoglu, K.
2009-01-01
An activity has been designed for the purpose of teaching how light is dispersed in a straight line and about the interaction between matter and light as well as the related concepts of shadows, partial shadows, reflection, refraction, primary colours and complementary (secondary) colours, and differentiating the relationship between colours, all…
[Optic method of searching for acupuncture points and channels].
Gertsik, G Ia; Zmievskoĭ, G N; Ivantsov, V I; Sang Min Li; Iu Byiung Kim; Gil Von Iun
2001-01-01
A procedure is proposed to search for acupuncture points and channels (APC) by space-sensitive recording of optical radiation diffusely reflected by surface (dermal and hypodermal) tissues of the body. For this purpose, the body surface is probed by low-intensity infrared radiation from a laser or noncoherent (light-emitting diodes) source by using a fiber-optic multichannel sensor. It is shown that it is most advisable to apply sources at wavelengths of 840-850 and 1260-1300 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abayli, D., E-mail: abayli@itu.edu.tr; Baydogan, N., E-mail: dogannil@itu.edu.tr
In this study, zirconium oxide (ZrO{sub 2}) thin film samples prepared by sol–gel method were irradiated using Co-60 radioisotope as gamma source. Then, it was investigated the ionizing effect on optical properties of ZrO{sub 2} thin film samples with the rise of the absorbed dose. The changes in the optical absorbance of ZrO{sub 2} thin films were determined by using optical transmittance and the reflectance measurements in the range between 190 – 1100 nm obtained from PG Instruments T80 UV-Vis spectrophotometer.
Fabrication of titania inverse opals by multi-cycle dip-infiltration for optical sensing
NASA Astrophysics Data System (ADS)
Chiang, Chun-Chen; Tuyen, Le Dac; Ren, Ching-Rung; Chau, Lai-Kwan; Wu, Cheng Yi; Huang, Ping-Ji; Hsu, Chia Chen
2016-04-01
We have demonstrated a low-cost method to fabricate TiO2 inverse opal photonic crystals with high refractive index skeleton. The TiO2 inverse opal films were fabricated from a polystyrene opal template by multi-cycle dip-infiltration-coating method. The properties of the TiO2 inverse opal films were characterized by scanning electron microscopy and Bragg reflection spectroscopy. The reflection spectroscopic measurements of the TiO2 inverse opal films were compared with theories of photonic band calculations and Bragg law. The agreement between experiment and theory indicates that we can precisely predict the refractive index of the infiltrated liquid sample in the TiO2 inverse opal films from the measurement results. The red-shift of the peak wavelength in the Bragg reflection spectra for both alcohol mixtures and aqueous sucrose solutions of increasing refractive index was observed and respective refractive index sensitivities of 296 and 286 nm/RIU (refractive index unit) were achieved. As the fabrication of the TiO2 inverse opal films and reflection spectroscopic measurement are fairly easy, the TiO2 inverse opal films have potential applications in optical sensing.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Young, David F.; Sassen, Kenneth; Alvarez, Joseph M.; Grund, Christian J.
1990-01-01
Cirrus cloud radiative and physical characteristics are determined using a combination of ground-based, aircraft, and satellite measurements taken as part of the FIRE Cirrus Intensive Field Observations (IFO) during October and November 1986. Lidar backscatter data are used with rawinsonde data to define cloud base, center, and top heights and the corresponding temperatures. Coincident GOES 4-km visible (0.65 micro-m) and 8-km infrared window (11.5 micro-m) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance model. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8.0 km for the 71 scenes. Mean vertical beam emittances derived from cloud-center temperatures were 0.62 for all scenes compared to 0.33 for the case study (27-28 October) reflecting the thinner clouds observed for the latter scenes. Relationships between cloud emittance, extinction coefficients, and temperature for the case study are very similar to those derived from earlier surface- based studies. The thicker clouds seen during the other IFO days yield different results. Emittances derived using cloud-top temperature were ratioed to those determined from cloud-center temperature. A nearly linear relationship between these ratios and cloud-center temperature holds promise for determining actual cloud-top temperatures and cloud thicknesses from visible and infrared radiance pairs. The mean ratio of the visible scattering optical depth to the infrared absorption optical depth was 2.13 for these data. This scattering efficiency ratio shows a significant dependence on cloud temperature. Values of mean scattering efficiency as high as 2.6 suggest the presence of small ice particles at temperatures below 230 K. The parameterization of visible reflectance in terms of cloud optical depth and clear-sky reflectance shows promise as a simplified method for interpreting visible satellite data reflected from cirrus clouds. Large uncertainties in the optical parameters due to cloud reflectance anisotropy and shading were found by analyzing data for various solar zenith angles and for simultaneous AVHRR data. Inhomogeneities in the cloud fields result in uneven cloud shading that apparently causes the occurrence of anomalously dark, cloudy pixels in the GOES data. These shading effects complicate the interpretation of the satellite data. The results highlight the need for additional study of cirrus cloud scattering processes and remote sensing techniques.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Young, David F.; Sassen, Kenneth; Alvarez, Joseph M.; Grund, Christian J.
1996-01-01
Cirrus cloud radiative and physical characteristics are determined using a combination of ground based, aircraft, and satellite measurements taken as part of the First ISCCP Region Experiment (FIRE) cirrus intensive field observations (IFO) during October and November 1986. Lidar backscatter data are used with rawinsonde data to define cloud base, center and top heights and the corresponding temperatures. Coincident GOES-4 4-km visible (0.65 micrometer) and 8-km infrared window (11.5 micrometer) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance model. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8.0 km for the 71 scenes. Mean vertical beam emittances derived from cloud-center temperatures were 062 for all scenes compared to 0.33 for the case study (27-28 October) reflecting the thinner clouds observed for the latter scenes. Relationships between cloud emittance , extinction coefficients, and temperature for the case study are very similar to those derived from earlier surface-based studies. The thicker clouds seen during the other IFO days yield different results. Emittances derived using cloud-top temperature wer ratioed to those determined from cloud-center temperature. A nearly linear relationship between these ratios and cloud-center temperature holds promise for determining actual cloud-top temperature and cloud thickness from visible and infrared radiance pairs. The mean ratio of the visible scattering optical depth to the infrared absorption optical depth was 2.13 for these data. This scattering efficiency ratio shows a significant dependence on cloud temperature. Values of mean scattering efficiency as high as 2.6 suggest the presence of small ice particles at temperatures below 230 K. the parameterization of visible reflectance in terms of cloud optical depth and clear sky reflectance shows promise as a simplified method for interpreting visible satellite data reflected from cirrus clouds. Large uncertainties in the optical parameters due to cloud reflectance anisotropy and shading were found by analyzing data for various solar zenith angles and for simultaneous advanced very high resolution radiometer (AVHRR) data. Inhomogeneities in the cloud fields result in uneven cloud shading that apparently causes the occurrence of anomalously dark, cloud pixels in the GOES data. These shading effects complicate the interpretation of the satellite data. The results highlight the need for additional study or cirrus cloud scattering processes and remote sensing techniques.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Werner, F.; Cho, H.-M.; Wind, G.; Platnick, S.; Ackerman, A. S.; Di Girolamo, L.; Marshak, A.; Meyer, Kerry
2017-02-01
The so-called bi-spectral method retrieves cloud optical thickness (τ) and cloud droplet effective radius (re) simultaneously from a pair of cloud reflectance observations, one in a visible or near infrared (VIS/NIR) band and the other in a shortwave-infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring sub-pixel variations of cloud reflectances can lead to a significant bias in the retrieved τ and re. In this study, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of sub-pixel variances of VIS/NIR and SWIR cloud reflectances and their covariance on the τ and re retrievals. This framework takes into account the fact that the retrievals are determined by both VIS/NIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how sub-pixel cloud reflectance variations impact the τ and re retrievals based on the bi-spectral method. In particular, our framework provides a mathematical explanation of how the sub-pixel variation in VIS/NIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval.
Wanek, Justin; Blair, Norman P.; Chau, Felix Y.; Lim, Jennifer I.; Leiderman, Yannek I.; Shahidi, Mahnaz
2016-01-01
Purpose This article reports a method for en face optical coherence tomography (OCT) imaging and quantitative assessment of alterations in both thickness and reflectance of individual retinal layers at different stages of diabetic retinopathy (DR). Methods High-density OCT raster volume scans were acquired in 29 diabetic subjects divided into no DR (NDR) or non-proliferative DR (NPDR) groups and 22 control subjects (CNTL). A customized image segmentation method identified eight retinal layer interfaces and generated en face thickness maps and reflectance images for nerve fiber layer (NFL), ganglion cell and inner plexiform layers (GCLIPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), photoreceptor outer segment layer (OSL), and retinal pigment epithelium (RPE). Mean thickness and intensity values were calculated in nine macular subfields for each retinal layer. Results En face thickness maps and reflectance images of retinal layers in CNTL subjects corresponded to normal retinal anatomy. Total retinal thickness correlated negatively with age in nasal subfields (R ≤−0.31; P ≤ 0.03, N = 51). In NDR subjects, NFL and OPL thickness were decreased (P = 0.05), and ONL thickness was increased (P = 0.04) compared to CNTL. In NPDR subjects, GCLIPL thickness was increased in perifoveal subfields (P < 0.05) and INL intensity was higher in all macular subfields (P = 0.04) compared to CNTL. Conclusions Depth and spatially resolved retinal thickness and reflectance measurements are potential biomarkers for assessment and monitoring of DR. PMID:27409491
NASA Technical Reports Server (NTRS)
Zhang, Z; Werner, F.; Cho, H. -M.; Wind, Galina; Platnick, S.; Ackerman, A. S.; Di Girolamo, L.; Marshak, A.; Meyer, Kerry
2017-01-01
The so-called bi-spectral method retrieves cloud optical thickness (t) and cloud droplet effective radius (re) simultaneously from a pair of cloud reflectance observations, one in a visible or near infrared (VIS/NIR) band and the other in a shortwave-infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring sub-pixel variations of cloud reflectances can lead to a significant bias in the retrieved t and re. In this study, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of sub-pixel variances of VIS/NIR and SWIR cloud reflectances and their covariance on the t and re retrievals. This framework takes into account the fact that the retrievals are determined by both VIS/NIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how sub-pixel cloud reflectance variations impact the t and re retrievals based on the bi-spectral method. In particular, our framework provides a mathematical explanation of how the sub-pixel variation in VIS/NIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval.
Atomic hydrogen cleaning of EUV multilayer optics
NASA Astrophysics Data System (ADS)
Graham, Samuel, Jr.; Steinhaus, Charles A.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa
2003-06-01
Recent studies have been conducted to investigate the use of atomic hydrogen as an in-situ contamination removal method for EUV optics. In these experiments, a commercial source was used to produce atomic hydrogen by thermal dissociation of molecular hydrogen using a hot filament. Samples for these experiments consisted of silicon wafers coated with sputtered carbon, Mo/Si optics with EUV-induced carbon, and bare Si-capped and Ru-B4C-capped Mo/Si optics. Samples were exposed to an atomic hydrogen source at a distance of 200 - 500 mm downstream and angles between 0-90° with respect to the source. Carbon removal rates and optic oxidation rates were measured using Auger electron spectroscopy depth profiling. In addition, at-wavelength peak reflectance (13.4 nm) was measured using the EUV reflectometer at the Advanced Light Source. Data from these experiments show carbon removal rates up to 20 Ê/hr for sputtered carbon and 40 Ê/hr for EUV deposited carbon at a distance of 200 mm downstream. The cleaning rate was also observed to be a strong function of distance and angular position. Experiments have also shown that the carbon etch rate can be increased by a factor of 4 by channeling atomic hydrogen through quartz tubes in order to direct the atomic hydrogen to the optic surface. Atomic hydrogen exposures of bare optic samples show a small risk in reflectivity degradation after extended periods. Extended exposures (up to 20 hours) of bare Si-capped Mo/Si optics show a 1.2% loss (absolute) in reflectivity while the Ru-B4C-capped Mo/Si optics show a loss on the order of 0.5%. In order to investigate the source of this reflectivity degradation, optic samples were exposed to atomic deuterium and analyzed using low energy ion scattering direct recoil spectroscopy to determine any reactions of the hydrogen with the multilayer stack. Overall, the results show that the risk of over-etching with atomic hydrogen is much less than previous studies using RF discharge cleaning while providing cleaning rates suitable for EUV lithography operations.
Atomic hydrogen cleaning of EUV multilayer optics
NASA Astrophysics Data System (ADS)
Graham, Samuel, Jr.; Steinhaus, Charles A.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa
2003-06-01
Recent studies have been conducted to investigate the use of atomic hydrogen as an in-situ contamination removal method for EUV optics. In these experiments, a commercial source was used to produce atomic hydrogen by thermal dissociation of molecular hydrogen using a hot filament. Samples for these experiments consisted of silicon wafers coated with sputtered carbon, Mo/Si optics with EUV-induced carbon, and bare Si-capped and Ru-B4C-capped Mo/Si optics. Samples were exposed to an atomic hydrogen source at a distance of 200 - 500 mm downstream and angles between 0-90° with respect to the source. Carbon removal rates and optic oxidation rates were measured using Auger electron spectroscopy depth profiling. In addition, at-wavelength peak reflectance (13.4 nm) was measured using the EUV reflectometer at the Advanced Light Source. Data from these experiments show carbon removal rates up to 20 Å/hr for sputtered carbon and 40 Å/hr for EUV deposited carbon at a distance of 200 mm downstream. The cleaning rate was also observed to be a strong function of distance and angular position. Experiments have also shown that the carbon etch rate can be increased by a factor of 4 by channeling atomic hydrogen through quartz tubes in order to direct the atomic hydrogen to the optic surface. Atomic hydrogen exposures of bare optic samples show a small risk in reflectivity degradation after extended periods. Extended exposures (up to 20 hours) of bare Si-capped Mo/Si optics show a 1.2% loss (absolute) in reflectivity while the Ru-B4C-capped Mo/Si optics show a loss on the order of 0.5%. In order to investigate the source of this reflectivity degradation, optic samples were exposed to atomic deuterium and analyzed using low energy ion scattering direct recoil spectroscopy to determine any reactions of the hydrogen with the multilayer stack. Overall, the results show that the risk of over-etching with atomic hydrogen is much less than previous studies using RF discharge cleaning while providing cleaning rates suitable for EUV lithography operations.
In Situ Fiber-Optic Reflectance Monitor
NASA Technical Reports Server (NTRS)
Linton, Roger C.; Gray, Perry A.
1996-01-01
In situ fiber-optic reflectance monitor serves as simple means of monitoring changes in reflectance of specimen exposed to simulated outerspace or other environments in vacuum chamber. Eliminates need to remove specimen from vacuum chamber, eliminating optical changes and bleaching such removal causes in coatings.
Shao, Zhenfeng; Zhang, Linjing
2016-01-01
Estimation of forest aboveground biomass is critical for regional carbon policies and sustainable forest management. Passive optical remote sensing and active microwave remote sensing both play an important role in the monitoring of forest biomass. However, optical spectral reflectance is saturated in relatively dense vegetation areas, and microwave backscattering is significantly influenced by the underlying soil when the vegetation coverage is low. Both of these conditions decrease the estimation accuracy of forest biomass. A new optical and microwave integrated vegetation index (VI) was proposed based on observations from both field experiments and satellite (Landsat 8 Operational Land Imager (OLI) and RADARSAT-2) data. According to the difference in interaction between the multispectral reflectance and microwave backscattering signatures with biomass, the combined VI (COVI) was designed using the weighted optical optimized soil-adjusted vegetation index (OSAVI) and microwave horizontally transmitted and vertically received signal (HV) to overcome the disadvantages of both data types. The performance of the COVI was evaluated by comparison with those of the sole optical data, Synthetic Aperture Radar (SAR) data, and the simple combination of independent optical and SAR variables. The most accurate performance was obtained by the models based on the COVI and optical and microwave optimal variables excluding OSAVI and HV, in combination with a random forest algorithm and the largest number of reference samples. The results also revealed that the predictive accuracy depended highly on the statistical method and the number of sample units. The validation indicated that this integrated method of determining the new VI is a good synergistic way to combine both optical and microwave information for the accurate estimation of forest biomass. PMID:27338378
Ray Tracing with Virtual Objects.
ERIC Educational Resources Information Center
Leinoff, Stuart
1991-01-01
Introduces the method of ray tracing to analyze the refraction or reflection of real or virtual images from multiple optical devices. Discusses ray-tracing techniques for locating images using convex and concave lenses or mirrors. (MDH)
Howansky, Adrian; Peng, Boyu; Lubinsky, Anthony R; Zhao, Wei
2017-03-01
Pulse height spectroscopy has been used by investigators to deduce the imaging properties of scintillators. Pulse height spectra (PHS) are used to compute the Swank factor, which describes the variation in scintillator light output per x-ray interaction. The spread in PHS measured below the K-edge is related to the optical component of the Swank factor, i.e., variations in light escape efficiency from different depths of x-ray interaction in the scintillator, denoted ε¯(z). Optimizing scintillators for medical imaging applications requires understanding of these optical properties, as they determine tradeoffs between parameters such as x-ray absorption, light yield, and spatial resolution. This work develops a model for PHS acquisition such that the effect of measurement uncertainty can be removed. This method allows ε¯(z) to be quantified on an absolute scale and permits more accurate estimation of the optical Swank factor of scintillators. The pulse height spectroscopy acquisition chain was modeled as a linear system of stochastic gain stages. Analytical expressions were derived for signal and noise propagation through the PHS chain, accounting for deterministic and stochastic aspects of x-ray absorption, scintillation, and light detection with a photomultiplier tube. The derived expressions were used to calculate PHS of thallium-doped cesium iodide (CsI) scintillators using parameters that were measured, calculated, or known from literature. PHS were measured at 25 and 32 keV of CsI samples designed with an optically reflective or absorptive backing, with or without a fiber-optic faceplate (FOP), and with thicknesses ranging from 150-1000 μm. Measured PHS were compared with calculated PHS, then light escape model parameters were varied until measured and modeled results reached agreement. Resulting estimates of ε¯(z) were used to calculate each scintillator's optical Swank factor. For scintillators of the same optical design, only minor differences in light escape efficiency were observed between samples with different thickness. As thickness increased, escape efficiency decreased by up to 20% for interactions furthest away from light collection. Optical design (i.e., backing and FOP) predominantly affected the magnitude and relative variation in ε¯(z). Depending on interaction depth and scintillator thickness, samples with an absorptive backing and FOP were estimated to yield 4.1-13.4 photons/keV. Samples with a reflective backing and FOP yielded 10.4-18.4 keV -1 , while those with a reflective backing and no FOP yielded 29.5-52.0 keV -1 . Optical Swank factors were approximately 0.9 and near-unity in samples featuring an absorptive or reflective backing, respectively. This work uses a modeling approach to remove the noise introduced by the measurement apparatus from measured PHS. This method allows absolute quantification of ε¯(z) and more accurate estimation of the optical Swank factor of scintillators. The method was applied to CsI scintillators with different thickness and optical design, and determined that optical design more strongly affects ε¯(z) and Swank factor than differences in CsI thickness. Despite large variations in ε¯(z) between optical designs, the Swank factor of all evaluated samples is above 0.9. Information provided by this methodology can help validate Monte Carlo simulations of structured CsI and optimize scintillator design for x-ray imaging applications. © 2016 American Association of Physicists in Medicine.
Thin transparent film characterization by photothermal reflectance (abstract)
NASA Astrophysics Data System (ADS)
Li Voti, R.; Wright, O. B.; Matsuda, O.; Larciprete, M. C.; Sibilia, C.; Bertolotti, M.
2003-01-01
Photothermal reflectance methods have been intensively applied to the nondestructive testing of opaque thin films [D. P. Almond and P. M. Patel, Photothermal Science and Techniques (Chapman and Hall, London, 1996); C. Bento and D. P. Almond, Meas. Sci. Technol. 6, 1022 (1995); J. Opsal, A. Rosencwaig, and D. Willenborg, Appl. Opt. 22, 3169 (1983)]. The basic principle is based on thermal wave interferometry: the opaque specimen is illuminated by a laser beam, periodically chopped at the frequency f, so as to generate a plane thermal wave in the surface region. This wave propagates in the film, approaches the rear interface (film-bulk), is partially reflected back, reaches the front surface, is again partially reflected back and so on, giving rise to thermal wave interference. A consequence of this interference is that the surface temperature may be enhanced (constructive interference) or reduced (destructive interference) by simply scanning the frequency f (that is, the thermal diffusion length μ=√D/πf ), so as to observe damped oscillations as a function of f; in practice only the first oscillation may be clearly resolved and used to measure either the film thickness d or the film thermal diffusivity D, and this situation occurs when μ≈d. In general, photothermal reflectance does not measure directly the surface temperature variation, but rather a directly related signal determined by the thermo-optic coefficients and the sample geometry; for detection it is common to monitor the optical reflectivity variation of a probe beam normally incident on the sample. If the thin film is partially transparent to the probe, the theory becomes more difficult [O. Matsuda and O. B. Wright, J. Opt. Soc. Am. B (in press)] and one should consider the probe beam multiple reflections in the thin film. The probe modulation is optically inhomogeneous due to the temperature-induced changes in refractive index. Although in the past the complexity of the analysis has impeded research in this field, we show how a general analytical method can be used to deal with photothermal reflectance data for transparent thin films. We apply this method to a thin film of silica on a silicon substrate [O. B. Wright, R. Li Voti, O. Matsuda, M. C. Larciprete, C. Sibilia, and M. Bertolotti, J. Appl. Phys. 91 5002 (2002)].
NASA Astrophysics Data System (ADS)
Khonina, S. N.; Karpeev, S. V.; Paranin, V. D.
2018-06-01
A technique for simultaneous detection of individual vortex states of the beams propagating in a randomly inhomogeneous medium is proposed. The developed optical system relies on the correlation method that is invariant to the beam wandering. The intensity distribution formed at the optical system output does not require digital processing. The proposed technique based on a multi-order phase diffractive optical element (DOE) is studied numerically and experimentally. The developed detection technique is used for the analysis of Laguerre-Gaussian vortex beams propagating under conditions of intense absorption, reflection, and scattering in transparent and opaque microparticles in aqueous suspensions. The performed experimental studies confirm the relevance of the vortex phase dependence of a laser beam under conditions of significant absorption, reflection, and scattering of the light.
Optimized phase mask to realize retro-reflection reduction for optical systems
NASA Astrophysics Data System (ADS)
He, Sifeng; Gong, Mali
2017-10-01
Aiming at the threats to the active laser detection systems of electro-optical devices due to the cat-eye effect, a novel solution is put forward to realize retro-reflection reduction in this paper. According to the demands of both cat-eye effect reduction and the image quality maintenance of electro-optical devices, a symmetric phase mask is achieved from a stationary phase method and a fast Fourier transform algorithm. Then, based on a comparison of peak normalized cross-correlation (PNCC) between the different defocus parameters, the optimal imaging position can be obtained. After modification with the designed phase mask, the cat-eye effect peak intensity can be reduced by two orders of magnitude while maintaining good image quality and high modulation transfer function (MTF). Furthermore, a practical design example is introduced to demonstrate the feasibility of our proposed approach.
NASA Astrophysics Data System (ADS)
Okamura, Rintaro; Iwabuchi, Hironobu; Schmidt, K. Sebastian
2017-12-01
Three-dimensional (3-D) radiative-transfer effects are a major source of retrieval errors in satellite-based optical remote sensing of clouds. The challenge is that 3-D effects manifest themselves across multiple satellite pixels, which traditional single-pixel approaches cannot capture. In this study, we present two multi-pixel retrieval approaches based on deep learning, a technique that is becoming increasingly successful for complex problems in engineering and other areas. Specifically, we use deep neural networks (DNNs) to obtain multi-pixel estimates of cloud optical thickness and column-mean cloud droplet effective radius from multispectral, multi-pixel radiances. The first DNN method corrects traditional bispectral retrievals based on the plane-parallel homogeneous cloud assumption using the reflectances at the same two wavelengths. The other DNN method uses so-called convolutional layers and retrieves cloud properties directly from the reflectances at four wavelengths. The DNN methods are trained and tested on cloud fields from large-eddy simulations used as input to a 3-D radiative-transfer model to simulate upward radiances. The second DNN-based retrieval, sidestepping the bispectral retrieval step through convolutional layers, is shown to be more accurate. It reduces 3-D radiative-transfer effects that would otherwise affect the radiance values and estimates cloud properties robustly even for optically thick clouds.
NASA Astrophysics Data System (ADS)
Taheri, A.; Askari, M.; Taghan Sasanpour, M.
2017-08-01
This paper studies the effect of lead wrapping on the response of the plastic scintillators as gamma detectors. Experimental tests and Geant4 simulations showed that lead wrapping cannot increase the gamma absorption efficiency of the detector but, as a reflector, it can improve the optical properties of the detector. The reflectivity of the lead foil as an optical reflector was determined equal to 66% using an experimental-simulation combined method. Based on the obtained results, the optical collection efficiency of the detector was also increased about 4% after employing the lead reflector.
Veiling glare reduction methods compared for ophthalmic applications
NASA Technical Reports Server (NTRS)
Buchele, D. R.
1981-01-01
Veiling glare in ocular viewing was simulated by viewing the retina of an eye model through a sheet of light-scattering material lit from the front. Four methods of glare reduction were compared, namely, optical scanning, polarized light, viewing and illumination paths either coaxial or intersecting at the object, and closed circuit TV. Photographs show the effect of these methods on visibility. Polarized light was required to eliminate light specularly reflected from the instrument optics. The greatest glare reduction was obtained when the first three methods were utilized together. Glare reduction using TV was limited by nonuniform distribution of scattered light over the image.
Spectroscopy by joint spectral and time domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Szkulmowski, Maciej; Tamborski, Szymon; Wojtkowski, Maciej
2015-03-01
We present the methodology for spectroscopic examination of absorbing media being the combination of Spectral Optical Coherence Tomography and Fourier Transform Spectroscopy. The method bases on the joint Spectral and Time OCT computational scheme and simplifies data analysis procedure as compared to the mostly used windowing-based Spectroscopic OCT methods. The proposed experimental setup is self-calibrating in terms of wavelength-pixel assignment. The performance of the method in measuring absorption spectrum was checked with the use of the reflecting phantom filled with the absorbing agent (indocyanine green). The results show quantitative accordance with the controlled exact results provided by the reference method.
Optical Assessment of Caries Lesion Structure and Activity
NASA Astrophysics Data System (ADS)
Lee, Robert Chulsung
New, more sophisticated diagnostic tools are needed for the detection and characterization of caries lesions in the early stages of development. It is not sufficient to simply detect caries lesions, methods are needed to assess the activity of the lesion and determine if chemical or surgical intervention is needed. Previous studies have demonstrated that polarization sensitive optical coherence tomography (PS-OCT) can be used to nondestructively image the subsurface lesion structure and measure the thickness of the highly mineralized surface zone. Other studies have demonstrated that the rate of dehydration can be correlated with the lesion activity and that the rate can be measured using optical methods. The main objective of this work was to test the hypothesis that optical methods can be used to assess lesion activity on tooth coronal and root surfaces. Simulated caries models were used to develop and validate an algorithm for detecting and measuring the highly mineralized surface layer using PS-OCT. This work confirmed that the algorithm was capable of estimating the thickness of the highly mineralized surface layer with high accuracy. Near-infrared (NIR) reflectance and thermal imaging methods were used to assess activity of caries lesions by measuring the state of lesion hydration. NIR reflectance imaging performed the best for artificial enamel and natural coronal caries lesion samples, particularly at wavelengths coincident with the water absorption band at 1460-nm. However, thermal imaging performed the best for artificial dentin and natural root caries lesion samples. These novel optical methods outperformed the conventional methods (ICDAS II) in accurately assessing lesion activity of natural coronal and root caries lesions. Infrared-based imaging methods have shown potential for in-vivo applications to objectively assess caries lesion activity in a single examination. It is likely that if future clinical trials are a success, this novel imaging technology will be employed for the detection and monitoring of early carious lesions without the use of ionizing radiation, thereby enabling conservative non-surgical intervention and the preservation of healthy tissue structure.
NASA Technical Reports Server (NTRS)
Harper, L. L. (Inventor)
1983-01-01
An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.
NASA Astrophysics Data System (ADS)
Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang
2016-10-01
We report a new method, polarization parameters indirect microscopic imaging with a high transmission infrared light source, to detect the morphology and component of human skin. A conventional reflection microscopic system is used as the basic optical system, into which a polarization-modulation mechanics is inserted and a high transmission infrared light source is utilized. The near-field structural characteristics of human skin can be delivered by infrared waves and material coupling. According to coupling and conduction physics, changes of the optical wave parameters can be calculated and curves of the intensity of the image can be obtained. By analyzing the near-field polarization parameters in nanoscale, we can finally get the inversion images of human skin. Compared with the conventional direct optical microscope, this method can break diffraction limit and achieve a super resolution of sub-100nm. Besides, the method is more sensitive to the edges, wrinkles, boundaries and impurity particles.
Optical Phased Array Using Guided Resonance with Backside Reflectors
NASA Technical Reports Server (NTRS)
Horie, Yu (Inventor); Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)
2016-01-01
Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.
Optical phased array using guided resonance with backside reflectors
Horie, Yu; Arbabi, Amir; Faraon, Andrei
2016-11-01
Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.
Optical phased array using guided resonance with backside reflectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horie, Yu; Arbabi, Amir; Faraon, Andrei
2018-03-13
Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.
Optical Phased Array Using Guided Resonance with Backside Reflectors
NASA Technical Reports Server (NTRS)
Horie, Yu (Inventor); Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)
2018-01-01
Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.
Properties of multilayer filters
NASA Technical Reports Server (NTRS)
Baumeister, P. W.
1973-01-01
New methods were investigated of using optical interference coatings to produce bandpass filters for the spectral region 110 nm to 200 nm. The types of filter are: triple cavity metal dielectric filters; all dielectric reflection filters; and all dielectric Fabry Perot type filters. The latter two types use thorium fluoride and either cryolite films or magnesium fluoride films in the stacks. The optical properties of the thorium fluoride were also measured.
Alignment of optical system components using an ADM beam through a null assembly
NASA Technical Reports Server (NTRS)
Hayden, Joseph E. (Inventor); Olczak, Eugene G. (Inventor)
2010-01-01
A system for testing an optical surface includes a rangefinder configured to emit a light beam and a null assembly located between the rangefinder and the optical surface. The null assembly is configured to receive and to reflect the emitted light beam toward the optical surface. The light beam reflected from the null assembly is further reflected back from the optical surface toward the null assembly as a return light beam. The rangefinder is configured to measure a distance to the optical surface using the return light beam.
Jung, Sang Min; Mun, Kyoung Hak; Kang, Soo Min; Han, Sang Kook
2017-09-18
An optical signal suppression technique based on a cascaded SOA and RSOA is proposed for the reflective passive optical networks (PONs) with wavelength division multiplexing (WDM). By suppressing the downstream signal of the optical carrier, the proposed reflective PON effectively reuses the downstream optical carrier for upstream signal transmission. As an experimental demonstration, we show that the proposed optical signal suppression technique is effective in terms of the signal bandwidth and bit-error-rate (BER) performance of the remodulated upstream transmission.
Optical biopsy of pre-malignant or degenerative lesions: the role of the inflammatory process
NASA Astrophysics Data System (ADS)
da Silva Martinho, Herculano
2011-03-01
Recent technological advances in fiber optics, light sources, detectors, and molecular biology have stimulated unprecedented development of optical methods to detect pathological changes in tissues. These methods, collectively termed "optical biopsy," are nondestructive in situ and real-time assays. Optical biopsy techniques as fluorescence spectroscopy, polarized light scattering spectroscopy, optical coherence tomography, confocal reflectance microscopy, and Raman spectroscopy had been extensively used to characterize several pathological tissues. In special, Raman spectroscopy technique had been able to probe several biochemical alterations due to pathology development as change in the DNA, glycogen, phospholipid, non-collagenous proteins. All studies claimed that the optical biopsy methods were able to discriminate normal and malignant tissues. However, few studies had been devoted to the discrimination of very common subtle or early pathological states as inflammatory process, which are always present on, e.g., cancer lesion border. In this work we present a systematic comparison of optical biopsy data on several kinds of lesions were inflammatory infiltrates play the role (breast, cervical, and oral lesion). It will be discussed the essential conditions for the optimization of discrimination among normal and alterated states based on statistical analysis.
Metrology for the manufacturing of freeform optics
NASA Astrophysics Data System (ADS)
Blalock, Todd; Myer, Brian; Ferralli, Ian; Brunelle, Matt; Lynch, Tim
2017-10-01
Recently the use of freeform surfaces have become a realization for optical designers. These non-symmetrical optical surfaces have allowed unique solutions to optical design problems. The implementation of freeform optical surfaces has been limited by manufacturing capabilities and quality. However over the past several years freeform fabrication processes have improved in capability and precision. But as with any manufacturing, proper metrology is required to monitor and verify the process. Typical optics metrology such as interferometry has its challenges and limitations with the unique shapes of freeform optics. Two contact metrology methods for freeform metrology are presented; a Leitz coordinate measurement machine (CMM) with an uncertainty of +/- 0.5 μm and a high resolution profilometer (Panasonic UA3P) with a measurement uncertainty of +/- 0.05 μm. We are also developing a non-contact high resolution technique based on the fringe reflection technique known as deflectometry. This fast non-contact metrology has the potential to compete with accuracies of the contact methods but also can acquire data in seconds rather than minutes or hours.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Ding, Lan; Liang, Changneng; Xiao, Yiming; Xu, Wen
2017-11-01
We develop a multiple reflection model (MRM) for the examination of infrared transmission properties of a graphene/substrate system. The incident angle and the multiple reflection beams in the substrate with finite thickness are taken into consideration. The model can be applied to predict the optical responses of graphene/substrate systems or to extract the real part of the optical conductance of graphene from the experimental measurement. As an example, we calculate the relative transmittance of graphene/quartz and graphene/sapphire systems by using MRM and provide an experimental verification in the near-infrared range. The measured results show good agreement with the calculated ones. Our method can be easily extended to accurately and non-invasively identify the layer numbers of other 2D materials, and assess the quality of them.
Influence Al doped ZnO nanostructure on structural and optical properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramelan, Ari Handono, E-mail: aramelan@mipa.uns.ac.id; Wahyuningsih, Sayekti; Chasanah, Uswatul
2016-04-19
The preparation of Al-doped ZnO (AZO) thin films prepared by the spin-coating method was reported. Preparation of AZO was conducted by annealing treatment at a temperature of 700°C. While the spin-coating process of AZO thin films were done at 2000 and 3000 rpm respectively. The structural properties of ZnO were determined by X- ray diffraction (XRD) analysis. ZnOnanostructure was formed after annealed at atemperature of 400°C.The morphology of ZnO was determined by Scanning Electron Microscopy (SEM) showed the irregular morphology about 30-50µm in size. Al doped on ZnO influenced the optical properties of those material. Increasing Al contain on ZnO causemore » of shifting to the lower wavelength. The optical properties of the ZnO as well as AZO films showed that higher reflectance on the ultraviolet region so those materials were used as anti-reflecting agent.Al addition significantly enhance the optical transparency and induce the blue-shift in optical bandgap of ZnO films.« less
Optical magnetic mirrors without metals
Liu, Sheng; Sinclair, Michael B.; Mahony, Thomas S.; ...
2014-01-01
The reflection of an optical wave from metal, arising from strong interactions between the optical electric field and the free carriers of the metal, is accompanied by a phase reversal of the reflected electric field. A far less common route to achieving high reflectivity exploits strong interactions between the material and the optical magnetic field to produce a “magnetic mirror” that does not reverse the phase of the reflected electric field. At optical frequencies, the magnetic properties required for strong interaction can be achieved only by using artificially tailored materials. Here, we experimentally demonstrate, for the first time to themore » best of our knowledge, the magnetic mirror behavior of a low-loss all-dielectric metasurface at infrared optical frequencies through direct measurements of the phase and amplitude of the reflected optical wave. The enhanced absorption and emission of transverse-electric dipoles placed close to magnetic mirrors can lead to exciting new advances in sensors, photodetectors, and light sources.« less
Floor Sensing System Using Laser Reflectivity for Localizing Everyday Objects and Robot
Pyo, Yoonseok; Hasegawa, Tsutomu; Tsuji, Tokuo; Kurazume, Ryo; Morooka, Ken'ichi
2014-01-01
This paper describes a new method of measuring the position of everyday objects and a robot on the floor using distance and reflectance acquired by laser range finder (LRF). The information obtained by this method is important for a service robot working in a human daily life environment. Our method uses only one LRF together with a mirror installed on the wall. Moreover, since the area of sensing is limited to a LRF scanning plane parallel to the floor and just a few centimeters above the floor, the scanning covers the whole room with minimal invasion of privacy of a resident, and occlusion problem is mitigated by using mirror. We use the reflection intensity and position information obtained from the target surface. Although it is not possible to identify all objects by additionally using reflection values, it would be easier to identify unknown objects if we can eliminate easily identifiable objects by reflectance. In addition, we propose a method for measuring the robot's pose using the tag which has the encoded reflection pattern optically identified by the LRF. Our experimental results validate the effectiveness of the proposed method. PMID:24763253
Absolute surface reconstruction by slope metrology and photogrammetry
NASA Astrophysics Data System (ADS)
Dong, Yue
Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.
NASA Astrophysics Data System (ADS)
Shen, Jian; Liu, Shouhua; Shen, Zicai; Shao, Jianda; Fan, Zhengxiu
2006-03-01
A model for refractive index of stratified dielectric substrate was put forward according to theories of inhomogeneous coatings. The substrate was divided into surface layer, subsurface layer and bulk layer along the normal direction of its surface. Both the surface layer (separated into N1 sublayers of uniform thickness) and subsurface layer (separated into N2 sublayers of uniform thickness), whose refractive indices have different statistical distributions, are equivalent to inhomogeneous coatings, respectively. And theoretical deduction was carried out by employing characteristic matrix method of optical coatings. An example of mathematical calculation for optical properties of dielectric coatings had been presented. The computing results indicate that substrate subsurface defects can bring about additional bulk scattering and change propagation characteristic in thin film and substrate. Therefore, reflectance, reflective phase shift and phase difference of an assembly of coatings and substrate deviate from ideal conditions. The model will provide some beneficial theory directions for improving optical properties of dielectric coatings via substrate surface modification.
Schneider, Ling; Feidenhans’l, Nikolaj A.; Telecka, Agnieszka; Taboryski, Rafael J.
2016-01-01
We report a simple one-step maskless fabrication of inverted pyramids on silicon wafers by reactive ion etching. The fabricated surface structures exhibit excellent anti-reflective properties: The total reflectance of the nano inverted pyramids fabricated by our method can be as low as 12% without any anti-reflective layers, and down to only 0.33% with a silicon nitride coating. The results from angle resolved scattering measurements indicate that the existence of triple reflections is responsible for the reduced reflectance. The surfaces with the nano inverted pyramids also exhibit a distinct milky white color. PMID:27725703
Han, Yongming; Chen, Antony; Cao, Junji; Fung, Kochy; Ho, Fai; Yan, Beizhan; Zhan, Changlin; Liu, Suixin; Wei, Chong; An, Zhisheng
2013-01-01
Quantifying elemental carbon (EC) content in geological samples is challenging due to interferences of crustal, salt, and organic material. Thermal/optical analysis, combined with acid pretreatment, represents a feasible approach. However, the consistency of various thermal/optical analysis protocols for this type of samples has never been examined. In this study, urban street dust and soil samples from Baoji, China were pretreated with acids and analyzed with four thermal/optical protocols to investigate how analytical conditions and optical correction affect EC measurement. The EC values measured with reflectance correction (ECR) were found always higher and less sensitive to temperature program than the EC values measured with transmittance correction (ECT). A high-temperature method with extended heating times (STN120) showed the highest ECT/ECR ratio (0.86) while a low-temperature protocol (IMPROVE-550), with heating time adjusted for sample loading, showed the lowest (0.53). STN ECT was higher than IMPROVE ECT, in contrast to results from aerosol samples. A higher peak inert-mode temperature and extended heating times can elevate ECT/ECR ratios for pretreated geological samples by promoting pyrolyzed organic carbon (PyOC) removal over EC under trace levels of oxygen. Considering that PyOC within filter increases ECR while decreases ECT from the actual EC levels, simultaneous ECR and ECT measurements would constrain the range of EC loading and provide information on method performance. Further testing with standard reference materials of common environmental matrices supports the findings. Char and soot fractions of EC can be further separated using the IMPROVE protocol. The char/soot ratio was lower in street dusts (2.2 on average) than in soils (5.2 on average), most likely reflecting motor vehicle emissions. The soot concentrations agreed with EC from CTO-375, a pure thermal method.
Wong, Un-Hong; Wu, Yunzhao; Wong, Hon-Cheng; Liang, Yanyan; Tang, Zesheng
2014-01-01
In this paper, we model the reflectance of the lunar regolith by a new method combining Monte Carlo ray tracing and Hapke's model. The existing modeling methods exploit either a radiative transfer model or a geometric optical model. However, the measured data from an Interference Imaging spectrometer (IIM) on an orbiter were affected not only by the composition of minerals but also by the environmental factors. These factors cannot be well addressed by a single model alone. Our method implemented Monte Carlo ray tracing for simulating the large-scale effects such as the reflection of topography of the lunar soil and Hapke's model for calculating the reflection intensity of the internal scattering effects of particles of the lunar soil. Therefore, both the large-scale and microscale effects are considered in our method, providing a more accurate modeling of the reflectance of the lunar regolith. Simulation results using the Lunar Soil Characterization Consortium (LSCC) data and Chang'E-1 elevation map show that our method is effective and useful. We have also applied our method to Chang'E-1 IIM data for removing the influence of lunar topography to the reflectance of the lunar soil and to generate more realistic visualizations of the lunar surface.
Optical Characterization of Deep-Space Object Rotation States
2014-09-01
surface bi-directional reflectance distribution function ( BRDF ), and then estimate the asteroid’s shape via a best-fit parameterized model . This hybrid...approach can be used because asteroid BRDFs are relatively well studied, but their shapes are generally unknown [17]. Asteroid shape models range...can be accomplished using a shape-dependent method that employs a model of the shape and reflectance characteristics of the object. Our analysis
Abookasis, David; Volkov, Boris; Shochat, Ariel; Kofman, Itamar
2016-04-01
Optical techniques have gained substantial interest over the past four decades for biomedical imaging due to their unique advantages, which may suggest their use as alternatives to conventional methodologies. Several optical techniques have been successfully adapted to clinical practice and biomedical research to monitor tissue structure and function in both humans and animal models. This paper reviews the analysis of the optical properties of brain tissue in the wavelength range between 500 and 1000 nm by three different diffuse optical reflectance methods: spatially modulated illumination, orthogonal diffuse light spectroscopy, and dual-wavelength laser speckle imaging, to monitor changes in brain tissue morphology, chromophore content, and metabolism following head injury. After induction of closed head injury upon anesthetized mice by weight-drop method, significant changes in hemoglobin oxygen saturation, blood flow, and metabolism were readily detectible by all three optical setups, up to 1 h post-trauma. Furthermore, the experimental results clearly demonstrate the feasibility and reliability of the three methodologies, and the differences between the system performances and capabilities are also discussed. The long-term goal of this line of study is to combine these optical systems to study brain pathophysiology in high spatiotemporal resolution using additional models of brain trauma. Such combined use of complementary algorithms should fill the gaps in each system's capabilities, toward the development of a noninvasive, quantitative tool to expand our knowledge of the principles underlying brain function following trauma, and to monitor the efficacy of therapeutic interventions in the clinic.
Abookasis, David; Volkov, Boris; Shochat, Ariel; Kofman, Itamar
2016-01-01
Abstract. Optical techniques have gained substantial interest over the past four decades for biomedical imaging due to their unique advantages, which may suggest their use as alternatives to conventional methodologies. Several optical techniques have been successfully adapted to clinical practice and biomedical research to monitor tissue structure and function in both humans and animal models. This paper reviews the analysis of the optical properties of brain tissue in the wavelength range between 500 and 1000 nm by three different diffuse optical reflectance methods: spatially modulated illumination, orthogonal diffuse light spectroscopy, and dual-wavelength laser speckle imaging, to monitor changes in brain tissue morphology, chromophore content, and metabolism following head injury. After induction of closed head injury upon anesthetized mice by weight-drop method, significant changes in hemoglobin oxygen saturation, blood flow, and metabolism were readily detectible by all three optical setups, up to 1 h post-trauma. Furthermore, the experimental results clearly demonstrate the feasibility and reliability of the three methodologies, and the differences between the system performances and capabilities are also discussed. The long-term goal of this line of study is to combine these optical systems to study brain pathophysiology in high spatiotemporal resolution using additional models of brain trauma. Such combined use of complementary algorithms should fill the gaps in each system’s capabilities, toward the development of a noninvasive, quantitative tool to expand our knowledge of the principles underlying brain function following trauma, and to monitor the efficacy of therapeutic interventions in the clinic. PMID:27175372
Li, Qiang; Qiu, Tian; Hao, Hongxia; Zhou, Hong; Wang, Tongzhou; Zhang, Ye; Li, Xin; Huang, Guoliang; Cheng, Jing
2012-04-07
A deep ultraviolet-visible (DUV-Vis) reflected optical fiber sensor was developed for use in a simple spectrophotometric detection system to detect the absorption of various illegal drugs at wavelengths between 180 and 800 nm. Quantitative analyses performed using the sensor revealed a high specificity and sensitivity for drug detection at a wavelength of approximately 200 nm. Using a double-absorption optical path length, extremely small sample volumes were used (32 to 160 nL), which allowed the use of minimal amounts of samples. A portable spectrophotometric system was established based on our optical fiber sensor for the on-site determination and quantitative analysis of common illegal drugs, such as 3,4-methylenedioxymethamphetamine (MDMA), ketamine hydrochloride, cocaine hydrochloride, diazepam, phenobarbital, and barbital. By analyzing the absorbance spectra, six different drugs were quantified at concentrations that ranged from 0.1 to 1000 μg mL(-1) (16 pg-0.16 μg). A novel Matching Algorithm of Spectra Space (MASS) was used to accurately distinguish between each drug in a mixture. As an important supplement to traditional methods, such as mass spectrometry or chromatography, our optical fiber sensor offers rapid and low-cost on-site detection using trace amounts of sample. This rapid and accurate analytical method has wide-ranging applications in forensic science, law enforcement, and medicine.
Massively parallel processor networks with optical express channels
Deri, R.J.; Brooks, E.D. III; Haigh, R.E.; DeGroot, A.J.
1999-08-24
An optical method for separating and routing local and express channel data comprises interconnecting the nodes in a network with fiber optic cables. A single fiber optic cable carries both express channel traffic and local channel traffic, e.g., in a massively parallel processor (MPP) network. Express channel traffic is placed on, or filtered from, the fiber optic cable at a light frequency or a color different from that of the local channel traffic. The express channel traffic is thus placed on a light carrier that skips over the local intermediate nodes one-by-one by reflecting off of selective mirrors placed at each local node. The local-channel-traffic light carriers pass through the selective mirrors and are not reflected. A single fiber optic cable can thus be threaded throughout a three-dimensional matrix of nodes with the x,y,z directions of propagation encoded by the color of the respective light carriers for both local and express channel traffic. Thus frequency division multiple access is used to hierarchically separate the local and express channels to eliminate the bucket brigade latencies that would otherwise result if the express traffic had to hop between every local node to reach its ultimate destination. 3 figs.
Massively parallel processor networks with optical express channels
Deri, Robert J.; Brooks, III, Eugene D.; Haigh, Ronald E.; DeGroot, Anthony J.
1999-01-01
An optical method for separating and routing local and express channel data comprises interconnecting the nodes in a network with fiber optic cables. A single fiber optic cable carries both express channel traffic and local channel traffic, e.g., in a massively parallel processor (MPP) network. Express channel traffic is placed on, or filtered from, the fiber optic cable at a light frequency or a color different from that of the local channel traffic. The express channel traffic is thus placed on a light carrier that skips over the local intermediate nodes one-by-one by reflecting off of selective mirrors placed at each local node. The local-channel-traffic light carriers pass through the selective mirrors and are not reflected. A single fiber optic cable can thus be threaded throughout a three-dimensional matrix of nodes with the x,y,z directions of propagation encoded by the color of the respective light carriers for both local and express channel traffic. Thus frequency division multiple access is used to hierarchically separate the local and express channels to eliminate the bucket brigade latencies that would otherwise result if the express traffic had to hop between every local node to reach its ultimate destination.
NASA Astrophysics Data System (ADS)
Schuck, Miller Harry
Automotive head-up displays require compact, bright, and inexpensive imaging systems. In this thesis, a compact head-up display (HUD) utilizing liquid-crystal-on-silicon microdisplay technology is presented from concept to implementation. The thesis comprises three primary areas of HUD research: the specification, design and implementation of a compact HUD optical system, the development of a wafer planarization process to enhance reflective device brightness and light immunity and the design, fabrication and testing of an inexpensive 640 x 512 pixel active matrix backplane intended to meet the HUD requirements. The thesis addresses the HUD problem at three levels, the systems level, the device level, and the materials level. At the systems level, the optical design of an automotive HUD must meet several competing requirements, including high image brightness, compact packaging, video-rate performance, and low cost. An optical system design which meets the competing requirements has been developed utilizing a fully-reconfigurable reflective microdisplay. The design consists of two optical stages, the first a projector stage which magnifies the display, and a second stage which forms the virtual image eventually seen by the driver. A key component of the optical system is a diffraction grating/field lens which forms a large viewing eyebox while reducing the optical system complexity. Image quality biocular disparity and luminous efficacy were analyzed and results of the optical implementation are presented. At the device level, the automotive HUD requires a reconfigurable, video-rate, high resolution image source for applications such as navigation and night vision. The design of a 640 x 512 pixel active matrix backplane which meets the requirements of the HUD is described. The backplane was designed to produce digital field sequential color images at video rates utilizing fast switching liquid crystal as the modulation layer. The design methodology is discussed, and the example of a clock generator is described from design to implementation. Electrical and optical test results of the fabricated backplane are presented. At the materials level, a planarization method was developed to meet the stringent brightness requirements of automotive HUD's. The research efforts described here have resulted in a simple, low cost post-processing method for planarizing microdisplay substrates based on a spin-cast polymeric resin, benzocyclobutene (BCB). Six- fold reductions in substrate step height were accomplished with a single coating. Via masking and dry etching methods were developed. High reflectivity metal was deposited and patterned over the planarized substrate to produce high aperture pixel mirrors. The process is simple, rapid, and results in microdisplays better able to meet the stringent requirements of high brightness display systems. Methods and results of the post- processing are described.
Yu, Jin; Abidi, Syed Sibte Raza; Artes, Paul; McIntyre, Andy; Heywood, Malcolm
2005-01-01
The availability of modern imaging techniques such as Confocal Scanning Laser Tomography (CSLT) for capturing high-quality optic nerve images offer the potential for developing automatic and objective methods for diagnosing glaucoma. We present a hybrid approach that features the analysis of CSLT images using moment methods to derive abstract image defining features. The features are then used to train classifers for automatically distinguishing CSLT images of normal and glaucoma patient. As a first, in this paper, we present investigations in feature subset selction methods for reducing the relatively large input space produced by the moment methods. We use neural networks and support vector machines to determine a sub-set of moments that offer high classification accuracy. We demonstratee the efficacy of our methods to discriminate between healthy and glaucomatous optic disks based on shape information automatically derived from optic disk topography and reflectance images.
Fibre optic connectors with high-return-loss performance
NASA Astrophysics Data System (ADS)
Knott, Michael P.; Johnson, R.; Cooke, K.; Longhurst, P. C.
1990-09-01
This paper describes the development of a single mode fibre optic connector with high return loss performance without the use of index matching. Partial reflection of incident light at a fibre optic connector interface is a recognised problem where the result can be increased noise and waveform distortion. This is particularly important for video transmission in subscriber networks which requires a high signal to noise ratio. A number of methods can be used to improve the return loss. The method described here uses a process which angles the connector endfaces. Measurements show typical return losses of -55dB can be achieved for an end angle of 6 degrees. Insertion loss results are also presented.
Polarimetric glucose sensing using Brewster reflection applying a rotating retarder analyzer
NASA Astrophysics Data System (ADS)
Boeckle, Stefan; Rovati, Luigi L.; Ansari, Rafat R.
2003-10-01
Previously, we proposed a polarimetric method, that exploits the Brewster-reflection with the final goal of application to the human eye (reflection off the eye lens) for non-invasive glucose sensing. The linearly polarized reflected light of this optical scheme is rotated by the glucose molecules present in the aqueous humor, thus carries the blood glucose concentration information. A proof-of-concept experimental bench-top setup is presented, applying a multi-wavelength true phase measurement approach and a rotating phase retarder as an analyzer to measure the very small rotation angles and the complete polarization state of the measurement light.
Optical Biopsy: A New Frontier in Endoscopic Detection and Diagnosis
WANG, THOMAS D.; VAN DAM, JACQUES
2007-01-01
Endoscopic diagnosis currently relies on the ability of the operator to visualize abnormal patterns in the image created by light reflected from the mucosal surface of the gastrointestinal tract. Advances in fiber optics, light sources, detectors, and molecular biology have led to the development of several novel methods for tissue evaluation in situ. The term “optical biopsy” refers to methods that use the properties of light to enable the operator to make an instant diagnosis at endoscopy, previously possible only by using histological or cytological analysis. Promising imaging techniques include fluorescence endoscopy, optical coherence tomography, confocal microendoscopy, and molecular imaging. Point detection schemes under development include light scattering and Raman spectroscopy. Such advanced diagnostic methods go beyond standard endoscopic techniques by offering improved image resolution, contrast, and tissue penetration and providing biochemical and molecular information about mucosal disease. This review describes the basic biophysics of light-tissue interactions, assesses the strengths and weaknesses of each method, and examines clinical and preclinical evidence for each approach. PMID:15354274
Jin, Lu; Li, Li; Li, Xin-xia; Yang, Ting; Kong, Bin; Xu, Ping-ping
2011-02-01
The paper is to report the development of an optic-fiber sensing technology method to analyze metronidazole tablets rapidly. In this fiber-optic sensing system, the light from source delivering to probe can be dipped into simple-handling sample solution, absorbed by the solution and reflected to the fiber-optic and detected in the detection system at last. Then the drug content can be shown in the screen from the ultraviolet absorption spectra and the consistency between that obtained by this method and that in China Pharmacopoeia can be compared. With regard to data processing, a new method is explored to identify the authenticity of drugs using the similarity between the sample map and the standard pattern by full ultraviolet spectrum. The results indicate that ultraviolet spectra of tablets can be obtained from this technology and the determination results showed no significant difference as compared with the method in China Pharmacopoeia (P > 0.05), and the similarity can be a parameter to identify the authenticity of drugs.
Retrieval of aerosol optical depth over bare soil surfaces using time series of MODIS imagery
NASA Astrophysics Data System (ADS)
Yuan, Zhengwu; Yuan, Ranyin; Zhong, Bo
2014-11-01
Aerosol Optical Depth (AOD) is one of the key parameters which can not only reflect the characterization of atmospheric turbidity, but also identify the climate effects of aerosol. The current MODIS aerosol estimation algorithm over land is based on the "dark-target" approach which works only over densely vegetated surfaces. For non-densely vegetated surfaces (such as snow/ice, desert, and bare soil surfaces), this method will be failed. In this study, we develop an algorithm to derive AOD over the bare soil surfaces. Firstly, this method uses the time series of MODIS imagery to detect the " clearest" observations during the non-growing season in multiple years for each pixel. Secondly, the "clearest" observations after suitable atmospheric correction are used to fit the bare soil's bidirectional reflectance distribution function (BRDF) using Kernel model. As long as the bare soil's BRDF is established, the surface reflectance of "hazy" observations can be simulated. Eventually, the AOD over the bare soil surfaces are derived. Preliminary validation results by comparing with the ground measurements from AERONET at Xianghe sites show a good agreement.
High-speed optical coherence tomography by circular interferometric ranging
NASA Astrophysics Data System (ADS)
Siddiqui, Meena; Nam, Ahhyun S.; Tozburun, Serhat; Lippok, Norman; Blatter, Cedric; Vakoc, Benjamin J.
2018-02-01
Existing three-dimensional optical imaging methods excel in controlled environments, but are difficult to deploy over large, irregular and dynamic fields. This means that they can be ill-suited for use in areas such as material inspection and medicine. To better address these applications, we developed methods in optical coherence tomography to efficiently interrogate sparse scattering fields, that is, those in which most locations (voxels) do not generate meaningful signal. Frequency comb sources are used to superimpose reflected signals from equispaced locations through optical subsampling. This results in circular ranging, and reduces the number of measurements required to interrogate large volumetric fields. As a result, signal acquisition barriers that have limited speed and field in optical coherence tomography are avoided. With a new ultrafast, time-stretched frequency comb laser design operating with 7.6 MHz to 18.9 MHz repetition rates, we achieved imaging of multi-cm3 fields at up to 7.5 volumes per second.
NASA Astrophysics Data System (ADS)
Sikorski, B. L.; Szkulmowski, M.; Kałużny, J. J.; Bajraszewski, T.; Kowalczyk, A.; Wojtkowski, M.
2008-02-01
The ability to obtain reliable information on functional status of photoreceptor layer is essential for assessing vision impairment in patients with macular diseases. The reconstruction of three-dimensional retinal structure in vivo using Spectral Optical Coherence Tomography (Spectral OCT) became possible with a recent progress of the OCT field. Three-dimensional data collected by Spectral OCT devices comprise information on light intensity back-reflected from the junction between photoreceptor outer and inner segments (IS/OS) and thus can be used for evaluating photoreceptors impairment. In this paper, we introduced so called Spectral OCT reflectivity maps - a new method of selecting and displaying the spatial distribution of reflectivity of individual retinal layers. We analyzed the reflectivity of the IS/OS layer in various macular diseases. We have measured eyes of 49 patients with photoreceptor dysfunction in course of age-related macular degeneration, macular holes, central serous chorioretinopathy, acute zonal occult outer retinopathy, multiple evanescent white dot syndrome, acute posterior multifocal placoid pigment epitheliopathy, drug-induced retinopathy and congenital disorders.
NASA Astrophysics Data System (ADS)
Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith
2014-05-01
An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.
Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith
2014-05-01
An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.
NASA Astrophysics Data System (ADS)
Yamamoto, Kazuya; Takaoka, Toshimitsu; Fukui, Hidetoshi; Haruta, Yasuyuki; Yamashita, Tomoya; Kitagawa, Seiichiro
2016-03-01
In general, thin-film coating process is widely applied on optical lens surface as anti-reflection function. In normal production process, at first lens is manufactured by molding, then anti-reflection is added by thin-film coating. In recent years, instead of thin-film coating, sub-wavelength structures adding on surface of molding die are widely studied and development to keep anti-reflection performance. As merits, applying sub-wavelength structure, coating process becomes unnecessary and it is possible to reduce man-hour costs. In addition to cost merit, these are some technical advantages on this study. Adhesion of coating depends on material of plastic, and it is impossible to apply anti-reflection function on arbitrary surface. Sub-wavelength structure can solve both problems. Manufacturing method of anti-reflection structure can be divided into two types mainly. One method is with the resist patterning, and the other is mask-less method that does not require patterning. What we have developed is new mask-less method which is no need for resist patterning and possible to impart an anti-reflection structure to large area and curved lens surface, and can be expected to apply to various market segments. We report developed technique and characteristics of production lens.
Controlled laser delivery into biological tissue via thin-film optical tunneling and refraction
NASA Astrophysics Data System (ADS)
Whiteside, Paul J. D.; Goldschmidt, Benjamin S.; Curry, Randy; Viator, John A.
2015-02-01
Due to the often extreme energies employed, contemporary methods of laser delivery utilized in clinical dermatology allow for a dangerous amount of high-intensity laser light to reflect off a multitude of surfaces, including the patient's own skin. Such techniques consistently represent a clear and present threat to both patients and practitioners alike. The intention of this work was therefore to develop a technique that mitigates this problem by coupling the light directly into the tissue via physical contact with an optical waveguide. In this manner, planar waveguides cladded in silver with thin-film active areas were used to illuminate agar tissue phantoms with nanosecond-pulsed laser light at 532nm. The light then either refracted or optically tunneled through the active area, photoacoustically generating ultrasonic waves within the phantom, whose peak-to-peak intensity directly correlated to the internal reflection angle of the beam. Consequently, angular spectra for energy delivery were recorded for sub-wavelength silver and titanium films of variable thickness. Optimal energy delivery was achieved for internal reflection angles ranging from 43 to 50 degrees, depending on the active area and thin film geometries, with titanium films consistently delivering more energy across the entire angular spectrum due to their relatively high refractive index. The technique demonstrated herein therefore not only represents a viable method of energy delivery for biological tissue while minimizing the possibility for stray light, but also demonstrates the possibility for utilizing thin films of high refractive index metals to redirect light out of an optical waveguide.
Optical measurements of absorption changes in two-layered diffusive media
NASA Astrophysics Data System (ADS)
Fabbri, Francesco; Sassaroli, Angelo; Henry, Michael E.; Fantini, Sergio
2004-04-01
We have used Monte Carlo simulations for a two-layered diffusive medium to investigate the effect of a superficial layer on the measurement of absorption variations from optical diffuse reflectance data processed by using: (a) a multidistance, frequency-domain method based on diffusion theory for a semi-infinite homogeneous medium; (b) a differential-pathlength-factor method based on a modified Lambert-Beer law for a homogeneous medium and (c) a two-distance, partial-pathlength method based on a modified Lambert-Beer law for a two-layered medium. Methods (a) and (b) lead to a single value for the absorption variation, whereas method (c) yields absorption variations for each layer. In the simulations, the optical coefficients of the medium were representative of those of biological tissue in the near-infrared. The thickness of the first layer was in the range 0.3-1.4 cm, and the source-detector distances were in the range 1-5 cm, which is typical of near-infrared diffuse reflectance measurements in tissue. The simulations have shown that (1) method (a) is mostly sensitive to absorption changes in the underlying layer, provided that the thickness of the superficial layer is ~0.6 cm or less; (2) method (b) is significantly affected by absorption changes in the superficial layer and (3) method (c) yields the absorption changes for both layers with a relatively good accuracy of ~4% for the superficial layer and ~10% for the underlying layer (provided that the absorption changes are less than 20-30% of the baseline value). We have applied all three methods of data analysis to near-infrared data collected on the forehead of a human subject during electroconvulsive therapy. Our results suggest that the multidistance method (a) and the two-distance partial-pathlength method (c) may better decouple the contributions to the optical signals that originate in deeper tissue (brain) from those that originate in more superficial tissue layers.
Spectroscopic Detection of Caries Lesions
Ruohonen, Mika; Palo, Katri; Alander, Jarmo
2013-01-01
Background. A caries lesion causes changes in the optical properties of the affected tissue. Currently a caries lesion can be detected only at a relatively late stage of development. Caries diagnosis also suffers from high interobserver variance. Methods. This is a pilot study to test the suitability of an optical diffuse reflectance spectroscopy for caries diagnosis. Reflectance visible/near-infrared spectroscopy (VIS/NIRS) was used to measure caries lesions and healthy enamel on extracted human teeth. The results were analysed with a computational algorithm in order to find a rule-based classification method to detect caries lesions. Results. The classification indicated that the measured points of enamel could be assigned to one of three classes: healthy enamel, a caries lesion, and stained healthy enamel. The features that enabled this were consistent with theory. Conclusions. It seems that spectroscopic measurements can help to reduce false positives at in vitro setting. However, further research is required to evaluate the strength of the evidence for the method's performance. PMID:27006907
Optical properties (bidirectional reflectance distribution function) of shot fabric.
Lu, R; Koenderink, J J; Kappers, A M
2000-11-01
To study the optical properties of materials, one needs a complete set of the angular distribution functions of surface scattering from the materials. Here we present a convenient method for collecting a large set of bidirectional reflectance distribution function (BRDF) samples in the hemispherical scattering space. Material samples are wrapped around a right-circular cylinder and irradiated by a parallel light source, and the scattered radiance is collected by a digital camera. We tilted the cylinder around its center to collect the BRDF samples outside the plane of incidence. This method can be used with materials that have isotropic and anisotropic scattering properties. We demonstrate this method in a detailed investigation of shot fabrics. The warps and the fillings of shot fabrics are dyed different colors so that the fabric appears to change color at different viewing angles. These color-changing characteristics are found to be related to the physical and geometrical structure of shot fabric. Our study reveals that the color-changing property of shot fabrics is due mainly to an occlusion effect.
Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su P.; Kaznatcheev K.; Wang, Y.
In a previous paper, the University of Arizona (UA) has developed a measurement technique called: Software Configurable Optical Test System (SCOTS) based on the principle of reflection deflectometry. In this paper, we present results of this very efficient optical metrology method applied to the metrology of X-ray mirrors. We used this technique to measure surface slope errors with precision and accuracy better than 100 nrad (rms) and {approx}200 nrad (rms), respectively, with a lateral resolution of few mm or less. We present results of the calibration of the metrology systems, discuss their accuracy and address the precision in measuring amore » spherical mirror.« less
A theoretical study on the optical properties of black silicon
NASA Astrophysics Data System (ADS)
Ma, Shijun; Liu, Shuang; Xu, Qinwei; Xu, Junwen; Lu, Rongguo; Liu, Yong; Zhong, Zhiyong
2018-03-01
There is a wide application prospect in black silicon, especially in solar cells and photoelectric detectors. For further optimization of black silicon, it is important to study its optical properties. Especially, the influence of the surface nanostructures on these properties and the light propagation within the nanostructures are relevant. In this paper, two kinds of black silicon models are studied via the finite differences time domain method. The simulated reflectance spectra matches well with the measured curve. Also, the light intensity distribution within the nanostructures shows that near 80% of the incident light are redirected and subjected to internal reflection, which provides powerful support for the good light trapping properties of black silicon.
Cutaneous tumors in vivo investigations using fluorescence and diffuse reflectance techniques
NASA Astrophysics Data System (ADS)
Borisova, E.; Troyanova, P.; Nikolova, E.; Avramov, L.
2008-06-01
In the recent years, there has been growing interest in the common use of laser-induced autofluorescence (LIAF) and reflectance spectroscopy (RS) to differentiate disease from normal surrounding tissue - so called optical biopsy method. Painless, instant diagnoses from optical biopsies will soon be a reality. These forms of optical diagnoses are preferable to the removal of several square millimeters of tissue surface - common in traditional biopsies - followed by delays while samples are sent for clinical analysis. The goal of this work was investigation of cutaneous benign and malignant lesions by the methods of LIAFS and RS. A nitrogen laser at 337 nm was applied for the needs of autofluorescence excitation. Broad-spectrum halogen lamp (from 400 to 900 nm) was applied for diffuse reflectance measurements. An associated microspectrometer detected in vivo the fluorescence and reflectance signals from human skin. The main spectral features of benign lesions - compound nevus, dysplastic nevi, heamangioma and basal cell papilloma and malignant lesions - pigmented, amelanotic and secondary malignant melanoma, as well as basal cell carcinoma are discussed and their possible origins are indicated. Spectra from healthy skin areas near to the lesion were detected to be used posteriori to reveal changes between healthy and lesion skin spectra. Influence of the main skin pigments on the spectra detected is discussed and evaluation of possibilities for differentiation between malignant and benign lesions is made based on their spectral properties. This research shows that non-invasive and high-sensitive in vivo detection by means of appropriate light sources and detectors should be possible, related to real-time determination of existing pathological conditions.
Electronic and Optical properties of Graphene Nanoribbons
NASA Astrophysics Data System (ADS)
Molinari, Elisa; Ferretti, Andrea; Cardoso, Claudia; Prezzi, Deborah; Ruini, Alice
Narrow graphene nanoribbons (GNRs) exhibit substantial electronic band gaps, and optical properties expected to be fundamentally different from the ones of their parent material graphene. Unlike graphene the optical response of GNRs may be tuned by the ribbon width and the directly related electronic band gap. We have addressed the optical properties of chevron-like and finite-size armchair nanoribbons by computing the fundamental and optical gap from ab initio methods. Our results are in very good agreement with the experimental values obtained by STS, ARPES, and differential reflectance spectroscopy, indicating that this computational scheme can be quantitatively predictive for electronic and optical spectroscopies of nanostructures. These study has been partly supported by the EU Centre of Excellence ''MaX - MAterials design at the eXascale''.
Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang
2016-05-03
Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.
Defect-detection algorithm for noncontact acoustic inspection using spectrum entropy
NASA Astrophysics Data System (ADS)
Sugimoto, Kazuko; Akamatsu, Ryo; Sugimoto, Tsuneyoshi; Utagawa, Noriyuki; Kuroda, Chitose; Katakura, Kageyoshi
2015-07-01
In recent years, the detachment of concrete from bridges or tunnels and the degradation of concrete structures have become serious social problems. The importance of inspection, repair, and updating is recognized in measures against degradation. We have so far studied the noncontact acoustic inspection method using airborne sound and the laser Doppler vibrometer. In this method, depending on the surface state (reflectance, dirt, etc.), the quantity of the light of the returning laser decreases and optical noise resulting from the leakage of light reception arises. Some influencing factors are the stability of the output of the laser Doppler vibrometer, the low reflective characteristic of the measurement surface, the diffused reflection characteristic, measurement distance, and laser irradiation angle. If defect detection depends only on the vibration energy ratio since the frequency characteristic of the optical noise resembles white noise, the detection of optical noise resulting from the leakage of light reception may indicate a defective part. Therefore, in this work, the combination of the vibrational energy ratio and spectrum entropy is used to judge whether a measured point is healthy or defective or an abnormal measurement point. An algorithm that enables more vivid detection of a defective part is proposed. When our technique was applied in an experiment with real concrete structures, the defective part could be extracted more vividly and the validity of our proposed algorithm was confirmed.
NASA Astrophysics Data System (ADS)
Nabok, A. V.; Tsargorodskaya, A.; Hassan, A. K.; Starodub, N. F.
2005-06-01
The environmental toxins, such as herbicides simazine and atrazine, and T2 mycotoxin were registered with the optical methods of surface plasmon resonance (SPR) and recently developed total internal reflection ellipsometry (TIRE). The immune assay approach was exploited for in situ registration of the above low molecular weight toxins with specific antibodies immobilised onto the gold surface via (poly)allylamine hydrochloride layer using electrostatic self-assembly (ESA) technique. The comparison of two methods of SPR and TIRE shows a higher sensitivity of the latter.
Self-anti-reflective density-modulated thin films by HIPS technique
NASA Astrophysics Data System (ADS)
Keles, Filiz; Badradeen, Emad; Karabacak, Tansel
2017-08-01
A critical factor for an efficient light harvesting device is reduced reflectance in order to achieve high optical absorptance. In this regard, refractive index engineering becomes important to minimize reflectance. In this study, a new fabrication approach to obtain density-modulated CuIn x Ga(1-x)Se2 (CIGS) thin films with self-anti-reflective properties has been demonstrated. Density-modulated CIGS samples were fabricated by utilizing high pressure sputtering (HIPS) at Ar gas pressure of 2.75 × 10-2 mbar along with conventional low pressure sputtering (LPS) at Ar gas pressure of 3.0 × 10-3 mbar. LPS produces conventional high density thin films while HIPS produces low density thin films with approximate porosities of ˜15% due to a shadowing effect originating from the wide-spread angular atomic of HIPS. Higher pressure conditions lower the film density, which also leads to lower refractive index values. Density-modulated films that incorporate a HIPS layer at the side from which light enters demonstrate lower reflectance thus higher absorptance compared to conventional LPS films, although there is not any significant morphological difference between them. This result can be attributed to the self-anti-reflective property of the density-modulated samples, which was confirmed by the reduced refractive index calculated for HIPS layer via an envelope method. Therefore, HIPS, a simple and scalable approach, can provide enhanced optical absorptance in thin film materials and eliminate the need for conventional light trapping methods such as anti-reflective coatings of different materials or surface texturing.
A method for the design of unsymmetrical optical systems using freeform surfaces
NASA Astrophysics Data System (ADS)
Reshidko, Dmitry; Sasian, Jose
2017-11-01
Optical systems that do not have axial symmetry can provide useful and unique solutions to certain imaging problems. However, the complexity of the optical design task grows as the degrees of symmetry are reduced and lost: there are more aberration terms to control, and achieving a sharp image over a wide field-of-view at fast optical speeds becomes challenging. Plane-symmetric optical systems represent a large family of practical non-axially symmetric systems that are simple enough to be easily described and thus are well understood. Design methodologies and aberration theory of plane-symmetric optical systems have been discussed in the literature, and various interesting solutions have been reported [1-4]. The little discussed in the literature technique of confocal systems is effective for the design of unsymmetrical optics. A confocal unsymmetrical system is constructed in such a way that there is sharp image along a given ray (called the optical axis ray (OAR)) surface after surface. It is possible to show that such a system can have a reduced number of field aberrations, and that the system will behave closer to an axially symmetric system [5-6]. In this paper, we review a methodology for the design of unsymmetrical optical systems. We utilize an aspherical/freeform surface constructed by superposition of a conic expressed in a coordinate system that is centered on the off-axis surface segment rather than centered on the axis of symmetry, and an XY polynomial. The conic part of the aspherical/freeform surface describes the base shape that is required to achieve stigmatic imaging surface after surface along the OAR. The XY polynomial adds a more refined shape description to the surface sag and provides effective degrees of freedom for higher-order aberration correction. This aspheric/freeform surface profile is able to best model the ideal reflective surface and to allow one to intelligently approach the optical design. Examples of two- and threemirror unobscured wide field-of-view reflective systems are provided to show how the methods and corresponding aspheric/freeform surface are applied. We also demonstrate how the method can be extended to design a monolithic freeform objective.
Optical properties of human colon tissues in the 350 – 2500 nm spectral range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bashkatov, A N; Genina, E A; Kochubey, V I
2014-08-31
We present the optical characteristics of the mucosa and submucosa of human colon tissue. The experiments are performed in vitro using a LAMBDA 950 spectrophotometer in the 350 – 2500 nm spectral range. The absorption and scattering coefficients and the scattering anisotropy factor are calculated based on the measured diffuse reflectance and total and collimated transmittance spectra using the inverse Monte Carlo method. (laser biophotonics)
Optical properties and refractive indices of Gd3Al2Ga3O12:Ce3+ crystals
NASA Astrophysics Data System (ADS)
Kozlova, N. S.; Busanov, O. A.; Zabelina, E. V.; Kozlova, A. P.; Kasimova, V. M.
2016-05-01
Crystals of cerium-doped gadolinium-gallium-aluminum garnet have been grown by the Czochralski method. The transmission and reflection spectra of these crystals in the wavelength range of 250-800 nm have been obtained by optical spectroscopy. Refractive indices are calculated based on the measured Brewster angles, the experimental results are approximated using the Cauchy equation, and a dispersion dependence is obtained.
NASA Astrophysics Data System (ADS)
Koynov, Svetoslav; Brandt, Martin S.; Stutzmann, Martin
2011-08-01
"Black etching" has been proposed previously as a method for the nanoscale texturing of silicon surfaces, which results in an almost complete suppression of reflectivity in the spectral range of absorption relevant for photovoltaics. The method modifies the topmost 150 to 300 nm of the material and thus also is applicable for thin films of silicon. The present work is focused on the optical effects induced by the black-etching treatment on hydrogenated amorphous and microcrystalline silicon thin films, in particular with respect to their application in solar cells. In addition to a strong reduction of the reflectivity, efficient light trapping within the modified thin films is found. The enhancement of the optical absorption due to the light trapping is investigated via photometric measurements and photothermal deflection spectroscopy. The correlation of the texture morphology (characterized via atomic force microscopy) with the optical effects is discussed in terms of an effective medium with gradually varying optical density and in the framework of the theory of statistical light trapping. Photoconductivity spectra directly show that the light trapping causes a significant prolongation of the light path within the black silicon films by up to 15 μm for ˜1 μm thick films, leading to a significant increase of the absorption in the red.
Chan, Lesley W; Morse, Daniel E; Gordon, Michael J
2018-05-08
Near- and sub-wavelength photonic structures are used by numerous organisms (e.g. insects, cephalopods, fish, birds) to create vivid and often dynamically-tunable colors, as well as create, manipulate, or capture light for vision, communication, crypsis, photosynthesis, and defense. This review introduces the physics of moth eye (ME)-like, biomimetic nanostructures and discusses their application to reduce optical losses and improve efficiency of various optoelectronic devices, including photodetectors, photovoltaics, imagers, and light emitting diodes. Light-matter interactions at structured and heterogeneous surfaces over different length scales are discussed, as are the various methods used to create ME-inspired surfaces. Special interest is placed on a simple, scalable, and tunable method, namely colloidal lithography with plasma dry etching, to fabricate ME-inspired nanostructures in a vast suite of materials. Anti-reflective surfaces and coatings for IR devices and enhancing light extraction from visible light emitting diodes are highlighted.
Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio
2015-12-30
An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.
Liu, Changgeng; Thapa, Damber; Yao, Xincheng
2017-01-01
Guidestar hologram based digital adaptive optics (DAO) is one recently emerging active imaging modality. It records each complex distorted line field reflected or scattered from the sample by an off-axis digital hologram, measures the optical aberration from a separate off-axis digital guidestar hologram, and removes the optical aberration from the distorted line fields by numerical processing. In previously demonstrated DAO systems, the optical aberration was directly retrieved from the guidestar hologram by taking its Fourier transform and extracting the phase term. For the direct retrieval method (DRM), when the sample is not coincident with the guidestar focal plane, the accuracy of the optical aberration retrieved by DRM undergoes a fast decay, leading to quality deterioration of corrected images. To tackle this problem, we explore here an image metrics-based iterative method (MIM) to retrieve the optical aberration from the guidestar hologram. Using an aberrated objective lens and scattering samples, we demonstrate that MIM can improve the accuracy of the retrieved aberrations from both focused and defocused guidestar holograms, compared to DRM, to improve the robustness of the DAO. PMID:28380937
Borycki, Dawid; Kholiqov, Oybek; Srinivasan, Vivek J
2017-02-01
Interferometric near-infrared spectroscopy (iNIRS) is a new technique that measures time-of-flight- (TOF-) resolved autocorrelations in turbid media, enabling simultaneous estimation of optical and dynamical properties. Here, we demonstrate reflectance-mode iNIRS for noninvasive monitoring of a mouse brain in vivo. A method for more precise quantification with less static interference from superficial layers, based on separating static and dynamic components of the optical field autocorrelation, is presented. Absolute values of absorption, reduced scattering, and blood flow index (BFI) are measured, and changes in BFI and absorption are monitored during a hypercapnic challenge. Absorption changes from TOF-resolved iNIRS agree with absorption changes from continuous wave NIRS analysis, based on TOF-integrated light intensity changes, an effective path length, and the modified Beer-Lambert Law. Thus, iNIRS is a promising approach for quantitative and noninvasive monitoring of perfusion and optical properties in vivo.
From optics testing to micro optics testing
NASA Astrophysics Data System (ADS)
Brock, Christian; Dorn, Ralf; Pfund, Johannes
2017-10-01
Testing micro optics, i.e. lenses with dimensions down to 0.1mm and less, with high precision requires a dedicated design of the testing device, taking into account propagation and wave-optical effects. In this paper, we discuss testing methods based on Shack-Hartmann wavefront technology for functional testing in transmission and for the measurement of surface shape in reflection. As a first example of more conventional optics testing, i.e. optics in the millimeter range, we present the measurement of binoculars in transmission, and discuss the measured wave aberrations and imaging quality. By repeating the measurement at different wavelengths, information on chromatic effects is retrieved. A task that is often tackled using Shack-Hartman wavefront sensors is the alignment of collimation optics in front of a light source. In case of a micro-optical collimation unit with a 1/e² beam diameter of ca. 1mm, we need adapted relay optics for suitable beam expansion and well-defined imaging conditions. In this example, we will discuss the alignment process and effects of the relay optics magnification, as well as typical performance data. Oftentimes, micro optics are fabricated not as single pieces, but as mass optics, e.g. by lithographic processes. Thus, in order to reduce tooling and alignment time, an automated test procedure is necessary. We present an approach for the automated testing of wafer- or tray-based micro optics, and discuss transmission and reflection measurement capabilities. Exemplary performance data is shown for a sample type with 30 microns in diameter, where typical repeatabilities of a few nanometers (rms) are reached.
AWG Filter for Wavelength Interrogator
NASA Technical Reports Server (NTRS)
Black, Richard J. (Inventor); Costa, Joannes M. (Inventor); Moslehi, Behzad (Inventor); Sotoudeh, Vahid (Inventor); Faridian, Fereydoun (Inventor)
2015-01-01
A wavelength interrogator is coupled to a circulator which couples optical energy from a broadband source to an optical fiber having a plurality of sensors, each sensor reflecting optical energy at a unique wavelength and directing the reflected optical energy to an AWG. The AWG has a detector coupled to each output, and the reflected optical energy from each grating is coupled to the skirt edge response of the AWG such that the adjacent channel responses form a complementary pair response. The complementary pair response is used to convert an AWG skirt response to a wavelength.
NASA Astrophysics Data System (ADS)
Oh, Sanghoon; Fernald, Bradley; Bhatia, Sanjiv; Ragheb, John; Sandberg, David; Johnson, Mahlon; Lin, Wei-Chiang
2009-05-01
This research investigated the feasibility of using time-dependent diffuse reflectance spectroscopy to differentiate pediatric epileptic brain tissue from normal brain tissue. The optical spectroscopic technique monitored the dynamic optical properties of the cerebral cortex that are associated with its physiological, morphological, and compositional characteristics. Due to the transient irregular epileptic discharge activity within the epileptic brain tissue it was hypothesized that the lesion would express abnormal dynamic optical behavior that would alter normal dynamic behavior. Thirteen pediatric epilepsy patients and seven pediatric brain tumor patients (normal controls) were recruited for this clinical study. Dynamic optical properties were obtained from the cortical surface intraoperatively using a timedependent diffuse reflectance spectroscopy system. This system consisted of a fiber-optic probe, a tungsten-halogen light source, and a spectrophotometer. It acquired diffuse reflectance spectra with a spectral range of 204 nm to 932 nm at a rate of 33 spectra per second for approximately 12 seconds. Biopsy samples were taken from electrophysiologically abnormal cortex and evaluated by a neuropathologist, which served as a gold standard for lesion classification. For data analysis, spectral intensity changes of diffuse reflectance in the time domain at two different wavelengths from each investigated site were compared. Negative correlation segment, defined by the periods where the intensity changes at the two wavelengths were opposite in their slope polarity, were extracted. The total duration of negative correlation, referred to as the "negative correlation time index", was calculated by integrating the negative correlation segments. The negative correlation time indices from all investigated sites were sub-grouped according to the corresponding histological classifications. The difference between the mean indices of two subgroups was evaluated by standard t-test. These comparison and calculation procedures were carried out for all possible wavelength combinations between 400 nm and 800 nm with 2 nm increments. The positive group consisted of seven pathologically abnormal test sites, and the negative group consisted of 13 normal test sites from non-epileptic tumor patients. A standard t-test showed significant difference between negative correlation time indices from the two groups at the wavelength combinations of 700-760 nm versus 550-580 nm. An empirical discrimination algorithm based on the negative correlation time indices in this range produced 100% sensitivity and 85% specificity. Based on these results time-dependent diffuse reflectance spectroscopy with optimized data analysis methods differentiates epileptic brain tissue from normal brain tissue adequately, therefore can be utilized for surgical guidance, and may enhance the surgical outcome of pediatric epilepsy surgery.
A feasibility study of limb volume measuring systems
NASA Technical Reports Server (NTRS)
Lafferty, J. F.; Carter, W. M.
1974-01-01
Evaluation of the various techniques by which limb volume can be measured indicates that the odometric (electromechanical) method and the reflective scanner (optical) have a high probability of meeting the specifications of the LBNP experiments. Both of these methods provide segmental measurements from which the cross sectional area of the limb can be determined.
Rugged passively cooled high power laser fiber optic connectors and methods of use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinzler, Charles C.; Gray, William C.; Fraze, Jason D.
2016-06-07
There are provided high power laser connectors and couplers and methods that are capable of providing high laser power without the need for active cooling to remote, harsh and difficult to access locations and under difficult and harsh conditions and to manage and mitigate the adverse effects of back reflections.
NASA Astrophysics Data System (ADS)
Liew, Oi Wah; Boey, William S. L.; Asundi, Anand K.; Chen, Jun-Wei; He, Duo-Min
1999-05-01
In this paper, fiber optic spectrophotometry (FOSpectr) was adapted to provide early detection of plant nutrient deficiency by measuring leaf spectral reflectance variation resulting from nutrient stress. Leaf reflectance data were obtained form a local vegetable crop, Brassica chinensis var parachinensis (Bailey), grown in nitrate-nitrogen (N)- and calcium (Ca)- deficient hydroponics nutrient solution. FOSpectr analysis showed significant differences in leaf reflectance within the first four days after subjecting plants to nutrient-deficient media. Recovery of the nutrient-stressed plants could also be detected after transferring them back to complete nutrient solution. In contrast to FOSpectr, plant response to nitrogen and calcium deficiency in terms of reduced growth and tissue elemental levels was slower and less pronounced. Thus, this study demonstrated the feasibility of using FOSpectr methodology as a non-destructive alternative to augment current methods of plant nutrient analysis.
Electronic and optical properties of Praseodymium trifluoride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saini, Sapan Mohan, E-mail: smsaini.phy@nitrr.ac.in
2014-10-24
We report the role of f- states on electronic and optical properties of Praseodymium trifluoride (PrF{sub 3}) compound. Full potential linearized augmented plane wave (FPLAPW) method with the inclusion of spin orbit coupling has been used. We employed the local spin density approximation (LSDA) and Coulomb-corrected local spin density approximation (LSDA+U). LSDA+U is known for treating the highly correlated 4f electrons properly. Our theoretical investigation shows that LSDA+U approximation reproduce the correct insulating ground state of PrF{sub 3}. On the other hand there is no significant difference of reflectivity calculated by LSDA and LSDA+U. We find that the reflectivity formore » PrF{sub 3} compound stays low till around 7 eV which is consistent with their large energy gaps. Our calculated reflectivity compares well with the experimental data. The results are analyzed in the light of transitions involved.« less
Numerical reproduction and explanation of road surface mirages under grazing-angle scattering.
Lu, Jia; Zhou, Huaichun
2017-07-01
The mirror-like reflection image of the road surface under grazing-angle scattering can be easily observed in daily life. It was suggested that road surface mirages may occur due to a light-enhancing effect of the rough surface under grazing-angle scattering. The main purpose of this work is to explain the light-enhancing mechanism of rough surfaces under grazing-angle scattering. The off-specular reflection from a random rough magnesium oxide ceramic surface is analyzed by using the geometric optics approximation method. Then, the geometric optics approximation method is employed to develop a theoretical model to predict the observation effect of the grazing-angle scattering phenomenon of the road surface. The rough surface is assumed to consist of small-scale rough surface facets. The road surface mirage is reproduced from a large number of small-scale rough surface facets within the eye's resolution limit at grazing scattering angles, as the average bidirectional reflectance distribution function value at the bright location is about twice that of the surface in front of the mirage. It is suggested that the light-enhancing effect of the rough surface under grazing-angle scattering is not proper to be termed as "off-specular reflection," since it has nothing to do with the "specular" direction with respect to the incident direction.
Resonant inelastic scattering by use of geometrical optics.
Schulte, Jörg; Schweiger, Gustav
2003-02-01
We investigate the inelastic scattering on spherical particles that contain one concentric inclusion in the case of input and output resonances, using a geometrical optics method. The excitation of resonances is included in geometrical optics by use of the concept of tunneled rays. To get a quantitative description of optical tunneling on spherical surfaces, we derive appropriate Fresnel-type reflection and transmission coefficients for the tunneled rays. We calculate the inelastic scattering cross section in the case of input and output resonances and investigate the influence of the distribution of the active material in the particle as well as the influence of the inclusion on inelastic scattering.
Hale, Layton C.; Malsbury, Terry; Hudyma, Russell M.; Parker, John M.
2000-01-01
A projection optics box or assembly for use in an optical assembly, such as in an extreme ultraviolet lithography (EUVL) system using 10-14 nm soft x-ray photons. The projection optics box utilizes a plurality of highly reflective optics or mirrors, each mounted on a precision actuator, and which reflects an optical image, such as from a mask, in the EUVL system onto a point of use, such as a target or silicon wafer, the mask, for example, receiving an optical signal from a source assembly, such as a developed from laser system, via a series of highly reflective mirrors of the EUVL system. The plurality of highly reflective optics or mirrors are mounted in a housing assembly comprised of a series of bulkheads having wall members secured together to form a unit construction of maximum rigidity. Due to the precision actuators, the mirrors must be positioned precisely and remotely in tip, tilt, and piston (three degrees of freedom), while also providing exact constraint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghamsari, Behnood G.; Tosado, Jacob; Yamamoto, Mahito
Here, we have experimentally studied the optical refractive index of few-layer graphene through reflection spectroscopy at visible wavelengths. A laser scanning microscope (LSM) with a coherent supercontinuum laser source measured the reflectivity of an exfoliated graphene flake on a Si/SiO 2 substrate, containing monolayer, bilayer and trilayer areas, as the wavelength of the laser was varied from 545nm to 710nm. The complex refractive index of few-layer graphene, n-ik, was extracted from the reflectivity contrast to the bare substrate and the Fresnel reflection theory. Since the SiO 2 thickness enters to the modeling as a parameter, it was precisely measured atmore » the location of the sample. It was found that a common constant optical index cannot explain the wavelength-dependent reflectivity data for single-, double- and three-layer graphene simultaneously, but rather each individual few-layer graphene possesses a unique optical index whose complex values were precisely and accurately determined from the experimental data.« less
Ghamsari, Behnood G.; Tosado, Jacob; Yamamoto, Mahito; ...
2016-09-29
Here, we have experimentally studied the optical refractive index of few-layer graphene through reflection spectroscopy at visible wavelengths. A laser scanning microscope (LSM) with a coherent supercontinuum laser source measured the reflectivity of an exfoliated graphene flake on a Si/SiO 2 substrate, containing monolayer, bilayer and trilayer areas, as the wavelength of the laser was varied from 545nm to 710nm. The complex refractive index of few-layer graphene, n-ik, was extracted from the reflectivity contrast to the bare substrate and the Fresnel reflection theory. Since the SiO 2 thickness enters to the modeling as a parameter, it was precisely measured atmore » the location of the sample. It was found that a common constant optical index cannot explain the wavelength-dependent reflectivity data for single-, double- and three-layer graphene simultaneously, but rather each individual few-layer graphene possesses a unique optical index whose complex values were precisely and accurately determined from the experimental data.« less
Method to adjust multilayer film stress induced deformation of optics
Spiller, Eberhard A.; Mirkarimi, Paul B.; Montcalm, Claude; Bajt, Sasa; Folta, James A.
2000-01-01
Stress compensating systems that reduces/compensates stress in a multilayer without loss in reflectivity, while reducing total film thickness compared to the earlier buffer-layer approach. The stress free multilayer systems contain multilayer systems with two different material combinations of opposite stress, where both systems give good reflectivity at the design wavelengths. The main advantage of the multilayer system design is that stress reduction does not require the deposition of any additional layers, as in the buffer layer approach. If the optical performance of the two systems at the design wavelength differ, the system with the poorer performance is deposited first, and then the system with better performance last, thus forming the top of the multilayer system. The components for the stress reducing layer are chosen among materials that have opposite stress to that of the preferred multilayer reflecting stack and simultaneously have optical constants that allow one to get good reflectivity at the design wavelength. For a wavelength of 13.4 nm, the wavelength presently used for extreme ultraviolet (EUV) lithography, Si and Be have practically the same optical constants, but the Mo/Si multilayer has opposite stress than the Mo/Be multilayer. Multilayer systems of these materials have practically identical reflectivity curves. For example, stress free multilayers can be formed on a substrate using Mo/Be multilayers in the bottom of the stack and Mo/Si multilayers at the top of the stack, with the switch-over point selected to obtain zero stress. In this multilayer system, the switch-over point is at about the half point of the total thickness of the stack, and for the Mo/Be--Mo/Si system, there may be 25 deposition periods Mo/Be to 20 deposition periods Mo/Si.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolgonos, Alex; Mason, Thomas O.; Poeppelmeier, Kenneth R., E-mail: krp@northwestern.edu
2016-08-15
The direct optical band gap of semiconductors is traditionally measured by extrapolating the linear region of the square of the absorption curve to the x-axis, and a variation of this method, developed by Tauc, has also been widely used. The application of the Tauc method to crystalline materials is rooted in misconception–and traditional linear extrapolation methods are inappropriate for use on degenerate semiconductors, where the occupation of conduction band energy states cannot be ignored. A new method is proposed for extracting a direct optical band gap from absorption spectra of degenerately-doped bulk semiconductors. This method was applied to pseudo-absorption spectramore » of Sn-doped In{sub 2}O{sub 3} (ITO)—converted from diffuse-reflectance measurements on bulk specimens. The results of this analysis were corroborated by room-temperature photoluminescence excitation measurements, which yielded values of optical band gap and Burstein–Moss shift that are consistent with previous studies on In{sub 2}O{sub 3} single crystals and thin films. - Highlights: • The Tauc method of band gap measurement is re-evaluated for crystalline materials. • Graphical method proposed for extracting optical band gaps from absorption spectra. • The proposed method incorporates an energy broadening term for energy transitions. • Values for ITO were self-consistent between two different measurement methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Ella Suzanne; Bellum, John Curtis; Kletecka, Damon E.
When an optical coating is damaged, deposited incorrectly, or is otherwise unsuitable, the conventional method to restore the optic often entails repolishing the optic surface, which can incur a large cost and long lead time. We propose three alternative options to repolishing, including (i) burying the unsuitable coating under another optical coating, (ii) using ion milling to etch the unsuitable coating completely from the optic surface, and then recoating the optic, and (iii) using ion milling to etch through a number of unsuitable layers, leaving the rest of the coating intact, and then recoating the layers that were etched. Repairsmore » were made on test optics with dielectric mirror coatings according to the above three options. The mirror coatings to be repaired were quarter wave stacks of HfO 2 and SiO 2 layers for high reflection at 1054 nm at 45° incidence in P-polarization. One of the coating layers was purposely deposited incorrectly as Hf metal instead of HfO 2 to evaluate the ability of each repair method to restore the coating’s high laser-induced damage threshold (LIDT) of 64.0 J/cm 2. Finally, the repaired coating with the highest resistance to laser-induced damage was achieved using repair method (ii) with an LIDT of 49.0 – 61.0 J/cm 2.« less
NASA Astrophysics Data System (ADS)
Field, Ella S.; Bellum, John C.; Kletecka, Damon E.
2017-01-01
When an optical coating is damaged, deposited incorrectly, or is otherwise unsuitable, the conventional method to restore the optic often entails repolishing the optic surface, which can incur a large cost and long lead time. We propose three alternative options to repolishing, including (i) burying the unsuitable coating under another optical coating, (ii) using ion milling to etch the unsuitable coating completely from the optic surface and then recoating the optic, and (iii) using ion milling to etch through a number of unsuitable layers, leaving the rest of the coating intact, and then recoating the layers that were etched. Repairs were made on test optics with dielectric mirror coatings according to the above three options. The mirror coatings to be repaired were quarter wave stacks of HfO2 and SiO2 layers for high reflection at 1054 nm at 45 deg incidence in P-polarization. One of the coating layers was purposely deposited incorrectly as Hf metal instead of HfO2 to evaluate the ability of each repair method to restore the coating's high laser-induced damage threshold (LIDT) of 64.0 J/cm2. The repaired coating with the highest resistance to laser-induced damage was achieved using repair method (ii) with an LIDT of 49.0 to 61.0 J/cm2.
Field, Ella S.; Bellum, John C.; Kletecka, Damon E.
2016-07-08
Here, when an optical coating is damaged, deposited incorrectly, or is otherwise unsuitable, the conventional method to restore the optic often entails repolishing the optic surface, which can incur a large cost and long lead time. We propose three alternative options to repolishing, including (i) burying the unsuitable coating under another optical coating, (ii) using ion milling to etch the unsuitable coating completely from the optic surface and then recoating the optic, and (iii) using ion milling to etch through a number of unsuitable layers, leaving the rest of the coating intact, and then recoating the layers that were etched.more » Repairs were made on test optics with dielectric mirror coatings according to the above three options. The mirror coatings to be repaired were quarter wave stacks of HfO 2 and SiO 2 layers for high reflection at 1054 nm at 45 deg incidence in P-polarization. One of the coating layers was purposely deposited incorrectly as Hf metal instead of HfO2 to evaluate the ability of each repair method to restore the coating’s high laser-induced damage threshold (LIDT) of 64.0 J/cm 2. The repaired coating with the highest resistance to laser-induced damage was achieved using repair method (ii) with an LIDT of 49.0 to 61.0 J/cm 2.« less
Field, Ella Suzanne; Bellum, John Curtis; Kletecka, Damon E.
2016-06-01
When an optical coating is damaged, deposited incorrectly, or is otherwise unsuitable, the conventional method to restore the optic often entails repolishing the optic surface, which can incur a large cost and long lead time. We propose three alternative options to repolishing, including (i) burying the unsuitable coating under another optical coating, (ii) using ion milling to etch the unsuitable coating completely from the optic surface, and then recoating the optic, and (iii) using ion milling to etch through a number of unsuitable layers, leaving the rest of the coating intact, and then recoating the layers that were etched. Repairsmore » were made on test optics with dielectric mirror coatings according to the above three options. The mirror coatings to be repaired were quarter wave stacks of HfO 2 and SiO 2 layers for high reflection at 1054 nm at 45° incidence in P-polarization. One of the coating layers was purposely deposited incorrectly as Hf metal instead of HfO 2 to evaluate the ability of each repair method to restore the coating’s high laser-induced damage threshold (LIDT) of 64.0 J/cm 2. Finally, the repaired coating with the highest resistance to laser-induced damage was achieved using repair method (ii) with an LIDT of 49.0 – 61.0 J/cm 2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Ella S.; Bellum, John C.; Kletecka, Damon E.
Here, when an optical coating is damaged, deposited incorrectly, or is otherwise unsuitable, the conventional method to restore the optic often entails repolishing the optic surface, which can incur a large cost and long lead time. We propose three alternative options to repolishing, including (i) burying the unsuitable coating under another optical coating, (ii) using ion milling to etch the unsuitable coating completely from the optic surface and then recoating the optic, and (iii) using ion milling to etch through a number of unsuitable layers, leaving the rest of the coating intact, and then recoating the layers that were etched.more » Repairs were made on test optics with dielectric mirror coatings according to the above three options. The mirror coatings to be repaired were quarter wave stacks of HfO 2 and SiO 2 layers for high reflection at 1054 nm at 45 deg incidence in P-polarization. One of the coating layers was purposely deposited incorrectly as Hf metal instead of HfO2 to evaluate the ability of each repair method to restore the coating’s high laser-induced damage threshold (LIDT) of 64.0 J/cm 2. The repaired coating with the highest resistance to laser-induced damage was achieved using repair method (ii) with an LIDT of 49.0 to 61.0 J/cm 2.« less
Pore-level determination of spectral reflection behaviors of high-porosity metal foam sheets
NASA Astrophysics Data System (ADS)
Li, Yang; Xia, Xin-Lin; Ai, Qing; Sun, Chuang; Tan, He-Ping
2018-03-01
Open cell metal foams are currently attracting attention and their radiative behaviors are of primary importance in high temperature applications. The spectral reflection behaviors of high-porosity metal foam sheets, bidirectional reflectance distribution function (BRDF) and directional-hemispherical reflectivity were numerically investigated. A set of realistic nickel foams with porosity from 0.87 to 0.97 and pore density from 10 to 40 pores per inch were tomographied to obtain their 3-D digital cell network. A Monte Carlo ray-tracing method was employed in order to compute the pore-level radiative transfer inside the network within the limit of geometrical optics. The apparent reflection behaviors and their dependency on the textural parameters and strut optical properties were comprehensively computed and analysed. The results show a backward scattering of the reflected energy at the foam sheet surface. Except in the cases of large incident angles, an energy peak is located almost along the incident direction and increases with increasing incident angles. Through an analytical relation established, the directional-hemispherical reflectivity can be related directly to the porosity of the foam sheet and to the complex refractive index of the solid phase as well as the specularity parameter which characterizes the local reflection model. The computations show that a linear decrease in normal-hemispherical reflectivity occurs with increasing porosity. The rate of this decrease is directly proportional to the strut normal reflectivity. In addition, the hemispherical reflectivity increases as a power function of the incident angle cosine.
Effect of Thin Cirrus Clouds on Dust Optical Depth Retrievals From MODIS Observations
NASA Technical Reports Server (NTRS)
Feng, Qian; Hsu, N. Christina; Yang, Ping; Tsay, Si-Chee
2011-01-01
The effect of thin cirrus clouds in retrieving the dust optical depth from MODIS observations is investigated by using a simplified aerosol retrieval algorithm based on the principles of the Deep Blue aerosol property retrieval method. Specifically, the errors of the retrieved dust optical depth due to thin cirrus contamination are quantified through the comparison of two retrievals by assuming dust-only atmospheres and the counterparts with overlapping mineral dust and thin cirrus clouds. To account for the effect of the polarization state of radiation field on radiance simulation, a vector radiative transfer model is used to generate the lookup tables. In the forward radiative transfer simulations involved in generating the lookup tables, the Rayleigh scattering by atmospheric gaseous molecules and the reflection of the surface assumed to be Lambertian are fully taken into account. Additionally, the spheroid model is utilized to account for the nonsphericity of dust particles In computing their optical properties. For simplicity, the single-scattering albedo, scattering phase matrix, and optical depth are specified a priori for thin cirrus clouds assumed to consist of droxtal ice crystals. The present results indicate that the errors in the retrieved dust optical depths due to the contamination of thin cirrus clouds depend on the scattering angle, underlying surface reflectance, and dust optical depth. Under heavy dusty conditions, the absolute errors are comparable to the predescribed optical depths of thin cirrus clouds.
Study of the technics of coating stripping and FBG writing on polyimide fiber
NASA Astrophysics Data System (ADS)
Song, ZhiQiang; Qi, HaiFeng; Ni, JiaSheng; Wang, Chang
2017-10-01
Compared with ordinary optical fiber, polyimide fiber has the characteristics of high temperature resistance and high strength, which has important application in the field of optical fiber sensing. The common methods of polyimide coating stripping were introduced in this paper, including high temperature stripping, chemical stripping and arc ablation. In order to meet the requirements of FBG writing technology, a method using argon ion laser ablation coating was proposed. The method can precisely control the stripping length of the coating and completely does not affect the tensile strength of the optical fiber. According to the experiment, the fabrication process of polyimide FBG is stripping-hydrogen loadingwriting. Under the same conditions, 10 FBG samples were fabricated with good uniformity of wavelength bandwidth and reflectivity. UV laser ablation of polyimide coating has been proved to be a safe, reliable and efficient method.
Some optical properties of one dimensional annular photonic crystal with plasma frequency
NASA Astrophysics Data System (ADS)
Pandeya, G. N.; Thapa, Khem B.
2018-05-01
This paper presents the reflection bands, photonic band gaps, of the one-dimensional annul photonic crystal (APC) containing double negative (DNG) metamaterials and air. The proposed annular structure consists of the alternate layers of dispersive DNG material and air immersed in free space. The reflectance properties of the APC by employing the transfer matrix method (TMM) in the cylindrical waves for TE polarization is studied theoretically. In addition of this, we have also studied the effect of plasma frequency on the reflection behavior of the considered annular structure.
Water Pollution Detection by Reflectance Measurements
NASA Technical Reports Server (NTRS)
Goolsby, A. D.
1971-01-01
Measurement of the intensity of light reflected from various planar liquid surfaces has been performed. The results of this brief study show that the presence of a film of foreign material floating on a reference substrate is easily detected by reflectance measurement if the two liquids possess significantly different refractive indices, for example, oil (n = 1.40) and water (n = 1.33). Additional study of various optical configurations, and the building and testing of a prototype monitoring device revealed that the method is sufficiently practical for application to continuous water quality monitoring.
In-situ spectrophotometric probe
Prather, William S.
1992-01-01
A spectrophotometric probe for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and coterminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focussing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid.
An electro - optic modulator is used to modulate coherent light beams by the application of an electric potential. It combines a Fabry-Perot etalon and...a diffraction grating in a single unit. An etalon is constructed with an electro - optic material between reflecting surfaces. A voltage applied...between alternate, spaced-apart electrodes of a metal grid attached to one reflecting surface induces a diffraction grating in the electro optic material. Light entering the etalon is diffracted, reflected and efficiently coupled out.
Jiang, Xiao-jun; Lu, Xu-liang; Pan, Jia-liang; Zhang, Shuan-qin
2015-07-01
Due to the life characteristics such as physiological structure and transpiration, plants have unique optical and infrared features. In the optical band, because of the common effects of chlorophyll and water, plant leafs show spectral reflectance characteristics change in 550, 680, 1400 and 1900 nm significantly. In the infrared wave band, driven by transpiration, plants could regulate temperature on their own initiative, which make the infrared characteristics of plants different from artificial materials. So palnt bionic materials were proposed to simulate optical and infrared characteristics of plants. By analyzing formation mechanism of optical and infrared features about green plants, the component design and heat-transfer process of plants bionic materials were studied, above these the heat-transfer control formulation was established. Based on water adsorption/release compound, optical pigments and other man-made materials, plant bionic materials preparation methods were designed which could simulate the optical and infrared features of green plants. By chemical casting methods plant bionic material films were prepared, which use polyvinyl alcohol as film forming and water adsorption/release compound, and use optical pigments like chrome green and macromolecule yellow as colouring materials. The research conclusions achieved by testings figured out: water adsorption/release testing showed that the plant bionic materials with a certain thickness could absorb 1.3 kg water per square meter, which could satisfy the water usage of transpiration simulation one day; the optical and infrared simulated effect tests indicated that the plant bionic materials could preferably simulate the spectral reflective performance of green plants in optical wave band (380-2500 nm, expecially in 1400 and 1900 nm which were water absorption wave band of plants), and also it had similar daily infrared radiation variations with green plants, daily average radiation temperature difference was 0.37 degrees C, maximum radiation temperature difference was 0.9 degrees C; so according to the testing results, the materials behave well plant bionic performance.
Prediction of the limit of detection of an optical resonant reflection biosensor.
Hong, Jongcheol; Kim, Kyung-Hyun; Shin, Jae-Heon; Huh, Chul; Sung, Gun Yong
2007-07-09
A prediction of the limit of detection of an optical resonant reflection biosensor is presented. An optical resonant reflection biosensor using a guided-mode resonance filter is one of the most promising label-free optical immunosensors due to a sharp reflectance peak and a high sensitivity to the changes of optical path length. We have simulated this type of biosensor using rigorous coupled wave theory to calculate the limit of detection of the thickness of the target protein layer. Theoretically, our biosensor has an estimated ability to detect thickness change approximately the size of typical antigen proteins. We have also investigated the effects of the absorption and divergence of the incident light on the detection ability of the biosensor.
Xu, Yan; Zhu, Quing
2015-01-01
Abstract. A new two-step estimation and imaging method is developed for a two-layer breast tissue structure consisting of a breast tissue layer and a chest wall underneath. First, a smaller probe with shorter distance source-detector pairs was used to collect the reflected light mainly from the breast tissue layer. Then, a larger probe with 9×14 source-detector pairs and a centrally located ultrasound transducer was used to collect reflected light from the two-layer tissue structure. The data collected from the smaller probe were used to estimate breast tissue optical properties. With more accurate estimation of the average breast tissue properties, the second layer properties can be assessed from data obtained from the larger probe. Using this approach, the unknown variables have been reduced from four to two and the estimated bulk tissue optical properties are more accurate and robust. In addition, a two-step reconstruction using a genetic algorithm and conjugate gradient method is implemented to simultaneously reconstruct the absorption and reduced scattering maps of targets inside a two-layer tissue structure. Simulations and phantom experiments have been performed to validate the new reconstruction method, and a clinical example is given to demonstrate the feasibility of this approach. PMID:26046722
Siddique, Radwanul Hasan; Gomard, Guillaume; Hölscher, Hendrik
2015-04-22
The glasswing butterfly (Greta oto) has, as its name suggests, transparent wings with remarkable low haze and reflectance over the whole visible spectral range even for large view angles of 80°. This omnidirectional anti-reflection behaviour is caused by small nanopillars covering the transparent regions of its wings. In difference to other anti-reflection coatings found in nature, these pillars are irregularly arranged and feature a random height and width distribution. Here we simulate the optical properties with the effective medium theory and transfer matrix method and show that the random height distribution of pillars significantly reduces the reflection not only for normal incidence but also for high view angles.
NASA Astrophysics Data System (ADS)
Siddique, Radwanul Hasan; Gomard, Guillaume; Hölscher, Hendrik
2015-04-01
The glasswing butterfly (Greta oto) has, as its name suggests, transparent wings with remarkable low haze and reflectance over the whole visible spectral range even for large view angles of 80°. This omnidirectional anti-reflection behaviour is caused by small nanopillars covering the transparent regions of its wings. In difference to other anti-reflection coatings found in nature, these pillars are irregularly arranged and feature a random height and width distribution. Here we simulate the optical properties with the effective medium theory and transfer matrix method and show that the random height distribution of pillars significantly reduces the reflection not only for normal incidence but also for high view angles.
Development of time-resolved reflectance diffuse optical tomography for breast cancer monitoring
NASA Astrophysics Data System (ADS)
Yoshimoto, Kenji; Ohmae, Etsuko; Yamashita, Daisuke; Suzuki, Hiroaki; Homma, Shu; Mimura, Tetsuya; Wada, Hiroko; Suzuki, Toshihiko; Yoshizawa, Nobuko; Nasu, Hatsuko; Ogura, Hiroyuki; Sakahara, Harumi; Yamashita, Yutaka; Ueda, Yukio
2017-02-01
We developed a time-resolved reflectance diffuse optical tomography (RDOT) system to measure tumor responses to chemotherapy in breast cancer patients at the bedside. This system irradiates the breast with a three-wavelength pulsed laser (760, 800, and 830 nm) through a source fiber specified by an optical switch. The light collected by detector fibers is guided to a detector unit consisting of variable attenuators and photomultiplier tubes. Thirteen irradiation and 12 detection points were set to a measurement area of 50 × 50 mm for a hand-held probe. The data acquisition time required to obtain the temporal profiles within the measurement area is about 2 minutes. The RDOT system generates topographic and tomographic images of tissue properties such as hemoglobin concentration and tissue oxygen saturation using two imaging methods. Topographic images are obtained from the optical properties determined for each source-detector pair using a curve-fitting method based on the photon diffusion theory, while tomographic images are reconstructed using an iterative image reconstruction method. In an experiment using a tissue-like solid phantom, a tumor-like cylindrical target (15 mm diameter, 15 mm high) embedded in a breast tissue-like background medium was successfully reconstructed. Preliminary clinical measurements indicated that the tumor in a breast cancer patient was detected as a region of high hemoglobin concentration. In addition, the total hemoglobin concentration decreased during chemotherapy. These results demonstrate the potential of RDOT for evaluating the effectiveness of chemotherapy in patients with breast cancer.
NASA Astrophysics Data System (ADS)
Lee, Zhongping; Carder, Kendall L.; Steward, Robert G.; Peacock, Thomas G.; Davis, Curtiss O.; Mueller, James L.
1997-02-01
Remote-sensing reflectance and inherent optical properties of oceanic properties of oceanic waters are important parameters for ocean optics. Due to surface reflectance, Rrs or water-leaving radiance is difficult to measure from above the surface. It usually is derived by correcting for the reflected skylight in the measured above-water upwelling radiance using a theoretical Fresnel reflectance value. As it is difficult to determine the reflected skylight, there are errors in the Q and E derived Rrs, and the errors may get bigger for high chl_a coastal waters. For better correction of the reflected skylight,w e propose the following derivation procedure: partition the skylight into Rayleigh and aerosol contributions, remove the Rayleigh contribution using the Fresnel reflectance, and correct the aerosol contribution using an optimization algorithm. During the process, Rrs and in-water inherent optical properties are derived at the same time. For measurements of 45 sites made in the Gulf of Mexico and Arabian Sea with chl_a concentrations ranging from 0.07 to 49 mg/m3, the derived Rrs and inherent optical property values were compared with those from in-water measurements. These results indicate that for the waters studied, the proposed algorithm performs quite well in deriving Rrs and in- water inherent optical properties from above-surface measurements for clear and turbid waters.
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.
2013-05-01
We have developed a simple method for solving the radiation transport equation, permitting us to rapidly calculate (with accuracy acceptable in practice) the diffuse reflection coeffi cient for a broad class of biological tissues in the spectral region of strong and weak absorption of light, and also the light flux distribution over the depth of the tissue. We show that it is feasible to use the proposed method for quantitative estimates of tissue parameters from its diffuse reflectance spectrum and also for selecting the irradiation dose which is optimal for a specifi c patient in laser therapy for various diseases.
Effective light coupling in reflective fiber optic distance sensors using a double-clad fiber
NASA Astrophysics Data System (ADS)
Werzinger, Stefan; Härteis, Lisa; Köhler, Aaron; Engelbrecht, Rainer; Schmauss, Bernhard
2017-04-01
Many fiber optic distance sensors use a reflective configuration, where a light beam is launched from an optical fiber, reflected from a target and coupled back into the fiber. While singlemode fibers (SMF) provide low-loss, high-performance components and a well-defined output beam, the coupling of the reflected light into the SMF is very sensitive to mechanical misalignments and scattering at the reflecting target. In this paper we use a double-clad fiber (DCF) and a DCF coupler to obtain an enhanced multimodal coupling of reflected light into the fiber. Increased power levels and robustness are achieved compared to a pure SMF configuration.
Hsieh, Hong-Po; Ko, Fan-Hua; Sung, Kung-Bin
2018-04-20
An iterative curve fitting method has been applied in both simulation [J. Biomed. Opt.17, 107003 (2012)JBOPFO1083-366810.1117/1.JBO.17.10.107003] and phantom [J. Biomed. Opt.19, 077002 (2014)JBOPFO1083-366810.1117/1.JBO.19.7.077002] studies to accurately extract optical properties and the top layer thickness of a two-layered superficial tissue model from diffuse reflectance spectroscopy (DRS) data. This paper describes a hybrid two-step parameter estimation procedure to address two main issues of the previous method, including (1) high computational intensity and (2) converging to local minima. The parameter estimation procedure contained a novel initial estimation step to obtain an initial guess, which was used by a subsequent iterative fitting step to optimize the parameter estimation. A lookup table was used in both steps to quickly obtain reflectance spectra and reduce computational intensity. On simulated DRS data, the proposed parameter estimation procedure achieved high estimation accuracy and a 95% reduction of computational time compared to previous studies. Furthermore, the proposed initial estimation step led to better convergence of the following fitting step. Strategies used in the proposed procedure could benefit both the modeling and experimental data processing of not only DRS but also related approaches such as near-infrared spectroscopy.
Jang, Won Hyuk; Kwon, Soonjae; Shim, Sehwan; Jang, Won-Suk; Myung, Jae Kyung; Yang, Sejung; Park, Sunhoo; Kim, Ki Hean
2018-05-12
Cutaneous radiation injury (CRI) is a skin injury caused by high dose exposure of ionizing radiation (IR). For proper treatment, early detection of CRI before clinical symptoms is important. Optical microscopic techniques such as reflectance confocal microscopy (RCM) and two-photon microscopy (TPM) have been tested as the early diagnosis method by detecting cellular changes. In this study, RCM and TPM were compared in the detection of cellular changes caused by CRI in an in-vivo mouse model. CRI was induced on the mouse hindlimb skin with various IR doses and the injured skin regions were imaged longitudinally by both modalities until the onset of clinical symptoms. Both RCM and TPM detected the changes of epidermal cells and sebaceous glands before clinical symptoms in different optical contrasts. RCM detected changes of cell morphology and scattering property based on light reflection. TPM detected detail changes of cellular structures based on autofluorescence of cells. Since both RCM and TPM were sensitive to the early-stage CRI by using different contrasts, the optimal method for clinical CRI diagnosis could be either individual methods or their combination. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Ground-based automated radiometric calibration system in Baotou site, China
NASA Astrophysics Data System (ADS)
Wang, Ning; Li, Chuanrong; Ma, Lingling; Liu, Yaokai; Meng, Fanrong; Zhao, Yongguang; Pang, Bo; Qian, Yonggang; Li, Wei; Tang, Lingli; Wang, Dongjin
2017-10-01
Post-launch vicarious calibration method, as an important post launch method, not only can be used to evaluate the onboard calibrators but also can be allowed for a traceable knowledge of the absolute accuracy, although it has the drawbacks of low frequency data collections due expensive on personal and cost. To overcome the problems, CEOS Working Group on Calibration and Validation (WGCV) Infrared Visible Optical Sensors (IVOS) subgroup has proposed an Automated Radiative Calibration Network (RadCalNet) project. Baotou site is one of the four demonstration sites of RadCalNet. The superiority characteristics of Baotou site is the combination of various natural scenes and artificial targets. In each artificial target and desert, an automated spectrum measurement instrument is developed to obtain the surface reflected radiance spectra every 2 minutes with a spectrum resolution of 2nm. The aerosol optical thickness and column water vapour content are measured by an automatic sun photometer. To meet the requirement of RadCalNet, a surface reflectance spectrum retrieval method is used to generate the standard input files, with the support of surface and atmospheric measurements. Then the top of atmospheric reflectance spectra are derived from the input files. The results of the demonstration satellites, including Landsat 8, Sentinal-2A, show that there is a good agreement between observed and calculated results.
Changes in hemodynamics and light scattering during cortical spreading depression
NASA Astrophysics Data System (ADS)
Li, Pengcheng; Yang, Yuanyuan; Luo, Qingming
2005-01-01
Cortical spreading depression (CSD) has been known to play an important role in the mechanism of migraine, stroke and brain injure. Optical imaging of intrinsic signals has been shown a powerful method for characterizing the spatial and temporal pattern of the propagation of CSD. However, the possible physiological mechanisms underlying the intrinsic optical signal (IOS) during CSD still remain incompletely understood. In this study, a spectroscopic recording of the change in optical intrinsic signal during CSD was performed and an analysis method based on the modified Beer-Lambert law was used to estimate the changes in the concentration of HbO2 and Hb, and changes in light scattering from the spectra data. The CSD were induced by pinprick in 10 α-chloralose/urethane anesthetized Sprague-Dawley rats. In all experiments, four-phasic changes in optical reflectance were observed at 450 nm ~ 570 nm, and triphasic changes in optical reflectance were observed in the range of 570 nm ~750 nm. But at 750 nm ~ 850 nm, only biphasic changes of optical signal were detected. Converting the spectra data to the changes in light scattering and concentration of Hb and HbO2, we found that the CSD induced an initial increase in concentration of HbO2 (amplitude: 9.0+/-3.7%), which was 26.2+/-18.6 s earlier than the onset of increase of Hb concentration. Furthermore, the concentration of HbO2 showed a four-phasic change, whereas the concentration of Hb only showed a biphasic change. For the changes in light scattering during CSD, a triphasic change was observed.
NASA Astrophysics Data System (ADS)
Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Vignoud, Séverine; Lavaud, Jonathan; Manfait, Michel; Dinten, Jean-Marc
2015-03-01
Light/tissue interactions, like diffuse reflectance, endogenous fluorescence and Raman scattering, are a powerful means for providing skin diagnosis. Instrument calibration is an important step. We thus developed multilayered phantoms for calibration of optical systems. These phantoms mimic the optical properties of biological tissues such as skin. Our final objective is to better understand light/tissue interactions especially in the case of confocal Raman spectroscopy. The phantom preparation procedure is described, including the employed method to obtain a stratified object. PDMS was chosen as the bulk material. TiO2 was used as light scattering agent. Dye and ink were adopted to mimic, respectively, oxy-hemoglobin and melanin absorption spectra. By varying the amount of the incorporated components, we created a material with tunable optical properties. Monolayer and multilayered phantoms were designed to allow several characterization methods. Among them, we can name: X-ray tomography for structural information; Diffuse Reflectance Spectroscopy (DRS) with a homemade fibered bundle system for optical characterization; and Raman depth profiling with a commercial confocal Raman microscope for structural information and for our final objective. For each technique, the obtained results are presented and correlated when possible. A few words are said on our final objective. Raman depth profiles of the multilayered phantoms are distorted by elastic scattering. The signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties, obtained here with DRS, is crucial to properly correct Raman depth profiles. Thus, it would be permitted to consider quantitative studies on skin for drug permeation follow-up or hydration assessment, for instance.
Teussink, Michel M.; Cense, Barry; van Grinsven, Mark J.J.P.; Klevering, B. Jeroen; Hoyng, Carel B.; Theelen, Thomas
2015-01-01
A growing body of evidence suggests that phototransduction can be studied in the human eye in vivo by imaging of fast intrinsic optical signals (IOS). There is consensus concerning the limiting influence of motion-associated imaging noise on the reproducibility of IOS-measurements, especially in those employing spectral-domain optical coherence tomography (SD-OCT). However, no study to date has conducted a comprehensive analysis of this noise in the context of IOS-imaging. In this study, we discuss biophysical correlates of IOS, and we address motion-associated imaging noise by providing correctional post-processing methods. In order to avoid cross-talk of adjacent IOS of opposite signal polarity, cellular resolution and stability of imaging to the level of individual cones is likely needed. The optical Stiles-Crawford effect can be a source of significant IOS-imaging noise if alignment with the peak of the Stiles-Crawford function cannot be maintained. Therefore, complete head stabilization by implementation of a bite-bar may be critical to maintain a constant pupil entry position of the OCT beam. Due to depth-dependent sensitivity fall-off, heartbeat and breathing associated axial movements can cause tissue reflectivity to vary by 29% over time, although known methods can be implemented to null these effects. Substantial variations in reflectivity can be caused by variable illumination due to changes in the beam pupil entry position and angle, which can be reduced by an adaptive algorithm based on slope-fitting of optical attenuation in the choriocapillary lamina. PMID:26137369
Correction of Rayleigh Scattering Effects in Cloud Optical Thickness Retrievals
NASA Technical Reports Server (NTRS)
Wang, Meng-Hua; King, Michael D.
1997-01-01
We present results that demonstrate the effects of Rayleigh scattering on the 9 retrieval of cloud optical thickness at a visible wavelength (0.66 Am). The sensor-measured radiance at a visible wavelength (0.66 Am) is usually used to infer remotely the cloud optical thickness from aircraft or satellite instruments. For example, we find that without removing Rayleigh scattering effects, errors in the retrieved cloud optical thickness for a thin water cloud layer (T = 2.0) range from 15 to 60%, depending on solar zenith angle and viewing geometry. For an optically thick cloud (T = 10), on the other hand, errors can range from 10 to 60% for large solar zenith angles (0-60 deg) because of enhanced Rayleigh scattering. It is therefore particularly important to correct for Rayleigh scattering contributions to the reflected signal from a cloud layer both (1) for the case of thin clouds and (2) for large solar zenith angles and all clouds. On the basis of the single scattering approximation, we propose an iterative method for effectively removing Rayleigh scattering contributions from the measured radiance signal in cloud optical thickness retrievals. The proposed correction algorithm works very well and can easily be incorporated into any cloud retrieval algorithm. The Rayleigh correction method is applicable to cloud at any pressure, providing that the cloud top pressure is known to within +/- 100 bPa. With the Rayleigh correction the errors in retrieved cloud optical thickness are usually reduced to within 3%. In cases of both thin cloud layers and thick ,clouds with large solar zenith angles, the errors are usually reduced by a factor of about 2 to over 10. The Rayleigh correction algorithm has been tested with simulations for realistic cloud optical and microphysical properties with different solar and viewing geometries. We apply the Rayleigh correction algorithm to the cloud optical thickness retrievals from experimental data obtained during the Atlantic Stratocumulus Transition Experiment (ASTEX) conducted near the Azores in June 1992 and compare these results to corresponding retrievals obtained using 0.88 Am. These results provide an example of the Rayleigh scattering effects on thin clouds and further test the Rayleigh correction scheme. Using a nonabsorbing near-infrared wavelength lambda (0.88 Am) in retrieving cloud optical thickness is only applicable over oceans, however, since most land surfaces are highly reflective at 0.88 Am. Hence successful global retrievals of cloud optical thickness should remove Rayleigh scattering effects when using reflectance measurements at 0.66 Am.
Narrowband resonant transmitter
Hutchinson, Donald P.; Simpson, Marcus L.; Simpson, John T.
2004-06-29
A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.
Transverse-longitudinal integrated resonator
Hutchinson, Donald P [Knoxville, TN; Simpson, Marcus L [Knoxville, TN; Simpson, John T [Knoxville, TN
2003-03-11
A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.
Zhang, Yuhua; Wang, Xiaolin; Rivero, Ernesto Blanco; Clark, Mark E; Witherspoon, Clark Douglas; Spaide, Richard F; Girkin, Christopher A.; Owsley, Cynthia; Curcio, Christine A.
2014-01-01
Purpose To describe the microscopic structure of photoreceptors impacted by subretinal drusenoid deposits, also called pseudodrusen, an extracellular lesion associated with age-related macular degeneration (AMD), using adaptive optics scanning laser ophthalmoscopy (AOSLO). Design Observational case series. Methods Fifty-three patients with AMD and 10 age-similar subjects in normal retinal health were recruited. All subjects underwent color fundus photography, infrared reflectance, red-free reflectance, autofluorescence, and spectral-domain optical coherence tomography (SD-OCT). Subretinal drusenoid deposits were classified with a 3-stage OCT-based grading system. Lesions and surrounding photoreceptors were examined with AOSLO. Results Subretinal drusenoid deposits were found in 26 eyes of 13 patients with AMD and imaged by AOSLO and SD-OCT in 18 eyes (n=342 lesions). SD-OCT showed subretinal drusenoid deposits as highly reflective material accumulated internal to the retinal pigment epithelium. AOSLO revealed that photoreceptor reflectivity was qualitatively reduced by stage 1 subretinal drusenoid deposits and greatly reduced by stage 2. AOSLO presented a distinct structure in stage 3, a hyporeflective annulus consisting of deflected, degenerated or absent photoreceptors. A central core with a reflectivity superficially resembling photoreceptors is formed by the lesion material itself. A hyporeflective gap in the photoreceptor ellipsoid zone on either side of this core shown in SD-OCT corresponded to the hyporeflective annulus seen by AOSLO. Conclusions AOSLO and multimodal imaging of subretinal drusenoid deposits indicate solid, space filling lesions in the subretinal space. Associated retinal reflectivity changes are related to lesion stages and are consistent with perturbations to photoreceptors, as suggested by histology. PMID:24907433
A trifurcated fiber-optic-probe-based optical system designed for AGEs measurement
NASA Astrophysics Data System (ADS)
Wang, Yikun; Zhang, Long; Zhu, Ling; Liu, Yong; Zhang, Gong; Wang, An
2012-03-01
Advanced Glycation End-products (AGEs) are biochemical end-products of non-enzymatic glycation and are formed irreversibly in human serum and skin tissue. AGEs are thought to play an important role in the pathogenesis of diabetes and corresponding complications. All conventional methods for measuring AGEs must take sampling and measure in vitro. These methods are invasive and have the problem of relatively time-consuming. AGEs have fluorescent characteristics. Skin AGEs can be assessed noninvasively by collecting the fluorescence emitted from skin tissue when excited with proper light. However, skin tissue has absorption and scattering effects on fluorescence of AGEs, it is not reliable to evaluate the accumulation of AGEs according the emitted fluorescence but not considering optical properties of skin tissue. In this study, a portable system for detecting AGEs fluorescence and skin reflectance spectrum simultaneously has been developed. The system mainly consists of an ultraviolet light source, a broadband light source, a trifurcated fiber-optic probe, and a compact charge coupled device (CCD) spectrometer. The fiber-optic probe consists of 36 optical fibers which are connected to the ultraviolet light source, 6 optical fibers connected to the broadband light source, and a core fiber connected to the CCD spectrometer. Demonstrative test measurements with the system on skin tissue of 40 healthy subjects have been performed. Using parameters that are calculated from skin reflectance spectrum, the distortion effects caused by skin absorption and scattering can be eliminated, and the integral intensity of corrected fluorescence has a strong correlation with the accumulation of AGEs. The system looks very promising for both laboratory and clinical applications to monitor AGEs related diseases, especially for chronic diabetes and complications.
Assessing diversity of prairie plants using remote sensing
NASA Astrophysics Data System (ADS)
Gamon, J. A.; Wang, R.
2017-12-01
Biodiversity loss endangers ecosystem services and is considered as a global change that may generate unacceptable environmental consequences for the Earth system. Global biodiversity observations are needed to provide a better understanding of biodiversity - ecosystem services relationships and to provide a stronger foundation for conserving the Earth's biodiversity. While remote sensing metrics have been applied to estimate α biodiversity directly through optical diversity, a better understanding of the mechanisms behind the optical diversity-biodiversity relationship is needed. We designed a series of experiments at Cedar Creek Ecosystem Science Reserve, MN, to investigate the scale dependence of optical diversity and explore how species richness, evenness, and composition affect optical diversity. We collected hyperspectral reflectance of 16 prairie species using both a full-range field spectrometer fitted with a leaf clip, and an imaging spectrometer carried by a tram system to simulate plot-level images with different species richness, evenness, and composition. Two indicators of spectral diversity were explored: the coefficient of variation (CV) of spectral reflectance in space, and spectral classification using a Partial Least Squares Discriminant Analysis (PLS-DA). Our results showed that sampling methods (leaf clip-derived data vs. image-derived data) affected the optical diversity estimation. Both optical diversity indices were affected by species richness and evenness (P<0.001 for each case). At fine spatial scales, species composition also had a substantial influence on optical diversity. CV was sensitive to the background soil influence, but the spectral classification method was insensitive to background. These results provide a critical foundation for assessing biodiversity using imaging spectrometry and these findings can be used to guide regional studies of biodiversity estimation using high spatial and spectral resolution remote sensing.
NASA Astrophysics Data System (ADS)
Wang, Anbo; Miller, Mark S.; Plante, Angela J.; Gunther, Michael F.; Murphy, Kent A.; Claus, Richard O.
1996-05-01
A self-referencing technique compensating for fiber losses and source fluctuations in reflective air-gap intensity-based optical fiber sensors is described. A dielectric multilayer short-wave-pass filter is fabricated onto or attached to the output end face of the lead-in-lead-out multimode fiber. The incoming broadband light from a white light or a light-emitting diode is partially reflected at the filter. The transmitted light through the filter projects onto a mirror. The light returning from the reflecting mirror is recoupled into the lead-in-lead-out fiber. These two reflections from the filter and the reflecting mirror are spectrally separated at the detector end. The power ratio of these two reflections is insensitive to source fluctuations and fiber-bending loss. However, because the second optical signal depends on the air-gap separation between the end face of the lead-in-lead-out fiber and the reflecting mirror, the ratio provides the information on the air-gap length. A resolution of 0.13 mu m has been obtained over a microdisplacement measurement range of 0-254 mu m. The sensor is shown to be insensitive to both fiber-bending losses and variations in source power. Based on this approach, a fiber-strain sensor was fabricated with a multilayer interference filter directly fabricated on the end face of the fiber. A resolution of 13.4 microstrain was obtained over a measurement range of 0-20,000 microstrain with a gauge length of 10 mm. The split-spectrum method is also incorporated into a diaphragm displacement-based pressure sensor with a demonstrated resolution of 450 Pa over a measurement range of 0-0.8 MPa.
Integrated packaging of 2D MOEMS mirrors with optical position feedback
NASA Astrophysics Data System (ADS)
Baumgart, M.; Lenzhofer, M.; Kremer, M. P.; Tortschanoff, A.
2015-02-01
Many applications of MOEMS microscanners rely on accurate position feedback. For MOEMS devices which do not have intrinsic on-chip feedback, position information can be provided with optical methods, most simply by using a reflection from the backside of a MOEMS scanner. By measuring the intensity distribution of the reflected beam across a quadrant diode, one can precisely detect the mirror's deflection angles. Previously, we have presented a position sensing device, applicable to arbitrary trajectories, which is based on the measurement of the position of the reflected laser beam with a quadrant diode. In this work, we present a novel setup, which comprises the optical position feedback functionality integrated into the device package itself. The new device's System-in-Package (SiP) design is based on a flip-folded 2.5D PCB layout and fully assembled as small as 9.2×7×4 mm³ in total. The device consists of four layers, which supply the MOEMS mirror, a spacer to provide the required optical path length, the quadrant photo-diode and a laser diode to serve as the light source. In addition to describing the mechanical setup of the novel device, we will present first experimental results and optical simulation studies. Accurate position feedback is the basis for closed-loop control of the MOEMS devices, which is crucial for some applications as image projection for example. Position feedback and the possibility of closed-loop control will significantly improve the performance of these devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aytug, Tolga; Lupini, Andrew R.; Jellison, Gerald E.
The design of multifunctional coatings impact impact the performance of many optical systems and components. Such coatings should be mechanically robust, and combine user-defined optical and wetting functions with scalable fabrication formulations. By taking cues from the properties of some natural biological structures, we report here the formation of low-refractive index antireflective glass films that embody omni-directional optical properties over a wide range of wavelengths, while also possessing specific wetting capabilities. The coatings comprise an interconnected network of nanoscale pores surrounded by a nanostructured silica framework. These structures result from a novel fabrication method that utilizes metastable spinodal phase separationmore » in glass-based materials. The approach not only enables design of surface microstructures with graded-index antireflection characteristics, where the surface reflection is suppressed through optical impedance matching between interfaces, but also facilitates self-cleaning ability through modification of the surface chemistry. Based on near complete elimination of Fresnel reflections (yielding >95% transmission through a single-side coated glass) and corresponding increase in broadband transmission, the fabricated nanostructured surfaces are found to promote a general and an invaluable ~3–7% relative increase in current output of multiple direct/indirect bandgap photovoltaic cells. Moreover, these antireflective surfaces also demonstrate superior resistance against mechanical wear and abrasion. Unlike conventional counterparts, the present antireflective coatings are essentially monolithic, enabling simultaneous realization of graded index anti-reflectivity, self-cleaning capability, and mechanical stability within the same surface. Moreover, the concept represents a fundamental basis for development of advanced coated optical quality products, especially where environmental exposure is required.« less
Wu, Yunzhao; Tang, Zesheng
2014-01-01
In this paper, we model the reflectance of the lunar regolith by a new method combining Monte Carlo ray tracing and Hapke's model. The existing modeling methods exploit either a radiative transfer model or a geometric optical model. However, the measured data from an Interference Imaging spectrometer (IIM) on an orbiter were affected not only by the composition of minerals but also by the environmental factors. These factors cannot be well addressed by a single model alone. Our method implemented Monte Carlo ray tracing for simulating the large-scale effects such as the reflection of topography of the lunar soil and Hapke's model for calculating the reflection intensity of the internal scattering effects of particles of the lunar soil. Therefore, both the large-scale and microscale effects are considered in our method, providing a more accurate modeling of the reflectance of the lunar regolith. Simulation results using the Lunar Soil Characterization Consortium (LSCC) data and Chang'E-1 elevation map show that our method is effective and useful. We have also applied our method to Chang'E-1 IIM data for removing the influence of lunar topography to the reflectance of the lunar soil and to generate more realistic visualizations of the lunar surface. PMID:24526892
Veerappan, Malini; El-Hage Sleiman, Abdul-Karim M.; Tai, Vincent; Chiu, Stephanie J.; Winter, Katrina P.; Stinnett, Sandra S.; Hwang, Thomas S.; Hubbard, G. Baker; Michelson, Michelle; Gunther, Randall; Wong, Wai T.; Chew, Emily Y.; Toth, Cynthia A.
2016-01-01
Purpose Structural and compositional heterogeneity within drusen, composed of lipid, carbohydrates, and proteins, have been previously described. We sought to detect and define phenotypic patterns of drusen heterogeneity in the form of optical coherence tomography–reflective drusen substructures (ODS) and examine their associations with age-related macular degeneration (AMD)-related features and AMD progression. Design Retrospective analysis in a prospective study. Participants Patients with intermediate AMD (n = 349) enrolled in the multicenter Age-Related Eye Disease Study 2 (AREDS2) ancillary spectral domain optical coherence tomography (SD OCT) study. Methods Baseline SD OCT scans of 1 eye per patient were analyzed for presence of ODS. Cross-sectional and longitudinal associations of ODS presence with AMD-related features visible on SD OCT and color photographs, including drusen volume, geographic atrophy (GA), and preatrophic features, were evaluated for the entire macular region. Similar associations were also made locally within a 0.5-mm diameter region around individual ODS and corresponding control region without ODS in the same eye. Main Outcome Measures Preatrophy SD OCT changes and GA, central GA, and choroidal neovascularization (CNV) from color photographs. Results Four phenotypic subtypes of ODS were defined: low reflective cores, high reflective cores, conical debris, and split drusen. Of the 349 participants, there were 307 eligible eyes and 74 (24%) had at least 1 ODS. The ODS at baseline were associated with (1) greater macular drusen volume at baseline (P < 0.001), (2) development of preatrophic changes at year 2 (P = 0.001–0.01), and (3) development of macular GA (P = 0.005) and preatrophic changes at year 3 (P = 0.002–0.008), but not development of CNV. The ODS at baseline in a local region were associated with (1) presence of preatrophy changes at baseline (P = 0.02-0.03) and (2) development of preatrophy changes at years 2 and 3 within the region (P = 0.008-0.05). Conclusions Optical coherence tomography–reflective drusen substructures are optical coherence tomography–based biomarkers of progression to GA, but not to CNV, in eyes with intermediate AMD. Optical coherence tomography–reflective drusen substructures may be a clinical entity helpful in monitoring AMD progression and informing mechanisms in GA pathogenesis. PMID:27793356
Bragg-Berry mirrors: reflective broadband q-plates.
Rafayelyan, Mushegh; Brasselet, Etienne
2016-09-01
We report on the experimental realization of flat mirrors enabling the broadband generation of optical vortices upon reflection. The effect is based on the geometric Berry phase associated with the circular Bragg reflection phenomenon from chiral uniaxial media. We show the reflective optical vortex generation from both diffractive and nondiffractive paraxial light beams using spatially patterned chiral liquid crystal films. The intrinsic spectrally broadband character of spin-orbit generation of optical phase singularities is demonstrated over the full visible domain. Our results do not rely on any birefringent retardation requirement and, consequently, foster the development of a novel generation of robust optical elements for spin-orbit photonic technologies.
NASA Astrophysics Data System (ADS)
Gao, Xiangdong; You, Deyong; Katayama, Seiji
2015-07-01
Optical properties are related to weld quality during laser welding. Visible light radiation generated from optical-induced plasma and laser reflection is considered a key element reflecting weld quality. An in-depth analysis of the high-frequency component of optical signals is conducted. A combination of a photoelectric sensor and an optical filter helped to obtain visible light reflection and laser reflection in the welding process. Two groups of optical signals were sampled at a high sampling rate (250 kHz) using an oscilloscope. Frequencies in the ranges 1-10 kHz and 10-125 kHz were investigated respectively. Experimental results showed that there was an obvious correlation between the high-frequency signal and the laser power, while the high-frequency signal was not sensitive to changes in welding speed. In particular, when the defocus position was changed, only a high frequency of the visible light signal was observed, while the high frequency of the laser reflection signal remained unchanged. The basic correlation between optical features and welding status during the laser welding process is specified, which helps to provide a new research focus for investigating the stability of welding status.
Method for producing highly reflective metal surfaces
Arnold, J.B.; Steger, P.J.; Wright, R.R.
1982-03-04
The invention is a novel method for producing mirror surfaces which are extremely smooth and which have high optical reflectivity. The method includes depositing, by electrolysis, an amorphous layer of nickel on an article and then diamond-machining the resulting nickel surface to increase its smoothness and reflectivity. The machined nickel surface then is passivated with respect to the formation of bonds with electrodeposited nickel. Nickel then is electrodeposited on the passivated surface to form a layer of electroplated nickel whose inside surface is a replica of the passivated surface. The mandrel then may be-re-passivated and provided with a layer of electrodeposited nickel, which is then recovered from the mandrel providing a second replica. The mandrel can be so re-used to provide many such replicas. As compared with producing each mirror-finished article by plating and diamond-machining, the new method is faster and less expensive.
Method for producing highly reflective metal surfaces
Arnold, Jones B.; Steger, Philip J.; Wright, Ralph R.
1983-01-01
The invention is a novel method for producing mirror surfaces which are extremely smooth and which have high optical reflectivity. The method includes electrolessly depositing an amorphous layer of nickel on an article and then diamond-machining the resulting nickel surface to increase its smoothness and reflectivity. The machined nickel surface then is passivated with respect to the formation of bonds with electrodeposited nickel. Nickel then is electrodeposited on the passivated surface to form a layer of electroplated nickel whose inside surface is a replica of the passivated surface. The electroplated nickel layer then is separated from the passivated surface. The mandrel then may be re-passivated and provided with a layer of electrodeposited nickel, which is then recovered from the mandrel providing a second replica. The mandrel can be so re-used to provide many such replicas. As compared with producing each mirror-finished article by plating and diamond-machining, the new method is faster and less expensive.
Optical bistability in a single-sided cavity coupled to a quantum channel
NASA Astrophysics Data System (ADS)
Payravi, M.; Solookinejad, Gh; Jabbari, M.; Nafar, M.; Ahmadi Sangachin, E.
2018-06-01
In this paper, we discuss the long wavelength optical reflection and bistable behavior of an InGaN/GaN quantum dot nanostructure coupled to a single-sided cavity. It is found that due to the presence of a strong coupling field, the reflection coefficient can be controlled at long wavelength, which is essential for adjusting the threshold of reflected optical bistability. Moreover, the phase shift features of the reflection pulse inside an electromagnetically induced transparency window are also discussed.
NASA Astrophysics Data System (ADS)
Jeon, Sie-Wook; Kim, Youngbok; Park, Chang-Soo
2012-01-01
We propose and demonstrate a long-reach wavelength division multiplexed-passive optical networks (WDM-PON) based on reflective semiconductor optical amplifiers (RSOAs) with easy maintenance of the optical source. Unlike previous studies the proposed WDM-PON uses two RSOAs: one for wavelength-selected light generation to provide a constant seed light to the second RSOA, the other for active external modulation. This method is free from intensity-fluctuated power penalties inherent to directly modulated single-RSOA sources, making long-reach transmission possible. Also, the wavelength of the modulated signal can easily be changed for the same RSOA by replacing the external feedback reflector, such as a fiber Bragg grating, or via thermal tuning. The seed light has a high-side-mode suppression ratio (SMSR) of 45 dB, and the bit error rate (BER) curve reveals that the upstream 1.25-Gb/s nonreturn-to-zero (NRZ) signal with a pseudo-random binary sequence (PRBS) of length of 215-1 has power penalties of 0.22 and 0.69 dB at BERs of 10-9 after 55-km and 110-km transmission due to fiber dispersion, respectively.
Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing
NASA Astrophysics Data System (ADS)
Yu, Tingting; Wen, Xiang; Tuchin, Valery V.; Luo, Qingming; Zhu, Dan
2011-09-01
Dehydration induced by optical clearing agents (OCAs) can improve tissue optical transmittance; however, current studies merely gave some qualitative descriptions. We develop a model to quantitatively evaluate water content with partial least-squares method based on the measurements of near-infrared reflectance spectroscopy and weight of porcine skin. Furthermore, a commercial spectrometer with an integrating sphere is used to measure the transmittance and reflectance of skin after treatment with different OCAs, and then the water content and optical properties of sample are calculated, respectively. The results show that both the reduced scattering coefficient and dehydration of skin decrease with prolongation of action of OCAs, but the relative change in former is larger than that in latter after a 60-min treatment. The absorption coefficient at 1450 nm decreases completely coincident with dehydration of skin. Further analysis illustrates that the correlation coefficient between the relative changes in the reduced scattering coefficient and dehydration is ~1 during the 60-min treatment of agents, but there is an extremely significant difference between the two parameters for some OCAs with more hydroxyl groups, especially, glycerol or D-sorbitol, which means that the dehydration is a main mechanism of skin optical clearing, but not the only mechanism.
Lemaillet, Paul; Cooksey, Catherine C; Levine, Zachary H; Pintar, Adam L; Hwang, Jeeseong; Allen, David W
2016-03-24
The National Institute of Standards and Technology (NIST) has maintained scales for reflectance and transmittance over several decades. The scales are primarily intended for regular transmittance, mirrors, and solid surface scattering diffusers. The rapidly growing area of optical medical imaging needs a scale for volume scattering of diffuse materials that are used to mimic the optical properties of tissue. Such materials are used as phantoms to evaluate and validate instruments under development intended for clinical use. To address this need, a double-integrating sphere based instrument has been installed to measure the optical properties of tissue-mimicking phantoms. The basic system and methods have been described in previous papers. An important attribute in establishing a viable calibration service is the estimation of measurement uncertainties. The use of custom models and comparisons with other established scales enabled uncertainty measurements. Here, we describe the continuation of those efforts to advance the understanding of the uncertainties through two independent measurements: the bidirectional reflectance distribution function and the bidirectional transmittance distribution function of a commercially available solid biomedical phantom. A Monte Carlo-based model is used and the resulting optical properties are compared to the values provided by the phantom manufacturer.
Myers, Tanya L; Tonkyn, Russell G; Danby, Tyler O; Taubman, Matthew S; Bernacki, Bruce E; Birnbaum, Jerome C; Sharpe, Steven W; Johnson, Timothy J
2018-04-01
For optical modeling and other purposes, we have created a library of 57 liquids for which we have measured the complex optical constants n and k. These liquids vary in their nature, ranging in properties that include chemical structure, optical band strength, volatility, and viscosity. By obtaining the optical constants, one can model most optical phenomena in media and at interfaces including reflection, refraction, and dispersion. Based on the works of others, we have developed improved protocols using multiple path lengths to determine the optical constants n/k for dozens of liquids, including inorganic, organic, and organophosphorus compounds. Detailed descriptions of the measurement and data reduction protocols are discussed; agreement of the derived optical constant n and k values with literature values are presented. We also present results using the n/k values as applied to an optical modeling scenario whereby the derived data are presented and tested for models of 1 µm and 100 µm layers for dimethyl methylphosphonate (DMMP) on both metal (aluminum) and dielectric (soda lime glass) substrates to show substantial differences between the reflected signal from highly reflective substrates and less-reflective substrates.
International Lens Design Conference, Monterey, CA, June 11-14, 1990, Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, G.N.
1990-01-01
The present conference on lens design encompasses physical and geometrical optics, diffractive optics, the optimization of optical design, software packages, ray tracing, the use of artificial intelligence, the achromatization of materials, zoom optics, microoptics and GRIN lenses, and IR lens design. Specific issues addressed include diffraction-performance calculations in lens design, the optimization of the optical transfer function, a rank-down method for automatic lens design, applications of quadric surfaces, the correction of aberrations by using HOEs in UV and visible imaging systems, and an all-refractive telescope for intersatellite communications. Also addressed are automation techniques for optics manufacturing, all-reflective phased-array imaging telescopes,more » the thermal aberration analysis of a Nd:YAG laser, the analysis of illumination systems, athermalized FLIR optics, and the design of array systems using shared symmetry.« less
Sando, Yusuke; Barada, Daisuke; Yatagai, Toyohiko
2016-10-20
A method for a continuous optical rotation compensation in a time-division-based holographic three-dimensional (3D) display with a rotating mirror is presented. Since the coordinate system of wavefronts after the mirror reflection rotates about the optical axis along with the rotation angle, compensation or cancellation is absolutely necessary to fix the reconstructed 3D object. In this study, we address this problem by introducing an optical image rotator based on a right-angle prism that rotates synchronously with the rotating mirror. The optical and continuous compensation reduces the occurrence of duplicate images, which leads to the improvement of the quality of reconstructed images. The effect of the optical rotation compensation is experimentally verified and a demonstration of holographic 3D display with the optical rotation compensation is presented.
Optical ranging and communication method based on all-phase FFT
NASA Astrophysics Data System (ADS)
Li, Zening; Chen, Gang
2014-10-01
This paper describes an optical ranging and communication method based on all-phase fast fourier transform (FFT). This kind of system is mainly designed for vehicle safety application. Particularly, the phase shift of the reflecting orthogonal frequency division multiplexing (OFDM) symbol is measured to determine the signal time of flight. Then the distance is calculated according to the time of flight. Several key factors affecting the phase measurement accuracy are studied. The all-phase FFT, which can reduce the effects of frequency offset, phase noise and the inter-carrier interference (ICI), is applied to measure the OFDM symbol phase shift.
Optics for coherent X-ray applications.
Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya
2014-09-01
Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed.
NASA Astrophysics Data System (ADS)
Siddique, M. Naseem; Ahmed, Ateeq; Ali, T.; Tripathi, P.
2018-05-01
Nickel oxide (NiO) nanoparticles with a crystal size of around 16.26 nm have been synthesized via sol-gel method. The synthesized precursor was calcined at 600 °C for 4 hours to obtain the nickel oxide nanoparticles. The XRD analysis result indicated that the calcined sample has a cubic structure without any impurity phases. The FTIR analysis result confirmed the formation of NiO. The NiO nanoparticle exhibited absorption band edge at 277.27 nm and the optical band gap have been estimated approximately 4.47 eV using diffuse reflectance spectroscopy and photoluminescence emission spectrum of our as-synthesized sample showed strong peak at 3.65 eV attributed to the band edge transition.
NASA Astrophysics Data System (ADS)
Vlasov, R. A.; Gadomskii, O. H.; Gadomskaia, I. V.; Samartsev, V. V.
1986-06-01
The method of integrodifferential equations related to the optical Bloch equations is used to study the nonlinear reflection (or refraction) of a scanning laser beam at the surface of a resonant medium excited by traveling and standing surface electromagnetic waves at resonant frequency. The effect of the phase memory of surface atoms on the pulsed action of fields with space-time resolution is taken into account. The reversal of the scanning beam from the excited surface with phase conjugation of the wave front is considered. In addition, the spectrum of the nonlinear surface polaritons is analyzed as a function of the area of the exciting pulse and the penetration depth of polaritons in the resonant optical medium.
NASA Technical Reports Server (NTRS)
Quince, Asia N. (Inventor); Stein, Alexander (Inventor)
2015-01-01
A non-contact pyrometer and method for calibrating the same are provided. The pyrometer includes a radiation sensor configured to measure at least a portion of a radiance signal emitted from a target medium and output a voltage that is a function of an average of the absorbed radiance signal, and an optical window disposed proximate the radiation sensor and configured to control a wavelength range of the radiance signal that reaches the radiation sensor. The pyrometer may further include a reflective enclosure configured to receive the target medium therein, wherein the radiation sensor and the optical window are disposed within the reflective enclosure, an amplifier in communication with an output of the radiation sensor, and a data acquisition system in communication with an output of the amplifier.
Technique of fiber optics used to localize epidural space in piglets.
Ting, Chien-Kun; Chang, Yin
2010-05-24
Technique of loss-of-resistance in epidural block is commonly used for epidural anesthesia in humans with approximately 90% successful rate. However, it may be one of the most difficult procedures to learn for anesthesia residents in hospital. A two-wavelength (650 nm and 532 nm) fiber-optical method has been developed according to the characteristic reflectance spectra of ex-vivo porcine tissues, which are associated with the needle insertion to localize the epidural space (ES). In an in-vivo study in piglets showed that the reflected lights from ES and its surrounding tissue ligamentum flavum (LF) are highly distinguishable. This indicates that this technique has potential to localize the ES on the spot without the help of additional guiding assistance.
Fabrication of high edge-definition steel-tape gratings for optical encoders.
Ye, Guoyong; Liu, Hongzhong; Yan, Jiawei; Ban, Yaowen; Fan, Shanjin; Shi, Yongsheng; Yin, Lei
2017-10-01
High edge definition of a scale grating is the basic prerequisite for high measurement accuracy of optical encoders. This paper presents a novel fabrication method of steel tape gratings using graphene oxide nanoparticles as anti-reflective grating strips. Roll-to-roll nanoimprint lithography is adopted to manufacture the steel tape with hydrophobic and hydrophilic pattern arrays. Self-assembly technology is employed to obtain anti-reflective grating strips by depositing the graphene oxide nanoparticles on hydrophobic regions. A thin SiO 2 coating is deposited on the grating to protect the grating strips. Experimental results confirm that the proposed fabrication process enables a higher edge definition in making steel-tape gratings, and the new steel tape gratings offer better performance than conventional gratings.
One-way invisibility in isotropic dielectric optical media
NASA Astrophysics Data System (ADS)
Horsley, S. A. R.; Longhi, S.
2017-06-01
Optical materials with a distribution of loss and gain can be used to manipulate waves in fascinating ways, seemingly impossible with ordinary lossless materials. Some recent results have shown that (for planar media) if the spatial distributions of the real and imaginary parts of the permittivity are related to one another by the Kramers-Kronig relations, then reflection can be eliminated. Moreover, if an additional "cancellation condition" is satisfied, then a material can be made invisible for incidence from one side. Here, we give a simple demonstration of these results that should be accessible to undergraduates. In addition, we show how this simple method can be used to prove results about the reflection from permittivity profiles, without ever requiring an exact solution of the Helmholtz equation.
Fabrication of high edge-definition steel-tape gratings for optical encoders
NASA Astrophysics Data System (ADS)
Ye, Guoyong; Liu, Hongzhong; Yan, Jiawei; Ban, Yaowen; Fan, Shanjin; Shi, Yongsheng; Yin, Lei
2017-10-01
High edge definition of a scale grating is the basic prerequisite for high measurement accuracy of optical encoders. This paper presents a novel fabrication method of steel tape gratings using graphene oxide nanoparticles as anti-reflective grating strips. Roll-to-roll nanoimprint lithography is adopted to manufacture the steel tape with hydrophobic and hydrophilic pattern arrays. Self-assembly technology is employed to obtain anti-reflective grating strips by depositing the graphene oxide nanoparticles on hydrophobic regions. A thin SiO2 coating is deposited on the grating to protect the grating strips. Experimental results confirm that the proposed fabrication process enables a higher edge definition in making steel-tape gratings, and the new steel tape gratings offer better performance than conventional gratings.
Sertsu, M G; Nardello, M; Giglia, A; Corso, A J; Maurizio, C; Juschkin, L; Nicolosi, P
2015-12-10
Accurate measurements of optical properties of multilayer (ML) mirrors and chemical compositions of interdiffusion layers are particularly challenging to date. In this work, an innovative and nondestructive experimental characterization method for multilayers is discussed. The method is based on extreme ultraviolet (EUV) reflectivity measurements performed on a wide grazing incidence angular range at an energy near the absorption resonance edge of low-Z elements in the ML components. This experimental method combined with the underlying physical phenomenon of abrupt changes of optical constants near EUV resonance edges enables us to characterize optical and structural properties of multilayers with high sensitivity. A major advantage of the method is to perform detailed quantitative analysis of buried interfaces of multilayer structures in a nondestructive and nonimaging setup. Coatings of Si/Mo multilayers on a Si substrate with period d=16.4 nm, number of bilayers N=25, and different capping structures are investigated. Stoichiometric compositions of Si-on-Mo and Mo-on-Si interface diffusion layers are derived. Effects of surface oxidation reactions and carbon contaminations on the optical constants of capping layers and the impact of neighboring atoms' interactions on optical responses of Si and Mo layers are discussed.